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Abstract The Skorokhod Embedding Problem (SEP) is one of the classical problems in the
theory of stochastic processes, with applications in many different fields (cf. the surveys
[2,2]). Many of these applications have natural multi-marginal extensions leading to the
(optimal) multi-marginal Skorokhod problem (MSEP). Some of the first papers to consider
this problem are [?,2,?]. However, this turns out to be difficult using existing techniques:
only recently a complete solution was be obtained in [?] establishing an extension of the
Root construction, while other instances are only partially answered or remain wide open.
In this paper, we extend the theory developed in [?] to the multi-marginal setup which is
comparable to the extension of the optimal transport problem to the multi-marginal optimal
transport problem. As for the one-marginal case, this viewpoint turns out to be very pow-
erful. In particular, we are able to show that all classical optimal embeddings have natural
multi-marginal counterparts. Notably these different constructions are linked through a joint
geometric structure and the classical solutions are recovered as particular cases.
Moreover, our results also have consequences for the study of the martingale transport
problem as well as the peacock problem.
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1 Introduction

The Skorokhod Embedding problem (SEP) is a classical problem in probability, dating back
to the 1960s ([?,?]). Simply stated, the aim is to represent a given probability as the distri-
bution of Brownian motion at a chosen stopping time. Recently, motivated by applications
in probability, mathematical finance, and numerical methods, there has been renewed, sus-
tained interest in solutions to the SEP (cf. the two surveys [?,?]) and its multi-marginal
extension, the multi-marginal SEP: Given marginal measures po, ..., 4, of finite variance
and a Brownian motion with By ~ g, construct stopping times 7; < ... < 7, such that

By, ~y;forall 1 <i <nandE[r,] < co. (MSEP)

It is well known that a solution to (??) exists iff the marginals are in convex order (1o <.

.. =¢ Hy) and have finite second moment; under this condition Skorokhod’s original results
give the existence of solutions of the induced one period problems, which can then be pasted
together to obtain a solution to (2?).

It appears to be significantly harder to develop genuine extensions of one period solu-
tions: many of the classical solutions to the SEP exhibit additional desirable characteristics
and optimality properties which one would like to extend to the multi-marginal case. How-
ever the original derivations of these solutions make significant use of the particular structure
inherent to certain problems, often relying on explicit calculations, which make extensions
difficult if not impossible. The first paper which we are aware of to attempt to extend a
classical construction to the multi-marginal setting is [?], which generalised the Azéma-
Yor embedding ([?]) to the case with two marginals. This work was further extended by
Henry-Labordere, Obt6j, Spoida, and Touzi [?,?], who were able to extend to arbitrary (fi-
nite) marginals, under particular assumptions on the measures. Using an extension of the
stochastic control approach in [?] Claisse, Guo, and Henry-Labordere [?] constructed a two
marginal extension of the Vallois embedding. Recently, Cox, Obloj, and Touzi [?] were able
to characterise the solution to the general multi-marginal Root embedding through the use
of an optimal stopping formulation.

Address(es) of author(s) should be given
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Mass transport approach and general multi-marginal embedding

In this paper, we develop a new approach to the multi-marginal Skorokhod problem, based
on insights from the field of optimal transport.

Following the seminal paper of Gangbo and McCann [?] the mutual interplay of opti-
mality and geometry of optimal transport plans has been a cornerstone of the field. As shown
for example in [?,?,?] this in not limited to the two-marginal case but extends to the multi-
marginal case where it turns out to be much harder though. Recently, similar ideas have been
shown to carry over to a more probablistic context, to optimal transport problems satisfy-
ing additional linear constraints [?,2,?] and in fact to the classical Skorokhod embedding
problem [?].

Building on these insights, we extend the mass transport viewpoint developed in [?] to
the multi-marginal Skorokhod embedding problem. This allows us to give multi-marginal
extensions of all the classical optimal solutions to the Skorokhod problem in full generality,
which we exemplify by several examples. In particular the classical solutions of Azéma-Yor,
Root, Rost, Jacka, Perkins, and Vallois can be recovered as special cases. In addition, the
approach allows us to derive a number of new solutions to (??) which have further appli-
cations to e.g. martingale optimal transport and the peacock problem. A main contribution
of this paper is that in many different cases, solutions to the multi-marginal SEP share a
common geometric structure. In all the cases we consider, this geometric information will
in fact be enough to characterise the optimiser uniquely, which highlights the flexibility of
our approach.

Furthermore, our approach to the Skorokhod embedding problem is very general and
does not rely on fine properties of Brownian motion. Therefore, exactly as in [?] the results
of this article carry over to sufficiently regular Markov processes, e.g. geometric Brownian
motion, three-dimensional Bessel process and Ornstein-Uhlenbeck processes, and Brownian
motion in RY for d > 1. As the arguments are precisely the same as in [?], we refer to [?,
Section 8] for details.

Related Work

Interest in the multi-marginal Skorokhod problem comes from a number of directions and
we describe some of these here:

— Maximising the running maximum: the Azéma-Yor embedding
Suppose (M) is a martingale and write M, := sup,., M;. The relationship between the
laws of M| and M has been studied by Blackwell and Dubins [?], Dubins and Gilat [?]
and Kertz and Rosler [?], culminating in a complete classification of all possible joint
laws by Rogers [?]. In particular given the law of M, the set of possible laws of M;
admits a maximum w.r.t. the stochastic ordering, this can be seen through the Azéma-
Yor embedding. Given initial and terminal laws of the martingale, Hobson [?] gave a
sharp upper bound on the law of the maximum based on an extension of the Azéma-Yor
embedding to Brownian motion started according to a non-trivial initial law. These re-
sults are further extended in [?] to the case of martingales started in 0 and constrained
to a specified marginal at an intermediate time point, essentially based on a further ex-
tension of the Azéma-Yor construction. The natural aim is to solve this question in the
case of arbitrarily many marginals. Assuming that the marginals have ordered barycen-
ter functions this case is included in the work of Madan and Yor [?], based on iterating
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the Azéma-Yor scheme. More recently, the stochastic control approach of [?] (for one
marginal) is extended by Henry-Labordere, Obtdj, Spoida, and Touzi [?,?] to marginals
in convex order satisfying an additional assumption ([?, Assumption ®]'). Together with
the Dambis-Dubins-Schwarz Theorem, Theorem ?? below provides a solution to this
problem in full generality.

— Multi-Marginal Root embedding
In a now classical paper, Root [?] showed that for any centred distribution with finite
second moment, y, there exists a (right) barrier R, i.e. a Borel subset of R, xR such that
(t,x) € Rimplies (s, x) € R for all s > ¢, and for which B;, ~ u, 7g = inf{t : (¢, B,) € R}.
This work was further generalised to a large class of Markov processes by Rost [?], who
also showed that this construction was optimal in that it minimised E[A(7)] for convex
functions h.
More recent work on the Root embedding has focused on attempts to characterise the
stopping region. A number of papers do this either through analytical means ([?,2,?,?])
or through connections with optimal stopping problems ([?]). Recently the connection
to optimal stopping problems has enabled Cox, Obldj, and Touzi [?] to extend these
results to the multi-marginal setting. Moreover, they prove that this solution enjoys a
similar optimality property to the one-marginal Root solution. The principal strategy is
to first prove the result in the case of locally finitely supported measures by means of a
time reversal argument. The proof is then completed in the case of general measures by
a delicate limiting procedure.
As a consequence of the theoretical results in this paper, we will be able to prove similar
results. In particular, the barrier structure as well as the optimality properties are recov-
ered in Theorem ??. Indeed, as we will show below, the particular geometric structure
of the Root embedding turns out to be archetypal for a number of multi-marginal coun-
terparts of classical embeddings.

— Model-independent Finance
An important application field for the results in this paper, and one of the motivating
factors behind the recent resurgence of interest in the SEP, relates to model-independent
finance. In mathematical finance, one models the price process S as a martingale under
a risk-neutral measure, and specifying prices of all call options at maturity T is equiv-
alent to fixing the distribution u of S7. Understanding no-arbitrage price bounds for a
functional y, can often be seen to be equivalent to finding the range of E[y(B).] among
all solutions to the Skorokhod embedding problem for p. This link between SEP and
model-independent pricing and hedging was pioneered by Hobson [?] and has been an
important question ever since. A comprehensive overview is given in [?].
However, the above approach uses only market data for the maturity time 7, while in
practice market data for many intermediate maturities may also be available, and this
corresponds to the multi-marginal SEP. While we do not pursue this direction of research
in this article we emphasize that our approach yields a systematic method to address this
problem. In particular, the general framework of super-replication results for model-
independent finance now includes a number of important contributions, see [?,?,2,?],
and most of these papers allow for information at multiple intermediate times.

— Martingale optimal transport
Optimal transport problems where the transport plan must satisfy additional martingale
constraints have recently been investigated, e.g. the works of Dolinsky, Ekren, Galli-
chon, Ghoussoub, Henry-Labordere, Hobson, Juillet, Kim, Lim, Nutz, Obtoj, Soner,

! As shown by an example in [?] this condition is necessary to carry out their explicit construction.
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Tan, Touzi in [?,2,2,2,2,2,2,2,?]. Besides having a natural interpretation in finance, such
martingale transport problems are also of independent mathematical interest, for exam-
ple — similarly to classical optimal transport — they have consequences for the investiga-
tion of martingale inequalities (see e.g. [?,?,?]). As observed in [?] one can gain insight
into the martingale transport problem between two probabilities u; and u, by relating
it to a Skorokhod embedding problem which may be considered as a continuous time
version of the martingale transport problem. Notably this idea can be used to recover the
known solutions of the martingale optimal transport problem in a unified fashion ([?]). It
thus seems natural that an improved understanding of an n-marginal martingale transport
problem can be obtained based on the multi-marginal Skorokhod embedding problem.
Indeed this is exemplified in Theorem ?? below, where we use a multi-marginal em-
bedding to establish an n-period version of the martingale monotone transport plan, and
recover similar results to recent work of Nutz, Stebegg, and Tan [?].

— Construction of peacocks
Dating back to the work of Madan—Yor [?], and studied in depth in the book of Hirsch,
Profeta, Roynette and Yor [?], given a family of probability measures (1 );e[0,r] Wwhich are
increasing in convex order, a peacock (from the acronym PCOC “Processus Croissant
pour 1’Ordre Convexe”) is a martingale such that M; ~ yu, for all ¢ € [0, T]. The exis-
tence of such a process is granted by Kellerer’s celebrated theorem, and typically there
is an abundance of such processes. Loosely speaking, the peacock problem is to give
constructions of such martingales. Often such constructions are based on Skorokhod
embedding or particular martingale transport plans, and often one is further interested
in producing solutions with some additional optimality properties; see for example the
recent works [?,2,2,?].
Given the intricacies of multi-period martingale optimal transport and Skorokhod em-
bedding, it is necessary to make additional assumptions on the underlying marginals and
desired optimality properties are in general not preserved in a straight forward way dur-
ing the inherent limiting/pasting procedure. We expect that an improved understanding
of the multi-marginal Skorokhod embedding problem will provide a first step to tackle
these range of problems in a systematic fashion.

1.1 Outline of the Paper

We will proceed as follows. In Section ??, we will describe our main results. Our main
technical tool is a ‘monotonicity principle’, Theorem ??. This result allows us to deduce
the geometric structure of optimisers. Having stated this result, and defined the notion of
‘stop-go pairs’, which are important mathematical embodiment of the notion of ‘swapping’
stopping rules for a candidate optimiser, we will be able to deduce our main consequential
results. Specifically, we will prove the multi-marginal generalisations of the Root, Rost and
Azéma-Yor embeddings, using their optimality properties as a key tool in their construc-
tion. The Rost construction is entirely novel, and the solution to the Azéma-Yor embedding
generalises existing results, which have only previously been given under a stronger assump-
tion on the measures. We also give a multi-marginal generalisation of an embedding due to
Hobson & Pedersen; this is, in some sense, the counterpart of the Azéma-Yor embedding;
classically, this is better recognised as the embedding of Perkins [?], however for reasons
we give later, this embedding has no multi-marginal extension. Moreover the proofs of these
results will share a common structure, and it will be clear how to generalise these methods
to provide similar results for a number of other classical solutions to the SEP.
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In Section ??, we also use our methods to give a multi-marginal martingale monotone
transport plan, using a construction based on a SEP-viewpoint.

The remainder of the paper is then dedicated to proving the main technical result, Theo-
rem ??. In Section ??, we introduce our technical setup, and prove some preliminary results.
As in [?], it will be important to consider the class of randomised multi-stopping times, and
we define these in this section, and derive a number of useful properties. It is technically
convenient to consider randomised multi-stopping times on a canonical probability space,
where there is sufficient additional randomisation, independent of the Brownian motion,
however we will prove in Lemma ?? that any sufficiently rich probability space will suffice.
A key property of the set of randomised multi-stopping times embedding a given sequence
of measures is that this set is compact in an appropriate (weak) topology, and this will be
proved in Proposition ??; an important consequence of this is that optimisers of the multi-
marginal SEP exist under relatively mild assumptions on the objective (Theorem ??).

In Section ?? we introduce the notions of color-swap pairs, and multi-colour swap pairs.
These will be the fundamental constituents of the set of ‘bad-pairs’, or combinations of
stopped and running paths that we do not expect to see in optimal solutions. In this section
we define these pairs, and prove some technical properties of the sets.

In Section ?? we complete the proof of Theorem ??. In spirit this follows the proof of
the corresponding result in [?], and we only provide the details here where the proof needs
to adapt to account for the multi-marginal setting.

1.2 Frequently used notation

— The set of Borel (sub-)probability measures on a topological space X is denoted by P(X)
/ PL(X).

- 529 ={(s1,...,50): 0< 51 <...< 54} denotes the ordered sequences in [0, co) of length
d.

— The d-dimensional Lebesgue measure will be denoted by L.

— For a measure ¢ on X we write f(£) for the push-forward of £ under f : X — Y.

— We use £(f) as well as f f dé to denote the integral of a function f against a measure &.

— C.(R,) denotes the continuous functions starting at x; C(R;) = (J,eg C<x(R;). For w €
C(R;) we write 6w for the path in Co(R ) defined by (6,w);>0 = (Wiss — Ws)r>0-

— W denotes Wiener measure; W, denotes law of Brownian motion started according to a
probability u; F° (F¢) the natural (augmented) filtration on Co(R.).

— Ford e Nwe set CR,) = C(R.) x[0,119, W = W® L% and F = (F;)r»0 the usual
augmentation of (T',O ® B([0, 11%)),50. To keep notation manageable, we suppress d from
the notation since the precise number will always be clear from the context.

— X is a Polish space equipped with a Borel probability measure m. We set X := X X
CoR),P=m®W, G" = (G0 = (BX) ® F,”)1»0, G* the usual augmentation of G°.

— FordeNwesetX = Xx[0,11%P=P® L and G = (G,)i»0 the usual augmentation
of (Q? ® B([0, 11%)),50. Again, we suppress d from the notation since the precise number
will always be clear from the context.

— The set of stopped paths started at 0 is denoted by S = {(f, s) : f : [0, s] = R is continuous, f(0) = 0}
and we define r : Co(Ry) xRy — § by r(w, 1) := (w0,9,1). The set of stopped paths
started in X is Sx = (X,§) = {(x, f,s) : f : [0, 5] — Ris continuous, f(0) =0, x € X}
and we define rx : XX Co(R;) X Ry — Sx by rx(x, w, 1) := (x, w0, 1), i.e. rx = (Id, 7).

— We use & for the concatenation of paths: depending on the context the arguments may
be elements of S, Cop(R,) or Co(R;) X R,. Specifically, ® : Y XZ — Z, where Y is either
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S or Ch(R;) X R,, and Z may be any of the three spaces. For example, if (f, s) € S and
w € Cyp(R;), then (f, s) ® w is the path

W (f) = {f(t) r=s (1.1)

f+wit—-s) t>s

— As well as the simple concatenation of paths, we introduce a concatenation operator
which keeps track of the concatenation time: if (f, s),(g,?) € S, then (f,s) ® (g,1) =
(f ® g, s, s +1). We denote the set of elements of this form as S§%2 and inductively, S®i
in the same manner.

— Elements of S® will usually be denoted by (f, si,...,s;) or (g,t1,...,t). We define
ri 1 CoRy) X & — S® by ri(w, s1,...,5) = (W0,5,15 S15 - - - » 8i). Accordingly, the
set of i-times stopped paths started in X is S‘?)?i = (X, 5%). Elements of SS" are usually
denoted by (x, f, s1,...,8;) or (¥,8,11,...,%). In case of X = R we often simply write
(f,S1,...,8;) or (g,t1,...,t) with the understanding that f(0), g(0) € R. In case that
there is no danger of confusion we will also sometimes write Sﬁi = §®. The operators
®, ® generalise in the obvious way to allow elements of S ?i to the left of the operator.

— For(x, f,s1,...,58) € S?", (h, s) € S we often denote their concatenation by (x, f, s1, ..., s)|(h, )
which is the same element as (x, f, s1,..., 5;) ® (h, s) but comes with the probabilistic
interpretation of conditioning on the continuation of (f, s1,..., s;) by (A, s). In practice,
this means that we will typically expect the (%, s) to be absorbed by a later @ operation.

— The map X X 5" 3 (X, w, $1, .-+, 5) > (X, 0,505 S1» - - -5 5i) € S?i will (by slight abuse
of notation) also be denoted by r;.

- Weset# : Xx5 - S?i XCRL), (x,w, 81, .., 8) = (X, wij0,5]> 51, - - - » 5i), O,). Then
7; is clearly a homeomorphism with inverse map

~—1 .
i fy St 8, w) P (X fOw, s, .., 80).
Hence, & = 7' (F,(£)) for any measure ¢ on X x Z'. For 1 < i < d we can extend F; to a
map 7y : X X 59— ST x C(R,) x 2% by setting
Fai(x,w, 81,...,54) = ((X, W)[0,575 15 - -+ » $i)5 O, 0, (Six1 = Sis ooy Sq = 8i)).

— ForI'; € S® we set I = {(f,81,...,8i-1,8) : H(f,sl,...,s,-,lj) el,si) <5 <
Sand f = f on [0, s;]}, where we set 5o = 0.
— For (f,s1,...,5) € S® we write f = sup,, f(r), and f = inf,, f(r).

— For1 <i<nand F afunction on §®" resp. Co(R,) x =" and (f, s1,...,s;) € S® we set
F(f’Sl’m’Si)®(’]a tl'+|""7tll) = F(f‘@n,S],...,Si,s,"f't[+1,...,s,' +tll)
=F((fas]’~-~7Si)®(nati+ly--~9tn))’

oy

where (17, ti11, . . . , t,) may be an element of S®"~, or Co(R,) X Z"~". We similarly define
F(le““’Si)@(T]’ ti+15 ey tn) = F(f@ My 815 ey Si=1,5i + ti+l yeees Si + tn)
=F((f, st S)® (M Liv1s -+ 5 1)) s

where (1, 1;, . . ., t,) may be an element of S®"~*!, or Co(R,) x 5",

— For any j-tuple 1 < iy < ... <i; < d we denote by projyg, .. i) the projection from
X xR to X x R/ defined by

(X W, Y15+, Ya) P (X, @, Vi -+ -5 Vi)

understand this as simply the projection onto X. If (i1,...,i;) = (1,...,j) we simply
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2 Main Results
2.1 Existence and Monotonicity Principle

In this section we present our key results and provide an interpretation in probabilistic terms.
To move closer to classical probabilistic notions, in this section, we slightly deviate from the
notation used in the rest of the article. We consider a Brownian motion B on some generic
probability space and recall that, foreach 1 <i < n,

S® = {(f, s1,...,8) :0< 51 < ... < s, f € CO, s;])).

We note that S® carries a natural Polish topology. For a function y : $® — R which is
Borel and a sequence (u;)?_, of centered probability measures on R, increasing in convex

order, we are interested in the optimization problem
Py, = inf{E[y((Bs)s<r,> T1,---» Tw)] i T1, ..., T, satisfy (22)}. (OptMSEP)

We denote the set of all minimizers of (??) by Opt, . Take another Borel measurable function
72 : §® — R. We will be also interested in the secondary optimization problem

P72|7 = inf{E['yZ((Bs)sS‘r,,’ Thees T)] 0 (T1, 00, Th) € Opty} (OptMSEPz)

Both optimization problems, (??) and (??),will not depend on the particular choice of the un-
derlying probability space, provided that (2, F, ()0, P) is sufficiently rich that it supports
a Brownian motion (B;),»¢ starting with law po, and an independent, uniformly distributed
random variable Y, which is Fj-measurable (see Lemma ??). We will from now on assume
that we are working in this setting. On this space, we denote the filtration generated by the
Brownian motion by 5.

Many of the assumptions imposed on the problem can be weakened. First, the assump-
tion that E[r,] < oo can be weakened, and the class of measures considered can then be
extended to the class of probability measures with a finite first moment. More generally, the
class of processes can be extended to include e.g. diffusions. Since all the arguments are
identical to those in the single marginal setting, we do not work in this generality in this
paper, but rather restrict our consideration to the case outlined above. For further details of
how to extend the arguments, we refer the reader to [?, Section 7].

We will usually assume that (??) and (??) are well-posed in the sense that E[y((BS)sS,”, T1,

and ]E[yz((Bs)SST”,Tl, .. .,Tn)] exist with values in (—oo, oo] for all 7 = (7y,...,7,) which
solve (??) and is finite for one such 7.

Theorem 2.1 Lety,y, : S®* — R be Isc and bounded from below in the sense that for some
constants a,b,c € R,

—(a+bs,,+cnlaxf(r)2)Sy,-(f,sl,...,sn) 2.1

holds on S®", for i = 1,2. Then there exists a minimizer to (??).

We will prove this result in Section 2?.

Our main result is the monotonicity principle, Theorem ??, which is a geometric charac-
terisation of optimizers T = (7, ..., T,) of (2?). The version we state here is weaker than the
result we will prove in Section ?? but easier to formulate and still sufficient for our intended
applications.

...,Tn)]
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For two families of increasing stopping times (o Wi and (7 i with 7; = 0 we define
k=inf{j>i:7;y 20}
and stopping times

gj=

. frjifj<k
ojif j >k

and analogously

j=

. [ojifj<k
U\ it j>k

Note that (&)_; and (7)}_; are again two families of increasing stopping times, since

Ti=0
< T = Lesoi Tt + Loy <oy T
< Tio = Ly soiTina + Loy <o (Lepnzon Tz + Lrja<oiy Tis2) 2.2)
S Tz =...,

and similarly for & ;.

Example 1 To illustrate this construction, consider the following sequences of stopping
times for Brownian motion started at By = 0. Let 07 = Hyjyy := inf{t > 0 : [B| > j + 1},
and 7; = j. The idea is that we want to construct a new sequence (J°;) which ‘starts’ with 7o,
but reverts to the original (o;) sequence as soon as possible. Correspondingly, we wish to
construct the sequence (¥;) which starts like (o ;), but reverts to (7;) as soon as possible. As
above, k = inf{j > i : 7j,; > o} is the first time (if at all) that B leaves the interval [}, j]
before time j. If this never happens, then the two sequences will just swap.
That is, if the sequences switch back, then the construction gives:

Note in particular that with this swap, the & stopping times stop instantly, while the 7 times
no longer stop at time 0.

Definition 1 A pair ((f, 51, ..., 8i-1,5), (g 1, ..., ti.1, 1)) € S®xS® constitutes an i-th stop-
go pair, written ((f, s1, ..., Si-1,5), (g, 11, ..., ti-1, 1)) € SG, if f(s) = g(¢) and for all families
of FB-stopping times 07; < ... < 0,0 = 7; < T4y < ... < T, satisfying 0 < E[o ] < oo for
alli< j<nand 0 <E[r;] <ocoforalli< j<n

E[y (f @ B)uzssay S1s- -+ Sic1s S + Tis S + Tig1 ., S + 0y)]
+E[y(((g®B)M)MSI+T,,7t1 a-~'7ti—1 N 1 + Tit+l yennsl + Ty )]
> E[y (((f © B)iusstons Sts -+ Sic1, 8 8+ Tigtse.., S+ 0)] (2.3)

+E[y(((g®B)14)14St+7',,’tla-~-,ti71’t+:1;i 1 +%i+l - +‘T-n )],

whenever both sides are well defined and the left hand side is finite. (See Figure 2?.)

A pair (f, 51, ..., Si—1,5), (8, 11, ..., ti_1, 1)) € S® x §® constitutes a secondary i-th stop-
go pair, written ((f, s1,..., Si—1,5), (g, t1,...,ti-1,1) € SGyy, if f(s) = g(¢) and for all fami-
lies of FB-stopping times 0; < ... < 0, 0 = 7; < 7;41 < ... < 7, satisfying 0 < Eloj] < o
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Fig. 1 We show a potential stop-go pair. In the top picture, we show the pair ((f, 1, $), (g, #1,)) with corre-
sponding stopping times 73, ..., 75 and 072, ...,05. In the bottom picture, the stopping times 72, ...7s and
G3,...,0% are shown. Note that the first time that the stopping rules can ‘revert’ to their original times are 73
and 73.

foralli < j <nand 0 < E[r;] < oo forall i < j < n the inequality (??) holds with > and if
there is equality we have

E[y2 ((f ® B)uusstcy> S1s - s Sic1s 8+ Tiy S+ Tig s .0 S + 0y)]
+E[2 (€ ® B)ustirystt 5 nlict st o +Tigg 5oyt +7,)]
> Ely2 ((f ® Blussscs S15- -5 Sic1> S S+ Tiglse., 8+ F)] 249
+E[y2 (€ ® B)uststys ts v s ticl, t+ Tyt + 1,0t + 7)),

whenever both sides are well defined and the left hand side (of (??)) is finite.

For 0 < i < j < n we define projgei : S® — S® by (f,51,...,57) = ([{0,5]> S1s-- -+ 5i)
where we take 5o = 0, S® =R, and fo0; := f(0) € R.

Definition2 A set I' = (I'y,...,I,) with I'; € S® measurable for each i is called y,|y-
monotone if foreach 1 <i<n

SGu; N (IS xTy) =0,
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where
I ={(f,s1,...,si-1,u) : there exists (g, s1,...,8i-1,5) € [, Sic1 < u < 8,80 = [
and projs&‘—l (F,) c I",»_l.

Theorem 2.2 (Monotonicity principle) Let y,y, : S® — R be Borel measurable, B be
a Brownian motion on some stochastic basis (Q,F ,(F1)0,P) with By ~ uo and let T =
(T1,...,T,) be an optimizer of (2?). Then there exists a y,ly-monotone set I' = (I'y,...,I)
supporting T in the sense that P- a.s. forall1 <i<n

((Bs)ssris T1s- -, Ti) €1 2.5)

Remark 1 1. We will also consider ternary or j-ary optimization problems given j Borel
measurable functions yi,...,y; : §®" — R leading to ternary or j-ary i-th stop-go pairs
SGj3,...,8G;; for 1 <i < n, the notion of /| ... [y;-monotone sets and a correspond-

ing monotonicity principle. To save (digital) trees we leave it to the reader to write down
the corresponding definitions.

2. Intuitively, the sets I'; in Definition ?? could be simply defined to be the projections of
I, onto S®, however this would not guarantee measurability of the sets S®. Hence we
need a slightly more involved statement of Theorem ??.

2.2 New n-marginal embeddings
2.2.1 The n-marginal Root embedding

The classical Root embedding [?] establishes the existence of a barrier (or right-barrier)
R € Ry x R such that the first hitting time of R solves the Skorokhod embedding problem.
A barrier R is a Borel set such that (s,x) € R = (¢t,x) € R for all #+ > 5. Moreover, the
Root embedding has the property that it minimises E[A(7)] for a strictly convex function
h : Ry — R over all solutions to the Skorokhod embedding problem, cf. [?].

We will show that there is a unique n- marginal Root embedding in the sense that there
are n barriers (R')" such that for each i < n the first hitting time of R’ after hitting R~
embeds ;.

Theorem 2.3 (n-marginal Root embedding, c.f. [?]) Pury; : S® — R, (f, s1,...,5,) —
h(s;) for some strictly convex function h : R, — R and assume that (??) is well posed. Then
there exist n barriers (Ri)f:l such that defining

Tlleoot(w) =inf{r > 0 : (t, B/(w)) € Rl}
andforl <i<n

Tgeoot(w) = inf{r > Tfi"f”(a)) 1 (t,Blw)) € R')

Root

the multi-stopping time (t°”, ..., TR0ty minimises

E[A(7)]

simultaneously for all 1 < i < n among all increasing families of stopping times (7, ...,T,)
such that Bz, ~ u; for all 1 < j < n and E[7,] < co. This solution is unique in the sense that

for any solution 71, ...,%, of such a barrier-type we have Tf’”” =T a.s.
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Proof Fix a permutation « of {1,...,n}. We consider the functions ¥1 = Y1y, - - -» ¥ = Y
on $® and the corresponding family of n-ary minimisation problems, (OptMSEP,). Let
(et .., 7R°") be an optimiser of Py, j5,. By the n-ary version of Theorem ??, choose
an optimizer (78, .. TR’y of (OptMSEP,) and, by the corresponding version of Theo-
rem ??,a%,|...|y;-monotone family of sets (I}, ..., I',) supporting (T’f"‘” ,...,TRooh) Hence
for every i < n we have P-a.s.

R R
((BS)SST,'7 Tlom’ LR Ti oot) € Fi,

and
(I'TxTI)NnSG;, =0.

We claim that, for all 1 < i < n we have

SGi, 2 {((fs 51,0580, (& tr, ... 1)« f(s) = gt), s > t;).

Fix (f, s1,...,5),(g. t,...,t;) € S® satisfying s5; > t; and consider two families of stopping
times (o iz and (7 ;)= on some probability space (€2, 7, P) together with their modifica-
tions (&7;)"_; and (7;)’}_; as in Section ??. Put

Ji1:=inf{m > 1 : k(m) > i}
and inductively for 1 <a<n—-i+1
Ja = inf{m > jo_1 : k(m) > i}.
Let [ = argminfa : P[o;, # &;,] > 0}. By the definition of &; and ¥; we have in case of
Jji = i the equality {0, # &} = 2 and for j; > i it holds that
lo 265k = [ {ow> Te).
i<k<ji

As 7 < 7441, in particular, we have on {o, # &} the inequality o > 74 forevery i < k < j.
The strict convexity of 4 and s > ¢ implies

E[h(s + o ;)] + E[h(t + 7)1 > E[h(s + ;)] + E[h(t + 7;)] .

Hence, we get a strict inequality in (the corresponding x~!(j))-ary version of) (2?) and the
claim is proven.
Then we define foreach 1 <i<n

R =1{(s,x) eRy xR: g tr,....t;) € [1,g(t) = x,5 > 1;}

and
R = {(s,x) ERy xR : g, t1,....t) € [}, 8t) = x, 5 > t;}.

Following the argument in the proof of Theorem 2.1 in [?], we define 7., and 7., to be the

first hitting times of R, and R}, respectively to see that actually 7}, < 78" < 7! and

7! =1l as. by the strong Markov property. Then we can inductively proceed and define
o= inf{r > 7' (1, B) e R}

and

7 =infir > (1, B) e R ).

op
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By the very same argument we see that 7/, < 78" <7/ ‘and in fact !, =7.,.

Finally, we need to show that the choice of the permutation x does not matter. This fol-
lows from a straightforward adaptation of the argument of Loynes [?] (see also [?, Remark
2.3] and [?, Proof of Lemma 2.4]) to the multi-marginal set up. Indeed, the first barrier R' is
unique by Loynes original argument. This implies that the second barrier is unique because
Loynes argument is valid for a general starting distribution of the process (¢, B;) in R, X R
and we can conclude by induction.

Remark 2 1. In the last theorem, the result stays the same if we take different strictly con-
vex functions #; for each i.
2. Moreover, it is easy to see that the proof is simplified if one starts with the objective
1 hi(t;), which removes the need for taking an arbitrary permutation of the indices
at the start. Of course, to get the more general conclusion, one needs to consider these
permutations.

Corollary 1 Leth : R, — R be a strictly convex function and lety : S® — R, (f, s1,...,8,) &
L W), Let TRoot = (Tlf""’, ..., 7RO be the minimizer of Theorem ??2. Then it also mini-
mizes
Ely(®1,..., %]

among all increasing families of stopping times T\ < ... < T, satisfying Bz, ~ ; for all
1<i<n

2.2.2 The n-marginal Rost embedding

The classical Rost embedding [?] establishes the existence of an inverse barrier (or left-
barrier) R € R, X R such that the first hitting time of R solves the Skorokhod embedding
problem. An inverse barrier R is a Borel set such that (r,x) € R = (s,x) € R for all
s < t. Moreover, the Rost embedding has the property that it maximises E[A(7)] for a strictly
convex function & : R, — R over all solutions to the Skorokhod embedding problem, cf.
[?]. Similarly to the Root embedding it follows that

Theorem 2.4 (n-marginal Rost embedding) Put y; : S® — R,(f, s1,...,8:) = —h(s;)
for some strictly convex function h : R, — R and assume that (??) is well posed. Then there
exist n inverse barriers (R’A);’:1 such that defining

(W) = inflr > 0 (1, Bw)) € R")
andfor1 <i<n

Tl{eo.vt(w) — inf{l‘ > ‘rf_”f’(a)) : (l, B[(Cl))) € Rl}

the multi-stopping time (T8, ... TRo"y maximises
E[h(r)]
simultaneously for all 1 < i < n among all increasing families of stopping times (t1,...,Ty)

such that B-; ~ u; for all 1 < j < n and E[t,] < 0. Moreover, it also maximises

i E[A(ry)]
i=1

This solution is unique in the sense that for any solution 7, . .., T, of such a barrier-type we

have TR = %;.
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The proof of this theorem goes along the very same lines as the proof of Theorem ??.
The only difference is that due to the maximisation we get

SGin 2{(fs 815,80, (g 11, ..., 1) ¢ f(si) = g(ty), si < i}

leading to inverse barriers. We omit the details.

2.2.3 The n-marginal Azéma-Yor embedding

For (f, s1,...,5,) € S®" we will use the notation fs,- = MaXg<s<s; f(5)-

Theorem 2.5 (n-marginal Azéma-Yor solution) There exist n barriers (R! ", such that
defining

Y =inf{r > 0: (B, B;) e R"}
andfor1 <i<n

Y = inf{r > 7 : (B, B,) € R}

i

the multi-stopping time (v}, ..., 74Y) maximises
n
E Z B,
i=1
among all increasing families of stopping times (71, ..,7,) such that By, ~ u; for all 1 <
Jj < nand E[t,] < co. This solution is unique in the sense that for any solution 7y,...,%, of

such a barrier-type we have ‘r‘;‘y =7

We emphasise that this result has not appeared previously in the literature in this gen-
erality; previously the most general result was due to [?] and [?], which proved a closely
related result under an additional condition on the measures, which is not necessary here.
Unlike our solution, however, the constructions of [?] and [?] are constructive.

Remark 3 In fact, similarly to the n-marginal Root and Rost solutions 747 simultaneously
solves the optimization problems

sup{E[Bz] : 7

IN

S‘T-naB‘?‘l N/J]’--'vB‘T'n Nﬂn}

for each i which of course implies Theorem ?? (see also Remark ??.2??). To keep the pre-
sentation readable, we only prove the less general version.

Proof Fix a bounded and strictly increasing continuous function ¢ : Ry — R, and consider
the continuous functions y(f, s1, ..., s,) = — Sy fi, and F(fy s15 -« ., 0) = 2y @(fi) f(5:)?
defined on S®". Pick, by Theorem ??, a minimizer T4 of (??) and, by Theorem ??, a ¥|y-
monotone family of sets (I7)?_, supporting Y = (T;.“Y);‘:l such that forall i < n

SGi’zﬂ(rf xI;) = 0.
We claim that

SGin 2{((fs S15- 580 (8o t1,- -, 1) € ST XS 2 f(s51) = g(t:), fs, > &1y} (2.6)



The geometry of multi-marginal Skorokhod Embedding 15

Indeed, pick ((f, s1,...,5), (& t,...,%)) € S®xS® with f(s;) = g(t;) and f;, > g, and take
two families of stopping times (07;)’_; and (7)_; together with their modifications (5 )}_;
and (7)) _; as in Section ??. We assume that they live on some probability space (2, F,P)
additionally supporting a standard Brownian motion W. Observe that (as written out in the
proof of Theorem ??) on {0o; # &} it holds that o-; > 7;. Hence, on this set we have
WL,/. > WT/. This implies that for w € {o; # ¢} (and hence &7; = 7;,7; = 0;)

Fa V (F(s) + Wo () + &, V (8(t:) + Wr ()

7 _ N _ 2.7
< Fo V(G5 + Wa (@) + 8, V (8(5) + Wi, (@),

with a strict inequality unless either W (w) < g, — g(1;) or Wy, > f;, — f(s;). On the set
{oj = &} we do not change the stopping rule for the j-th stopping time and hence we get a
(pathwise) equality in (??). Thus, we always have a strict inequality in (??) unless a.s. either
Wo (w) < &, — g(t:) or Wy, > f;, — f(s;) for all j. However, in that case we have for all j
such that P[o- i #6;1>0 (there is at least one such j, namely j = i)

E[@(f)(F(s) + W )| + B 0@, (s(t) + W )P
> E[o(7)(f(50) + War 2] + B[ 0@ )(g(t) + W2, 2.

Hence, ((f, s1,...,5:),(g,t1,...,1)) € SG C SG; in the first case and in the second case we
have ((f, s1,...,5),(g t,...,t)) € SGy proving (??).
For each i < n we define

R = {(m,x) : Af, s15...,8) € Ty f(57) = x, fy, < m}

and
R = {(m,x) : AL, s1,...,8) € [, f(57) = x, f5, < m}

with respective hitting times (7 = 0)

7 =inf{t > 75 (B, B) e R}

Ol

and
7l i=inf{r > 7' : (B, B) € RL ).

We will show inductively on i that firstly 7/, < 4" < 7/  a.s. and secondly 7/, = 7, a.s.
proving the theorem. The case i = 1 has been settled in [?]. So let us assume 7! = 7!
a.s. Then 75, < 74 follows from the definition of 7/,. To show that 7/ < 7/, pick w
satisfying ((Bs(a)))sgl{\y,r"‘y(a)), .., (w)) € I'; and assume that 7! (w) < T4 (w). Then
there exists s € [7},(w), 74" (w)) such that f := (B.(w))<, satisfies (f, f(s)) € R,. Since
il w) < 7 (w) < 5 < 7 (w) we have (f, 7l (w), ..., 7 (w), s) € I'T. By definition of RL ,,
there exists (g, t1,...,%) € I'; such that f(s) = g(#;) and g, < f;, yielding a contradiction to
7).

Finally, we need to show that 7!, = 7 a.s. Before we proceed we give a short reminder
of the case i = 1 from [?, Theorem 6.5]. We define

g (m) = sup{x : A(m, x) € RL}.

From the definition of R, , we see that i (m) is increasing, and we define the right-continuous
function ¢} (m) = §j(m+), and the left-continuous function ¢! (m) = ¢} (m-). It follows
from the definitions of 7., and 7!, that:

T, =inf{r>0: B, <y B)) <7l <7l <inft>0:B <y (B)) =:7_.

1
cL
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As 117(1) has at most countably many jump points (discontinuity points) it is easily checked

that 7_ = 7, as. and hence 7, = 7, = 7{". Note also that the law ' of B can have

an atom only at the rightmost point of its support. Hence, with 7! := Law(BT/lw, Bo), the

measure ”lr{(x Dy<a) has a density with respect to Lebesgue measure when projected onto the
first coordinate.

. .. . . . i 1 _

Defining these quantities in obvious analogy for j € {2,...,n}, we need to prove 7' =

il = T?j assuming that ' has continuous projection onto the horizontal axis. To do so, we

decompose 7' into free and trapped particles

i i i

i ._ i
= Mgy

1= ﬂr{(m,x):xSW_(m)}'

Here 71_’% refers to particles which are free to reach a new maximum, while 7T£ refers to
particles which are trapped in the sense that they will necessarily hit R{, (and thus also R, )
before they reach a new maximum. For particles started in 71'} it follows precisely as above
that the hitting times of Rt and Ri*! agree. For particles started in 7 this is a consequence
of Lemma ??. Additionally, as above we find that nig(lx,y):y -y has continuous projection onto
the horizontal axis.

Lemma 1 [?, Lemma 3.2] Let 1 be a probability measure on R? such that the projection
onto the horizontal axis proj, u is continuous (in the sense of not having atoms) and let
¢ : R — R be a Borel function. Set

R :={(x,y) : x>y}, R :={(x,y): x 2y}
Start a vertically moving Brownian motion B in u and define
™ =inf{r>0:(x,y+B)€R”}, 7" :=inf{r>0:(x,y+ B/)€R™}.

Then T = °° almost surely.

2.2.4 The n-marginal Perkins/Hobson-Pedersen embedding

For (f, s1,...,5,) € S® we will use the notation fs_ = Ming<,<s, f(5) to denote the running

minimum of the path up to time s;. (Recall also that 7, is the maximum of the path). In this
section we will consider a generalisation of the embeddings of Perkins [?] and Hobson and
Pedersen [?]. The construction of Perkins to solve the one-marginal problem with a trivial
starting law can be shown to simultaneously minimise E[4(B;)] for any increasing function
h, and maximise E[k(B,)] for any increasing function k, over all solutions of the embedding
problem. Later Hobson and Pedersen [?] described a closely related construction which
minimised E[/(B;)] over all solutions to the SEP with a general starting law. The solution
of Perkins took the fo