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FUNDAMENTAL PROPERTIES OF PROCESS DISTANCES

JULIO BACKHOFF VERAGUAS, MATHIAS BEIGLBÖCK, MANU EDER, AND ALOIS PICHLER

Abstract. Information is an inherent component of stochastic processes and to measure the distance
between different stochastic processes it is often not sufficient to consider the distance of their laws.
Instead, the information which accumulates over time and which is mathematically encoded by filtra-
tions, has to be accounted for as well. The nested distance/ bicausal Wasserstein distance addresses
this challenge. It is of emerging importance in stochastic programming and other disciplines.

In this article we establish a number of fundamental properties of the nested distance. In particular
we prove that the nested distance of processes generates a Polish topology but is itself not a complete
metric. We identify its completion to be the set of nested distributions, a form of generalized stochastic
processes, recently introduce by Pflug.

Moreover we find that — choosing an appropriate underlying metric — the nested distance induces
Hellwig’s information topology studied in the economic literature and in particular our results lead to
new insights also in this context.

Keywords: Optimal Transport, nested distance, causal Wasserstein distance, information topology,
Knothe-Rosenblatt rearrangement.
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1. Introduction

In this paper, we consider several distances between stochastic processes and investigate their funda-
mental metric and topological properties. The distances we discuss are based on transport theory; we
refer to Villani’s monographs [24, 25] or the lecture notes by Ambrosio and Gigli [2] for background. Clas-
sical transport distances (cf. [22, 23]) do not respect the information structure inherent to a multivariate
distribution when this is seen as a stochastic process. It is therefore desirable to find natural extensions
of these distances that do take information/ filtrations into account. To achieve this, one has to adjust
the definition of transport distances and include constraints involving the filtration to incorporate infor-
mation at specified times. Heuristically this means that the computation of the distance is done over
transport plans/couplings that only move mass respecting the causal structure inherent to filtrations.

These ideas lead to the nested distance introduced by Pflug in [18], and its systematic investigation
was continued in [19, 20, 17]. The nested distance has already turned out to be a crucial tool for
applications in the field of multistage stochastic optimization, where problems can be computationally
extremely challenging, and in many situations they simply cannot be managed in reasonable time. Based
on the nested distance, approximation with tractable simplifications becomes feasible, and sharp bounds
for the approximation error can be found. Independently, a systematic treatment and use of causality
as an interesting property of abstract transport plans and their associated optimal transport problems
was initiated by Lassalle in [15]; in particular he introduces a nested distance under the name (bi)causal
Wasserstein distance and provides intriguing connections with classical geometric/ functional analytic
inequalities, as well as stochastic analysis. In [5, 1] it is argued that the classical Knothe-Rosenblatt
rearrangement (cf. [25, Introduction]), also known as quantile transform in statistics, is a causal analogue
to the celebrated Brenier-mapping in optimal transport and show that causality is naturally linked to
subject of enlargement of filtrations in stochastic analysis; these articles are in the wider tradition of
constrained transport problems and in particular related to martingale optimal transport (cf. [8, 12, 11,
7, 16] among many others).

While the nested distances has already received some attention, a number of basic and fundamental
questions on the corresponding topological/ metric structure have remained open. The main goal of the
present article is to fill this gap. Although the nested distance is inspired by the Wasserstein distance,
it turns out that there are substantial differences between these concepts. In Section 3 we show that
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convergence in nested distance cannot be verified by testing against a class of usual functions. Furthermore
we observe that nested distance is an incomplete metric. Our first main result, Theorem 4.4, identifies the
completion of this topology explicitly. This completion turns out to be the space of nested distributions
(cf. [18] and Definition 4.2 below), which are in a sense generalized stochastic processes, equipped with
a classical Wasserstein distance. We thus connect two hitherto unrelated mathematical objects in an
unexpected way. Interestingly we find that while the nested distance is not complete, we will establish
in Section 5 that the induced topology is Polish, i.e., separable and completely metrizable (cf. Theorem
5.6 and comments thereafter). This is the second main result of the article. As a consequence of these
considerations we can moreover find a complete metric compatible with the nested distance.

Most naturally, the nested distance is defined as a variant of a transport distance where the cost
function is based on the usual Euclidean distance on R

N , but we want to argue that also the nested
distance defined from a bounded metric on R

N can be of interest. In the classical setup, a bounded
metric on R

N induces a Wasserstein distance corresponding to the weak topology on probability measures.
Likewise a nested distance based on a bounded metric induces an information-compatible topology which
might be seen as a weak nested topology. We will establish that this weak nested topology coincides with
the information topology introduced by Hellwig [13] (cf. also [6] and the references therein) for applications
in the field of mathematical economics, more specifically, sequential decision making and equilibria. Our
results in Sections 4 and 5 seem to be novel in the setup of [13], and potentially applicable in mathematical
economics. We stress that the concept of nested distance (in contrast to weak nested topology) is not
present, nor is it related, to the works [13, 6] to the best of our knowledge.

As we already mentioned, the Knothe-Rosenblatt rearrangement is the causal analogue of Brenier’s
map. This rearrangement appears everywhere in mathematics, from statistics to the theory of geometric
inequalities. For this reason we will also compare the nested distance to a new distance defined in terms
of (i.e. induced by) this rearrangement, which a priori seems easier to compute. In dimension one it
happens that both distances coincide. Our finding here is that, in higher dimensions, this new distance is
strictly stronger than the nested distance. This leads us to conjecture that in multiple dimensions there
is no privileged transport/rearrangement that may induce a simpler metric topologically equivalent to
the nested distance one.

Outline. We introduce the notation used throughout the paper and describe the mathematical setup
in Section 2. In Section 3 we discuss some elementary properties of the nested distance. Section 4 is
concerned with the with completeness-properties of this distance. Then in Section 5 we introduce the
weak nested topology, compare it to Hellwig’s information topology, and establish its Polish character.
In Section 6 we introduce the Knothe–Rosenblatt distance and provide a comparison with the nested
distance. Finally, we give a brief summary of our results in Section 7.

2. Notation and mathematical setup

The pushforward of a measure γ by a map M is M∗γ := γ ◦ M−1. For a product of sets X × Y
we denote by p1 (p2, resp.) the projection onto the first (second, resp.) coordinate. We denote by
γx, γy the regular kernels of a measure γ on X × Y w.r.t. its first and second coordinate, respectively,
obtained by disintegration (cf. [3]) so that γ(A × B) =

∫

A
γx1(B) γ1

(

dx1

)

with γ1(A) := p1∗γ(A) =
γ(A × Y). The notation extends analogously to products of more than two spaces. We convene that
for a probability measure η on R

N , ηx1,...,xt denotes the one-dimensional measure on xt+1 obtained by
disintegration of η w.r.t. (x1, . . . , xt). Also, a statement like “for η-a.e. x1, . . . , xt” is meant to denote
“almost-everywhere” with respect to the projection of η onto the coordinates (x1, . . . , xt). On R

N ×R
N

we denote by (x1, . . . , xN ) the first half and by (y1, . . . , yN) the second half of the coordinates. Similarly,
we use the convention that for a probability measure γ on R

N × R
N , γx1,...,xt,y1,...,yt denotes the two-

dimensional measure on (xt+1, yt+1) given by regular disintegration of γ w.r.t. (x1, . . . , xt, y1, . . . , yt), so
a statement like “for γ-a.e. x1, . . . , xt, y1, . . . , yt” is meant to denote “almost-everywhere” with respect to
the projection of γ onto x1, . . . , xt, y1, . . . , yt.

The ambient set throughout this article is R
N , which we consider as a filtered space endowed with the

canonical (i.e. coordinate) filtration
(

Ft

)N

t=1
. (Precisely Ft is the smallest σ-algebra on R

N such that the

projection R
N ∋ x 7→ (x1, . . . , xt) ∈ R

t onto the first t components is Borel-measurable, and so forth.)



FUNDAMENTAL PROPERTIES OF PROCESS DISTANCES 3

We endow R
N with an ℓp-type product metric, namely

(2.1) d(x, y) := dp(x, y) := p

√

√

√

√

N
∑

t=1

d(xi, yi)p,

for some base metric d on R compatible with the usual topology and p ∈ [1,∞). We will be particularly
interested in the cases where d is the usual distance or is a compatible bounded metric on R. Notably,
for most results one may substitute SN for R

N , where S is a Polish space, again endowing it with an
ℓp-type product metric. Throughout this work, we fix d, p and d as described.

The probability measures on the product space RN×R
N with marginals µ and ν constitute the possible

transport plans or couplings between the given marginals. We denote this set by

Π(µ, ν) =
{

γ ∈ P(RN × R
N ) : γ has marginals µ and ν

}

.

We often consider processes X = {Xt}
N
t=1, Y = {Yt}

N
t=1, defined on some probability space. Each pair

(X,Y ) can be thought of as a coupling or – abusing notation slightly – as a transport plan upon identifying
it with its law. For the sake of simplicity, being measurable with respect to a sigma algebra means to
be equal to a correspondingly measurable function modulo a null set w.r.t. the measure relevant in the
given context.

Definition 2.1. A transport plan γ ∈ Π(µ, ν) is called bicausal (between µ and ν) if the mappings

R
N ∋ x 7→ γx(B) and R

N ∋ y 7→ γy(B)

are Ft-measurable for any B ∈ Ft and t < N . The set of all bicausal plans is denoted

Πbc(µ, ν).

The product measure µ⊗ ν is bi-causal, so Πbc(µ, ν) is non-empty. In terms of stochastic processes, a
coupling is bicausal if

P
(

(Y1, . . . , Yt) ∈ Bt | X1, . . . , XN

)

= P
(

(Y1, . . . , Yt) ∈ Bt | X1, . . .Xt

)

and

P
(

(X1, . . . , Xt) ∈ Bt | Y1, . . . , YN

)

= P
(

(X1, . . . , Xt) ∈ Bt | Y1, . . . Yt

)

for all t = 1, . . . , N and Bt ⊂ R
t Borel.

Testing whether a coupling or transport plan is bicausal reduces to a property of its transition kernel.
Specifically we have the following characterization (see, e.g., [4])

Proposition 2.2. The following are equivalent:

(1) γ is a bicausal transport plan on R
N × R

N between the measures µ and ν.
(2) The successive regular kernels γ̄ of the decomposition

γ(dx1, . . . , dxN , dy1, . . . , dyN )

= γ̄(dx1, dy1)γx1,y1(dx2, dy2) . . . γx1,...,xN−1,y1,...,yN−1(dxN , dyN )(2.2)

satisfy

γ̄ ∈ Π(p1∗µ, p
1
∗ν)

and further, for t < N and γ-almost all x1, . . . , xt, y1, . . . , yt,

(2.3) p1∗γ
x1,...,xt,y1,...,yt = µx1,...,xt and p2∗γ

x1,...,xt,y1,...,yt = νy1,...,yt .

3. The nested distance

Following [18, 19, 20] we consider for µ, ν as above the p-nested distance, or simply nested distance,
defined by

dndp (µ, ν) :=

(

inf
γ∈Πbc(µ,ν)

∫∫

dpdγ

)1/p

=

(

inf
γ∈Πbc(µ,ν)

∫∫

[

N
∑

t=1

d(xt, yt)
p

]

dγ

)1/p

,(3.1)

obtaining a metric on the space

Pp(RN ) := {µ ∈ P(RN ) :
∫

d(x, x0)pµ(dx) < ∞, some x0},
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in direct analogy with the classical p-Wasserstein space. As noted in [21], the nested distance (3.1) is best
suited to “separate” µ and ν if their information structure differs. In particular, the authors show that
empirical measures µemp

n of a multivariate measure µ with density never converge in nested distance (even
though they do converge in Wasserstein distance); the essential point here is that each empirical measure
µemp
n is roughly a tree with non-overlapping branches (commonly a fan) and therefore deterministic as

soon as the first component is observed. From an information perspective this is radically different from
µ. Arguably, this is a key property of the nested distance, and is its main distinctive characteristic and
strength in comparison with the Wasserstein distance.

3.1. Recursive computation. A useful comment at this point is that the nested distance can be stated
and computed recursively in a way which is comparable to Bellman equations: starting with V p

N := 0 we
define

V p
t (x1, . . . , xt, y1, . . . , yt) :=(3.2)

inf
γt+1∈Π(µx1,...,xt ,νy1,...,yt )

∫∫
(

V p
t+1(x1, . . . , xt+1, y1, . . . , yt+1)

+ d(xt+1, yt+1)
p

)

γt+1(dxt+1, dyt+1),

so that the nested distance is finally obtained in a backwards recursive way by

(3.3) dndp (µ, ν)p = inf
γ1∈Π(p1

∗µ,p
1
∗ν)

∫∫

(V p
1 (x1, y1) + d(x1, y1)p) γ1(dx1, dy1).

3.2. Comparison with weak topology. The Wasserstein distance metrizes the weak topology on
probability measures with suitably integrable moments. We recall that the weak topology (also called
weak* or vague topology) is characterized by integration on bounded and continuous functions. It is thus
natural to ask if there is a class of functions which characterizes the topology generated by the nested
distance.

Proposition 3.1. Let N ≥ 2. There does not exist a family F of functions on R
N which determines

convergence for dndp . I.e., there is no family F so that

dndp (µn, µ) → 0 ⇐⇒

∫

fdµn →

∫

fdµ for all f ∈ F, (µn)∞n=1, µ ∈ Pp.

In fact, such a convergence determining family does not even exist if one restricts dndp to distributions

supported on a bounded region [−K,K]N × [−K,K]N , K ≥ 0.

Remark 3.2 (Separating evaluations). The nested distance was initially introduced with the intention
to compare stochastic programs and the question answered by the preceding Proposition 3.1 was initially
posed by Prof. Pflug. Indeed, Corollary 2 in [19] demonstrates that there are stochastic optimization
programs with differing objective values whenever the nested distance differs.

The separating objects are thus entire stochastic programs which, in view of the preceding Proposi-
tion 3.1, cannot be replaced by a set of functions on R

N . This emphasizes further the intrinsic relation
between stochastic programs, the nested distance, and the role of information.

Proof. Assume that such a family exists. Without loss of generality we can further assume that the
integral of f ∈ F against all measures in Pp are well-defined. By considering δ(xn

1 ,...,x
n
N
), which converge

in nested distance to δ(x1,...,xN ) if their supports do in R
N , we conclude that F ⊂ C(RN ). Set

µε :=
1

2

[

δ(ε,...,ε,1) + δ(−ε,...,−ε,−1)

]

and µ :=
1

2

[

δ(0,...,0,1) + δ(0,...,0,−1)

]

.

By continuity we find that
∫

fd(µε −µ) → 0 as ε → 0 for all f ∈ F. Taking d to be the usual distance on

R we find dndp (µε, µ) ≥ 2p−1, for instance via (3.3). In general one sees that dndp (µε, µ) is bounded away
of 0. Thus F cannot determine convergence in nested distance. �

We will see in Example 4.1 in the next section that dndp is not complete. This further demonstrates
how different the nested distance is from the usual Wasserstein distance.



FUNDAMENTAL PROPERTIES OF PROCESS DISTANCES 5

Remark 3.3. We stress that the metric results in Section 4 and the topological results in Section 5
are also applicable if we based the p-nested distance on an ℓq-type product norm in R. Indeed, for each
q ∈ [1,∞) we easily find c, C > 0 s.t.

c d(x, y) ≤ dq(x, y) ≤ C d(x, y);

see (2.1) for notation. In particular, if we base the p-nested distance (3.1) in terms of dq instead of
d = dp, we obtain a strongly equivalent metric on Pp (with the same constants c and C). By the form of
the metric d, we obtained an amenable expression for dndp , as seen in the r.h.s. of (3.1), which we would

not have under dq for q 6= p. For these reasons, we may and will continue to work with dndp defined in
terms of d = dp keeping in mind how the forthcoming results are trivially generalizable.

4. Completeness and completion

The space Pp(RN ), endowed with the p-Wasserstein distance is complete. This is not the case for the
nested distance, as the following example reveals.

Example 4.1. We observe that dndp is not a complete metric as soon as the dimension N is greater or
equal than 2. For the sake of the argument we take N = 2, d the usual distance on R, and consider
µn = 1/2{δ(1/n,1) + δ(−1/n,−1)}. One verifies that dndp (µn, µm) ≤ |1/n− 1/m|, so the sequence is Cauchy.
The only possible limit of this sequence is the limit based on the Wasserstein distance, that is µ =
1/2{δ(0,1) + δ(0,−1)}. But in nested distance we have dndp (µn, µ) = (2p−1 + n−p)1/p > 1, in particular this
sequence does not tend to zero.

The distinguishing point is that µ is a real tree with coinciding states at the first stage, whereas the µn’s
are not. The nested distance is designed to capture this distinction, which is ignored by the Wasserstein
distance.

So for N > 1 the nested distance is not complete. To identify the completion of Pp(RN ) with respect
to the p-nested distance, we consider the nested distributions introduced in [18].

Definition 4.2. Consider the sequence of metric spaces

RN :N := (R, d(N :N)), with d(N :N) = d = [dp]1/p

RN−1:N :=
(

R× Pp(RN :N ), d(N−1:N)

)

, with d(N−1:N) =
[

dp + W p
d(N :N),p

]1/p

...

R1:N :=
(

(R× Pp(R2:N )), d(1:N)

)

, with d(1:N) =
[

dp + W p
d(2:N),p

]1/p

,

where at each stage t, the space Pp(Rt:N ) is endowed with the p-Wasserstein distance with respect to the
metric d(t:N) on Rt:N , which we denote Wd(t:N),p. The set of nested distributions (of depth N) with p-th

moment is defined as Pp(R1:N ).

Each of the spaces Rt:N (t = 1, . . .N) is a Polish space. Indeed, a complete metric is given explicitly,
and the spaces are separable since P(R) is complete and separable whenever (R, ρ) is complete and
separable (cf. [9]). We endow Pp(R1:N ) with the complete metric Wd(1:N),p.

Example 4.3. When N = 2, we have that R1:2 = R× Pp(R) and for P,Q ∈ Pp(R1:2) the distance is

Wd(1:2),p(P,Q) =
{

infΓ∈Π(P,Q)

∫∫ (

d(x, y)p + W p
p (µ, ν)

)

Γ(dx, dµ, dy, dν)
}1/p

(4.1)

with Wp the classical p-Wasserstein distance for measures on the line and w.r.t the metric d. The
formulation (4.1) notably exactly corresponds to the recursive descriptions (3.2) and (3.3).

4.1. Embedding. We demonstrate that the nested distributions of depth N introduced in Definition 4.2
extend the notion of probability measures in R

N in a metrically meaningful way. Let us introduce
the following function, already present in [18], which associates µ ∈ Pp(RN ) with the measure I[µ] ∈
Pp(R1:N ) given by

(4.2) I[µ] :=  L
(

X1 ,  LX1

(

X2 , · · · ,  LX1:N−2
(

XN−1 ,  LX1:N−1(XN )
)

))

,



6 JULIO BACKHOFF VERAGUAS, MATHIAS BEIGLBÖCK, MANU EDER, AND ALOIS PICHLER

where (X1, . . . , XN ) is a vector with law µ. We used the shorthand  LX1:k for the conditional law given
(X1, . . . , Xk) (and no superscript indicates unconditional law).

Theorem 4.4. Let d = dp. Then the classical Wasserstein distance of nested distributions extends
the nested distance of classical distributions. More precisely, the mapping I defined in (4.2) embeds
the metric space (Pp(RN ), dndp ) defined via (3.1) isometrically into the separable complete metric space

(Pp(R1:N ),Wd(1:N),p). In particular (Pp(RN ), dndp ) is separable.

Proof. It is enough to consider N = 2. For a probability measure µ on R
2 consider its disintegration

measure
µ(A×B) =

∫

A
µx1(B)p1∗µ(dx1),

where p1 is the projection onto the first coordinate. An embedding of µ in the space P
(

R×P(R)
)

is given
by the probability measure generated uniquely by (here A,B are Borel sets of R and P(R) respectively)

I[µ](A ×B) := µ
(

A ∩ T−1
µ (B)

)

= p1∗µ
(

A ∩ T−1
µ (B)

)

,

where Tµ is the Borel measurable function

Tµ : R → P(R)

x1 7→ µx1(dx2)

In this way we find that I[µ] is the µ-law of x1 7→ (x1, µ
x1(dx2)). For µ ∈ Pp(R2) we also have

∫

{

d(x, 0)p + W p
p (ν, δ0)

}

I[µ](dx, dν) =

∫

{

d(x1, 0)p + W p
p (µx1 , δ0)

}

p1∗µ(dx1)

=

∫

{d(x1, 0)p + d(x2, 0)p}µ(dx1, dx2) < ∞

and thus I[µ] ∈ Pp(R1:2).
We now observe that the embedding µ 7→ I[µ] is actually an isometry between (Pp(RN ), dndp ) and

(Pp(R1:N ),Wd(1:N),p). To this end, first note that every coupling between I[µ] and I[ν] (i.e., every

Γ ∈ Π(I[µ], I[ν])) is of the form γ̄(dx1, dy1)δTµ(x1)(dM)δTν(y1)(dN) for some γ̄ ∈ Π(p1∗µ, p
1
∗ν) and vice-

versa. Hence from (4.1) and (3.2) we have that

Wd(1:2),p

(

I[µ], I[ν]
)p

= inf
γ̄∈Π(p1

∗µ,p
1
∗ν)

∫

{

d(x1, y1)p + W p
p (µx1 , νy1)

}

γ̄(dx1, dy1)

= dndp (µ, ν)p,

by (3.3), and hence the isometry. Finally, since the image of I is a subspace of the separable metric space
(Pp(R1:N ),Wd(1:N),p), it is separable itself. We conclude that (Pp(RN ), dndp ) is separable too. �

Remark 4.5. It follows from the preceding arguments as well that the embedding I is onto if and only if
N = 1.

4.2. Completion. We now identify the completion of (Pp(RN ), dndp ). (Recall that the completion of a
metric space is unique up to isomorphism.) This result is unexpected and provides a solid link between
these two previously separate mathematical objects.

Theorem 4.6. The space
(

Pp(R1:N ),Wd(1:N),p

)

is the completion of
(

Pp(RN ), dndp
)

.

Proof. We need to provide an isometry J from (Pp(RN ), dndp ) into (Pp(R1:N ),Wd(1:N),p) whose range is

dense. We shall prove that I defined in (4.2) does this task. This can be done for arbitrary N at a
notational, while already the case N = 2 is representative of the general situation. We thus assume
N = 2 in what follows.

The set of convex combinations of Dirac measures is dense in Pp(R1:N ) w.r.t. the metric Wd(1:N),p.

This is actually true for any Wasserstein metric (cf. [9]) and thus particularly for Wd(1:2),p, which in

itself is a Wasserstein metric (see also Example 4.3 for concreteness). So it suffices to prove that convex
combinations of Dirac measures lie in the closure of the range of I.

Let A := (a1, . . . , ak) be a k-tuple of points in R and m1, . . . ,mk be measures on the line with finite
p-th moment. Given weighs {λi}

k
i=1 we are interested in the measure

P (dx, dm) =
∑

λiδ(ai,mi)(dx, dm),
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over R1:2. Now we take any sequence An := {an1 , . . . , a
n
k} such that componentwise An → A as n → ∞

and, for each n fixed, all coordinates of An are distinct. We now define µn ∈ Pp(R2) as the measure
whose first marginal is

∑

λjδan
j

and such that µn(dx2|x1 = anj ) = mj(dx2). It is elementary, and this is

the main point of having made the anj ’s distinct for a fixed n, that

I[µn] =
∑

λjδ(an
j
,mj).

Consequently we get that I[µn] → P with respect to Wd(1:2),p when n → ∞, as desired.
�

At this point we ask,

Can (Pp(RN ), dndp ) still be Polish, for N ≥ 2?.

Just as the interval (0, 1) is a Polish subspace of [0, 1], which is nevertheless incomplete w.r.t. the usual
distance on [0, 1], neither Example 4.1 nor Theorem 4.6 contribute anything to this question. We explore
this in the following section.

5. The information topology / weak nested topology

We introduce the space P(R1:N ) just as we did for Pp(R1:N ), but now denoting Rt−1:N := R×P(Rt:N )
at each step of the recursive definition, and equipping Rt−1:N with the product topology of Euclidean
distance in the first component and the usual weak topology in the second one. Doing so, we conclude
that P(R1:N) is a Polish space of measures on the likewise Polish space R1:N . Inspired by the isometric
embedding in Theorem 4.4, which we denoted I in (4.2), a mapping I : P(RN ) → P(R1:N ) can be
obtained by direct generalization.

Definition 5.1. We say that a net {µα}α in P(RN ) weakly nested converges to µ ∈ P(RN ), if and only
if I[µα] converges weakly in P(R1:N ) to I[µ]. We call the corresponding topology weak nested topology.

Thus the weak nested topology is simply the initial topology for the map I.

Remark 5.2. Suppose that X is Polish and that ρ is a compatible complete metric which is bounded.
Then the corresponding p-Wasserstein topology is precisely the weak topology. Likewise we obtain that
the weak nested topology is generated by the nested distance dndp as soon as we choose d as a compatible
bounded metric for the usual topology on R. For instance, we may take the metric d(a, b) = |a− b| ∧ 1 so

d(x, y) =

N
∑

t=1

|xt − yt| ∧ 1.

In this way we obtain that the weak nested topology coincides with a p-nested topology of the form we
have already treated.

Although there are more direct ways to prove it, the previous remark implies the following:

Lemma 5.3. The weak nested topology is separable and metrizable.

5.1. Comparison with an existing concept. Definition 5.1 is related to the so-called topology of
information which was introduced in [13] for the purpose of sequential decision problems and equilibria
(see also [6] for a recent update). In our setting, this topology is defined as the initial topology for the
following maps on P(RN ):

µ 7→ µ ∈ P(RN )

µ 7→ [x1 7→ (x1, µ
x1(dx2, . . . , dxN ))]∗µ ∈ P(R× P(RN−1))

µ 7→ [(x1, x2) 7→ (x1, x2, µ
x1,x2(dx3, . . . , dxN ))]∗µ ∈ P(R2 × P(RN−2))

...

µ 7→ [(x1, . . . , xN−1) 7→ (x1, . . . , xN−1, µ
x1,...,xN−1(dxN ))]∗µ ∈ P(RN−1 × P(R)),

where the range spaces are endowed with the usual weak topologies.
For N = 1, 2 this topology obviously coincides with the weak nested one of Definition 5.1. As a matter

of fact, this is always the case. We show the argument for N = 3:
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Let A,B continuous bounded function on R×P(R2) and R
2×P(R), respectively. We denote by m,M

generic elements in P(R) and P(R× P(R)), respectively. Then

R× P(R× P(R)) ∋ (x1,M) 7→ Ā(x1,M) := A

(

x1,

∫

R×P(R)

mM(dx2, dm)

)

,

R× P(R× P(R)) ∋ (x1,M) 7→ B̄(x1,M) :=

∫

R×P(R)

B(x1, x2,m)M(dx2, dm),

are seen to be continuous bounded functions too, thus they are suitable test functions for weak nested
convergence (since R1:3 = R× P(R× P(R)) precisely). One then easily verifies that

∫

Ā(x1,M)I[µ](dx1, dM) =

∫

R

A(x1, µ
x1(dx2, dx3))µ(dx1),

∫

B̄(x1,M)I[µ](dx1, dM) =

∫

R2

B(x1, x2, µ
x1,x2(dx3))µ(dx1, dx2),

so convergence of the l.h.s (guaranteed by weak nested convergence) implies that of the r.h.s. which
then implies convergence in information topology. Thus the weak nested topology is stronger than the
topology of information. For the converse, recall first that

µ ∈ P(R3) 7→ I[µ] =  L(X1 ,  LX1(X2 ,  LX1,X2(X3))),

where (X1, X2, X3) is distributed according to µ. If we denote

m ∈ P(R2) 7→ T [m] := [x 7→ (x,mx(dy))]∗m ∈ P(R× P(R)),

(x,m) ∈ R× P(R2) 7→ L(x,m) := (x, T [m]) ∈ R× P(R× P(R)),

p ∈ P(R3) 7→ φ(p) := [x 7→ (x, px(dy, dz))]∗p ∈ P(R× P(R2)),

one finds that I[µ] = L∗φ(µ). By definition φ is continuous in topology of information. The key now is
[13, Lemma 7], from which φ is also continuous if on the range space, P(R × P(R2)), we endow P(R2)
with the information topology again. Since L is continuous when the domain is given this topology, we
finally conclude that L∗φ(µ) is continuous in information topology, making the latter stronger than the
weak nested one.

Because we are inspired by the nested distance of Pflug and Pichler, and due to the observation in
Remark 5.2 that the weak nested topology (so a fotriori the information topology) is a nested distance
topology, we shall use the term “weak nested topology” instead of “information topology” in the following.
The results to come are also new in the setting of [13, 6].

5.2. A closer look at the weak nested topology. We will establish that the weak nested topology
(and actually the nested distance topologies) is Polish. Although we deem this interesting per-se, we
hope this can find future applications too.

We recall that a set of a topological spaces is a Gδ if it is the countable intersection of open sets. Recall
also that every separable metrizable space is homeomorphic to a subspace of the Hilbert cube [0, 1]N, the
latter equipped with the product topology; see [14, Theorem 4.14]. A compatible metric on the Hilbert
cube is given by

D
(

(xn), (yn)
)

:=
∑

n=1

2−n|xn − yn|.

Lemma 5.4. Let m ∈ P(X×Y ) with X Polish and (Y, ρ) a separable metric space. Denote ι : Y → [0, 1]N

the embedding of Y into the Hilbert cube. Then the following are equivalent:

(1) m
(

Graph(f)
)

= 1 for f : X → Y Borel;

(2) inf
{

∫

X×Y ρ
(

f(x), y
)

m(dx, dy) : f : X → Y Borel
}

= 0;

(3) inf
{

∫

X×Y
D
(

F (x), ι(y)
)

m(dx, dy) : F : X → [0, 1]N Borel
}

= 0;

(4) inf
{

∫

X×Y
D
(

F (x), ι(y)
)

m(dx, dy) : F : X → [0, 1]N continuous
}

= 0.

Proof. Clearly 1 =⇒ 2 =⇒ 3. Denote µ the first marginal of m. Given F : X → [0, 1]N Borel,
F (x) = (Fn(x))n, we can approximate it in L1(X,µ; [0, 1]N) by continuous functions. This follows since
coordinate-wise we can approximate Fn ∈ L1(X,µ; [0, 1]) by continuous functions. So also 3 =⇒ 4.
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To establish 4 =⇒ 1 let {Fn} be a sequence of continuous functions approximating the infimum in 4,
and denote Gn(x) :=

∫

D
(

Fn(x), ι(y)
)

mx(dy) so Gn is Borel, non-negative, and ‖Gn‖L1(X,µ;R) → 0 by

definition. It follows that Gn → 0 in L1(X,µ;R) so up to a subsequence Gn(x) → 0 for µ-a.e. x.
From now on we work on such a full measure set, on which we can further assume that mx ∈ P(Y ).
Assume that we had that |supp(mx)| > 1. Then there would exist disjoint compact sets K1

x, K2
x ⊂ Y

with Mx = min{mx(K1
x),mx(K2

x)} > 0. Obviously ι(K1
x), ι(K2

x) are also disjoint compact sets, so Dx :=
D
(

ι(K1
x), ι(K2

x)
)

> 0. By the triangle inequality, max{D
(

Fn(x), ι(K1
x)
)

, D
(

Fn(x), ι(K2
x)
)

} ≥ Dx/2, thus
Gn(x) ≥ MxDx/2, yielding a contradiction. We conclude that µ-a.s. |supp(mx)| = 1 and therefore we
must have ι

(

f(x)
)

:= limn fn(x) exists, for some f : X → Y Borel. Thus mx(dy) = δf(x)(dy), µ − a.s.,
which proves 1.

�

Observe that it is crucial for point 4 in Lemma 5.4 that we embedded Y in the Hilbert cube. Indeed,
it X is connected and Y discrete, the only continuous functions f : X → Y are the constants. We now
present a result which is interesting in its own:

Proposition 5.5. Let X and Y be Polish spaces. Then

S := {m ∈ P(X × Y ) : m
(

Graph(f)
)

= 1, some Borel f : X → Y },

with the relative topology inherited from P(X × Y ), is Polish too.

Proof. Let ρ be a compatible metric for Y , which we may assume bounded. By Lemma 5.4 we have

S =
⋂

n∈N

⋃

F :X→[0,1]N continuous
{m ∈ P(X × Y ) :

∫

D
(

F (x), ι(y)
)

m(dx, dy) < 1/n},(5.1)

where ι : Y → [0, 1]N is an embedding. Since (x, y) 7→ D
(

F (x), ι(y)
)

is continuous bounded if F is
continuous, the set in curly brackets is open in the weak topology. Thus the union of these is open too,
and we get that S is a Gδ subset. We conclude by employing [14, Theorem 3.11].

�

Theorem 5.6. The weak nested topology on P(RN ) is Polish.

Proof. For N = 2 we have P(R1:2) = P(R × P(R)) and, by definition, P(R2) equipped with the weak
nested topology is homeomorphic to I[P(R2)] equipped with the relative topology inherited from P(R1:2).
We have

I[P(R2)] =
{

P ∈ P(R× P(R)) : P
(

Graph(f)
)

= 1, some Borel f : R → P(R)
}

.

To wit, if P ∈ I[P(R2)], then by definition of the embedding I we have P = (id, T )∗(p1∗µ) for some
µ ∈ P(R2) and T (x) = µx (see the proof of Theorem 4.4 too). Then taking f = T we get that P belongs
to the right hand side above. Conversely, given P in the right hand side, we denote by µ1 its first marginal
and define µx(dy) := δf(x)(dy). The measure µ(dx, dy) := µ1(dx)µx(dy) ∈ P(R2) satisfies I[µ] = P .

By Proposition 5.5 we conclude that I[P(R2)] is Polish, and then so is P(R2), as desired. The case for
general N is identical; one observes by reverse induction that if P(Rt:N ) is Polish, then so is P(Rt−1:N )
using the above arguments.

�

One can also prove Theorem 5.6 by a suitable modification of Lemma 5.4, with the advantage of
obtaining a complete compatible metric for the Polish topology, and this we do next. With similar
arguments, a more involved complete metric can also be found via Proposition 5.5, as the proof will
reveal. For simplicity of notation we just consider N = 2 here:

Corollary 5.7. Let ρ be a bounded metric compatible with the weak topology on P(R), and dw a complete
metric compatible with the weak topology on P(R × P(R)). Then the weak nested topology on P(R2) is
generated by the complete metric

dwnt(P,Q) := dw(I[P ], I[Q]) +
∑

n∈N

2−n ∧

∣

∣

∣

∣

1

dw(I[P ], An)
−

1

dw(I[Q], An)

∣

∣

∣

∣

,(5.2)
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where An := {m ∈ P(R × P(R)) :
∫

ρ(F (x), y)m(dx, dy) ≥ 1/n, ∀ F : R → P(R) continuous}, with the
embedding I as in (4.2), and

dw(·, An) := inf
m∈An

dw(·,m).

Proof. We first observe that for Lemma 5.4 and Y = P(R), we can by-pass the embedding into the Hilbert
cube. One way to do this, is to follow the “Tietze extension” argument in the proof of [10, Proposition
C.1], establishing the equivalence of (1) and (4) in Lemma 5.4 where now the continuous functions go
from X = R to P(R). We can thus write (5.1), in the case Y = P(R), without the embedding ι. Using
this, and following the proof of [14, Theorem 311], we find a compatible complete metric for I[P(R2)]
with the relative topology inherited from P(R× P(R)), via:

I[P(R2)] ∋ P̄ , Q̄ 7→ dw(P̄ , Q̄) +
∑

n 2−n ∧
∣

∣dw(P̄ , An)−1 − dw(Q̄, An)−1
∣

∣ .

This is then transformed into a complete metric for P(R2) via the homeomorphism I, yielding (5.2). �

Remark 5.8. Notice that Example 4.1 shows that the weak nested topology is strictly stronger than the
weak topology for N ≥ 2. In such case, it also shows that even if a sequence of measures has their
support contained in a common compact, there need not exist a convergent subsequence, unlike in the
weak topology. It could be interesting, and non-trivial, to characterize the relatively compact sets of the
weak nested topology.

Analogous considerations show that Pp(R1:N ) with the p-nested distance is Polish as well. Having
established the completion and the Polish character of the p-nested distance, it remains an open question,
whether there is a more amenable compatible complete metric that the one found in Corollary 5.7. Instead,
we now investigate a different and appealing notion of distance, which we compare to the nested distance.

6. The Knothe–Rosenblatt distance

Perhaps the most eminent of bicausal plans (i.e., those participating in the determination of the nested
distance) is the so-called increasing Knothe–Rosenblatt rearrangement, which is also known as quantile
transform or increasing triangular transform in the literature. See, e.g., [4] and references therein. Let us
introduce some useful notation first. By Fη(·) we denote the distribution function of a probability measure
η on the line (we denote Fν1 the distribution of p1∗ν) and by F−1

η (·) its left-continuous generalized inverse,

i.e., F−1
η (u) = inf {y : Fη(y) ≥ u}. The (increasing N -dimensional) Knothe–Rosenblatt rearrangement of

µ and ν is defined as the law π of the random vector (X∗
1 , . . . , Y

∗
N , X∗

1 , . . . , Y
∗
N ), where

X∗
1 = F−1

µ1
(U1), Y ∗

1 = F−1
ν1 (U1), and inductively(6.1)

X∗
t = F−1

µ
X∗

1 ,...,X∗
t−1

(Ut), Y ∗
t = F−1

ν
Y ∗
1 ,...,Y ∗

t−1
(Ut), for t = 2, . . . , N,

for U1, . . . , UN independent and standard uniformly distributed random variables. Additionally, if µ-a.s.
all the conditional distributions of µ are atomless (e.g., if µ has a density), then this rearrangement is
induced by the map

(x1, . . . , xN ) 7→ T (x1, . . . , xN ) := (T 1(x1), T 2(x2|x1), . . . , TN(xN |x1, . . . .xN−1)),

where

T 1(x1) := F−1
ν1 ◦ Fµ1 (x1),

T t(xt|x1, . . . , xt−1) := F−1

νT1(x1),...,Tt−1(xt−1| x1,...,xt−2)
◦ Fµx1,...,xt−1 (xt), t ≥ 2.(6.2)

In this section we reserve the letters π and T for this rearrangement (map) and omit its dependence
on (µ, ν), which is clear from the context. Let us now define a functional on Pp(RN ) × Pp(RN ) which
we compare with the nested distance in Section 6.1 below.

Definition 6.1. The Knothe–Rosenblatt distance of order p (in short KR distance) is defined by

(6.3) dKR
p (µ, ν) :=

(
∫∫

dpdπ

)1/p

,

where π is the Knothe–Rosenblatt rearrangement of µ and ν.

Lemma 6.2. The KR distance dKR
p is a metric on Pp(RN ) for any 1 ≤ p < ∞.
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Proof. Since both dp and the Knothe–Rosenblatt rearrangement are symmetric, we see that dKR
p is

symmetric. Obviously this distance is non-negative and vanishes exactly when µ = ν, since one di-
mensional distributions and conditional distributions fully encode a measure. Finally observe that

dKR
p (µ, ν) = (E[d(X∗, Y ∗)p])1/p, where X∗, Y ∗ are as in (6.1). Given η ∈ Pp(RN ) and constructing

Z∗ as in (6.1) so that it is distributed like η, the triangle inequality follows from (E[d(X∗, Y ∗)p])
1/p

≤

(E[d(X∗, Z∗)p])1/p + (E[d(Z∗, Y ∗)p])1/p. �

For its simplicity, and the fact that the Knothe–Rosenblatt rearrangement has already found startling
applications all over mathematics, one is tempted to explore the connection between the KR and the
nested distances. Furthermore, by the optimality properties of the increasing rearrangement on the line,
it is clear that dndp = dKR

p for N = 1 and e.g. d(x, y) = |x− y|, in which case both metrics coincide with

the usual p-Wasserstein metric on P(R). Can it be that dndp is always comparable/similar, if not equal,

to dKR
p ?. We examine this now.

6.1. Relationship with the nested distance. By definition we have that

dndp (µ, ν) ≤ dKR
p (µ, ν).(6.4)

We ask,

(1) Is there a constant C > 0 such that dKR
p (µ, ν) ≤ Cdndp (µ, ν) holds, i.e., are the two metrics

strongly equivalent?
(2) Is it the case that dndp (µn, µ) → 0 implies dKR

p (µn, µ) → 0, i.e., are the two metrics topologically
equivalent?

From now we specialize to the case N = 2 but the situation is the same for all N > 1. The next
counterexample shows that the answer to question 1 is negative:

Example 6.3. Let µn := 1/2[δ(1/n,n/2) + δ(−1/n,−n/2)] and νn := 1/2[δ(1/n,−n/2) + δ(−1/n,n/2)] and take
d the usual distance in R. Observe that any transport plan is bicausal in this setting. Thus, we bound
dndp (µn, νn) from above by the value of the decreasing Knotte-Rosenblatt map (associating {1/n, n/2} to
{−1/n, n/2} and {−1/n,−n/2} to {1/n,−n/2})

dndp (µn, νn) ≤ 2/n,

whereas for the usual (increasing) Knotte-Rosenblatt map we get

dKR
p (µn, νn) = n,

and letting n → ∞ we see that 1 cannot hold.

Actually, even 2 fails, as the following counterexample demonstrates:

Example 6.4. Consider the measure P := λ ⊗ λ on Ω := [0, 1]2 and the random variables (i.e., the
two-stage stochastic processes)

Zn :=

{

(0, u2) if u1 ≤ 1
2 ,

( 1
n , 1 + u2) if u1 > 1

2

for n = 1, 2, . . . and

Z∞ :=

{

(0, u2) if u1 ≤ 1
2 ,

(0, 1 + u2) if u1 > 1
2

together with their image measures

µ(n) := P ◦ Z−1
n and µ := P ◦ Z−1

∞ .

It is evident that we have convergence in nested distance, dndp (µn, µ) → 0 as n → ∞, as we may employ
the conditional transport maps

T (x|U1) = x

on the second stage (i.e., T (u2|u1 ≥
1
2 ) = u2 and T (1 − u2|u1 < 1

2 ) = 1 − u2).

To compute the Knothe–Rosenblatt distance we associate µ(n) with X∗ in (6.1) and µ with Y ∗. Then

X∗
1 =

{

0 if U1 ≤ 1
2 ,

1
n if U1 > 1

2

and Y ∗
1 = 0,
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while

X∗
2 =

{

U2 if U1 ≤ 1
2 ,

1 + U2 if U1 > 1
2 ,

but Y ∗
2 = 2U2.

The second components are entirely different (X∗
2 depends on U1, while Y ∗

2 does not) and hence the
Knothe–Rosenblatt distance does not tend to 0, dKR

p (µn, µ) 6→ 0, as n → ∞.

We conclude that 2 does not hold true and the topologies induced by the Knothe–Rosenblatt and the
nested distances differ. More generally, we expect that there is no distinguished bicausal transport that
can generate a topology compatible with the nested distance for N > 1.

7. Summary

In this article we investigated fundamental topological properties of the nested distance. In contrast to
classical Wasserstein distances, for example, the nested distance cannot be characterized via integration
on test functions, so that complete stochastic programs are the only distinguishing element of the topology
induced by the nested distance. The nested distance is also not complete, again in contrast to the classical
Wasserstein distance.

We obtained two main results. First, we demonstrated that the metric completion of the nested
distance is the space of nested distributions with their classical Wasserstein metric, as introduced in [18].
This provides a connection between two hitherto unrelated mathematical objects. Second, we established
that the topology generated by the nested distance is Polish, which we hope opens the way to future
applications.

We finally introduced the Knothe–Rosenblatt distance between processes, which likewise takes into
account the filtration structure. Its appeal lies in its apparent simplicity and the eminence of the Knothe–
Rosenblatt rearrangement, as well as in the fact that in the one-dimensional setting this distance, and
the nested distance, coincide. In this regard, we demonstrate that in higher dimensions, the topology
generated by the Knothe–Rosenblatt distance is strictly stronger than the nested distance topology.
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