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Abstract

Let H be a countable subgroup of the metrizable compact abelian
group G and f : H → T = R/Z a (not necessarily continuous) character
of H. Then there exists a sequence (χn)∞

n=1 of (continuous) characters of
G such that limn→∞ χn(α) = f(α) for all α ∈ H and (χn(α))∞

n=1 does
not converge whenever α ∈ G \ H. If one drops the countability and
metrizability requirement one can obtain similar results by using filters
of characters instead of sequences. Furthermore the introduced methods
allow to answer questions of Dikranjan et al.
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1 Introduction

1.1 Motivation

In [?] several techniques have been developed to prove the existence of sequences
(kn)∞n=1 of positive integers characterizing countable subgroups H of the circle
group T = R/Z in the sense that for α ∈ T,

α ∈ H ⇐⇒ lim
n→∞

knα = 0.
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These methods were extended in [?] to show that if H is generated freely by
finitely many elements, a characterization is possible in an even stronger sense:
One can choose a characterizing sequence such that

∑∞
n=1 ‖knα‖ < ∞ for α ∈

H , while lim supn→∞ ‖knα‖ ≥ 1/4 for α ∈ T \H . (For x = r + Z ∈ R/Z, r ∈ R,
the norm ‖x‖ denotes the distance between r and the nearest integer.)
In [?] arbitrary subgroups of T were characterized by filters on its dual Z. This
approach was used in [?] to extend the results from [?].
A different approach to the characterization of finitely generated dense sub-
groups of compact abelian groups by sums has recently been introduced in [?]
and [?].
Dikranjan et. al. investigated related questions concerning the characterization
of subgroups of more general topological abelian groups G (cf. [?], [?], [?], [?]).
In this article we lift the techniques of [?] to this general setting and answer
questions stated in [?] and [?].
Our Theorems ?? and ?? have contemporaneously and independently been
proved by Dikranjan and Kunen, cf. [?]. They also treat questions related
to descriptive set theory. More results in this directions were, for instance, also
obtained by Eliaš in [?].

1.2 Content of the paper

In Section ?? we modify the filter method from [?] for our purposes. Theorem
?? essentially states that arbitrary subgroups of compact abelian groups G can
be characterized by filters on the (discrete) Pontryagin dual Ĝ of G. (Such
filters are intended to be the neighborhood filters of 0 w.r.t. precompact group
topologies on Ĝ.)
In Section ?? this characterization is used to prove Theorem ??: Among the
compact abelian groups G exactly the metrizable ones have the property that
every countable subgroup H is characterizable in the sense that there is a se-
quence of characters (χn)∞n=1 in Ĝ such that

α ∈ H ⇐⇒ lim
n→∞

χn(α) = 0.

This solves Problem 5.3 from [?]. Theorem ?? (which solves Problem 5.1 and
Question 5.2 from [?]) states that in an arbitrary compact abelian group every
countable subgroup is the intersection of subgroups characterizable in the above
sense.
Section ?? is motivated by Question 5.2 from [?]: Consider the case G = T
and Ĝ = Z. It was established in [?] that for any countable H ≤ T there
exists a sequence of integers k1 < k2 < . . . characterizing H . Is it possible to
choose the kn in such a way that the quotients kn+1

kn
are bounded? We answer

this question affirmatively by proving a stronger assertion, cf. Theorem ??. It
states that, in a certain sense, characterizing sequences can be arbitrarily close
to having positive density. This seems to be best possible insofar as (apart from
trivial cases) characterizing sequences always have density 0. Theorem ?? is a
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counterpart to Theorem ?? and describes how sparse characterizing sequences
of subgroups of T can be.
In Section ?? we introduce a refined characterization of subgroups of a compact
metrizable group G by sequences: For a sequence (χn)∞n=1 in Ĝ we consider
the set H of all α ∈ H for which (χn(α))∞n=1 converges (not necessarily to
0 ∈ T). H is easily seen to be a subgroup of G and the pointwise limit is a
(not necessarily continuous) homomorphism f : H → T. Theorem ?? gives a
complete description of the situation: Given any subgroup H of a metrizable
compact abelian group G and any homomorphism f : H → T there is a sequence
(χn)∞n=1 in Ĝ such that χn → f pointwise on H . If H is countable then one can
even achieve that H is exactly the set of convergence. If G is a compact (not
necessarily metrizable) group and H is an arbitrary (not necessarily countable)
subgroup of G, this result is still valid when the convergence of sequences is
replaced by the more general convergence of filters. By considering the trivial
homomorphism f ≡ 0 we see that Theorem ?? nicely extends Theorem ??.
Furthermore this result allows to construct counterexamples to Question 5.4
from [?]. (For the complete statement of this question cf. Section ??.)

1.3 Conventions and notation

If not stated otherwise, G is always an infinite locally compact abelian group.
(For finite G most assertions turn out to be trivial.) Since we are only interested
in abelian groups, we use additive notation. In particular we shall do so in the
group T = R/Z where characters χ : G → T take their values. Elements of G
will be denoted by α, β, . . .. If H is a (not necessarily closed) subgroup of G, we
write H ≤ G. If A ⊆ G is any subset, 〈A〉 denotes the subgroup generated by
A. For finite A = {α1, . . . , αn} ⊆ G and M ∈ N we put 〈A〉M := {

∑n
i=1 kiαi :

ki ∈ Z, |ki| ≤ M}.
Recall that a group compactification of (any topological group) G is defined to
be a pair (ι, C) where C is a compact group and ι : G 7→ C is a continuous
homomorphism with dense image. Relative topologies on G induced by group
compactifications are called precompact. The so called Bohr compactification
(ιbG, bG) of G is the compactification of G which is maximal in the sense that
for each compactification (ι, C) of G there is a continuous homomorphism φ :
bG → C with φ ◦ ιbG = ιC .
Ĝ = {χ : χ is a continuous homomorphism from G to T} denotes the dual group
of G, equipped with the compact open topology. By Pontryagin’s Duality The-

orem (cf. for instance [?] or [?]) we know that for LCA groups G ∼=
̂̂
G in the

algebraic as well as in the topological sense via the canonical mapping α 7→ xα,
xα : χ 7→ χ(α).
We take Gd to be G endowed with the discrete topology. Duality theory can be

applied to construct the Bohr compactification bG of G by setting bG := (̂Ĝ)d

and ιB : α 7→ xα. Accordingly, the Bohr compactification of Ĝ is Ĝd. It is
natural to call the precompact topology on G induced by bG the Bohr topology.
On the dual group Ĝ the Bohr topology can be described by the so called Bohr

3



sets which are defined by

B(α1,...,αt,ε) :=
{
χ ∈ Ĝ : ‖χ(αi)‖ ≤ ε for i ∈ {1, 2, . . . , t}

}
,

where α1, . . . , αt ∈ G and ε > 0. These sets generate the neighborhood filter of
0 in Ĝ endowed with the Bohr topology. Further we put B(α1,...,αt,ε)(E) :=

B(α1,...,αt,ε) ∩ E for E ⊆ Ĝ. For α ∈ G and B ⊆ Ĝ we write ‖αB‖ :=
sup{‖χ(α)‖ : χ ∈ B}.

2 Characterizing filters

We will make use of so called filter limits: Let S be any set, let F be a filter
on S, let y be a point in a topological space X and let f : S → X be function.
Then

F − lim
s

f(s) = y

iff for every neighboorhood U of y, {s ∈ S : f(s) ∈ U} ∈ F .
We remark that filter limits are more general then limits along sequences: For
a sequence (xn)∞n=1 in X put

F(xn)∞n=1
= {A ⊆ X : ∃ m ∈ N such that {xn : n ≥ m} ⊆ A}

Then F(xn)∞n=1
− lims f(s) exists iff limn→∞ f(xn) exists and in this case they

coincide.

Let H ≤ G be a subgroup of the compact abelian group G. Our task is to
show that H can be characterized by a filter FH on Ĝ in the sense that we have
FH − limχ χ(β) = 0 iff β ∈ H . It is clear that for all α ∈ G and all ε > 0 the set
B(α,ε) has to be an element of FH to assure convergence for elements of H . By
the filter properties of FH the intersection of finitely many such sets will again
be an element of FH . Thus it would be natural to define FH to be the filter
generated by the sets B(α1,...,αt,ε) where α1, . . . , αt ∈ H, ε > 0. This definition
yields the minimal filter with the required property and corresponds to the
precompact group topology on Ĝ induced by H . Later it will be important to
us that we may neglect finite sets of characters. Therefore we will also take all
cofinite sets to be elements of FH . This leads to the following definition:

FH :=

{
F ⊆ Ĝ :

∃ α1, . . . , αt ∈ H, ε > 0, Γ ⊆ Ĝ, |Γ| < ∞

such that B(α1,...,αt,ε)(Ĝ \ Γ) ⊆ F

}
.

Theorem 2.1 Let G be an infinite compact abelian group, let H be a subgroup
of G and let the filter FH be defined as above. Then for all β ∈ G

FH − lim
χ

χ(β) = 0 ⇐⇒ β ∈ H.
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In the course of the proof we will employ the following lemma which will also
be useful later on:

Lemma 2.2 Let G be a compact abelian group. Then Ĝ is dense in Ĝd w.r.t.
pointwise convergence. Thus, for any countable subset H of G and any χ ∈ Ĝd

there exists a sequence (χn)∞n=1 in Ĝ such that χn(α) → χ(α) (n → ∞) for all
α ∈ H.

Proof: As explained in the introduction, the compact group Ĝd is, with the set
theoretic inclusion as dense embedding, the Bohr compactification of the dis-
crete group Ĝ. This proves the first part. Thus for H = {α1, α2, . . .} ⊆ G and

every n ∈ N there is a χn ∈ Ĝ with ‖χn(αi)−χ(αi)‖ < 1
n for all i ∈ {1, 2, . . . , n}.

It follows that χn → χ pointwise on H . �

Proof of Theorem ??: The definition of FH guarantees that F− limχ ‖χ(β)‖ = 0
for all β ∈ H . For the converse we prove that, given β 6∈ H , for all α1, . . . , αt ∈
H and every ε > 0 there exist infintely many characters χ ∈ B(α1,...,αt,ε) with

‖χ(β)‖ ≥ 1/4 which implies that {χ ∈ Ĝ : ‖χ(β)‖ < 1/4} 6∈ F . First we see that

there exists at least one such character: Consider the Bohr compactification Ĝd

of Ĝ. Ĝd separates subgroups and points of G. Hence there exists some φ ∈ Ĝd

such that

φ(α) = 0 for all α ∈ 〈α1, . . . , αt〉 and c = φ(β) 6= 0,

w.l.o.g. ‖φ(β)‖ ≥ 1/3 (otherwise take an appropriate multiple 2φ, 3φ, . . .). By
Lemma ?? φ can be approximated arbitrarily well on finitely many points by a
character. Thus we find some χ ∈ Ĝ such that ‖χ(αi)‖ ≤ ε, 1 ≤ i ≤ t, ‖χ(β)‖ >
1/4.
Next we prove that for ε > 0 each B(α1,...,αt,ε) contains infinitely many χ with

‖χ(β)‖ ≥ 1/4. Let U := {(χ(α1), . . . , χ(αt), χ(β)) : χ ∈ Ĝ} ≤ Tt+1. We
distinguish two cases:
1. U is finite, say U = {u1, . . . , uk}. There is some i, say i = 1, with u1 :=
(0, . . . , 0, c). Then the sets

Υi :=
{
χ ∈ Ĝ : (χ(α1), . . . , χ(αt), χ(β)) = ui

}
, i = 1, . . . , k,

and particularly Υ1 are infinite, or
2. U is an infinite subgroup of Tt+1. But then each point of U is an accumulation
point.
In both cases we find infinitely many χ with the required property. �

3 Characterizing countable subgroups

We solve Problem 5.3 from [?]: For which compact abelian G can every count-
able subgroup H be characterized by a sequence of characters?
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For A ⊆ Ĝ we write limχ∈A χ(β) = 0 iff {χ ∈ A : χ(β) ≥ ε} is finite for all
ε > 0. (I.e. instead of the characterizing sequence (χn)∞n=1 we consider the
characterizing set A = {χn : n ∈ N}.)

Theorem 3.1 Let G be an infinite compact abelian group and let H ≤ G be a
countable subgroup. Then the following statements are equivalent:

(i) G is metrizable.

(ii) There exists a countable set A ⊆ Ĝ, such that

β ∈ H ⇐⇒ lim
χ∈A

χ(β) = 0.

Remark. The proof of Theorem ?? actually shows that (if G is metrizable)
for every σ < 1/3 the characterizing set A can be chosen in such a way that
β 6∈ H implies lim supχ∈A ‖χ(β)‖ ≥ σ. Using a diagonalization argument it is
not difficult to achieve lim supχ∈A ‖χ(β)‖ ≥ 1/3 and it is easy to see that this
is best possible.

The proof of (i) =⇒ (ii) employs several lemmas which we formulate now and
verify at the end of this section. According to our assumptions, in these lemmas
G is an infinite compact abelian metrizable group.

Lemma 3.2 Let τ ∈ T and n ∈ N. Assume that ‖iτ‖ ≤ σ < 1/3 for all
i ∈ {1, 2, . . . , n}. Then ‖τ‖ ≤ σ/n.

Lemma 3.3 Assume that γ1, . . . , γd ∈ G freely generate H ≤ G. For arbitrary
nonempty open sets I1, . . . , Id in T there exists χ ∈ Ĝ such that χ(γi) ∈ Ii for
all i ∈ {1, 2, . . . , d}.

Lemma 3.4 Let α1, . . . , αt ∈ G, ε > 0 and σ < 1/3.

1. For all finite Γ ⊆ Ĝ and all β ∈ G

‖βB(α1,...,αt,ε)(Ĝ \ Γ)‖ ≤ σ =⇒ β ∈ 〈α1, . . . , αt〉.

2. Moreover there exists M ∈ N such that for all finite Γ ⊆ Ĝ and all β ∈ G

‖βB(α1,...,αt,ε)(Ĝ \ Γ)‖ ≤ σ =⇒ β ∈ 〈α1, . . . , αt〉M .

3. If V ⊇ 〈α1, . . . , αt〉M is an open subset of G then for all finite Γ ⊆ Ĝ there

exists a finite set E ⊆ Ĝ \ Γ such that for β ∈ G

‖βB(α1,...,αt,ε)(E)‖ ≤ σ =⇒ β ∈ V.

Lemma 3.5 Let R1 ⊆ R2 ⊆ . . . be finite subsets of G. There exists a sequence
of open sets Vn ⊆ G, n ∈ N such that
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1. Vn ⊇ Rn.

2. lim infn→∞ Vn =
⋃∞

m=1

⋂∞
n=m Vn =

⋃∞
n=1 Rn.

Proof of Theorem ??:
(i) =⇒ (ii): We will first construct the set A ⊆ Ĝ and then prove that β ∈ H
iff limχ∈A χ(β) = 0.
Let H =: {αt : t ∈ N} and pick ε = σ ∈ (0, 1/3). Using Lemma ??,2 we can

choose a sequence (Mt)
∞
t=1 such that for every finite Γ ⊆ Ĝ and all β ∈ G

‖βB(α1,...,αt,ε)(Ĝ \ Γ)‖ ≤ ε =⇒ β ∈ 〈α1, . . . , αt〉Mt
.

Next put for t ∈ N, Rt := 〈α1, . . . , αt〉Mt
and define Vt ⊇ Rt according to Lemma

?? such that lim inft→∞ Vt = H .
Using Lemma ??,3 we choose a finite set E1 ⊆ Ĝ such that ‖βB(α1,ε)(E1)‖ ≤ ε

implies β ∈ V1. By employing Lemma ??,3 again, we find E2 ⊆ Ĝ \ E1 such
that ‖βB(α1,α2,ε)(E2)‖ ≤ ε implies β ∈ V2. Continuing in this fashion we arrive

at a sequence (Et)
∞
t=1 of disjoint subsets of Ĝ such that for each t ∈ N

‖βB(α1,...,αt,ε)(Et)‖ ≤ ε =⇒ β ∈ Vt.

Finally we put A :=
⋃∞

t=1 B(α1,...,αt,ε)(Et).
Assume that β ∈ H . To prove limχ∈A ‖χ(β)‖ = 0 note that, for arbitrary n ∈ N,
there exists T = T (n) ∈ N such that iβ ∈ {αt : t ≤ T} for all i ∈ {1, 2, . . . , n}.
Thus whenever χ ∈ B(α1,...,αt,ε)(Et) for some t ≥ T we have ‖iχ(β)‖ ≤ ε for all
1 ≤ i ≤ n. By Lemma ?? this yields ‖χ(β)‖ ≤ ε/n. Since n was arbitrary we
get limχ∈A ‖χ(β)‖ = 0.
Conversely assume that lim supχ∈A ‖χ(β)‖ < ε for some β ∈ G. Then for all
but finitely many t ∈ N we have ‖βB(α1,...,αt,ε)(Et)‖ ≤ ε. Thus there exists
t0 ∈ N such that β ∈ Vt for all t ≥ t0 which yields β ∈ H by the choice of the
sequence (Vt)

∞
t=1.

(ii) =⇒ (i): Let H ≤ G be an arbitrary countable subgroup characterized by

the countable set A ⊆ Ĝ. Define Λ := 〈A〉 and

Λ0 := {g ∈ G : χ(g) = 0 for all χ ∈ Λ},

the annihilator of Λ. Clearly Λ0 ≤ H , thus |Λ0| ≤ ℵ0. Since Λ̂ ∼= G/Λ0 we have

w(G/Λ0) = w(Λ̂) = |Λ| = ℵ0, where w denotes the topological weight, i.e. the
least cardinal number of an open basis (cf. [?], 24.10 and 14.14). Hence G/Λ0

and Λ0 have at most countable weight and therefore also G ([?], 5.38), implying
that G is metrizable. �

Let G be a compact abelian group. In [?] subgroups characterized by a sequence

(χn)∞n=1 in Ĝ are denoted by

s(χn)∞n=1
(G) :=

{
α ∈ G : lim

n→∞
χn(α) = 0

}
.
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Furthermore such subgroups are called basic g-closed subgroups. According to
Theorem ?? every countable subgroup of G is basic g-closed iff G is metrizable.
A group H ≤ G is called g-closed if it is representable as the intersection of
basic g-closed subgroups. The next theorem deals with g-closed subgroups and
solves Problem 5.1 from [?].

Theorem 3.6 Every countable subgroup H of a compact abelian group G is
g-closed.

Proof: For arbitrary β ∈ G \ H there is a χ ∈ Ĝd with χ(α) = 0 for all α ∈ H
and ‖χ(β)‖ ≥ 1

3 . Thus Lemma ?? immediately yields a sequence of (χβ
n)∞n=1 in

Ĝ characterizing a subgroup

Hβ := s(χβ
n)∞n=1

(G) =
{
α ∈ G : lim

n→∞
χβ

n(α) = 0
}
≤ G

with H ≤ Hβ and β 6∈ Hβ . Thus H =
⋂

β∈G\H Hβ. �

Proofs of Lemmas ?? to ?? :

We assume the group G to be compact abelian and metrizable. Lemma ?? is
elementary, so we skip the proof.

Proof of Lemma ??: Assume that

A := Ĝ〈γ1, . . . , γd〉 = {χ(α) : χ ∈ Ĝ, α ∈ 〈γ1, . . . , γd〉}

is not dense in Td, i.e. H := A � Td. There is a nontrivial character of Td van-
ishing on H , i.e. a nonzero vector h = (h1, . . . , hd) ∈ Zd such that

∑d
i=1 hixi = 0

holds for all x = (x1, . . . , xd) ∈ H . Fix an arbitrary χ ∈ Ĝ and put xi = χ(γi).
Then

0 =

d∑

i=1

hiχ(γi) = χ

(
d∑

i=1

hiγi

)
.

Since this holds for all χ ∈ Ĝ we have
∑d

i=1 hiγi = 0, contradicting the inde-
pendence of the free generators γi, 1 ≤ i ≤ d. �

Proof of Lemma ??: Let B0 := B(α1,...,αt,ε)(Ĝ \ Γ).
1. Let F = F〈α1,...,αt〉 be the filter of Theorem ?? characterizing 〈α1, . . . , αt〉
and let δ > 0 be arbitrary. Under the assumption ‖βB0‖ ≤ σ < 1/3 we have to
show that

Fδ :=
{

χ ∈ Ĝ \ Γ : ‖χ(β)‖ ≤ δ
}
∈ F .

Choose m ∈ N such that δ ≥ σ/m and let B1 := B(α1,...,αt,ε/m)(Ĝ \ Γ). By
definition of F we have B1 ∈ F . For all χ ∈ B1, i ∈ {1, 2, . . . , m}, we have
iχ ∈ B0. Thus ‖iχ(β)‖ ≤ σ for all i ∈ {1, 2, . . . , m} and Lemma ?? yields
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‖χ(β)‖ ≤ σ/m < δ. Thus B1 ⊆ Fδ and hence Fδ ∈ F .

2. Assume that H := 〈α1, . . . , αt〉 is infinite (otherwise the assertion follows
immediately). Since H is a finitely generated abelian group there exists a
decomposition H = T ⊕ F where F is freely generated by γ1, . . . , γd and
T = 〈ν1, . . . , νl〉 = ⊕l

i=1〈νi〉 is the torsion subgroup of H . Hence 〈νi〉 ∼= Zei

for some ei ∈ N and

〈α1, . . . , αt〉 = 〈γ1, . . . , γd〉 ⊕ 〈ν1, . . . , νl〉 ∼= Zd ⊕
⊕l

i=1Zei
.

Let δ > 0 be such that ‖χ(γi)‖ ≤ δ for i ∈ {1, 2, . . . , d} and χ(νj) = 0 for j ∈
{1, 2, . . . , l} implies ‖χ(αk)‖ ≤ ε for k ∈ {1, 2, . . . , t}. Pick now any β ∈ G with

‖βB0‖ ≤ σ < 1/3. By 1. above we have β ∈ H , thus β =
∑d

i=1 riγi +
∑l

j=1 sjνj

for some ri ∈ Z, sj ∈ {0, 1, . . . , ej − 1}, i ∈ {1, 2, . . . , d}, j ∈ {1, 2, . . . , l}. Let

e :=
∏l

j=1 ej . By Lemma ?? there exist infinitely many χ ∈ eĜ := {eχ′ : χ′ ∈

Ĝ} such that

sign(ri)χ(γi) ∈

[
1

3
∑d

j=1 |rj |
,

2

3
∑d

j=1 |rj |

]
+ Z

holds for i ∈ {1, 2, . . . , d}. Therefore we have

riχ(γi) ∈

[
|ri|

3
∑d

j=1 |rj |
,

2|ri|

3
∑d

j=1 |rj |

]
+ Z

for all i ∈ {1, 2, . . . , d}. Summing up and using that χ(νj) = 0 for j ∈
{1, 2, . . . , l} this leads to

χ(β) =
d∑

i=1

riχ(γi) ∈

[
1

3
,
2

3

]
+ Z.

Thus χ 6∈ B(α1,...,αt,ε) and hence there is j ∈ {1, . . . , t} with ‖χ(αj)‖ > ε and

therefore δ < 2
3

P

d
j=1

|rj |
. Equivalently

∑d
i=1 |ri| < 2

3δ . So there are only finitely

many choices for β and we may put an universal bound M on the coefficients
in the linear combination β =

∑r
i=1 kiαi.

3. Clearly, the set

I := {β ∈ G : ‖βB0‖ ≤ σ} =
⋂

χ∈B0

{γ ∈ G : ‖χ(γ)‖ ≤ σ}

is closed and by 2. we have I ⊆ 〈α1, . . . , αt〉M ⊆ V . Thus I ∩ V c = ∅. By
compactness of G there exists a finite set E ⊆ B0 such that

⋂

χ∈E

{γ ∈ G : ‖χ(γ)‖ ≤ σ} ∩ V c = ∅.
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This E is as required. �

Proof of Lemma ??: Let ρ be a metric on G compatible with its topology. Since
the sets R1 ⊆ R2 ⊆ . . . ⊆ G are finite there is a sequence (dn)∞n=1 of positive
reals decreasing to 0 such that

2dn < min{ρ(α, α′) : α, α′ ∈ Rn, α 6= α′}

dn + dn+1 < min{ρ(α, α′) : α ∈ Rn, α′ ∈ Rn+1 \ Rn}.

Define
Vn := {β ∈ G : ∃ α ∈ Rn with ρ(β, α) < dn}.

By monotonicity of the sets Rn, β ∈
⋃∞

n=1 Rn implies β ∈
⋃∞

m=1

⋂∞
n=m Vn.

Conversely, assume β ∈
⋃∞

m=1

⋂∞
n=m Vn or, equivalently, that there exists an m

with β ∈ Vn for all n ≥ m. According to the definition of the sets Vn there exists
a unique αn ∈ Rn such that ρ(αn, β) < dn for n ≥ m. Moreover the choice of
the dn guarantees that αm = αm+1 = . . . and so ρ(β, αm) = ρ(β, αn) ≤ dn → 0.
Hence β = αm ∈ Rm ⊆

⋃∞
n=1 Rn. �

4 Thick and thin characterizing sequences

Question 5.2 from [?] asks: Does every countable subgroup H of T admit a

characterizing sequence (kn)∞n=1 with bounded quotients, i.e. qn = kn+1

kn
≤ C for

all n ∈ N and some C ∈ R?
We answer this question affirmatively by proving a stronger result. Which type
of statement can be expected? Assume that α ∈ H is irrational. Then, by uni-
form distribution of the sequence (nα)∞n=1, the set of all k ∈ N with ‖kα‖ < ε
has density 2ε. Thus (with the exception of trivial cases) characterizing se-
quences have zero density. Furthermore the length of their gaps is tends to
infinity. In particular the thickest characterizing sequences we can expect might
have a density which converges to zero very slowly in some sense. This is the
content of the following result.

Theorem 4.1 Let H ≤ T be a countable subgroup and let (εj)
∞
j=1 be a se-

quence with 0 ≤ εj ≤ 1 that converges to 0 (arbitrarily slowly). Let N be par-
titioned into nonempty intervals Ij = {ij , ij + 1, . . . , ij+1 − 1} with i0 = 0 and
limj→∞(ij+1 − ij) = ∞. Then there exists a sequence (kn)∞n=1 of nonnegative
integers characterizing H such that

|{n : kn ∈ Ij}|

|Ij |
≥ εj for all j.

Proof: Let, according to Theorem ?? (or to [?]), c1 < c2 < . . . ∈ N be any
sequence characterizing H . We are going to construct a sequence d1 < d2 <
. . . ∈ N containing at least εj |Ij | elements in each Ij such that ‖knα‖ → 0 for
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all α ∈ H . Then A = {k1 < k2 < . . .} = {dn : n ∈ N} ∪ {cn : n ∈ N} clearly has
the desired properties.
Let H =: {αt : t ∈ N}, put I+

j (0) := Ij and

I+
j (t) := {k ∈ Ij : ‖kαi‖ < 1/t for all i ∈ {1, 2, . . . , t}}

for t ≥ 1. For each j ∈ N let tj be the maximal t ∈ {0, 1, . . . , j} such that
|I+

j (t)| ≥ εj |Ij | and put

{d1 < d2 < . . .} =
⋃∞

j=0 I+
j (tj).

It suffices to show that tj → ∞ for j → ∞ or, equivalently, that for each t0 ∈ N
there exists j0 such that for all j ≥ j0

∣∣∣ {d ∈ Ij : ‖dαi‖ < 1/t0 for all i = 1, . . . , t0}
∣∣∣ ≥ εjIj .

Since εj → 0 for j → ∞ this is an immediate consequence of the well distribu-
tion (cf. [?]) of the sequence (ng)∞n=1 in the closed subgroup G ≤ Tt0 generated
by g = (α1, . . . , αt0) ∈ Tt0 : The open subset O ⊆ G of all (β1, . . . , βt0) with
‖βi‖ < 1/t0 has positive Haar measure µ(O) and the set of all k ∈ Z with
kg ∈ O has uniform density µ(O) > 0. �

Theorem ?? indeed answers the question about quotients: Take, for instance,
ij = j2 and choose the εj in such a way that at least one kn lies in each Ij .

Then the quotients qn = kn+1

kn
tend to 1. This example can be modified in many

ways.
It has been proved in [?] that qn → ∞ implies that the corresponding charac-
terized group H is uncountable. Thus, for a given countable H , characterizing
sequences cannot be arbitrarily sparse in this sense. Nevertheless we have:

Theorem 4.2 Let H be a countable subgroup of T and let m1 < m2 < . . . be
an (arbitrarily fast) increasing sequence of positive integers. Then there is a
characterizing sequence k1 < k2 < . . . for H with mn < kn for all n ∈ N.

Proof: Let (cn)∞n=1 be any characterizing sequence of H . Put k2n := cjn
and

k2n+1 := cjn
+ cn where jn is large enough in the sense that k2n > m2n and

k2n+1 > m2n+1. Clearly α ∈ H implies knα → 0. On the other hand, if β ∈ T
and knβ → 0 then also (k2n+1 − k2n)β = cnβ → 0. (cn)∞n=1 characterizes H ,
therefore β ∈ H . �

Theorem ?? implies that for any countable H ≤ T there are sequences (kn)∞n=1

characterizing H with lim supn→∞
kn+1

kn
= ∞: In Theorem ?? put mn = nn and

let k1 < k2 < . . . be a characterizing sequence of H such that mn ≤ kn for all
n ∈ N. Then

sup
n∈N

kn+1

kn
≥ sup

n∈N

n

√√√√
n∏

i=1

ki+1

ki
≥ sup

n∈N

n

√
kn

k1
≥ sup

n∈N

n

√
nn

k1
= ∞.
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For more sophisticated methods to generate sparse characterizing sequences
we refer to [?] and [?]: E.g. for a countable subgroup H ≤ T one can con-
struct a characterizing sequence (kn)∞n=1 such that for all r > 0 and α ∈ H ,∑∞

n=1 ‖knα‖r < ∞.

The idea of the proof of Theorem ?? has further remarkable extensions. We will
analyze them more detailed in the next section.

5 Groups as sets of convergence

The following theorem presents a generalized approach to the characterization
of subgroups.

Theorem 5.1 Let G be a compact abelian group.

1. Let F be a filter on Ĝ. Then the set H of all α ∈ G for which F−limχ χ(α)
exists is a subgroup of G. The mapping f : H 7→ T, α 7→ F − limχ χ(α) is
a group homomorphism.

In particular if (χn)∞n=1 is a sequence in Ĝ, the set H of all α ∈ G for
which limn→∞ χn(α) exists is a subgroup and the mapping f : H 7→ T,
α 7→ limn→∞ χn(α) is a group homomorphism.

2. Let conversely H be a subgroup of G and let f : H 7→ T be a homomor-
phism. Then there exists a filter F on Ĝ such that F − limχ χ(α) = f(α)
for all α ∈ H and F − limχ χ(β) does not exist whenever β 6∈ H.

3. If furthermore H ≤ G is countable then there exists a sequence (χn)∞n=1

in Ĝ such that
χn(α) → f(α) for all α ∈ H.

4. If G is metrizable and H is countable then there exists a sequence (χ′
n)∞n=1

in Ĝ such that
χ′

n(α) → f(α) for all α ∈ H

and (χ′
n(β))∞n=1 does not converge if β 6∈ H.

Proof: 1: Clear.

2. For α1, . . . , αt ∈ H and ε > 0 put

F (α1, . . . , αt, ε) :=
{
χ ∈ Ĝ : ‖χ(αi) − f(αi)‖ ≤ ε for i = {1, 2, . . . , t}

}

and

F = F(H, f) :=

{
F ⊆ Ĝ :

∃ α1, . . . , αt ∈ H, ∃ ε > 0
such that F (α1, . . . , αt, ε) ⊆ F

}
.

We have to show that
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(a) F is a filter.

(b) For all α ∈ H : F − limχ χ(α) = f(α).

(c) For all β 6∈ H : F − limχ χ(β) does not exist.

ad (a): Since the set F (α1, . . . , αt, β1, . . . , βt, min(ε1, ε2)) ∈ F is contained in
F (α1, . . . , αt, ε1)∩F (β1, . . . , βt, ε2) it suffices to show that each F (α1, . . . , αt, ε)
is not empty.
There exists an extension of f : H 7→ T to χ : G 7→ T such that χ ∈ Ĝd. By
Lemma ?? there is a χ′ ∈ Ĝ such that ‖χ′(αi) − χ(αi)‖ ≤ ε for i = 1, . . . , t.
Hence χ′ ∈ F (α1, . . . , αt, ε) 6= ∅.
ad (b): Let α ∈ H and U ∈ U(f(α)). There exists an ε > 0 such that ‖ξ −
f(α)‖ < ε implies ξ ∈ U . χ ∈ F (α, ε) ∈ F implies ‖χ(α) − f(α)‖ < ε proving
F − limχ χ(α) = f(α).
ad (c): Let β 6∈ H and F ∈ F be arbitrary. We will show that there exist
χ1, χ2 ∈ F such that ‖χ1(β) − χ2(β)‖ ≥ 1/4. F ∈ F implies that there exist
α1, . . . , αt ∈ H and ε > 0 such that F (α1, . . . , αt, ε) ⊆ F . Note that there is a

χ′ ∈ Ĝd with χ′(h) = 0 for all h ∈ H and χ′(β) ≥ 1/3. By Lemma ?? there

exists a χ ∈ Ĝ such that ‖χ(αi)‖ < ε/2 for i = 1, . . . , t and χ(β) > 1/4. Pick
χ1 ∈ F (α1, . . . , αt, ε/2) ⊆ F arbitrary and let χ2 = χ + χ1. Then χ2 is also in
F and ‖χ2(β) − χ1(β)‖ = ‖χ(β)‖ > 1/4.

3. Let H = {αt, t ∈ N}. The proof of 2. shows that for each n ∈ N there is

a χn ∈ Ĝ such that ‖χn(αi) − f(αi)‖ < 1/n for i = 1, . . . , n. The sequence
(χn)∞n=1 has the desired properties.

4. If G is metrizable and H is countable we know by Theorem ?? that there
exists a sequence (χ̃n)∞n=1 in Ĝ such that

‖χ̃n(α)‖ → 0 iff α ∈ H.

Let furthermore (χn)∞n=1 be as in 3. and define χ′
2n := χn and χ′

2n+1 := χn+χ̃n.
Then χ′

n(α) → f(α) for all α ∈ H .
Conversely, for β /∈ H the sequence (χ′

n(β))∞n=1 cannot converge: If χ′
n(β) → c

for some c ∈ T, then χ̃n(β) = χ′
2n+1(β) − χ′

2n(β) → 0. Hence β ∈ H , contra-
diction. �

We want to apply Theorem ?? to Question 5.4 in [?] which, in our notation,
reads as follows. Let (cn)∞n=1 be a sequence in Z. Are the subsequent conditions
(i) and (ii) equivalent?

(i) There exists a precompact abelian group G ⊇ Z such that cn → h in G
and 〈h〉 ∩ Z = {0}.

(ii) There exists an infinite subgroup A ≤ T such that cnα → 0 holds for all
α ∈ A.
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Conditions (i) is obviously equivalent to (i’) below:

(i’) There exists a group compactification (ι, G) of Z such that ι is 1-1, ι(cn) →
h in G and 〈h〉 ∩ ι(Z) = {0}.

We remark first that (ii) implies (i’): Let ι : Z → TA, n 7→ (nα)α∈A and put
G = ι(Z). Obviously (ι, G) is a compactification of Z and since A is infinite, ι
is 1-1.

To see that the converse does not hold, pick α, β ∈ T, such that α and β are
linearly independent over the rationals. Define a homomorphism f : 〈α〉 →
〈β〉, nα 7→ nβ. By Theorem ?? choose a sequence (cn)∞n=1 in Z such that
cnα → f(α) = β and (cnγ)∞n=1 does not converge for γ ∈ T \ 〈α〉.
Then ι : Z → T, n 7→ nα gives rise to a group compactification of Z. Put h := β
such that ι(cn) = cnα → β. Since α and β were chosen to be linearly indepen-
dent we have 〈h〉 ∩ ι(Z) = 〈β〉 ∩ 〈α〉 = {0}. Thus (i′) is valid. On the other
hand (ii) fails since cnγ → 0 only for γ = 0.

For a different type of counterexample fix a prime p and consider the p-adic
integers Zp. Choose an arbitrary sequence (kn)∞n=1 in {0, 1, . . . , p − 1} which
contains infinitely many non zero elements and satisfies k1 = 1. Using this, put
for each n ∈ N, h2n = h2n+1 =

∑n
i=1 kip

i and let cn = pn + hn. Then

lim
n→∞

cn = lim
n→∞

hn =

∞∑

i=1

kip
i =: h ∈ Zp \ Z.

Hence kh ∈ Zp \ Z for all k ∈ Z \ {0}, so (i) holds.
Next pick α ∈ T such that limn→∞ cnα = 0. It follows that also limn→∞(cn+1−
cn)α = 0. Since h2n = h2n+1 this yields pnα → 0 so α = a/pl + Z for some
l ∈ N and a ∈ {0, 1, . . . , pl − 1}. But then, for all n ≥ l

‖αc2n‖ =

∥∥∥∥∥(a/pl)

(
p2n +

n∑

i=1

kip
i

)∥∥∥∥∥ =

∥∥∥∥∥(a/pl)

l∑

i=1

kip
i

∥∥∥∥∥ .

The last term tends to 0 only if a = 0. Hence α = 0 and (ii) fails.
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