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Abstract. The basic problem of optimal transportation consists in minimiz-

ing the expected costs E[c(X1, X2)] by varying the joint distribution (X1, X2)
where the marginal distributions of the random variables X1 and X2 are fixed.

Inspired by recent applications in mathematical finance and connections

with the peacock problem we study this problem under the additional condition
that (Xi)i=1,2 is a martingale, i.e. E[X2|X1] = X1.

We establish a variational principle for this problem which enables us to

determine optimal martingale transport plans for specific cost functions. In
particular we identify a martingale coupling that resembles the classic mono-

tone quantile coupling in several respects. In analogy with the celebrated
Theorem of Brenier the following behavior can be observed: if the initial dis-

tribution is continuous, then this “monotone martingale” is supported by the

graphs of two functions T1, T2 : R → R.

1. Introduction

1.1. Presentation of the martingale transport problem. We will denote by
P the set of probability measures on R having finite first moments. We are given
measures µ, ν ∈ P, and a (measurable) cost function c : R × R → R which will
be continuous in most of our applications. We assume moreover that c(x, y) ≥
a(x)+b(y) where a (resp. b) is integrable with respect to µ (resp. ν). Hence if (X,Y )
is a joint law with marginal distributions lawX = µ and law Y = ν, the expectation
of c(X,Y ) ≥ a(X)+b(Y ) is well defined, taking its value in

[
E[a(X)]+E[b(Y )],+∞

]
.

We will refer to this technical hypothesis as the sufficient integrability condition.
The basic problem of optimal transport consists in the minimization problem

Minimize E[c(X,Y )] subject to law(X) = µ, law(Y ) = ν.(1)

where the infimum is taken over all joint distributions. We denote the infimum in
(1) by C(µ, ν). The joint laws on R × R are usually called transport plans after
the classical concrete problem of Monge [22]: how can one transport a heap of
soil distributed according to µ to a target distribution ν? A transport plan π
prescribes that for (x, y) ∈ R2 a quantity of mass π(dxdy) is transported from x to
y. Minimizers of the problem (1) are called optimal transport plans. Note that we
will also use the more probabilistic term coupling for transport plans. Following [28]
we denote the set of all transport plans by Π(µ, ν) so that one has the alternative
definition

C(µ, ν) = inf
π∈Π(µ,ν)

∫∫
c(x, y) dπ(x, y).
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Our main interest lies in a martingale version of the transport problem. That is,
our aim is to minimize E[c(X,Y )] over the set of all martingale transport plans

ΠM (µ, ν) = {π ∈ Π(µ, ν) : π = law(X,Y ) and E[Y |X] = X}.

A transport plan π is equivalently described through its disintegration (πx)x∈R
with respect to the initial distribution µ. The probabilistic interpretation is that
(x,A) 7→ πx(A) is the transition kernel of the two-step process (Xi)i=1,2 where
X1 = X and X2 = Y , i.e. πx(A) = P(Y ∈ A|X = x). In these terms, π is an
element of ΠM (µ, ν), if and only if

∫
y dπx(y) = x holds µ-a.s. Hence in this paper

we study the minimization problem

Minimize Eπ[c] =

∫∫
c(x, y) dπ(x, y) subject to π ∈ ΠM (µ, ν)(2)

for various costs. Let CM (µ, ν) denote the infimum inf{Eπ[c] : π ∈ ΠM (µ, ν)}.
Our optimal transport approach permits to distinguish some special couplings

of ΠM (µ, ν) that are comparable to the monotone (or Hoeffding-Fréchet) coupling
πHF ∈ Π(µ, ν). Indeed we have developed our martingale transport theory parallel
to the classical theory and the optimizer of (2) will enjoy canonical properties.
Nevertheless notable differences occur between the theories. An obvious one is
the fact that ΠM (µ, ν) can be empty while Π(µ, ν) always contains the element
µ ⊗ ν. The existence of a martingale transport plan is actually quite an old topic
that is present (but under different names) at least since the study of Muirhead’s
inequality by Hardy, Littlewood, and Pólya [11]. Several articles in different fields
(analysis, combinatorics, potential theory, and probability) deal with this question
in different settings, often for marginal distributions in spaces much more general
than the real line (see e.g. [3, 26, 21, 5, 27, 8, 19, 9]). The interest in finding an
explicit coupling has appeared recently in the peacock problem (see [12] and the
references therein): a peacock is a stochastic process (Xt)t∈I such that there exists
at least one martingale (Mt)t∈I satisfying law(Xt) = law(Mt) for every t. The
problem consists in building as explicitly as possible such a martingale (Mt) from
(Xt). The martingale transport problem is maybe even closer linked to the theory
of model-independent pricing in mathematical finance.1 Indeed the problem (2)
has been first studied in this context by Hobson and Neuberger [16] for the specific
cost function c(x, y) = −|y − x|. The link between optimal transport and model
independent pricing has been made explicit in [2] in a discrete time framework and
by Galichon, Henry-Labordere, and Touzi [10] in a continuous time setup.

We note that several of the basic features of the problem (2) are similar to the
usual optimal transport problem. This appeals for instance to the weak compact-
ness of Π(µ, ν) and ΠM (µ, ν). If c is lower semi-continuous, this carries over to the
mapping π 7→ Eπ[c] for either space of transport plans. In particular the infimum
is attained. Note also that as in the standard setup the problem has a natural dual
formulation [2]. However as we already mentioned in the previous paragraph, while
there is always a transport plan which moves µ to ν, the marginal distributions
need to satisfy additional assumptions to guarantee that a martingale transport
plan exists: the set ΠM (µ, ν) is non-empty if and only if µ is smaller than ν in the
convex order (see Definition 2.1). More details are provided in Section 2 along with
a construction of a martingale transport plan between two given marginals.

1We refer to the recent survey by Hobson [14] for a very readable introduction to this area.
Arguably, the most important tool in model-independent finance is the Skorokhod-embedding
approach; an extensive overview is given by Ob lój in [23].
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1.2. Summary on the classical transport problem on R. A cornerstone in the
modern theory of optimal transportation is Brenier’s Theorem (or Brenier-Rachev-
Rüschendorf Theorem), see [4, 24]. It treats the optimal transport problem in the
particular case c(x, y) = |y−x|2, where |.| denotes the Euclidean norm on Rn. This
is simply Problem (1) when µ and ν are interpreted as measures on Rn. Under
appropriate regularity conditions on µ, the optimal transport π ∈ Π(µ, ν) is unique
and supported by the graph of a function T : Rn → Rn that is the gradient of some
convex function. In particular the optimal transport is realized by a mapping. Note
that in dimension one the gradient of a convex function is simply a monotonically
increasing function so that the optimal coupling is the usual monotone coupling.
This fact can be directly proved without too many difficulties (see for instance [17])
but nevertheless it is interesting as one of the rare cases where an optimal transport
plan can be so easily understood. Moreover even without any assumption on µ,
the monotone coupling is the unique optimal transport plan. In this paper we will
see that similar results are valid in the martingale case; e.g., the uniqueness of the
minimizer or the fact that the optimal coupling is concentrated on a special set
comparable to the graph of a monotone mapping.

We present the classical (non martingale) optimal transport problem on the real
line that will serve as a guideline to our paper. The results are given for an arbitrary
strictly convex cost. Any cost of this type activates the same theory, which again
is characteristic of dimension one.

Theorem 1.1. Let µ, ν be probability measures and c a cost function defined by
c(x, y) = h(y − x), where h : R → R is a strictly convex function. We assume
that c satisfies the sufficient integrability condition with respect to µ and ν and that
C(µ, ν) <∞. The following statements are equivalent

(1) The measure π is optimal.
(2) The transport preserves the order, i.e. there is a set Γ with π(Γ) = 1 such

that whenever (x, y), (x′, y′) ∈ Γ, if x < x′ one has also y ≤ y′.

We have the two following corollaries.

Corollary 1.2. For given measures µ and ν, if C(µ, ν) is finite then there exists a
unique minimizer to the transport problem (1) and it is the monotone (Hoeffding-
Fréchet-) coupling πHF.

One has in fact πHF = (Gµ ⊗ Gν)#λ[0,1] where λ is the Lebesgue measure and
Gµ and Gν are the quantile functions of µ and ν, i.e. the non-decreasing and left-
continuous functions obtained from the cumulative distribution functions Fµ and
Fν as a generalized inverse by the formula G(s) = inf{t ∈ R : s ≤ F (t) }.2 This
observation is the reason why the coupling πHF is also known under the alternative
name quantile coupling.

For the following corollary we recall that a measure µ is said to be continuous if
µ({x}) = 0 for every x ∈ R.

Corollary 1.3. Under the assumptions of Corollary 1.2, if µ is continuous then the
optimal transport plan πHF is concentrated on the graph of an increasing mapping
T : R→ R. Moreover T#µ = ν.

It is straightforward to see that T = Gν ◦Fµ. This formula determines T , µ-a.s.

Quadratic costs in the martingale setting. While c(x, y) = (y − x)2 is arguably the
most important cost function in the theory of optimal transport we stress that it
plays a rather different role in the martingale setup. Assume that law(X) = µ and

2Note that the function G may take infinite values at the boundary of its domain [0, 1].
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law(Y ) = ν are linked by a martingale coupling π and posses second moments.
Then

E[XY ] = E [E[XY |X]] = E[X2],

hence we have the Pythagorean relation∫
(y − x)2 dπ(x, y) = E[(Y −X)2] = E[Y 2]− E[X2].

Thus the cost associated to π depends only on the marginal distributions, i.e. not
on the particular choice of π ∈ ΠM (µ, ν).

We record the following consequence: Let c be a cost function and assume that

c̃(x, y) = c(x, y) + p · (y − x)2 + q · (y − x)

for some real constants p and q. Then in Problem (2) the minimizers are the same
for the costs c and c̃. In particular, if c(x, y) = h(y − x), we do not expect that
monotonicity or convexity properties of the function h are relevant for the structure
of the optimizer.

1.3. A new coupling: the monotone martingale coupling, main results.
In this section we will discuss a particular coupling which may be viewed as a
martingale analogue to the monotone (Hoeffding-Fréchet) coupling. Notable simi-
larities are that it is canonical with respect to the convex order as well as that it is
optimal for a range of different cost functions.

Definition 1.4. A martingale transport plan π on R×R is left-monotone or simply
monotone if there exists a Borel set Γ ⊆ R × R with π(Γ) = 1 such that whenever
(x, y−), (x, y+), (x′, y′) ∈ Γ we cannot have (see Figure 1 where this situation is
represented)

x < x′ and y− < y′ < y+.(3)

Respectively π is said to be right-monotone if there exists Γ such that if (x, y−),
(x, y+) and (x′, y′) are elements of Γ then we do not have

x > x′ and y− < y′ < y+.

We will refer to the set Γ as the monotonicity set of π.

In this paper we will only state the results for (left-)monotone couplings. The
corresponding results for right-monotone couplings can be deduced easily. We il-
lustrate the forbidden situation (3) in Figure 1. Note that the top line represents
the measure µ while ν is distributed on the bottom line; this convention will also
be used in the subsequent pictures.

x x′

y− y+y′

Figure 1. The forbidden mapping.

The next theorem is proved in Section 5.
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Theorem 1.5. Let µ, ν be probability measures in convex order. Then there exists
a unique (left-)monotone transport plan in ΠM (µ, ν). We denote this coupling by
πlc and call it left-curtain3 coupling.

Of course one does not expect that a martingale is concentrated on the graph
of a deterministic mapping T ; this holds only in the trivial case when µ = ν and
T (x) ≡ x. Rather we have the following result.

Corollary 1.6. Let µ, ν be probability measures in convex order and assume that
µ is continuous. Then there exist a Borel set S ⊆ R and two measurable functions
T1, T2 : S → R such that

(1) πlc is concentrated on the graphs of T1 and T2.
(2) For all x ∈ R, T1(x) ≤ x ≤ T2(x).
(3) For all x < x′ ∈ R, T2(x) < T2(x′) and T1(x′) /∈ ]T1(x), T2(x)[.

The following picture (Figure 2) illustrates the coupling πlc in a specific case. The
measures µ and ν are Gaussian distributions having the same mean, the variance of
ν being greater than the variance of µ. There exist two points at which the density
of µ (w.r.t. Lebesgue measure) equals the density of ν. Denote the smaller of these
points by x0. Then we have T1(x) = T2(x) = x for x < x0. For x > x0, the map
T1 is strictly decreasing and T2 is strictly increasing.

x x′

T2(x′)T1(x′) T1(x) = T2(x)

Figure 2. Scheme of the left-curtain πlc coupling between two
Gaussian measures.

The subsequent result states that the transport plan πlc is optimal for a variety
of different cost functions. (see Theorem 6.1 below.)

Theorem 1.7 (πlc is optimal). Let µ, ν be probability measures in convex order.
Assume that c(x, y) = h(y − x) for some differentiable function h whose deriva-
tive is strictly convex and that c satisfies the sufficient integrability condition. If
CM (µ, ν) <∞ then πlc is the unique optimizer.

3This name is explained in some detail before Theorem 4.18.
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Natural examples of cost functions to which the result applies are given by
c(x, y) = (y − x)3 and c(x, y) = exp(y − x).

We discuss a further characteristic property of the transport plan πlc. For a real
number t and π ∈ Π(µ, ν) consider the measure

νπt := projy# π|]−∞,t]×R
where projy : (a, b) ∈ R2 7→ b ∈ R. Loosely speaking, the mass µ|]−∞,t] is moved to
νπt by the transport plan π. It is intuitively clear (and not hard to verify) that a
transport plan π ∈ Π(µ, ν) is uniquely determined by the family (νπt )t∈R.

Using this notation, the classic monotone transport plan πHF is characterized
by the fact that for each t, the measure νπHF

t is as left as possible. More precisely,
for every t the measure νπHF

t is minimal with respect to the first order stochastic
dominance in the family

{νπt : π ∈ Π(µ, ν)}.
We have the following, analogous characterization for the monotone martingale

coupling πlc. This is in fact the way we will formally define πlc in Theorem 4.18.

Theorem 1.8 (πlc is canonical with respect to the convex order). For every real
number t the measure νπlc

t is minimal with respect to the convex order (i.e. second
order stochastic dominance) in the family

{νπt : π ∈ ΠM (µ, ν)}.

The next theorem summarizes the properties of πlc.

Theorem 1.9. Let µ, ν be probability measures in convex order. Let h : R → R
be a differentiable function such that h′ is strictly convex and assume that the cost
function c : (x, y) 7→ h(y − x) satisfies the sufficient integrability condition.

We assume moreover CM (µ, ν) < +∞. Let π be a martingale coupling in
ΠM (µ, ν). The following statements are equivalent:

• The coupling π is monotone.
• The coupling π is optimal.
• The coupling π is the left-curtain coupling πlc: for every (π′, t) ∈ ΠM (µ, ν)×
R, the measure νπt is smaller than νπ

′

t in the convex order.

Note that Theorem 1.9 is a consequence of the other results stated above.

1.4. A “variational principle” for the martingale transport problem. An
important basic tool in optimal transport is the notion of c-cyclical monotonicity
(see [29, Chapter 4]) which links the optimality of transport plans to properties of
the support of the transport plan. A parallel statement holds true in the present
setup and plays a fundamental role in our considerations. Heuristically we expect
that if π ∈ ΠM (µ, ν) is optimal, then it will prescribe optimal movements for single
particles. To make this precise we use the following notion.

Definition 1.10. Let α be a measure on R × R with finite first moment in the
second variable. We say that α′, a measure on the same space, is a competitor of
α if α′ has the same marginals as α and for (projx# α)-a.e. x ∈ R∫

y dαx(y) =

∫
y dα′x(y),

where (αx)x∈R and (α′x)x∈R are disintegrations of the measures with respect to
projx# α.

We can now formulate a “variational principle” for the martingale transport
problem.
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Lemma 1.11 (variational lemma). Assume that µ, ν are probability measures in
convex order and that c : R2 → R is a Borel measurable cost function satisfying
the sufficient integrability condition. Assume that π ∈ ΠM (µ, ν) is an optimal
martingale transport plan which leads to finite costs. Then there exists a Borel set
Γ with π(Γ) = 1 such that the following holds:

If α is a measure on R × R with | spt(α)| < ∞ and spt(α) ⊆ Γ then we have∫
cdα ≤

∫
cdα′ for every competitor α′ of α.

Indeed, under the additional assumption that the cost function c is continuous
and bounded we can prove that the condition given in the variational lemma is
not only necessary but also sufficient to guarantee that a measure is optimal, see
Lemma 8.2 in Appendix A.

The variational lemma 1.11 is one of the key ingredients in our investigation of
the monotone martingale transport plan πlc introduced above. Moreover it turns
out to be very useful if one seeks to derive results on the optimizers for various
specific cost functions. Assuming for simplicity that µ is continuous, Lemma 1.11
allows us to derive the following results.

(1) If c(x, y) = (y − x)4, then card(sptπx) ≤ 3, µ(x)-a.s.
(2) Assume that c(x, y) = h(y−x) for some continuously differentiable function

h and that the derivative h′ intersects every affine function at most in
k ∈ N points. Then card(sptπx) ≤ k, µ(x)-a.s. for the optimizing π. (See
Theorem 7.1, and also Theorem 7.2 for a similar result which appeals to
the classical transport problem.)

(3) If c(x, y) = −|y − x|, then there is a unique optimizer π ∈ ΠM (µ, ν).
Moreover card(sptπx) ≤ 2, µ(x)-a.s. (This was first shown in [16], see
Theorem 7.3.)

(4) If c(x, y) = |y−x|, then there is a unique optimizer π ∈ ΠM (µ, ν). Moreover
card(sptπx) ≤ 3 and card(sptπx \ {x}) ≤ 2, µ(x)-a.s. (see Theorem 7.4)

Having financial applications in mind, the cost functions c(x, y) = |y − x| and
c(x, y) = −|y − x| are particularly relevant, we refer to the work of Hobson and
Neuberger [16].

1.5. Organisation of the paper. We will start with a warm up section (Section
2) in which we derive some basic properties and explain a procedure that allows
to find a martingale coupling for two given measures in convex order. Then, in
Section 3, we establish the variational lemma 1.11 which will play a crucial role
throughout the paper. In Section 4 we introduce and study the shadow projection,
which permits us to introduce the left-curtain transport plan πlc. We define it in
Theorem 4.18 through its canonical property with respect to the convex order, we
explain the name “left-curtain” and prove that it is monotone in Theorem 4.21.
The particular properties of the transport plan πlc are established in Sections 5
and 6. In section 7 we present results related to other costs and other couplings.
Finally, in the Appendix, we present a converse to the variational lemma 1.11. We
also provide an alternative derivation of Lemma 1.11 which is longer than argument
presented in Section 3 but has the advantage to be constructive and self-contained.

Acknowledgments. The authors wish to thank Michel Émery, Martin Goldstern,
Claus Griessler, Martin Keller-Ressel, Vincent Vigon, and the participants of the
Winter school 2012 in Regen for enlightening discussions on the topic of this pa-
per. We are also indebted to a particularly careful referee for numerous valuable
suggestions and for pointing out a mistake in the initial version of this manuscript.
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2. Construction of a martingale transport plan for measures.

In this section we extend the martingale optimal transport problem to general
finite measures with finite first moment and we define the convex order on this space.
We prove that there exists a martingale transport plan between two measures in
convex order and give a very short description of the duality theory linked to our
optimization problem.

2.1. Basic notions. Denote by M the set of finite measures on R having finite
first moment. We consider it with the usual topology, i.e. we say that a sequence
(νn)n converges weakly in M to an element ν ∈M if

(1) (νn)n converges weakly in the usual sense, i.e. using continuous bounded
functions as test functions;

(2) the sequence
∫
|x|dνn converges to

∫
|x|dν.

Note that this is the same as adding all functions that grow at most linearly in ±∞
to the set Cb of continuous and bounded test functions.

The reason we are interested in the space M is that we will need to consider
also transport plans between measures µ, ν ∈ M which have (the same) mass k,
where k is possibly different from 1. In direct generalization of the earlier definition
the set of transport plans Π(µ, ν) then consists of all Borel measures π on R × R
satisfying projx# π = µ, projy# π = ν. As a consequence of Prohorov’s Theorem the

set Π(µ, ν) is compact; see e.g. [29, Lemma 4.4] for details. If c is a continuous (or
lower semi-continuous) cost function satisfying the sufficient integrability condition
with respect to µ and ν then the cost functional

π ∈ Π(µ, ν) 7→
∫
cdπ ∈ ]−∞,+∞]

is lower semi-continuous w.r.t. the weak topology ([29, Lemma 4.3]). It follows that
the infimum in the classic transport problem is attained.

We proceed analogously in the martingale setup. If µ and ν are not necessarily
probabilities, we define ΠM (µ, ν) to consist of all transport plans π such that the
disintegration in probability measures (πx)x∈R w.r.t. µ satisfies∫

y dπx(y) = x

for µ-almost every x. Then π ∈ Π(µ, ν) is a martingale measure if and only if∫
ρ(x)(y − x) dπ(x, y) = 0.(4)

for all bounded measurable functions ρ : R→ R. To see whether π is a martingale
measure it is of course enough to test (4) for a sufficiently rich class of functions:
e.g. for all functions of the form ρ = 1]−∞,x], x ∈ R or for all continuous bounded
functions (see [2, Lemma 2.3]).

Hence the set ΠM (µ, ν) is compact in the weak topology (see [2, Proposition
2.4]). Precisely as in the usual setup it follows that the value of the minimization
problem (2) is attained provided that the set ΠM (µ, ν) is non-empty.

Of course it is a fundamental question on which conditions martingale transport
plans exist. In the usual optimal transport setup the problem is simple enough:
the properly renormalized product measure 1

µ(R)µ ⊗ ν witnesses that Π(µ, ν) is

non-empty. As mentioned in the introduction, the proper notion which guarantees
existence of a martingale transport plan is the convex order. As it plays a crucial
role throughout the paper we will discuss it in some detail.
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2.2. The convex order of measures. Let us start with the definition.

Definition 2.1. Two measures µ and ν are said to be in convex order4 if

(1) they have finite mass and finite first moments, i.e. lie in M,
(2) for convex functions ϕ defined on R,

∫
ϕdµ ≤

∫
ϕdν.

In that case we will write µ �C ν.

Note that if µ �C ν, then one can apply (2) to all affine functions. Using the
particular choices ϕ(x) ≡ 1 and ϕ(x) ≡ −1 one obtains that µ and ν have the same
total mass and considering the functions ϕ(x) ≡ x and ϕ(x) ≡ −x one finds that µ
and ν have the same barycenter.5

It is useful to know that it is sufficient to test hypothesis (2) against suitable
subclasses of the convex functions. For instance, measures µ, ν having the same
finite mass and the same first moments are in convex order if and only if∫

(x− k)+ dµ(x) ≤
∫

(x− k)+ dν(x)

for all real k. This follows from simple approximation arguments (see [13] and also
Paragraph 4.1) using monotone convergence. In particular it is sufficient to check
(2) for positive convex functions with finite asymptotic slope in −∞ and +∞.

We give some examples of measures in convex order.

Example 2.2. If δ is an atom of mass α > 0 at the point x, then δ �C ν simply
means that ν has mass α and barycenter x.

Example 2.3. If µi �C νi for i = 1, . . . , n then
∑n
i=1 µi �C

∑n
i=1 νi.

Example 2.4. If two measures µ and µ′ have the same barycenter and the same
mass, µ is concentrated on [a, b] and µ′ is concentrated on R\]a, b[ then µ �C µ′.
Indeed it can be proved for convex functions ϕ defined on R that∫

ϕdµ ≤
∫
ψ dµ =

∫
ψ dµ′ ≤

∫
ϕdµ′

where ψ is the linear function satisfying ψ = ϕ in a and b.

Example 2.5. If two measures µ and µ′ have the same barycenter and the same
mass, µ − (µ ∧ µ′) is concentrated on [a, b] and µ′ − (µ ∧ µ′) is concentrated on
R\ ]a, b[ then we have µ �C µ′. To see this, apply Example 2.4 to the two reduced
measures and note that adding µ ∧ µ′ preserves the order.

The following result formally states the connection between the convex order
and the existence of martingale transport plans.

Theorem 2.6. Let µ, ν ∈ M. The condition µ �C ν is necessary and sufficient
for the existence of a martingale transport plan in ΠM (µ, ν).

It is a simple consequence of Jensen’s inequality that the condition µ �C ν is
necessary to have ΠM (µ, ν) 6= ∅: if π is a martingale transport plan and ϕ is convex
then ∫

ϕ(y) dν(y) =

∫
ϕ(y) dπ(x, y) =

=

∫∫
ϕ(y) dπx(y) dµ(x) ≥

∫
ϕ(x) dµ(x).

The fact that the condition is also sufficient is well known and goes back at least
to a paper by Strassen [27]. Nevertheless we think that it is worthwhile to describe
a procedure which allows to obtain a martingale transport plan. This is what we
do in the next subsection.

4The convex order is also called Choquet order or second order stochastic dominance.
5The barycenter or mean of a measure µ is 1

µ(R)
∫
x dµ(x).
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2.3. Construction of a martingale transport. We fix finite measures µ, ν hav-
ing finite first moments and satisfying µ �C ν; our aim is to show that ΠM (µ, ν)
is non-empty. The desired result will first be given in the case where µ is concen-
trated on finitely many points. The construction in Proposition 2.7 will rely on the
elementary fact (related to Example 2.3) that π1 ∈ ΠM (µ1, ν1), π2 ∈ ΠM (µ2, ν2)
implies that π1 + π2 ∈ ΠM (µ1 + µ2, ν1 + ν2).

Proposition 2.7. Assume that µ =
∑n
i=1 δi, where each δi is an atomic measure.

If ν satisfies µ �C ν, then ΠM (µ, ν) is non-empty.

First note that by Example 2.2 this proposition is clear if n = 1. The general
case will be established by induction. To perform the inductive step we need to
understand how to couple a single atom, say δ := δ1, with a properly chosen portion
ν′ of ν so that the other atoms (

∑n
i=2 δi) are smaller than ν − ν′ in convex order.

Assume that δ has mass α and is concentrated on x. Recalling Example 2.2, we
should pick ν′ so that it has mass α and barycenter x. Clearly, it also needs to
satisfy ν′ ≤ ν, where ≤ refers to the usual pointwise order of measures.

As δ is a part of µ and µ �C ν, we can introduce the measure µ̃ = µ− δ which
has mass t = ν(R) − α. Obviously we then have δ + µ̃ �C ν. We are looking for
the measure ν′ among the measures {νs : s ∈ [0, t]} obtained as the restriction of ν
between two quantiles s and s′ = s+α. More precisely we consider νs = G#λ[s,s+α]

where G : [0, t + α] → R is the quantile function of ν, and λ[s,s′] is the Lebesgue
measure restricted to [s, s′]. In Paragraph 1.2 we have discussed quantile functions
only for probability measures but of course the notion carries over to measures in
M. For completeness note that ν = G#λ[0,t+α].

The barycenter B(s, ν) of νs depends continuously on the parameter s ∈ [0, t]
and we claim that

B(0, ν) ≤ x, B(t, ν) ≥ x.(5)

This is a consequence of the convex order relation (δ + µ̃) �C ν applied to the
convex and non-negative functions u 7→ (u − G(α))− and u 7→ (u − G(t))+. For
instance∫
u−G(t) dδ(u) ≤

∫
(u−G(t))+ dδ(u) ≤

∫
(u−G(t))+ dν(u) =

∫
u−G(t) dνt(u).

By the intermediate value theorem, the continuity of s 7→ B(s, ν) implies that there
exists some s ∈ [0, t] such that νs has barycenter x. Moreover if B(s, ν) = B(s′, ν),
the measures νs and νs′ are equal so that there exists a unique measure with
barycenter x. We denote it by ν′.

This discussion leads us to the following lemma.

Lemma 2.8. Let µ be of the form µ = µ̃+ δ, where δ is an atom and assume that
µ �C ν. Then there exists a unique splitting of the measure ν into two positive
measures ν′ and ν̃ = ν − ν′ in such a way that

(1) δ �C ν′,

(2) ν̃(I) = 0 where I = ˚conv(spt(ν′)) is the interior of the smallest interval
containing the support of ν′.

Moreover the measures µ̃ and ν̃ satisfy µ̃ �C ν̃.

Proof. Having already constructed ν′ (and I, i.e. ]G(s), G(s+α)[) in the paragraph
above Lemma 2.8 it remains to show (2): µ̃ is smaller than ν̃ in the convex order.
Let ϕ be a non-negative convex function which satisfies

lim sup
|x|→+∞

|ϕ(x)/x| < +∞.
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We will prove that
∫
ϕdµ̃ ≤

∫
ϕdν̃. To this end we introduce a new function ψ

which equals ϕ on R \ I and is linear on I. The function ψ can be chosen to be
convex and satisfy ψ ≥ ϕ. (Note that this is possible also in the case where I is
unbounded.) The functions ϕ and ψ coincide on the border of I. We have∫

ϕdµ̃ ≤
∫
ψ dµ̃ =

∫
ψ dµ−

∫
ψ dδ.

But as ψ is linear on I, one has
∫
ψ dδ =

∫
ψ dν′ and because µ �C ν one has∫

ψ dµ ≤
∫
ψ dν. It follows that∫

ϕdµ̃ ≤
∫
ψ dν −

∫
ψ dν′ =

∫
ψ dν̃ =

∫
ϕdν̃.

The last equality is due to the fact that ν̃ is concentrated on R \ I. We have thus
established our claim that µ̃ �C ν̃. �

Proof of Proposition 2.7. In the first step we apply Lemma 2.8 to the measures
δ = δ1 and µ̃ =

∑n
i=2 δi to obtain a splitting ν = ν̂1 + ν̃ that satisfies δ1 �C ν̂1 and

µ̃ �C ν̃. Trivially ΠM (δ1, ν̂1) consists of a single element π1.
In the next step we repeat the procedure with µ̃ and ν̃ in the place of µ, ν

and continue until the n-th step where δn can be martingale-transported to the
remaining part of ν because the convex order relation δn �C (ν −

∑n−1
i=1 ν̂i) is

satisfied in Example 2.2. Hence we have obtained recursively a sequence (ν̂i)
n
i=1

such that δi �C ν̂i and ν̂1 + · · · + ν̂n = ν. We have constructed n martingale
transport plans π1, . . . , πn where πi is the unique element of ΠM (δi, ν̂i). Thus
π1 + · · ·+ πn is an element of ΠM (µ, ν). �

To extend Proposition 2.7 to the case of general µ ∈ M we need the following
simple and straight-forward fact that will also be useful in Section 4.

Lemma 2.9 (Approximation of a measure in the convex order). Assume γ ∈ M.
There exists a sequence (γ(n))n of finitely supported measures such that γ(n+1) �C
γ(n), the sequence (γ(n))n converges weakly to γ in M and γ(n) �C γ holds for
every n.

Proof. To any partition J of R into finitely many intervals we can associate some
γJ smaller than γ in the convex order. We simply replace γ =

∑
I∈J γ|I by

γJ =
∑
J δI where δI is an atom with the same mass and same barycenter as γ|I .

Note that if J ′ is finer than J (the intervals of J are broken in sub-intervals) then
γJ �C γJ ′ . For k,N ∈ N we consider the partition

Jk,N =
(⋃(2k−1)N

i=−2kN

]
i

2k
, i+1

2k

])
∪ ]N,+∞[∪ ]−∞,−N ],

and set γk,N = γJk,N . We have γk,N �C γk+1,N and γk,N �C γk,N+1. Write

γ(n) for γn,n. Let f be a continuous function that grows less than linearly in
±∞. There exist a, b > 0 such that |f(x)| ≤ a|x| + b. Let ε > 0 and N be
such that

∫
|x|≥N a|x| + bdγ(x) ≤ ε/3. The function f is uniformly continuous on

[−N,N ]. Thus there exists ω such that if x, y ∈ [−N,N ] and |x− y| ≤ ω we have
|f(x)− f(y)| ≤ ε/3. Let k be such that 1/2k ≤ ω. For n ≥ max{k,N} we have

|γ(f)− γ(n)(f)| ≤
∣∣∣∫ N−N f dγ −

∫ N
−N f dγ(n)

∣∣∣
+
∣∣∣∫|x|≥N f dγ

∣∣∣+
∣∣∣∫|x|≥N f dγ(n)

∣∣∣ ≤ ε
3 + ε

3 + ε
3 .

The first two estimates are a consequence of our preparations: to see this, note that∣∣∣∫|x|≥N f dγ(n)
∣∣∣ ≤ ∫|x|≥N a|x|+ bdγ(n) ≤

∫
|x|≥N a|x|+ bdγ

where the convexity of x 7→ a|x|+ b and γ(n)|{|x|≥N} �C γ|{|x|≥N} are used. �



12 MATHIAS BEIGLBÖCK AND NICOLAS JUILLET

We are now finally in the position to conclude the proof of Theorem 2.6.

Proof of sufficiency in Theorem 2.6. Pick a sequence of finitely supported mea-
sures (µn)n≥1 satisfying µn �C ν such that µn converges to µ weakly. (By Lemma
2.9, the sequence could be chosen to be increasing in the convex order, but we do
not need this here.) We have already solved the problem of transporting a discrete
distribution. Pick martingale measures (πn)n≥1 which transport µn to ν for each
n. To be able to pass to a limit, we note that the set

Ω := ΠM (µ, ν) ∪
∞⋃
n=1

ΠM (µn, ν)

is compact. Hence the sequence (πn)n≥1 has an accumulation point π in Ω and of
course π is as desired: its marginals are µ and ν and it is a martingale transport
plan. �

We have thus seen a self-contained proof to Theorem 2.6. Of course the reader
may object that the martingale established in the course of the proof was in no
sense canonical and that the derivation was not constructive since we have invoked
a compactness argument to prove the existence in the case of a general measure
µ. In Section 4 we will be concerned with a modification of the above ideas which
does not suffer from these shortfalls.

2.4. A dual problem. We mention that the martingale transport problem (2)
admits a dual formulation. In analogy to the dual part of the optimal transport
problem one may consider

Maximize

∫
ϕdµ+

∫
ψ dν

where one maximizes over all functions ϕ ∈ L1(µ), ψ ∈ L1(ν) such that there exists
∆ ∈ Cb(R) satisfying

c(x, y) ≥ ϕ(x) + ψ(y) + ∆(x)(y − x)(6)

for all x, y ∈ R. Denote the corresponding supremal value by D. The inequality
D ≤ CM (µ, ν) then follows by integrating (6) against π ∈ ΠM (µ, ν). In the case of
lower semi-continuous costs c the duality relation D = CM (µ, ν) is established in [2,
Theorem 1.1]. We also note that the dual part of the problem appears naturally in
mathematical finance where it has a canonical interpretation in terms of replication.
We refer to [2] for more details on this topic.

Duality results for a continuous time martingale transport problem are obtained
by Galichon, Henry-Labordere, Touzi [10] and Dolinsky, Soner [7].

3. A short proof of the variational lemma

The aim of this section is to establish the variational lemma, Lemma 1.11. That
is, for a given optimal martingale transport plan π we want to construct a Borel
set Γ, π(Γ) = 1 such that the following holds: if α is a measure on R × R with
| spt(α)| < ∞ and spt(α) ⊆ Γ then we have

∫
cdα ≤

∫
cdα′ for every competitor

α′ of α.
As mentioned above, this result can be viewed as a substitute for the character-

ization of optimality through the notion of c-cyclical monotonicity in the classical
setup. Under mild regularity assumptions it is not too hard to show that a transport
plan π which is optimal for the (usual) transport problem is c-cyclically monotone,
we refer to [29, Theorem 5.10]. However this approach does not translate effortlessly
to the martingale case. Roughly speaking the main problem in the present setup is
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that the martingale condition makes manipulation of transport plans a relatively
delicate issue.

Instead we give here a proof of Lemma 1.11 that is based on certain measure
theoretic tools: it requires a general duality theorem of Kellerer [20, Lemma 1.8(a),
Corollary 2.18] which in turn requires Choquet’s capacability theorem [6].6 See the
Appendix for an alternative and constructive proof of the variational lemma.

The crucial ingredient is the following result:

Theorem 3.1. Let (Z, ζ) be a Polish probability space and M ⊆ Zn. Then either
of the following holds true:

(1) There exist subsets (Mi)i of Zn such that ζ(projiMi) = 0 for i = 1, . . . , n
and

M ⊆
n⋃
i=1

Mi.

(2) There exists a measure γ on Zn such that γ(M) > 0 and proji# γ ≤ ζ for
i = 1, . . . , n.

We refer to [1, Proposition 2.1] for a detailed proof of Theorem 3.1 from Kellerer’s
result.

Proof of Lemma 1.11. Fix a number n ∈ N. We want to construct a set Γn for
which the optimality property holds for all α satisfying | sptα| ≤ n. This set Γn
will satisfy π(Γn) = 1. Clearly Γ =

⋂
n∈N Γn is then as required to establish the

lemma.
For a fixed n ∈ N, define a Borel set M by

M :=

(xi, yi)
n
i=1 : ∃α s.t.

(1) α is a measure on R× R,
(2) sptα ⊆ {(xi, yi) : i = 1, . . . , n}, and
(3) ∃ competitor α′ satisfying

∫
cdα′ <

∫
cdα.

 .

We then apply Theorem 3.1 to the space (Z, ζ) = (R2, π) and the set M .
If we are in case (1), let N be

⋃n
i=1 proji(Mi) so that π(N) = 0 and M ⊆

(N × Zn−1) ∪ . . . ∪ (Zn−1 × N) = Zn \ (Z \N)n. We can then simply define
Γn := Z \N = R2 \N to obtain a set which does not support any non-optimal α
with | sptα| ≤ n. Moreover π(Γn) = 1 as we want, hence the proof is complete.

It remains to show that case (2) cannot occur. Striving for a contradiction
we assume that there is a measure γ such that γ(M) > 0 and proji# γ ≤ π for
i = 1, . . . , n. Restricting γ to M , we may of course assume that γ(R×R \M) = 0.
Rescaling γ if necessary, we may also assume that proji# γ ≤ 1

nπ.

Consider the measure ω =
∑n
i=1 proji# γ on R2. It is smaller than π and has

positive mass. In particular µω = projx# ω ≤ µ. We will find a competitor ω′ (recall
Definition 1.10) such that ω′ leads to smaller costs than ω, i.e.∫

c(x, y) dω′ <

∫
c(x, y) dω.

If such a measure ω′ exists then the measure π−ω+ω′ is a martingale transport plan
which leads to smaller costs than π, contradicting the optimality of π. It remains
to explain how ω′ is obtained. For each p =

(
(x1, y1), . . . , (xn, yn)

)
∈ (R× R)n let

αp be the measure which is uniformly distributed on the set {(x1, y1), . . . , (xn, yn)}.
Then

ω =

∫
p∈(R×R)n

αp dγ(p).

6This approach is inspired by [1] where c-cyclical monotonicity is linked to optimality with the
help of Kellerer’s result.
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For each p ∈ (R× R)n let α′p be an optimizer of the problem

Minimize

∫
(x,y)∈R×R

c(x, y) dβ(x, y), β competitor of αp.

We emphasize that α′p exists and can be taken to depend measurably on p. This

follows for instance by calculating α′p using the simplex algorithm.7

As γ is concentrated on M , for γ-almost all points p the measure α′p satisfies∫
(x,y)∈R×R

c(x, y) dα′p(x, y) <

∫
(x,y)∈R×R

c(x, y) dαp(x, y).

(Note that α′p is in general not concentrated on the same set as αp.) Then ω′

defined by

ω′ =

∫
p∈(R×R)n

α′p dγ(p)

satisfies the above conditions as required. For instance we have∫
R×R

cdω′ =

∫
p∈(R×R)n

∫
(x,y)∈R×R

c(x, y) dα′p(x, y) dγ(p)

<

∫
p∈(R×R)n

∫
(x,y)∈R×R

c(x, y) dαp(x, y) dγ(p) =

∫
R×R

cdω.

The other properties are checked analogously. �

We note that the just given proof of Lemma 1.11 is likely to extend to more
general setups. In particular we expect that the result remains valid if martingale
transport plans between higher dimensional spaces and with a finite number of time
steps (i.e. (Xi)

n
i=1 rather then just X1 = X and X2 = Y ) are considered.

Subsequently Lemma 1.11 will several times be applied in conjunction with the
following technical assertion. Given Γ ⊆ R2 we will use the notation Γx for {y ∈
R : (x, y) ∈ Γ}.

Lemma 3.2. Let k be a positive integer and Γ ⊆ R2. Assume also that there are
uncountably many a ∈ R satisfying |Γa| ≥ k.

There exist a and b1 < . . . < bk ∈ Γa such that for every ε > 0 one may find
a′ > a and b′1 < . . . < b′k ∈ Γa′ with

max(|a− a′|, |b1 − b′1|, . . . , |bk − b′k|) < ε.

Moreover one may also find a′′ < a and b′′1 < . . . < b′′k ∈ Γa′′ with

max(|a− a′′|, |b1 − b′′1 |, . . . , |bk − b′′k |) < ε.

Proof. Write A for the set of all a such that |Γa| ≥ k and pick for each a ∈ A
distinct elements ba1 , . . . , b

a
k ∈ Γa. Set ΓA = {(a, ba1 , . . . , bak) : a ∈ A}. We call

(a, ba1 , . . . , b
a
k) ∈ ΓA a right-accumulation point if for every ε > 0 there exists a′ ∈

]a, a+ ε[ such that |bai − ba
′

i | < ε for every i. We call it right-isolated otherwise. If
p belongs to the set of right-isolated points Ir ⊆ ΓA then there exists some εp > 0
such that [

{p}+
(
]0, εp[×]− εp, εp[k

)]
∩ ΓA = ∅,

where + refers to the Minkowski sum of sets.
Assume for contradiction that the set Ir is uncountable. Then there exists some

ζ > 0 such that K = {p ∈ Ir : εp > ζ} is uncountable. Given p1, p2 ∈ K, we have

7It is well known that the optimal transport problem for finite spaces falls into the realm of
linear programming, see for instance [28, p 23]. The same holds true in the martingale case.
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p2 /∈ p1 +
(
(0, ζ)× (−ζ, ζ)k

)
. Since p1 and p2 have different first coordinates, this

implies[
{p1}+

(
]0, ζ/2[×]− ζ/2, ζ/2[k

)]
∩
[
{p2}+

(
]0, ζ/2[×]− ζ/2, ζ/2[k

)]
= ∅.

This is a contradiction since there cannot be uncountably many disjoint open sets
in Rk+1.

It follows that all but countably many elements of A are right-accumulation
points. Arguing the same way with left replacing right we obtain the desired con-
clusion. �

4. Existence of a monotone martingale transport plan: the
left-curtain transport plan

A short way to prove that there exists some monotone martingale transport plan
would be to take a minimizer of Problem (2) for c(x, y) = h(y−x) where h is chosen
appropriately. Then one may apply Lemma 1.11 to prove that this minimizer is
monotone. This kind of argument will be encountered in Sections 6 and 7 below.
Here however we find it useful to give a construction which yields more insight in
the structure of the martingale transport plan. In particular it will also allow us to
prove the uniqueness of a monotone martingale transport plan in Section 5 and it
will not require any assumptions on µ and ν.

For our argument, we reconsider the construction used in Proposition 2.7 and
decide to transport the atoms δi of µ =

∑
i δi to ν in a particular order, starting

with the left-most atom and continuing to the right. It turns out that one can
characterize the martingale coupling that we obtain in terms of an extended convex
order and shadow introduced below (see Definition 4.3 and Lemma 4.6). These
notions enable us to adapt the construction directly to the continuous case, thus
making the approximation procedure used in Paragraph 2.3 obsolete.

4.1. Potential functions. An important tool in this section will be the so called
potential functions. For each µ ∈ M we define the potential function uµ : R → R
by

uµ(x) =

∫ ∞
−∞
|y − x|dµ(y)

for x ∈ R. Set k = µ(R) and m = 1
k

∫
xdµ.

Proposition 4.1. If µ is in M and k = µ(R), m = 1
k

∫
xdµ, then uµ has the

following properties:

(i) uµ is convex,
(ii) limx→−∞ uµ(x)− k|x−m| = 0 and limx→+∞ uµ(x)− k|x−m| = 0.

Conversely, if f is a function satisfying these properties for some numbers m ∈ R
and k ∈ [0,+∞[, then there exists a unique measure µ ∈M such that f = uµ. The
measure µ is one half the second derivative f ′′ in the sense of distributions.

Proof. See for instance the proof of Proposition 2.1 in [13]. �

Let us list some relevant properties of potential functions.

Proposition 4.2. Let µ and ν be in M.

• If µ and ν have the same mass, µ �C ν is equivalent to uµ ≤ uν .
• We have µ ≤ ν if and only if uµ has smaller curvature than uν . More

precisely µ ≤ ν if and only if uν − uµ is convex.
• A sequence of measures (µn)n in M with mass k and mean m converges

weakly in M to some µ if and only if (uµn)n converges pointwise to the
potential function of some µ′ ∈M. In that case µ = µ′.
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Proof. For the first property see [12, Exercise 1.7], for the third [13, Proposition
2.3]. The second property is a consequence Proposition 4.1. Namely 2µ and 2ν are
the second derivatives of uµ and uν . �

We will need the following generalization of the convex order.

Definition 4.3 (Extended convex order on M). Let µ and ν be measures in M.
We write µ �E ν and say that ν is greater than µ in the extended convex order if
for any non-negative convex function ϕ : R→ R we have∫

ϕdµ ≤
∫
ϕdν.

The partial order �C on M is extended by the order �E in the sense that �E
keeps the old relations and gives rise to new ones. By definition, if µ �C ν then we
have µ �E ν (since non-negative convex functions are convex). But if µ ≤ ν, we
will also have µ �E ν (as non-negative convex functions are non-negative). Note
that in this second case the two measures may have neither the same mass nor the
same barycenter.

As x 7→ 1 is a convex function, a trivial consequence of µ �E ν is µ(R) ≤ ν(R).
More precisely, let us prove that if the two measures have the same mass, µ �E ν
is equivalent to µ �C ν. Indeed if µ �E ν, for a convex function ϕ : R → R
and any (negative) constant y, the convex function ϕy : x 7→ ϕ(x) ∨ y satisfies∫
ϕy dµ ≤

∫
ϕy dν because

∫
ϕy − y dµ ≤

∫
ϕy − y dν. Letting y go to −∞ we

obtain
∫
ϕdµ ≤

∫
ϕdν. Hence µ �C ν.

In terms of �C , the extend convex order can be characterized as follows:

Proposition 4.4. Assume that µ �E ν. Then there exists a measure θ ≤ ν such
that µ �C θ.

Of course the converse statement is true as well: if there exists θ such that
µ �C θ and θ ≤ ν then we have also µ �E ν.

Proof. Let µ and ν satisfy µ �E ν. We can assume that ν is a probability measure
and denote by k and m the mass resp. the mean of µ. We define a measure θ ≤ ν
as follows. Consider the quantile function Gν of ν. Recall that λ is the Lebesgue
measure on R. For a parameter ζ ∈ [0, k], we denote by λζ the restriction of λ to
[0, 1] \ [ζ, ζ + (1− k)]. This measure has mass k as well as does θ = (Gν)#λ

ζ . We
now pick ζ such that θ has mean m. To see that this can be done we will apply
the intermediate value theorem in the same fashion as in the discussion preceding
Lemma 2.8: To see that m is indeed an intermediate value between the means of θ
obtained for ζ = 0 and ζ = k, we consider the non-negative and convex functions
x 7→ (x−Gν(1−k))+ and x 7→ (Gν(k)−x)+ and integrate them against µ and ν in
the same way as we did above to obtain the inequalities in (5). Clearly the mean of
θ depends continuously on ζ and hence the intermediate value theorem yields the
existence of the desired ζ.

We are now given two measures µ and θ of the same mass and the same mean.
Consider a convex function ϕ. We want to prove that its integral with respect to µ
is smaller than the one with respect to θ. For that we can assume without loss of
generality ϕ(Gν(ζ)) = ϕ(Gν(ζ + (1− k))) = 0. Then∫

ϕdµ(x) ≤
∫
ϕ+(x) dµ(x)

≤
∫
ϕ+(x) dν(x) =

∫
ϕ+(x) dθ(x) =

∫
ϕ(x) dθ(x).

This concludes the proof. �
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4.2. Maximal and minimal elements. For µ �E ν, let F νµ be the set of measures
η such that µ �C η and η ≤ ν. Note that the measures in F νµ have the same mass
and the same barycenter as µ. In the next lemmas we consider the partially ordered
set (F νµ ,�C) and show that it has both a maximal and a minimal element.

Lemma 4.5. For µ �E ν, the set F νµ has an element which is maximal w.r.t. the
convex order, i.e. there exists T ν(µ) such that

(i) T ν(µ) ≤ ν.
(ii) µ �C T ν(µ).

(iii) If η is another measure satisfying (i) and (ii) then we have η �C T ν(µ).

Proof. Consider the measure θ defined as in the proof of Proposition 4.4 and let η
be another measure in F νµ . We know that θ is concentrated outside an open interval

I and that it coincides with ν on R \ Ī so that θ|R\Ī ≥ η|R\Ī . Thus η − (η ∧ θ)
is concentrated on Ī whereas θ − (η ∧ θ) is concentrated on R \ I. It follows from
Example 2.5 that η �C θ. �

The existence of a minimal element is more involved and will play an important
role subsequently.

Lemma 4.6 (Shadow embedding). Let µ, ν ∈M and assume µ �E ν. Then there
exists a measure Sν(µ), called the shadow of µ in ν, such that

(i) Sν(µ) ≤ ν.
(ii) µ �C Sν(µ).

(iii) If η is another measure satisfying (i) and (ii) then we have Sν(µ) �C η.

As a consequence of (iii), the measure Sν(µ) is uniquely determined. Moreover it
satisfies the following property:

(iii’) If η is a measure such that η ≤ ν and µ �E η then we have Sν(µ) �E η.

Note that if µ �C ν, i.e. if µ and ν have the same mass, then the shadow Sν(µ)
is just ν itself because this is the only measure η with mass µ(R) = ν(R) that
satisfies η ≤ ν.

Proof of Lemma 4.6. First observe that (iii’) follows from Lemma 4.4 applied to µ
and η.

We write k (resp. m) for the mass (resp. the mean) of µ. The principal strategy
of our proof is to rewrite the problem in terms of potential functions. Set f = uµ
and g = uν .

The task is to find a convex function h (corresponding to uSν(µ)) such that

(1) h− g is concave, i.e. h′′ ≤ g′′ in a weak sense.
(2) f ≤ h and lim|x|→∞ h(x)− k|x−m| = 0.
(3) We have h ≤ h2 for all functions h2 in the set

UF = {h is convex and satisfies (1) and (2)} = {h = uη : η ∈ F}
We note that by Lemma 4.4 there exist functions satisfying Conditions (1) and (2).
Hence the sets F = {η : µ �C η, η ≤ ν} and UF are not empty. Looking for a
function which also satisfies the third property we define

h̄ = inf
h∈UF

h.(7)

If this function is convex, which we shall show below, it will satisfy the three
required conditions. Conditions (2) and (3) are clear, let us briefly prove (1): every
function h ∈ UF is “less convex” than g, i.e. the function h − g is concave. Hence
h̄− g = (infh∈UF h)− g = infh∈UF (h− g) is also concave.

The convexity of h̄ will be proved if we can establish that its epigraph E(h̄) is
convex, i.e. that every segment of R2 with both ends in E(h̄) is included in this set.
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This will be the case if UF is stable under the following operation: take h1, h2 in
UF and let hmin be the convex hull of x 7→ min(h1(x), h2(x)). More precisely

hmin(x) = inf
ab≥0, (a,b)6=(0,0)

bh1(x− a) + ah2(x+ b)

a+ b
.

Since lim|c|→∞(h1 − h2)(x + c) = 0 this infimum is in fact a minimum. Condition
(2) holds for hmin. It remains to prove that hmin − g is concave.

We use a non-usual but clear characterization of concavity: a real function is
concave if and only if has locally an upper tangent in every point. More precisely f
is concave if for every x ∈ R, there exists an affine function l with l(x) = f(x) and
l ≥ f in a neighborhood of x. With respect to the defintion of hmin, there are two
kinds of real x. A point x such that hmin(x) equals hi(x) for some i ∈ {1, 2} is of the
first kind. In this case the property is true because hi ≥ hmin so that hi−g ≥ hmin−g
where the first function is concave. These relations even hold globally. In the other

case there exist a, b with ab > 0 such that hmin(x) = bh1(x−a)+ah2(x+b)
a+b . Without

loss of generality we may assume a > 0 and b > 0. As hmin both is convex and
its graph is below the cord [(x − a, h1(x − a)), (x + b, h2(x + b))] we can conclude
that it is affine on [x − a, x + b]. Hence hmin − g is concave in a neighborhood of
x. Summing up, the property holds for the two kinds of real x. Finally hmin − g is
concave and hmin ∈ UF . Hence h̄ is convex and satisfies Conditions (1)–(3). �

Note that in Lemma 2.8 we have implicitly encountered the shadow in the case
where the starting distribution consists of an atom.

Example 4.7 (Shadow of an atom). Let δ be an atom of mass α at a point x.
Assume that δ �E ν. Then Sν(δ) is the restriction of ν between two quantiles, i.e.
it is ν′ = (Gν)#λ[s,s′] where s′ − s = α and the barycenter of ν′ is x. In particular
for another measure η ∈ M with δ �C η and η ≤ ν, applying the observation from
Example 2.5 to ν′ and η we obtain ν′ �C η.

4.3. Associativity of shadows. In this section we will establish the following
associativity property of the shadow.

Theorem 4.8 (Shadow of a sum). Let γ1, γ2 and ν be elements of M and assume
that µ = γ1 + γ2 �E ν. Then we have γ2 �E ν − Sν(γ1) and

Sν(γ1 + γ2) = Sν(γ1) + Sν−S
ν(γ1)(γ2).

In Figure 3 we can see the shadow of µ = γ1 + γ2 in ν for two different ways of
labeling the γi’s. In both cases ν1 := Sν(γ1) is simply γ1. On the left part of the
figure Sν−ν1(γ2) is quite intuitive while on the right part it is deduced from the
associativity of the shadow projection. Of course it has to be Sν(µ)− ν1.

Our proof of Theorem 4.8 will rely on approximations of µ by atomic measures
and we need several auxiliary results. In our argument we will require a certain
continuity property of the mapping ν 7→ Sν(δ) stated in Lemma 4.10. We will
derive it now with the help of the Kantorovich metric.

Proposition 4.9 (Metric on M). The function W, defined on M by

W (ν, ν̂) =

{
+∞ if ν(R) 6= ν̂(R),

supf
(∫
f dν −

∫
f dν̂

)
otherwise,

(8)

where the supremum is taken over all 1-Lipschitz functions f : R → R is a metric
with values in [0,+∞]. For k > 0, the associated topology on the subspaces of
measure of mass k coincides with the weak topology introduced in Paragraph 2.1.
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µ

ν

γ1

γ2

Sν(γ1) = ν1

Sν−ν1(γ2)

γ1

µ

γ2

ν

Sν(γ1) = ν1 Sν−ν1(γ2)

Figure 3. Shadow of µ = γ1 + γ2 in ν.

In the case where ν, ν̂ are probability measures, W (ν, ν̂) is the classical Kan-
torovich metric (also called 1-Wasserstein distance, or transport distance). We
state here two useful relations that well known (and straight forward) in the case
of probability measures and extended to finite measures through normalization. If
ν(R) = ν̂(R), we have

W (ν, ν̂) = ‖Fν − Fν̂‖1 = ‖Gν −Gν̂‖1
where Fν , Fν̂ and Gν , Gν̂ are the cumulative distribution functions and the quantile
functions of ν and ν̂ respectively. The norm ‖.‖1 refers to the L1-norm for the
Lebesgue measure on R, resp. [0, ν(R)]. Recall that ν = (Gν)#λ and ν̂ = (Gν̂)#λ.

Let us now fix some notations in preparation to Lemma 4.10. First, let ν and ν̂
be of mass 1. We also fix a quantity α ≤ 1 and set t = 1− α. As in the discussion
preceding Lemma 2.8 we consider for s ∈ [0, t] the restriction νs = (Gν)#λ[s,s+α]

of ν between the quantiles s and s+α. We adopt the same convention for ν̂. Note
that the barycenter of νs can be written

B(s, ν) =
1

α

∫
R
xdνs(t) or B(s, ν) =

1

α

∫ α

0

Gν(s+ t) dλ(t).(9)

Indeed, the function t ∈ [0, α] 7→ Gν(s+ t) is simply Gνs and νs = (Gνs)#λ[0,α].
Together with (8) applied to the functions f : x 7→ ±x, the first formula for the

barycenter implies

|B(s, ν)−B(s, ν̂)| ≤ 1

α
W (νs, ν̂s).

Moreover we can prove that

W (νr, νs) = α|B(r, ν)−B(s, ν)|

without difficulty by using W (νr, νs) = ‖Gνr − Gνs‖1 and the fact that Gνs and
Gνr are equal to the non-decreasing function Gν up to translation. Another simple
property is

W (νs, ν̂s) ≤W (ν, ν̂).

Again this can be seen as a consequence of the representation of W by quantile
functions: we have W (νs, ν̂s) = ‖Gνs −Gν̂s‖1 ≤ ‖Gν −Gν̂‖1.

Let x be an element of R and consider the subset of measures ν ∈ P such that
B(0, ν) ≤ x ≤ B(t, ν). These are exactly the measures such that there exists s ∈ R
satisfying B(s, ν) = x; for such ν the shadow Sν(δ) = νs is well defined.

Lemma 4.10. Let δ = αδx be an atom of mass α < 1. The map ν 7→ Sν(δ) is
continuous on its domain of definition inside the probability measures.
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Proof. Let ν, ν̂ be probability measures in M and assume that Sν(δ), Sν̂(δ) exist.
Let r, s be such that νr = Sν(δ) and ν̂s = Sν̂(δ). Of course both measures have the
same barycenter. Then

W
(
Sν(δ), Sν̂(δ)

)
= W (νr, ν̂s)

≤W (νr, νs) +W (νs, ν̂s)

= α|B(r, ν)−B(s, ν)|+W (νs, ν̂s)

= α|B(s, ν̂)−B(s, ν)|+W (νs, ν̂s)

≤W (νs, ν̂s) +W (νs, ν̂s) ≤ 2W (ν, ν̂). �

Lemma 4.11. Let δ be an atom and assume δ �E η, where η ≤ ν. Then we have

η − Sη(δ) ≤ ν − Sν(δ).

Proof. First note that Sη(δ) ≤ η ≤ ν. Hence δ �E ν and Sν(δ) is well defined. As
explained in Example 4.7, there exists an interval Q ⊆ [0, ν(R)] such that Sν(µ)
equals Gν#λQ. The same is true for δ, η, Gη and some interval of [0, η(R)] but we
will represent the “quantile coordinates” of Sη(δ) under η in a slightly different way.
Indeed Sη(δ) is the restriction of η to a real interval plus possibly some atomic parts
of η at the ends of this interval. In any case, it is smaller than η and ν. Thus we can
parametrize it with a subinterval Q′ of [0, ν(R)] such that Sη(δ) = (Gν#λQ′) ∧ η.
Note that the length of Q′ is greater than the length of Q which equals the mass
of δ. The measures Sν(δ) and Sη(δ) have the same mass and the same barycenter
and both are smaller than ν.

We prove by contradiction that Q ⊆ Q′. By symmetry it is enough to prove
b′ ≥ b where we denote Q and Q′ by [a, b] and [a′, b′] respectively. If it were not
the case, Sη(δ) would be stochastically strictly smaller than Sν(δ), which is the
right-most measure that stays smaller than quantile b, has the same mass as δ and
is smaller than ν. In particular the barycenters would be strictly ordered (see the
discussion before Lemma 2.8 for a similar and more detailed argument). This is a
contradiction since the barycenters coincide by the definition of the shadow. Finally

η − Sη(δ) = η − [(Gν#λQ′) ∧ η] ≤ ν −Gν#λQ′ ≤ ν −Gν#λQ.

Here we used the fact that for three measures α, β, γ satisfying the relations α ≤ γ
and β ≤ γ, the measure γ − α is greater than the positive part of β − α, which is
β − (α ∧ β). �

Lemma 4.12 (Shadow of one atom and one measure). Consider now δ + γ where
δ is an atom. Assume (δ + γ) �E ν. Then we have γ �E ν − Sν(δ) and

Sν(δ + γ) = Sν(δ) + Sν−S
ν(δ)(γ).(10)

Proof. We first prove that γ is smaller than ν′ := ν − Sν(δ) in the extended order.
Note that there exists an interval I such that Sν(δ) is concentrated on Ī and ν′(I) =
0. Let ϕ be a non-negative convex function which satisfies lim sup|x|→+∞ |ϕ(x)/x| <
+∞. We will prove

∫
ϕdγ ≤

∫
ϕdν′. For that we introduce ψ which equals ϕ on

R \ I and is linear on I. We can assume that ψ is convex and ψ ≥ ϕ (even if I is
unbounded). Note that ϕ and ψ coincide on the border of I. We have∫

ϕdγ ≤
∫
ψ dγ ≤

∫
ψ dν −

∫
ψ dδ.

But
∫
ψ dδ =

∫
ψ dSν(δ) because ψ is linear on I and this quantity is greater than∫

ϕdSν(δ). Moreover
∫
ψ dν′ =

∫
ϕdν′ because ν′ is concentrated on R \ I. It

follows that ∫
ϕdγ ≤

∫
ψ dν −

∫
ψ dδ ≤

∫
ϕdν′.
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As in the case of the usual convex order, it is of course sufficient to test against
convex functions of linear growth, hence γ �E ν′.

It remains to establish (10). It is clear (see for instance Example 2.3) that both
sides of the equation are greater than δ+ γ in the convex order and ≤ ν. Hence by
the definition of the shadow it follows Sν(δ+γ) �C Sν(δ)+Sν−S

ν(δ)(γ). The other
inequality is shown as follows: we will prove that for η �C δ + γ and satisfying
η ≤ ν we have Sν(δ) +Sν−S

ν(δ)(γ) �C η. In fact if η �C δ+ γ then Sη(δ) ≤ η and
Sη−S

η(δ)(γ) ≤ η−Sη(δ) so that, since measures in the convex order have the same
mass,

η = Sη(δ) + Sη−S
η(δ)(γ).

(Note that we have already proved that all terms exist in this decomposition since
�E extends �C .) But it follows from η ≤ ν and η − Sη(δ) ≤ ν − Sν(δ) (proved

in Lemma 4.11) that F ηγ ⊆ F νγ and F
η−Sη(δ)
γ ⊆ F

ν−Sν(δ)
γ so that Sη(δ) �C Sν(δ)

and Sη−S
η(δ)(γ) �C Sν−S

ν(δ)(γ). As in Example 2.3 the compatibility of sum and
convex order concludes the proof. �

Lemma 4.13 (Shadow of finitely many atoms). Let (δi)i∈N be a family of atoms
at point xi and of mass αi ∈ [0,+∞[ (where we allow the weight αi to be 0). For
every n ≥ 1, let µn = δ1 + · · ·+δn and assume that µn �E ν. The sequence (νn)n∈N
defined by νn = Sν(µn) satisfies the following recurrence relation:

• ν0 = 0
• νn = νn−1 + Sν−νn−1(δn) for every n ≥ 1.

Proof. The lemma is proved by induction. The basis holds with ν1 = Sν(δ1). Fix
n ≥ 1 and assume that the recurrence relation holds until n. Let (µi)i, ν and (νi)i
be as in the statement of the lemma. Denote

∑n+1
i=2 δi by µ′n and more generally∑i+1

i=2 δi by µ′i. As µn+1 �E ν we can apply Lemma 4.12 to the decomposition
µn+1 = δ1 + µ′n. So µ′n �E ν − ν1 and

Sν(µn+1) = Sν(δ1) + Sν
′
(µ′n)(11)

where we denoted ν − ν1 by ν′. But because of the inductive hypothesis applied to

µ′n and ν′, the shadow Sν
′
(µ′n) is ν′n = ν′n−1 + Sν

′−ν′n−1(δn+1) where the measures
ν′i denote the shadows of µ′i in ν′. Note also that νn = ν1 + ν′n−1 by Lemma 4.12.
Starting from (11) we now have

νn+1 = ν1 + ν′n = ν1 + ν′n−1 + Sν
′−ν′n−1(δn+1) = νn + Sν

′−ν′n−1(δn).

But ν′ − ν′n−1 = (ν1 + ν′)− (ν1 + ν′n−1) = ν − νn. This concludes the proof. �

Remark 4.14. An important consequence of the lemma above is that νn−νk is the
shadow of µn−µk in ν−Sν(µk). Even though the above construction is of inductive
nature, when permuting the n first atoms, the measure νn =

∑n
i=1 νi−νi−1 is always

the same: it simply equals Sν(µn). The same assertions apply to Proposition 4.17
below.

Proposition 4.15. Assume that (µn)n is increasing in the convex order and µn �C
µ �E ν for every n ∈ N. Then both (µn)n and (Sν(µn))n converge in M. If we
call µ∞, respectively S∞ the limits, then the measure S∞ is the shadow of µ∞ in
ν.

Proof. First note that the assumptions imply uµ0
≤ uµ1

≤ . . . ≤ uµn and uµn ≤ uµ.
The limit u∞ := limn∈N uµn exists because for every x ∈ R, (uµn(x))n is increasing
and bounded from above. Of course the limit u∞ is a convex function and since
uµ is an upper bound it has the correct asymptotic behavior. Therefore u∞ is
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a potential function and by Proposition 4.1 it is the potential function of some
µ∞ ∈M with the same mass and mean as µ and the µn’s.

On the other hand, for n ∈ N we consider the set F νµn of measures ηn satisfying
µn �C ηn and ηn ≤ ν. (We are using the notations of the proof of Lemma 4.6.) The
measure Sν(µn) is the smallest element of F νµn with respect to the convex order.
The family F νµn is decreasing in n and it is not difficult to see that F νµ ⊆

⋂
F νµn

so that it is not empty. Hence Sν(µn) is increasing in the convex order and it is
bounded from above by Sν(µ). Exactly for the same reasons as for the sequence
(µn)n, it converges to some S∞ inM. We now have to conclude that Sν(µ∞) = S∞.
We will in fact prove that S∞ �C Sν(µ∞) and Sν(µ∞) �C S∞.

For every n we have µn �C µ∞ �C Sν(µ∞) and Sν(µ∞) ≤ ν. Thus Sν(µn) �C
Sν(µ∞). By Proposition 4.2 we have S∞ �C Sν(µ∞). Conversely, using again
Proposition 4.2, the relation µn �C Sν(µn) yields µ∞ �C S∞ as n goes to +∞.
But S∞ ≤ ν (the limit of a converging sequence (uν − uSν(µn))n is convex). Hence
Sν(µ∞) �C S∞. �

Lemma 4.16 (Shadow of one measure and one atom). Consider now γ + δ where
δ is an atom. Assume (γ + δ) �E ν. Then we have δ �E Sν(γ + δ)− Sν(γ) and

Sν(γ + δ) = Sν(γ) + Sν−S
ν(γ)(δ).(12)

Proof. If γ is the sum of finitely many atoms, the result follows from Lemma 4.13.
Let us consider an approximating sequence (γ(n))n of γ as in Lemma 2.9. We can
write the decomposition of the shadow of γ(n) + δ in ν as in the statement of the
lemma and apply Proposition 4.15 to the sequence (Sν(γ(n)))n. It follows that the
limit exists and equals Sν(γ). Write ν(n) for Sν(γ(n)) and ν(∞) for Sν(γ). For the
same reasons as above the shadows of γ(n) + δ converge to Sν(γ + δ).

We still have to show that Sν−ν
(n)

(δ) converges to Sν−ν
(∞)

(δ). We know that
ν(n) converges to ν(∞) inM so ν−ν(n) tends to ν−ν(∞) and all these measures are
bounded by ν (in particular they have a density smaller than 1 with respect to ν).

We also know from Example 4.7 that Sν−ν
(n)

(δ) is the restriction of ν− ν(n) to the
(uniquely determined) “quantile interval” with the correct mass and barycenter.

Rescaling masses if necessary, the continuity Lemma 4.10 implies that Sν−ν
(n)

(δ)

converges to Sν−ν
(∞)

(δ). �

We are now finally in the position to prove the desired associativity property of
the shadow mapping.

Proof of Theorem 4.8. If γ2 is the sum of finitely many atoms, the property holds
since by Lemma 4.16 it is possible to construct recursively Sν(γ1 + γ2) using a
decomposition with one atom from γ2 and the rest of γ1 +γ2 as the second measure.

Let us consider a sequence (γ
(n)
2 )n of measures consisting of finitely many atoms

that weakly converge to γ2 and satisfy γ
(n)
2 �C γ2. Moreover we may assume that

(γ
(n)
2 )n is increasing in the convex order as in Lemma 2.9.

We can write the decomposition of the shadow of γ1+γ
(n)
2 in ν as in the statement

of the theorem and apply Proposition 4.15 to the sequence (Sν−S
ν(γ1)(γ

(n)
2 ))n. We

obtain that the limit exists and equals Sν−S
ν(γ1)(γ2). For the same reasons the

shadow of γ1 + γ
(n)
2 converges to Sν(γ1 + γ2). This concludes the proof. �

Before we define the left-curtain transport plan it seems worthwhile to record
the following result.

Proposition 4.17 (Shadow of the sum of finitely many measures). Let (γi)i be a
family of measures (that possibly vanish identically). Let µn = γ1+· · ·+γn. Assume
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also that µn �E ν for every n ≥ 1. The sequence (νn)n∈N defined by νn = Sν(µn)
satisfies the following recurrence relation:

• ν0 = 0
• νn − νn−1 = Sν−νn−1(γn).

Proof. The statement is the same as Lemma 4.13 except that we do not require the
measures γi to be atoms. Lemma 4.13 relies on Lemma 4.12 which characterizes
the shadow of γ1 + γ2 under the assumption that γ1 is an atom. Substituting it
with Theorem 4.8 the present claim follows verbatim. �

Let us now formally define the left-curtain coupling πlc that has been discussed
in the introduction and whose properties will be derived in the sequel. We baptize it
the “left-curtain transport plan” because it projects shadow measures as a curtain
that one closes starting from the left side.

Note that given measures µ ≤ µ′ �E ν, Theorem 4.8 implies that Sν(µ) ≤
Sν(µ′). This property is essential for the definition of πlc.

Theorem 4.18 (Definition of πlc). Assume that µ �C ν. There is a unique prob-
ability measure πlc on R × R which transports µ|]−∞,x] to Sν(µ|]−∞,x]), i.e. sat-
isfies projx#(πlc|]−∞,x]×R) = µ|]−∞,x] and projy#(πlc|]−∞,x]×R) = Sν(µ|]−∞,x]) for

all x ∈ R. Moreover πlc is a martingale transport plan which takes µ to ν, i.e.
πlc ∈ ΠM (µ, ν).

Proof. Plainly, the condition given in the statement prescribes the value of

πlc(]−∞, x]×A) = Sν(µ|]−∞,x])(A)

for x ∈ R and every Borel set A ⊆ R, thus giving rise to a unique measure on the
product space. Here we use that, by Theorem 4.8, Sν(µ|]−∞,x]) ≤ Sν(µ|]−∞,x′])
whenever x ≤ x′.

Clearly, the first marginal of πlc equals µ. By construction, the second marginal
satisfies projy# πlc ≤ ν. Since µ and ν have the same mass, this implies projy# πlc = ν
as required.

To establish the martingale property we show that property (4) holds for any
function ρ = 1]−∞,x′], x

′ ∈ R. Indeed we have∫
(y − x)ρ(x) dπlc(x, y) =

∫
y dSν(µ|]−∞,x′])(y)−

∫
xdµ|]−∞,x′](x) = 0.

�

Remark 4.19. The family of intervals (]−∞, x])x∈R is totally ordered with respect
to ⊆ and it spans the σ-field of Borel measurable sets. In the proof of Theorem
4.18 we used these properties to show that there is a unique martingale transport
plan which transports µ|]−∞,x] to Sν(µ|]−∞,x]). This construction can be applied
to more general families of sets: let I be some index set and (Cι)ι∈I a family of
Borel sets that both is totally ordered with respect to ⊆ and spans the σ-field of
Borel sets. Then a measure π ∈ ΠM (µ, ν) is defined uniquely by the relations
π(Cι ×A) = Sν(µ|Cι)(A) for all indices ι ∈ I and Borel sets A ⊆ R.

Example 4.20. In the case of a finitely supported measure µ =
∑n
i=1 δi, it follows

that if the ordering is done so that the support of δi is {xi} with x1 ≤ · · · ≤ xn, then

the πlc-coupling is πlc =
∑n
i=1 δ̃i⊗Sν−νi−1(δi) where δ̃i = δi/δi(xi) are the properly

renormalized versions of δi and the measures νi are Sν(µi) with µi = δ1 + · · ·+ δi
as in Lemma 4.13.

Theorem 4.21. The martingale πlc is left-monotone in the sense of Definition 1.4.
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Proof. Note that πlc is simultaneously a minimizer for all cost functions of the form
cs,t(x, y) = 1]−∞,s](x)|y− t|, where s, t are real numbers. Indeed if π is an arbitrary
martingale transport plan then∫∫

cs,t(x, y) dπ(x, y) =

∫∫
]−∞,s]×R

|y−t|dπ(x, y) =

∫
|y−t|d(projy# π|]−∞,s]×R)(y).

Setting νπs = projy# π|]−∞,s]×R we have νπs ≤ ν and µ|]−∞,s] �C νπs which implies

Sν(µ|]−∞,s]) �C νπs . Therefore∫
|y − t|dSν(µ|]−∞,s])(y) ≤

∫
|y − t|dνπs (y),

where equality holds for all s, t ∈ R if (and only if) π = πlc.
Applying Lemma 1.11 to the costs cs,t for s, t ∈ Q, we obtain a Borel set Γs,t

of πlc-measure 1. Set Γ =
⋂
s,t∈Q Γs,t. We claim that a configuration as in (3)

cannot appear in Γ. Indeed if (x, y−), (x, y+) and (x′, y′) are in Γ and satisfy
x < x′ and y− < y′ < y+, they are also in Γs,t where (s, t) satisfies s ∈ ]x, x′[
and t ∈ ]y′, y+[. Let λ ∈ ]0, 1[ be such that y′ = λy+ + (1 − λ)y−. The measure
α = λδ(x,y+) + (1 − λ)δ(x,y−) + δ(x′,y′) is concentrated on Γ but the competitor
α′ = λδ(x′,y+) + (1− λ)δ(x′,y−) + δ(x,y′) leads to a lower global cost. This yields the
desired contradiction. �

5. Uniqueness of the monotone martingale transport

In this section, we establish that the left-curtain coupling πlc is the unique mono-
tone martingale coupling. Our proof of this result is specific to the present setup.
We will also explain a more classical argument that is often invoked in the optimal
transport theory to establish some uniqueness property. This so called half sum ar-
gument will be used several times subsequently but requires the initial distribution
µ to be continuous.

We start with two preliminary lemmas which are required to derive the main
result of this part, Theorem 5.3.

Lemma 5.1. If µ �C ν then one of the following statements holds true:

• we have µ(]a,+∞[) > 0 and ν(]a,+∞[) > 0 for every a;
• the number a = sup(spt(µ)) is finite and ν(]a,+∞[) > 0;
• the number a = sup(spt(µ)) is finite and ν(]a,+∞[) = 0. Moreover ν({a}) ≥
µ({a}).

The corresponding result for intervals of the form ]−∞, b[ is true as well.

Proof. Integrating the convex function x 7→ (x − a′)+ for different values of a′

we obtain sup(spt(µ)) ≤ sup(spt(ν)). Therefore the first case corresponds to
sup(spt(µ)) = sup(spt(ν)) = +∞, the second to sup(spt(µ)) < sup(spt(ν)) and
the third to sup(spt(µ)) = sup(spt(ν)) < +∞.

Let us prove that in the third case we also have µ({a}) ≤ ν({a}). If µ({a}) = 0
we are done. If µ({a}) > 0, the conditional transport measure πa must be the
static transport because it is a martingale transport plan and sup(spt(ν)) = a.
This concludes the proof. �

For u, v ∈ R, u < v let gu,v be defined by

gu,v(x) =

{
v − x if x ∈ [u, v],

0 otherwise.
(13)

Lemma 5.2. Let σ be a non trivial signed measure of mass 0 and denote its Hahn
decomposition by σ = σ+ − σ−. There exist a ∈ spt(σ+) and b > a such that∫
ga,b(x) dσ(x) > 0.
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Proof. First notice that u 7→
∫
gu,u+1(x) dσ(x) does not vanish identically. Since,

by Fubini’s theorem, ∫∫
gu,u+1(x) dσ(x) du = 0

there exists u ∈ R such that
∫
gu,u+1(x) dσ(x) > 0. The set spt(σ+ ∩ [u, u + 1[)

cannot be empty, so let a = min(spt(σ+ ∩ [u, u+ 1]). It follows that

0 <

∫
gu,u+1 dσ ≤

∫
ga,u+1 dσ. �

Theorem 5.3 (Uniqueness of the monotone martingale coupling.). Let π be a
monotone martingale transport plan and µ = projx# π and ν = projy# π. Then π is
the left-curtain coupling πlc from µ to ν.

Proof. Let π be left-monotone with monotonicity set Γ as in Definition 1.4 and let
πlc be the left-curtain transport plan between µ and ν. We consider the target
measures νπx and νπlc

x obtained when transporting the µ-mass of ] −∞, x] into ν,
i.e.

νπx = projy# π|]−∞,x]×R

and

νπlc
x = Sν(µ|]−∞,x]) = projy# πlc|]−∞,x]×R.

If νπx = νπlc
x for every x then π = πlc by the definition of the curtain-coupling in

Theorem 4.18.
Assume for contradiction that there exists some x with νπx 6= νπlc

x . This means in
particular that σx = (νπlc

x −νπx ) 6= 0. The shadow property implies that νπlc
x �C νπx .

By Lemma 5.2 we can pick u ∈ spt(σ+
x ) and v > u such that∫
gu,v dσx > 0.

As u ∈ sptσ+
x , σ+

x ≤ ν − νπx = projy# π|]x,+∞[×R, and π(Γ) = 1, there is a sequence

(x′n, un)n such that

• x′n > x
• (x′n, un) ∈ Γ
• un → u.

By the monotonicity property of Γ, for every t ≤ x and n ∈ N, the set Γt defined
by {y ∈ R : (t, y) ∈ Γ} cannot intersect ]−∞, un[ and ]un,+∞[. Hence for t ≤ x,

Γt∩ ]−∞, u[ = ∅ or Γt∩ ]u,+∞[ = ∅.(14)

This remark will be important in the sequel of the proof.
We distinguish two cases depending on the respective positions of u and x.

(1) First case: u < x. Note that we have

νπx − νπu = projy# π|]u,x]×R

and

νπlc
x − νπlc

u = projy# πlc|]u,x]×R = Sν−ν
πlc
u (µ|]u,x]).

As a consequence of (14) and of the fact that π is a martingale transport
plan, π transports the mass of ]−∞, u] to ]−∞, u] and the mass of ]u, x] to
[u,+∞[. We show below that the same applies to πlc, more precisely that
νπlc
u �C νπu and (νπlc

x − νπlc
u ) �C (νπx − νπu ).

• The measure νπlc
u is the shadow of µ|]−∞,u] in ν. We have also µ|]−∞,u] �C

νπu and νπu ≤ ν so that νπlc
u �C νπu . We apply now Lemma 5.1 and

obtain that νπlc
u is concentrated on ]−∞, u] and νπlc

u ({u}) ≤ νπu ({u}).
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• We have π|]u,x]×R ∈ ΠM (µ]u,x], η) where η := projy# π|]u,x]×R = νπx−νπu
is concentrated on [u,+∞[. More precisely we have

η ≤ (ν − νπu )|[u,+∞[ ≤ (ν − νπlc
u )|[u,+∞[ ≤ ν − νπlc

u

because νπlc
u and νπu are concentrated on ] − ∞, x] and νπlc

u ({u}) ≤
νπu ({u}) as we have seen above. Moreover we have µ|]u,x] �C η. Hence

νπlc
x − νπlc

u = Sν−ν
πlc
u (µ]u,x]) �C η = νπx − νπu .

Note that gu,v is convex on [u,+∞[ so that
∫
gu,v d(νπlc

x −νπlc
u ) ≤

∫
gu,v d(νπx−

νπu ). Moreover we have
∫
gu,v dνπlc

u ≤
∫
gu,v dνπu because νπlc

u ({u}) ≤
νπu ({u}). Summing these inequalities we obtain

∫
gu,v dνπlc

x ≤
∫
gu,v dνπx ,

which is a contradiction to
∫
gu,v dσx > 0.

(2) Second case: x ≤ u. The measure π cannot transport mass from ] −
∞, x] to ]u,+∞[. Indeed because of the martingale property it then would
also transport mass to the set ] − ∞, u[, contradicting (14). Thus νπx is
concentrated on ] − ∞, u]. But we have νπlc

x �C νπx so that considering
Lemma 5.1,

∫
gu,v dνπlc

x ≤
∫
gu,v dνπx holds (even in the third case of this

lemma where a = u). This contradicts
∫
gu,v dνπx > 0.

�

Remark 5.4. The two cases in the proof are actually not very different. In both of
them, π|]−∞,x]×R and πlc|]−∞,x]×R (roughly speaking the transport plans restricted
to µ|]−∞,x]) are concentrated on

(]−∞, u]×]−∞, u]) ∪ (]u,+∞[×[u,+∞[)

and this lies at the core of the argument.

5.1. Structure of the monotone martingale coupling. It remains to establish
Corollary 1.6 which states that if µ is continuous, then πlc is concentrated on the
graph of two functions. We need the following lemma.

Lemma 5.5. Assume that Γ ⊆ R2 is a Borel set such that for each x ∈ R we
have |Γx| ≤ 2. Then S = projx(Γ) is a Borel set and there exist Borel functions
T1, T2 : S → R with T1 ≤ T2 such that

Γ = graph(T1) ∪ graph(T2).

Proof. This is a consequence of [18, Theorem 18.11]. �

We can now complete the proof.

Proof of Corollary 1.6. Consider the left-curtain coupling πlc between measures
µ �C ν, where µ is continuous. As πlc is left-monotone there exists a Borel mono-
tonicity set Γ as in Definition 1.4. Note that if µ(A) = 0, the set Γ \ (A × R) is
still a monotonicity set. This applies in particular to all countable sets since µ is
continuous.

With the notations of Lemma 3.2 let us show that A = {x ∈ R : |Γx| ≥ 3} is
countable. If not, we can apply this lemma and obtain x ∈ R with three points
y− < y < y+ in the set Γx that can be approximated from the right side. In
particular there exists (x′, y′) ∈ Γ with x′ > x and y′ ∈ ]y−, y+[, which is the
forbidden configuration (3). Therefore A is countable so that we can assume that
|Γx| ≤ 2 for every x. Applying Lemma 5.5 we obtain the desired assertion. �

The following lemma permits to obtain uniqueness of the optimal martingale
transport plan, provided that the we know that every optimal martingale transport
is concentrated on the graphs of two mappings (see Section 7). We can apply it to
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the martingale transport plans when µ is continuous and recover the uniqueness of
the monotone transport plan in this particular case.

Lemma 5.6. Let µ and ν be in convex order and E a non-empty convex set of
martingale transport plans. Assume that every π ∈ E is concentrated on some
Γπ ⊆ R2 with |Γπx | ≤ 2 for every x ∈ R. Then the set E consists of a single point.

Proof. Let π and π′ be elements of E . We consider π̄ = π+π′

2 ∈ E and Γπ̄, which can
be seen as the graph of two functions according to Lemma 5.5. The measures π and
π′ are also concentrated on Γπ̄. For two disintegrations (πx)x∈R and (π′x)x∈R with
respect to µ, we know that µ-a.s. πx and π′x are probability measures concentrated
on Γπ̄x and with the same barycenter, namely x. It follows that π′x = πx, µ-a.s. so
that π′ = π. �

6. Optimality properties of the monotone martingale transport

In this section we prove that πlc is the unique optimal coupling for the martingale
optimal transport problem (2) associated to two different kinds of cost functions.
The special case c(x, y) = exp(y − x) is in the intersection of these two families of
cost functions.

Theorem 6.1. Assume that c(x, y) = h(y − x) for some differentiable function
h whose derivative is strictly convex and that c satisfies the sufficient integrability
condition. If there exists a finite martingale transport plan, then πlc is the unique
optimizer.

Proof. We have to show that every finite optimizer π is monotone. Pick a set Γ
such that π(Γ) = 1 and Γ resists improvements by barycenter preserving reroutings
as in Lemma 1.11. Pick (x, y−), (x, y+), (x′, y′) ∈ Γ. Striving for a contradiction
we assume that they satisfy (3). Let us define a transport α on these edges and
a competitor α′ of it. We pick λ ∈ ]0, 1[ such that λy+ + (1 − λ)y− = y′. The
measure α puts mass λ on (x, y+), mass 1 − λ on (x, y−) and mass 1 on (x′, y′).
Our candidate for α′ will assert mass 1−λ on (x′, y−), mass λ on (x′, y+) and mass
1 on (x, y′). Clearly α′ is a competitor of α. It leads to smaller costs if and only if

λc(x, y+) + (1− λ)c(x, y−) + c(x′, y′) > λc(x′, y+) + (1− λ)c(x′, y−) + c(x, y′).

A sufficient condition for this is that

d(t) := λc(t, y+) + (1− λ)c(t, y−)− c(t, y′)(15)

is strictly decreasing in x. In terms of h the function d can be written as

d(t) = λh(y+ − t) + (1− λ)h(y− − t)− h(y′ − t).
To have it decreasing it is sufficient that

0 > d′(t) = −λh′(y+ − t)− (1− λ)h′(y− − t) + h′(y′ − t)
= h′(λ(y+ − t) + (1− λ)(y− − t))− [λh′(y+ − t) + (1− λ)h′(y− − t)].

Finally it is sufficient to know that h′ is strictly convex which holds by assumption.
�

Remark 6.2. The left-curtain transport plan is also a solution to the problem of
minimizing the essential supremum of y − x among all martingale transport plans
with the same marginals. To see this, note that the function hn : x 7→ exp(nx) has
a strictly convex derivative for every n > 0 and that 1

n ln(
∫

exp(n(y−x)) dπ(x, y)))

tends to essupπ(y − x) as n→ +∞ for every martingale transport plan π.8

8We thank Fillipo Santambrogio for pointing this out to us.



28 MATHIAS BEIGLBÖCK AND NICOLAS JUILLET

We mention another class of cost functions for which the monotone martingale
transport plan πlc is optimal.

Theorem 6.3. Let ψ be a non-negative strictly convex function and ϕ a non-
negative decreasing function. Consider the cost function c(x, y) = ϕ(x)ψ(y) ≥ 0.
For two finite measures µ and ν in convex order the left-curtain coupling πlc is the
unique optimal transport.

One could show that optimal martingale couplings are monotone in a very similar
way as in the proof of Theorem 6.1. We prefer to give an alternative proof relying
on the order properties of the left-curtain coupling.

Proof. Let π be optimal for the problem and assume that
∫
cdπ < +∞. We want

to prove
∫
cdπlc ≤

∫
cdπ with equality if and only if π = πlc. First of all note that

for positive measurable functions f∫
f(x)ϕ(x) dµ(x) =

∫ +∞

0

(∫
1]−∞,ϕ−1(t)]f(x) dµ(x)

)
dt

where ϕ−1(t) means sup{x ∈ R : t ≤ ϕ(x)}. Taking f(x) =
∫
ψ(y) dπx(y) we

obtain ∫
c(x, y) dπ(x, y) =

∫ +∞

0

(∫
ψ(y) dνπ|ϕ−1(t)(y)

)
dt(16)

where νπu denotes projy# π|]−∞,u] as in the introduction or in Section 5. In particular

νπlc
u equals Sν(µ]−∞,u]). Of course the representation (16) remains true if we replace

all occurrences of π by πlc.
The measures νπlc

u and νπu are in convex order and ψ is strictly convex. Thus∫
ψ dνπlc

u ≤
∫
ψ dνπu and equality holds if and only if the two measures coin-

cide. This follows from Strassen’s theorem (Theorem 2.6) and the equality case
in Jensen’s inequality. Finally it follows from (16) that π is the left-curtain cou-
pling. �

7. Other cost functions – other optimal martingale couplings

In this section we use Lemma 1.11 to derive results that appeal to general cost
functions.

7.1. Cost functions of the form c(x, y) = h(y − x).

Theorem 7.1. Assume that the cost function c(x, y) is given by h(y−x) for some
function h which is twice continuously differentiable. If affine functions x 7→ ax+ b
meet h′(x) in at most k points and π is an optimal transport plan, then there exists
a disintegration (πx)x∈R such that for any x ∈ R at least one of the two following
statements holds

µ({x}) > 0 or card(spt(πx)) ≤ k.
In particular if µ is continuous then card(spt(πx)) ≤ k is satisfied µ-a.s. for any
disintegration of π.

Proof. Let π be optimal and Γ according to Lemma 1.11. If there are only countably
many continuity points of µ such that card(Γx) ≥ k+ 1, then we can remove them.
Assume for contradiction that there are uncountably many. Consider the set

Γ̃ = {(x, y) ∈ Γ : µ({x}) = 0}
to obtain a ∈ R and b0 < . . . < bk ∈ Γa verifying the assertions of Lemma 3.2.

Let a′ ∈ R, λ ∈ ]0, 1[ and set bλ = (1− λ)b0 + λbk. We will compare

h(bλ − a) + λh(bk − a′) + (1− λ)h(b0 − a′)(17)
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and

h(bλ − a′) + λh(bk − a) + (1− λ)h(b0 − a).(18)

As a′ tends to a, bi − a′ tends to bi − a. Considering a Taylor expansion of h at
bi − a we find some ε > 0 such that |a− a′| < ε implies

|[h(bi − a′)− h(bi − a)]− h′(bi − a) · (a− a′)| ≤ |h′′(bi − a)|(a− a′)2

for i ∈ {0, λ, k}. Hence if we subtract (17) from (18) we obtain

(h′(bλ − a)− [(1− λ)h′(b0 − a) + λh′(bk − a)]) (a′ − a)(19)

up to an error of

[(1− λ)|h′′(b0 − a)|+ λ|h′′(bk − a)|+ |h′′(bλ − a)|] · (a− a′)2.

But h′ is not linear so that (19) is not identically zero. Moreover according to the
assumption on h′ and the affine functions there is an index i ∈ {1, . . . , k − 1} such
that if bλ = bi and a′ 6= a then (19) is not zero. More precisely as h′′ is continuous
there exists some ε1 < ε such that if |bi − bλ| < ε1 and 0 < |a − a′| < ε1 then
the difference of (17) and (18) is not zero and its sign is determined by the one of
a− a′.

Since a, b0, . . . , bk were chosen according to Lemma 3.2, we may pick a′ and
bλ ∈ Γa′ such that (a′, bλ) is sufficiently close to (a, bi) and a′ is on the correct side
of a, making (17) smaller than (18).

Setting

α = λδ(a,bk) + (1− λ)δ(a,b0) + δ(a′,bλ),

α′ = λδ(a′,bk) + (1− λ)δ(a′,b0) + δ(a,bλ),

we have thus found a competitor α′ which has lower costs than α, contradicting
the choice of Γ. �

7.2. The cost function h(y − x) in the usual setup. It seems worthwhile to
mention that Theorem 7.1 is the martingale variant of a result that belongs to the
theory of the classical problem (1). We mention it below in Theorem 7.2 because
we are not aware that it has been recorded in the literature in this form. In fact for
a family of special costs we can bound the number of parts the mass can split in if it
is transported optimally. Note that this number is not attained for every pair (µ, ν)
(see [25]). The similarity with Theorem 7.1 lies in the fact that we want to count
the number of intersection points of graph(h′) with affine lines in the martingale
case, and with horizontal lines in the classical setup.

Theorem 7.2. Let k be a positive integer and let h : R→ R be a twice continuously
differentiable function such that the cost function c : (x, y) 7→ h(y − x) satisfies
the sufficient integrability condition with respect to probability measures µ and ν.
Assume also that C(µ, ν) < +∞.

If the equation h′(x) = b has at most k different solutions for b ∈ R, then there
exists a disintegration (πx)x∈R such that for any x ∈ R at least one of the two
statements

µ({x}) > 0 or card(spt(πx)) ≤ k

holds. In particular if µ is continuous then card(spt(πx)) ≤ k is satisfied µ-a.s. for
any disintegration.
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7.3. (Counter)examples based on the cost function c(x, y) = (y − x)4. In
this section we give two counterexamples that distinguish the general behavior from
the one of the curtain transport plan: the optimizer is in general not unique and
it may very well split into more than two parts even if the starting distribution is
continuous (see Corollary 1.6 resp. Theorem 7.1). Throughout this subsection we
consider the cost function c(x, y) = (y − x)4.

7.3.1. Example of non uniqueness of the transport. Let µ be uniformly distributed
on {−1; 1} and ν uniformly distributed on {−2; 0; 2}. We denote −1 and 1 by
(xi)i=1,2 and −2, 0 and 2 by (yj)j=1,2,3. To any matrix A = (ai,j) of two rows and
three columns satisfying

∑
j ai,j = 1/2 and

∑
i ai,j = 1/3 we associate the transport

plan defined by π({(xi, yj)}) = ai,j . For such a transport plan the accumulated
costs equal∑

i,j

ai,j · |xi − yj |4 = (a1,1 + a1,2 + a2,2 + a2,3) + 34 · (a1,3 + a2,1)

= 1 + 80(a1,3 + a2,1).

The matrices associated to a martingale transport plan are

Aλ =

(
1/4 1/4 0
1/12 1/12 1/3

)
+ λ

(
1/12 −1/6 1/12
−1/12 1/6 −1/12

)
where λ ∈ [0, 1]. Therefore the martingale transport plan associated to the param-
eter λ gives rise to total costs of 1 + 80(λ/12 + 1/12−λ/12) = 23/3, independently
of λ. We conclude that every martingale transport plan is optimal.

7.3.2. Example of splitting in exactly three points in the continuous case. Roughly
speaking we have proved in Theorem 7.1 that if µ is continuous, dµ(x)-mass ele-
ments split in at most three points. Indeed t 7→ t4 has derivative t 7→ 4t3 which
is of degree 3. In this paragraph we give a numerical example showing that this
upper bound is sharp. The construction is inspired by the dual theory of the
martingale transport problem mentioned in Paragraph 2.4. Briefly, Figure 4 de-
picts a family of curves indexed by x. These curves touch three envelope curves
at three moving points y1, y2 and y3 close to −1, 0 and 1. The optimal martin-
gale transport plan that we construct is supported by the union of the graphs
Γi = {(x, yi(x)) ∈ R2 : x ∈ ]0, 1/5[} for i = 1, 2, 3. Let ψ : R→ R be defined by

Figure 4. Graphs and envelope of the functions y 7→ F (x, y) for
x ∈ [0, 1/5].

ψ(y) = y4 − max
x∈[0,1/2]

{
4x(y +

x

2
)(y + 1− x))(y − 1− x))

}
.(20)
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Hence for any (x, y) ∈ [0, 1/2]× R

y4 − ψ(y) ≥ 4xy3 − 6x2y2 + a1(x)y + b1(x),

where a1(x) = 4x− 4x2 − 4x3 and b1(x) = 2x2 − 2x4. But y4 = (y − x)4 + 4xy3 −
6x2y2 + a2(x)y + b2(x) so that

(y − x)4 ≥ a3(x) + b3(x)y + ψ(y)(21)

for a3 = a1 − a2 and b3 = b1 − b2. Here (21) is an equality at the point (x0, y0) if
and only ψ(y0) is realized in (20) by x = x0. Integrating (21) against a transport
plan π one obtains∫∫

(y − x)4 dπ(x, y) ≥
∫
a3(x) dµ(x) +

∫∫
b3(x)y dπ(x, y)−

∫
ψ(y) dν(y)

and the equality holds if and only if π is concentrated on

{(x, y) ∈ [0, 1/2]× R : (y − x)4 = a3(x) + b3(x)y + ψ(y)}.

Moreover as we are considering a martingale transport plan we have∫∫
(y − x)4 dπ(x, y) ≥

∫
a3(x) dµ(x) +

∫
b3(x)xdµ(x) +

∫
ψ(y) dν(y).

Here the lower bound on the right-hand side is the same for every martingale
transport plan π. It follows that martingale transport plans concentrated on
{(x, y) ∈ [0, 1/2] × R : (y − x)4 = a3(x) + b3(x)y + ψ(y)} are optimal with re-
spect to their marginals. We set F (x, y) = 4x(y + x

2 )(y + 1 − x)(y − 1 − x) so

that (20) is ψ(y) = y4 − supx∈[0,1/2] F (x, y). In Figure 4, one can see the graphs of

F (x, ·) for values of x between 0 and 1/5.

We will prove that for y ∈ ]− 1, 0[∪ ]1, 2[, F (·, y) : [0, 1/2]→ R has a unique global
maximum in ]0, 1/2[. Actually F (·, y) has main term 2x4. Therefore it is sufficient
to prove that ∂xF (·, y) is positive for x = 0 and negative for x = 1/2. Indeed this
means that we are analyzing the variation of the polynomial function F (·, y) of
degree 4 on an interval where its variations are different from the asymptotic ones.
In particular F (·, y) will have a unique maximum on ]0, 1/2[. This turns out to be
true. Indeed

∂xF (x, y) = 4
(
(x+ y)[(x− y)2 − 1] + x(x+ 2y)(x− y)

)
,(22)

so that for any parameter y in ]− 1, 0[∪ ]1, 2[, the function ∂xF (·, y) is positive in
x = 0 since it equals y 7→ 4

(
y(y2 − 1)

)
. For x = 1/2, straightforward considerations

show that ∂xF (1/2, y) is negative for all y ∈ ]−∞, 2].

We will now show that for a given parameter x ∈ ]0, 1/5[ , x is the maximum of
F (·, y) on [0, 1/2] for exactly three elements y of ] − 1, 0[∪ ]1, 2[. For this purpose
we consider y 7→ ∂xF (x, y). We prove that it vanishes exactly three times on
] − 1, 0[∪ ]1, 2[ . For fixed x ∈ ]0, 1/5[ this function is indeed negative in 0 and −1
while it is positive in −1/2. The sign is also different for y = 1 and y = 2 so that we
have found the three zeros of y 7→ ∂xF (x, y). But as explained in the previous step,
for y ∈ ] − 1, 0[∪ ]1, 2[ being a maximum of F (·, y) is exactly the same as having
zero derivate.

Therefore any x ∈ ]0, 1/5[ gives rise to the maximum of F (·, y) for three different
y ∈ [−1, 0]∪ [1, 2]. Hence there are y1, y2, y3 such that ψ(yi) = y4

i −F (x, yi) for i =
1, 2, 3. Notice that x is in the convex hull of these points because y1 is close to −1,
y2 is close to 0 and y3 close to 1. Hence there exists a martingale transport plan π
concentrated on [0, 1/5]×([−1, 0]∪[1, 2]) such that πx is supported on {y1, y2, y3}(x)
with positive µ-probability. Moreover it follows from the explanations above that
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this martingale transport plan is optimal. Namely (20) holds π-a.s. Hence we have
proved that the bound k = 3 of Theorem 7.1 is sharp in the case c(x, y) = (y−x)4.

7.4. The Hobson-Neuberger cost function and its converse. As mentioned
in the introduction, Hobson and Neuberger [16] study the case c(x, y) = −|y − x|,
motivated by applications in mathematical finance. They identify the minimizer
πHN based on a construction of the maximizers for the dual problem. Here some
conditions on the underlying measures are necessary; an example in [2, Proposition
5.2] shows that the dual maximizers need not always exist. Based on Lemma 1.11
we partly recover their result. Throughout this part we will only deal with the case
of a continuous starting distribution µ (see Remark 7.6 on this hypothesis).

Theorem 7.3. Assume that µ and ν are in convex order and that µ is continuous.
There exists a unique optimal martingale transport plan πHN for the cost function
c(x, y) = −|y − x|.

Moreover, there exist two non-decreasing functions T1, T2 : R → R such that
T1(x) ≤ x ≤ T2(x) and πHN is concentrated on the graphs of these functions.

A similar behavior holds for the cost function c(x, y) = |y − x| built on the
absolute value h : x 7→ |x|. We have learned about the structure of the optimizer
for this cost function from D. Hobson and M. Klimmek [15]. Recall that Γx = {y :
(x, y) ∈ Γ} for Γ ⊆ R2.

Theorem 7.4. Assume that µ and ν are in convex order and that µ is continuous.
There exists a unique optimal martingale transport plan πabs for the cost function
c(x, y) = |y − x|.

Moreover there is a set Γ such that πabs is concentrated on Γ and |Γx| ≤ 3
for every x ∈ R. More precisely, πabs can be decomposed into πstay + πgo where
πstay = (Id⊗ Id)#(µ ∧ ν) (this measure is concentrated on the diagonal of R2) and
πgo is concentrated on graph(T1) ∪ graph(T2) where T1, T2 are real functions.

The “combinatorial core” of the proofs to Theorem 7.3 and Theorem 7.4 is
contained in the following lengthy but simple lemma.

Lemma 7.5. Let x, y−, y,+ , y′ ∈ R such that y− < x, y′ < y+. Pick λ such that
λy+ + (1− λ)y− = y′. For x′ ∈ R we want to compare the quantities

A := λ|x−y+|+(1−λ)|x−y−|+|x′−y′|, B := λ|x′−y+|+(1−λ)|x′−y−|+|x−y′|.

(1) Assume that y′ < x. Then there exists x0 ∈ ]y−, y′[ such that (A−B) seen
as a function of x′ exactly vanishes at x0 and x, is strictly positive outside
[x0, x] and strictly negative in ]x0, x[.

x′ −∞ y− x0 y′ x +∞
(A−B)(x′) + 0 − 0 +

(2) Assume that y′ > x. Then there exists x1 ∈ ]y′, y+[ such that (A−B) van-
ishes if x′ ∈ {x1, x}, is strictly positive outside [x, x1] and strictly negative
in ]x, x1[.

x′ −∞ x y′ x1 y+ +∞
(A−B)(x′) + 0 − 0 +

.

(3) Assume that y′ = x. Then (A−B) is non-negative and vanishes exactly in
x.

x′ −∞ y− x = y′ y+ +∞
(A−B)(x′) + 0 +

.
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Proof. Consider the function

f(t) = λ|t− y+|+ (1− λ)|t− y−| − |t− y′|.

Then A > B is equivalent to f(x) > f(x′) and A = B is equivalent to f(x) = f(x′).
The behavior of the function f is easy enough to understand. On the intervals

]−∞, y−], [y+,∞[, the function is zero. On the interval [y−, y′] it increases linearly
from 0 to 2λ(1 − λ)(y+ − y−). On the interval [y′, y+] it decreases linearly from
2λ(1− λ)(y+ − y−) to 0.

The above assertions are simple consequences of this behavior. Moreover it is
easy to calculate x0, x1 explicitly. For instance in the case y′ < x pick t ∈ ]0, 1[ such
that x = y′ + t(y+ − y′). Then x0 = y′ + t(y− − y′). �

Proof of Theorem 7.3. Pick Γ according to Lemma 1.11 and (x, y−), (x, y+), (x′, y′) ∈
Γ, with y− < y′ < y+. Then it cannot happen that

y′ ≤ x′ < x or x < x′ ≤ y′.(23)

Indeed choosing λ ∈ ]0, 1[ and α resp. α′ as in the proof of Theorem 6.1 we find
that an improvement is possible if

−λ|x− y+| − (1− λ)|x− y−| − |x′ − y′| > −λ|x′ − y+| − (1− λ)|x′ − y−| − |x− y′|.

But this inequality holds in the just mentioned cases by Lemma 7.5.
Consider the set A of points a such that Γa contains more than two points and

assume by contradiction that this set is uncountable. According to Lemma 3.2
there is an accumulation effect at some a ∈ A together with b−, b, b+ ∈ Γa in
the order b− < b < b+. (Without loss of generality one may assume b ≤ a.) In
particular Lemma 3.2 provides (a0, b

−
0 ), (a0, b

+
0 ) ∈ Γ such that a < a0 < b+0 and

b−0 < b. We have settled the first forbidden situation of (23) for (x, y−) = (a0, b
−
0 ),

(x, y+) = (a0, b
+
0 ) and (x′, y′) = (a, b), which provides the desired contradiction.

Hence A is countable and µ(A) = 0. It follows that one can assume |Γa| ≤ 2 for
every a ∈ R.

We may thus assume that there exist T1 and T2 from projx(Γ) to R such that
Γx = {T1(x), T2(x)} where T1(x) ≤ x ≤ T2(x) for µ-almost every x ∈ projx(Γ). It
remains to show that T1 and T2 are monotone. Let x, x′ ∈ R with x < x′. We
necessarily have T2(x) ≤ T2(x′) since the opposite inequality leads to the second
forbidden inequality in (23) taking y− = T1(x), y′ = T2(x′) and y+ = T2(x). The
monotonicity of T1 is established in the same way.

It remains to show that the optimizer is unique. Due to the linear structure of the
optimization problem the set of solutions is convex. Hence Lemma 5.6 applies. �

Remark 7.6. If µ is not continuous, there may be more than one minimizer. This
is the case for example if µ and ν are chosen as in Paragraph 7.3.1. In fact if h is an
even function then for the cost function c(x, y) = h(y−x) (e.g. x 7→ −|y−x|) every
martingale transport plan is optimal. Hence it seems that it is not directly possible
to define the Hobson–Neuberger transport plan for a general starting distribution µ
in an unambiguous way.

Proof of Theorem 7.4. Let π be an optimal martingale transport plan. Pick Γ
according to Lemma 1.11 and (x, y−), (x, y+), (x′, y′) ∈ Γ, with y− < y′ < y+.
Then it cannot happen that

x′ < x ≤ y′ or y′ ≤ x < x′ or x′ /∈ [y−, y+].(24)

Indeed choosing λ ∈ ]0, 1[, α and α′ as in the proof of Theorem 6.1 above we find
that an improvement of α by α′ is possible if

λ|x− y+|+ (1− λ)|x− y−|+ |x′ − y′| > λ|x′ − y+|+ (1− λ)|x′ − y−|+ |x− y′|.
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Indeed this inequality holds in the just mentioned cases by Lemma 7.5. Note in
particular that one of the forbidden cases of (24) occurs if x 6= x′ and x = y′. This
will be crucial in the following argument which establishes that as much mass as
possible is transported by the identity mapping. (Roughly speaking the following
is forbidden: some mass goes from x to y− and y+ while some mass goes from x′

to y′ = x.)
Set π0 = π|∆, where ∆ is the diagonal {(x, y) ∈ R2 : x = y} and π̄ = π − π0,

let ρ be the projection of π0 onto the first (or the second) coordinate. As ρ ≤ µ
and ρ ≤ ν, we have ρ ≤ µ ∧ ν. We want to prove that ρ = µ ∧ ν, i.e. π0 is
(Id⊗ Id)#(µ ∧ ν). Let us define the reduced measures µ̄ = µ − ρ, ν̄ = ν − ρ and
κ = µ ∧ ν − ρ. Note that π̄ ∈ ΠM (µ̄, ν̄) and that π̄ is concentrated on Γ̄ = Γ \∆.
Hence we have the following:

• For µ̄-almost every a there exist b− and b+ such that a ∈ ]b−, b+[ and
(a, b−), (a, b+) ∈ Γ̄.
• For κ-almost every b there exists some a 6= b such that (a, b) ∈ Γ̄.

As κ ≤ µ̄ we conclude that κ-almost every real number satisfies both of these
conditions. Thus for κ-almost every x there exist y−, y+ and x′ such that the points
(x, y−), (x, y+) and (x′, x) are included in Γ̄ and one has x′ 6= x and x ∈ ]y−, y+[.
This coincides with one of the forbidden situations of (24). Hence κ has mass 0
and π0 = (Id⊗ Id)#(µ ∧ ν) as claimed above.

Our next goal is to establish that, removing countably many points if necessary,
we have |Γ̄x| ≤ 2 for every x ∈ R. Indeed if this is not true, then there exist a, b′, b−

and b+ with b− < b < b+ ∈ Γ̄a to which the assertion of Lemma 3.2 applies. We
know that b < a or a < b; assume without loss of generality that a < b. But then
there exist a′ with b− < a′ < a and b′ with a < b′ < b such that (a′, b′) ∈ Γ. This
contradicts (24) (with x = a, y− = b−, y+ = b+, x′ = a′, y′ = b′).

It remains to establish that there exists at most one optimizer. For optimal
transports π the static part π0 = π|∆ equals (Id⊗ Id)#(µ ∧ ν). Hence the reduced
measure π̄ = π − π0 is a minimizer of the martingale transport problem between
µ̄ = µ−µ∧ν and ν̄ = ν−µ∧ν. Note that µ̄∧ ν̄ = 0 so that the optimal martingale
couplings are concentrated on two Borel graphs. We conclude by Lemma 5.6. �

Remark 7.7. Exactly as in Remark 7.6, the hypothesis that µ is continuous is
needed to prove uniqueness of the optimizer; πabs is not well-defined otherwise.

8. Appendix A: A converse to the Variational Lemma

In this section we prove that the optimality criterion given in the Variational
Lemma 1.11 is not only necessary but also sufficient provided that the cost function
is assumed to be bounded and continuous. We conjecture that these regularity
assumptions can be relaxed. Before we state the Variational Lemma let us give a
definition.

Definition 8.1. Let c be cost function with values in R. We say that a Borel set
Γ is finitely optimal for c if for every measure α on R×R with | spt(α)| <∞ and
spt(α) ⊆ Γ and every competitor α′ of α we have

∫
cdα ≤

∫
cdα′.

As c only takes finite values the integrals exist.

Lemma 8.2 (Variational Lemma, Part II). Assume that µ, ν ∈ P are in convex
order and that c : R2 → R is a continuous bounded cost function. Let π ∈ ΠM (µ, ν).
It there exists a finitely optimal set Γ such that π(Γ) = 1, then π is an optimal
martingale transport plan.

The strategy of our proof will be to establish dual maximizers (see Paragraph
2.4). Such dual maximizers do not exist in general as follows from [2, Proposition
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4.1]. However, the following simple lemma allows us to reduce the martingale
transport problem to “irreducible components”. It turns out that on each of these
components it is possible to construct the desired dual maximizers.9

8.1. Irreducible decompositions. Let us now introduce some of the necessary
vocabulary.

Definition 8.3. Let µ, ν be elements of M such that µ �C ν. We say that (µ, ν)
is irreducible if there exists an open interval I (bounded or not) such that µ(I) and
ν(Ī) have the total mass and uµ < uν on I.

Note that on R \ I we have uµ = uν so that I is exactly {uµ < uν}.

Theorem 8.4 (Decomposition of (µ, ν) into irreducible components). Let µ, ν be
elements of M such that µ �C ν. Let (Ik)k be the (in essence unique) sequence of
disjoint open intervals such that

⋃
k Ik = {uµ < uν} and write F for the closed set

R \
⋃
k Ik. Set µk = µ|Ik and define η = µ|F such that µ = (

∑
k µk) + η.

There exists a unique decomposition ν = (
∑
k νk) + υ such that µk �C νk for

each k and η �C υ.
For this decomposition η = υ and (µk, νk) is irreducible with {uµk < uνk} = Ik.

Moreover any martingale transport plan π ∈ ΠM (µ, ν) can be decomposed in the
form

π =
(∑

k

πk
)

+ πF(25)

where πk is a martingale transport from µk to νk. This decomposition is unique
and πF = (Id⊗ Id)#η.

Note that the measure η ∧ νk does not necessarily vanish.

Proof. To establish the uniqueness part we need two auxiliary results:

Lemma 8.5. Assume that µ, ν are elements of P and let π ∈ ΠM (µ, ν), s ∈ R.
The following are equivalent.

(i) π
(

]−∞, s[× ]−∞, s] ∪ {(s, s)}∪ ]s,∞[×[s,∞[
)

= 1.
(ii) uµ(s) = uν(s).

Consequently, as (ii) does not depend on π, if (i) holds for one measure in ΠM (µ, ν),
then it applies to all elements of ΠM (µ, ν).

Proof. This is essentially [2, Lemma 4.2]; the only difference is that the formulation
in [2] refers to the function u+

µ (x) :=
∫

(y − x)+ dµ(y) rather than to uµ. However,
the proof goes through in the same way if (.)+ is replaced by |.|. �

We record the following consequence.

Lemma 8.6. Let I be an open interval such that uµ = uν on the boundary of I.
Let µI be µ|I and π be a transport plan of ΠM (µ, ν). Set also νI := projy#(π|I×R).

The measure νI is concentrated on Ī and does not actually depend on the partic-
ular choice of π. Moreover we have uνI −uµI = 0 on R\ I and uνI −uµI = uν −uµ
on I.

Proof. Pick π ∈ ΠM (µ, ν) and apply Lemma 8.5 to every s ∈ ∂I. Then

π
(
(I × Ī) ∪ (R \ I)2

)
= 1.(26)

9Roughly speaking the construction given in [2, Proposition 4.1] uses an infinite number of
such irreducible components. While it is possible to construct optimizers on each component, it
turns out to be impossible to glue them together.
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Set πI := π|I×R. Relation (26) asserts that no mass of µ is moved from R \ I to
I and that the mass of I is transported into Ī. Thus µI �C νI = projy# πI (so

that the two measures have the same integral against linear functions) and νI is
concentrated on Ī. It follows directly from the definition of the potential functions
that uνI = uµI on R \ I. Applying similar arguments to µ|J and νJ = projy# π|J×R
for every (closed) connected component J of R \ I and recalling that α 7→ uα is
linear we obtain uµ−µI = uν−νI on I. Hence uνI − uµI = uν − uµ holds on this
interval. �

We first prove the existence of some decomposition of ν. We fix some π ∈
ΠM (µ, ν) and for every k, we define µk and νk as the marginals of πk := π|Ik×R.
Denote by η, υ the marginals of πF := π|F×R. The transport plans πk and πF are
martingale transport plans so that µk �C νk and η �C υ.

For the uniqueness part, we take for i = 1, 2 a decomposition (νik)k, υ
i of ν such

that µk �C νik and η �C υi. According to Example 2.3 there exists a martingale
transport plan πi that transports every µk on νik and η on υi. But the µk’s are con-
centrated on disjoint intervals so that νik = projy# πi|Ik×R and υi = projy# πi|F×R.

It follows from Lemma 8.6 that projy# π|Ik×R does not depend on the particular

choice of π ∈ ΠM (µ, ν). Hence ν1
k = ν2

k for every k and υ1 = ν −
∑
k ν

1
k = υ2.

Let’s now prove the properties listed in the second part of Theorem 8.4. We
continue to use the notations of the existence part (π, πk, πF , µk, νk, η and υ). As
a consequence of Lemma 8.6 (applied to µ, ν and Ik) we have the following:

i) νk is concentrated on Īk;
ii) uνk − uµk is 0 on R \ Ik and uν − uµ on Ik.
As the Ik’s are disjoint we have

u∑ νk − u∑µk =
∑
k

(uνk − uµk) =

{
uν − uµ on

⋃
k Ik,

0 = uν − uµ on F =
⋂
k Īk.

Hence
uυ = uν − u∑ νk = uµ − u∑µk = uη

on the whole real line. Thus we have υ = η. The fact that (µk, νk) is irreducible and
{uµk < uνk} = Ik follows directly from Definition 8.3 and what has been proved so
far. Finally concerning π, note that π = (

∑
k πk) + πF where πk has marginals µk

and νk. As πF is a martingale transport plan from η to υ = η it is the identical
transport plan (Id⊗ Id)#η. The uniqueness of the decomposition (25) follows from
the fact that the µk’s are concentrated on disjoint intervals. �

As a consequence of Theorem 8.4 we have the straightforward corollary:

Corollary 8.7 (Reducing the transport problem). Let µ, ν be elements of M
and µ �C ν, π ∈ ΠM (µ, ν) with decompositions (µk)k, (νk)k, η, π = (

∑
k πk) +

(Id⊗ Id)#η as in Theorem 8.4. Let c be a cost function such that the martingale
transport problem satisfies the sufficient integrability condition and leads to finite
costs. Then the transport π is optimal if and only if every πk is optimal for the
transport problem between µk and νk.

Recall that in Lemma 8.2, the main result of this section, one is assuming that
some particular finitely optimal set exists for the cost c. We will need several times
to assume that this set satisfies some additional properties that we introduce in the
next definition. Recall for the sequel that for a set G ⊆ R2 we write Gx = {y :
(x, y) ∈ G} and denote the projections of G by XG and YG, respectively.

Definition 8.8. Let I be an open interval. A set G satisfies the regularity property
(Reg.) on I if G ⊆ I × Ī and for every x ∈ I we have Gx = ∅ or Gx = {x} or
x ∈ ] inf Gx, supGx[.
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A set G satisfies the irreducibility property (Irred.) on I if G ⊆ I × Ī and for
every y ∈ I there exist x ∈ I and y−, y+ ∈ Gx so that y− < y < y+.

Note that if G satisfies (Irred.) on I, we can apply this property to points y ∈ I
close to the boundary of I. Therefore we have I =

◦

conv(YG).

Lemma 8.9. Let µ, ν be elements of P such that (µ, ν) is irreducible with I =
{uµ < uν}. Let c be a cost function. Let moreover G be a finitely optimal set
and π a martingale transport plan with π(G) = 1. Then there exists a Borel set
G′ ⊆ G ∩ (I × Ī) that satisfies (Reg.) and (Irred.) on I and such that π(G′) = 1.
Moreover G′ is finitely optimal.

Proof. Let G and π be as in the statement. Since π is a martingale transport plan
we find that for µ-almost all x ∈ I

x ∈
◦

conv(Gx) or {x} = Gx.

Erasing a negligible set if necessary, we can assume that (Reg.) is satisfied on I. Let
G′ be the resulting set. Assume by contradiction that G′ does not satisfy (Irred.)
on I. Hence there exists y ∈ I such that for every x ∈ I, the set Gx is included in
]−∞, y] or in [y,+∞[. Since (Reg.) holds, Gx ⊆ ]−∞, y] if x ≤ y and Gx ⊆ [y,+∞[
otherwise. Hence π(]−∞, y]2 ∪ [y,+∞[2) = 1 so that uµ(y) = uν(y), according to
Lemma 8.5. But y ∈ I = {uµ < uν}, which yields a contradiction. Therefore the
set G′ satisfies (Reg.) and (Irred.) on I. Each subset of G is finitely optimal, hence
so is G′. �

8.2. Existence of dual maximizers ϕ, ψ, ∆ on an irreducible component.
In this paragraph we aim to prove Proposition 8.10. The cost function c, the sets
Γ ⊆ R2 and I are fixed accordingly throughout Subsections 8.2 and 8.3.

Proposition 8.10. Assume that c : R → R is continuous and let Γ be a finitely
optimal set satisfying the conditions (Reg.) and (Irred.) on some open interval I.

Then there exist upper semi-continuous functions ϕ : I → [−∞,∞[ , ψ : J =
conv(YΓ)→ [−∞,∞[ and a measurable function ∆ : I → R such that

ϕ(x) + ψ(y) + ∆(x)(y − x) ≤ c(x, y)

for all x ∈ I, y ∈ J , with equality holding whenever (x, y) ∈ Γ.

We emphasize that the functions appearing in Proposition 8.10 can be interpreted
as a sort of maximizer for the dual problem described in Section 2.4.

Throughout Section (8.2) we will work under the assumptions of Proposition
8.10; some preparations will be necessary to establish the result.

Definition 8.11. Let ψ be a function from a subset of R into R and let G be a
subset of R×R such that ψ is defined on YG = projy(G). The function ψ is called
G-good if the following holds true:

For every x ∈ XG = projx(G) there exists an affine function y 7→ ax(y) such
that

ax(y) ≤ −ψ(y) + c(x, y)(27)

for all y ∈ YG with equality holding true if y ∈ Gx = {y ∈ R : (x, y) ∈ G}.

Note that the function ax is uniquely determined if |Gx| ≥ 2. Clearly, a function
ψ is G-good if and only if there exist functions ϕ, ∆ (defined on some set containing
XG) such that

ϕ(x) + ψ(y) + ∆(x)(y − x) ≤ c(x, y)

for all x ∈ XG and y ∈ YG with equality being satisfied whenever (x, y) ∈ G.
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Subsequently we will show that in Proposition 8.10 there exists a Γ-good function
ψ. We want to explain already at this stage that for a given Γ-good function
ψ, suitable functions ϕ and ∆ can be defined rather explicitly in terms of the
function ψ: Fix x ∈ XΓ. By the property (Reg.), there exists y−, y+ with y− <
x < y+, (x, y−), (x, y+) ∈ Γ and a unique affine function ax such that ax(y−) =
−ψ(y−) + c(x, y−) and ax(y+) = −ψ(y+) + c(x, y+), moreover ax lies below the
function y 7→ −ψ(y) + c(x, y). Writing g(.)∗∗ for the convex hull of a function y 7→
g(y), we find further that ax(y) is also smaller or equal than (−ψ(.) + c(x, .))∗∗(y),
with equality holding true for all y ∈ [y−, y+]. This implies that ax(y) = ϕ(x) +
∆(x)(y − x), where

ϕ(x) := (−ψ(.) + c(x, .))∗∗(x),(28)

and ∆(x) denotes the derivative of y 7→ (−ψ(.) + c(x, .))∗∗(y) at the point y = x.

The first step towards the existence of a Γ-good function in Proposition 8.10 is
the following auxiliary result.

Lemma 8.12. Let G ⊆ Γ be a finite set. Then there exists a G-good function.

Proof. As Γ satisfies (Reg.), there exists a finite set G̃, G ⊆ G̃ ⊆ Γ such that G̃
satisfies (Reg.). As a consequence of (Reg.), there exists a probability measure α

which has support G̃ and is a martingale transport plan between its marginals, i.e.
satisfies α ∈ ΠM (µ0, ν0) for µ0 := projx# α, ν0 := projy# α. As Γ is finitely optimal,
every competitor of α leads at least to the same amount of costs as α, i.e. α is an
optimal martingale measure. By the duality theorem of linear programming, there
exist functions ϕ,∆ : XG̃ → R, ψ : YG̃ → R such that

ϕ(x) + ψ(y) + ∆(x)(y − x) ≤ c(x, y)

for all (x, y) ∈ XG̃ × YG̃ with equality holding for all elements of the set G̃. In
particular ψ is a G-good function. �

The following technical lemma will give us some control over the variety of dif-
ferent G-good functions which can exist for a specified set G.

Lemma 8.13. Let G = {(xi, y−i ), (xi, y
+
i ) : i = 1, 2}, where y−i < xi < y+

i . As-
sume that ]y−1 , y

+
1 [∩ ]y−2 , y

+
2 [ 6= ∅. Given bounded intervals K±1 there exist bounded

intervals K±2 such that the following holds: if ψ is G-good and ψ(y±1 ) ∈ K±1 , then
ψ(y±2 ) ∈ K±2 .

Let G = {(x1, y
−
1 ), (x1, y

+
1 ), (x2, y2)}, where y−1 < x1 < y+

1 . Assume that y2 ∈
]y−1 , y

+
1 [. Given bounded intervals K±1 there exists a bounded interval K2 such that

the following holds: if ψ is G-good and ψ(y±1 ) ∈ K±1 , then ψ(y2) ∈ K2.

Proof. We will only prove the first part of the lemma, the second is similar. More-
over we will assume that y−1 < y−2 < y+

2 < y+
1 . If these numbers are ordered in a

different way, the argument can be adapted easily. Since ψ is G-good, there is an
affine function ax1

such that

ax1(y−1 ) = −ψ(y−1 ) + c(x1, y
−
1 ) ∈ −K−1 + c(x1, y

−
1 ),(29)

ax1(y+
1 ) = −ψ(y+

1 ) + c(x1, y
−
1 ) ∈ −K+

1 + c(x1, y
+
1 ),(30)

ax1
(y−2 ) ≤ −ψ(y−2 ) + c(x1, y

−
2 ),(31)

ax1
(y+

2 ) ≤ −ψ(y+
2 ) + c(x1, y

+
2 ).(32)

From (29) and (30) we have a good control over the possible positions of the affine
function ax1 . By (31) and (32) this translates to a lower bounded for the value
of −ψ(y−2 ) (, resp. −ψ(y+

2 )). More precisely we obtain that there exists a real
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number q which depends on K±1 , x1, y
±
1 , y

±
2 and c (but not on the particular values

of ψ(y±2 )) such that q ≤ −ψ(y±2 ).
On the other hand there exists an affine function ax2

such that

ax2
(y−1 ) ≤ −ψ(y−1 ) + c(x1, y

−
1 ) ∈ −K−1 + c(x2, y

−
1 ),

ax2
(y+

1 ) ≤ −ψ(y+
1 ) + c(x1, y

−
1 ) ∈ −K+

1 + c(x2, y
+
1 ),

ax2(y−2 ) = −ψ(y−2 ) + c(x2, y
−
2 ),

ax2(y+
2 ) = −ψ(y+

2 ) + c(x2, y
+
2 ).

This implies the existence of a constant p such that p ≥ −ψ(y±2 ). Summing up, we
may choose K+

2 = K−2 = [−p,−q]. �

Lemma 8.14. There exists a Γ-good function ψ.

Proof. In Lemma 8.12 we have already seen that for every finite set G ⊆ Γ there
exists a G-good function. The idea of the proof is thus to pass to some sort of limit
of these functions. To do so we aim to confine (properly chosen) G-good functions
to a compact subset of the space RYG . The existence of this compact set will be a
consequence of Lemma 8.13 and Tychonoff’s Theorem.

We claim that there exist compact intervals (Ky)y∈YΓ such that for any finite
set G ⊆ Γ there is a G-good function ψ such that ψ(y) ∈ Ky for y ∈ YG.

We give the proof under the assumption that YΓ ⊆ I is such that conv(YΓ) is
open (such that conv(YΓ) = I), the other cases are similar. Properties (Irred.)
and (Reg.) imply that for every y ∈ I there exist (x, y−), (x, y+) ∈ Γ such that
y− < y < y+ and y− < x < y+. That is, I is the union of intervals of the form
]y−, y+[, where (x, y−), (x, y+) ∈ Γ and y− < x < y+. Using that the set I can be
written as a countable union of compact sets, it is straightforward that there exist
sequences (xk)k∈N, (y−k )k∈N, (y+

k )k∈N such that the points (xk, y
−
k ) and (xk, y

+
k ) are

in Γ, we have y−k < xk < y+
k ,

k⋃
i=0

]y−i , y
+
i [∩ ]y−k+1, y

+
k+1[ 6= ∅, k ∈ N, and

⋃
k∈N

]y−k , y
+
k [ = I.

Given an arbitrary set G, a G-good function ψ and an affine function a, the func-
tion ψ′ = ψ − a is again a G-good function. Thus for all finite G satisfying
(x0, y

−
0 ), (x0, y

+
0 ) ∈ G, there is a G-good function ψ such that ψ(y−0 ) = ψ(y+

0 ) = 0.
Iterating (the first part of) Lemma 8.13 for k ∈ N we find the desired intervals Ky

for y ∈ {y−k , y
+
k : k ∈ N}.

For every y ∈ YΓ there exist x ∈ R and k ∈ N such that (x, y) ∈ Γ and y ∈
(y−k , y

+
k ). Hence (the second part of) Lemma 8.13 yields the existence of the desired

interval Ky for y ∈ YΓ \ {y−k , y
+
k : k ∈ N}.

We can view the set K :=
∏
y∈YΓ

Ky as a subset of the space of all functions
from YG to R. In the topology of pointwise convergence the set K is compact by
Tychonoff’s theorem.

For every finite G ⊆ Γ, the set

ΨG :=
{
ψ ∈ K : ψ is G-good

}
is a non-empty closed subset of the set K. Moreover the family (ΨG)G has the finite
intersection property. For instance, given finite sets G1, G2 ⊆ Γ the intersection of
ΨG1

and ΨG2
contains ΨG1∪G2

and is therefore non-empty. By compactness of K,
the intersection ⋂

G⊆Γ,|G|<∞

ΨG =: ΨΓ

of all these sets is nonempty as well. Obviously, any element ψ ∈ ΨΓ is Γ-good. �
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Proof of Proposition 8.10. By Lemma 8.14, there exists a Γ-good function ψ. We
have to show that ψ can be replaced by an upper semi-continuous function and
that there exist appropriate functions ϕ and ∆. We start with the latter task.

Recall that we write J = conv(YΓ) and note that I ⊆ J ⊆ I.
For fixed x ∈ XΓ, consider the function y 7→ gx(y) = −ψ(y) + c(x, y), y ∈ YΓ.

For any x ∈ I let g∗∗x : R → [−∞,+∞] be the largest convex function which is
smaller than gx on the set YΓ for x ∈ XΓ and g∗∗x = +∞ if x ∈ I \XΓ. For x ∈ XΓ,
there exists an affine function which is smaller than gx. Hence g∗∗x does not take
the value −∞ in this case.

Since I =
◦

conv(YΓ) the function g∗∗x is continuous and finitely valued on the set
J for x ∈ XΓ. As a function on the set R, g∗∗x may possibly assume the value +∞.
Moreover, if x ∈ I \XΓ then g∗∗x can take the value −∞.

We now define the function H : I × R→ [−∞,∞] by

H(x, y) := (−ψ(.) + c(x, .))∗∗(y)

and emphasize that H takes finite values on XΓ × J . Thus the function ϕ : I →
[−∞,∞[, defined by

ϕ(x) := (−ψ(.) + c(x, .))∗∗(x) = H(x, x)(33)

takes finite values on the set XΓ.
To prove that ϕ is upper semi-continuous, consider for n ∈ N the function

Hn(x, y) := ((−ψ(.) ∨ (−n)) + c(x, .))∗∗(y).

It is straightforward to prove that Hn is continuous on the set I × J . Thus H =
infn∈NHn is upper-semicontinuous and hence ϕ is upper semi-continuous as well.

For each x ∈ I denote by ∆(x) the right-derivative of the convex function y 7→
H(x, y) in the point x if H(x, x) > −∞ and set ∆(x) = 0 otherwise.

By construction we then have

ϕ(x) + ψ(y) + ∆(x)(y − x) ≤ c(x, y),

for all (x, y) ∈ XΓ × J . Moreover, as ψ was assumed to be Γ-good, equality holds
for all (x, y) ∈ Γ. (See the discussion preceding (28).)

Next we define a function ψ̃ by

ψ̃(y) = inf
x
c(x, y)− [ϕ(x) + ∆(x)(y − x)].

For every x, the function y 7→ c(x, y) − [ϕ(x) + ∆(x)(y − x)] is continuous, hence

ψ̃ is upper semi-continuous. As above ϕ(x) + ψ̃(y) + ∆(x)(y − x) ≤ c(x, y) holds

by construction and since ψ̃(y) is greater or equal to ψ(y) for all y ∈ I we conclude
that the inequality is indeed an equality on the set Γ. �

8.3. Integrating the duality relation between ϕ, ψ, ∆ and c on the irre-
ducible components. Paragraph 8.2 was a first step in the direction of the proof
of Lemma 8.2. Unfortunately, the functions ϕ,ψ constructed in Proposition 8.10
are measurable but not necessarily integrable. The following lemma will provide a
remedy for this.

Lemma 8.15. Let χ be a convex or concave function on some (possibly unbounded)
interval I and assume that µ, ν are in convex order and concentrated on I. Then∫ [∫

χ(y) dπx(y)− χ(x)

]
dµ(x) =

∫ [∫
χ(y) dπ̃x(y)− χ(x)

]
dµ(x)(34)

for all measures π, π̃ ∈ ΠM (µ, ν).
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Proof. We will give the proof in the case where I = R and χ convex, the other
cases being similar. Note that, leaving integrability issues aside, the left as well as
the right-hand side of (34) equal

∫
χdν −

∫
χdµ and in particular we expect them

to be equal. To give a formal proof we approximate χ by functions which grow at
most linearly so that all involved integrals do exist.

Denote by χn the smallest convex function which agrees with χ on the interval
[−n, n]. (So χn is affine on the complement of [−n, n].) We have to show that for
each π ∈ ΠM (µ, ν).∫ [ ∫

χ(y) dπx(y)− χ(x)︸ ︷︷ ︸
=:f(x)

]
dµ(x) = lim

n

∫ [ ∫
χn(y) dπx(y)− χn(x)︸ ︷︷ ︸

=:fn(x)

]
dµ(x)

Applying Jensen’s inequality to the functions χ, χn we see that f, fn ≥ 0 and
applying Jensen’s inequality to the convex function χn − χm, we see that fn ≤ fm
for n ≤ m. Hence the desired equality follows from the monotone convergence
theorem. �

As a consequence of this lemma, the following definition is well.

Definition 8.16. Assume that ϕ,ψ are measurable functions and that µ, ν are in
convex order. Let χ be a convex10 function such that ϕ0 = ϕ + χ, ψ0 = ψ − χ are
uniformly bounded. Then we set∫

ϕdµ+

∫
ψ dν :=

∫
ϕ0 dµ+

∫
ψ0 dν +

∫ [∫
χ(y) dπx(y)− χ(x)

]
dµ(x),

where π is some martingale transport plan.

Corollary 8.17. Assume that we are given measurable functions ϕ,ψ,∆ and a
convex function χ such that

ϕ(x) + ψ(y) + ∆(x)(y − x) ≤ c(x, y)(35)

for all x, y ∈ I and such that ϕ and −ψ differ from χ only by some bounded
functions. Then we have ∫

ϕdµ+

∫
ψ dν ≤

∫
c dπ

for any martingale transport plan π. Furthermore, if equality holds π-a.s. in (35),
then

∫
ϕdµ+

∫
ψ dν =

∫
c dπ.

We are now finally in the position to establish the main result of this section.

8.4. Proof of Lemma 8.2. We will first give the proof assuming that (µ, ν) is
irreducible on the open interval I (bounded or not). According to Lemma 8.9, we
may assume that the finitely optimal set Γ is included in I × Ī and satisfies (Reg.)
and (Irred.) on I. It follows from Proposition 8.10 that there exist upper semi-
continuous functions ϕ,ψ : I → ] −∞,∞] and a measurable function ∆ : I → R
such that

ϕ(x) + ψ(y) + ∆(x)(y − x) ≤ c(x, y)

for all x, y ∈ I, with equality holding for (x, y) in Γ. Recall that the function ψ
constructed in Proposition 8.10 is of the form

inf
x
c(x, y)− [ϕ(x) + ∆(x)(y − x)].

This leads us to define the convex function χ : I → R by

χ(y) = sup
x
ϕ(x) + ∆(x)(y − x).

10Of course the assertion is also true in the case where χ is concave, but we do not need this.



42 MATHIAS BEIGLBÖCK AND NICOLAS JUILLET

Since c is assumed to be bounded, it follows that ψ differs from −χ only by a
bounded function (i.e. ψ + χ is bounded). Replacing ϕ by

(−ψ(.) + c(x, .))∗∗(x),

it follows also that ϕ differs from χ only by a bounded function (i.e. ϕ − χ is
bounded). Thus Corollary 8.17 implies that π is an optimal transport plan.

Consider now the general case and the decomposition π = (
∑
k πk) + η of The-

orem 8.4, (25), where (projx πk,projy πk) =: (µk, νk) is irreducible. But Γ has full
measure for πk (if not π(Γ) would be smaller than 1) and it is finitely optimal for
the cost c. According to the first part of the proof πk is an optimal martingale
transport plan from µk to νk. By Theorem 8.7, π is optimal and this concludes the
proof of Lemma 8.2.

9. Appendix B: A self-contained approach to the variational lemma

In this appendix we provide a self-contained proof of the variational lemma
(Lemma 1.11, established in Section 3). Indeed we obtain a somewhat stronger
conclusion in Theorem 9.4 below. The benefit of this second version is that Theorem
9.4 does not rely on the Choquet’s capacability theorem and that the new approach
provides an explicit set Γ. A drawback is that we have to assume that the cost
function is continuous. Compared to the approach given in Section 3 another
disadvantage is that the argument does not seem to be adaptable from R × R to
more general product spaces.

9.1. Preliminaries based on Lebesgue’s density theorem. Our aim is to es-
tablish Corollary 9.3 which may be viewed as an avatar of Lemma 3.2, the uncount-
able set of points a being replaced by a set A of positive measure. We start with
the well-known Lebesgue density theorem. It asserts that for an integrable function
f on [0, 1] we have

lim
ε→0

1

2ε

∫ s+ε

s−ε
|f(s)− f(t)| dt = 0(36)

for almost every s ∈ ]0, 1[. In sloppy language, almost every point is a “good” point.
Those points will be called regular points of f . In those regular points s we also
have

lim
n→+∞

1

λ(Mn)

∫
Mn

|f(s)− f(t)| dt = 0(37)

for every sequence (Mn) of measurable sets satisfying Mn ⊆ [s − εn, s + εn] with
λ(Mn)
εn

bounded from below and εn → 0. Particular admissible choices are Mn =

[s, bn] or ]s, bn] and Mn = [an, s] or [an, s[. As a consequence of (37) we have that

lim
n→+∞

1

λ(Mn)

∫
Mn

f(t) dt = f(s).(38)

Intervals B = ]q, q′] or ]−∞, q′] with q, q′ ∈ Q∪{−∞,+∞} will be called rational
semi-open intervals. By Fubini’s theorem, (37) implies the following result.

Lemma 9.1. Let π be a probability measure on R × R with first marginal λ[0,1].
Fix a disintegration (πx)x∈[0,1]. There exists a set R ⊆ [0, 1], λ(R) = 1 such that
for s ∈ R, any rational semi-open interval B and any two sequences (an)n, (bn)n
satisfying an, bn → s as well as an ≤ s < bn or an < s ≤ bn, we have

lim
n→+∞

1

bn − an

∫ bn

an

|πt(B)− πs(B)|dλ(t) = 0.
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We now extend this lemma to the case where the first marginal of π is a general
measure µ, not necessarily equal to λ|[0,1]. Recall that Gµ denotes the quantile
function of µ and Fµ the cumulative distribution function. See Figure 5 for the
graphs of Fµ and Gµ in an example: here µ satisfies µ({1}) = 1/3 and is uniform
of mass 2/3 on [0, 1] ∪ [2, 3] (the axis are not scaled in the same way). Recall that
the measure µ can be written as (Gµ)#λ.

s

Gµ(s)

x

Fµ(x)

Figure 5. The quantile and cumulative distribution functions.

The map Gµ is increasing on [0, 1] and hence continuous on the complement of a
countable set D, the set of s ∈ [0, 1] such that F−1

µ (s) is a non trivial interval. For

such a s ∈ D, the µ-measure of F−1
µ (s) is zero so that µ(Gµ(D)) ≤ µ(F−1

µ (D)) = 0.
Consider a random variable (U,Gµ(U), Y ) on [0, 1]×R×R such that the law of

U is λ and the law of (Gµ(U), Y ) is π. Let π̃ be the law of (U, Y ) and (π̃s)s∈[0,1] a
disintegration with respect to λ, i.e. π̃s is the conditional law of Y given the event
{U = s}. Apply Lemma 9.1 to this disintegration of π̃ to obtain a set R. Let S ⊆ R
be the set Gµ(R \D) and let us call S the set of regular points.

Note that S has full measure and that it may depend on the disintegration of π̃.

Lemma 9.2. Let π be a probability measure on R2 with first marginal µ and (πx)x∈R
a disintegration of π. There exists a set S ⊆ R of measure µ(S) = 1 satisfying the
following: for any x ∈ S and any rational semi-open interval B the limit

lim
n→+∞

1

µ(Nn)

∫
Nn

|πt(B)− πx(B)|dµ(t)

is zero for any sequence Nn = [x− εn, x+ εn] with εn ↓ 0.

Proof. We note that if the statement of the lemma holds for one particular disin-
tegration of π, then it automatically carries over to any other disintegration.

Therefore we will consider a disintegration of π which is convenient for the proof.
Let S and π̃ be as in the discussion preceding Lemma 9.2 and set for x ∈ R

πx =

{
π̃Fµ(x) if µ({x}) = 0,

1
µ({x})

∫
G−1
µ ({x}) π̃s ds if µ({x}) > 0.

(39)

Let x be a point in S and Nn = [x−εn, x+εn]. We distinguish two cases depending
on whether or not x is an atom of µ. The first case is quite straightforward. In the
second case we will apply Lemma 9.1.
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• Assume µ({x}) > 0. As
⋂
n∈NNn = {x} we have µ(Nn) ↓ µ({x}) as

εn → 0. Hence

1

µ(Nn)

∫
Nn

|πt(B)− πx(B)|dµ(t) =
1

µ(Nn)

∫
{x}
|πt(B)− πx(B)|dµ(t)

+
1

µ(Nn)

∫
Nn\{x}

|πt(B)− πx(B)|dµ(t).

The first part of the sum equals 0 and the second part tends to 0 since
|πt(B)− πx(B)| ≤ 2 and [µ(Nn)− µ(x)]/µ(Nn) ↓ 0 as εn → 0.
• Assume µ({x}) = 0. Set s0 ∈ G−1

µ (x) and Mn = G−1
µ (Nn). As x ∈ S, we

can assume that Gµ is continuous in s0. As Gµ is continuous in s0, the
interval Mn cannot be trivial. Hence λ(Mn) = µ(Nn) is positive. Note
that (s0, x) is not on a vertical or horizontal part of the graphs of Fµ or
Gµ. Hence Fµ(x) = s0. As x is the unique pre-image of s0 and x ∈ S,
we have s0 ∈ R using the notation of Lemma 9.1, i.e. s0 is regular for the
disintegration (π̃s)s.

We can separate the push-forward measure µ = (Gµ)#λ into its atomic
and its continuous part and integrate accordingly and thus obtain

1

µ(Nn)

∫
Nn

|πt(B)− πx(B)| dµ(t) =
1

λ(Mn)

∫
Mn

∣∣πGµ(s)(B)− πx(B)
∣∣ dλ(s)

≤ 1

λ(Mn)

∫
Mn

|π̃s(B)− π̃s0(B)| dλ(s).(40)

Here we used the following properties: (i) if µ({t}) > 0: Jensen’s inequality
for the integration on {s : Gµ(s) = t}, (ii) if µ({t}) = 0: Gµ(s) = t implies
that Fµ(t) = s or s is a discontinuity point of Gµ, such that Fµ(t) = s
almost surely.

The right and left limit of the cumulative distribution function Fµ are
equal in x so that Fµ is continuous in this point. Thus the interval Mn =
[Fµ((x− εn)−), Fµ(x+ εn)] ⊆ [Fµ(x− 2εn), Fµ(x+ εn)] has length going to
0 as εn → 0. Hence we can apply Lemma 9.1 in equation (40) at point s0

for the disintegration (π̃s)s and the sequence Mn.

�

We remark that for π ∈ P(R2), if y ∈ spt(πx), it is not always true that (x, y) ∈
spt(π). We have introduced S in order to obtain this conclusion for x ∈ S. More
precisely, we have:

Corollary 9.3. Let S be a set of regular points associated to (πx)x as in Lemma
9.2 and let x ∈ S. Let B1, . . . , Bk be a family of pairwise disjoint rational semi-open
intervals such that πx(Bj) > 0 for j = 1, . . . , k.

For every ε > 0 there exists A ⊆ S ∩ [x − ε, x + ε] such that µ(A) > 0 and
πt(Bj) > 0 for (j, t) ∈ {1, . . . , k} ×A.

Proof. Let π, x, ε and the sets Bj be given. Let (εn)n be a decreasing sequence of
positive numbers tending to 0. For every j we have

lim
n→+∞

1

µ(Nn)

∫
Nn

|πx(Bj)− πt(Bj)| dµ(t) = 0,

where Nn is [x−εn, x+εn] or, in the case µ({x}) = 0, one of the intervals ]x, x+εn]
resp. [x− εn, x[. This implies

µ({t ∈ Nn : |πx(Bk)− πt(Bk)| > πx(Bk)/2}) = o(µ(Nn)).
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Therefore

µ({t ∈ Nn : ∃j ∈ {1, . . . , k}, |πx(Bk)− πt(Bk)| > πx(Bk)/2}) = o(µ(Nn))

and

µ({t ∈ Nn : ∃j ∈ {1, . . . , k}, πt(Bk) = 0}) = o(µ(Nn)).

Hence for n sufficiently large the set

A = {t ∈ Nn : ∀j ∈ {1, . . . , k}, πt(Bk) > 0}
has positive measure. For n large enough we also have εn < ε, which concludes the
proof. �

9.2. Construction of a better competitor when Γ supports a finite non
optimal coupling. Let V be the set of signed measures σ on R2 with Hahn de-
composition σ = σ+ − σ− such that the following conditions are satisfied:

• The total mass of σ is 0.
• The marginals projx# σ and projy# σ vanish identically.

• The measure projy#(|σ|) = projy# σ+ + projy# σ− has finite first moment.

• σ has a disintegration (σx)x such that projx# |σ|-a.s., the positive and the
negative parts of σx have the same mean.

If only the three first conditions are satisfied σ will be an element of V ′.
Here the letter V is reminiscent to the term variation. Indeed observe that

if α is a positive measure on R2 such that projy# α has finite first moment and
β = α − σ is a positive measure, then β is a competitor of α in the sense of
Definition 1.10. Conversely, for a pair of competitors (α, β), the measures α − β
and β − α are elements of V. A notable element of V is (δx − δx′) ⊗ (λδy+ + (1 −
λ)δy−−δλy++(1−λ)y−), the kind of measure that we have used repeatedly in Sections
6 and 7. An element of V will be called a variation. A variation σ is positive (resp.
negative) if

∫
c(x, y) dσ(x, y) > 0 (resp. < 0).

For a cost function satisfying the sufficient integrability condition, it is not dif-
ficult to prove that the following statements are equivalent:

(1) The martingale transport plan α is optimal for the cost c.
(2) For any σ ∈ V such that σ+ ≤ α, one has

∫
c(x, y) dσ(x, y) ≤ 0.

We can now state the main result of this appendix.

Theorem 9.4. Assume that µ, ν are probability measures in convex order and
that c : R2 → R is a continuous cost function satisfying the sufficient integrability
condition. Assume that π ∈ ΠM (µ, ν) is an optimal martingale transport plan which
leads to finite costs. Let (πx)x be a disintegration of π and S ⊆ R a set of regular
points associated to (πx)x in the sense of Lemma 9.2. We set

Γ = {(x, y) ∈ R2 : x ∈ S and y ∈ spt(πx)}.
If α is a martingale transport plan such that

• the support spt(α) of α is finite and
• the support spt(α) is included in Γ,

then the martingale transport plan α is optimal for c between projx# α and projy# α.

Furthermore if σ is a measure of finite support in V with spt(σ+) ⊆ Γ, it is a
non-positive variation.

Proof. Let α be as in the theorem and assume for contradiction that there exists a
competitor β that leads to smaller costs. We will prove that π cannot be optimal,
thus establishing the desired contradiction. In other words assume that there is a
variation σ ∈ V with sptσ+ ⊆ sptα and

∫
c(x, y) dσ(x, y) > 0. We will construct

σ̃ ∈ V by applying modifications to σ so that σ̃+ ≤ π and
∫
c(x, y) dσ̃(x, y) > 0.



46 MATHIAS BEIGLBÖCK AND NICOLAS JUILLET

This yields a contradiction since the competitor π−σ̃ is cheaper than π with respect
to the cost function c.

The argument is based on two lemmas and Proposition 9.6, whose proof is post-
poned to the next subsection. Let us introduce some notations. Assume first that
spt |σ| is included in {x1, . . . , xn} × {y1, . . . , ym} and define for ε > 0 the rectangle
Rij(ε) = [xi − ε, xi + ε]× [yj − ε, yj + ε].

Lemma 9.5. There exists ε > 0 such that the sets Rij(ε) are disjoint and any
measure σ′ ∈ V satisfying

• |σ′| is concentrated on
⋃
i,j Rij(ε) and

• for (i, j) ∈ {1, . . . , n} × {1, . . . ,m}

|σ − σ′|(Rij) ≤ ε,

is a positive variation.

Proof. The argument relies on the continuity of c and is straightforward. �

Let us call V(σ, ε) the subset of the measures σ′ ∈ V such that σ′ satisfies the
conditions of the above lemma. Elements of V(σ, ε) are positive variations and so
are the elements of the cone CV(σ, ε) = {wσ′ ∈ V : w > 0 and σ′ ∈ V(σ, ε)}. We
want to find a measure σ′ ∈ V(σ, ε) and v such that wσ′+ ≤ π. For this purpose
we will use the fact that σ+ is concentrated on Γ.

Using the notations of Corollary 9.3, let Ai be the set A associated to xi and
consider an arbitrary family of rational semi-open intervals Bk with yj ∈ Bj ⊆
[yj−ε, yj +ε] and πxi(Bj) > 0 for each j. Moreover we take Ai ⊆ S∩ [xi−ε, xi+ε]
for every i.

Proposition 9.6. Let ε > 0. There are sets A1, . . . , An with µ(Ai) > 0 and
Ai ⊆ [xi − ε, xi + ε] such that for (t1, . . . , tn) ∈ A1 × · · · × An there is a measure
σt1,...,tn ∈ E satisfying the following:

• We have σt1,...,tn ∈ CV(σ, ε).
• The first marginal of |σt1,...,tn | has support {t1, . . . , tn}.
• σ+

t1,...,tn ≤
∑n
i=1 µ(Ai)× (δti ⊗ πti).

We postpone the proof of Proposition 9.6 to the next subsection.
Note that σt1,...,tn is not the measure σ̃ we are looking for. Nevertheless it

satisfies almost all the conditions. It is in V and even in CV(σ, ε) so that according
to Lemma 9.5 it is a positive variation. The only missing condition it that σ+

t1,...,tn
is not smaller than π. We provide a remedy in the following lemma:

Lemma 9.7 (A variation σ̃ leading to the contradiction). The measure

σ̃ =
1

µ(A1)× · · ·µ(An)

∫∫∫
A1×···×An

σt1,...,tn dµ(t1)⊗ · · · ⊗ dµ(tn)

is in V(σ, ε) and satisfies both
∫∫

c(x, y) dσ̃(x, y) > 0 and σ̃+ ≤ π. Hence π − σ̃
gives rise to smaller costs than π.

Proof. As all σt1,...,tn are in CV(σ, ε), they are positive variations. Hence σ̃ which
is an average of these measures in V is also a positive variation. Let us prove that
σ̃+ ≤ π. Observe that σ̃+ is again the average of the positive parts σ+

s1,...,sn . By
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Proposition 9.6 this is smaller than

1

µ(A1)× · · ·µ(An)

∫∫∫
A1×···×An

n∑
i=1

µ(Ai)(δti ⊗ πti) dµ(t1)⊗ · · · ⊗ dµ(tn)

=

n∑
i=1

∫
Ai

(∫∫∫
(δti ⊗ πti) dµ(t1)⊗ · · · ⊗ d̂µ(ti)⊗ · · · ⊗ dµ(tn)

µ(A1)× · · · × µ̂(Ai)× · · · × µ(An)

)
dµ(ti)

=

n∑
i=1

∫
Ai

(δti ⊗ πti) dµ(ti) = π|⋃n
i=1 Ai×R. �

Up to Proposition 9.6 we have thus proved Theorem 9.4. �

9.3. Proof of Proposition 9.6. Recall the definitions and notations of Theorem
9.4 and Proposition 9.6. In particular σ has finite support included in Γ. It is
also included in some product set {x1, . . . , xn} × {y1, . . . , ym} where we choose m
and n as small as possible. For τ ∈ V we denote the support of projx#(|τ |) by

X(τ) and the support of projy#(|τ |) by Y (τ) so that {x1, . . . , xn} = X(σ) and

{y1, . . . , ym} = Y (σ). Let d ≤ n ·m be the cardinality of spt(σ+) and denote its
elements by p1, . . . , pd.

For measures of finite support the conditions for being in V can be simplified. A
measure τ is in V if

(1) For every y ∈ Y (τ), Ly(τ) defined as
∑
x∈X τ(x, y) is zero,

(2) for every x ∈ X(τ), Cx(τ) defined as
∑
y∈Y τ(x, y) is zero,

(3) for every x ∈ X(τ), Mx(τ) defined as
∑
y∈Y τ(x, y)× y is zero.

Moreover the measure τ is an element of V ′ if the Conditions (1) and (2) are
satisfied.

We introduce some further notations. For every τ ∈ V ′ of finite support we
introduce a relation between the points of X(τ). We write x → x′ if there are
y, y′, y > y′ such that τ(x, y) and τ(x′, y′) are not zero. If x → x′ and x′ → x we
write x↔ x′ and will say that x double-touches x′. If τ ∈ V, for any point x ∈ X(τ)
an important consequence of Condition (3) is that there exist three distinct points
y, y′, y′′ such that τ(x, y), τ(x, y′) and τ(x, y′′) are not zero. Hence x ↔ x if
x ∈ X(τ). However the relation ↔ is not transitive. If x ∈ X double-touches both
x′ and x′′ we say that x is a bridge over x′ and x′′. In particular if x ↔ x′ the
point x is a bridge over x′ and x itself.

Roughly speaking for τ ∈ V ′, the relation x → x′ means that it is possible to
replace τ (in a continuous manner) by a signed measure τ ′ ∈ V ′ such that τ+

and τ ′+ have the same support. Applying this modification τ 7→ Mx(τ) increases
while τ 7→ Mx′(τ) decreases (and their sum remains constant). More precisely,
consider y, y′, y > y′ such that τ(x, y) and τ(x′, y′) are both non zero. Let m be the
measure (δx − δx′)⊗ (δy − δy′). Notice that m is an element of V ′ \ V. Considering
τh = τ + h ·m and h > 0 we have

Mx(τh)−Mx(τ) = h ·Mx(m) = h · (y − y′) > 0.

We only consider positive h in order to keep the same support for (τh)+ and τ+.
In particular this prohibits that τ(x, y′) > 0 and τ(x′, y) > 0. For the same reason
we choose h ∈ [0, h0[ where h0 = max(|τ(x, y)|, |τ(x′, y′)|). Indeed if τ(x, y) < 0
then the same applies to τh(x, y).

If we want to make Mx and Mx′ vary in the opposite direction we may consider
the relation x′ → x in place of x→ x′. Thus x↔ x′ allows to make small variations
of Mx and Mx′ in the one or the other direction. If there is a bridge x′′ ∈ X(τ)
over x and x′ we have exactly the same freedom as if x ↔ x′. The next lemma is
a tool for finding bridges between points when τ ∈ V.
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Lemma 9.8. Let τ be a finitely supported element of V and (x, y) ∈ X(τ)× Y (τ)
such that τ(x, y) > 0. Let G ⊆ X(τ) be the subset of points x′ such that

• there exists a bridge over x and x′,
• τ(x′, y) < 0.

Then

τ(x, y) +
∑
x′∈G

τ(x′, y) ≤ 0.

Proof. Condition (1) implies that if every x′ ∈ X(τ) satisfying τ(x′, y) < 0 is
connected with x by a bridge, we are done. Conversely assume that there exists x′ ∈
X(τ) such that τ(x′, y) < 0 and there is no bridge between x and x′. Then for any
x0 ∈ X(τ) the measure |τ | restricted to {x0}×R is concentrated on {x0}× [y,+∞[
or {x0}×]−∞, y] (if not it would be a bridge between x and x′). Let X1 tX2 be
the partition of X(τ) induced by this remark and τ i the restriction of τ to Xi ×R
for i = 1, 2. Without loss of generality we can assume x ∈ X1. Let us prove that τ1

and τ2 are in V. Actually they coincide with τ on vertical lines so that they satisfy
Conditions (2) and (3). The total mass of τ on the horizontal lines that are not
equal to R× {y} is zero as well. Thus, as τ i(R2) = 0, we obtain τ i(Xi × {y}) = 0
for i = 1, 2. This yields Condition (1) for τ1 and τ2. Hence these measures are in
V.

As τ1 ∈ V, applying Condition (1) we obtain that any x′1 ∈ X1 such that
τ(x′1, y) < 0 is connected with x by a bridge. Indeed with Condition (2) and the
definition of X1, we know that there are y′ and y′′ in ]y,+∞[ such that τ(x, y′) 6= 0
and τ(x′1, y

′′) 6= 0. Hence we have x ↔ x′1. So we can apply the first remark to
τ1 in place of τ . Indeed, G is the set of points of x1 ∈ X(τ1) such that τ(x1, y) =
τ1(x1, y) < 0. �

Lemma 9.9. Let τ be a finitely supported positive variation and consider spt(τ+) =
{p1, . . . , pd} ⊆ R × R. There exists ε > 0 such that if qk ∈ R2 has the same first
coordinate as pk and |pk − qk| < ε for every k ∈ {1, . . . , d}, then there exists a
sequence of positive variations (τk)dk=1 such that |τk| has finite support and τ+

k has
support {q1, . . . , qk, pk+1, . . . , pd}.

Proof. Let ε be a positive real number. Let us denote by X the support of
projx#(|τk|) for some k ∈ {1, . . . , d} (which does not depend on k). We explain
how to build τk from τk−1. Roughly speaking we are moving pk = (a, b) to a posi-
tion qk = (a, b′), where |b′ − b| < ε. Doing this, we have to take care to stay in V.
The conditional measure τk|x can easily be forced to preserve mass zero (Condition
(2)) during this operation but there are two difficulties: for each y the conditional
measures τk|y must have mass zero (Condition (1)). The second problem is that
for each x ∈ X the positive and the negative part of τk|x must have the same mean
(Condition (3)).

Let us go into details. We define τk from τk−1 in two steps: the first step is a
vertical translation. Applying Lemma 9.8 to pk = (a, b) we obtain a measure m
concentrated on X(τ)× {b} that satisfies the following conditions:

• m(R2) = 0,
• m+ is concentrated on the point pk = (a, b) and m(a, b) = τk−1(a, b),
• m− is concentrated on a set G×{b} such that any x ∈ G is connected with
a by a bridge and m− ≤ τ−k−1.

Let us denote m by ζ ⊗ δb. We replace τk−1 by τ ′k−1 = τk−1 + ζ ⊗ (δb′ − δb). Doing
this we preserve Conditions (1) and (2), i.e. the measure is still in V ′, but Condition
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(3) is possibly violated. Recall that ζ has mass zero. It follows that

Ma(τ ′k−1) +
∑
x∈G

Mx(τ ′k−1) = 0.

Using the bridges between a and the elements of G (these bridges are available for
τ ′k−1 as they were for τk−1 assuming that ε is sufficiently small) we can modify the
measure and make Ma and Mx for x ∈ G equal to 0. Call τk the result of this
procedure. Observe that if the variations are sufficiently small then the points of
positive mass are exactly q1, . . . , qk, pk+1, . . . , pd as we want. As in Lemma 9.5, we
also obtain that the variations (σk)dk=1 are positive provided that ε > 0 is sufficiently
small. �

We can now prove Proposition 9.6. Let σ ∈ V of finite support as in the proof
of Theorem 9.4. Observe that σ can be written as a sum

d∑
k=1

ζk ⊗ δyk

where for k ∈ {1, . . . , d} the signed measure ζk has its positive part concentrated
in one point. Given k, let ωk be a probability measure on R with expectation yk
(the same as δyk). We consider

d∑
k=1

ζk ⊗ ωk

and easily convince ourselves that this measure is an element of V. We will apply
this transformation not directly to σ but to a measure σd ∈ V(σ, ε), that we build
in the following paragraph.

The proof of the proposition proceeds as follows. Consider the family of points
(r1, . . . , rd) of the support of σ+ and pick ε as in Lemma 9.5. For each point
rk = (a, b) we consider a rational semi-open interval Bk 3 b of diameter smaller
than ε. Using Corollary 9.3 we obtain a family (Ai)1≤i≤n and we can assume that
these sets are included in [xi−ε, xi+ε]. We fix a point (t1, . . . , tn) of A1×· · ·×An.
For each k ∈ {1, . . . , d} we can write rk in the form (xi, b). We have πti(Bk) > 0.
Let now pk = (ti, b) and qk = (ti, ỹ) where ỹ = 1

πti (Bk)

∫
Bk
y dπti(y). Apply Lemma

9.9 to the measure σ0 ∈ V obtained from σ by translating horizontally the mass
concentrated on the line {xi} × R: the measure σ|xi equals precisely σ0|ti . The
other parameters (p1, . . . , pd) and (q1, . . . , qd) have just been constructed. Applying
Lemma 9.9 we obtain a measure σd ∈ V(σ, ε) concentrated on {t1, . . . , tn} ×R and
sptσ+

d = {q1, . . . , qd}. Next we perform the transformation explained above where
each ωk has the form 1

πti (Bk)πti |Bk for some (i, k). The measure σd we obtain is in

V(σ, ε) but it may not satisfy the condition σd
+ ≤

∑n
i=1 µ(Ai)δti ⊗ πti . However

this inequality does hold for wσd
+ ∈ CV(σ, ε) if w is a sufficiently small positive

constant.
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