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Abstract. We investigate existence of dual optimizers in one-dimensional

martingale optimal transport problems. While [5] established such existence
for weak (quasi-sure) duality, [2] showed existence for the natural stronger

(pointwise) duality may fail even in regular cases. We establish that (point-

wise) dual maximizers exist when y 7→ c(x, y) is convex, or equivalent to a
convex function. It follows that when marginals are compactly supported, the

existence holds when the cost c(x, y) is twice continuously differentiable in y.

Further, this may not be improved as we give examples with c(x, ·) ∈ C2−ε,
ε > 0, where dual attainment fails. Finally, when measures are compactly

supported, we show that dual optimizers are Lipschitz if c is Lipschitz.

Keywords: martingale optimal transport, Kantorovich duality, dual attainment,
robust mathematical finance.

1. Introduction

In recent years, there has been a significant interest in optimal transport prob-
lems where the transport plan is constrained to be a martingale. Referred to as
martingale optimal transport (MOT), they were introduced by [2, 9] to study the
mathematical finance question of computing model–independent no–arbitrage price
bounds, see [12] for a survey, and have been studied in many papers since, e.g.
[14, 8, 7, 16]. They are however of much wider mathematical interest. Mirror-
ing classical optimal transport, they have important consequences for the study of
martingale inequalities, see e.g. [4, 11, 18]. In continuous time, they are intimately
linked with the Skorokhod embedding problem, see [17] for an overview of the lat-
ter, and have already led to new contributions to this well established field, see
[1].

Most papers on MOT either study the structure and geometry of optimisers or
investigate a form of general Kantorovich duality. Duality is of particular impor-
tance for mathematical finance: the primal problem corresponds to option pricing
while the dual offers robust hedging strategies. However the latter poses a challenge:
as already shown in [2], the dual problem in MOT does not admit an optimiser in
general. One way to recover the dual attainment is relaxing the duality and con-
sidering not pointwise but weaker, quasi–sure, inequalities, as shown in [5]. Our
aim here instead is to identify sufficient conditions on the problem under which
a suitably nice dual optimiser exists. This has immediate applications in robust
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mathematical finance, where pointwise inequalities are more natural. Equally im-
portantly, we believe, this problem is of intrinsic mathematical interest. In fact,
answering such questions is an important prerequisite for the future development of
the field and understanding geometry of primal optimisers, or existence of Brenier–
type MOT plans in multiple dimensions. So far results in this direction are limited
to dimension 1 and 2 [14, 13, 3] and more recently [10]. However, the methods and
results of [10] would allow to provide a satisfactory answer to this central question,
conditionally on the existence of dual maximisers.

To present in more detail the questions we want to study, we need to introduce
some notation Let Ω := R × R be the canonical space and (X,Y ) the canonical
process, i.e. X(x, y) = x and Y (x, y) = y for all (x, y) ∈ Ω. We also denote by PR
and PΩ the collections of all probability measures on R and Ω, respectively. For
fixed µ, ν ∈ PR with finite first moments, we consider the following subsets of PΩ

Π(µ, ν) :=
{
P ∈ PΩ : X ∼P µ, Y ∼P ν

}
, (1.1)

MT(µ, ν) :=
{
P ∈ Π(µ, ν) : EP[Y |X] = X, P− a.s.

}
. (1.2)

The set Π(µ, ν) is non-empty as it contains the product measure µ⊗ν. By a classical
result of Strassen [19], MT(µ, ν) is non-empty if and only if µ � ν in convex order:

µ(ξ) ≤ ν(ξ) for all convex function ξ, where µ(ξ) :=

∫
ξ(x)µ(dx). (1.3)

Throughout we assume that c : Ω → R is a Borel–measurable cost function with
c(x, y) ≤ a(x) + b(y) for some a ∈ L1(µ) and b ∈ L1(ν). Then EP[c(X,Y )] is a
well-defined scalar in R ∪ {−∞}. The martingale optimal transport problem, as
introduced in [2] in the present discrete-time case and in [9] in continuous time, is
defined by the following primal problem:

P := P(c) := inf
P∈MT(µ,ν)

EP[c(X,Y )]. (1.4)

Its dual is given by

D := D(c) := sup
(f,g)∈Dc

{
ν(g)− µ(f)

}
, (1.5)

where

Dc :=
{

(f, g) : f−∈ L1(µ), g+∈ L1(ν), and for some h ∈ L∞(µ),

g(y)− f(x)− h(x) · (y − x) ≤ c(x, y) ∀x ∈ R,∀y ∈ R
}
.

We assume that P(c) is finite.
In mathematical finance, the cost c has the interpretation of the payoff of an

exotic derivative and P(c) gives its lower no-arbitrage price. A triplet (f, g, h) on
the dual side corresponds to a robust sub-hedging strategy for c: both f and g
are bought through trading European options and h(x)(y − x) corresponds to the
payoff from buying h(x) stocks at time zero.

The basic duality P = D between the primal and dual problems was established
in [2] under the assumption that c is lower-semicontinuous and bounded from below.
(In fact we will invoke a more sophisticated duality result from [5] which does not
require lower-semicontinuity, see Theorem 3.2 below.)

In [2], the authors also provided a simple example, based on the cost function
c(x, y) = −|y−x|, where the dual problem is not attained. Our aim here is to study
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fundamental reasons why dual attainment may fail and to provide sufficient condi-
tions for it to hold and for dual optimiser to have further desirable regularity and
integrability properties. We note that [5] showed dual attainment may be recovered
if we weaken the dual formulation and require inequalities to hold quasi-surely, i.e.
almost surely for any P ∈ MT(µ, ν). However this is not entirely satisfying in view
of the financial and other, mentioned above, applications.

2. Main Results

We start by defining the crucial notion of a solution for the dual problem (1.5).

Definition 2.1. Let µ � ν be in convex order and let c(x, y) be a cost function.
We say that a triple of functions f : R→ R∪{+∞}, g : R→ R∪{−∞}, h : R→ R
is a dual maximizer, or a solution for the dual problem (1.5), if f is finite µ-a.s.,
g is finite ν-a.s., and for any minimizer P∗ ∈ MT(µ, ν) for the martingale optimal
transport problem (1.4), the following holds:

g(y)− f(x)− h(x) · (y − x) ≤ c(x, y) ∀x ∈ R,∀y ∈ R, (2.1)

g(y)− f(x)− h(x) · (y − x) = c(x, y) P∗-a.a. (x, y). (2.2)

In fact, if (2.1)–(2.2) hold for some P ∈ MT(µ, ν), then P is a minimizer of the
martingale transport problem (1.4) and moreover (2.1)–(2.2) hold for all minimizers
of (1.4), c.f. [5, Corollary 7.8].

A simple but important observation is that if (f, g, h) is a dual maximizer, then
g can always be replaced by a “better” candidate g∗ induced by (f, h), as follows:

g∗(y) := inf
x∈R

(
f(x) + h(x) · (y − x) + c(x, y)

)
. (2.3)

Observe that then g ≤ g∗ while (2.1)–(2.2) still holds with g∗. The minus signs
on f and h in (2.1) and (2.2) were chosen to define g∗ by (2.3). In this paper,
unless stated otherwise we will always assume that g = g∗. Now we state our main
theorem.

Definition 2.2. Let J be an interval and µ be a positive measure on R. We say
that c(x, y) is semiconvex in y ∈ J µ-uniformly in x, if there exists a Borel function
u : J → R such that

for µ-a.e. x, y 7→ c(x, y) + u(y) is continuous and convex on J . (2.4)

In this case, we say that u is a y-convexifier on J for c.

Theorem 2.3. Let µ � ν be in convex order and let J := conv(supp(ν)). Suppose
that there exists a y-convexifier u on J for c. If J is not compact, then further
suppose that y 7→ c(x, y) + u(y) is of linear growth on J . Then there exists a dual
maximizer in the sense of Definition 2.1.

Corollary 2.4. In the setting of Theorem 2.3, if c ∈ C0,2 – that is ∂2c
∂y2 exists

and is continuous on Ω – and if ν is compactly supported then there exists a dual
maximizer.

Note that Definition 2.1 is made in a pointwise sense, that is we do not require f ∈
L1(µ), g ∈ L1(ν), nor h ∈ L∞(µ). But as already observed in [3, 5], this classical
integrability assumption is too restrictive for the existence of dual maximizer. But
by using the “extended notion of integrability” introduced in [5], this pointwise dual
maximizer (f, g, h) may still be viewed as dual maximizer in the generalized sense.
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To ensure integrability in the classical sense, further assumptions are required, as
summarised in the following result.

Theorem 2.5. Suppose the assumptions in Theorem 2.3 hold and that further c
is Lipschitz on J × J and u is Lipschitz on J . Then there exists a dual maximizer
(f, g, h) such that f and g are Lipschitz on J and h is bounded on J . In particular,
µ(f) + ν(g) = EP∗ [c(X,Y )] for any solution P∗ to the problem (1.4).

Remark 2.6. In Theorem 2.5 if c and u are Lipschitz with Lipschitz constant L,
then f and g can be taken to have Lipschitz constants 19L and 17L respectively
on J while |h| is bounded by 18L on J , as computed in the proof. Furthermore,
the Lipschitz assumption on c can be somewhat weakened, see Remark 3.8.

We close this section with a discussion of how, and in what sense, the above
results are sharp. Examples which support this discussion are presented after the
proofs in Section 4. First, we note that the linear growth condition in Theorem
2.3 can not be removed. Indeed, Example 4.1 gives a cost function which violates
the linear growth condition together with marginals µ � ν for which the dual
maximizers fail to exist. Second, the convexity condition (2.4) on J cannot be
relaxed to just local convexity around x, as shown in Example 4.2, and this even
for compactly supported marginals. Third, the C0,2 regularity in Corollary 2.4, is
optimal in the sense that for any given ε > 0 we can construct a cost function c ∈
C2−ε and compactly supported, convex–ordered marginals µ � ν for which a dual
maximizer satisfying (2.1)–(2.2) does not exist. This is carried out in Example 4.3.
Finally, in Example 4.4 we show the necessity of semiconvexity for the regularity
in Theorem 2.5 by showing that there exist 1-Lipschitz cost c for which there is a
dual maximizer (f, g, h) but g /∈ L1(ν), even when (µ, ν) are compactly supported
and irreducible (see Definition 3.1 below).

3. Proofs

To establish Theorem 2.3, we prove Propositions 3.4 and 3.5 below. The key idea
is to consider the martingale optimal transport problem on its irreducible compo-
nents (see Definition 3.1 below and [3, Appendix A]). It is known, see Theorem 3.2
below, that on each irreducible component the dual problem admits a maximizer.
Using the semiconvexity assumption on the cost function, we can show that these
maximizers are appropriately bounded, such that it is possible to glue them to-
gether to obtain global maximizers of the dual problem.

Let µ, ν be probability measures on R which are in convex order. It was shown
in [3] and [5], see Proposition 3.6 below, that there is a canonical decomposition of
µ, ν into irreducible pairs (µi, νi)i∈N such that for each irreducible pair (µi, νi), the
dual problem attains a solution. For a probability measure µ on R, we define its
potential function by

uµ : R→ R, uµ(x) :=

∫
|x− y| dµ(y).

Definition 3.1. Let µ � ν be in convex order and let I := {x : uµ(x) < uν(x)}.
We say that (µ, ν) is irreducible on the domain I if I is an open interval and µ is
concentrated on I.
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We recall the following result from [5] (which requires our standing assumption
that P(c) ∈ R and c(x, y) ≤ a(x) + b(y) for some a ∈ L1(µ) and b ∈ L1(ν)).

Theorem 3.2. [5, Theorem 6.2] Let µ � ν be irreducible on the domain I. Then
a dual maximizer exists.

We remark that the definition of dual maximizer in the above theorem is slightly
different from ours. However, when a primal minimizer P∗ exists, the above result
implies existence of a dual maximizer in our sense. This motivates the following
general existence result, the proof of which is given at the end of this section.

Proposition 3.3. Let µ � ν be in convex order. Assume P(c) ∈ R and c(x, y) ≤
a(x) + b(y) for some a ∈ L1(µ) and b ∈ L1(ν), and suppose that there exists a
Borel function u such that y 7→ c(x, y) + u(y) is continuous for µ-a.e. x. Then a
minimizer to the primal problem (1.4) exists.

The next proposition asserts that for any dual maximizer (f, g, h) in Theorem
3.2, if the function y 7→ c(x, y) is convex for each x ∈ I, then the lower envelope
function g has a “desirable shape” modulo an affine function. We first deal with
the bounded domain case.

Proposition 3.4. Let µ � ν be irreducible on a bounded domain I =]a, b[ and
assume that (f, g, h) is a dual maximizer in Theorem 3.2. Suppose that there exist
A ∈ R ∪ {−∞}, B ∈ R ∪ {∞} such that A ≤ a < b ≤ B and that for µ-a.e. x,

y 7→ c(x, y) is continuous and convex on [A,B]. (3.1)

Then we can find an affine function L(y) = L(x) + ∇L · (y − x) such that(
f̃(x), g̃(y), h̃(x)

)
:=
(
f(x) − L(x), g(y) − L(y), h(x) − ∇L

)
is a dual maximizer,

and furthermore

g̃(y) ≤ 0 on ]a, b[, (3.2)

g̃(y) ≥ 0 on [A, a] ∪ [b, B]. (3.3)

If ν(a) > 0 then g̃(a) = 0. If ν(b) > 0 then g̃(b) = 0. (3.4)

Proof. Step 1. Let us begin by recalling some terminology from [3]: for a set
Γ ⊆ R× R, denote XΓ as its projection to the first coordinate space R, and YΓ to
the second. We will also write Γx = {y : (x, y) ∈ Γ}.

Now let G ⊆ R× R be the “contact set” induced by the dual optimizer (f, g, h)

G := {(x, y) : g(y)− f(x)− h(x) · (y − x) = c(x, y)} (3.5)

so that we have

g(y)− f(x)− h(x) · (y − x) ≤ c(x, y) ∀x ∈ R,∀y ∈ R, (3.6)

g(y)− f(x)− h(x) · (y − x) = c(x, y) on G. (3.7)

Note that f, h are real-valued on XG and g is real-valued on YG. Now the fact
that (µ, ν) is irreducible and P(G) = 1 for some martingale measure P (in fact,
for all optimal martingale measures) implies the following: for every z ∈ I, there
exists xz ∈ XG and az, bz ∈ I such that (xz, az), (xz, bz) ∈ G and az < z < bz.
In particular the family ]az, bz[z∈I is an open cover of I, hence we can find a
countable sequence {xn} ⊆ XG (not necessarily disjoint) and {an}, {bn} such that
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(xn, an), (xn, bn) ∈ G and {]an, bn[n≥1} is an open cover of I. Furthermore, by
rearrangement we can get that

]ln, rn[ ∩ ]an+1, bn+1[ 6= ∅ ∀n, and (3.8)

ln ↘ a, rn ↗ b as n→∞ (3.9)

where ln := mini≤n ai, rn := maxi≤n bi. We can assume that the case ln ≤ an+1 <
bn+1 ≤ rn does not occur, since if it occurs then we may simply discard the respec-
tive xn+1 from the sequence.

For convenience, we record the following simple fact:

For each n, there exist 1 ≤ i, j ≤ n such that (3.7) holds for (xi, ln) and (xj , rn).
(3.10)

Step 2. For each n, define

vxn
(y) = c(xn, y) + f(xn) + h(xn) · (y − xn), (3.11)

gn(y) = inf
i≤n

(
vxi

(y)
)
, (3.12)

Ln(y) =
gn(rn)− gn(ln)

rn − ln
· (y − ln) + gn(ln). (3.13)

We claim that, for each n,

gn(y) ≤ Ln(y) ∀y ∈ [ln, rn], (3.14)

gn(y) ≥ Ln(y) ∀y ∈ [A, ln] ∪ [rn, B]. (3.15)

The claim is obvious for n = 1 since vx1
(y) is convex. Suppose that the claim is

true for n. Then there are three cases. To deal with them, the following fact which
comes from (3.6), (3.7), shall be useful:

vxm(an) ≥ vxn(an) = gn(an), vxm(bn) ≥ vxn(bn) = gn(bn) ∀m,n ∈ N. (3.16)

Case 1 : an+1 ≤ ln < rn ≤ bn+1.
First, since gn+1(y) = min

(
gn(y), vxn+1

(y)
)

and since gn+1(an+1) = vxn+1
(an+1),

gn+1(bn+1) = vxn+1
(bn+1) by (3.16), by convexity of vxn+1

(y) we see that

gn+1(y) ≤ vxn+1
(y) ≤ Ln+1(y) ∀y ∈ [an+1, bn+1]. (3.17)

This establishes the claim in (3.14) for n+ 1.
For the second claim, fix i ∈ {1, 2, . . . , n + 1}. Then there exists yi ∈ [an+1, bn+1]
such that (xi, yi) ∈ G. Then (3.17) implies

vxi(yi) = gn+1(yi) ≤ Ln+1(yi). (3.18)

Meanwhile, (3.16) gives

vxi
(an+1) ≥ vxn+1

(an+1) = gn+1(an+1), vxi
(bn+1) ≥ vxn+1

(bn+1) = gn+1(bn+1).
(3.19)

Now by (3.18), (3.19) and convexity of vxi
(y), we deduce that

vxi(y) ≥ Ln+1(y) ∀y ∈ [A, an+1] ∪ [bn+1, B]. (3.20)

As (3.20) holds for every i, this verifies the claim (3.15) for n + 1, completing the
inductive step.
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Case 2 : ln ≤ an+1 ≤ rn ≤ bn+1.
First, since vxn+1(an+1) = gn+1(an+1) ≤ gn(an+1), by the induction hypothesis

vxn+1(an+1) ≤ Ln(an+1). (3.21)

Also note that by (3.10), we have

vxn+1
(rn) ≥ gn(rn) = Ln(rn). (3.22)

Now the convexity of vxn+1
implies

vxn+1(bn+1) ≥ Ln(bn+1). (3.23)

Note that Ln(ln) = gn(ln) = gn+1(ln) and gn+1(bn+1) = vxn+1(bn+1). Hence by
(3.23),

λgn+1(ln) + (1− λ)gn+1(bn+1) ≥ λLn(ln) + (1− λ)Ln(bn+1) ∀λ ∈ [0, 1]. (3.24)

As gn+1(y) = min
(
gn(y), vxn+1

(y)
)
, the induction hypothesis and convexity of

vxn+1
(y) along with (3.21), (3.24) imply the first claim (3.14) for n+ 1.

For the second claim, fix i ∈ {1, 2, . . . , n + 1}. Then there exists yi ∈ [ln, bn+1]
such that (xi, yi) ∈ G, and the first claim (3.14) for n+ 1 gives vxi(yi) ≤ Ln+1(yi).
On the other hand, vxi

(ln) ≥ gn(ln) = gn+1(ln) and vxi
(bn+1) ≥ vxn+1

(bn+1) =
gn+1(bn+1). Hence by convexity of vxi

(y), we deduce that

vxi
(y) ≥ Ln+1(y) ∀y ∈ [A, ln] ∪ [bn+1, B]. (3.25)

As (3.25) holds for every i, this verifies the claim (3.15) for n + 1, completing the
induction. The third case an+1 ≤ ln ≤ bn+1 ≤ rn can be treated in the same way.

Step 3. We claim that there exists M > 0 such that

sup
y∈[a,b],n∈N

|Ln(y)| ≤M. (3.26)

To prove (3.26), choose M > 0 such that |vx1
(y)| ≤ M on [a, b]. Then Ln(ln) =

gn(ln) ≤ vx1
(ln) ≤ M and Ln(rn) = gn(rn) ≤ vx1

(rn) ≤ M . Hence, as L is linear,
Ln(a1) ≤ M and Ln(b1) ≤ M . On the other hand, by Step 2, −M ≤ vx1(a1) =
gn(a1) ≤ Ln(a1) and −M ≤ vx1(b1) = gn(b1) ≤ Ln(b1). This implies (3.26). In
particular, there exists a subsequence of Ln (which we denote as Lk) such that Lk(y)
uniformly converges to an affine function as k → ∞, say L(y) on every compact
interval in R. Now we claim that, for vx(y) := c(x, y) + f(x) + h(x) · (y − x) and
g(y) = inf

x∈XG

(
vx(y)

)
,

g(y) ≤ L(y) on ]a, b[, (3.27)

g(y) ≥ L(y) on [A, a] ∪ [b, B]. (3.28)

First it is easy to see (3.27) as follows: if y ∈]a, b[ then for all large k we have
y ∈]lk, rk[, thus by Step 2, g(y) ≤ gk(y) ≤ Lk(y). By taking k → ∞, we see that
g(y) ≤ L(y), proving (3.27).

Next, suppose that there exists (x, y) ∈ G with a < y < b. Then again for
all large k we have vx(y) = g(y) ≤ gk(y) ≤ Lk(y), thus vx(y) ≤ L(y). On the
other hand, by (3.6), (3.7) we have vx(lk) ≥ gk(lk) and vx(rk) ≥ gk(rk), thus
vx(a) ≥ L(a) and vx(b) ≥ L(b) by letting k →∞. By convexity of vx, this implies
that vx(y) ≥ L(y) on [A, a] ∪ [b, B].

If there is no y such that a < y < b and (x, y) ∈ G, this means that Gx = {a, b},
i.e. (x, a), (x, b) ∈ G. Then without loss of generality we may simply include this x
in the sequence {xn} defined in Step 1, say we put x = x1. This implies that ln = a
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and rn = b for all n. Thus vx(a) = L(a) and vx(b) = L(b). By convexity of vx, this
implies that vx(y) ≥ L(y) on [A, a]∪ [b, B]. Hence, for any x ∈ XG we deduce that
vx(y) ≥ L(y) on [A, a] ∪ [b, B], therefore (3.28) follows.

If ν(a) > 0 then there exists xa ∈ I such that (xa, a) ∈ G. Then again we may
include xa in the sequence {xn} defined in Step 1. This implies that ln = a for all
large n, thus g(a) = vxa

(a) = L(a). Similarly if ν(b) > 0 then g(b) = L(b).

Finally, we see that
(
f̃(x), g̃(y), h̃(x)

)
:=
(
f(x)− L(x), g(y)− L(y), h(x)−∇L

)
satisfies (3.6), (3.7), (3.2), (3.3) and (3.4), concluding the proof. �

Next, we deal with the half-infinite domain case.

Proposition 3.5. Let µ � ν be irreducible on a half-infinite domain I and assume
that (f, g, h) is a dual maximizer in Theorem 3.2. Suppose that there exists an
interval J such that I ⊆ J and for µ-a.e. x,

y 7→ c(x, y) is continuous and convex on J , and

there exists an affine function Lx such that c(x, y) ≤ Lx(y) for all y ∈ I.

Then we can find an affine function L such that
(
f̃(x), g̃(y), h̃(x)

)
:=

(
f(x) −

L(x), g(y)− L(y), h(x)−∇L
)

is a dual maximizer, and furthermore

g̃(y) ≤ 0 on I, (3.29)

g̃(y) ≥ 0 on J \ I, (3.30)

if ν(a) > 0 then g̃(a) = 0, where {a} = ∂I. (3.31)

Proof. Without loss of generality we assume that a = 0, I =]0,∞[, and J = [A,∞[
for some A ∈ [−∞, 0]. Recall the Step 1 in the proof of Proposition 3.4 and note that
now ln ↘ 0, rn ↗ +∞ as n→∞. Also recall definitions (3.11) – (3.13). Altering
the triple (f, g, h) by an appropriate affine function and using the condition of linear
growth and convexity satisfied by the cost, we can assume that

vx1
(y) is decreasing on [A,∞[, v(0) = 0 and lim

y→∞
vx1

(y) = b > −∞. (3.32)

Now we claim that, for each n,

gn(y) is decreasing on [A, ln], and gn(y) ≤ gn(ln) on [ln,∞[. (3.33)

Note that the claim (3.33) is obviously true for n = 1 by the assumption (3.32).
Suppose the claim is true for n. We will show that the claim is also true for n+ 1.
To see this, note that as bn+1 ≥ ln, using (3.6), (3.7) and the induction hypothesis
(3.33), we see that

vxn+1(bn+1) ≤ gn(bn+1) ≤ gn(ln), while vxn+1(ln) ≥ gn(ln). (3.34)

(If bn+1 = ∞, then instead of bn+1 we may argue with arbitrarily large cn+1

satisfying (xn+1, cn+1) ∈ G.) By (3.34) and convexity of vxn+1
(y), we see that

vxn+1(y) is decreasing on [A, ln]. As gn+1(y) = min
(
gn(y), vxn+1(y)

)
and gn(y) is

decreasing on [A, ln], we see that

gn+1(y) is decreasing on [A, ln]. (3.35)

In particular, for any y ∈ [ln+1, ln] we have gn+1(ln+1) ≥ gn+1(y). For y ≥ ln, we
see that gn+1(ln+1) ≥ gn+1(ln) = gn(ln) by (3.10), and gn(ln) ≥ gn(y) ≥ gn+1(y)
by (3.33). Hence

gn+1(y) ≤ gn+1(ln+1) on [ln+1,∞[. (3.36)
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Therefore, (3.33) is proved for all n.
We have observed that the sequence {gn(ln)} is increasing. Note that gn(ln) ≤
vx1(ln) ≤ vx1(0) = 0 for all n, thus {gn(ln)} converges to a constant, say, C. Then
we claim

g(y) ≥ C on [A, 0], (3.37)

g(y) ≤ C on ]0,+∞[, (3.38)

where, as before, vx(y) := c(x, y) + f(x) + h(x) · (y − x) and g(y) := inf
x∈XG

(
vx(y)

)
.

To see this, fix x > 0. Then there exists n such that ln < x. Arguing as above, we
see that vx(y) is decreasing on [A, ln] and vx(ln) ≥ gn(ln) for all n. Hence for any
y ≤ 0 we see that vx(y) ≥ gn(ln). Letting n→∞ we conclude

g(y) ≥ C for all y ∈ [A, 0]. (3.39)

Now for y > 0, there exists n such that ln < y. Then by (3.33), we see that
g(y) ≤ gn(y) ≤ gn(ln) for all large n, thus by taking n→∞ we conclude

g(y) ≤ C for all y > 0. (3.40)

If ν(0) > 0 then there is x ∈ XG with (x, 0) ∈ G, and we may simply put this x into
the sequence {xn} by letting x = x1. Then every ln simply becomes 0 and {gn(ln)}
becomes the constant sequence C. Hence, g(0) = C. Finally, altering the triple
(f, g, h) by the constant function −C, we can assume that C = 0. This proves the
proposition. �

We are now ready to show the existence of dual optimizers for the martingale
optimal transport problem in Theorem 2.3. In particular we no longer assume the
irreducibility of (µ, ν). Note that if (µ, ν) is irreducible on the domain I = R then
Theorem 2.3 simply follows from Theorem 3.2. Otherwise, (µ, ν) can be decomposed
into at most countably many irreducible components, and any martingale P ∈
MT(µ, ν) is decomposed accordingly. More precisely we recall:

Proposition 3.6. [3, Theorem A.4] Let µ � ν and let (Ik)k≥1 be the open connected
components of the set {x : uµ(x) < uν(x)}. Set I0 = R \ ∪k≥1Ik and µk = µ|Ik
for k ≥ 0, so that µ =

∑
k≥0 µk. Then, there exists a unique decomposition ν =∑

k≥0 νk such that

µ0 = ν0 and µk � νk for all k ≥ 1,

and this decomposition satisfies Ik = {x : uµk
(x) < uνk(x)} for all k ≥ 1. More-

over, any P ∈ MT(µ, ν) admits a unique decomposition P =
∑
k≥0 Pk such that

Pk ∈ MT(µk, νk) for all k ≥ 0.

Note that as µ0 = ν0, P0 must be the identity martingale. We can now give the
proof of our first main result.

Proof of Theorem 2.3. Notice that by definition of the dual maximizer and the
assumption on the cost, we can assume that y 7→ c(x, y) is continuous and convex
on J := conv(supp(ν)). Let P∗ be any minimizer in MT(µ, ν) for the problem (1.4).
Then P∗k is a minimizer in MT(µk, νk). For each k ≥ 1, choose a set Gk ⊆ R×R and
a triple (fk, gk, hk) provided by Proposition 3.4 if Ik is bounded, or by Proposition
3.5 if Ik is half-infinite. We need to define G0 and (f0, g0, h0) for I0. As P∗0 is
the identity map, of course we take G0 := {(x, x) : x ∈ I0}. For each x ∈ I0
define f0(x) = −c(x, x), and choose h0(x) in such a way that the convex function
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vx(y) := c(x, y) + f0(x) + h0(x) · (y − x) satisfies v(x) = v′(x) = 0 (more precisely
0 belongs to the subdifferential of vx at x). Define g0(y) = infx∈I0{vx(y)} so in
particular g0 = 0 on I0. Finally, define

f(x) = fk(x) if x ∈ XGk
,

h(x) = hk(x) if x ∈ XGk
,

g(y) = inf
k≥0

gk(y).

Let G = ∪k≥0Gk. Obviously P∗(G) = 1. Now observe that the properties (3.2),
(3.3), (3.4), (3.29), (3.30), (3.31) verified in Proposition 3.4, 3.5 imply that the
triples (fk, gk, hk)k≥0 are compatible, that is, the duality (3.6), (3.7) holds for G
and (f, g, h). This completes the proof. �

Remark 3.7. The linear growth assumption of the function y 7→ c(x, y) is required
only for those x in the half-infinite irreducible domain of µ, ν as in Proposition 3.5.

Proof of Theorem 2.5. We will say that a function f is L-Lipschitz on D if |f(x)−
f(y)| ≤ L|x − y| for all x, y ∈ D. Assume c is L-Lipschitz on J × J and u is
L-Lipschitz on J , and let K = 2L.

Consider (µ′, ν′) which is an irreducible component of (µ, ν) and let I =]a, b[
(possibly unbounded) be the domain of (µ′, ν′). That is, (µ′, ν′) = (µk, νk) for
some k ≥ 1 in Proposition 3.6. Let c̃(x, y) := c(x, y) + u(y), and let (f, g, h) be a
dual maximizer for the cost c̃ and (µ′, ν′), satisfying the conclusion of (i) Proposition
3.4 for bounded I, or (ii) Proposition 3.5 for half-unbounded I (for I = R we have
ν′ = ν and a dual optimizer is given by Theorem 3.2). Recall that there exists a
regular set G ⊆ I × I on which every solution P∗ to the problem (1.4) with (µ′, ν′)
is concentrated, so that the duality (3.6)–(3.7) holds with (f, g, h), c̃, and G.

Define vx(y) = f(x) + h(x) · (y − x) + c̃(x, y) and note that as y 7→ c̃(x, y) is
K-Lipschitz and convex on I, we have

dvx
dy

(b−)− dvx
dy

(a+) ≤ 2K. (3.41)

Step 1. First we establish the Lipschitz property of g – in the case of bounded I
and then for unbounded I.

Case 1: I is bounded. Then ∂I = {a, b} are real-valued. Proposition 3.4 tells
us that g(a) ≥ 0, g(b) ≥ 0 while there is y ∈ [a, b] such that g(y) ≤ 0, since g(y) ≤ 0
whenever (x, y) ∈ G for some x. As g(y) = infx∈XG

{vx(y)}, if (x, y) ∈ G then we
have vx(a) ≥ g(a) ≥ 0, vx(b) ≥ g(b) ≥ 0 while vx(y) = g(y) ≤ 0. With (3.41)
this implies that vx is 2K-Lipschitz on [a, b] for any x ∈ XG, hence g is also 2K-
Lipschitz on [a, b]. Proposition 3.4 also tells us that g ≤ 0 on [a, b], g ≥ 0 on J\(a, b).

Case 2: I is unbounded. In this case we do not have two “pillars” {a, b}, and
this forces us to look into the structure of G more carefully. Recall the Step 1 in
the proof of Proposition 3.4. Now let us define

sn =
vxn

(bn)− vxn
(an)

bn − an
. (3.42)
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Altering the triple (f, g, h) by an appropriate affine function, we can assume that
f(x1) = h(x1) = 0 and hence

vx1
is K-Lipschitz and convex. (3.43)

We want to control sn for all n and the key is, as usual, (3.16). Now we claim that

−3K ≤ sn ≤ 3K for every n. (3.44)

Note that the claim (3.44) is obviously true for n = 1 by the assumption (3.32).
Suppose the claim is true for all k = 1, 2, ..., n. We will show that the claim is also
true for n+ 1. As the situation is symmetric we will only show −3K ≤ sn. To see
this, we separate into two cases: an+1 < ln, or ln ≤ an+1 < rn < bn+1 (recall (3.8)).

(Case 1 : an+1 < ln) Then in particular an+1 < a1. Now observe that by (3.32)
vx1

has slope nowhere smaller than −K, and vxn+1
(an+1) ≤ vx1

(an+1), vxn+1
(a1) ≤

vx1
(a1). In conjunction with the assumption on the cost c̃, this implies that

v′xn+1
(an+1−) ≥ −3K

i.e. the left-handed limit of the slope of convex function vxn+1 is not smaller than
−3K. Of course, by convexity of y 7→ c̃(x, y) this implies −3K ≤ sn+1.

(Case 2 : ln ≤ an+1 < rn < bn+1) Then there exists k ∈ {1, 2, ..., n} such that
ak ≤ an+1 < bk < bn+1. Now observe that the convexity of y 7→ c̃(x, y) and the
relations vxk

(an+1) ≥ vxn+1
(an+1), vxk

(bk) ≤ vxn+1
(bk) clearly imply that

sk ≤ sn+1.

Hence by induction we have −3K ≤ sn+1, therefore the claim (3.44) is proved.
Now we will show uniform Lipschitz property of vx for any x ∈ XG. Fix x ∈ XG.

As I =]a, b[ is unbounded, either a = −∞ or b = ∞ (or both). In particular,
there exists y such that (x, y) ∈ G and n ∈ N such that an < y < bn. Recall
(xn, an), (xn, bn) ∈ G and so we have

vx(an) ≥ vxn
(an), vx(y) ≤ vxn

(y), vx(bn) ≥ vxn
(bn). (3.45)

Define

s−x =
vx(y)− vx(an)

y − an
, s+

x =
vx(bn)− vx(y)

bn − y
.

By (3.45) and (3.44) we observe

s−x ≤
vxn(y)− vxn(an)

y − an
≤ 3K, s+

x ≥
vxn(bn)− vxn(y)

bn − y
≥ −3K,

and by we have 0 ≤ s+
x − s−x ≤ 2K. This implies that −5K ≤ s−x ≤ s+

x ≤ 5K, and
again convexity of y 7→ c̃(x, y) and (3.41) imply

−7K ≤ v′x(y) ≤ 7K ∀y ∈ I.

In view of (2.3), we conclude that g is 7K-Lipschitz on I as desired.
Let us comment further on the case of half-infinite domain I. In order to obtain

in addition the sign-changing property of g, as described in Proposition 3.5, we need
to alter the triple (f, g, h) by an affine function to satisfy the asymptotic property
of vx1

as in (3.32), instead of (3.43). This can be done at the cost of having g being
8K-Lipschitz on I.
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Step 2. Now we will prove the regularity properties of a dual optimizer for c̃ and
(µ, ν) described in Theorem 2.5, where irreducibility of (µ, ν) is not assumed.

In the proof of Theorem 2.3 we showed that there is a dual maximizer (f, g, h)
to the problem (1.4) where g := infk≥0 gk. In view of Step 1, we conclude that g is
8K-Lipschitz on J .

Next, observing the duality relation

g(y)− c̃(x, y) ≤ f(x) + h(x) · (y − x) ∀x ∈ J, ∀y ∈ J, (3.46)

note that we can replace f , h by f̃ , h̃ respectively, as follows: define H : J ×J → R
by the upper concave envelope in y variable

H(x, y) := conc[g(·)− c̃(x, ·)](y).

Then we define f̃(x) := H(x, x) and h̃(x) := ∂H(x,y)
∂y

∣∣
y=x

. More precisely, h̃(x) is

an element of the superdifferential of the concave function y → H(x, y) at x, and

there exists a measurable choice of such an h̃. Now in view of (3.46), it is clear that

(f̃, g, h̃) is a dual maximizer. Observe that since y 7→ g(y)− c̃(x, y) is 9K-Lipschitz,

it is immediate that |h̃| ≤ 9K on J . Then, to see that f̃ is Lipschitz, note that
since x 7→ g(y)− c̃(x, y) is L-Lipschitz, by definition of H we have

|H(x, y)−H(x′, y)| ≤ L|x− x′| ∀x, x′, y ∈ J. (3.47)

On the other hand, since the concave envelope of a Lipschitz function is Lipschitz,

|H(x, y)−H(x, y′)| ≤ 9K|y − y′| ∀x, y, y′ ∈ J.

These inequalities immediately imply that, for any x, x′ ∈ J ,

|f̃(x)− f̃(x′)| = |H(x, x)−H(x′, x′)| ≤ 19L|x− x′|.

Finally, recall that c̃(x, y) = c(x, y)+u(y) where u is L-Lipschitz, we replace g with

g̃ = g−u which is 17L-Lipschitz on J . Then (f̃, g̃, h̃) is a dual maximizer satisfying
the conclusion of Theorem 2.5. �

Remark 3.8. A close look at the above proof shows that the Lipschitz assumption
on c is only used in (3.41) and (3.47). Hence, the Lipschitz assumption for c on
J × J in Theorem 2.5 can be weakened as follows: there exists K,L ≥ 0 such that

(1) (3.41) holds for every irreducible domain I =]a, b[ of (µ, ν), and
(2) |c(x, y)− c(x′, y)| ≤ L|x− x′| for all x, x′, y ∈ J .

We conclude this section with the proof of Proposition 3.3.

Proof of Proposition 3.3. Considering the irreducible decomposition of (µ, ν), it is
enough to prove the proposition when (µ, ν) are irreducible. Under the assumption
there exists a dual optimizer (f, g, h) (in the sense of [5]), so in particular g(y) −
f(x) − h(x)(y − x) ≤ c(x, y). Let d(x, y) = c(x, y) − [g(y) − f(x) − h(x)(y − x)],
which is nonnegative.

Now a result of Jacod and Mémin [15, Proposition 2.4] tells us that if c is bounded
and y 7→ c(x, y) is continuous, then P ∈ Π(µ, ν) 7→

∫
c dP is continuous. Note that

while y 7→ d(x, y) is not continuous, y 7→ d(x, y) + u(y) + g(y) is continuous. From
this, the technique in [5, Remark 7.9] applies and one can change the topology
of R to a somewhat finer (but still Polish) topology under which y 7→ d(x, y) is
continuous, while the compactness of MT(µ, ν) remains unchanged (since the new
topology leads to the same Borel structure; see [6, Remark 2.4]).



DUAL ATTAINMENT FOR THE MARTINGALE TRANSPORT PROBLEM 13

From this we can show that P 7→ 〈d,P〉 :=
∫
d(x, y) dP is lower-semicontinuous.

For a contradiction, suppose that Pn → P, 〈d,P〉 ∈ R but there exist a subsequence
{Pk} of {Pn} and c > 0 such that 〈d,Pk〉+3c ≤ 〈d,P〉 for all k. Choose a sufficiently
large N (by monotone convergence) such that |〈d,P〉−〈d∧N,P〉| < c. By Jacod and
Mémin, for all large k we have |〈d∧N,P〉−〈d∧N,Pk〉| < c. As 〈d,Pk〉 ≥ 〈d∧N,Pk〉
we have 〈d,P〉 − 〈d,Pk〉 ≤ 2c, a contradiction. The case 〈d,P〉 =∞ is easier.

Hence there exists a minimizer P∗ for d(x, y). Finally, since
∫

[g(y) − f(x) −
h(x)(y − x)]dP is well-defined and independent of the choice of P ∈ MT(µ, ν) (see
[5]), we conclude that P∗ is also a minimizer for c(x, y). �

4. Some insightful examples

Example 4.1. This example shows that a growth assumption on the cost in The-
orem 2.3, when the marginals µ, ν have unbounded support, is necessary for dual
attainment. More precisely, we will construct a cost function which is of quadratic
growth in y at +∞ and marginals µ, ν having finite second moments, and show
that there is no dual optimizer.

To this end, we begin with a simple construction of a dual optimizer. Let xn = n,
n = 1, 2, 3, . . .. For each n, simply set f(n) = h(n) = 0 for all n, and define the
cost c(n, y) to be

c(n, y) = y2 if y ≥ n− 1,

c(n, y) = (n− 1)y if y ≤ n− 1.

Define g(y) = infn∈N c(n, y) and notice that then g(y) = y2 on [0,∞[, and

g(y) = −∞ on ]−∞, 0[. (4.1)

Now observe that the triple (f, g, h) supports the set G = {(n, n + 1), (n, n − 1) :
n ∈ N} in view of (3.6) – (3.7). This implies that any martingale measure P with
P(G) = 1 is optimal in MT(µ, ν) where µ, ν are the marginals of P having finite
second moments. For definiteness, let us construct one such P. Pick a probability
measure µ with finite second moment and supp(µ) = N. For each n ∈ N, define a
martingale measure P whose disintegration (Pn)n w.r.t. µ is as follows:

Pn =
1

2
(δn−1 + δn+1) ∀n = 1, 2, . . . .

Let ν be the second marginal of P and note that ν also has finite second moment.
Then as noted, P is optimal in MT(µ, ν).

Now let µ∗ = 1
2δ−1 + 1

2µ, ν∗ = 1
2δ−1 + 1

2ν, and P∗ = 1
2δ(−1,−1) + 1

2P. Then
P∗ ∈ MT(µ∗, ν∗) and it is clear that P∗ is optimal (no matter how y 7→ c(−1, y) is
defined, but for definiteness let c(−1, y) = 0). We will show that there is no dual
optimizer. For a contradiction, suppose that (f∗, g∗, h∗) is a dual optimizer. Then
we claim that (f∗, g∗, h∗) is essentially the same as the above (f, g, h); they should
differ only by an affine function due to the structure of P. To see this, as usual let
vn(y) = f∗(n) + h∗(n)(y − n) + c(n, y). Then (3.6) – (3.7) gives, for every n ∈ N,

vn(n+ 1) ≤ vn+1(n+ 1), vn(n) ≥ vn+1(n), vn(n+ 2) ≥ vn+1(n+ 2) ⇐⇒
h∗(n) ≤ f∗(n+ 1)− f∗(n) ≤ h∗(n+ 1), f∗(n+ 1)− f∗(n) ≤ 2h∗(n)− h∗(n+ 1).

Observe that this implies h∗(n) = f∗(n + 1) − f∗(n), and this in turn implies
that h∗ = C is constant on N and f∗(n) = Cn + D for some constant D, thus
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f∗(n) + h∗(n)(y − n) = Cy +D. In view of (4.1), this implies that g∗(−1) = −∞,
a contradiction to the fact that g∗(−1) must be real-valued.

Example 4.2. In this example, we show that if the convexity assumption on y 7→
c(x, y) holds only locally around x, then the dual maximizer can fail to exist.

Let y0 = 0, yn =
∑n
k=1

1
k2 , xn = (yn−1 + yn)/2, and x∞ = y∞ =

∑∞
k=1

1
k2 .

Define the cost function by

c(x∞, y) = 0, and c(xn, y) =


0 if y ∈ [yn−1, yn],

y − yn−1 if y ≤ yn−1,

−y + yn if y ≥ yn.

Let µ be any probability measure whose support is {xn}1≤n≤∞, and construct a
martingale measure P whose disintegration (Px)x w.r.t. µ is as follows:

Pxn
=

1

2
(δyn−1

+ δyn) ∀n = 1, 2, . . . and Px∞ = δx∞ ,

and define ν as the second marginal of P. Notice that then P is the unique element in
MT(µ, ν). Now we will show that this (optimal) P does not allow a dual maximizer,
that is, there does not exist a triple (f, g, h) which satisfies the following:

g(y) ≤ c(xn, y) + f(xn) + h(xn) · (y − xn) ∀n ∈ N ∪ {∞}, ∀y ∈ R, (4.2)

g(yn) = c(xn, yn) + f(xn) + h(xn) · (yn − xn) ∀n ≥ 1, (4.3)

g(yn−1) = c(xn, yn−1) + f(xn) + h(xn) · (yn−1 − xn) ∀n ≥ 1, (4.4)

g(y∞) = c(x∞, y∞) + f(x∞) + h(x∞) · (y∞ − x∞) = f(x∞). (4.5)

Recall that once such a (f, g, h) exists, then we can redefine g as follows:

g(y) := inf
n∈N∪{∞}

(
c(xn, y) + f(xn) + h(xn) · (y − xn)

)
. (4.6)

We claim that, if we have such a (f, g, h), then we must have

g(y∞) = −∞,
which is a contradiction to (4.5). To see this, for convenience let us define

vx(y) := c(x, y) + f(x) + h(x) · (y − x). (4.7)

Then by (4.2), (4.3), (4.4) we must have

vxn
(yn) = vxn+1

(yn), and (4.8)

vxn
(yn−1) ≤ vxn+1

(yn−1), ∀n ≥ 1. (4.9)

Notice that these with the definition of c(xn, y) immediately implies

h(xn) ≥ h(xn+1) + 1, ∀n ≥ 1. (4.10)

Also notice that g(y) is a piecewise linear function on [0, y∞[, and in fact g(y) =
f(xn) +h(xn) · (y−xn) on [yn−1, yn]. Hence by (4.10) and the fact

∑
n

1
n =∞ and

the concavity of g, we see that

g(y∞) = lim
y↗y∞

g(y) = g(0) +

∞∑
n=1

(
g(yn)− g(yn−1)

)
= g(0) +

∞∑
n=1

h(xn)

n2
≤ g(0) +

∞∑
n=1

h(x1)− (n− 1)

n2
= −∞
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a contradiction to the fact that g(y∞) must be real-valued.

Example 4.3. In this example, we show that the C2 regularity assumption in The-
orem 2.3 cannot be weakened to Cr regularity with r < 2. More precisely, for
any 1 < r < 2, we construct a cost function c ∈ Cr and compactly supported
marginals µ � ν for which the dual attainment fails. This example shall be a slight
modification of the previous one. First, let

c(x, y) = −|x− y|r, (4.11)

and choose s such that

s > 1 and sr < 2. (4.12)

Let y0 = 0, yn =
∑n
k=1

1
ns , xn = (yn−1 + yn)/2, and x∞ = y∞ =

∑∞
k=1

1
ns . Define

a martingale measure P and its marginals µ, ν as in Example 4.2. Note that µ, ν
are compactly supported since s > 1. Again we will show that this (optimal) P
does not allow a dual maximizer, that is, there does not exist a triple (f, g, h) which
satisfies (4.2), (4.3), (4.4), (4.5), where g is given as in (4.6). Again we will show
that g(y∞) = −∞, which is a contradiction to (4.4). To see this, again define vx as
in (4.7) so that we have (4.8), (4.9). Next, let us consider the slope

bn =
vxn

(yn)− vxn
(yn−1)

yn − yn−1
. (4.13)

In order to estimate bn, we will first estimate bn− bn+1. For this, as we can modify
the (f, g, h) by an affine function, we can assume that f(xn+1) = h(xn+1) = 0, thus
without loss of generality we can assume that bn+1 = 0. Now notice that, using
(4.8), (4.9), we have the following inequality:

bn − bn+1 ≥
vxn+1

(yn)− vxn+1
(yn−1)

yn − yn−1

= ns[−|yn − xn+1|r + |yn−1 − xn+1|r]

= ns
[
−
(

1

2(n+ 1)s

)r
+

(
1

2(n+ 1)s
+

1

ns

)r]
= ns

[
(2(n+ 1)s + ns)r − nsr

2nsr(n+ 1)sr

]
≈ Cns · nsr · n−2sr = Cns−sr. Hence we deduce that

−bn =

n−1∑
k=0

(bk − bk+1) ' Cn1+s−sr. This implies that, since sr < 2,

(yn − yn−1)bn / −Cn1−sr =⇒
∞∑
n=1

(yn − yn−1)bn = −∞.

Again as in Example 4.2, this tells us that g(y∞) = −∞, a contradiction to (4.5).

Example 4.4. In this example we show the necessity of semiconvexity for the regular-
ity in Theorem 2.5 and the Lipschitzness of c alone is not sufficient, by constructing
a 1-Lipschitz cost c and a compactly supported, irreducible pair (µ, ν) for which
(f, g, h) is a dual maximizer, but g /∈ L1(ν).
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To do this, we take c(x, y) = −|x − y|, and let I =]0, 1[ and µ = Leb
∣∣
[0,1]

.

Choose a smooth and strictly concave function ξ : I → R− such that ξ ≤ 0,

ξ( 1
2 ) = 0, limx→0+ ξ(x) = limx→1− ξ(x) = −∞, and

∫ 1

0
ξ(x)µ(dx) = −∞. Now we

will construct a probability measure ν where ν(I) = 1 and (µ, ν) are irreducible, and
also find a dual maximizer (f, g, h) where g = ξ. Then

∫
g(x)ν(dx) ≤

∫
g(x)µ(dx) =

−∞, as claimed.
To construct such ν and (f, g, h), observe that for each x ∈ I there exist unique

f(x), h(x) such that the function vx(y) := f(x) + h(x) · (y − x)− |x− y| satisfies

(1) vx(y) ≥ ξ(y) ∀x ∈ I, ∀y ∈ I, and
(2) for each x ∈ I, vx is tangent to ξ at two points, say y−(x), y+(x).

Note that then y−, y+ are well-defined on I, and 0 < y−(x) < x < y+(x) < 1.

Define a probability measure Px := y+(x)−x
y+(x)−y−(x)δy−(x) + x−y−(x)

y+(x)−y−(x)δy+(x), and

P ∈ P (R2) by P(dx, dy) = Px(dy) · µ(dx), i.e. (Px)x is a disintegration of P with
respect to µ. Define ν as the second marginal of P and note that by definition of P,
(µ, ν) are irreducible and are concentrated on I. Now observe that the definition of
f, h gives us that g(y) := infx∈I{vx(y)} satisfies g = ξ so that

∫
g(x)ν(dx) = −∞,

and (f, g, h) is a dual maximizer with respect to µ, ν and c.

Although the examples presented so far indicate that the assumptions made in
Theorems 2.3 and 2.5 cannot be simply relaxed, we do not claim that they are
necessary-and-sufficient condition for the dual attainment under all circumstances.
They might be other, possibly substantially different, sets of assumptions which
would also imply the dual attainment. We feel that our work clearly shows that
the dual attainment and its regularity is indeed an interesting and delicate problem
in martingale optimal transport.
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