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Abstract The Skorokhod Embedding Problem (SEP) is one of the classical problems in the
theory of stochastic processes, with applications in many different fields (cf. the surveys
[?,?]). Many of these applications have natural multi-marginal extensions leading to the
(optimal) multi-marginal Skorokhod problem (MSEP). Some of the first papers to consider
this problem are [?,?,?]. However, this turns out to be difficult using existing techniques:
only recently a complete solution was be obtained in [?] establishing an extension of the
Root construction, while other instances are only partially answered or remain wide open.

In this paper, we extend the theory developed in [?] to the multi-marginal setup which is
comparable to the extension of the optimal transport problem to the multi-marginal optimal
transport problem. As for the one-marginal case, this viewpoint turns out to be very pow-
erful. In particular, we are able to show that all classical optimal embeddings have natural
multi-marginal counterparts. Notably these different constructions are linked through a joint
geometric structure and the classical solutions are recovered as particular cases.

Moreover, our results also have consequences for the study of the martingale transport
problem as well as the peacock problem.
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1 Introduction

The Skorokhod Embedding problem (SEP) is a classical problem in probability, dating back
to the 1960s ([?,?]). Simply stated, the aim is to represent a given probability as the distri-
bution of Brownian motion at a chosen stopping time. Recently, motivated by applications
in probability, mathematical finance, and numerical methods, there has been renewed, sus-
tained interest in solutions to the SEP (cf. the two surveys [?,?]) and its multi-marginal
extension, the multi-marginal SEP: Given marginal measures µ0, . . . , µn of finite variance
and a Brownian motion with B0 ∼ µ0, construct stopping times τ1 ≤ . . . ≤ τn such that

Bτi ∼ µi for all 1 ≤ i ≤ n and E[τn] < ∞. (MSEP)

It is well known that a solution to (??) exists iff the marginals are in convex order (µ0 �c

. . . �c µn) and have finite second moment; under this condition Skorokhod’s original results
give the existence of solutions of the induced one period problems, which can then be pasted
together to obtain a solution to (??).

It appears to be significantly harder to develop genuine extensions of one period solu-
tions: many of the classical solutions to the SEP exhibit additional desirable characteristics
and optimality properties which one would like to extend to the multi-marginal case. How-
ever the original derivations of these solutions make significant use of the particular structure
inherent to certain problems, often relying on explicit calculations, which make extensions
difficult if not impossible. The first paper which we are aware of to attempt to extend a
classical construction to the multi-marginal setting is [?], which generalised the Azéma-
Yor embedding ([?]) to the case with two marginals. This work was further extended by
Henry-Labordère, Obłój, Spoida, and Touzi [?,?], who were able to extend to arbitrary (fi-
nite) marginals, under particular assumptions on the measures. Using an extension of the
stochastic control approach in [?] Claisse, Guo, and Henry-Labordère [?] constructed a two
marginal extension of the Vallois embedding. Recently, Cox, Obloj, and Touzi [?] were able
to characterise the solution to the general multi-marginal Root embedding through the use
of an optimal stopping formulation.

Address(es) of author(s) should be given
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Mass transport approach and general multi-marginal embedding

In this paper, we develop a new approach to the multi-marginal Skorokhod problem, based
on insights from the field of optimal transport.

Following the seminal paper of Gangbo and McCann [?] the mutual interplay of opti-
mality and geometry of optimal transport plans has been a cornerstone of the field. As shown
for example in [?,?,?] this in not limited to the two-marginal case but extends to the multi-
marginal case where it turns out to be much harder though. Recently, similar ideas have been
shown to carry over to a more probablistic context, to optimal transport problems satisfy-
ing additional linear constraints [?,?,?] and in fact to the classical Skorokhod embedding
problem [?].

Building on these insights, we extend the mass transport viewpoint developed in [?] to
the multi-marginal Skorokhod embedding problem. This allows us to give multi-marginal
extensions of all the classical optimal solutions to the Skorokhod problem in full generality,
which we exemplify by several examples. In particular the classical solutions of Azéma-Yor,
Root, Rost, Jacka, Perkins, and Vallois can be recovered as special cases. In addition, the
approach allows us to derive a number of new solutions to (??) which have further appli-
cations to e.g. martingale optimal transport and the peacock problem. A main contribution
of this paper is that in many different cases, solutions to the multi-marginal SEP share a
common geometric structure. In all the cases we consider, this geometric information will
in fact be enough to characterise the optimiser uniquely, which highlights the flexibility of
our approach.

Furthermore, our approach to the Skorokhod embedding problem is very general and
does not rely on fine properties of Brownian motion. Therefore, exactly as in [?] the results
of this article carry over to sufficiently regular Markov processes, e.g. geometric Brownian
motion, three-dimensional Bessel process and Ornstein-Uhlenbeck processes, and Brownian
motion in Rd for d > 1. As the arguments are precisely the same as in [?], we refer to [?,
Section 8] for details.

Related Work

Interest in the multi-marginal Skorokhod problem comes from a number of directions and
we describe some of these here:

– Maximising the running maximum: the Azéma-Yor embedding
Suppose (Mt)t≥0 is a martingale and write M̄t := sups≤t Ms. The relationship between the
laws of M1 and M̄1 has been studied by Blackwell and Dubins [?], Dubins and Gilat [?]
and Kertz and Rösler [?], culminating in a complete classification of all possible joint
laws by Rogers [?]. In particular given the law of M1, the set of possible laws of M̄1

admits a maximum w.r.t. the stochastic ordering, this can be seen through the Azéma-
Yor embedding. Given initial and terminal laws of the martingale, Hobson [?] gave a
sharp upper bound on the law of the maximum based on an extension of the Azéma-Yor
embedding to Brownian motion started according to a non-trivial initial law. These re-
sults are further extended in [?] to the case of martingales started in 0 and constrained
to a specified marginal at an intermediate time point, essentially based on a further ex-
tension of the Azéma-Yor construction. The natural aim is to solve this question in the
case of arbitrarily many marginals. Assuming that the marginals have ordered barycen-
ter functions this case is included in the work of Madan and Yor [?], based on iterating
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the Azéma-Yor scheme. More recently, the stochastic control approach of [?] (for one
marginal) is extended by Henry-Labordère, Obłój, Spoida, and Touzi [?,?] to marginals
in convex order satisfying an additional assumption ([?, Assumption ~]1). Together with
the Dambis-Dubins-Schwarz Theorem, Theorem ?? below provides a solution to this
problem in full generality.

– Multi-Marginal Root embedding
In a now classical paper, Root [?] showed that for any centred distribution with finite
second moment, µ, there exists a (right) barrier R, i.e. a Borel subset of R+×R such that
(t, x) ∈ R implies (s, x) ∈ R for all s ≥ t, and for which BτR ∼ µ, τR = inf{t : (t, Bt) ∈ R}.
This work was further generalised to a large class of Markov processes by Rost [?], who
also showed that this construction was optimal in that it minimised E[h(τ)] for convex
functions h.
More recent work on the Root embedding has focused on attempts to characterise the
stopping region. A number of papers do this either through analytical means ([?,?,?,?])
or through connections with optimal stopping problems ([?]). Recently the connection
to optimal stopping problems has enabled Cox, Obłój, and Touzi [?] to extend these
results to the multi-marginal setting. Moreover, they prove that this solution enjoys a
similar optimality property to the one-marginal Root solution. The principal strategy is
to first prove the result in the case of locally finitely supported measures by means of a
time reversal argument. The proof is then completed in the case of general measures by
a delicate limiting procedure.
As a consequence of the theoretical results in this paper, we will be able to prove similar
results. In particular, the barrier structure as well as the optimality properties are recov-
ered in Theorem ??. Indeed, as we will show below, the particular geometric structure
of the Root embedding turns out to be archetypal for a number of multi-marginal coun-
terparts of classical embeddings.

– Model-independent Finance
An important application field for the results in this paper, and one of the motivating
factors behind the recent resurgence of interest in the SEP, relates to model-independent
finance. In mathematical finance, one models the price process S as a martingale under
a risk-neutral measure, and specifying prices of all call options at maturity T is equiv-
alent to fixing the distribution µ of S T . Understanding no-arbitrage price bounds for a
functional γ, can often be seen to be equivalent to finding the range of E[γ(B)τ] among
all solutions to the Skorokhod embedding problem for µ. This link between SEP and
model-independent pricing and hedging was pioneered by Hobson [?] and has been an
important question ever since. A comprehensive overview is given in [?].
However, the above approach uses only market data for the maturity time T , while in
practice market data for many intermediate maturities may also be available, and this
corresponds to the multi-marginal SEP. While we do not pursue this direction of research
in this article we emphasize that our approach yields a systematic method to address this
problem. In particular, the general framework of super-replication results for model-
independent finance now includes a number of important contributions, see [?,?,?,?],
and most of these papers allow for information at multiple intermediate times.

– Martingale optimal transport
Optimal transport problems where the transport plan must satisfy additional martingale
constraints have recently been investigated, e.g. the works of Dolinsky, Ekren, Galli-
chon, Ghoussoub, Henry-Labordere, Hobson, Juillet, Kim, Lim, Nutz, Obłoj, Soner,

1 As shown by an example in [?] this condition is necessary to carry out their explicit construction.
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Tan, Touzi in [?,?,?,?,?,?,?,?,?]. Besides having a natural interpretation in finance, such
martingale transport problems are also of independent mathematical interest, for exam-
ple – similarly to classical optimal transport – they have consequences for the investiga-
tion of martingale inequalities (see e.g. [?,?,?]). As observed in [?] one can gain insight
into the martingale transport problem between two probabilities µ1 and µ2 by relating
it to a Skorokhod embedding problem which may be considered as a continuous time
version of the martingale transport problem. Notably this idea can be used to recover the
known solutions of the martingale optimal transport problem in a unified fashion ([?]). It
thus seems natural that an improved understanding of an n-marginal martingale transport
problem can be obtained based on the multi-marginal Skorokhod embedding problem.
Indeed this is exemplified in Theorem ?? below, where we use a multi-marginal em-
bedding to establish an n-period version of the martingale monotone transport plan, and
recover similar results to recent work of Nutz, Stebegg, and Tan [?].

– Construction of peacocks
Dating back to the work of Madan–Yor [?], and studied in depth in the book of Hirsch,
Profeta, Roynette and Yor [?], given a family of probability measures (µt)t∈[0,T ] which are
increasing in convex order, a peacock (from the acronym PCOC “Processus Croissant
pour l’Ordre Convexe”) is a martingale such that Mt ∼ µt for all t ∈ [0,T ]. The exis-
tence of such a process is granted by Kellerer’s celebrated theorem, and typically there
is an abundance of such processes. Loosely speaking, the peacock problem is to give
constructions of such martingales. Often such constructions are based on Skorokhod
embedding or particular martingale transport plans, and often one is further interested
in producing solutions with some additional optimality properties; see for example the
recent works [?,?,?,?].
Given the intricacies of multi-period martingale optimal transport and Skorokhod em-
bedding, it is necessary to make additional assumptions on the underlying marginals and
desired optimality properties are in general not preserved in a straight forward way dur-
ing the inherent limiting/pasting procedure. We expect that an improved understanding
of the multi-marginal Skorokhod embedding problem will provide a first step to tackle
these range of problems in a systematic fashion.

1.1 Outline of the Paper

We will proceed as follows. In Section ??, we will describe our main results. Our main
technical tool is a ‘monotonicity principle’, Theorem ??. This result allows us to deduce
the geometric structure of optimisers. Having stated this result, and defined the notion of
‘stop-go pairs’, which are important mathematical embodiment of the notion of ‘swapping’
stopping rules for a candidate optimiser, we will be able to deduce our main consequential
results. Specifically, we will prove the multi-marginal generalisations of the Root, Rost and
Azéma-Yor embeddings, using their optimality properties as a key tool in their construc-
tion. The Rost construction is entirely novel, and the solution to the Azéma-Yor embedding
generalises existing results, which have only previously been given under a stronger assump-
tion on the measures. We also give a multi-marginal generalisation of an embedding due to
Hobson & Pedersen; this is, in some sense, the counterpart of the Azéma-Yor embedding;
classically, this is better recognised as the embedding of Perkins [?], however for reasons
we give later, this embedding has no multi-marginal extension. Moreover the proofs of these
results will share a common structure, and it will be clear how to generalise these methods
to provide similar results for a number of other classical solutions to the SEP.
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In Section ??, we also use our methods to give a multi-marginal martingale monotone
transport plan, using a construction based on a SEP-viewpoint.

The remainder of the paper is then dedicated to proving the main technical result, Theo-
rem ??. In Section ??, we introduce our technical setup, and prove some preliminary results.
As in [?], it will be important to consider the class of randomised multi-stopping times, and
we define these in this section, and derive a number of useful properties. It is technically
convenient to consider randomised multi-stopping times on a canonical probability space,
where there is sufficient additional randomisation, independent of the Brownian motion,
however we will prove in Lemma ?? that any sufficiently rich probability space will suffice.
A key property of the set of randomised multi-stopping times embedding a given sequence
of measures is that this set is compact in an appropriate (weak) topology, and this will be
proved in Proposition ??; an important consequence of this is that optimisers of the multi-
marginal SEP exist under relatively mild assumptions on the objective (Theorem ??).

In Section ?? we introduce the notions of color-swap pairs, and multi-colour swap pairs.
These will be the fundamental constituents of the set of ‘bad-pairs’, or combinations of
stopped and running paths that we do not expect to see in optimal solutions. In this section
we define these pairs, and prove some technical properties of the sets.

In Section ?? we complete the proof of Theorem ??. In spirit this follows the proof of
the corresponding result in [?], and we only provide the details here where the proof needs
to adapt to account for the multi-marginal setting.

1.2 Frequently used notation

– The set of Borel (sub-)probability measures on a topological space X is denoted by P(X)
/ P≤1(X).

– Ξd = {(s1, . . . , sd) : 0 ≤ s1 ≤ . . . ≤ sd} denotes the ordered sequences in [0,∞) of length
d.

– The d-dimensional Lebesgue measure will be denoted by Ld.
– For a measure ξ on X we write f (ξ) for the push-forward of ξ under f : X→ Y.
– We use ξ( f ) as well as

∫
f dξ to denote the integral of a function f against a measure ξ.

– Cx(R+) denotes the continuous functions starting at x; C(R+) =
⋃

x∈RCx(R+). For ω ∈
C(R+) we write θsω for the path in C0(R+) defined by (θsω)t≥0 = (ωt+s − ωs)t≥0.

– W denotes Wiener measure;Wµ denotes law of Brownian motion started according to a
probability µ; F 0 (F a) the natural (augmented) filtration on C0(R+).

– For d ∈ N we set C(R+) = C(R+) × [0, 1]d, W̄ = W ⊗ Ld, and F̄ = (F̄t)t≥0 the usual
augmentation of (F 0

t ⊗B([0, 1]d))t≥0. To keep notation manageable, we suppress d from
the notation since the precise number will always be clear from the context.

– X is a Polish space equipped with a Borel probability measure m. We set X := X ×
C0(R+), P = m ⊗W, G0 = (G0

t )t≥0 = (B(X) ⊗ F 0
t )t≥0, Ga the usual augmentation of G0.

– For d ∈ N we set X̄ = X × [0, 1]d, P̄ = P ⊗ Ld, and Ḡ = (Ḡt)t≥0 the usual augmentation
of (G0

t ⊗B([0, 1]d))t≥0. Again, we suppress d from the notation since the precise number
will always be clear from the context.

– The set of stopped paths started at 0 is denoted by S = {( f , s) : f : [0, s]→ R is continuous, f (0) = 0}
and we define r : C0(R+) × R+ → S by r(ω, t) := (ω�[0,t], t). The set of stopped paths
started in X is S X = (X, S ) = {(x, f , s) : f : [0, s] → R is continuous, f (0) = 0, x ∈ X}
and we define rX : X ×C0(R+) ×R+ → S X by rX(x, ω, t) := (x, ω�[0,t], t), i.e. rX = (Id, r).

– We use ⊕ for the concatenation of paths: depending on the context the arguments may
be elements of S , C0(R+) or C0(R+)×R+. Specifically, ⊕ : Y×Z→ Z, where Y is either
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S or C0(R+) × R+, and Z may be any of the three spaces. For example, if ( f , s) ∈ S and
ω ∈ C0(R+), then ( f , s) ⊕ ω is the path

ω′(t) =

 f (t) t ≤ s
f (s) + ω(t − s) t > s

. (1.1)

– As well as the simple concatenation of paths, we introduce a concatenation operator
which keeps track of the concatenation time: if ( f , s), (g, t) ∈ S , then ( f , s) ⊗ (g, t) =

( f ⊕ g, s, s + t). We denote the set of elements of this form as S ⊗2, and inductively, S ⊗i

in the same manner.
– Elements of S ⊗i will usually be denoted by ( f , s1, . . . , si) or (g, t1, . . . , ti). We define

ri : C0(R+) × Ξi → S ⊗i by ri(ω, s1, . . . , si)) := (ω�[0,si], s1, . . . , si). Accordingly, the
set of i-times stopped paths started in X is S ⊗i

X = (X, S ⊗i). Elements of S ⊗i
X are usually

denoted by (x, f , s1, . . . , si) or (y, g, t1, . . . , ti). In case of X = R we often simply write
( f , s1, . . . , si) or (g, t1, . . . , ti) with the understanding that f (0), g(0) ∈ R. In case that
there is no danger of confusion we will also sometimes write S ⊗i

R = S ⊗i. The operators
⊕,⊗ generalise in the obvious way to allow elements of S ⊗i

X to the left of the operator.
– For (x, f , s1, . . . , si) ∈ S ⊗i

X , (h, s) ∈ S we often denote their concatenation by (x, f , s1, . . . , si)|(h, s)
which is the same element as (x, f , s1, . . . , si) ⊗ (h, s) but comes with the probabilistic
interpretation of conditioning on the continuation of ( f , s1, . . . , si) by (h, s). In practice,
this means that we will typically expect the (h, s) to be absorbed by a later ⊕ operation.

– The map X × Ξi 3 (x, ω, s1, . . . , si) 7→ (x, ω�[0,si], s1, . . . , si) ∈ S ⊗i
X will (by slight abuse

of notation) also be denoted by ri.
– We set r̃i : X×Ξi → S ⊗i

X ×C(R+), (x, ω, s1, . . . , si) 7→ ((x, ω�[0,si], s1, . . . , si), θsiω). Then
r̃i is clearly a homeomorphism with inverse map

r̃−1
i : ((x, f , s1, . . . , si), ω) 7→ (x, f ⊕ ω, s1, . . . , si).

Hence, ξ = r̃−1
i (r̃i(ξ)) for any measure ξ on X × Ξi. For 1 ≤ i < d we can extend r̃i to a

map r̃d,i : X × Ξd → S ⊗i
X ×C(R+) × Ξd−i by setting

r̃d,i(x, ω, s1, . . . , sd) = ((x, ω�[0,si], s1, . . . , si), θsiω, (si+1 − si, . . . , sd − si)).

– For Γi ⊆ S ⊗i we set Γ<i := {( f , s1, . . . , si−1, si) : ∃( f̃ , s1, . . . , si−1, s̃) ∈ Γ, si−1 ≤ si <
s̃ and f ≡ f̃ on [0, si]}, where we set s0 = 0.

– For ( f , s1, . . . , si) ∈ S ⊗i we write f = supr≤si
f (r), and f = infr≤si f (r).

– For 1 ≤ i < n and F a function on S ⊗n resp. C0(R+) × Ξn and ( f , s1, . . . , si) ∈ S ⊗i we set

F( f ,s1 ,...,si)⊗(η, ti+1, . . . , tn) := F( f ⊕ η, s1, . . . , si, si + ti+1, . . . , si + tn)

= F (( f , s1, . . . , si) ⊗ (η, ti+1, . . . , tn)) ,

where (η, ti+1, . . . , tn) may be an element of S ⊗n−i, or C0(R+)×Ξn−i. We similarly define

F( f ,s1 ,...,si)⊕(η, ti+1, . . . , tn) := F( f ⊕ η, s1, . . . , si−1, si + ti+1, . . . , si + tn)

= F (( f , s1, . . . , si) ⊕ (η, ti+1, . . . , tn)) ,

where (η, ti, . . . , tn) may be an element of S ⊗n−i+1, or C0(R+) × Ξn−i+1.
– For any j-tuple 1 ≤ i1 < . . . < i j ≤ d we denote by projX×(i1 ,...,i j) the projection from
X × Rd to X × R j defined by

(x, ω, y1, . . . , yd) 7→ (x, ω, yi1 , . . . , yi j )

and correspondingly, for ξ ∈ P(X × Rd), ξ(i1 ,...,i j) = projX×(i1 ,...,i j)(ξ). When j = 0, we
understand this as simply the projection onto X. If (i1, . . . , i j) = (1, . . . , j) we simply
write ξ(1,..., j) = ξi.
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2 Main Results

2.1 Existence and Monotonicity Principle

In this section we present our key results and provide an interpretation in probabilistic terms.
To move closer to classical probabilistic notions, in this section, we slightly deviate from the
notation used in the rest of the article. We consider a Brownian motion B on some generic
probability space and recall that, for each 1 ≤ i ≤ n,

S ⊗i := {( f , s1, . . . , si) : 0 ≤ s1 ≤ . . . ≤ si, f ∈ C([0, si])}.

We note that S ⊗i carries a natural Polish topology. For a function γ : S ⊗n → R which is
Borel and a sequence (µi)n

i=0 of centered probability measures on R, increasing in convex
order, we are interested in the optimization problem

Pγ = inf{E[γ((Bs)s≤τn , τ1, . . . , τn)] : τ1, . . . , τn satisfy (??)}. (OptMSEP)

We denote the set of all minimizers of (??) by Optγ. Take another Borel measurable function
γ2 : S ⊗n → R. We will be also interested in the secondary optimization problem

Pγ2 |γ = inf{E[γ2((Bs)s≤τn , τ1, . . . , τn)] : (τ1, . . . , τn) ∈ Optγ}. (OptMSEP2)

Both optimization problems, (??) and (??),will not depend on the particular choice of the un-
derlying probability space, provided that (Ω,F , (Ft)t≥0,P) is sufficiently rich that it supports
a Brownian motion (Bt)t≥0 starting with law µ0, and an independent, uniformly distributed
random variable Y , which is F0-measurable (see Lemma ??). We will from now on assume
that we are working in this setting. On this space, we denote the filtration generated by the
Brownian motion by F B.

Many of the assumptions imposed on the problem can be weakened. First, the assump-
tion that E[τn] < ∞ can be weakened, and the class of measures considered can then be
extended to the class of probability measures with a finite first moment. More generally, the
class of processes can be extended to include e.g. diffusions. Since all the arguments are
identical to those in the single marginal setting, we do not work in this generality in this
paper, but rather restrict our consideration to the case outlined above. For further details of
how to extend the arguments, we refer the reader to [?, Section 7].

We will usually assume that (??) and (??) are well-posed in the sense that E
[
γ
(
(Bs)s≤τn , τ1, . . . , τn

)]
and E

[
γ2

(
(Bs)s≤τn , τ1, . . . , τn

)]
exist with values in (−∞,∞] for all τ = (τ1, . . . , τn) which

solve (??) and is finite for one such τ.

Theorem 2.1 Let γ, γ2 : S ⊗n → R be lsc and bounded from below in the sense that for some
constants a, b, c ∈ R+

−

(
a + bsn + c max

r≤sn
f (r)2

)
≤ γi ( f , s1, . . . , sn) (2.1)

holds on S ⊗n, for i = 1, 2. Then there exists a minimizer to (??).

We will prove this result in Section ??.
Our main result is the monotonicity principle, Theorem ??, which is a geometric charac-

terisation of optimizers τ̂ = (τ̂1, . . . , τ̂n) of (??). The version we state here is weaker than the
result we will prove in Section ?? but easier to formulate and still sufficient for our intended
applications.
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For two families of increasing stopping times (σ j)n
j=i and (τ j)n

j=i with τi = 0 we define

k := inf{ j ≥ i : τ j+1 ≥ σ j}

and stopping times

σ̃ j =

{
τ j if j ≤ k
σ j if j > k

and analogously

τ̃ j =

{
σ j if j ≤ k
τ j if j > k .

Note that (σ̃ j)n
j=i and (τ̃ j)n

j=i are again two families of increasing stopping times, since

τ̃i = σi

≤ τ̃i+1 = 1τi+1≥σiτi+1 + 1τi+1<σiσi+1

≤ τ̃i+2 = 1τi+1≥σiτi+2 + 1τi+1<σi (1τi+2≥σi+1τi+2 + 1τi+2<σi+1σi+2) (2.2)

≤ τ̃i+3 = . . . ,

and similarly for σ̃ j.

Example 1 To illustrate this construction, consider the following sequences of stopping
times for Brownian motion started at B0 = 0. Let σ j = H±( j+1) := inf{t ≥ 0 : |Bt | ≥ j + 1},
and τ j = j. The idea is that we want to construct a new sequence (σ̃ j) which ‘starts’ with τ0,
but reverts to the original (σ j) sequence as soon as possible. Correspondingly, we wish to
construct the sequence (τ̃ j) which starts like (σ j), but reverts to (τ j) as soon as possible. As
above, k = inf{ j ≥ i : τ j+1 ≥ σ j} is the first time (if at all) that B leaves the interval [− j, j]
before time j. If this never happens, then the two sequences will just swap.

That is, if the sequences switch back, then the construction gives:

(σ j) j=0,....n = (H±1,H±2, . . . ,H±(n+1)), (σ̃ j) j=0,....n = (0, 1, 2, . . . , k,H±(k+2), . . . ,H±(n+1))

(τ j) j=0,....n = (0, 1, 2, . . . , n), (τ̃ j) j=0,....n = (H±1,H±2, . . . ,H±(k+1), k + 1, . . . , n).

Note in particular that with this swap, the σ̃ stopping times stop instantly, while the τ̃ times
no longer stop at time 0.

Definition 1 A pair (( f , s1, . . . , si−1, s), (g, t1, . . . , ti−1, t)) ∈ S ⊗i×S ⊗i constitutes an i-th stop-
go pair, written (( f , s1, . . . , si−1, s), (g, t1, . . . , ti−1, t)) ∈ SGi, if f (s) = g(t) and for all families
of F B-stopping times σi ≤ . . . ≤ σn, 0 = τi ≤ τi+1 ≤ . . . ≤ τn satisfying 0 < E[σ j] < ∞ for
all i ≤ j ≤ n and 0 ≤ E[τ j] < ∞ for all i < j ≤ n

E[γ
(
(( f ⊕ B)u)u≤s+σn , s1, . . . , si−1, s + σi, s + σi+1, . . . , s + σn

)
]

+ E[γ
(
((g ⊕ B)u)u≤t+τn , t1 , . . . , ti−1 , t , t + τi+1 , . . . , t + τn

)
]

> E[γ
(
(( f ⊕ B)u)u≤s+σ̃n , s1, . . . , si−1, s , s + σ̃i+1, . . . , s + σ̃n

)
] (2.3)

+ E[γ
(
((g ⊕ B)u)u≤t+τ̃n , t1, . . . , ti−1, t + τ̃i , t + τ̃i+1 , . . . , t + τ̃n

)
],

whenever both sides are well defined and the left hand side is finite. (See Figure ??.)
A pair (( f , s1, . . . , si−1, s), (g, t1, . . . , ti−1, t)) ∈ S ⊗i×S ⊗i constitutes a secondary i-th stop-

go pair, written (( f , s1, . . . , si−1, s), (g, t1, . . . , ti−1, t)) ∈ SG2,i, if f (s) = g(t) and for all fami-
lies of F B-stopping times σi ≤ . . . ≤ σn, 0 = τi ≤ τi+1 ≤ . . . ≤ τn satisfying 0 < E[σ j] < ∞
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t

x
t1 t t + τ3 t + τ4 t + τ5

s1 s s+σ2 s+σ3 s+σ4

s+σ5

g

f

t

x
t1 t t + τ̃3 t + τ̃4 t + τ̃5

s1 s s+ σ̃3 s+ σ̃4

t + τ̃2

s+ σ̃5

g

f

Fig. 1 We show a potential stop-go pair. In the top picture, we show the pair (( f , s1, s), (g, t1, t)) with corre-
sponding stopping times τ3, . . . , τ5 and σ2, . . . , σ5. In the bottom picture, the stopping times τ̃2, . . . τ̃5 and
σ̃3, . . . , σ̃5 are shown. Note that the first time that the stopping rules can ‘revert’ to their original times are τ̃3
and σ̃3.

for all i ≤ j ≤ n and 0 ≤ E[τ j] < ∞ for all i < j ≤ n the inequality (??) holds with ≥ and if
there is equality we have

E[γ2
(
(( f ⊕ B)u)u≤s+σn , s1, . . . , si−1, s + σi, s + σi+1, . . . , s + σn

)
]

+ E[γ2
(
((g ⊕ B)u)u≤t+τn , t1 , . . . , ti−1 , t , t + τi+1 , . . . , t + τn

)
]

> E[γ2
(
(( f ⊕ B)u)u≤s+σ̃n , s1, . . . , si−1, s , s + σ̃i+1, . . . , s + σ̃n

)
] (2.4)

+ E[γ2
(
((g ⊕ B)u)u≤t+τ̃n , t1, . . . , ti−1, t + τ̃i , t + τ̃i+1 , . . . , t + τ̃n

)
],

whenever both sides are well defined and the left hand side (of (??)) is finite.

For 0 ≤ i < j ≤ n we define projS ⊗i : S ⊗ j → S ⊗i by ( f , s1, . . . , s j) 7→ ( f�[0,si], s1, . . . , si)
where we take s0 = 0, S ⊗0 = R, and f�[0,0] := f (0) ∈ R.

Definition 2 A set Γ = (Γ1, . . . , Γn) with Γi ⊆ S ⊗i measurable for each i is called γ2|γ-
monotone if for each 1 ≤ i ≤ n

SG2,i ∩ (Γ<i × Γi) = ∅,



The geometry of multi-marginal Skorokhod Embedding 11

where

Γ<i = {( f , s1, . . . , si−1, u) : there exists (g, s1, . . . , si−1, s) ∈ Γi, si−1 ≤ u < s, g�[0,u] = f },

and projS ⊗i−1 (Γi) ⊆ Γi−1.

Theorem 2.2 (Monotonicity principle) Let γ, γ2 : S ⊗n → R be Borel measurable, B be
a Brownian motion on some stochastic basis (Ω,F , (Ft)t≥0,P) with B0 ∼ µ0 and let τ̂ =

(τ̂1, . . . , τ̂n) be an optimizer of (??). Then there exists a γ2|γ-monotone set Γ = (Γ1, . . . , Γn)
supporting τ̂ in the sense that P- a.s. for all 1 ≤ i ≤ n

((Bs)s≤τi , τ1, . . . , τi) ∈ Γi. (2.5)

Remark 1 1. We will also consider ternary or j-ary optimization problems given j Borel
measurable functions γ1, . . . , γ j : S ⊗n → R leading to ternary or j-ary i-th stop-go pairs
SGi,3, . . . ,SGi, j for 1 ≤ i ≤ n, the notion of γ j| . . . |γ1-monotone sets and a correspond-
ing monotonicity principle. To save (digital) trees we leave it to the reader to write down
the corresponding definitions.

2. Intuitively, the sets Γi in Definition ?? could be simply defined to be the projections of
Γn onto S ⊗i, however this would not guarantee measurability of the sets S ⊗i. Hence we
need a slightly more involved statement of Theorem ??.

2.2 New n-marginal embeddings

2.2.1 The n-marginal Root embedding

The classical Root embedding [?] establishes the existence of a barrier (or right-barrier)
R ⊆ R+ × R such that the first hitting time of R solves the Skorokhod embedding problem.
A barrier R is a Borel set such that (s, x) ∈ R ⇒ (t, x) ∈ R for all t > s. Moreover, the
Root embedding has the property that it minimises E[h(τ)] for a strictly convex function
h : R+ → R over all solutions to the Skorokhod embedding problem, cf. [?].

We will show that there is a unique n- marginal Root embedding in the sense that there
are n barriers (Ri)n

i=1 such that for each i ≤ n the first hitting time of Ri after hitting Ri−1

embeds µi.

Theorem 2.3 (n-marginal Root embedding, c.f. [?]) Put γi : S ⊗n → R, ( f , s1, . . . , sn) 7→
h(si) for some strictly convex function h : R+ → R and assume that (??) is well posed. Then
there exist n barriers (Ri)n

i=1 such that defining

τRoot
1 (ω) = inf{t ≥ 0 : (t, Bt(ω)) ∈ R1}

and for 1 < i ≤ n

τRoot
i (ω) = inf{t ≥ τRoot

i−1 (ω) : (t, Bt(ω)) ∈ Ri}

the multi-stopping time (τRoot
1 , . . . , τRoot

n ) minimises

E[h(τ̃i)]

simultaneously for all 1 ≤ i ≤ n among all increasing families of stopping times (τ̃1, . . . , τ̃n)
such that Bτ̃ j ∼ µ j for all 1 ≤ j ≤ n and E[τn] < ∞. This solution is unique in the sense that
for any solution τ̃1, . . . , τ̃n of such a barrier-type we have τRoot

i = τ̃i a.s.
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Proof Fix a permutation κ of {1, . . . , n}. We consider the functions γ̃1 = γκ(1), . . . , γ̃n = γκ(n)

on S ⊗n and the corresponding family of n-ary minimisation problems, (OptMSEPn). Let
(τRoot

1 , . . . , τRoot
n ) be an optimiser of Pγ̃n |...|γ̃1 . By the n-ary version of Theorem ??, choose

an optimizer (τRoot
1 , . . . , τRoot

n ) of (OptMSEPn) and, by the corresponding version of Theo-
rem ??, a γ̃n| . . . |γ̃1-monotone family of sets (Γ1, . . . , Γn) supporting (τRoot

1 , . . . , τRoot
n ). Hence

for every i ≤ n we have P-a.s.

((Bs)s≤τi , τ
Root
1 , . . . , τRoot

i ) ∈ Γi,

and
(Γ<i × Γi) ∩ SGi,n = ∅.

We claim that, for all 1 ≤ i ≤ n we have

SGi,n ⊇ {(( f , s1, . . . , si), (g, t1, . . . , ti)) : f (si) = g(ti), si > ti}.

Fix ( f , s1, . . . , si), (g, t1, . . . , ti) ∈ S ⊗i satisfying si > ti and consider two families of stopping
times (σ j)n

j=i and (τ j)n
j=i on some probability space (Ω,F ,P) together with their modifica-

tions (σ̃ j)n
j=i and (τ̃ j)n

j=i as in Section ??. Put

j1 := inf{m ≥ 1 : κ(m) ≥ i}

and inductively for 1 < a ≤ n − i + 1

ja := inf{m ≥ ja−1 : κ(m) ≥ i}.

Let l = arg min{a : P[σ ja , σ̃ ja ] > 0}. By the definition of σ̃ j and τ̃ j we have in case of
jl = i the equality {σ jl , σ̃ jl } = Ω and for jl > i it holds that

{σ jl , σ̃ jl } =
⋂

i≤k< jl

{σk > τk+1}.

As τk ≤ τk+1, in particular, we have on {σ jl , σ̃ jl } the inequalityσk > τk for every i ≤ k ≤ jl.
The strict convexity of h and s > t implies

E[h(s + σ jl )] + E[h(t + τ jl )] > E[h(s + σ̃ jl )] + E[h(t + τ̃ jl )] .

Hence, we get a strict inequality in (the corresponding κ−1( jl)-ary version of) (??) and the
claim is proven.

Then we define for each 1 ≤ i ≤ n

Ri
cl := {(s, x) ∈ R+ × R : ∃(g, t1, . . . , ti) ∈ Γi, g(ti) = x, s ≥ ti}

and
Ri
op := {(s, x) ∈ R+ × R : ∃(g, t1, . . . , ti) ∈ Γi, g(ti) = x, s > ti}.

Following the argument in the proof of Theorem 2.1 in [?], we define τ1
cl and τ1

op to be the
first hitting times of R1

cl and R1
op respectively to see that actually τ1

cl ≤ τRoot
1 ≤ τ1

op and
τ1
cl = τ1

op a.s. by the strong Markov property. Then we can inductively proceed and define

τi
cl := inf{t ≥ τi−1

cl : (t, Bt) ∈ Ri
cl}

and
τi
op := inf{t ≥ τi−1

cl : (t, Bt) ∈ Ri
op}.
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By the very same argument we see that τi
cl ≤ τ

Root
i ≤ τi

op and in fact τi
cl = τi

op.
Finally, we need to show that the choice of the permutation κ does not matter. This fol-

lows from a straightforward adaptation of the argument of Loynes [?] (see also [?, Remark
2.3] and [?, Proof of Lemma 2.4]) to the multi-marginal set up. Indeed, the first barrier R1 is
unique by Loynes original argument. This implies that the second barrier is unique because
Loynes argument is valid for a general starting distribution of the process (t, Bt) in R+ × R
and we can conclude by induction.

Remark 2 1. In the last theorem, the result stays the same if we take different strictly con-
vex functions hi for each i.

2. Moreover, it is easy to see that the proof is simplified if one starts with the objective∑n
i=1 hi(τi), which removes the need for taking an arbitrary permutation of the indices

at the start. Of course, to get the more general conclusion, one needs to consider these
permutations.

Corollary 1 Let h : R+ → R be a strictly convex function and let γ : S ⊗n → R, ( f , s1, . . . , sn) 7→∑n
i=1 h(ti). Let τRoot = (τRoot

1 , . . . , τRoot
n ) be the minimizer of Theorem ??. Then it also mini-

mizes
E[γ(τ̃1, . . . , τ̃n)]

among all increasing families of stopping times τ̃1 ≤ . . . ≤ τ̃n satisfying Bτ̃i ∼ µi for all
1 ≤ i ≤ n.

2.2.2 The n-marginal Rost embedding

The classical Rost embedding [?] establishes the existence of an inverse barrier (or left-
barrier) R ⊆ R+ × R such that the first hitting time of R solves the Skorokhod embedding
problem. An inverse barrier R is a Borel set such that (t, x) ∈ R ⇒ (s, x) ∈ R for all
s < t. Moreover, the Rost embedding has the property that it maximises E[h(τ)] for a strictly
convex function h : R+ → R over all solutions to the Skorokhod embedding problem, cf.
[?]. Similarly to the Root embedding it follows that

Theorem 2.4 (n-marginal Rost embedding) Put γi : S ⊗n → R, ( f , s1, . . . , sn) 7→ −h(si)
for some strictly convex function h : R+ → R and assume that (??) is well posed. Then there
exist n inverse barriers (Ri)n

i=1 such that defining

τRost
1 (ω) = inf{t ≥ 0 : (t, Bt(ω)) ∈ R1}

and for 1 < i ≤ n

τRost
i (ω) = inf{t ≥ τRost

i−1 (ω) : (t, Bt(ω)) ∈ Ri}

the multi-stopping time (τRost
1 , . . . , τRost

n ) maximises

E[h(τi)]

simultaneously for all 1 ≤ i ≤ n among all increasing families of stopping times (τ1, . . . , τn)
such that Bτ j ∼ µ j for all 1 ≤ j ≤ n and E[τn] < ∞. Moreover, it also maximises

n∑
i=1

E [h(τi)] .

This solution is unique in the sense that for any solution τ̃1, . . . , τ̃n of such a barrier-type we
have τRost

i = τ̃i.



14 Martin Huesmann

The proof of this theorem goes along the very same lines as the proof of Theorem ??.
The only difference is that due to the maximisation we get

SGi,n ⊇ {( f , s1, . . . , si), (g, t1, . . . , ti) : f (si) = g(ti), si < ti}

leading to inverse barriers. We omit the details.

2.2.3 The n-marginal Azéma-Yor embedding

For ( f , s1, . . . , sn) ∈ S ⊗n we will use the notation f̄si := max0≤s≤si f (s).

Theorem 2.5 (n-marginal Azéma-Yor solution) There exist n barriers (Ri)n
i=1 such that

defining

τAY
1 = inf{t ≥ 0 : (B̄t, Bt) ∈ R1}

and for 1 < i ≤ n

τAY
i = inf{t ≥ τAY

i−1 : (B̄t, Bt) ∈ Ri}

the multi-stopping time (τAY
1 , . . . , τAY

n ) maximises

E

 n∑
i=1

B̄τi


among all increasing families of stopping times (τ1, . . . , τn) such that Bτ j ∼ µ j for all 1 ≤
j ≤ n and E[τn] < ∞. This solution is unique in the sense that for any solution τ̃1, . . . , τ̃n of
such a barrier-type we have τAY

i = τ̃i.

We emphasise that this result has not appeared previously in the literature in this gen-
erality; previously the most general result was due to [?] and [?], which proved a closely
related result under an additional condition on the measures, which is not necessary here.
Unlike our solution, however, the constructions of [?] and [?] are constructive.

Remark 3 In fact, similarly to the n-marginal Root and Rost solutions τAY simultaneously
solves the optimization problems

sup{E[B̄τ̃i ] : τ̃1 ≤ . . . ≤ τ̃n, Bτ̃1 ∼ µ1, . . . , Bτ̃n ∼ µn}

for each i which of course implies Theorem ?? (see also Remark ??.??). To keep the pre-
sentation readable, we only prove the less general version.

Proof Fix a bounded and strictly increasing continuous function ϕ : R+ → R+ and consider
the continuous functions γ( f , s1, . . . , sn) = −

∑n
i=1 f̄si and γ̃( f , s1, . . . , sn) =

∑n
i=1 ϕ( f̄si ) f (si)2

defined on S ⊗n. Pick, by Theorem ??, a minimizer τAY of (??) and, by Theorem ??, a γ̃|γ-
monotone family of sets (Γi)n

i=1 supporting τAY = (τAY
i )n

i=1 such that for all i ≤ n

SGi,2 ∩ (Γ<i × Γi) = ∅.

We claim that

SGi,2 ⊇ {(( f , s1, . . . , si), (g, t1, . . . , ti)) ∈ S ⊗i × S ⊗i : f (si) = g(ti), f̄si > ḡti }. (2.6)
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Indeed, pick (( f , s1, . . . , si), (g, t1, . . . , ti)) ∈ S ⊗i×S ⊗i with f (si) = g(ti) and f̄si > ḡti and take
two families of stopping times (σ j)n

j=i and (τ j)n
j=i together with their modifications (σ̃ j)n

j=i
and (τ̃ j)n

j=i as in Section ??. We assume that they live on some probability space (Ω,F ,P)
additionally supporting a standard Brownian motion W. Observe that (as written out in the
proof of Theorem ??) on {σ j , σ̃ j} it holds that σ j > τ j. Hence, on this set we have
W̄σ j ≥ W̄τ j . This implies that for ω ∈ {σ j , σ̃ j} (and hence σ̃ j = τ j, τ̃ j = σ j)

f̄si ∨ ( f (si) + W̄σ j (ω)) + ḡti ∨ (g(ti) + W̄τ j (ω))

≤ f̄si ∨ ( f (si) + W̄σ̃ j (ω)) + ḡti ∨ (g(ti) + W̄τ̃ j (ω)),
(2.7)

with a strict inequality unless either W̄σ j (ω) ≤ ḡti − g(ti) or W̄τ j ≥ f̄si − f (si). On the set
{σ j = σ̃ j} we do not change the stopping rule for the j-th stopping time and hence we get a
(pathwise) equality in (??). Thus, we always have a strict inequality in (??) unless a.s. either
W̄σ j (ω) ≤ ḡti − g(ti) or W̄τ j ≥ f̄si − f (si) for all j. However, in that case we have for all j
such that P[σ j , σ̃ j] > 0 (there is at least one such j, namely j = i)

E
[
ϕ( f̄si )( f (si) + Wσ j )

2
]

+ E
[
ϕ(ḡti )(g(ti) + Wτ j )

2
]

> E
[
ϕ( f̄si )( f (si) + Wσ̃ j )

2
]

+ E
[
ϕ(ḡti )(g(ti) + Wτ̃ j )

2
]
.

Hence, (( f , s1, . . . , si), (g, t1, . . . , ti)) ∈ SG ⊆ SG2 in the first case and in the second case we
have (( f , s1, . . . , si), (g, t1, . . . , ti)) ∈ SG2 proving (??).

For each i ≤ n we define

Ri
op := {(m, x) : ∃( f , s1, . . . , si) ∈ Γi, f (si) = x, f̄si < m}

and
Ri
cl := {(m, x) : ∃( f , s1, . . . , si) ∈ Γi, f (si) = x, f̄si ≤ m}

with respective hitting times (τ0 = 0)

τi
op := inf{t ≥ τi−1

cl : (B̄t, Bt) ∈ Ri
op}

and
τi
cl := inf{t ≥ τi−1

cl : (B̄t, Bt) ∈ Ri
cl}.

We will show inductively on i that firstly τi
cl ≤ τAY

i ≤ τi
op a.s. and secondly τi

cl = τi
op a.s.

proving the theorem. The case i = 1 has been settled in [?]. So let us assume τi−1
cl = τi−1

op

a.s. Then τi
cl ≤ τAY

i follows from the definition of τi
cl. To show that τAY

i ≤ τi
op pick ω

satisfying ((Bs(ω))s≤τAY
i
, τAY

1 (ω), . . . , τAY
i (ω)) ∈ Γi and assume that τi

op(ω) < τAY
i (ω). Then

there exists s ∈
[
τi
op(ω), τAY

i (ω)
)

such that f := (Br(ω))r≤s satisfies ( f̄ , f (s)) ∈ Ri
op. Since

τi−1
cl (ω) ≤ τi

op(ω) ≤ s < τAY
i (ω) we have ( f , τ1

cl(ω), . . . , τi−1
cl (ω), s) ∈ Γ<i . By definition of Ri

op,
there exists (g, t1, . . . , ti) ∈ Γi such that f (s) = g(ti) and ḡti < f̄s, yielding a contradiction to
(??).

Finally, we need to show that τi
cl = τi

op a.s. Before we proceed we give a short reminder
of the case i = 1 from [?, Theorem 6.5]. We define

ψ̃1
0(m) = sup{x : ∃(m, x) ∈ R1

cl}.

From the definition ofR1
cl, we see that ψ̃1

0(m) is increasing, and we define the right-continuous
function ψ1

+(m) = ψ̃1
0(m+), and the left-continuous function ψ1

−(m) = ψ̃1
0(m−). It follows

from the definitions of τ1
op and τ1

cl that:

τ+ := inf{t ≥ 0 : Bt ≤ ψ
1
+(Bt)} ≤ τ1

cl ≤ τ
1
op ≤ inf{t ≥ 0 : Bt < ψ

1
−(Bt)} =: τ−.
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As ψ̃1
0 has at most countably many jump points (discontinuity points) it is easily checked

that τ− = τ+ a.s. and hence τ1
cl = τ1

op = τAY
1 . Note also that the law µ̄1 of B̄τAY

1
can have

an atom only at the rightmost point of its support. Hence, with π1 := Law(B̄τAY
1
, BτAY

1
), the

measure π1
�{(x,y):y<x} has a density with respect to Lebesgue measure when projected onto the

first coordinate.
Defining these quantities in obvious analogy for j ∈ {2, . . . , n}, we need to prove τi+1

cl =

τi+1
op = τAY

i+1 assuming that πi has continuous projection onto the horizontal axis. To do so, we
decompose πi into free and trapped particles

πi
f := πi

�{(m,x):x>ψi
−(m)}, πi

t := πi
�{(m,x):x≤ψi

−(m)}.

Here πi
f refers to particles which are free to reach a new maximum, while πi

t refers to
particles which are trapped in the sense that they will necessarily hit Ri

op (and thus also Ri
cl)

before they reach a new maximum. For particles started in πi
f it follows precisely as above

that the hitting times of Ri+1
op and Ri+1

cl agree. For particles started in πi
t this is a consequence

of Lemma ??. Additionally, as above we find that πi+1
�{(x,y):y<x} has continuous projection onto

the horizontal axis.

Lemma 1 [?, Lemma 3.2] Let µ be a probability measure on R2 such that the projection
onto the horizontal axis projx µ is continuous (in the sense of not having atoms) and let
ψ : R→ R be a Borel function. Set

Rop := {(x, y) : x > ψ(y)}, Rcl := {(x, y) : x ≥ ψ(y)}.

Start a vertically moving Brownian motion B in µ and define

τop := inf{t ≥ 0 : (x, y + Bt) ∈ Rop}, τcl := inf{t ≥ 0 : (x, y + Bt) ∈ Rcl}.

Then τcl = τop almost surely.

2.2.4 The n-marginal Perkins/Hobson-Pedersen embedding

For ( f , s1, . . . , sn) ∈ S ⊗n we will use the notation f
si

:= min0≤s≤si f (s) to denote the running

minimum of the path up to time si. (Recall also that f̄si is the maximum of the path). In this
section we will consider a generalisation of the embeddings of Perkins [?] and Hobson and
Pedersen [?]. The construction of Perkins to solve the one-marginal problem with a trivial
starting law can be shown to simultaneously minimise E[h(B̄τ)] for any increasing function
h, and maximise E[k(Bτ)] for any increasing function k, over all solutions of the embedding
problem. Later Hobson and Pedersen [?] described a closely related construction which
minimised E[h(B̄τ)] over all solutions to the SEP with a general starting law. The solution
of Perkins took the form:

τP := inf{t ≥ 0 : Bt ≤ γ−(B̄t) or Bt ≥ γ+(Bt)}

for decreasing functions γ+, γ−. Hobson and Pedersen constructed, for the case of a general
starting distribution, a stopping time

τHP := inf{t ≥ 0 : Bt ≤ γ−(B̄t) or Bt ≥ G}

where G was an appropriately chosen, F0-measurable random variable. (Here, recalling the
discussion at the start of Section ??, we need to use the assumption that the filtration sup-
ports the Brownian motion, and an additional F0-measurable, independent uniform random
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variable; this additional information is enough then to construct a suitable G). They showed
that τHP minimised E[h(B̄τ)] for any increasing function, but it is clear that the second min-
imisation does not hold in general. In [?, Remark 2.3], the existence of a version of Perkins’
construction for a general starting law is conjectured. Below we will show that the construc-
tion of Hobson and Pedersen can be generalised to the multi-marginal case, and sketch an
argument that there are natural generalisations of the Perkins embedding to this situation, but
argue that there is no ‘canonical’ generalisation of the Perkins embedding. To be more spe-
cific, for given increasing functions h, k, the embedding(s) which maximise E[k(Bτn

)] over
all solutions to the multi-marginal embedding problem which minimise E[h(B̄τn )] will typi-
cally differ from the embeddings which minimise E[h(B̄τn )] over all maximisers of E[k(Bτn

)].

Theorem 2.6 (n-marginal ‘Hobson-Pedersen’ solution) Let (Ω,F , (Ft)t≥0,P) be sufficiently
rich that it supports a Brownian motion (Bt)t≥0 starting with law µ0, and an independent,
uniformly distributed random variable Y, which is F0-measurable.

Then there exist n left-barriers (Ri)n
i=1 and stopping times τ∗1 ≤ τ∗2 ≤ · · · ≤ τ∗n where

τ∗i < ∞ implies Bτ∗i = B̄τ∗i such that

τHP
1 = inf{t ≥ 0 : (B̄t, Bt) ∈ R1} ∧ τ∗1

and for 1 < i ≤ n

τHP
i = inf{t ≥ τHP

i−1 : (B̄t, Bt) ∈ Ri} ∧ τ∗i

the multi-stopping time (τHP
1 , . . . , τHP

n ) minimises

E

 n∑
i=1

B̄τi


among all increasing families of stopping times (τ1, . . . , τn) such that Bτ j ∼ µ j for all 1 ≤
j ≤ n and E[τn] < ∞.

Proof Fix a bounded and strictly increasing continuous function ϕ : R+ → R+ and consider
the continuous functions γ( f , s1, . . . , sn) =

∑n
i=1 f̄si , γ2( f , s1, . . . , sn) =

∑n
i=1 ϕ( f̄si ) f (si)2 de-

fined on S ⊗n. Pick, by Theorem ??, a minimizer τHP of (??) and, by Theorem ??, a γ2|γ-
monotone family of sets (Γi)n

i=1 supporting τHP = (τHP
i )n

i=1 such that for all i ≤ n

SGi,2 ∩ (Γ<i × Γi) = ∅.

By an essentially identical argument to that given in Theorem ??, we have

SGi,2 ⊇
{
(( f , s1, . . . , si), (g, t1, . . . , ti)) ∈ S ⊗i × S ⊗i : f (si) = g(ti), f̄si < ḡti

}
. (2.8)

Note that, given τHP
i , we can define stopping times τ∗i := τHP

i if BτHP
i

= B̄τHP
i

and to be
infinite otherwise.

For each i ≤ n we define

Ri
op :=

{
(m, x) : ∃( f , s1, . . . , si) ∈ Γi, f (si) = x, f̄si > m, x < m

}
and

Ri
cl :=

{
(m, x) : ∃( f , s1, . . . , si) ∈ Γi, f (si) = x, f̄si ≥ m, x < m

}
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with respective hitting times (τ0 = 0)

τi
op := inf{t ≥ τi−1

op : (B̄t, Bt) ∈ Ri
op}

and
τi
cl := inf{t ≥ τi−1

cl : (B̄t, Bt) ∈ Ri
cl}.

It can be shown inductively on i that firstly τi
cl ∧ τ

∗
i ≤ τHP

i ≤ τi
op ∧ τ

∗
i a.s., and secondly

τi
cl ∧ τ

∗
i = τi

op ∧ τ
∗
i a.s., proving the theorem. The proofs of these results are now essentially

identical to the proof of Theorem ??.

Of course, as before, a more general version of the statement (without the summation)
can be proved, at the expense of a more complicated argument.

Remark 4 The result above says nothing about the uniqueness of the solution. However the
following argument (also used in [?]) shows that any optimal solution (to both the primary
and secondary optimisation problem in the proof of Theorem ??) will have the same barrier
form: specifically, suppose that (τi) and (σi) are both optimal. Define a new stopping rule
which, at time 0, chooses either the stopping rule (τi), or the stopping rule (σi), each with
probability 1/2. This stopping rule is also optimal (for both the primary and secondary
rules), and the arguments above may be re-run to deduce the corresponding form of the
optimal solution.

In fact, a more involved argument would appear to give uniqueness of the resulting
barrier among the class of all such solutions; the idea is to use a Loynes-style argument
as before, but applied both to the barrier and the rate of stopping at the maximum. The
difficulty here is to argue that any stopping times of the form given above are essentially
equivalent to another stopping time which simply stops at the maximum according to some
rate which will be dependent only on the choice of the lower barrier (that is, in the language
above, P(Hi

x < τ∗i = τHP
i ≤ Hi

x+ε) is independent of the choice of τHP
i for any x and ε > 0,

where Hi
x := inf{t ≥ τHP

i−1 : Bt ≥ x). By identifying each of the possible optimisers with a
canonical form of the optimiser, and using a Loynes-style argument which combines two
stopping rules of the form above by taking the maximum of the left-barriers, and the fastest
stopping rate of the rules, one can deduce that there is a unique sequence of barriers and
stopping rate giving rise to an embedding of this form. We leave the details to the interested
reader.

Remark 5 We conclude by considering informally the ‘Perkins’-type construction implied
by our methods. Recall that in the single marginal case, where B0 = 0, the Perkins embed-
ding simultaneously both maximises the law of the minimum, and minimises the law of the
maximum. A slight variant of the methods above would suggest that one could adapt the
arguments above to consider the optimiser which has the same primary objective as above,
and also then aims to minimise the law of the minimum. In this case the arguments may
be run to give stopping regions (for each marginal) which are barriers in the sense that it is
the first hitting time of a left-barrier R which is left-closed in the sense that if (for a fixed
x) a path with f̄s = m, f

s
= j is stopped, then so too are all paths with ḡs = m′, g

s
= j′,

where (m′,− j′) ≺ (m,− j) and ≺ denotes the lexicographical ordering. With this definition,
the general outline argument given above can proceed as usual, however we do not do this
here since the final stage of the argument — showing that the closed and open hitting times
of such a region are equal — would appear to be much more subtle than previous examples,
and so we leave this as an open problem for future work.
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However, more notable is that in the multiple marginal case (and indeed, already to some
extent in the case of a single marginal with a general starting law), the Perkins optimality
property is no longer strictly preserved. To see why this might be the case (see also [?,
Remark 2.3]) we note that, in the case of a single marginal, with trivial starting law, the
embedding constructed via the double minimisation problems always stops at a time when
the process sets a new minimum or a new maximum. At any given possible stopping point,
the decision to stop should depend both on the current minimum, and the current maximum;
however when the process is at a current maximum, both the current position and the cur-
rent maximum are the same. In consequence, the decision to stop at e.g. a new maximum
will only depend on the value of the minimum, and the optimisation problem relating to
maximising a function of the maximum will be unaffected by the choice. In particular, it
is never important which optimisation is the primary optimisation problem, and which is
the secondary optimisation problem: in terms of the barrier-criteria established above, this
can be seen by observing that in lexicographic ordering, (m′,− j′) ≺ (m,− j) is equivalent to
(− j′,m′) ≺ (− j,m) if either m = m′ or j = j′.

On the other hand, with multiple marginals, we may have to consider possible stopping
at times which do not correspond to setting a new maximum or minimum. Consider for
example the case with µ0 = δ0, µ1 = (δ1 + δ−1)/2, µ2 = 2(δ2 + δ−2)/5 + δ0/5. In particular,
the first stopping time, τ1 must be the first hitting time of {−1, 1}, and if the process stops
at 0 at the second stopping time, then to be optimal, it must stop there the first time it hits
0 after τ1. If we consider the probability that we return to 0 after τ1, before hitting {−2, 2},
then this is larger than 1

5 , and we need to choose a rule to determine which of the paths
returning to 0 we should stop. It is clear that, if the primary optimisation is to minimise
the law of the maximum, then this decision would only depend on the running maximum,
while it will depend only on the running minimum if the primary and secondary objectives
are switched. In particular, the two problems give rise to different optimal solutions. The
difference here arises from the fact that we are not able to assume that all paths have either
the same maximum, or the same minimum. As a consequence, we do not, in general, expect
to recover a general version of the Perkins embedding, in the sense that there exists a multi-
marginal embedding which minimises the law of the maximum, and maximises the law of
the minimum simultaneously.

2.2.5 Further “classical” embeddings and other remarks

By combining the ideas and techniques from the previous sections and the techniques from
[?, Section 6.2] we can establish the existence of n-marginal versions of the Jacka and Val-
lois embeddings and their siblings (replacing the local time with a suitably regular additive
functional) as constructed in [?, Remark 7.13]. We leave the details to the interested reader.

We also remark that it is possible to get more detailed descriptions of the structure of
the different barriers. At this point we only note that all the embeddings presented above
have the nice property that their n-marginal solution restricted to the first n − 1 marginals
is in fact the n − 1 marginal solution. This is a direct consequence of the extension of the
Loynes argument to n-marginals as shown in the proof of Theorem ??. For a more detailed
description of the barriers for the n-marginal Root embedding we refer to [?].

We also observe that, as in [?, Section 6.3], it is possible to deduce multi-marginal em-
beddings of some of the embeddings presented in the previous sections, e.g. Root and Rost,
in higher dimensions. We leave the details to the interested reader.
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2.2.6 A n-marginal version of the monotone martingale coupling.

We next discuss the embedding giving rise to a multi-marginal version of the monotone
martingale transport plan. Note that we need an extra assumption on the starting law µ0, but
on µ0 only.

Theorem 2.7 (n-marginal martingale monotone transport plan) Assume that µ0 is con-
tinuous (in the sense that µ0(a) = 0 for all a ∈ R). Let c : R × R → R be three times
continuously differentiable with cxyy < 0. Put γi : S ⊗n → R, ( f , s1, . . . , sn) 7→ c( f (0), f (si))
and assume that (??) is well posed. Then there exist n barriers (Ri)n

i=1 such that defining

τ1 = inf{t ≥ 0 : (Bt − B0, Bt) ∈ R1}

and for 1 < i ≤ n

τi = inf{t ≥ τi−1 : (Bt − B0, Bt) ∈ Ri}

the multi-stopping time (τ1, . . . , τn) minimises

E[c(B0, Bτi )]

simultaneously for all 1 ≤ i ≤ n among all increasing families of stopping times (τ̃1, . . . , τ̃n)
such that Bτ̃ j ∼ µ j for all 1 ≤ j ≤ n. This solution is unique in the sense that for any solution
τ̃1, . . . , τ̃n of such a barrier-type we have τi = τ̃i.

Remark 6 In the final stage of writing this article we learned of the work of Nutz, Stebegg,
and Tan [?] on multi-period martingale optimal transport which (among various further re-
sults) provides an n-marginal version of the monotone martingale transport plan. Their meth-
ods are rather different from the ones employed in this article and in particular not related
to the Skorokhod problem, but their solution is the same as the one presented here (see also
[?]).

Proof (Proof of Theorem ??.) The overall strategy of the proof, and in particular the first
steps follow exactly the arguments encountered above. Fix a permutation κ of {1, . . . , n}.
We consider the functions γ̃1 = γκ(1), . . . , γ̃n = γκ(n) on S ⊗n and the corresponding family
of n-ary minimisation problems. Pick, by the n-ary version of Theorem ??, an optimizer
(τ1, . . . , τn) and, by the n-ary version of Theorem ??, a γ̃n| . . . |γ̃1-monotone family of sets
(Γ1, . . . , Γn) supporting (τ1, . . . , τn), i.e. for every i ≤ n we have P-a.s.

((Bs)s≤τi , τ1, . . . , τi) ∈ Γi,

and
(Γ<i × Γi) ∩ SGi,n = ∅.

We claim that for all 1 ≤ i ≤ n we have

SGi,n ⊇ {( f , s1, . . . , si), (g, t1, . . . , ti) : f (si) = g(ti), g(0) > f (0)}.

To this end, we have to consider ( f , s1, . . . , si), (g, t1, . . . , ti) ∈ S ⊗i satisfying f (si) = g(ti), f (si)−
f (0) > g(ti) − g(0) and consider two families of stopping times (σ j)n

j=i and (τ j)n
j=i together

with their modifications (σ̃ j)n
j=i and (τ̃ j)n

j=i as in Section ??. However, since the modifica-
tion of stopping times consists only of repeated swapping of the two stopping times what is
effectively sufficient to prove is the following:
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For f (s) − f (0) > g(t) − g(0) and any stopping times ρ, σ, τ, where ρ ≤ σ, we have for

σ̃ := σ1ρ≤τ + τ1ρ>τ, τ̃ := τ1ρ≤τ + σ1ρ>τ

the inequality

E[c( f (0), f (s) + Bσ)] + E[c(g(0), g(t) + Bτ)]

> E[c( f (0), f (s) + Bσ̃)] + E[c(g(0), g(t) + Bτ̃)],
(2.9)

and that this inequality is strict, provided that the set ρ > τ has positive probability.
To establish this inequality, of course only the parts were ρ > τ matters. Otherwise put,

the inequality remains equally valid if we replace all of σ, τ, σ̃, τ̃ by τ ∨ σ on the set ρ ≤ τ,
in which case we have σ̃ = τ, τ̃ = σ, σ ≥ τ. Hence to prove (??) it is sufficient to show for
α := Law(Bσ), β := Law(Bτ) and a := f (s) = g(t) that∫

c( f (0), a+x) dα(x)+
∫

c(g(0), a+x) dβ(x) >
∫

c( f (0), a+x) dβ(x)+
∫

c(g(0), a+x) dα(x).

To obtain this, we claim that

t 7→
∫

c(t, a + x) dα(x) −
∫

c(t, a + x) dβ(x)

is decreasing in t: This holds true since cx is concave and β precedes α in the convex order
(strictly if P(ρ > τ) > 0).

Having established the claim, we define for each 1 ≤ i ≤ n

Ri
cl := {(d, x) ∈ R+ × R : ∃(g, t1, . . . , ti) ∈ Γi, g(ti) = x, d ≥ g(ti) − g(0)}

and
Ri
op := {(d, x) ∈ R+ × R : ∃(g, t1, . . . , ti) ∈ Γi, g(ti) = x, d > g(ti) − g(0)}.

Following the argument used above, we define τ1
cl and τ1

op to be the first times the process
(Bt − B0, Bt)t≥0 hits R1

cl and R1
op respectively to see that actually τ1

cl ≤ τ1 ≤ τ
1
op.

It remains to show that τ1
cl = τ1

op (This has already been shown in [?, Prop. 3.1]; we
present the argument for completeness). To this end, note that the hitting time of (Bt −

B0, Bt)t≥0 into a barrier can equally well be interpreted as the hitting time of (−B0, Bt)t≥0

into a transformed (i.e. sheared through the transformation (d, x) 7→ (d − x, x) ) barrier.
The purpose of this alteration is that the process (−B0, Bt)t≥0 moves only vertically and we
can now apply Lemma ?? to establish that indeed τ1

cl = τ1
op. Observe that at this stage the

continuity assumption on µ0 is crucial.
We then proceed by induction.
As above, uniqueness and the irrelevance of the permutation follow from Loynes’ argu-

ment.

A very natural conjecture is then that Theorem ?? would give rise to a solution to the
peacock problem. The set of martingales (S t)t∈[0,T ] (more precisely the set of corresponding
martingale measures) carries a natural topology and given D ⊆ [0,T ] with T ∈ D the
set of martingales with prescribed marginals (µt)t∈D is compact (cf. [?]). By taking limits
of the solutions provided above along appropriate finite discretisations D ⊆ [0,T ], one
obtains a sequence of optimisers to the discrete problem whose limit (S t)t∈[0,T ] satisfies
S t ∼ µt, t ∈ [0,T ] and minimizes E[(S t − S 0)3] simultaneously for all t ∈ [0,T ] among all
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such martingales. However, since this is not the scope of the present article we leave details
for future work.

We note that this also provides a continuous time extension of the martingale monotone
coupling rather different from the constructions given by Henry-Labordère, Tan, and Touzi
[?] and Juillet [?].

3 Stopping Times and Multi-Stopping Times

For a Polish space X equipped with a probability measure m we define a new probability
space (X,G0, (G0

t )t≥0,P) with X := X × C0(R+),G0 := B(X) ⊗ F 0,G0
t := B(X) ⊗ F 0

t , P :=
m ⊗W, where B(X) denotes the Borel σ-algebra on X,W denotes the Wiener measure, and
(F 0

t )t≥0 the natural filtration. We denote the usual augmentation of G0 by Ga. Moreover, for
∗ ∈ {0, a} we set G∗0− := B(X) ⊗ F ∗0 . If we want to stress the dependence on (X,m) we write
Ga(X,m),Ga

t (X,m), . . ..
The natural coordinate process on X will be denoted by Y , i.e. for t ≥ 0 we set

Yt(x, ω) = (x, ωt).

Note that under P, in the case where X = R, the process Y can be interpreted as a Brownian
motion with starting law m. In particular, t 7→ Yt(x, ω) is continuous and G0

t = σ(Ys, s ≤ t).
We recall

S := {( f , s) : f ∈ C[0, s], f (0) = 0} , S X := (X, S )

and introduce the maps

r : C0(R+) × R+ → S , (ω, t) 7→ (ω�[0,t], t), (3.1)

rX : X × R+ → S X, (x, ω, t) 7→ (x, r(ω, t)). (3.2)

We equip C0(R+) with the topology of uniform convergence on compacts and S X with the
final topology inherited from X × R+ turning it into a Polish space. This structure is very
convenient due to the following proposition which is a particular case of [?, Theorem IV.
97].

Proposition 1 Optional sets / functions on X × R+ correspond to Borel measurable sets /

functions on S X. More precisely we have:

1. A set D ⊆ X × R+ is G0-optional iff there is a Borel set A ⊆ S X with D = r−1
X (A).

2. A process Z = (Zt)t∈R+
is G0-optional iff there is a Borel measurable H : S X → R such

that Z = H ◦ r.

A G0-optional set A ⊆ X × R+ is closed in X × R+ iff the corresponding set rX(A) is closed
in S X.

Definition 3 A G0-optional process Z = H ◦ rX is called S X- continuous (resp. l./u.s.c.) iff
H : S X → R is continuous (resp. l./u.s.c.).

Remark 7 Since the process t 7→ Yt(x, ω) is continuous the predictable and optional σ-
algebras coincide ([?, Theorems IV.67 (c) and IV.97]). Hence, every G0-stopping time τ is
predictable and, therefore, foretellable on the set {τ > 0}.
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Definition 4 Let Z : X → R be a measurable function which is bounded or positive. Then
we define E[Z|G0

t ] to be the unique G0
t -measurable function satisfying

E[Z|G0
t ](x, ω) := ZM

t (x, ω) :=
∫

Z(x, ω�[0,t] ⊕ ω′) dW(ω′).

Proposition 2 Let Z ∈ Cb(X). Then ZM
t defines an S X- continuous martingale (see Defini-

tion ??), ZM
∞ = limt→∞ ZM

t exists and equals Z.

Proof Up to a minor change of the probability space this is [?, Proposition 3.5].

3.1 Randomised stopping times

We set

M := {ξ ∈ P≤1(X × R+) : ξ(d(x, ω), ds) = ξx,ω(ds) P(d(x, ω)), ξx,ω ∈ P
≤1(R+)}

and equip it with the weak topology induced by the continuous and bounded functions on
X × R+. Each ξ ∈ M can be uniquely characterized by its cumulative distribution function
Aξ

x,ω(t) := ξx,ω([0, t]).

Definition 5 A measure ξ ∈ M is called randomized stopping time, written ξ ∈ RST, iff the
associated increasing process Aξ is G0-optional. If we want to stress the Polish probability
space (X,B(X),m) in the background, we write RST(X,m).

We remark that randomized stopping times are a subset of the so called P-measures
introduced by Doleans [?] (for motivation and further remarks see [?, Section 3.2]).

In the sequel we will mostly be interested in a representation of randomized stopping
times on an enlarged probability space. We will be interested in (X′,G′, (G′t )t≥0,P

′) where
X′ := X × [0, 1], P′(A1 × A2) = P(A)L(A2) (L denoting Lebesgue measure on R), G′ is the
completion of G0 ⊗ B([0, 1]), and (G′t )t≥0 the usual augmentation of (G0

t ⊗ B([0, 1]))t≥0.
The following characterization of randomized stopping times is essentially Theorem 3.8

of [?]. The only difference is the presence of the X in the starting position, however it is
easily checked that this does not affect the proof.

Theorem 3.1 Let ξ ∈ M. Then the following are equivalent:

1. There is a Borel function A : S X → [0, 1] such that the process A◦rX is right-continuous
increasing and

ξx,ω([0, s]) := A ◦ rX(x, ω, s) (3.3)

defines a disintegration of ξ wrt to P.
2. We have ξ ∈ RST(X,m).
3. For all f ∈ Cb(R+) supported on some [0, t], t ≥ 0 and all g ∈ Cb(X)∫

f (s)(g − E[g|G0
t ])(x, ω) ξ(dx, dω, ds) = 0. (3.4)

4. On the probability space (X′,G′, (G′t )t≥0,P
′), the random time

ρ(x, ω, u) := inf{t ≥ 0 : ξx,ω([0, t]) ≥ u} (3.5)

defines an G′-stopping time.

Remark 8 An immediate consequence of (??) is the closedness of RST wrt to the weak
topology induced by the continuous and bounded functions on X × R+ (cf. [?, Corollary
3.10] and Lemma ??).
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3.2 Randomised multi-stopping times

In this section, we extend the results of the last section to the case of multiple stopping.
Recall the notation defined in Section ??. In particular, for d ≥ 1, recall that

Ξd := {(s1, . . . , sd) ∈ Rd
+, s1 ≤ . . . ≤ sd}

and define Md to consist of all ξ ∈ P≤1(X × Ξd) such that

ξ(d(x, ω), ds1, . . . , dsd) = ξx,ω(ds1, . . . , dsd) P(d(x, ω)), ξx,ω ∈ P
≤1(Ξd).

Recall that (X̄, Ḡ, (Ḡt)t≥0, P̄) is defined by X̄ = X× [0, 1]d, P̄(A1×A2) = P(A1)Ld(A2), where
Ld denotes the Lebesgue measure on Rd and Ḡt is the usual augmentation of G0

t ⊗B([0, 1]d).
We mostly denote Ld(du) by du. For (u1, . . . , ud) ∈ [0, 1]d we often just write (u1, . . . , ud) =

u. We suppress the d- index in the notation for the extended probability space. It will either
be clear from the context which d we mean or we explicitly write down the corresponding
spaces.

Definition 6 A measure ξ ∈ Md is called randomised multi-stopping time, denoted by ξ ∈
RMSTd, if for all 0 ≤ i ≤ d − 1

r̃i+1,i(ξ(i+1)) ∈ RST(S ⊗i
X , ri(ξi)). (3.6)

We denote the subset of all randomised multi-stopping times with total mass 1 by RMST1
d.

If we want to stress the dependence on (X,m) we write RMSTd(X,m) or RMST1
d(X,m).

Remark 9 We can understand the condition (??) as follows. Consider the case where d = 2
and i = 1. Then the measure ξ2 is a sub-probability measure of the form: ξ2(d(x, ω), ds1, ds2) =

ξx,ω(ds1, ds2) P(d(x, ω)). Then r̃2,1(ξ2) is a sub-probability measure on S ⊗i
X × X × Ξ

1. This
measure can be disintegrated against r1(ξ1), which is a measure on S ⊗i

X , to give a mea-
sure on X × Ξ1. Intuitively, this measure is the conditional law, given ((Bs)s≤τ1 , τ1) of
((Bt − Bτ1 )t≥0, τ2 − τ1). The condition (??) is then a statement that the law of this pair is
then consistent with the law of a randomised stopping time.

Unlike for the randomised stopping times, there is no obvious analogue of (1), (2) or (3)
of Theorem ?? in the multi-stopping time setting. However below we prove a representation
result for randomised multi-stopping times in a similar manner to (4). The following lemma
(c.f. [?, Lemma 3.11]) then enables us to conclude that, on an arbitrary probability space, all
sequences of increasing stopping times can be represented as a randomised multi-stopping
time on our canonical probability space.

Lemma 2 Let B be a Brownian motion on some stochastic basis (Ω,H , (Ht)t≥0,Q) with
right continuous filtration. Let τ1, . . . , τn be an increasing sequence of H-stopping times
and consider

Φ : Ω→ C(R+) × Ξd, ω̄ 7→ ((Bt)t≥0, τ1(ω̄), . . . , τn(ω̄)).

Then ξ := Φ(Q) is a randomized multi-stopping time and for any measurable γ : S ⊗n → R
we have ∫

γ( f , s1, . . . , sn) rn(ξ)(d( f , s1, . . . , sn)) = EQ[γ((Bt)t≤τn , τ1, . . . , τn)]. (3.7)

If Ω is sufficiently rich that it supports a uniformly distributed random variable which isH0-
measurable, then for ξ ∈ RMST we can find an increasing family (τi)1≤i≤n of H-stopping
times such that ξ = Φ(Q) and (??) holds.
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Proof For notational convenience we show the first part for the case n = 2. Let B0 ∼ m.
It then follows by [?, Lemma 3.11] that r̃1,0(ξ) ∈ RST(R,m). Hence, we need to show that
r̃2,1(ξ) ∈ RST(S R, r1(ξ)), i.e. we have to show that ξ2

( f ,s) is r1(ξ)–a.s. a randomized stopping
time, where (ξ2

( f ,s))( f ,s) denotes a disintegration of ξ2 wrt r1(ξ). (Here and in the rest of the
proof we assume f (0) ∈ R and suppress the “x” from the notation).

First we show that r̃1(ξ1)(d( f , s), dω) = r1(ξ1)(d( f , s))W(dω). Take a measurable and
bounded F : S R ×C0(R+)→ R. Then, using the strong Markov property in the last step, we
have ∫

F(( f , s), ω) r̃1(ξ1)(d( f , s), dω) (3.8)

=

∫
F((rX(ω̃, s), θsω̃) ξ1(dω̃, ds)

=

∫
Ω

F(rX(B(ω), τ1(ω)), θτ1(ω)B(ω)) Q(dω)

=

∫
F(( f , s), ω̃) r1(ξ1)(d( f , s))W(dω̃) .

Let q be the projection from S R ×C0(R+)×R+ to S R ×C0(R+), and p be the projection from
X × Ξ2 → X × R+, p(ω, s1, s2) = (ω, s1). Then, q ◦ r̃2,1 = r̃1 ◦ p. Recalling that ξ1 = p(ξ2)
there is a disintegration of r̃2,1(ξ1,2) wrt r̃1(ξ1) which we denote by

ξ2
( f ,s1),ω(ds2) ∈ P≤1(R+).

Then, we set ξ2
( f ,s1)(dω, ds2) := ξ2

( f ,s1),ω(ds2)W(dω). Since dr̃1(ξ1) = dri(ξ1)dW the measures
ξ2

( f ,s1) define a disintegration of r̃2,1(ξ2) wrt r1(ξ1). We have to show that r1(ξ1) a.s. ξ2
( f ,s1) is

a randomized stopping time. We will show property (2) in Theorem ??, where now X =

S R,m = r1(ξ) and accordingly G0
t = B(S R) ⊗ F 0

t with usual augmentation Ga
t (cf. Section

??).
To this end, fix t ≥ 0 and let g : S R × C0(R+) → R be bounded and measurable and

set h = Em[g|Ga
t ]. Then, it holds that EQ[g(r1(B, τ1), θτ1 B)|Hτ1+t] = h(r1(B, τ1), θτ1 B). Using

rightcontinuity of the filtration H in the third step to conclude that τ2 − τ1 is an (Hτ1+t)t≥0

stopping time, this implies∫
g(( f , s), ω) ξ2

( f ,s),ω([0, t]) r1(ξ1)(d( f , s))W(dω)

=EQ
[
g(r1(B, τ1), θτ1 B)1τ2−τ1≤t

]
=EQ

[
EQ

[
g(r1(B, τ1), θτ1 B)|Hτ1+t

]
1τ2−τ1≤t

]
=EQ

[
h(r1(B, τ1), θτ1 B)1τ2−τ1≤t

]
=

∫
h(( f , s), ω) ξ2

( f ,s),ω([0, t]) r1(ξ1)(d( f , s))W(dω).

This shows the first part of the lemma.
To show the second part of the lemma we start by constructing an increasing sequence

of stopping times on the extended canonical probability space (X̄, Ḡ, (Ḡt)t≥0, P̄). By Theo-
rem ?? and the assumption that ξ1 ∈ RST(X,m) there is a Ḡ stopping time ρ1(x, ω, u) =

ρ1(x, ω, u1) defining a disintegration of ξ1 wrt P via∫
δρ1 (ds1) du .
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By assumption, r̃2,1(ξ2) ∈ RST(S X, r1(ξ1)). Hence, writing s′2 = s2 − s1 we can disintegrate

ξ2(d(x, ω), ds1, ds2) =

∫
ξ2

rX(x,ω,ρ1(x,ω,u1))(θρ1(x,ω,u1)ω, ds′2)δρ1(x,ω,u1)(ds1)du1

such that for r1(ξ1) a.e. (x, f , s1) the disintegration ξ2
(x, f ,s1) is a randomized stopping time.

Again by Theorem ?? there is a stopping time ρ̃2
x, f ,s1

(ω̃, u2) representing ξ2
(x, f ,s1) as in (??).

Then,
ρ2(x, ω, u1, u2) := ρ1(x, ω, u1) + ρ̃2

rX(x,ω,ρ1(x,ω,u1))(θρ1(x,ω,u1)ω, u2)

defines a Ḡ stopping time such that

(x, ω) 7→
∫

[0,1]d
δρ1(x,ω,u)(dt1)δρ2(x,ω,u)(dt2) du

defines a Ga- measurable disintegration of ξ2 w.r.t. P. We proceed inductively. To finish
the proof, let U be the [0, 1]d–valued uniform H0–measurable random variable. Then τi :=
ρi(B,U) define the required increasing family ofH stopping times.

Remark 10 Lemma ?? shows that optimizing over an increasing family of stopping times
on a rich enough probability space in (??) is equivalent to optimizing over randomized
multi-stopping times on the Wiener space.

Corollary 2 Let ξ ∈ RMST. On the extended canonical probability space (X̄, Ḡ, (Ḡt)t≥0, P̄)
there exists an increasing sequence (ρi)d

i=1 of Ḡ- stopping times such that

1. for u = (u1, . . . , ud) ∈ [0, 1]d and for each 1 ≤ i ≤ d we have ρi(x, ω, u) = ρi(x, ω, u1, . . . , ui);
2.

(x, ω) 7→
∫

[0,1]d
δρ1(x,ω,u)(dt1) · · · δρd(x,ω,u)(dtd) du (3.9)

defines a Ga- measurable disintegration of ξ w.r.t. P.

Next we introduce some notation to state another straightforward corollary. It is easy to
see that qd,i◦r̃d,i = r̃i◦pd,i, where qd,i is the projection from S ⊗i

X ×C(R+)×Ξd−i to S ⊗i
X ×C(R+),

and pd,i is the projection from X × Ξd to X × Ξi defined by

(x, ω, s1, . . . , sd) 7→ (x, ω, s1, . . . , si).

Recalling that ξi = pd,i(ξ), it follows that there exists a disintegration of r̃d,i(ξ) with respect
to r̃i(ξi), which we denote by:

ξ(x, f ,s1 ,...,si),ω(dsi+1, . . . , dsd) ∈ P(Ξd−i).

Moreover, we set

ξ(x, f ,s1 ,...,si)(dω, dsi+1, . . . , dsd) := ξ(x, f ,s1 ,...,si),ω(dsi+1, . . . , dsd)W(dω) ∈ P(C(R+) × Ξd−i).

The map (x, f , s1, . . . , si) 7→ ξ(x, f ,s1 ,...,si) inherits measurability from the joint measurability
of ((x, f , s1, . . . , si), ω) 7→ ξ(x, f ,s1 ,...,si),ω. In particular, ξ(x, f ,s1 ,...,si) defines a disintegration of
r̃d,i(ξ) w.r.t. ri(ξi), since dr̃i(ξi) = dWdri(ξi) by the same calculation as (??). Following
exactly the line of reasoning as in the first part of the proof of Lemma ?? yields
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Corollary 3 Let ξ ∈ RMSTd(X,m) and 1 ≤ i < d. Then, for ri(ξi) a.e. (x, f , s1, . . . , si) we
have ξ(x, f ,s1 ,...,si) ∈ RMSTd−i({0}, δ0).

Remark 11 We note that the last Corollary still holds for i = 0 by setting S ⊗0
R = R, r0(ξ j) =

m. Then, the result says that for a disintegration (ξx)x of ξ w.r.t. m for m-a.e. x ∈ X we have
ξx ∈ RMSTd. Of course this can also trivially be seen as a consequence of P = m ⊗W.

An important property of RMST is the following Lemma.

Lemma 3 RMST is closed w.r.t. the weak topology induced by the continuous and bounded
functions on X × Ξd.

Proof We fix 0 ≤ i ≤ d − 1 and consider the Polish space X̃ = S ⊗i
X with corresponding

X̃ = X̃ × C0(R+) and P = ri(ξi) ⊗W. To show the defining property (??) in Definition ??
we consider condition (2) in Theorem ??; the goal is to express measurability of Zt(x, ω) :=
ξi+1

x,ω( f ), f ∈ Cb([0, t]), x ∈ S ⊗i
X , ω ∈ C0(R+) in a different fashion. Note that a bounded Borel

function h is G0
t -measurable iff for all bounded Borel functions G : X̃ → R

E[hG] = E[hE[G|G0
t ]],

of course this does not rely on our particular setup. By a functional monotone class argu-
ment, for G0

t -measurability of Zt it is sufficient to check that

E[Zt(G − E[G|G0
t ])] = 0 (3.10)

for all G ∈ Cb(X̃). In terms of ξi+1, (??) amounts to

0 = E[Zt(G − E[G|G0
t ])] =

∫
P(dx, dω)

∫
ξi+1

x,ω(ds) f (s)(G − E[G|G0
t ])(x, ω)

=

∫
f (s)(G − E[G|G0

t ])(x, ω) r̃i+1,i(ξi+1)(dx, dω, ds),

which is a closed condition by Proposition ??.

Given ξ ∈ Md and s ≥ 0 we define the random measure ξ∧ s on Ξd by setting for A ⊆ Ξd

and each (x, ω) ∈ X

(ξ ∧ s)x,ω(A) =

∫
1A(s1 ∧ s, . . . , sd ∧ s) ξx,ω(ds1, . . . , dsd).

Assume that (Ms)s≥0 is a process on X. Then (Mξ
s )s≥0 is defined to be the probability

measure on Rd+1 such that for all bounded and measurable functions F : Rd+1 → R∫
Rd+1

F(y) Mξ
s (dy) =

∫
X×Ξd

F(M0(x, ω),Ms1 (x, ω), . . . ,Msd (x, ω)) (ξ∧s)(dx, dω, ds1, . . . , dsd).

This means that Mξ
s is the image measure of ξ∧ s under the map M : X×Ξd → Rd+1 defined

by
(x, ω, s1, . . . , sd) 7→ (M0(x, ω),Ms1 (x, ω), . . . ,Msd (x, ω)).

We write lims→∞ Mξ
s = Mξ if it exists.
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3.3 The set RMST(µ0, µ1, . . . , µn), compactness and existence of optimisers.

In this subsection, we specialise our setup to X = R,m = µ0 ∈ P(R) and d = n. Let
µ0, µ1, . . . , µn ∈ P(R) be centered, in convex order and with finite second moment2

∫
x2µi(dx) =

Vi < ∞ for all i ≤ n. In particular Vi ≤ Vi+1. For t ≥ 0 we set Bt(x, ω) = x + ωt . We extend
B to the extended probability space X̄ by setting B̄(x, ω, u) = B(x, ω). By considering the
martingale B̄2

t − t we immediately get (see the proof of Lemma 3.12 in [?] for more details)

Lemma 4 Let ξ ∈ RMSTn and assume that Bξ = (µ0, µ1, . . . , µn). Let (ρ1, . . . , ρn) be any
representation of ξ granted by Lemma ??. Then, the following are equivalent

1. Ē[ρi] < ∞ for all 1 ≤ i ≤ n
2. Ē[ρi] = Vi − V0 for all 1 ≤ i ≤ n
3. (B̄ρi∧t)t≥0 is uniformly integrable for all 1 ≤ i ≤ n.

Of course it is sufficient to test any of the above quantities for i = n.

Definition 7 We denote by RMST(µ0, µ1, . . . , µn) the set of all randomised multi-stopping
times satisfying one of the conditions in Lemma ??.

By pasting solutions to the one marginal Skorokhod embedding problem one can see
that the set RMST(µ0, µ1, . . . , µn) is non-empty. However, the most important property is

Proposition 3 The set RMST(µ0, µ1, . . . , µn) is compact wrt to the topology induced by the
continuous and bounded functions on C(R+) × Ξd.

Proof This is a direct consequence of the compactness of RST(µn) established in [?, Theo-
rem 3.14] as the set RMST(µ0, µ1, . . . , µn) is closed.

This result allows us to deduce one of the critical results for our optimisation problem:

Proof (Proof of Theorem ??) In the case where γ1, γ2 are bounded below, this follows from
Proposition ?? and the Portmanteau theorem. In the case where (??) holds, the argument
follows in an identical manner to the proof of Theorem 4.1 in [?].

3.4 Joinings of Stopping times

We now introduce the notion of a joining; these will be used later to define new stopping
times which are candidate competitors for our optimisation problem.

Definition 8 Let (Y, σ) be a Polish probability space. The set JOIN(m, σ) of joinings be-
tween P = m ⊗W and σ is defined to consist of all subprobability measures π ∈ P≤1(X ×
R+ × Y) such that

– projX×R+
(π�X×R+×B) ∈ RST(X,m) for all B ∈ B(Y);

– projX(π) = P
– projY(π) ≤ σ .

Example 2 An important example in the sequel will be the probability space (X,P) con-
structed from X = S ⊗i

R and m = ri(ξi) for ξ ∈ RMST1
n(R, µ0) and 0 ≤ i < n, where we set

S ⊗0 = R, r0(ξ0) = µ0 leading to X = S ⊗i
R × C(R+) and P = ri(ξi)W = r̃i(ξi) (cf. Corollary

??).
2 It is possible to relax this, see [?, Section 8].
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4 Colour Swaps, Multi-colour Swaps and Stop-Go pairs

In this section, we will define the general notion of stop-go pairs which was already intro-
duced in a weaker form in Section ??. We will do so in two steps. First we define colour
swap pairs and then we combine several colour swaps to get multi-colour swaps. Together,
they build the stop-go pairs.

Our basic intuition for the different swapping rules comes from the following picture.
We imagine that each of the measures µ1, . . . , µn carries a certain colour, i.e. the measure µi

carries colour i. The Brownian motion will be thought of being represented by a particle of
a certain colour: at time zero the Brownian particle has colour 1 and when it is stopped for
the i-th time it changes its colour from i to i + 1 (cf. Figure ?? in Section ??).

In identifying a stop-go pair, we want to consider two sub-paths, ( f , s1, . . . , si) and
(g, t1, . . . , ti), and imagine the future stopping rules, which will now be a sequence of colour
changes, obtained by concatenating a path ω onto the two paths. The simplest way of cre-
ating a new stopping rule is simply to exchange the coloured tails. This will preserve the
marginal law of the stopped process, while generating a new multi-stopping time. A gen-
eralisation of this rule would be to try and swap back to the original colour rule at the jth
colour change, where i < j. In this case, one would swap the colours until the first time
one of the paths would stop for the jth time, after which one attempts to revert to the previ-
ous stopping rule. Note however that this may not be possible: if the other path has not yet
reached the j − 1st colour change, then the rules cannot be stopped, since one would have
to switch from the jth colour to the j − 1st colour, which is not allowed. Instead, in such a
case, we simply keep the swapped colourings. We call recolouring rules of this nature colour
swaps (or i↔ j colour swaps). We will define such colour swap pairs in Section ??.

After consideration of these colour swaps, it is clear that the determination of when to
revert to the original stopping rule could be determined in a more sophisticated manner.
For example, instead of trying to revert only on the jth colour change, one could instead
try to revert on every colour change, and revert the first time it is possible to revert. This
recolouring rule gives us a second set of possible path swaps, and we call such pairs multi-
colour swaps. We will define these recolouring rules in Section ??. Of course, a multitude
of other rules can easily be created. For our purposes, colour swaps and multi-colour swaps
will be sufficient, but other generalisations could easily be considered, and may be important
for showing optimality in cases outside those considered in the current paper. We leave this
as an avenue for future research.

An important aspect of the recolouring rules are that they provide a recipe to map from
one stopping rule to another, and an important aspect that needs to be verified is that the new
stopping rule does indeed define a randomised multi-stopping time.

We fix ξ ∈ RMST1
n(R, µ0) and γ : S ⊗n

R → R. As in the previous section, we denote
ξi = ξ(1,...,i) = projX×(1,...,i)(ξ). For (x, f , s1, . . . , si) ∈ S ⊗i

R we write ( f , s1, . . . , si) and agree on
f (0) = x ∈ R. For ( f , s1, . . . , si) ∈ S ⊗i

R and (h, s) ∈ S we will often write ( f , s1, . . . , si)|(h, s)
instead of ( f , s1, . . . , si) ⊗ (h, s) ∈ S ⊗i+1

R to stress the probabilistic interpretation of condi-
tioning the continuation of ( f , s1, . . . , si) on (h, s).

4.1 Coloured particles and conditional randomised multi-stopping times.

By Corollary ?? and Remark ?? (for i = 0), for each 0 ≤ i ≤ n the measure ξ( f ,s1 ,...,si) is
ri(ξi)−a.s. a randomised multi-stopping time. For each 0 ≤ i ≤ n − 1 we fix a disintegration
(ξ( f ,s1 ,...,si),ω)( f ,s1 ,...,si),ω of r̃n,i(ξ) w.r.t. r̃i(ξi) and set ξ( f ,s1 ,...,si) = ξ( f ,s1 ,...,si),ωW(dω). We will
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need to consider randomised multi-stopping times conditioned on not yet having stopped
the particle of colour i + 1. To this end, observe that

ξi+1
( f ,s1 ,...,si) := projC(R+)×Ξ1 (ξ( f ,s1 ,...,si))

defines a disintegration of r̃i+1,i(ξi+1) wrt ri(ξi). By Definition ??, ξi+1
( f ,s1 ,...,si)

∈ RST a.s. and
we set

Aξ
( f ,s1 ,...,si)

(ω, t) := Aξ
( f ,s1 ,...,si)

(ω�[0,t], t) := (ξi+1
( f ,s1 ,...,si))ω([0, t])

which is well defined for ri(ξi)-almost every ( f , s1, . . . , si) by Theorem ??.
For ( f , s1, . . . , si) ∈ S ⊗i

R we define the conditional randomised multi-stopping time given
(h, s) ∈ S to be the (sub) probability measure ξ( f ,s1 ,...,si)|(h,s) on C(R+) × Ξn−i given by

(ξ( f ,s1 ,...,si)|(h,s))ω([0,Ti+1] × . . . × [0,Tn]) (4.1)

=

(ξ( f ,s1 ,...,si))h⊕ω((s, s + Ti+1] × . . . × (s, s + Tn]) if Aξ
( f ,s1 ,...,si)

(h, s) < 1
∆Aξ

( f ,s1 ,...,si)
(h, s)(ξ( f⊕h,s1 ,...,si ,si+s))ω([s, s + Ti+2] × . . . × [s, s + Tn]) if Aξ

( f ,s1 ,...,si)
(h, s) = 1,

where ∆Aξ
( f ,s1 ,...,si)

(h, s) = Aξ
( f ,s1 ,...,si)

(h, s) − Aξ
( f ,s1 ,...,si)

(h, s−). The second case in (??) cor-
responds to (ξi+1

( f ,s1 ,...,si)
)h⊕ω having an atom at time s which consumes all the remaining

(positive) mass, which is of course independent of ω. Note that this is non-zero only if
Aξ

( f ,s1 ,...,si)
(h, s−) < 1, that is, there is still mass remaining immediately before time s. This

causes a δ0 to appear in (??) below. Moreover, in this case it is possible that also all particles
of colour j ∈ {i + 2, . . . , n} are stopped at time s by (ξi+1

( f ,s1 ,...,si)
)h⊕ω. This is the reason for

the closed intervals in the second line on the right hand side of (??). Using Lemma ?? resp.
Corollary ?? it is not hard to see that (??) indeed defines a randomized multi-stopping time
(you simply have to consider the stopping times ρl(ω, u1, . . . , ul) representing ξ( f ,s1 ,...,si ) with
u1 > Aξ

( f ,s1 ,...,si)
for the first case and the second case is immediate).

Accordingly, we define the normalised conditional randomised multi-stopping times, by

ξ̄( f ,s1 ,...,si)|(h,s) :=


1

1−Aξ( f ,s1 ,...,si )(h,s)
· ξ( f ,s1 ,...,si)|(h,s) if Aξ

( f ,s1 ,...,si)
(h, s) < 1,

δ0ξ( f⊕h,s1 ,...,si ,si+s) if Aξ
( f ,s1 ,...,si)

(h, s−) < 1 and Aξ
( f ,s1 ,...,si)

(h, s) = 1,
δ0 · · · δ0 else.

(4.2)

We emphasize that the construction of ξ̄( f ,s1 ,...,si)|(h,s) and ξ( f ,s1 ,...,si)|(h,s) only relies on the fixed
disintegration of r̃n,i(ξ) w.r.t. r̃i(ξ). In particular, the map

(( f , s1, . . . , si), (h, s)) 7→ ξ̄( f ,s1 ,...,si)|(h,s) (4.3)

is measurable.
Recall the connection of Borel sets of S X and optional sets inX×R+ given by Proposition

??.

Definition 9 Let (X,m) be a Polish probability space. A set F ⊆ S X is called m-evanescent
iff r−1

X (F) ⊆ X × R+ is evanescent (wrt the probability space (X,P)) iff there exists A ⊆ X
such that P(A) = (m ⊗W)(A) = 1 and rX(A × R+) ∩ F = ∅.

By Corollary ??, ξ( f ,s1 ,...,si) ∈ RMSTn−i for ri(ξi) a.e. ( f , s1, . . . , si) ∈ S ⊗i. The next lemma
says that for typical ( f , s1, . . . , si)|(h, s) ∈ S ⊗i+1 this still holds for ξ̄( f ,s1 ,...,si)|(h,s).
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Lemma 5 Let ξ ∈ RMST1
n and fix 0 ≤ i < n.

1. ξ̄( f ,s1 ,...,si)|(h,s) ∈ RMST1
n−i outside a ri(ξi)-evanescent set.

2. If F : S ⊗n → R satisfies ξ(F◦rn) < ∞, then the set {( f , s1, . . . , si)|(h, s) : ξ̄( f ,s1 ,...,si)|(h,s)(F( f ,s1 ,...,si)|(h,s)⊕◦

rn−i) = ∞} is ri(ξi)-evanescent. In particular, this applies to F( f , s1, . . . , sn) = sn if
ξ ∈ RMST(µ0, . . . , µn).

Remark 12 Observe that a direct consequence of Corollary ??, assuming ξ(F ◦ rn) < ∞, is
that {( f , s1, . . . , si) : ξ( f ,s1 ,...,si)(F

( f ,s1 ,...,si)⊗ ◦ rn−i) = ∞} is a ri(ξi) null set.

Proof (Proof of Lemma ??) It is apparent that ξ( f ,s1 ...,si)|(h,s) ∈ RMST. By Corollary ??,
(??), and Remark ?? it is sufficient to show the claims under the additional hypothesis that
Aξ

( f ,s1 ...,si)
(h, s) < 1. Hence, consider

U1 = {( f , s1, . . . , si)|(h, s) : Aξ
( f ,s1 ...,si)

(h, s) < 1, ξ̄( f ,s1 ,...,si)|(h,s) < RMST1
n−i},

U2 = {( f , s1, . . . , si)|(h, s) : Aξ
( f ,s1 ...,si)

(h, s) < 1, ξ̄( f ,s1 ,...,si)|(h,s)(F( f ,s1 ,...,si)|(h,s)⊕ ◦ rn−i) = ∞}.

Set Aξ
( f ,s1 ,...,si)

(ω) := lims→∞ Aξ
( f ,s1 ,...,si)

(r(ω, s)). Then, ( f , s1, . . . , si)|(h, s) ∈ U1 is equivalent

to
∫

Aξ
( f ,s1 ,...,si)

(h ⊕ ω) W(dω) < 1. Set X = S ⊗i and m = ri(ξi) and recall that the natural
coordinate process on X is denoted by Y . Given a G0-stopping time τ on (X,G,P) we have
ri(ξi) a.s. by the strong Markov property and the fact that ξ is almost surely a finite stopping
time:

1 =

∫
Aξ

( f ,s1 ,...,si)
(ω)W(dω)

=

∫ [
1τ(ω)=∞Aξ

( f ,s1 ,...,si)
(ω) +

∫
1τ(ω)<∞Aξ

( f ,s1 ,...,si)
(ω�[0,τ] ⊕ ω̃)W(ω̃)

]
W(dω),

implying that P[((Ys)s≤τ, τ) ∈ U1] = 0.Hence, the first part follows from the optional section
Theorem.

Additionally, setting α(d(x, ω), dt) = δτ(x,ω)(dt)P(d(x, ω)) we have∫
U2

drX(α)(x, h, s) (1 − Aξ
x(h, s)) ξ̄x|(h,s)(F x|(h,s)⊕) ≤ ξ(F) < ∞,

implying rX(α)(U2) = 0. Hence, we have P[((Ys)s≤τ, τ) ∈ U2] = 0 proving the claim by the
optional section theorem, e.g. [?, Theorems IV 84 and IV 85] (see also Remark ??).

4.2 Colour swaps

As a first step towards the definition of stop-go pairs we introduce an important building
block, the colour swap pairs.

By Corollary ?? and Corollary ??, for ri(ξi) a.e. (g, t1, . . . , ti) there is an increasing se-
quence (ρ j

(g,t1 ,...,ti)
)n

j=i+1 of F̄ a-stopping times such that

ω 7→

∫
[0,1]n−i

δρi+1
(g,t1 ,...,ti )(ω,u)(dti+1) · · · δρn

(g,t1 ,...,ti )(ω,u)(dtn) du
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defines an F a- measurable disintegration of ξ(g,t1 ,...,ti) w.r.t. Wµ0 . Similarly, by Lemma ??,
outside an ri−1(ξi−1) evanescent set, for ( f , s1, . . . , si−1)|(h, s) ∈ S ⊗i

R such that ξ̄( f ,s1 ,...,si−1)|(h,s) ,

δ0 · · · δ0 there is an increasing sequence (ρ j
( f ,s1 ,...,si−1)|(h,s))

n
j=i of F̄ a-stopping times such that

ω 7→

∫
[0,1]n−i+1

δρi
( f ,s1 ,...,si−1)|(h,s)(ω,u)(dsi) · · · δρn

( f ,s1 ,...,si−1)|(h,s)(ω,u)(dsn) du

defines anF a- measurable disintegration of ξ̄( f ,s1 ,...,si−1)|(h,s) w.r.t.Wµ0 . We make the important
observation that, if Aξ

( f ,s1 ,...,si−1)(h, s) = 1 (hence in this situation ∆Aξ
( f ,s1 ,...,si−1)(h, s) > 0), we

have ρi
( f ,s1 ,...,si−1)|(h,s) ≡ δ0.

This representation allows us to couple the two stopping rules by taking realizations of
the ρ j

(g,t1 ,...,ti)
stopping times and ρk

( f ,s1 ,...,si)|(h,s) stopping times on the same probability space
Ω̄ f⊗h,g := C(R+) × [0, 1]n−i+1 where of course one of the u-coordinates is superfluous for the
ρ

j
(g,t1 ,...,ti)

stopping times. For ( f , s1, . . . , si−1), (h, s) and (g, t1, . . . , ti) as above and n > j ≥ i
we define

Λ
f⊗h,g
j :=

{
(ω, u) ∈ Ω̄ f⊗h,g : ρ j

( f ,s1 ,...,si−1)|(h,s)(ω, u) ∨ ρ j
(g,t1 ,...,ti)

(ω, u)

≤ ρ
j+1
( f ,s1 ,...,si−1)|(h,s)(ω, u) ∧ ρ j+1

(g,t1 ,...,ti)
(ω, u)

}
.

(4.4)

Note that this is the set where it is possible to swap the stopping rules from colour i up to
colour j and not swap the stopping rule for colours greater than j.

The set of colour swap pairs between colour i and j, i ≤ j < n, denoted by CSξ
i↔ j is

defined to consist of all ( f , s1, . . . , si−1) ∈ S ⊗i−1
R , (h, s) ∈ S and (g, t1, . . . , ti) ∈ S ⊗i

R such that
f ⊕ h(si−1 + s) = g(ti), 1 − Aξ

( f ,s1 ,...,si−1)(h, s) + ∆Aξ
( f ,s1 ,...,si−1)(h, s) > 0, and∫

γ( f ,s1 ,...,si−1)|(h,s)⊕(ω, si, . . . , sn) ξ̄( f ,s1 ,...,si−1)|(h,s)(dω, dsi, . . . , dsn)

+

∫
γ(g,t1 ,...,ti)⊗(ω, ti+1, . . . , tn) ξ(g,t1 ,...,ti)(dω, dti+1, . . . , dtn)

>

∫
W(dω)du1Λ f⊗h,g

j
(ω, u)

[∫
γ( f ,s1 ,...,si−1)|(h,s)⊗(ω, ti+1, . . . , t j, s j+1, . . . , sn)

δρi+1
(g,t1 ,...,ti )(ω,u)(dti+1) · · · δρ j

(g,t1 ,...,ti )(ω,u)(dt j) δρ j+1
( f ,s1 ,...,si−1)|(h,s)(ω,u)(ds j+1) · · · δρn

( f ,s1 ,...,si−1)|(h,s)(ω,u)(dsn)

+

∫
γ(g,t1 ,...,ti)⊕(ω, si, . . . , s j, t j+1, . . . , tn)

δρi
( f ,s1 ,...,si−1)|(h,s)(ω,u)(dsi) · · · δρ j

( f ,s1 ,...,si−1)|(h,s)(ω,u)(ds j) δρ j+1
(g,t1 ,...,ti )(ω,u)(dt j+1) · · · δρn

(g,t1 ,...,ti )(ω,u)(dtn)
]

+

∫
W(dω)du

(
1 − 1Λ f⊗h,g

j
(ω, u)

) [∫
γ( f ,s1 ,...,si−1)|(h,s)⊗(ω, ti+1, . . . , tn)

δρi+1
(g,t1 ,...,ti )(ω,u)(dti+1) · · · δρn

(g,t1 ,...,ti )(ω,u)(dtn)

+

∫
γ(g,t1 ,...,ti)⊕(ω, si, . . . , sn) δρi

( f ,s1 ,...,si−1)|(h,s)(ω,u)(dsi) · · · δρn
( f ,s1 ,...,si−1)|(h,s)(ω,u)(dsn)

]
. (4.5)

Moreover, we agree that (??) holds in each of the following cases

1. ξ̄( f ,s1 ,...,si−1)|(h,s) < RMST1
n−i+1, ξ(g,t1 ,...,ti) < RMST1

n−i;
2. the left hand side is infinite;



The geometry of multi-marginal Skorokhod Embedding 33

3. any of the integrals appearing is not well-defined.

Then we set CSξ
i =

⋃
j≥i CSξ

i↔ j.

Remark 13 1. In case thatΛ f⊕h,g
j , Ω̄ f⊗h,g it is not sufficient to only change the colours/stopping

rules from colour i to j. On the complement of Λ f⊕h,g, we have to switch the whole stop-
ping rule from colour i up to colour n in order to stay within the class of randomised
multi-stopping times. This is precisely the reason for the two big integrals appearing on
the right hand side of the inequality.

2. Recall that ρi
( f ,s1 ,...,si−1)|(h,s) = δ0 is possible so that it might happen that on both sides of

(??) the stopping rule of colour i is in fact the same and we only change the stopping
rule from colour i + 1 onwards.

3. In case of CSξ
i↔i the condition 1− Aξ

( f ,s1 ,...,si−1)(h, s) +∆Aξ
( f ,s1 ,...,si−1)(h, s) > 0 is not needed

since there is no colour swap pair (with finite well defined integrals) not satisfying this
condition.

4.3 Multi-colour swaps

Having introduced colour swap pairs we can now proceed and combine different colour
swaps into multi-colour swap pairs. As described above, the aim is now to swap back as soon
as possible. To this end, we consider for fixed i < n the following partition of Ω̄ f⊗h,g defined
in such a way that modifications of stopping rules in accordance to this partition transform
randomised multi-stopping times into randomised multi-stopping times (c.f. (??)).

Ω̄ f⊗h,g =

n⋃
j=i

(
Λ

f⊗h,g
j \ ∪

j−1
k=iΛ

f⊗h,g
k

)
, (4.6)

where
Λ

f⊗h,g
n :=

{
ρi+1

(g,t1 ,...,ti) < ρ
i
( f ,s1 ,...,si−1)|(h,s), ρ

n
(g,t1 ,...,ti) < ρ

n
( f ,s1 ,...,si−1)|(h,s)

}
.

This is indeed a partition: The different sets are disjoint by construction. Hence, the right
hand side of (??) is contained in the left hand side. We need to show that also the converse
conclusion holds. Take (ω, u) ∈ Ω̄ f⊗h,g. If

ρi+1
(g,t1 ,...,ti)(ω, u) ≥ ρi

( f ,s1 ,...,si−1)|(h,s)(ω, u),

then (ω, u) ∈ Λ f⊕h,g
i . Otherwise, it holds that

ρi+1
(g,t1 ,...,ti)(ω, u) < ρi

( f ,s1 ,...,si−1)|(h,s)(ω, u) ≤ ρi+2
( f ,s1 ,...,si−1)|(h,s)(ω, u)

and either
ρi+2

(g,t1 ,...,ti)(ω, u) ≥ ρi+1
( f ,s1 ,...,si−1)|(h,s)(ω, u)

or
ρi+2

(g,t1 ,...,ti)(ω, u) < ρi+1
( f ,s1 ,...,si−1)|(h,s)(ω, u) ≤ ρi+3

( f ,s1 ,...,si−1)|(h,s)(ω, u).

In the former case, we have (ω, u) ∈ Λ f⊕h,g
i+1 \ Λ

f⊕h,g
i and in the latter case we have either

ρi+3
(g,t1 ,...,ti)(ω, u) ≥ ρi+2

( f ,s1 ,...,si−1)|(h,s)(ω, u)
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or
ρi+3

(g,t1 ,...,ti)(ω, u) < ρi+2
( f ,s1 ,...,si−1)|(h,s)(ω, u) ≤ ρi+4

( f ,s1 ,...,si−1)|(h,s)(ω, u).

By induction, the claim follows. We put Λ̄ f⊗h,g
j = Λ

f⊗h,g
j \ ∪

j−1
k=iΛ

f⊗h,g
k . Then, the set of all

multi-colour swap pairs starting at colour i, denoted by MCSξ
i , is defined to consist of all

( f , s1, . . . , si−1) ∈ S ⊗i−1
R , (h, s) ∈ S , (g, t1, . . . , ti) ∈ S ⊗i

R such that f ⊕ h(si−1 + s) = g(ti) and∫
γ( f ,s1 ,...,si−1)|(h,s)⊕(ω, si, . . . , sn) ξ̄( f ,s1 ,...,si−1)|(h,s)(dω, dsi, . . . , dsn)

+

∫
γ(g,t1 ,...,ti)⊗(ω, ti+1, . . . , tn) ξ(g,t1 ,...,ti)(dω, dti+1, . . . , dtn)

>

∫
W(dω)du

n−1∑
j=i

[
1Λ̄

f⊗h,g
j

(ω, u)
∫

γ( f ,s1 ,...,si−1)|(h,s)⊗(ω, ti+1, . . . , t j, s j+1, . . . , sn)

δρi+1
(g,t1 ,...,ti )(ω,u)(dti+1) · · · δρ j

(g,t1 ,...,ti )(ω,u)(dt j) δρ j+1
( f ,s1 ,...,si−1)|(h,s)(ω,u)(ds j+1) · · · δρn

( f ,s1 ,...,si−1)|(h,s)(ω,u)(dsn)

+

∫
γ(g,t1 ,...,ti)⊕(ω, si, . . . , s j, t j+1, . . . , tn)

δρi
( f ,s1 ,...,si−1)|(h,s)(ω,u)(dsi) · · · δρ j

( f ,s1 ,...,si−1)|(h,s)(ω,u)(ds j) δρ j+1
(g,t1 ,...,ti )(ω,u)(dt j+1) · · · δρn

(g,t1 ,...,ti )(ω,u)(dtn)
]

+

∫
W(dω)du

1 − n−1∑
j=i

1Λ̄
f⊗h,g
j

(ω, u)

 [∫ γ( f ,s1 ,...,si−1)|(h,s)⊗(ω, ti+1, . . . , tn)

δρi+1
(g,t1 ,...,ti )(ω,u)(dti+1) · · · δρn

(g,t1 ,...,ti )(ω,u)(dtn)

+

∫
γ(g,t1 ,...,ti)⊕(ω, si, . . . , sn) δρi

( f ,s1 ,...,si−1)|(h,s)(ω,u)(dsi) · · · δρn
( f ,s1 ,...,si−1)|(h,s)(ω,u)(dsn)

]
. (4.7)

As in the case of colour swaps we agree that (??) holds in each of the following cases

1. ξ̄( f ,s1 ,...,si−1)|(h,s) < RMST1
n−i+1, ξ(g,t1 ,...,ti) < RMST1

n−i;
2. the left hand side is infinite;
3. any of the integrals appearing is not well-defined.

Remark 14 1. Note that when ρi
( f ,s1 ,...,si−1)|(h,s) ≡ δ0 we have Ω̄ f⊗h,g = Λ

f⊗h,g
i . Inserting this

case into (??) we see that both sides agree so that there are no multi-colour swap pairs
satisfying ρi

( f ,s1 ,...,si−1)|(h,s) ≡ δ0.

2. Observe that in the definition of MCSξ
i we do not need to impose the condition 1 −

Aξ
( f ,s1 ,...,si−1)(h, s) + ∆Aξ

( f ,s1 ,...,si−1)(h, s) > 0 by Remark ??.

4.4 Stop-go pairs

Finally, we combine the previous two notions.

Definition 10 Let ξ ∈ RMST1
n(R, µ0). The set of stop-go pairs of colour i relative to ξ, SGξ

i ,
is defined by SGξ

i = CSξ
i ∪MCSξ

i . We define the stop-go pairs of colour i in the wide sense

by ŜG
ξ

i = SGξ
i ∪ {( f , s1, . . . , si−1)|(h, s) ∈ S ⊗i

R : Aξ
( f ,s1 ,...,si−1)(h, s) = 1} × S ⊗i

R .

The set of stop-go pairs relative to ξ is defined by SGξ :=
⋃

1≤i≤n SGξ
i . The stop-go pairs

in the wide sense are ŜG
ξ

:=
⋃

1≤i≤n ŜG
ξ

i .
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Lemma 6 Every stop-go pair is a stop-go pair in the wide sense, i.e. SGi ⊆ ŜG
ξ

i for any
1 ≤ i ≤ n.

Proof By loading notation, this follows using exactly the same argument as for the proof of
[?, Lemma 5.4].

Remark 15 As in [?], we observe that the sets SGξ and ŜG
ξ

are both Borel subsets of
S ⊗i × S ⊗i, since the maps given in e.g. (??) are measurable. In contrast, the set SG is in
general just co-analytic.

5 The monotonicity principle

The aim of this section is to prove the main results, Theorem ?? and the closely related The-
orem ??. The structure of this section follows closely the structure of the proof of the cor-
responding results, Theorem 5.7 (resp. Theorem 5.16), in [?]. For the benefit of the reader,
and to keep our presentation compact, we concentrate on those aspects of the proof where
additional insight is needed to account for the multi-marginal aspects of the problem. We
refer the reader to [?] for other details.

The essence of the proof is to first show that if we have a candidate optimiser ξ, and a
joining rule π which identifies stop-go pairs, we can construct an infinitesimal improvement
ξπ, which will also be a candidate solution, but which will improve the objective. It will
follow that the joining π will place no mass on the set of stop-go pairs. The second part of
the proof shows that we can strengthen this to give a pointwise result, where we can exclude
any stop-go pair from a set related to the support of the optimiser.

Important convention: Throughout this section, we fix a function γ : S ⊗n → R and a
measure ξ ∈ RMST1(µ0, µ1, . . . , µn). Moreover, for each 0 ≤ i ≤ n−1 we fix a disintegration
(ξ( f ,s1 ,...,si),ω)( f ,s1 ,...,si),ω of r̃n,i(ξ) w.r.t. r̃i(ξi) and set ξ( f ,s1 ,...,si) = ξ( f ,s1 ,...,si),ωW(dω).

Recall the map projS ⊗i from Section ??.

Definition 11 A family of Borel sets Γ = (Γ1, . . . , Γn) with Γi ⊆ S ⊗i
R is called (γ, ξ)-

monotone iff for all 1 ≤ i ≤ n
ŜG

ξ

i ∩
(
Γ<i × Γi

)
= ∅,

where

Γ<i = {( f , s1, . . . , si−1, s) : there exists (g, s1, . . . , si−1, t) ∈ Γi, si−1 ≤ s < t, g�[0,s] = f },

and projS ⊗i−1 (Γi) ⊆ Γi−1.

Theorem 5.1 Assume that γ : S ⊗n → R is Borel measurable. Assume that (??) is well posed
and that ξ ∈ RMST(µ0, . . . , µ1) is an optimizer. Then there exists a (γ, ξ)-monotone family
of Borel sets Γ = (Γ1, . . . , Γn) such that ri(ξ)(Γi) = 1 for each 1 ≤ i ≤ n.

The proof of Theorem ?? is based on the following two propositions.

Proposition 4 Let γ : S ⊗n
R → R be Borel. Assume that (??) is well posed and that ξ ∈

RMST(µ0, . . . , µ1) is an optimizer. Fix 1 ≤ i ≤ n and set X = S ⊗i−1
R ,m = ri−1(ξi−1). Then

(rX ⊗ Id)(π)(SGξ
i ) = 0

for all π ∈ JOIN(ri−1(ξi−1), ri(ξi)).
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Proposition 5 Let (X,m) and (Y, ν) be Polish probability spaces and E ⊆ S X × Y a Borel
set. Then the following are equivalent:

1. (rX ⊗ Id)(π)(E) = 0 for all π ∈ JOIN1(m, ν).
2. E ⊆ (F × Y) ∪ (S X × N) for some evanescent set F ⊆ S X and a ν-null set N ⊆ Y.

Proof This is a straightforward modification of [?, Proposition 5.9] to the case of a general
starting law (see also the proof of [?, Theorem 7.4]).

Remark 16 Note that Proposition ?? is closely related to the classical section theorem (cf.
[?, Theorems IV 84 and IV 85]) which in our setup implies the following statement:

Let (X,B,m) be a Polish probability space. E ⊆ S X be Borel. Then the following are
equivalent:

1. rX(α)(E) = 0 for all α ∈ RST(X,m)
2. E is m-evanescent
3. P(((Ys)s≤τ, τ) ∈ E) = 0 for every G0-stopping time τ.

Proof (Proof of Theorem ??) Fix 1 ≤ i ≤ n. Set X = S ⊗i−1
R ,m = ri−1(ξi−1) and consider

the corresponding probability space (X,P). By Proposition ?? (rX ⊗ Id)(π)(SGξ
i ) = 0 for all

π ∈ JOIN1(ri−1(ξi−1), ri(ξi)). Applying Proposition ?? with Y = S ⊗i
R , ν = ri(ξi) we deduce

that there exists a ri−1(ξi−1)-evanescent set F̃i and a ri(ξi)-null set Ni such that

SGξ
i ⊆ (F̃i × S ⊗i

R ) ∪ (S ⊗i
R × Ni).

Put Fi := {(g, t1, . . . , ti) ∈ S ⊗i
R : ∃( f , t1, . . . , ti−1, si) ∈ F̃i, ti ≥ si, g ≡ f on [0, si]}. Then, Fi is

ri−1(ξi−1)-evanescent and
SGξ

i ⊆ (Fi × S ⊗i
R ) ∪ (S ⊗i

R × Ni).

Setting Γ̃i = S ⊗i
R \ (Fi ∪ Ni) we have ri(ξi)(Γ̃i) = 1 as well as SGξ

i ∩ (Γ̃<i × Γ̃i) = ∅. Define

Γi := Γ̃i ∩ {(g, t1, . . . , ti) ∈ S ⊗i
R : Aξ

(g,t1 ,...,ti−1)(θti−1 (g)�[0,s], s) < 1 for all s < ti − ti−1},

where θu(g)(·) = g(· + u) − g(u) as usual. Then ri(ξi)(Γi) = 1 and Γ<i ∩ {(g, t1, . . . , ti) ∈ S ⊗i
R :

Aξ
(g,t1 ,...,ti−1)(θti−1 (g)�[0,ti−ti−1], ti − ti−1) = 1} = ∅ so that ŜG

ξ

i ∩ (Γ<i × Γi) = ∅. Finally, we can
take a Borel subset of Γi with full measure and taking suitable intersections we can assume
that projS ⊗i−1

R
(Γi) ⊆ Γi−1.

5.1 Proof of Proposition ??

For notational convenience we will only prove the statement for the colour swap pairs CSξ
i .

As the colour swap pairs are the main building block for the multi-colour swap pairs MCSξ
i

it will be immediate how to adapt the proof for the general case. Moreover, it is clearly
sufficient to show that for every j ≥ i we have (rX ⊗ Id)(π)(CSξ

i↔ j) = 0 for each π ∈

JOIN(ri−1(ξi−1), ri(ξi)).
Working towards a contradiction, we assume that there is an index i ≤ j ≤ n and

π ∈ JOIN(ri−1(ξi−1), ri(ξi)) such that (rX ⊗ Id)(π)(CSξ
i↔ j) > 0. By the definition of joinings

(Definition ??) also π�(rX⊗Id)−1(E) ∈ JOIN(ri−1(ξi−1), ri(ξi)) for any E ⊆ S ⊗i−1
R × S ⊗i

R . Hence,
by considering (rX ⊗ Id)(π)�CSξ

i↔ j
we may assume that (rX ⊗ Id)(π) is concentrated on CSξ

i↔ j.
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Recall that (by definition) there is no colour swap pair (( f , s1, . . . , si−1)|(h, s), (g, t1, . . . , ti))
with Aξ

( f ,s1 ,...,si−1)(h, s) = 1 and ∆Aξ
( f ,s1 ,...,si−1)(h, s) = 0. Hence,

π[(( f , s1, . . . , si−1)|(h, s), (g, t1, . . . , ti)) : Aξ
( f ,s1 ,...,si−1)(h, s) = 1 and ∆Aξ

( f ,s1 ,...,si−1)(h, s) = 0] = 0.
(5.1)

We argue by contradiction and define two modifications of ξ, ξE and ξL, based on the
definition of CSξ

i↔ j such that their convex combination yields a randomised multi-stopping
time embedding the same measures as ξ and leading to strictly less cost. The stopping time
ξE will stop paths earlier than ξ, and ξL will stop paths later than ξ.

By Lemma ?? and Corollary ??, for ( f , s1, . . . , si−1)|(h, s) outside an ri−1(ξi−1) - evanes-
cent set and (g, t1, . . . , ti) outside an ri(ξi) null set there are increasing sequences of Ḡa-
stopping times (ρ j

( f ,s1 ,...,si−1)|(h,s))
n
j=i and (ρ j

(g,t1 ,...,ti)
)n

j=i+1 defining Ḡa-measurable disintegrations
of ξ( f ,s1 ,...,si−1)|(h,s) and ξ(g,t1 ,...,ti) as in (??).

For B ⊆ C(R+) × Ξn and (g, t1, . . . , ti) ∈ S ⊗i
R we set

B(g,t1 ,...,ti)⊕ := {(ω,Ti, . . . ,Tn) ∈ C(R+)×Ξn−i+1 : (g⊕ω, t1, . . . , ti−1, ti + Ti, . . . , ti + Tn) ∈ B}

and

B(g,t1 ,...,ti)⊗ := {(ω,Ti+1, . . . ,Tn) ∈ C(R+)×Ξn−i : (g⊕ω, t1, . . . , ti, ti + Ti+1, . . . , ti + Tn) ∈ B}.

Observe that both B(g,t1 ,...,ti)⊕ and B(g,t1 ,...,ti)⊗ are then Borel. Note that if we define F(g, t1, . . . , tn) =

1B(g, t1, . . . , tn), then F( f ,s1 ,...,si)⊕(η, ti+1, . . . , tn) = 1B( f ,s1 ,...,si )⊕ (η, ti+1, . . . , tn), and similarly for
B(g,t1 ,...,ti)⊗. Observe, that for ( f , s1, . . . , si−1)|(h, s) with Aξ

( f ,s1 ,...,si−1)(h, s) = 1 and ∆Aξ
( f ,s1 ,...,si−1)(h, s) >

0 it follows from (??) that

ξ( f ,s1 ,...,si−1)|(h,s)(B(g,t1 ,...,ti)⊕) = ∆Aξ
( f ,s1 ,...,si−1)(h, s)ξ( f⊕h,s1 ,...,si−1 ,si−1+s)(B(g,t1 ,...,ti)⊗).

Then, we define the measure ξE by setting for B ⊆ C(R+) × Ξn (recall Λ f⊗h,g
j from (??))

ξE(B) := (5.2)

ξ(B) −
∫

ξ( f ,s1 ,...,si−1)|(h,s)(B( f⊕h,s1 ,...,si−1 ,si−1+s)⊕) (rX ⊗ Id)(π)(d(( f , s1, . . . , si−1)|(h, s)), d(g, t1, . . . , ti))

+

∫
(rX ⊗ Id)(π)(d(( f , s1, . . . , si−1)|(h, s)), d(g, t1, . . . , ti))(

1 − Aξ
( f ,s1 ,...,si−1)(h, s) + 1Aξ( f ,s1 ,...,si−1)(h,s)=1∆Aξ

( f ,s1 ,...,si−1)(h, s)
)

[∫
C(R+)

∫
[0,1]n−i+1

1Λ
f⊗h,g
j

(ω, u)1B( f⊕h,s1 ,...,si−1 ,si−1+s)⊗

(
ω, ρi+1

(g,t1 ,...,ti)(ω, u), . . . ,

ρ
j
(g,t1 ,...,ti)

(ω, u), ρ j+1
( f ,s1 ,...,si−1)|(h,s)(ω, u), . . . , ρn

( f ,s1 ,...,si−1)|(h,s)(ω, u)
)
W(dω) du

+

∫
C(R+)

∫
[0,1]n−i+1

(
1 − 1Λ f⊗h,g

j
(ω, u)

)
1B( f⊕h,s1 ,...,si−1 ,si−1+s)⊗

(
ω, ρi+1

(g,t1 ,...,ti)(ω, u), . . . , ρn
(g,t1 ,...,ti)(ω, u)

)
W(dω) du

]
.



38 Martin Huesmann

Similarly we define the measure ξL by setting for B ⊆ C(R+) × Ξn

ξL(B) := (5.3)

ξ(B) −
∫ (

1 − Aξ
( f ,s1 ,...,si−1)(h, s) + 1Aξ( f ,s1 ,...,si−1)(h,s)=1∆Aξ

( f ,s1 ,...,si−1)(h, s)
)
ξ(g,t1 ,...,ti)(B

(g,t1 ,...,ti)⊗)

(rX ⊗ Id)(π)(d(( f , s1, . . . , si−1)|(h, s)), d(g, t1, . . . , ti))

+

∫ (
1 − Aξ

( f ,s1 ,...,si−1)(h, s) + 1Aξ( f ,s1 ,...,si−1)(h,s)=1∆Aξ
( f ,s1 ,...,si−1)(h, s)

)
[∫

C(R+)

∫
[0,1]n−i+1

1Λ
f⊗h,g
j

(ω, u)1B(g,t1 ,...,ti )⊕

(
ω, ρi

( f ,s1 ,...,si−1)|(h,s)(ω, u), . . . ,

ρ
j
( f ,s1 ,...,si−1)|(h,s)(ω, u), ρ j+1

(g,t1 ,...,ti)
(ω, u), . . . , ρn

(g,t1 ,...,ti)(ω, u)
)
W(dω) du

+

∫
C(R+)

∫
[0,1]n−i+1

(
1 − 1Λ f⊗h,g

j
(ω, u)

)
1B(g,t1 ,...,ti )⊕

(
ω, ρi

( f ,s1 ,...,si−1)|(h,s)(ω, u), . . . , ρn
( f ,s1 ,...,si−1)|(h,s)(ω, u)

)
W(dω) du

]
(rX ⊗ Id)(π)(d(( f , s1, . . . , si−1)|(h, s)), d(g, t1, . . . , ti)).

Then, we define a competitor of ξ by ξπ := 1
2 (ξE + ξL). We will show that ξπ ∈

RMST(µ0, . . . , µn) and
∫
γ dξ >

∫
γ dξπ which contradicts optimality of ξ.

First of all note that from the definition of Λ f⊕h,g
j in (??) both ξE , ξL ∈ RMST (also

compare (??)). Hence, also ξπ ∈ RMST. Next we show that ξπ ∈ RMST(µ0, . . . , µn).
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For bounded and measurable F : C(R) × Ξn → R (??) and (??) imply by using (??) and
(??)

2
∫

F d(ξ − ξπ) (5.4)

=

∫
(rX ⊗ ri)(π)(d(( f , s1, . . . , si−1)|(h, s)), d(g, t1, . . . , ti))(
1 − Aξ

( f ,s1 ,...,si−1)(h, s) + 1Aξ( f ,s1 ,...,si−1)(h,s)=1∆Aξ
( f ,s1 ,...,si−1)(h, s)

)
×(∫

F( f ,s1 ,...,si−1)|(h,s)⊕(ω, S i, . . . , S n) ξ̄( f ,s1 ,...,si−1)|(h,s)(dω, dS i, . . . , dS n)

+

∫
F(g,t1 ,...,ti)⊗(ω,Ti+1, . . . ,Tn) ξ(g,t1 ,...,ti)(dω, dTi+1, . . . , dTn)

−

∫
C(R+)

∫
[0,1]n−i+1

W(dω)du1Λ f⊗h,g
j

(ω, u)[∫
F( f ,s1 ,...,si−1)|(h,s)⊗(ω,Ti+1, . . . ,T j, S j+1, . . . , S n)

δρi+1
(g,t1 ,...,ti )(ω,u)(dTi+1) · · · δρ j

(g,t1 ,...,ti )(ω,u)(dT j) δρ j+1
( f ,s1 ,...,si−1)|(h,s)(ω,u)(dS j+1) · · · δρn

( f ,s1 ,...,si−1)|(h,s)(ω,u)(dS n)

−

∫
F(g,t1 ,...,ti)⊕(ω, S i, . . . , S j,T j+1, . . . ,Tn)

δρi
( f ,s1 ,...,si−1)|(h,s)(ω,u)(dS i) · · · δρ j

( f ,s1 ,...,si−1)|(h,s)(ω,u)(dS j) δρ j+1
(g,t1 ,...,ti )(ω,u)(dT j+1) · · · δρn

(g,t1 ,...,ti )(ω,u)(dTn)
]

−

∫
W(dω)du

(
1 − 1Λ f⊗h,g

j
(ω, u)

) [∫
F( f ,s1 ...,si−1 |(h,s)⊗(ω,Ti+1, . . . ,Tn)

δρi+1
(g,t1 ,...,ti )(ω,u)(dTi+1) · · · δρn

(g,t1 ,...,ti )(ω,u)(dTn)

−

∫
F(g,t1 ,...,ti)⊕(ω, S i, . . . , S n) δρi

( f ,s1 ,...,si−1)|(h,s)(ω,u)(dS i) · · · δρn
( f ,s1 ,...,si−1)|(h,s)(ω,u)(dS n)

])
.

Next we show that (??) extends to nonnegative F satisfying ξ(F) < ∞ in the sense that it is
well defined with a value in [−∞,∞). To this end, we will show that∫

(rX ⊗ ri)(π)(d(( f , s1, . . . , si−1)|(h, s)), d(g, t1, . . . , ti))(
1 − Aξ

( f ,s1 ,...,si−1)(h, s) + 1Aξ( f ,s1 ,...,si−1)(h,s)=1∆Aξ
( f ,s1 ,...,si−1)(h, s)

)
× (5.5)[∫

F( f ,s1 ,...,si−1)|(h,s)⊕(ω, S i, . . . , S n) ξ̄( f ,s1 ,...,si−1)|(h,s)(dω, dS i, . . . , dS n)

+

∫
F(g,t1 ,...,ti)⊗(ω,Ti+1, . . . ,Tn) ξ(g,t1 ,...,ti)(dω, dTi+1, . . . , dTn)

]
< ∞

Since π ∈ JOIN(ri−1(ξi−1), ri(ξi)) the integral of the second term in the square brackets in
(??) is bounded by ξ(F), and hence is finite. To see that the first term is also finite, write
projX×R+

(π) =: π1 and note that π1 ∈ RST(S ⊗i−1
R , ri−1(ξi−1)). Hence, the disintegration

(π1)( f ,s1 ,...,si−1) of π1 wrt ri−1(ξi−1) is a.s. in RST. Fix ( f , s1, . . . , si−1) ∈ S ⊗i−1
R and assume

α := (π1)( f ,s1 ,...,si−1) ∈ RST (which holds on a set of measure one). In case that αω(R+) < 1
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we extend it to a probability on [0,∞] by adding an atom at∞. We denote the resulting ran-
domized stopping time still by α. Then, we can calculate using the strong Markov property
of the Wiener measure for the first equality and F ≥ 0 for the first inequality

∫
F( f ,s1 ,...,si−1)⊗(ω, si, . . . , sn) ξ( f ,s1 ,...,si−1)(dω, dsi, . . . , dsn)

=

"
F( f ,s1 ,...,si−1)⊗(ω�[0,t] ⊕ θtω, si, . . . , sn) (ξ( f ,s1 ,...,si−1))ω�[0,t]⊕θtω(dsi, . . . , dsn)αω(dt)W(dω)

=

"
F( f ,s1 ,...,si−1)⊗(ω�[0,t] ⊕ ω̃, si, . . . , sn) (ξ( f ,s1 ,...,si−1))ω�[0,t]⊕ω̃(dsi, . . . , dsn)αω(dt)W(dω)W(dω̃)

≥

"
1{(ω,t):t≤si<∞}F

( f ,s1 ,...,si−1)⊗(ω�[0,t] ⊕ ω̃, si, . . . , sn) (ξ( f ,s1 ,...,si−1))ω�[0,t]⊕ω̃(dsi, . . . , dsn)αω(dt)W(dω)W(dω̃)

=

"
1{(ω,t):t<∞}F( f ,s1 ,...,si−1)|r(ω,t)⊕(ω̃, s′i , . . . , s

′
n) ξ( f ,s1 ,...,si−1)|r(ω,t)(dω̃, ds′i , . . . , ds′n)α(dω, dt)

Hence,

∫
(rX ⊗ ri)(π)(d(( f , s1, . . . , si−1)|(h, s)), d(g, t1, . . . , ti))(

1 − Aξ
( f ,s1 ,...,si−1)(h, s) + 1Aξ( f ,s1 ,...,si−1)(h,s)=1∆Aξ

( f ,s1 ,...,si−1)(h, s)
)
×∫

F( f ,s1 ,...,si−1)|(h,s)⊕(ω, S i, . . . , S n) ξ̄( f ,s1 ,...,si−1)|(h,s)(dω, dS i, . . . , dS n)

=

∫
(rX ⊗ ri)(π)(d(( f , s1, . . . , si−1)|(h, s)), d(g, t1, . . . , ti))×∫
F( f ,s1 ,...,si−1)|(h,s)⊕(ω, S i, . . . , S n) ξ( f ,s1 ,...,si−1)|(h,s)(dω, dS i, . . . , dS n)

≤

"
F( f ,s1 ,...,si−1)⊗(ω, si, . . . , sn) ξ( f ,s1 ,...,si−1)(dω, dsi, . . . , dsn) ri−1(ξi−1)(d(( f , s1, . . . , si−1))

= ξ(F) < ∞ .

Applying (??) to tn(ω, t1, . . . , tn) = tn, and observing that all the terms on the right-hand side
cancel implies that ξπ(tn) = ξ(tn) < ∞. Taking F(ω, s1, . . . , sn) = G(ω(s j)) for 0 ≤ j ≤ n
with s0 := 0 for bounded and measurable G : R → R the right hand side vanishes.
For j < i this follows since ξi−1 = (ξπ)i−1 as we have not changed any stopping rule
for colours prior to i. For j ≥ i this follows from the fact that π is concentrated on pairs
(( f , s1, . . . , si−1)|(h, s), (g, t1, . . . , ti)) satisfying f ⊕ h(si + s) = g(ti). Hence, we have shown
that ξπ ∈ RMST(µ0, . . . , µn).
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Using that ξπ(γ−), ξ(γ−) < ∞, by well posedness of (??), we can apply (??) to F = γ to
obtain by the Definition of CSξ

i↔ j that∫
(γ ◦ rn)( f ,s1 ,...,si−1)|(h,s)⊕(ω, S i, . . . , S n) ξ̄( f ,s1 ,...,si−1)|(h,s)(dω, dS i, . . . , dS n)

+

∫
(γ ◦ rn)(g,t1 ,...,ti)⊗(ω,Ti+1, . . . ,Tn) ξ(g,t1 ,...,ti)(dω, dTi+1, . . . , dTn)

−

∫
C(R+)

∫
[0,1]n−i+1

1Λ
f⊗h,g
j

(ω, u)
[∫

(γ ◦ rn)( f ,s1 ,...,si−1)|(h,s)⊗(ω,Ti+1, . . . ,T j, S j+1, . . . , S n)

δρi+1
(g,t1 ,...,ti )(ω,u)(dTi+1) · · · δρ j

(g,t1 ,...,ti )(ω,u)(dT j) δρ j+1
( f ,s1 ,...,si−1)|(h,s)(ω,u)(dS j+1) · · · δρn

( f ,s1 ,...,si−1)|(h,s)(ω,u)(dS n)

−

∫
(γ ◦ rn)(g,t1 ,...,ti)⊕(ω, S i, . . . , S j,T j+1,Tn)

δρi
( f ,s1 ,...,si−1)|(h,s)(ω,u)(dS i) · · · δρ j

( f ,s1 ,...,si−1)|(h,s)(ω,u)(dS j) δρ j+1
(g,t1 ,...,ti )(ω,u)(dT j+1) · · · δρn

(g,t1 ,...,ti )(ω,u)(dTn)
]
W(dω)du

−

∫ (
1 − 1Λ f⊗h,g

j
(ω, u)

) [∫
(γ ◦ rn)( f ,s1 ,...,si−1)|(h,s)⊗(ω,Ti+1, . . . ,Tn)

δρi+1
(g,t1 ,...,ti )(ω,u)(dTi+1) · · · δρn

(g,t1 ,...,ti )(ω,u)(dTn)

−

∫
(γ ◦ rn)(g,t1 ,...,ti)⊕(ω, S i, . . . , S n) δρi

( f ,s1 ,...,si−1)|(h,s)(ω,u)(dS i) · · · δρn
( f ,s1 ,...,si−1)|(h,s)(ω,u)(dS n)

]
W(dω)du

is (rX⊗ Id)(π) a.s. strictly positive applying Lemma ??. Hence, we arrive at the contradiction∫
γ dξπ <

∫
γdξ. �

5.2 Secondary optimization (and beyond)

We set µ̄ = (µ0, . . . , µn) and denote by Opt(γ, µ̄) the set of optimizers of (??). If π 7→∫
γdπ is lower semicontinuous then Opt(γ, µ̄) is a closed subset of RMST(µ0, µ1, . . . , µn)

and therefore also compact.

Definition 12 (Secondary stop-go pairs) Let γ, γ′ : S ⊗n
R → R be Borel measurable. The set

of secondary stop-go pairs of colour i relative to ξ, short SGξ
2,i, consists of all ( f , s1, . . . , si−1)|(h, s) ∈

S ⊗i
R , (g, t1, . . . , ti) ∈ S ⊗i

R such that f⊕h(si−1+s) = g(ti) and either (( f , s1, . . . , si−1)|(h, s), (g, t1, . . . , ti)) ∈
SGξ

i or equality holds in (??) for γ, and strict inequality holds in (??) for γ′, or equal-
ity holds in (??) for γ, and strict inequality holds in (??) for γ′. As before we agree that
(( f , s1, . . . , si−1)|(h, s), (g, t1, . . . , ti)) ∈ SGξ

i if either of the integrals in (??) or (??) is infinite
or not well defined.

We also define the secondary stop-go pairs of colour i relative to ξ in the wide sense,

ŜG
ξ

2,i, by ŜG
ξ

2,i = SGξ
2,i ∪ {( f , s1, . . . , si−1)|(h, s) ∈ S ⊗i

R : Aξ
( f ,s1 ,...,si−1)(h, s) = 1} × S ⊗i

R .

The set of secondary stop-go pairs relative to ξ is defined by SGξ :=
⋃

1≤i≤n SGξ
i . The

secondary stop-go pairs in the wide sense are ŜG
ξ

:=
⋃

1≤i≤n ŜG
ξ

i .

Theorem 5.2 (Secondary minimisation) Let γ, γ′ : S ⊗n
R → R be Borel measurable. As-

sume that Opt(γ, µ̄) , ∅ and that ξ ∈ Opt(γ, µ̄) is an optimiser for

Pγ′ |γ(µ̄) = inf
π∈Opt(γ,µ̄)

∫
γ′ dπ. (5.6)
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Then, for any i ≤ n there exists a Borel set Γi ⊆ S ⊗i such that ri(ξi)(Γi) = 1 and

ŜG
ξ

2,i ∩ (Γ<i × Γi) = ∅. (5.7)

Theorem ?? follows from a straightforward modification of Proposition ?? by the same
proof as for Theorem ?? using Proposition ??. We omit further details.

Remark 17 Of course the previous theorem can be applied repeatedly to a sequence of func-
tions γ, γ′, γ′′, . . . and sets Opt(γ, µ̄),Opt(γ′|γ, µ̄),Opt(γ′′|γ′|γ, µ̄), . . . leading to SGξ

3,SGξ
4, . . . .

We omit further details.

5.3 Proof of Main Result

We are now able to conclude, by observing that our main result is now a simple consequence
of previous results.

Proof (Proof of Theorem ??) Since any ξ ∈ RMST(µ0, . . . , µn) induces via Lemma ?? and
Corollary ?? a sequence of stopping times as used for the definition of stop-go pairs in
Section ?? the result follows from Theorem ??.
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2. M. Beiglböck, A. M. G. Cox, and M. Huesmann. Optimal transport and Skorokhod embedding. Inven-
tiones mathematicae, 208(2):327–400, 2017.
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