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Abstract. We adapt ideas and concepts developed in optimal transport (and
its martingale variant) to give a geometric description of optimal stopping
times τ of Brownian motion subject to the constraint that the distribution
of τ is a given probability µ. The methods work for a large class of cost
processes. (At a minimum we need the cost process to be measurable and
(F0

t )t≥0-adapted. Continuity assumptions can be used to guarantee existence
of solutions.) We find that for many of the cost processes one can come up
with, the solution is given by the first hitting time of a barrier in a suitable
phase space. As a by-product we recover classical solutions of the inverse first
passage time problem / Shiryaev’s problem.
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1. Appetizer

To whet the reader’s appetite and to give some idea of the kind of problems that
can be solved with the methods presented in this paper we would like to start with
two corollaries to our main results. In Section 3 we will present these main results
and in Section 4 we will use them to prove Corollary 1.1 from them.

Both Corollary 1.1 and Corollary 1.2 assert that the solutions of certain optimal
stopping problems can be described by a barrier in an appropriate phase space.

In this section, let (Bt)t≥0 be a Brownian motion started1 in 0 on some filtered
probability space (Ω,G, (Gt)t≥0,P) satisfying the usual conditions and let µ be a
measure on (0,∞). First we consider optimal stopping problems of the following
form.

Problem (OptStopψ(Bt,t)). Among all stopping times τ ∼ µ on (Ω,G, (Gt)t≥0,P)
find the maximizer of

τ 7→ E[Zτ ] ,

where the process Z is of the form Zt = ψ(Bt, t).
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1We note that the results presented in this section remain valid for Brownian motions started
according to a general law λ at the cost of slightly more tedious moment conditions in the formu-
lation of Corollaries 1.1 and 1.2.
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Corollary 1.1. Assume that µ has finite first moment. There is an upper semi-
continuous function β : R+ → [−∞,∞] such that the stopping time

τ := inf{t > 0 : Bt ≤ β(t)} (1.1)
has distribution µ.
τ has the following uniqueness properties: On the one hand it is the a.s. unique

stopping time which has distribution µ and which is of the form (1.1) (we will later
say that such a stopping time is the hitting time of a downwards barrier).

On the other hand τ is also the a.s. unique solution of (OptStopψ(Bt,t)) for a
number of different ψ. Namely:

• Let p ≥ 0, assume µ has finite moment of order 1
2 + p + ε for some ε > 0

and let A : R+ → R be strictly increasing and |A(t)| ≤ K(1 + tp) for some
constant K.2 Then we may choose

ψ(Bt, t) = BtA(t) .

• Let p ≥ 2, assume µ has finite moment of order p
2 + ε for some ε > 0 and

let φ : R → R satisfy φ′′′ > 0 as well as |φ(y)| ≤ K(1 + |y|p) for some
constant K. Then we may choose

ψ(Bt, t) = φ(Bt) .

To give an example of a slightly more complicated functional amenable to anal-
ysis with our tools consider

Problem (OptStopB∗
t ). Among all stopping times τ ∼ µ on (Ω,G, (Gt)t≥0,P)

find the maximizer of
τ 7→ E[B∗τ ] ,

where B∗t = sups≤tB(s).

Corollary 1.2. Assume that µ has finite moment of order 3
2 . Then (OptStopB∗

t )
has a solution τ given by

τ = inf{t > 0 : Bt −B∗t ≤ β(t)}
for some upper semicontinuous function β : R+ → [−∞, 0].

We emphasize that the solutions to the constrained optimal stopping problems
provided in Corollaries 1.1 and 1.2 represent particular applications of the abstract
results obtained below. Figure 1 presents graphical depictions of stopping rules of
several further solutions of constrained optimal stopping problems (together with
the respective optimality properties). These stopping rules can be derived – under
suitable moment conditions – using arguments very similar to those required for
Corollaries 1.1 and 1.2 (see also the comments in Remark 7.1 at the end of the
paper).

2. Background - Martingale Optimal Transport and Shiryaev’s
problem

In this article we consider distribution-constrained stopping problems from a
mass transport perspective. Specifically we find that problems of the form exempli-
fied in (OptStopψ(Bt,t)) and (OptStopB∗

t ) are amenable to techniques originally
developed for the martingale version of the classical mass transport problem. This
martingale optimal transport problem arises naturally in robust finance; papers

2One may of course choose 0 ≤ p < 1
2 , ε := 1

2 − p and e.g. A(t) := tp so that no moment
conditions beyond those at the very beginning of this theorem are imposed on µ.
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Figure 1. Solutions to constrained optimal stopping problems.

to investigate such problems include [25, 8, 18, 16, 12, 20, 31]. In mathematical
finance, transport techniques complement the Skorokhod embedding approach (see
[32, 24] for an overview) to model-independent/robust finance.

A fundamental idea in optimal transport is that the optimality of a transport
plan is reflected by the geometry of its support set which can be characterized
using the notion of c-cyclical monotonicity. The relevance of this concept for the
theory of optimal transport has been fully recognized by Gangbo and McCann [19],
based on earlier work of Knott and Smith [28] and Rüschendorf [36, 37] among
others. Inspired by these ideas, the literature on martingale optimal transport
has developed a ‘monotonicity principle’ which allows to characterize martingale
transport plans through geometric properties of their support sets, cf. [9, 39, 7, 6,
22, 10].

The main contribution of this article is to establish a monotonicity principle
which is applicable to distribution-constrained optimal stopping problems. This
transport approach turns out to be remarkably powerful, in particular we will find
that questions as raised in Problems (OptStopψ(Bt,t)) and (OptStopB∗

t ) can be
addressed using a relatively intuitive set of arguments.

The distribution-constrained optimal stopping problem (OptStop) (and specif-
ically (OptStopB∗

t )) arises naturally in financial and actuarial mathematics. We
refer the reader to [23] which describes various examples (unit-linked life insur-
ances, stochastic modelling for health insurances, the liquidation of an investment
portfolio, the valuation of swing options).

Bayraktar and Miller [5] consider the same optimization problem that we treat
here. However their setup and methods are rather distinct from the ones used here:
they assume that the target distribution is given by finitely many atoms and that
the target functional depends solely on the terminal value of Brownian motion.
Following the measure valued martingale approach of Cox and Källblad [14], [5]
address the constrained optimal stopping problem using a Bellman perspective.

The problem to construct a stopping time τ of Brownian motion such that the
law of τ matches a given distribution on the real line was proposed by Shiryaev in
his Banach Center lectures in the 1970’s, it has since been called Shiryaev’s prob-
lem or inverse first passage problem. Dudley and Gutmann [17] provide an abstract
measure-theoretic construction. An early barrier-type solution to the inverse first
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passage problem was given by Anulova [3]. She constructs a symmetric two-sided
barrier (corresponding to the case a = 0 in the sixth picture of Figure 1). An-
ulova discretises the measure µ and concludes through approximation arguments.
The solution to the inverse first passage problem given in Corollary 1.1 was de-
rived by Chen, Cheng, and Chadam, and Saunders [13] based on a variational
inequality which describes the corresponding barrier. Notably, this is predated by
a (formal) PDE description of such barriers given by Avellaneda and Zhu [4] in the
context of credit risk modeling. Ekström and Janson [13] relate this solution to an
optimal stopping problem and provide an integral equation for the barrier. Ana-
lytic solutions to the inverse first passage problem are known only in a few cases
([11, 29, 38, 33, 1, 2]). An interesting connection between the inverse first passage
problem and Skorokhod’s problem is provided by Jaimungal, Kreinin, and Valov
[26].

3. Statement of Main Results

Assumption 1. Throughout we will assume that (Ω,G, (Gt)t≥0,P) is a filtered
probability space and that (Bt)t≥0 is an adapted process which has continuous
paths on (Ω,G, (Gt)t≥0), such that B can be regarded as a measurable map from
Ω to C(R+), the space of continuous functions from R+ to R. The cost function
c will always be a measurable map C(R+)× R+ → R. µ will denote a probability
measure on R+.

Then the problem we consider can be stated as follows.

Problem (OptStop). Among all stopping times τ ∼ µ find the minimizer of
τ 7→ E[c(B, τ)] .

Here we formulate our main optimization problem in terms of minimization,
following the usual convention in the optimal transport literature (which is also
used in the closely related paper [6]). Clearly, a sign change transforms this into
a maximization problem and in our applications we will in fact turn to this latter
version when resulting formulations appear more natural. We trust that this will
not cause confusion.

Throughout we will also make the following assumptions without further men-
tion:

Assumption 2.
(1) c is measurable, (F0

t )t≥0-adapted, where (F0
t )t≥0 is the filtration on C(R+)

generated by the canonical process (ω 7→ ω(t))t∈R+
.

(2) There is a G0-measurable random variable U which is uniformly distributed
on [0, 1] and independent of the process (Bt)t≥0.

(3) There is a probability measure λ s.t. (Bt)t≥0 is a Brownian motion with
initial law λ, i.e. B0 ∼ λ.

(4) The problem is well-posed in the sense that E[c(B, τ)] is defined and > −∞
for all stopping times τ ∼ µ and that E[c(B, τ)] <∞ for at least one such
stopping time.

(5)
∫
tp0 dµ(t) < ∞, where p0 ≥ 0 is some constant that we fix here and that

can be chosen when applying the results from this section.

A note on language: The adjective “adapted” is usually applied to processes
whose time argument is written in subscript form. For any filtered measurable space
Ω̃ and any function f : Ω̃ × R+ → R (or possibly f : Ω̃ × R+ → [−∞,∞]) we will
interchangeably think of f simply as a function or as the process Yt(ω) := f(ω, t).
And so f being adapted means the same thing as (Yt)t∈R+ being adapted. Similarly
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for a subset Γ of Ω̃×R+ we may also think of Γ as its indicator function or as the
process Yt(ω) := 1Γ(ω, t) and will also say that the set Γ is adapted.

With that in mind, Assumption 2.1 should seem like an obvious thing to ask for
from the cost function. Also, knowing about the existence of optional projections,
it should be clear no later than Lemma 5.3 that Assumption 2.1 does not pose a
real restriction on the class of problems we are treating.

The role of Assumption 2.2 should become clearer soon. We would like to note
at this point though that often enough our results put together will imply that
the solution of Problem (OptStop) for a space (Ω,G, (Gt)t≥0,P) which satisfies
Assumption 2.2 is essentially the same as the solution of the Problem for a space
which may not satisfy said assumption, and we will find that we can describe this
solution in detail. This can be seen executed in the proofs of the corollaries stated
in the Appetizer.

The methods in this paper work not just for Brownian motion but for a class
of processes which is conceptually bigger, but then turns out to not include much
beyond Brownian motion – namely for any space-homogeneous but possibly time-
inhomogeneous Markov process with continuous paths which has the strong Markov
property. (Here space-homogeneous means that starting the process at location x
and then moving its paths to start at location y results in a version of the process
started at y.) If the reader so wishes, she may think of B as a process from this
slightly larger class of processes. Care was taken not to reference any properties
of Brownian motion beyond those stated here. In particular our results apply to
multi-dimensional Brownian motion.

Assumption 2.4 is mostly just there to ensure that we are actually talking about
an optimization problem in a meaningful sense. For the problems presented in
the Appetizer, the moment conditions on µ which are given in the statement of
Corollary 1.1 and Corollary 1.2 ensure that Assumption 2.4 is satisfied (as we will
see in the proofs of these corollaries).

The constant p0 in Assumption 2.5 will (implicitly) appear in the statement of
Theorem 3.6, one of the main results. Its role is to ensure that E[ϕ(B, τ)] will be
finite for some (class of) function(s) ϕ and any solution τ of (OptStop). (The
choice ϕ(B, τ) = τp0 is somewhat arbitrary here.)

The main results are Theorem 3.1 and Theorem 3.6.
We give two versions of Theorem 3.1. Version A is easier to state and may feel

more natural, but we will need Version B (which is more general and has essentially
the same proof as Version A) in the proof of the corollaries in the Appetizer.

Theorem 3.1. .
Version A. Assume that the cost function c is bounded from below and lower

semicontinuous when we equip C(R+) with the topology of uniform convergence on
compacts. Then the Problem (OptStop) has a solution.

Version B. Assume that the cost function c is lower semicontinuous when we
equip C(R+)×R+ with the product topology of two Polish topologies which generate
the right sigma-algebras on C(R+) and R+ respectively and assume that the set
{c−(B, τ) : τ ∼ µ, τ is a stopping time} is uniformly integrable, where c− := −c∨0
denotes the negative part of c. Then the Problem (OptStop) has a solution.

To state Theorem 3.6 we need a few more definitions.

Remark 3.2. We will find it convenient to talk about processes that don’t start at
time 0 but instead at some time t > 0. Similarly we will consider stopping times
taking values in [t,∞). These will be defined on the space C([t,∞)) equipped with
the filtration (F ts)s≥t, again generated by the canonical process (ω 7→ ω(s))s≥t. We
refer to the distribution of Brownian motion started at time t and location x by
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Wt
x. This is a measure on C([t,∞)). For a probability measure κ on R we write

Wt
κ for the distribution of Brownian motion started at time t with initial law κ.

Definition 3.3 (Concatenation). For every t ∈ R+ we have an operation � of
concatenation, which is a map into C([t,∞)) and is defined for (ω, s) ∈ C([t,∞))×
[t,∞) and θ ∈ C([s,∞)) with θ(s) = 0 by

((ω, s)� θ)(r) =
{
ω(r) t ≤ r ≤ s
ω(s) + θ(r) r > s

. (3.1)

Definition 3.4 (Stop-Go pairs). The set of Stop-Go pairs SG ⊆ (C(R+)× R+)×
(C(R+)× R+) is defined as the set of all pairs ((ω, t), (η, t)) (note that the time
components have to match) such that

c(ω, t) +
∫
c((η, t)� θ, σ(θ)) dWt

0(θ) < c(η, t) +
∫
c((ω, t)� θ, σ(θ)) dWt

0(θ) (3.2)

for all (F ts)s≥t-stopping times σ for which Wt
0(σ = t) < 1, Wt

0(σ = ∞) = 0,∫
σp0 dWt

0 <∞ and for which both sides in (3.2) are defined and finite.
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Figure 2. The left hand side of (3.2) corresponds to averaging
the function c over the stopped paths on the left picture, the right
hand side to averaging the function c over the stopped paths on
the right picture.

A hopefully intuitive way of putting the definition of Stop-Go pairs into words
is the following: ((ω, s), (η, t)) form a Stop-Go pair iff, irrespective of how we might
stop after time t (i.e. which stopping rule σ we might use after time t), Stopping ω
at time t and letting η Go on is better – i.e. has lower cost – than stopping η and
letting ω go on.

As hinted at earlier, the definition of Stop-Go pairs depends on the parameter p0
from Assumption 2.5. A larger p0 means that we are asking for more in Assump-
tion 2.5 and implies that we get a larger set SG, as we are quantifying over fewer
stopping times σ in the definition of SG. This in turn implies that the conclusion
of Theorem 3.6 below will be stronger.

Definition 3.5 (Initial Segments). For a set Γ ⊆ C(R+) × R+ define the set
Γ< ⊆ C(R+)× R+ by

Γ< = {(ω, s) : (ω, t) ∈ Γ for some t > s} . (3.3)

Theorem 3.6 (Monotonicity Principle). Assume that τ solves (OptStop). Then
there is a measurable, (F0

t )t≥0-adapted set Γ ⊆ C(R+)× R+ such that
P[((Bt)t≥0, τ) ∈ Γ] = 1

and
SG ∩

(
Γ< × Γ

)
= ∅ . (3.4)

The following lemma should give a first hint about how the Monotonicity Prin-
ciple can be applied.
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Lemma 3.7. Let τ be a solution of (OptStop) and assume that the cost function
c is such that there exists a measurable, (F0

t )t≥0-adapted process (Yt)t≥0 such that

Yt(ω) < Yt(η) =⇒ ((ω, t), (η, t)) ∈ SG . (3.5)

Define the barriers
ˇ
R, R̂ ⊆ R× R+ by

ˇ
R =

⋃
(ω,t)∈Γ

(−∞, Yt(ω)]× {t}

R̂ =
⋃

(ω,t)∈Γ

(−∞, Yt(ω))× {t} ,

where Γ is a set with the properties in Theorem 3.6. Define the functions
ˇ
τ and τ̂

on C(R+) by

ˇ
τ(ω̃) = inf

{
t ∈ R+ : (Yt(B(ω̃)), t) ∈

ˇ
R
}

τ̂(ω̃) = inf
{
t ∈ R+ : (Yt(B(ω̃)), t) ∈ R̂

}
.

Then

ˇ
τ ≤ τ ≤ τ̂ P-a.s. (3.6)

When applying this Lemma to show that some optimal stopping problem has
a barrier-type solution as symbolized for example by the pictures in Figure 1 the
process Yt(B) is of course what we are labelling the vertical axes in the pictures with.
So for the first picture Yt(ω) = ω(t), for the second one Yt(ω) = ω(t)− sups≤t ω(s),
for the third Yt(ω) = −(ω(t) − sups≤t ω(s)) (the sign is flipped relative to the
labelling in the picture because in this picture the barrier is drawn “up” instead of
“down”), etc.

Notice that, contrary to customs, when we draw the barriers
ˇ
R/R̂ in the pictures

in Figure 1 the first coordinate is the vertical axis and the second coordinate is the
horizontal axis. This is because, to make cross-referencing and comparison with [6]
easier, we follow their convention of always having time as the second coordinate
but still in the pictures it seems more natural to put the independent variable on
the horizontal axis.

Note that a priori
ˇ
τ and τ̂ need not be stopping times or even measurable, as

we don’t know much about the sets
ˇ
R and R̂.

Using the properties of a concrete process (Yt)t≥0 we will in the proofs of Corol-
laries 1.1 and 1.2 be able to show that

ˇ
τ = τ̂ a.s. (this should not be surprising as

for each time t the barriers
ˇ
R and R̂ differ by at most a single point) and therefore

that the optimizer τ is the hitting time of a barrier.

Proof of Lemma 3.7. Let ω̃ ∈ Ω s.t. (B(ω̃), τ(ω̃)) ∈ Γ. By assumption this holds
for P-a.a. ω̃. Then

(
Yτ(ω̃)(B(ω̃)), τ(ω̃)

)
∈

ˇ
R and therefore

ˇ
τ(ω̃) ≤ τ(ω̃).

Next we show that τ̂(ω̃) ≥ τ(ω̃). Assume that (Yt(B(ω̃)), t) ∈ R̂. We want to
show that t ≥ τ(ω̃). By the definition of R̂ we find that there is η ∈ C(R+) with
(η, t) ∈ Γ and Yt(B(ω̃)) < Yt(η), so by (3.5) we know ((B(ω̃), t), (η, t)) ∈ SG. As-
suming, if possible, t < τ(ω̃) we get according to Definition 3.5 that (B(ω̃), t) ∈ Γ<.
Therefore we have that ((B(ω̃), t), (η, t)) ∈ SG∩(Γ< × Γ), but this is a contradiction
to SG ∩ (Γ< × Γ) = ∅, so we must have t ≥ τ(ω̃). �

Remark 3.8 (Duality). Problem (OptStop) is an infinite-dimensional linear pro-
gramming problem and one would hence expect that a corresponding dual problem
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can be formulated. Indeed, assuming that c is lower semicontinuous and bounded
from below, the value of the optimization problem equals

sup
M,ψ

E[M0] +
∫
ψ dµ,

where the supremum is taken over bounded (Gt)t≥0-martingales M = (Mt)t≥0 and
bounded continuous functions ψ : R+ → R satisfying (up to evanescence)

Mt + ψ(t) ≤ c(B, t) .
This can be established in complete analogy to the duality result derived in [6,
Theorem 1.2 / Section 4.2] and we do not elaborate.

4. Digesting the Appetizer

We will now demonstrate how to use the Monotonicity Principle of Theorem 3.6
to derive Corollary 1.1. The proof of Corollary 1.2 is very similar but relies on
understanding a technical detail which does not add much to the story at this
point, so we leave it for the end of the paper.

Both of the sets
ˇ
R and R̂ in Lemma 3.7 have the property that (writing R for

the set in question) (y, t) ∈ R and y′ ≤ y implies (y′, t) ∈ R. We call such sets
(downwards) barriers. More specifically, for technical reasons in what follows it is
slightly more convenient to talk about subsets of [−∞,∞]×R+ instead of subsets
of R× R+, giving the following definition.

Definition 4.1. Let X be a topological space. A downwards barrier is a set
R ⊆ [−∞,∞]×X such that {−∞} ×X ⊆ R and

(y, t) ∈ R and y′ ≤ y implies (y′, t) ∈ R

Clearly, in Lemma 3.7, instead of talking about
ˇ
R ⊆ R × R+, we could have

talked about
ˇ
R∪ ({−∞}×R+) ⊆ [−∞,∞]×R+ without anything really changing,

and likewise for R̂.
The reader will easily verify the following lemma.

Lemma 4.2. Let X be a topological space. There is a bijection between the set
of all upper semicontinuous functions β : X → [−∞,∞] and the set of all closed
downwards barriers R ⊆ [−∞,∞] × X (where closure is to be understood in the
product topology). This bijection maps any upper semicontinuous function β to the
barrier R which is the hypograph of β

R := {(y, x) : y ≤ β(x)} ,
while the inverse maps a barrier R to the function β given by

β(x) := sup{y : (y, x) ∈ R} .

What we will show now, on the way to proving Corollary 1.1 is that the first
hitting time after 0 of any downwards barrier by Brownian motion is a.s. equal to
the first hitting time after 0 of the closure of that barrier. This serves to both
resolve the question whether the times in Lemma 3.7 are stopping times and to
show that

ˇ
τ = τ̂ a.s.

Let us assume for the rest of this section that B is actually a Brownian motion
started in 0.

Lemma 4.3. Let R be a downwards barrier in [−∞,∞]×R+. Let R be the closure
of R (in the product topology of the usual topologies on [−∞,∞] and R+). Define

τ(ω) := inf{t > 0 : (Bt(ω), t) ∈ R}
τ(ω) := inf{t > 0 : (Bt(ω), t) ∈ R} .
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Then τ = τ a.s.

Proof. As R ⊇ R we clearly have τ(ω) ≤ τ(ω) for all ω ∈ Ω. Define

τε(ω) := inf{t > 0 : (Bt(ω) + ε ·A(t), t) ∈ R} ,

where A(t) := t
1+t is a bounded, strictly increasing function. Using just that R

is the closure of R one proves by elementary methods that τ(ω) ≤ τε(ω) for all
ω ∈ Ω and any ε > 0. Because A(t) =

∫ t
0 (1 + s)−2 ds is the integral from 0 to t of a

square integrable function we can apply Girsanov’s theorem (see e.g. [34, Theorem
38.5]) to see that τ1/n converges to τ in distribution as n→∞.

As
(
τ1/n

)
n
is a decreasing sequence bounded below by τ we get that convergence

holds almost surely. �

The following is a particular case of [21, Corollary 2.3] (which in turn relies on
arguments given in [35, 30]). Note that this lemma is purely a statement about
barrier-type stopping times and is not directly connected to the optimization prob-
lem under consideration.

Lemma 4.4 (Uniqueness of Barrier-type solutions). Assume that (Yt)t≥0 is a mea-
surable, (F0

t )t≥0-adapted process and that the process Z defined through Zt := Yt(B)
has a.s. continuous paths. Let R1,R2 ⊆ [−∞,∞]×R+ be closed downwards barriers
such that for

τi(ω) := inf{t > 0 : (Zt(ω), t) ∈ Ri}
we have τ1 ∼ τ2. Then τ1 = τ2 a.s.

Proof. Is to be found in [21, Corollary 2.3]. �

We now have the necessary prerequisites to use our main results in showing
that the first optimization problem in the Appetizer admits a (unique) barrier-type
solution.

Proof of Corollary 1.1. The strategy is as follows: We choose a cost function and
leverage Theorem 3.1 to show that an optimizer exists, the Monotonicity Principle
in the form of Theorem 3.6 and Lemma 3.7 will – with some help from Lemma 4.3
– show that any optimizer must be the hitting time of a barrier. Lemma 4.4 shows
that any two barrier-type solutions must be equal.

We now provide the details. Start with a cost function c(ω, t) := −ω(t)A(t) for
a strictly monotone function A : R+ → R which satisfies |A(t)| ≤ K(1 + tp) and
assume that µ has moment of order 1

2 +p+ε for some ε > 0. To prove that a barrier-
type solution exists when µ has first moment, choose a bounded strictly increasing
A and p = 0, ε = 1

2 in this step. (These assumptions guarantee in particular
that the optimization problems considered below have a finite value.) Clearly the
problem (OptStop) for c corresponds to (OptStopψ(Bt,t)) for ψ(Bt, t) = BtA(t)
(i.e. ψ takes the role of −c such that the minimal/maximal values agree up to a
change of sign). We will deal with the case where ψ(Bt, t) = φ(Bt) at the end of
this proof.

We now check that the conditions in Version B of Theorem 3.1 are satisfied. We
also need to check that Assumption 2 holds. Here we need the assumption that µ
has moment of order 1

2 + p+ ε, as well as the Hölder and Burkholder-Davis-Gundy
inequalities. The latter specialized to Brownian motion state that for all q > 0
there are positive constants K0 and K1 such that for any stopping time τ we have
K0 E

[
τ q/2

]
≤ E[(|B|∗τ )q] ≤ K1 E

[
τ q/2

]
(where |B|∗t = sups≤t |Bs|). With these in

hand a straightforward calculation allows us to bound BτA(τ) in the L1+δ-norm
for some δ > 0, independently of the stopping time τ ∼ µ.
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This shows both that the uniform integrability condition in Version B of Theo-
rem 3.1 is satisfied and that Assumption 2.4 is satisfied.

On C(R+) we may choose the (Polish) topology of uniform convergence on com-
pacts. For the topology on R+ we start with the usual topology and turn A into a
continuous function (if it wasn’t), by making use of the fact that any measurable
function from a Polish space to a second countable space may be turned into a
continuous function by passing to a larger Polish topology (with the same Borel
sets) on the domain. (This can be found for example in [27, Theorem 13.11].)

In the statement of Corollary 1.1 we did not require that the probability space
(Ω,G, (Gt)t≥0,P) satisfy Assumption 2.2. To remedy this we can enlarge the prob-
ability space by setting Ω̃ := Ω× [0, 1], G̃t := Gt ⊗ B([0, 1]) and P̃ := P⊗ L, where
L is Lebesgue measure on [0, 1]. On this space we consider the Brownian motion
B̃t(ω, x) := Bt(ω). Theorem 3.1 now gives us an optimal stopping time τ̃ on the
enlarged probability space. If we can show that this stopping time is in fact the
hitting time of a barrier, then it follows that τ̃ = τ ◦ ((ω, x) 7→ ω) for a stopping
time τ which is defined as the hitting time of the Brownian motion B of the same
barrier. As there are more stopping times on (Ω̃, G̃, (G̃t)t≥0) than on (Ω,G, (Gt)t≥0)
in the sense that any stopping time τ ′ on (Ω,G, (Gt)t≥0) induces a stopping time
τ̃ ′ := τ ′ ◦ ((ω, x) 7→ ω) on (Ω̃, G̃, (G̃t)t≥0) we conclude that τ must also be opti-
mal among the stopping times on (Ω,G, (Gt)t≥0). With this out of the way, let
us refer to our Brownian motion by B, to the optimal stopping time by τ and to
our filtered probability space by (Ω,G, (Gt)t≥0,P) irrespective of whether this is the
original process and space we started with, or an enlarged one.

Choosing p0 := 1
2 + p + ε in Assumption 2.5 we apply Theorem 3.6 to obtain a

set Γ on which (B, τ) is concentrated under P and for which (3.4) holds. As µ is
concentrated on (0,∞), we may assume that Γ∩ (C(R+)×{0}) = ∅. Next we want
to show that Lemma 3.7 applies with Yt(ω) = ω(t).

Translating (3.5) to our situation, we want to prove that ω(t) < η(t) implies

−ω(t)A(t)− E
[(
η(t) + B̃σ

)
A(σ)

]
< −η(t)A(t)− E

[(
ω(t) + B̃σ

)
A(σ)

]
, (4.1)

where B̃ is Brownian motion started in 0 at time t on C([t,∞)) and σ is any
stopping time thereon with Wt

0(σ = t) < 1, Wt
0(σ = ∞) = 0,

∫
σp0 dWt

0 < ∞.
Again the Burkholder-Davis-Gundy inequality shows that E[B̃σA(σ)] < ∞. So
(4.1) turns into

ω(t)E[A(σ)−A(t)] < η(t)E[A(σ)−A(t)]

which clearly follows from the assumptions. So we know that Lemma 3.7 holds, i.e.
using the names from said lemma we have

ˇ
τ ≤ τ ≤ τ̂ P-a.s.

Γ ∩ (C(R+)× {0}) = ∅ implies
ˇ
R∩ (R× {0}) = ∅ and therefore

ˇ
τ(ω) = inf{t >

0 : (Bt(ω), t) ∈
ˇ
R}, and likewise for R̂ and τ̂ . As

ˇ
R = R̂ =: R it follows from

Lemma 4.3 that
ˇ
τ = τ = τ̂ a.s. and that τ is of the form claimed in (1.1) with

β(t) := sup{y ∈ R : (y, t) ∈ R}. The uniqueness claims follow from Lemma 4.4 and
what we have already proven.

We now treat the case where ψ(Bt, t) = φ(Bt) with φ′′′ > 0, |φ(y)| ≤ K(1 + |y|p)
and µ has finite moment of order p

2 + ε for some ε > 0. Most of the proof remains
unchanged. Setting c(ω, t) = −φ(ω(t)) we may again use the Burkholder-Davis-
Gundy inequalities to show that c(Bτ , τ) is bounded in L1+δ-norm, independently
of the stopping time τ ∼ µ, thereby showing both that Assumption 2.4 is satisfied
and that the uniform-integrability condition in Version B of Theorem 3.1 is satisfied.

It remains to show that ω(t) < η(t) implies ((ω, t), (η, t)) ∈ SG. φ′′′ > 0 implies
that the map y 7→ φ(η(t) + y)− φ(ω(t) + y) is strictly convex. By the strict Jensen
inequality E[φ(η(t) + B̃σ) − φ(ω(t) + B̃σ)] > φ(η(t)) − φ(ω(t)) for any stopping
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time σ on C([t,∞)) which is almost surely finite, satisfies optional stopping and
is not almost surely equal to t. As we may choose p0 := p

2 + ε, which is greater
than 1, we may assume that the σ in the definition of SG has finite first moment,
which is enough to guarantee that it satisfies optional stopping. Rearranging the
last inequality gives (3.2). �

5. Existence of an Optimizer

The proof of existence of solutions to the Problem (OptStop) crucially depends
on thinking of stopping times as the joint distribution of the process to be stopped
and the stopping time. We introduce some concepts to make this precise and give
a proof of Theorem 3.1 at the end of this section.

Lemma 5.1. Let G : C([t,∞))→ R, and s ≥ t. The function

ω 7→
∫
G((ω, s)� θ) dWs

0(θ)

is a version of the conditional expectation EWt
λ
[G|F ts] (for any initial distribution

λ). Henceforth, by E[G|F ts] we will mean this function.
If G ∈ Cb(C([t,∞))), then E[G|F ts] ∈ Cb(C([t,∞))).

Proof. Obvious. �

Here we use Cb(X) to denote the set of continuous bounded functions from a
topological space X to R. The last sentence of the lemma is of course true for any
topology on C([t,∞)) for which the map ω 7→ ω � θ is continuous for all θ, but we
will only need it for the topology of uniform convergence on compacts.3

Given spaces X and Y we will denote the projection from X × Y to X by projX
(and similarly for Y ). For a measurable map F : X → Y between measure spaces
and a measure ν on X we denote the pushforward of ν under F by F∗(ν) := D 7→
ν(F−1[D]).

Definition 5.2 (RST). The set RSTtκ of randomized stopping times (of Brownian
motion started at time t with initial distribution κ) is defined as the set of all
subprobability measures ξ on C([t,∞)) × [t,∞) such that (projC([t,∞)))∗(ξ) ≤ Wt

κ

and that ∫
F (r)(G(ω)− E[G|F ts](ω)) dξ(ω, r) = 0 (5.1)

for all s > t, all G ∈ Cb(C([t,∞))) and all F ∈ Cb([t,∞)) supported on [t, s].
In this definition the topology on C([t,∞)) is that of uniform convergence on

compacts and the topology on [t,∞) is the usual topology.
Given a distribution ν on C([t,∞)) we write

RSTtκ(ν) :=
{
ξ ∈ RSTtκ : (proj[t,∞))∗(ξ) = ν

}
.

We write RSTtκ(P) for the set of all ξ ∈ RSTtκ with mass 1 and call these the finite
randomized stopping times.

In any of these, if we drop the superscript t then we will mean time t = 0, while,
if we drop the subscript κ, then we mean that the initial distribution κ = δ0, i.e.
the Brownian motion to be stopped is started deterministically in 0.

To explain the qualifier finite it may help to imagine that for a non-finite ran-
domized stopping time of mass α < 1, the mass 1 − α which is missing is placed
along C([t,∞))× {∞}.

The following Lemma 5.3 from [6] shows that the problem (OptStop) is equiva-
lent to the following optimization problem (OptStop’) in the sense that a solution

3And that choice is rather arbitrary itself, as close reading will reveal.
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of one can be translated into a solution of the other and vice versa. This of course
also implies that the values of the two problems are equal, thereby showing that
the concrete space (Ω,G, (Gt)t≥0,P) has no bearing on this value, as long as As-
sumptions 1 and 2 are satisfied.

The definition we have given for a randomized stopping time is only the most
convenient (for our purposes) of a number of possible equivalent definitions. Al-
though Lemma 5.3 below should provide some intuition on what a randomized
stopping time is, the reader may still wish to refer to [6, Theorem 3.8] for the other
possible ways of defining randomized stopping times. The first step in connecting
condition (5.1), which is one of the equivalent conditions listen in said theorem, to
the others, is to notice that (5.1) can be rewritten as∫ (∫

F (r) dξω(r)
)

(G(ω)− E[G|F ts](ω)) dWt
κ(ω) = 0 ,

where ξω is a disintegration of ξ with respect to Wt
κ. This says that the function

ω 7→
∫
F (r) dξω(r) is orthogonal to G− E[G|F ts] for all bounded continuous G, i.e.

that it is a.s. F ts-measurable whenever F is supported on [t, s]. A limit argument
then shows that ω 7→ ξω([t, s]) is a.s. F ts-measurable. Again, we refer the reader to
[6] for a more detailed exposition.

Problem (OptStop’). Among all randomized stopping times ξ ∈ RSTλ(µ) find
the minimizer of

ξ′ 7→
∫
c dξ′ .

Lemma 5.3 ([6, Lemma 3.11]). Let τ be a (Gt)t≥0-stopping time and consider
Φ : Ω→ C(R+)× [0,∞]

Φ(ω) := ((Bt(ω))t≥0, τ(ω)) .

Then ξ := Φ∗(P)�C(R+)×R+ is a randomized stopping time, i.e. ξ ∈ RSTλ, and for
any non-negative measurable process F : C(R+)× R+ → R we have∫

F dξ = E[(F · 1C(R+)×R+) ◦ Φ] = E[F (B, τ) · 1R+(τ)] . (5.2)

For any ξ ∈ RSTλ, we can find a (Gt)t≥0-stopping time τ such that ξ = Φ∗(P) and
(5.2) holds.
ξ is a finite randomized stopping time iff τ is a.s. finite.

Proof of Theorem 3.1. We prove Version B of the theorem. Version A is a special
case. We show that Problem (OptStop’) has a solution. To this end we show that
the set RSTλ(µ) is compact (in the weak topology). From the fact that c is lower
semicontinuous and bounded from below in an appropriate sense we then deduce
by the Portmanteau theorem that the map

ĉ : RSTλ(µ)→ (−∞,∞]

ĉ(ζ) :=
∫
c dζ

is lower semicontinuous and therefore that the infimum infζ∈RSTλ(µ) ĉ(ζ) is attained.
Now for the details. On each of the spaces C(R+) and R+ we are dealing with

two topologies, one coming from the Definition 5.2 of randomized stopping times
(to wit, the topology of uniform convergence on compacts on the space C(R+) and
the usual topology on R+) and one coming from the assumptions in the statement
of this theorem. We can equip each of these spaces with the smallest topology
which contains the two topologies in question. These are again Polish topologies
and they still generate the standard sigma-algebras on the respective spaces. For
the remainder of this proof all topological notions are to be understood relative
to these topologies. So the topology on C(R+) × R+ is the product topology of
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these two topologies, and the weak topology on the space of measures on C(R+)×
R+ is to be understood relative to this product topology. The cost function c of
course remains lower semicontinuous and by Lemma 5.1 the functions (ω, r) 7→
F (r)(G(ω)− E[G|F0

s ]) appearing in Definition 5.2 are continuous.
Note that for ξ ∈ RSTλ(µ) as µ has mass 1, so must ξ and (projC(R+))∗(ξ), which

together with (projC(R+))∗(ξ) ≤W0
λ implies (projC(R+))∗(ξ) = W0

λ. So we deduce

RSTλ(µ) =
{
ξ ∈ Π :

∫
F (s)

(
G− E[G|F0

t ]
)
(ω) dξ(ω, s) = 0 ∀(t, F,G) ∈ ?

}
where

ξ ∈ Π ⇐⇒ (projC(R+))∗(ξ) = W0
λ and (projR+)∗(ξ) = µ

(t, F,G) ∈ ? ⇐⇒ t > 0, F : R+ → R is bounded and continuous in the
usual topologies, and 0 outside [0, t], G : C(R+)→ R is
bounded and continuous as a function from the topology
of uniform convergence on compacts.

The set Π is compact by Prokhorov’s Theorem and the fact that pushforwards
are continuous maps between measure spaces. It remains to show that RSTλ(µ)
is a nonempty closed subset. It is nonempty because the product measure W0

λ ⊗
µ ∈ RSTλ(µ). It is closed because, as noted, (ω, s) 7→ F (s)(G− E[G|F0

t ])(ω) is
continuous for all (t, F,G) ∈ ?.

Now we show that ĉ is lower semicontinuous. The functions cN := c ∨ −N are
each bounded from below and lower semicontinuous. By the Portmanteau theorem
the maps ĉN := ζ 7→

∫
cN dζ are lower semicontinuous. On RSTλ(µ) they converge

uniformly to ĉ because
sup
ζ

∣∣ĉ(ζ)− ĉN (ζ)
∣∣ ≤ sup

ζ

∫ ∣∣c− cN ∣∣ dζ ≤ sup
ζ∈RSTλ(µ)

∫
c− · 1c−≥N dζ ,

which converges to 0 as N goes to ∞ by the uniform integrability assumption. As
a uniform limit of lower semicontinuous functions is again lower semicontinuous we
see that ĉ is lower semicontinuous. �

6. Geometry of the Optimizer

This section is devoted to the proof of Theorem 3.6. The proof closely mimicks
that of Theorem 1.3/Theorem 5.7 in [6]. For the benefit of those readers already
familiar with said paper we will first describe the changes required to the proofs
there to make them work in our situation and then – for the sake of a more self-
contained presentation – indulge in reiterating the main arguments and only citing
results from [6] that we can use verbatim.

Sketch of differences in the proof of Theorem 3.6 relative to [6, Theorem 5.7]. Again
the strategy is to show that for a larger set ŜG

ξ
⊇ SG we can find a set Γ ⊆

C(R+) × R+ such that ŜG
ξ
∩ (Γ< × Γ) = ∅. The definition of ŜG

ξ
must of course

be adapted analoguously to the changes required to the definition of SG.
Apart from that the only real changes are to [6, Theorem 5.8]. Whereas pre-

viously it was essential that the randomized stopping time ξr(ω,s) is also a valid
randomized stopping time of the Markov process in question when started at a
different time but the same location ω(s), we now need that ξr(ω,s) will also be a
randomized stopping time of our Markov process when started at the same time s
but in a different place. Of course, when we are talking about Brownian motion
both are true, but this difference is the reason why in the case of the Skorokhod
embedding the right class of processes to generalize the argument to is that of Feller
processes while in our setup we don’t need our processes to be time-homogeneous
but we do need them to be space-homogeneous. That we are able to plant this
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“bush” ξr(ω,s) in another location is what guarantees that the measure ξπ1 defined
in the proof of Theorem 5.8 of [6] is again a randomized stopping time.

Whereas in the Skorokhod case the task is to show that the new better ran-
domized stopping time ξπ embeds the same distribution as ξ we now have to
show that the randomized stopping time we construct has the same distribution
as ξ. The argument works along the same lines though – instead of using that
((ω, s), (η, t)) ∈ ŜG

ξ
implies ω(s) = η(t) we now use that ((ω, s), (η, t)) ∈ ŜG

ξ

implies s = t. �

We now present the argument in more detail.
As may be clear by now, what we will show is that if ξ ∈ RSTλ(µ) is a solution

of (OptStop’), then there is a measurable, (F0
t )t≥0-adapted set Γ ⊆ C(R+)×R+

such that SG ∩ (Γ< × Γ) = ∅. Using Lemma 5.3 this implies Theorem 3.6.
We need to make some preparations. To align the notation with [6] and to

make some technical steps easier it is useful to have another characterization of
measurable, (F0

t )t≥0-adapted processes and sets. To this end define

Definition 6.1.
S :=

⋃
t∈R+

C([0, t])× {t}

r : C(R+)× R+ → S

r(ω, t) :=
(
ω�[0,t], t

)
r has many right inverses. A simple one is

r′ : S → C(R+)× R+

r′(f, s) :=
(
t 7→

{
f(t) for t ≤ s
f(s) for t > s

, s

)
.

We endow S with the sigma algebra generated by r′.

[6, Theorem 3.2], which is a direct consequence of [15, Theorem IV. 97], asserts
that a process X is measurable, (F0

t )t≥0-adapted iff X factors as X = X ′ ◦ r for
a measurable function X ′ : S → R. So a set D ⊆ C(R+) × R+ is measurable,
(F0

t )t≥0-adapted iff D = r−1[D′] for some measurable D′ ⊆ S.
Note that r(ω, t) = r(ω′, t′) implies (ω, t)� θ = (ω′, t′)� θ and therefore

SG = (r × r)−1[SG′
]

for a set SG′ ⊆ S × S which is described by an expression almost identical to that
in Definition 3.4. Namely we can overload � to also be the name for the operation
whose first operand is an element of S, such that (ω, t)� θ = r(ω, t)� θ and note
that as c is measurable, (F0

t )t≥0-adapted we can write c = c′ ◦ r and thus get a cost
function c′ which is defined on S.

Given an optimal ξ ∈ RSTλ(µ) we may therefore rephrase our task as having
to find a measurable set Γ ⊆ S such that r∗(ξ) is concentrated on Γ and that
SG′ ∩ (Γ< × Γ) = ∅, where Γ< :=

{
(g�[0,s], s) : (g, t) ∈ Γ, s < t

}
.

Note that for Γ ⊆ S although
(
r−1[Γ]

)< is not equal to r−1[Γ<] we still have
SG ∩

(
r−1[Γ<]× r−1[Γ]

)
= ∅ iff SG ∩

(
(r−1[Γ])< × r−1[Γ]

)
= ∅.

One of the main ingredients of the proof of [6, Theorem 1.3] and of our The-
orem 3.6 is a procedure whereby we accumulate many infinitesimal changes to a
given randomized stopping time ξ to build a new stopping time ξπ. The guiding
intuition for the authors is to picture these changes as replacing certain “branches”
of the stopping time ξ by different branches. Some of these branches will actually
enter the statement of a somewhat stronger theorem (Theorem 6.8 below), so we



GEOMETRY OF DISTRIBUTION-CONSTRAINED OPTIMAL STOPPING PROBLEMS 15

begin by describing these. Our way to get a handle on “branches” – i.e. infinitesimal
parts of a randomized stopping time – is to describe them through a disintegration
(wrt W0

λ) of the randomized stopping time. We need the following statement from
[6] which should also serve to provide more intuition on the nature of randomized
stopping times.

Lemma 6.2. [6, Theorem 3.8] Let ξ be a measure on C(R+)×R+. Then ξ ∈ RSTλ
iff there is a disintegration (ξω)ω∈C(R+) of ξ wrt W0

λ such that (ω, t) 7→ ξω([0, t]) is
measurable, (F0

t )t≥0-adapted and maps into [0, 1].

Using Lemma 6.2 above let us fix for the rest of this section both ξ ∈ RSTλ(µ)
and a disintegration (ξω)ω∈C(R+) with the properties above. Both Definition 6.3
below and Theorem 6.8 implicitly depend on this particular disintegration and we
emphasize that whenever we write ξω in the following we are always referring to
the same fixed disintegration with the properties given in Lemma 6.2. Note that
the measurability properties of (ξω)ω∈C(R+) imply that for any I ⊆ [0, s] we can
determine ξω(I) from ω�[0,s] alone. For (f, s) ∈ S we will again overload notation
and use ξ(f,s) to refer to the measure on [0, s] which is equal to (ξω)�[0,s] for any
ω ∈ C(R+) such that r(ω, s) = (f, s).

Definition 6.3 (conditional randomized stopping time). Let (f, s) ∈ S. We define
a new randomized stopping time ξ(f,s) ∈ RSTs by setting

ξ(f,s)
ω :=

{
1

1−ξ(f,s)([0,s])
(
ξ(f,s)�ω

)
�(s,∞) for ξ(f,s)([0, s]) < 1

δs for ξ(f,s)([0, s]) = 1∫
F dξ(f,s) :=

∫∫
F (ω, t) dξ(f,s)

ω (t) dWs
0(ω)

(6.1)

for all bounded measurable F : C([s,∞))× [s,∞)→ R, i.e. (ξ(f,s)
ω )ω∈C([s,∞)) is the

disintegration of ξ(f,s) wrt Ws
0.

Here δs is the Dirac measure concentrated at s. Really, the definition in the case
where ξ(f,s)([0, s]) = 1 is somewhat arbitrary – it’s more a convenience to avoid
partially defined functions. What we will use is that

(
1− ξ(f,s)([0, s])

)
ξ

(f,s)
ω =(

ξ(f,s)�ω
)
�(s,∞).

Definition 6.4 (relative Stop-Go pairs). The set SGξ consists of all ((f, t), (g, t)) ∈
S × S (again the times have to match) such that either

c′(f, t) +
∫
c((g, t)� θ, u) dξ(f,t)(θ, u) < c′(g, t) +

∫
c((f, t)� θ, u) dξ(f,t)(θ, u)

(6.2)

or any one of
(1) ξ(f,t)(C(R+)× R+) < 1 or

∫
sp0 dξ(f,t)(θ, s) =∞

(2) the integral on the right hand side equals ∞
(3) either of the integrals is not defined

holds. We also define

ŜG
ξ

:= SGξ ∪
{

(f, s) ∈ S : ξ(f,s)([0, s]) = 1
}
× S (6.3)

Lemma 6.6 below says that the numbered cases above are exceptional in an
appropriate sense and one may consider them a technical detail. Note that when
we say ((f, t), (g, t)) ∈ SGξ we are implicitly saying that ξ(f,t)([0, t]) < 1.

Note that the sets SGξ and ŜG
ξ
are measurable (in contrast to SG, which may

be more complicated).
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Definition 6.5. We call a measurable set F ⊆ S evanescent if r−1[F ] is evanescent,
that is, if W0

λ

(
projC(R+)

[
r−1[F ]

])
= 0.

Lemma 6.6. [6, Lemma 5.2] Let F : C(R+)×R+ → R be some measurable function
for which

∫
F dξ ∈ R. Then the following sets are evanescent.

•
{

(f, s) ∈ S : ξ(f,s)(C(R+)× R+) < 1
}

•
{

(f, s) ∈ S :
∫
F ((f, s)� θ, u) dξ(f,s)(θ, u) 6∈ R

}
Proof. See [6]. �

Lemma 6.7 ([6, Lemma 5.4]).

SG′ ⊆ ŜG
ξ

Proof. Can be found in [6]. Note that they fix p0 = 1. �

Theorem 6.8. Assume that ξ is a solution of (OptStop’). Then there is a mea-
surable set Γ ⊆ S such that r∗(ξ)(Γ) = 1 and

ŜG
ξ
∩
(
Γ< × Γ

)
= ∅ . (6.4)

Our argument follows [6, Theorem 5.7]. We also need the following two auxilliary
propositions, which in turn require some definitions.

Definition 6.9. Let υ be a probability measure on some measure space Y . The
set JOINλ(υ) is the set of all subprobability measures π on (C(R+)×R+)×Y such
that

(projY )∗(π) ≤ υ and
(projC(R+)×R+)∗(π�C(R+)×R+×D) ∈ RSTλ for all measurable D ⊆ Y .

Proposition 6.10. Let ξ be a solution of (OptStop’). Then (r × Id)∗(π)(SGξ) = 0
for all π ∈ JOINλ(r∗(ξ)).

Here we use × to denote the Cartesian product map, i.e. for sets Xi, Yi and
functions Fi : Xi → Yi where i ∈ {1, 2} the map F1 × F2 : X1 ×X2 → Y1 × Y2 is
given by (F1 × F2)(x1, x2) = (F1(x1), F2(x2)). Proposition 6.10 is an analogue of
[6, Proposition 5.8] and it is where the material changes compared to [6] take place.
We will give the proof at the end of this section.

Proposition 6.11. [6, Proposition 5.9] Let (Y, υ) be a Polish probability space and
let E ⊆ S × Y be a measurable set. Then the following are equivalent

(1) (r × Id)∗(π)(E) = 0 for all π ∈ JOINλ(υ)
(2) E ⊆ (F × Y ) ∪ (S ×N) for some evanescent set F ⊆ S and a measurable

set N ⊆ Y which satisfies υ(N) = 0.

Proposition 6.11 is proved in [6] and we will not repeat the proof here.

Proof of Theorem 6.8. Using Proposition 6.10 we see that (r × Id)∗(π)(SGξ) = 0
for all π ∈ JOINλ(r∗(ξ)). Plugging this into Proposition 6.11 we find an evanescent
set F1 ⊆ S and a set N ⊆ S such that r∗(ξ)(N) = 0 and SGξ ⊆ (F1×S)∪ (S×N).
Defining for any Borel set E ⊆ S the analytic set

E> :=
{

(g, t) ∈ S : ∃s < t,
(
g�[0,s], s

)
∈ E

}
we observe that ((E>)c)< ⊆ Ec and find r∗(ξ)(F>1 ) = 0.

Setting F2 :=
{

(f, s) ∈ S : ξ(f,s)([0, s]) = 1
}

and arguing on the disintegration
(ξω)ω∈C(R+) we see that r∗(ξ)(F>2 ) = 0, so r∗(ξ)(F>) = 0 for F := F1 ∪ F2.
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This shows that S \ (N ∪F>) has full r∗(ξ)-measure. Let Γ be a Borel subset of
that set which also has full r∗(ξ)-measure.

Then

Γ< × Γ ⊆
(
(F>)c

)< ×N c ⊆ F c ×N c and

ŜG
ξ
⊆ (F × S) ∪ (S ×N)

which shows ŜG
ξ
∩ (Γ< × Γ) = ∅. �

Lemma 6.12. If α ∈ RSTλ and G : C(R+)× R+ → [0, 1] is measurable, (F0
t )t≥0-

adapted, then the measure defined by

F 7→
∫
F (ω, t)G(ω, t) dα(ω, t) (6.5)

is still in RSTλ.

Proof. We use the criterion in Lemma 6.2. Let (αω)ω∈C(R+) be a disintegration of α
wrt W0

λ for which (ω, t) 7→ αω([0, t]) is measurable, (F0
t )t≥0-adapted and maps into

[0, 1]. Then (α̂ω)ω defined by α̂ω := F 7→
∫
F (t)G(ω, t) dαω(t) is a disintegration of

the measure in (6.5) for which (ω, t) 7→ α̂ω([0, t]) is measurable, (F0
t )t≥0-adapted

and maps into [0, 1]. �

Lemma 6.13 (Strong Markov property for RSTs). Let α ∈ RSTλ. Then∫
F (ω, t) dα(ω, t) =

∫∫
F ((ω, t)� ω̃, t) dWt

0(ω̃) dα(ω, t)

for all bounded measurable F : C(R+)× R+ → R.

Proof. Using integral notation instead of the more conventional E, we may write
the classical form of the strong markov property as∫

G
(
Θτ(ω)(ω)

)
H(ω) · 1R+(τ(ω)) dW0

λ(ω) =∫∫
G(ω̃)H(ω) · 1R+(τ(ω)) dWτ(ω)

ω(τ(ω))(ω̃) dW0
λ(ω)

for all bounded measurable G : C(R+) → R and all bounded F0
τ -measurable H :

C(R+) → R. Here Θt is the function which cuts off the initial segment of a path
up to time t. From this a simple monotone class argument shows that∫

K
(
Θτ(ω)(ω), ω

)
· 1R+(τ(ω)) dW0

λ(ω) =∫∫
K(ω̃, ω) · 1R+(τ(ω)) dWτ(ω)

ω(τ(ω))(ω̃) dW0
λ(ω)

for all bounded F0
∞ ⊗F0

τ -measurable K : C(R+)× C(R+).
We may then choose for K(ω̃, ω) the function F (η, τ(ω)) where the path η is

created by cutting off the tail of ω after time τ(ω) and attaching ω̃ in its place.
Noting the relationship between Wτ(ω)

x and Wτ(ω)
0 we then get∫

F (ω, τ(ω)) · 1R+(τ(ω)) dW0
λ(ω) =∫∫

F ((ω, τ(ω))� ω̃, τ(ω)) · 1R+(τ(ω)) dWτ(ω)
0 (ω̃) dW0

λ(ω) .

Using Lemma 5.3 with Ω = [0, 1] × C(R+) and Gt = B([0, 1]) ⊗ Ft we find a
(Gt)t≥0-stopping time τ s.t. we may write α as

α =
(
(y, ω) 7→ (ω, τ(y, ω))

)
∗(L ⊗W0

λ)�C(R+)×R+

(where L is Lebesgue measure on [0, 1]). For a fixed y ∈ [0, 1], ω 7→ τ(y, ω) is an
(F0

t )t≥0-stopping time, so we may apply the previous equation to these stopping
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times and integrate over y ∈ [0, 1] to get∫
F (ω, τ(y, ω)) · 1R+(τ(y, ω)) d(L ⊗W0

λ)(y, ω) =∫∫
F ((ω, τ(y, ω))� ω̃, τ(y, ω)) · 1R+(τ(y, ω)) dWτ(y,ω)

0 (ω̃) d(L ⊗W0
λ)(y, ω) .

Using the equation for α we see that this is what we wanted to prove. �

Lemma 6.14 (Gardener’s Lemma). Assume that we have ξ ∈ RSTλ(P), a measure
α on C(R+)×R+ and two families β(ω,t), γ(ω,t), where (ω, t) ∈ C(R+)×R+, with
β(ω,t), γ(ω,t) ∈ RSTt(P) such that both maps

(ω, t) 7→
∫

1D((ω, t)� ω̃, s) dβ(ω,t)(ω̃, s) and

(ω, t) 7→
∫

1D((ω, t)� ω̃, s) dγ(ω,t)(ω̃, s)

are measurable for all Borel D ⊆ C(R+)× R+ and that

ξ(D)−
∫∫

1D((ω, t)� ω̃, s) dβ(ω,t)(ω̃, s) dα(ω, t) ≥ 0 (6.6)

for all Borel D ⊆ C(R+)× R+. Then for ξ̂ defined by∫
F dξ̂ :=

∫
F dξ −

∫∫
F ((ω, t)� ω̃, s) dβ(ω,t)(ω̃, s) dα(ω, t)

+
∫∫

F ((ω, t)� ω̃, s) dγ(ω,t)(ω̃, s) dα(ω, t)

for all bounded measurable F we have ξ̂ ∈ RSTλ(P).

Remark 6.15. The intuition behind the Gardener’s Lemma is that we are replacing
certain branches β(ω,t) of the randomized stopping time ξ by other branches γ(ω,t)

to obtain a new stopping time ξ̂. This process happens along the measure α.
Note that (6.6) implies that

∫
1D((ω, t)� ω̃) dWt

0(ω̃) dα(ω, t) ≤W0
λ(D) for all Borel

D ⊆ C(R+). The authors like to think of α as a stopping time and of the maps
(ω, t) 7→ β(ω,t) and (ω, t) 7→ γ(ω,t) as adapted (in some sense that would need
to be made precise). As these assumptions aren’t necessary for the proof of the
Gardener’s Lemma, they were left out, but it might help the reader’s intuition to
keep them in mind.

Proof of Lemma 6.14. We need to check that the ξ̂ we define is indeed a measure,
that (projC(R+))∗(ξ̂) = W0

λ and that (5.1) holds for ξ̂.
Checking that ξ̂ is a measure is routine – we just note that (6.6) guarantees that

ξ̂(D) ≥ 0 for all Borel D.
Let G : C(R+)→ R be a bounded measurable function.∫

G(ω) dξ̂(ω, t) =
∫
G(ω) dξ(ω, t)−

∫∫
G((ω, t)� ω̃) dβ(ω,t)(ω̃, s) dα(ω, t)

+
∫∫

G((ω, t)� ω̃) dγ(ω,t)(ω̃, s) dα(ω, t)

=
∫
GdW0

λ −
∫∫

G((ω, t)� ω̃) dWt
0 dα(ω, t)

+
∫∫

G((ω, t)� ω̃) dWt
0 dα(ω, t)

=
∫
GdW0

λ

Now let F : R+ → R and G : C(R+) → R be bounded continuous functions, with
F supported on [0, r].∫

F (t)(G− E[G|F0
r ])(ω) dξ̂(ω, t) =

∫
F (t)(G− E[G|F0

r ])(ω) dξ(ω, t)

−
∫∫

F (s)(G− E[G|F0
r ])((ω, t)� ω̃) dβ(ω,t)(ω̃, s) dα(ω, t)

−
∫∫

F (s)(G− E[G|F0
r ])((ω, t)� ω̃) dγ(ω,t)(ω̃, s) dα(ω, t) (6.7)
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The first summand is 0 because ξ ∈ RSTλ(P). Looking at the second summand we
expand the definition of E[G|F0

r ].

E[G|F0
r ]((ω, t)� ω̃) =

∫
G(((ω, t)� ω̃, r)� θ) dWr

0(θ)

=
∫
G((ω, t)� ((ω̃, r)� θ)) dWr

0(θ)

whenever t ≤ r, which is the case for those t which are relevant in the integrand
above, because F (s) 6= 0 implies s ≤ r and moreover β(ω,t) is concentrated on (ω̃, s)
for which t ≤ s.

Setting Ĝ(ω,t)(ω̃) := G((ω, t)� ω̃) and F̂ (ω,t) := F�[t,∞) we can write∫∫
F (s)(G− E[G|F0

r ])((ω, t)� ω̃) dβ(ω,t)(ω̃, s) dα(ω, t) =∫
1[0,r](t)

∫
F̂ (ω,t)(s)(Ĝ(ω,t) − E[Ĝ(ω,t)|F tr])(ω̃) dβ(ω,t)(ω̃, s) dα(ω, t)

which is 0 because β(ω,t) ∈ RSTt(P) and therefore∫
F̂ (ω,t)(s)(Ĝ(ω,t) − E[Ĝ(ω,t)|F tr])(ω̃) dβ(ω,t)(ω̃, s) = 0

for all (ω, t) and r ≥ t. The same argument works for the third summand in
(6.7). �

Proof of Proposition 6.10. We prove the contrapositive. Assuming that there exists
a π′ ∈ JOINλ(r∗(ξ)) with (r × Id)∗(π′)(SGξ) > 0, we construct a ξπ ∈ RSTλ(µ) such
that

∫
c dξπ <

∫
c dξ.

If π′ ∈ JOINλ(r∗(ξ)), then for any two measurable sets D1, D2 ⊆ S, because
π′�(C(R+)×R+)×D2

∈ RSTλ and by making use of Lemma 6.12 we can deduce that
(projC(R+)×R+)∗(π′�(r×Id)−1[D1×D2]) ∈ RSTλ. Using the monotone classe theorem
this extends to any measurable subset of S × S in place of D1 × D2. So we can
set π := π′

�(r×Id)−1[SGξ] and know that (projC(R+)×R+)∗(π) ∈ RSTλ and that π is
concentrated on SGξ.

We will be using a disintegration of π wrt r(ξ), which we call
(
π(g,t)

)
(g,t)∈S and

for which we assume that π(g,t) is a subprobability measure for all (g, t) ∈ S. It will
also be useful to assume that π(g,t) is concentrated on the set {(ω, s) ∈ C(R+)×R+ :
s = t} not just for r(ξ)-almost all (g, t) but for all (g, t). Again this is no restriction
of generality. We will also push π onto (C(R+)× R+)× (C(R+)× R+), defining a
measure π̄ via∫

F dπ̄ :=
∫∫

F ((ω, s), ((g, t)� η̃, t)) dWt
0(η̃) dπ((ω, s), (g, t))

for all bounded measurable F . Observe that by Lemma 6.13 the pushforward of π
under projection onto the second coordinate (pair) is ξ and that a disintegration of
π̄ wrt to ξ (again in the second coordinate) is given by

(
πr(η,t)

)
(η,t)∈C(R+)×R+

. Let
us name (projC(R+)×R+)∗(π) =: ζ ∈ RSTλ. We will now use the Gardener’s Lemma
to define two modifications ξπ0 , ξπ1 of ξ such that ξπ := 1

2 (ξπ0 + ξπ1 ) is our improved
randomized stopping time.

For all bounded measurable F : C(R+)× R+ → R define∫
F dξπ0 :=

∫
F dξ +

∫
(1− ξω([0, s]))

(
−
∫
F ((ω, s)� ω̃, u) dξr(ω,s)(ω̃, u)

+F (ω, s)
)
dζ(ω, s)∫

F dξπ1 :=
∫
F dξ +

∫
(1− ξω([0, s]))

(
− F (η, t)

+
∫
F ((η, t)� ω̃, u) dξr(ω,s)(ω̃, u)

)
dπ̄((ω, s), (η, t)) .
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The concatenation on the last line is well-defined π̄-almost everywhere because π̄
is concentrated on (r × r)−1

[
SGξ

]
and so in the integrand above s = t on a set of

full measure.
We need to check that the Gardener’s Lemma applies in both cases. First of

all observe that the product measure Wt
0 ⊗ δt is in RSTt(P) and that Lemma 6.13

implies ∫
F (ω, t) dα(ω, t) =

∫∫
F ((ω, t)� ω̃, s) d

(
Wt

0 ⊗ δt
)
(ω̃, s) dα(ω, t) .

for any randomized stopping time α. So for ξπ0 the measures γ(ω,t) are given by
Wt

0 ⊗ δt and for ξπ1 the measures β(ω,t) are given by Wt
0 ⊗ δt.

For ξπ0 the measure along which we are replacing branches is given by

F 7→
∫
F (ω, s)(1− ξω([0, s])) dζ(ω, s) .

The branches β(ω,s) we remove are ξr(ω,s). We need to check that∫
F dξ −

∫
(1− ξω([0, s]))

∫
F ((ω, s)� ω̃, u) dξr(ω,s)(ω̃, u) dζ(ω, s) ≥ 0

for all positive, bounded, measurable F : C(R+)× R+ → R. Let us calculate.∫
(1− ξω([0, s]))

∫
F ((ω, s)� ω̃, u) dξr(ω,s)(ω̃, u) dζ(ω, s) =∫∫∫

F ((ω, s)� ω̃, u) d
(
(ξ(ω,s)�ω̃)�(s,∞)

)
(u) dWs

0(ω̃) dζ(ω, s) =∫∫
F (ω, u) d

(
(ξω)�(s,∞)

)
(u) dζ(ω, s) ≤

∫∫
F (ω, u) d(ξω)(u) dζ(ω, s) ≤∫∫

F (ω, u) d(ξω)(u) dW0
λ(ω) =

∫
F (ω, u) dξ(ω, u)

Here we first used the definition of ξr(ω,s) and then Lemma 6.13 and finally that
(projC(R+))∗(ζ) ≤W0

λ.
For ξπ1 we replace branches along

F 7→
∫
F (η, t)(1− ξω([0, s])) dπ̄((ω, s), (η, t))

=
∫
F (η, t)

∫
(1− ξω([0, s])) dπr(η,t)(ω, s) dξ(η, t) .

The calculation above shows that∫
F dξ −

∫
(1− ξω([0, s]))F (η, t) dπ̄((ω, s), (η, t)) ≥ 0

for all positive, bounded, measurable F : C(R+) × R+ → R. For ξπ1 the branches
γ(η,t) that we add are given by

F 7→

∫
(1− ξω([0, s]))

∫
F (ω̃, u) dξr(ω,s)(ω̃, u) dπr(η,t)(ω, s)∫

(1− ξω([0, s])) dπr(η,t)(ω, s)

when
∫

(1− ξω([0, s])) dπr(η,t)(ω, s) > 0 and δt otherwise (again, the latter is arbi-
trary). In the more interesting case γ(η,t) is an average over elements of RSTt(P)
and therefore itself in RSTt(P). Here it is again crucial that for πr(η,t)-almost all
(ω, s) we have s = t, otherwise we would be averaging randomized stopping times
of our process started at unrelated times.

Putting this together we see that ξπ := 1
2 (ξπ0 +ξπ1 ) is a randomized stopping time

and that

2
∫
F d(ξπ − ξ) =

∫
(1− ξω([0, s]))

(
F (ω, s)−

∫
F ((ω, s)� ω̃, u) dξr(ω,s)(ω̃, u)

− F (η, t) +
∫
F ((η, t)� ω̃, u) dξr(ω,s)(ω̃, u)

)
dπ̄((ω, s), (η, t)) (6.8)
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for all bounded measurable F : C(R+) × R+ → R. Specializing to F (ω, s) = G(s)
for G : R+ → R bounded measurable we find that∫

G(s) d(ξ − ξπ)(ω, s) = 0 ,

again because for π̄-almost all ((ω, s), (η, t)) we have s = t. This shows that ξπ ∈
RSTλ(µ).

We now want to extend (6.8) to c. We first show that (6.8) also holds for
F : C(R+)×R+ → R which are measurable and positive and for which

∫
F dξ <∞.

To see this, approximate such an F from below by bounded measurable functions
(for which (6.8) holds) and note that by previous calculations both∫

(1− ξω([0, s]))
∫
F ((ω, s)� ω̃, u) dξr(ω,s)(ω̃, u) dπ̄((ω, s), (η, t)) ≤

∫
F dξ <∞

and
∫

(1− ξω([0, s]))F (η, t) dπ̄((ω, s), (η, t)) ≤
∫
F dξ <∞ .

Looking at positive and negative parts of c and using Assumption 2.4 to see that∫
c− d(ξπ − ξ) ∈ R we get that indeed (6.8) holds for F = c.
Now we will argue that the integrand in the right hand side of (6.8) is negative

π̄-almost everywhere. This will conclude the proof.
By inserting an r in appropriate places we can read off from Definition 6.4 what

it means that π̄ is concentrated on (r × r)−1
[
SGξ

]
. In the course of verifying that

(6.8) applies to c we already saw that cases 2 and 3 in Definition 6.4 can only occur
on a set of π̄-measure 0. Lemma 6.6 excludes case 1 π̄-almost everywhere. This
means that (6.2) holds π̄-almost everywhere – or more correctly, that for π̄-a.a.
((ω, s), (η, t)) we have s = t and

c(ω, s)−
∫
c((ω, s)� ω̃, u) dξr(ω,s)(ω̃, u)

− c(η, t) +
∫
c((η, t)� ω̃, u) dξr(ω,s)(ω̃, u) < 0 , (6.9)

completing the proof. �

7. Variations on the Theme

We proceed to prove Corollary 1.2. This is closely modelled on the treatment of
the Azema-Yor embedding in [6, Theorem 6.5]. As is the case there we run into a
technical obstacle, though one which can be overcome by combining the ideas we
have already seen in slightly new ways.

To demonstrate the problem let us begin an attempt to prove Corollary 1.2.
Again, we read off c(ω, t) = −ω∗(t), with ω∗(t) = sups≤t ω(s). We may use Theo-
rem 3.1 to find a solution τ of the problem (OptStopB∗

t ) and we use Theorem 3.6
to find a set Γ ⊆ C(R+)× R+ for which P[(B, τ) ∈ Γ] = 1 and SG ∩ (Γ< × Γ) = ∅.
Now we would like to apply Lemma 3.7 with Yt(ω) = ω(t) − ω∗(t), as proposed
by Corollary 1.2, so we want to prove that ω(t) − ω∗(t) < η(t) − η∗(t) implies
((ω, t), (η, t)) ∈ SG. Let us do the calculations. We start with an (F ts)s≥t-stopping
time σ, for which Wt

0(σ = t) < 1, Wt
0(σ =∞) = 0 and for which both sides in (3.2)

are defined and finite. To reduce clutter, let us name (ω 7→ (ω, σ(ω)))∗(Wt
0) =: α,

so that (3.2), which we want to prove, reads

−ω∗(t) +
∫

((ω, t)� θ)∗(s) dα(θ, s) < −η∗(t) +
∫

((η, t)� θ)∗(s) dα(θ, s) (7.1)

We may rewrite the left hand side as∫ (
ω∗(t) ∨

(
ω(t) + θ∗(s)

))
− ω∗(t) dα(θ, s) =∫

0 ∨
(
ω(t)− ω∗(t) + θ∗(s)

)
dα(θ, s) .
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For the right hand side we get the same expression with ω replaced by η. Looking
at the integrands we see that if

0 < η(t)− η∗(t) + θ∗(s) (7.2)
then

0 ∨
(
ω(t)− ω∗(t) + θ∗(s)

)
< 0 ∨

(
η(t)− η∗(t) + θ∗(s)

)
,

but in the other case
0 ∨

(
ω(t)− ω∗(t) + θ∗(s)

)
= 0 = 0 ∨

(
η(t)− η∗(t) + θ∗(s)

)
.

So if (7.2) holds for (θ, s) from a set of positive α-measure, then we proved what
we wanted to prove. But if θ∗(s) ≤ η∗(t) − η(t) for α-a.a. (θ, s) then in (3.2) we
have equality instead of strict inequality.

As in [6, Theorem 6.5], one way of getting around this is to introduce a secondary
optimization criterion. One way to explain the idea of secondary optimization is
to think about what happens if, instead of considering a cost function c : C(R+)×
R+ → R we consider a cost function c : C(R+)× R+ → Rn. Of course, to be able
to talk about optimization, we will then want to have an order on Rn. For reasons
that should become clear soon, we decide on the lexicographical order. For the case
n = 2 that we are actually interested in for Corollary 1.2 this means that

(x1, x2) ≤ (y1, y2) ⇐⇒ x1 < y1 or (x1 = y1 and x2 ≤ y2) .

We claim that Theorem 3.6 is still true if we replace c : C(R+) × R+ → R by
c : C(R+)×R+ → Rn and read any symbol ≤ which appears between vectors in Rn
as the lexicographic order on Rn (and of course likewise for all the derived symbols
and notions <, ≥, >, inf, etc.). Moreover, the arguments are exactly the same.
Indeed the crucial part that may deserve some mention is at the end of the proof of
Proposition 6.10, where we use the assumption that (6.9) holds on a set of positive
measure, i.e. that the integrand is < 0 on a set of positive measure, and that the
integrand is 0 outside that set, to conclude that the integral itself must be < 0.
This implication is also true for the lexicographical order on Rn. One more detail
to be aware of is that integrating functions which map into R2 may give results
of the form (∞, x), (x,−∞), etc. In the case of a one-dimensional cost function
we excluded such problems by making Assumption 2.4. What we really want in
the proof of Proposition 6.10 is that

∫
c dξ and

∫
c dξπ should be finite. Clearly a

sufficient condition to guarantee this is to replace Assumption 2.4 by
(4’) E[c(B, τ)] ∈ Rn for all stopping times τ ∼ µ.

This is not the most general version possible but it will suffice for our purposes.
To get an existence result we may assume that c = (c1, c2) is component-wise

lower semicontinuous and that both c1 and c2 are bounded below (in either of the
ways described in the two versions of Theorem 3.1). Note that – because we are
talking about the lexicographic order – ξ ∈ RSTλ(µ) is a solution of (OptStop’)
for c iff ξ is a solution of (OptStop’) for c1 and among all such solutions ξ′, ξ
minimizes

∫
c2 dξ

′. By Theorem 3.1 in the form that we have already proved the
set of solutions of (OptStop’) for c1 is non-empty. It is also a closed subset of a
compact set and therefore itself compact. This allows us to reiterate the argument
that we used in the proof of Theorem 3.1 to find inside this set a minimizer of
ξ′ 7→

∫
c2 dξ

′. This minimizer is the solution of (OptStop’) for c.
With this in hand we may pick up our

Proof of Corollary 1.2. The same arguments as in the proof of Corollary 1.1 ap-
ply, so we may assume that our probability space satisfies Assumption 2.2. We
start with a cost function c(ω, t) := (c1(ω, t), c2(ω, t)) := (−ω∗(t), (ω∗(t)− ω(t))3).
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‖c1(B, τ)‖L3 ≤ ‖|B|∗τ‖L3 ≤ K1‖τ‖1/2L3/2 , by the Burkholder-Davis-Gundy inequali-
ties, so (c1)− satisfies the uniform integrability condition and E[c(B, τ)] is finite for
all stopping times τ ∼ µ. c2 ≥ 0 and by the Burkholder-Davis-Gundy inequalities
E[c2(B, τ)] ≤ E[(B∗(τ))3] ≤ K1E[τ3/2] = K1

∫
t3/2 dµ(t) for some constantK1. The

last term is finite by assumption.
By our discussion in the preceding paragraphs we find a solution τ of (OptStop)

for c and a measurable, (F0
t )t≥0-adapted set Γ ⊆ C(R+)×R+, for which P[(B, τ) ∈

Γ] = 1 and SG ∩ (Γ< × Γ) = ∅, where now ((ω, t), (η, t)) ∈ SG iff for all (F ts)s≥t-
stopping times σ for which Wt

0(σ = t) < 1, Wt
0(σ = ∞) = 0,

∫
σ3/2 dWt

0 < ∞,
setting α := (ω 7→ (ω, σ(ω)))∗(Wt

0) we have that either equation (7.1) holds or

−ω∗(t) +
∫

((ω, t)� θ)∗(s) dα(θ, s) = −η∗(t) +
∫

((η, t)� θ)∗(s) dα(θ, s) (7.3)

and

c2(ω, t)−
∫
c2((ω, t)� θ, s) dα(θ, s) < c2(η, t)−

∫
c2((η, t)� θ, s) dα(θ, s) . (7.4)

Now we want to apply Lemma 3.7, so we want to show that ω(t)−ω∗(t) < η(t)−η∗(t)
implies ((ω, t), (η, t)) ∈ SG. We already dealt with the case where α is such that
(7.2) holds on a set of positive α-measure. We now deal with the other case, so we
have

θ∗(s) ≤ η∗(t)− η(t) < ω∗(t)− ω(t) (7.5)

for α-a.a. (θ, s) and we know that (7.3) holds. We show that (7.4) holds. Because
of (7.5), ((ω, t) � θ)∗(s) = ω∗(t), and so c2((ω, t) � θ, s) = (ω∗(t) − ω(t) − θ(s))3.
We calculate the left hand side of (7.4).∫

(ω∗(t)− ω(t))3 − (ω∗(t)− ω(t)− θ(s))3 dα(θ, s) =∫
3(ω∗(t)− ω(t))2θ(s)− 3(ω∗(t)− ω(t))(θ(s))2 + (θ(s))3 dα(θ, s) =

(ω(t)− ω∗(t))3
∫

(θ(s))2 dα(θ, s) +
∫

(θ(s))3 dα(θ, s)

Here the Burkholder-Davis-Gundy inequalities show that both
∫

(θ(s))3 dα(θ, s)
and

∫
(θ(s))2 dα(θ, s) are finite so that we may split the integral and they also

show that {B̃σ∧T : T ≥ t} is uniformly integrable so that by the optional stopping
theorem

∫
θ(s) dα(θ, s) = 0. (B̃ is again Brownian motion started in 0 at time t on

C([t,∞)).)
For the right hand side of (7.4) we get the same expression with ω replaced by η.

This concludes the proof that ω(t)−ω∗(t) < η(t)−η∗(t) implies ((ω, t), (η, t)) ∈ SG
and Lemma 3.7 gives us barriers

ˇ
R, R̂ such that for their hitting times

ˇ
τ , τ̂ by

Bt −B∗t we have
ˇ
τ ≤ τ ≤ τ̂ a.s.

Again we want to show that
ˇ
τ = τ̂ a.s. and that they are actually stopping

times. Again we do so by showing that they are both a.s. equal to the hitting time
of the closure of the respective barrier. If

ˇ
R ∩ ({0} × R+) = ∅ then this works in

exactly the same way as in Lemma 4.3. (This time we define τε := inf{t > 0 :
(Bεt (ω)− (Bε)∗t (ω), t) ∈ R} where Bεt (ω) := Bt(ω) +A(t)ε.) If

ˇ
R∩ ({0}×R+) 6= ∅

then (Bεt (ω)−(Bε)∗t (ω), t) ∈ R and t > 0 need not imply Bt(ω)−B∗t (ω) < Bεt (ω)−
(Bε)∗t (ω), which is essential for the topological argument showing that the hitting
time of R is less than or equal τε. But if R̂∩({0}×R+) =

ˇ
R∩({0}×R+) 6= ∅, then

ˇ
τ and τ̂ are both almost surely ≤ T where T := inf{t > 0 : (0, t) ∈ R̂}, so in the
step where we show that the hitting time ofR is less than τε we can argue under the
assumption that τε(ω) < T . In this case we do have that (Bεt (ω)−(Bε)∗t (ω), t) ∈ R
and t > 0 implies Bt(ω)−B∗t (ω) < Bεt (ω)− (Bε)∗t (ω). �
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Remark 7.1. We hope that the proofs of Corollary 1.1 and Corollary 1.2 have
given the reader some idea of how to apply the main results of this paper to arrive
at barrier-type solutions of constrained optimal stopping problems, as depicted in
Figure 1.

We would like to conclude by giving a couple of pointers to the interested reader
who may want to work through the proofs corresponding to the remaining pictures
in Figure 1.

For the problem of minimizing E[B∗τ ], it may actually happen that the times
ˇ
τ, τ̂

from Lemma 3.7 do not coincide. Specifically one has to expect this to happen on a
non-negligible set when

ˇ
R contains parts of the time axis which R̂ does not contain.

Under these circumstances an optimizer may turn out to be a true randomized
stopping time, with a proportion of a path hitting the time axis at a certain point
needing to be stopped while the rest continues. In this situation the picture alone
does not completely describe the optimal stopping time.

For the problems involving absolute values one needs to make a minor modi-
fication in the proof of Proposition 6.10. Specifically one can allow “mirroring”
the paths which are “transplanted” using the Gardener’s Lemma. This leads to a
slightly different definition of Stop-Go pairs, which is perhaps most easily described
by saying that in Figure 2 the green paths which are stoppen by σ may be flipped
upside-down on either side.
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