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Abstract

To quantify the difference of distinct stochastic processes it is not sufficient to consider the distance
of their states and corresponding probabilities. Instead, the information, which evolves and accumulates
over time and which is mathematically encoded by filtrations, has to be accounted for as well. The
nested distance, also known as bicausal Wasserstein distance, recognizes this component and involves
the filtration properly. This distance is of emerging importance due to its applications in stochastic
analysis, stochastic programming, mathematical economics and other disciplines.

This paper investigates the basic metric and topological properties of the nested distance on the space
of discrete-time processes. In particular we prove that the nested distance generates a Polish topology,
although the genuine space is not complete. Moreover we identify its completion to be the space of
nested distributions, a space of generalized stochastic processes.
c⃝ 2020 Published by Elsevier B.V.

MSC: 60G05; 60G99; 90C15

Keywords: Optimal transport; Nested distance; Martingales; Causal Wasserstein distance; Information topology

1. Introduction

A real-valued stochastic process X = (X t )N
t=1 is fully described by its law LX , which itself

is a probability measure on RN . It is a basic and fundamental question in applications when
two processes should be considered as close. Simply endowing P(RN ), the set of probability
measures on RN , with the weak topology or Wasserstein distance (say) is not adequate as the
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evolution over consecutive time steps t = 1, . . . , N matters. Various groups of researches
from different areas ([2] — stochastic analysis; [16] — mathematical economics; [23] –
optimization; [17] — logic; [11] — mathematical finance) have introduced different ‘adapted’
refinements of the usual weak topology. Remarkably all of these concepts lead to the same
topology in the present finite discrete time setup, see [7].

It is the main goal of this paper to recognize the basic topological (and metric, resp.)
properties of the space P(RN ) when equipped with this prevailing and common adapted
topology.

1.1. Nested distance and completeness

The nested distance dnd has been introduced by Pflug and Pichler [21,22]. It can be seen
as a modification of the celebrated Wasserstein distance: in contrast to this classical distance,
the nested distance respects the underlying filtrations, conditioned on the time elapsed, see
(3.1). With this additional feature the nested distance is well suited for a number of problems
in stochastic optimization, stochastic control, and mathematical finance, where decisions are
subject to the time elapsed.

We demonstrate that (P(RN ), dnd) is a separable metric space that is necessarily incomplete
if N > 1, see Theorem 4.6 and Example 4.1. As a first central result, Theorem 4.9 identifies
its completion as the space of nested distributions. Of course, the completion of a metric space
is unique (up to isometry), but the space of nested distributions is constructed explicitly and
allows for natural interpretations.

1.2. (P(RN ), dnd) is a Polish space

Although not complete with respect to the nested distance dnd, our second main result
(Theorem 5.6) demonstrates that P(RN ), equipped with the topology generated by the nested
distance, is nonetheless Polish. That is, there exists a metric d such that (P(RN ), d) is a
separable complete metric space and d induces the same topology τ nd as dnd.

Importantly we do not suggest to replace dnd with the complete metric; in fact dnd is much
more natural and handy in applications. Rather it is the pure fact that (P(RN ), τ nd) is Polish
which has significant consequences. E.g., the Borel sets of (P(RN ), dnd) are the usual Borel sets
of P(RN ) equipped with Wasserstein distance or weak convergence, see Remark 5.7. It implies
that familiar techniques for establishing measurability can be applied as usual, e.g. allowing
to apply common measurable selection theorems which are often crucial in optimization . In
short, Theorem 5.6 guarantees that one may work on (P(RN ), dnd) in the same carefree way
as often accepted in optimization, or even in analysis and probability.

1.3. Extreme points

For computational reasons, any simplification of a measure or a law of a stochastic process is
of crucial importance in stochastic optimization and applications. Brenier maps, e.g., provide
concrete transformations of measures which may be used to simplify a given measure. One
reason why deterministic maps are useful in applications is that they are dense in the set of all
couplings with a given initial marginal and, more importantly, they coincide with the extreme
point of such sets of couplings. Section 6 establishes the analogue result when filtrations are
considered: deterministic and adapted transformations of an initial measure correspond exactly
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to the extreme points of the set of all couplings preserving causality (i.e., the filtrations) and
having the same initial measure. This is also relevant for the nested distance, as such sets of
couplings constitute building blocks of this transport-based metric.

1.4. Relation to the literature

Among the first authors to consider the role of information in defining a process topology
are [2], [17], [16] and [21]. Aldous was concerned with a topology granting the stability of
optimal stopping problems and the semimartingale decomposition, Hellwig was interested in
the stability of games (see also [8]) and Pflug in the stability of stochastic programs. For the
latter purpose, Pflug and Pichler [21–24] introduce the nested distance, borrowing from an
analogy with optimal transport and Wasserstein distances.2 The nested distance is a particular
case of a (bi)causal transport problem, a concept introduced by [19] and further developed
in [1,5]. In fact, the latter articles are in the wider tradition of constrained transport problems
and in particular are related to martingale optimal transport (cf. [9,10,14,15,20] among many
others). Independently, [11] have considered a continuous-time analogue to the nested distance
for the laws of diffusion processes; see also [6] for the case of continuous semimartingale laws
and applications to stability in mathematical finance.

Risk averse optimal stopping/stochastic optimization problems and their numerics are
considered from a nested distance perspective in [26,27]. The article [7] establishes that the
weak nested topology is the coarsest topology that guarantees continuity of optimal stopping
problems. Notably we believe that these results represent only a prelude on the interplay
between nested distance and optimal stopping/stochastic control which appears as a promising
field for future research.

Outline. Section 2 introduces the notation used throughout the paper and describes the
mathematical setting. Section 3 discusses elementary properties of the nested distance, while
Section 4 is concerned with its metric properties. Next, in Section 5, we introduce the weak
nested topology and establish its Polish character. Section 6 discusses extreme points of
important sets associated with the nested distance, and Section 7 concludes with a brief
summary.

2. Notation and mathematical setup

The ambient set throughout this article is RN , which we consider as a filtered space endowed
with the canonical (i.e., coordinate) filtration

(
Ft
)N

t=1. More precisely, Ft is the smallest σ -
algebra on RN such that the projection RN

∋ x ↦→ (x1, . . . , xt ) ∈ Rt onto the first t components
is Borel-measurable.

We endow RN with the ℓp-type metric

d(x, y) := dp(x, y) :=
p

√ N∑
t=1

d(xi , yi )p, p ∈ [1, ∞), (2.1)

where d is some base metric on R compatible with the usual topology. We are particularly
interested in the cases where d is the usual distance or is a compatible bounded metric on R.
Throughout this paper we fix d , p and d as described.

2 For classical optimal transport and Wasserstein distances we refer to the monographs [3,28,29,31–33].



5578 J.B. Veraguas, M. Beiglböck, M. Eder et al. / Stochastic Processes and their Applications 130 (2020) 5575–5591

Remark 2.1. We make the important remark that, mutatis mutandis, our results in Sections 3,
4 and 5 hold true when replacing RN by SN , where S is an abstract Polish space. The reason to
work with processes taking values in R is just to simplify notation and avoid confusion when
referring to various Polish spaces of probability measures.

The pushforward of a measure γ by a map M is denoted by M∗γ := γ ◦ M−1. For a
product of sets X × Y we denote by p1 (p2, resp.) the projection onto the first (second,
resp.) coordinate. We denote by γ x , γ y the regular kernels of a measure γ on X × Y
with respect to its first and second coordinate, respectively, obtained by disintegration so
that γ (A × B) =

∫
A γ x1 (B) γ 1

(
dx1

)
with γ 1(A) := p1

∗
γ (A) = γ (A × Y) (cf. [4]). The

notation extends analogously to products of more than two spaces. We convene that for a
probability measure η on RN , ηx1,...,xt denotes the one-dimensional measure on xt+1 obtained
by disintegration of η with respect to (x1, . . . , xt ). Finally, if Z is a topological space, we
denote by P(Z) the set of Borel probability measures, C(Z) the set of real-valued continuous
functions, and supp(m) refers to the topological support of the measure m ∈ P(Z).

A statement like “for η-a.e. x1, . . . , xt ” is meant to denote “almost-everywhere” with respect
to the projection of η onto the coordinates (x1, . . . , xt ). On RN

×RN we denote by (x1, . . . , xN )
the first half and by (y1, . . . , yN ) the second half of the coordinates. Similarly, we use the
convention that for a probability measure γ on RN

× RN , γ x1,...,xt ,y1,...,yt denotes the two-
dimensional measure on (xt+1, yt+1) given by regular disintegration of γ with respect to
(x1, . . . , xt , y1, . . . , yt ), so a statement like “for γ -a.e. x1, . . . , xt , y1, . . . , yt ” is meant to denote
“almost-everywhere” with respect to the projection of γ onto x1, . . . , xt , y1, . . . , yt .

The probability measures on the product space RN
×RN with marginals µ and ν constitute

the possible transport plans or couplings between the given marginals. We denote this set by

Π (µ, ν) =
{
γ ∈ P(RN

× RN ) : γ has marginals µ and ν
}
.

We often consider processes X = (X t )N
t=1, Y = (Yt )N

t=1 defined on some probability space. Each
pair (X, Y ) is a coupling or – abusing notation slightly – a transport plan upon identifying it
with its law. For the sake of simplicity, being measurable with respect to a sigma algebra
means to be equal to a correspondingly measurable function modulo a null set with respect to
the measure relevant in the given context.

Definition 2.2 (Causality). A transport plan γ ∈ Π (µ, ν) ⊂ P(RN
× RN ) is called bicausal

(between µ and ν) if the mappings

RN
∋ x ↦→ γ x (B) and RN

∋ y ↦→ γ y(B)

are Ft -measurable for any B ∈ Ft ⊂ RN and t < N . The collection of all bicausal plans is

Πbc(µ, ν).

The product measure µ ⊗ ν is bi-causal, so Πbc(µ, ν) is non-empty. In terms of stochastic
processes, a coupling is bicausal if

γ
(
(Y1, . . . , Yt ) ∈ Bt | X1, . . . , X N

)
= γ

(
(Y1, . . . , Yt ) ∈ Bt | X1, . . . X t

)
and

γ
(
(X1, . . . , X t ) ∈ Bt | Y1, . . . , YN

)
= γ

(
(X1, . . . , X t ) ∈ Bt | Y1, . . . Yt

)
for all t = 1, . . . , N and Bt ⊂ Rt Borel.

Testing whether a coupling or transport plan is bicausal reduces to a property of its transition
kernel. Specifically we have the following characterization (see, e.g., [5])
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Proposition 2.3 (Characterization of Bicausality Via Transition Kernels). The following are
equivalent:

(i) γ is a bicausal transport plan on RN
× RN between the measures µ and ν.

(ii) The successive regular kernels γ̄ of the decomposition

γ (dx1, . . . , dxN , dy1, . . . , dyN )

= γ̄ (dx1, dy1) γ x1,y1 (dx2, dy2) . . . γ x1,...,xN−1,y1,...,yN−1 (dxN , dyN ) (2.2)

satisfy

γ̄ ∈ Π (p1
∗
µ, p1

∗
ν)

and further, for t < N and γ -almost all x1, . . . , xt , y1, . . . , yt ,

p1
∗
γ x1,...,xt ,y1,...,yt = µx1,...,xt and p2

∗
γ x1,...,xt ,y1,...,yt = ν y1,...,yt . (2.3)

3. The nested distance

Following [21–23] we consider for µ, ν as above the p-nested distance, or simply nested
distance, defined by

dnd
p (µ, ν) := inf

γ∈Πbc(µ,ν)

(∫∫
d p dγ

)1/p

= inf
γ∈Πbc(µ,ν)

(∫∫ N∑
t=1

d(xt , yt )p dγ

)1/p

. (3.1)

In direct analogy with the classical p-Wasserstein distance it defines a metric on the space

P p(RN ) := {µ ∈ P(RN ) :
∫

d(x, x0)p µ(dx) < ∞ for some x0}.

As noted in [25], the nested distance (3.1) is best suited to separate µ from ν if their information
structure differs. In particular, the authors show that empirical measures µ

emp
n of a multivariate

measure µ with density never converge in nested distance (even though they do converge in
Wasserstein distance); the essential point here is that each empirical measure µ

emp
n is roughly

a tree with non-overlapping branches (commonly a fan) and therefore deterministic as soon as
the first component is observed. From an information perspective, µ

emp
n is radically different

from µ. Notably, this is a key property of the nested distance and this is the essential distinctive
characteristic and strength in comparison with the Wasserstein distance.

3.1. Recursive computation

A useful comment at this point is that the nested distance can be stated and computed
recursively as for Bellman equations: starting with V p

N := 0 define

V p
t (x1, . . . , xt , y1, . . . , yt ) := (3.2)

inf
γ t+1∈Π (µx1,...,xt ,ν y1,...,yt )

∫∫ (
V p

t+1(x1, . . . , xt+1, y1, . . . , yt+1)
+ d(xt+1, yt+1)p

)
γ t+1(dxt+1, dyt+1),

so that the nested distance is finally obtained by V p
0 , i.e.,

dnd
p (µ, ν)p

= inf
γ 1∈Π (p1

∗µ,p1
∗ν)

∫∫ (
V p

1 (x1, y1) + d(x1, y1)p) γ 1(dx1, dy1). (3.3)
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3.2. Comparison with weak topology

The Wasserstein distance metrizes the weak topology on probability measures with suitably
integrable moments. We recall that the weak topology (also called weak* or vague topology)
is characterized by integration on bounded and continuous functions. It is thus natural to ask if
there is a class of functions which characterizes the topology generated by the nested distance.

Proposition 3.1. Let N ≥ 2. There does not exist a family F of functions on RN which
determines convergence of a sequence (µn)∞n=1 towards µ ∈ P p with respect to the nested
distance dnd

p . I.e., there is no family F so that

dnd
p (µn, µ) → 0 ⇐⇒

∫
f dµn →

∫
f dµ for all f ∈ F.

In fact, such a convergence determining family does not even exist if the support of the measures
is restricted to a bounded region [−K , K ]N , K > 0.

Proof. Assume that such a family exists. Without loss of generality we can further assume
that the integral of f ∈ F against all measures in P p is well-defined. By considering δ(xn

1 ,...,xn
N ),

which converge in nested distance to δ(x1,...,xN ) if their supports do in RN , we conclude that
F ⊂ C(RN ). Set

µϵ :=
1
2

[
δ(ϵ,...,ϵ,1) + δ(−ϵ,...,−ϵ,−1)

]
and µ :=

1
2

[
δ(0,...,0,1) + δ(0,...,0,−1)

]
.

By continuity we find that∫
f d(µϵ − µ) → 0 as ϵ → 0 (3.4)

for every f ∈ F. Taking d to be the usual distance on R we find dnd
p (µϵ, µ) ≥ 21−1/p. Indeed,

we have from (3.2) that V p
t ≥

1
2 2p for all t = 1, . . . , N and from (3.3) that dnd

p (µ, ν) ≥ 21−1/p.
In general we find that dnd

p (µϵ, µ) ≥ 1 and this contradicts (3.4). The initial assumption thus
is false and F cannot determine convergence in nested distance. □

Remark 3.2 (Separating evaluations). The nested distance was initially introduced with
the intention to compare stochastic programs and the question addressed by the preceding
Proposition 3.1 was initially posed by Pflug. Indeed, Corollary 2 in [22] demonstrates that
there are stochastic optimization programs with differing objective values whenever the nested
distance differs.

The separating objects are thus entire stochastic programs which, in view of the preceding
Proposition 3.1, cannot be replaced by a set of functions on RN . The proposition further
emphasizes the intrinsic relation between stochastic programs, the nested distance and the role
of information.

We will see in Example 4.1 in the next section that dnd
p is not complete. This further

demonstrates how differing the nested distance and the usual Wasserstein distance are.

Remark 3.3 (Equivalence with Respect to the Genuine Distance). We emphasize that the
metric results in this and the following section and the topological results in Section 5 are
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also applicable if we based the p-nested distance on an ℓq -type product norm in R. Indeed,
for each q ∈ [1, ∞) we easily find c, C > 0 such that

c d(x, y) ≤ dq (x, y) ≤ C d(x, y);

see (2.1) for notation. In particular, if we base the p-nested distance (3.1) in terms of dq instead
of d = dp, we obtain a strongly equivalent metric on P p (with the same constants c and C).
By the form of the metric d , we obtained a convenient and amenable expression for dnd

p , as
seen on the right hand side of (3.1), which we would not have under dq for q ̸= p. For these
reasons, we may and will continue to work with dnd

p defined in terms of d = dp keeping in
mind that the forthcoming results would generalize trivially.

4. Completeness and completion

The space P p(RN ), endowed with the p-Wasserstein distance, is complete. This is not the
case for the nested distance, as the following example reveals.

Example 4.1 (The Nested Distance is Not Complete). We observe that dnd
p is not a complete

metric as soon as the number of time steps N is greater than or equal than 2. For the sake of the
argument we take N = 2, d the usual distance on R and consider µn = 1/2

(
δ(1/n,1)+δ(−1/n,−1)

)
.

One verifies that dnd
p (µn, µm) ≤ |1/n − 1/m|, so the sequence is Cauchy. The only possible

limit of this sequence is the limit based on the Wasserstein distance, that is µ = 1/2
(
δ(0,1) +

δ(0,−1)
)
. But in nested distance we have dnd

p (µn, µ) = (2p−1
+ n−p)1/p > 1, in particular this

sequence does not tend to zero and we conclude that the nested distance is not complete for
N > 1.

The distinguishing point is that µ is a real tree with coinciding states at the first stage,
whereas the µn’s are not. The nested distance is designed to capture this distinction, which is
ignored by the Wasserstein distance.

To identify the completion of P p(RN ) with respect to the p-nested distance we consider the
nested distributions introduced in [21].

Definition 4.2 (Nested Distribution). Consider the sequence of metric spaces

RN :N := (R, dN :N ) equipped with the distance dN :N := d = [d p]1/p,

RN−1:N :=
(
R × P p(RN :N ), dN−1:N

)
with dN−1:N :=

[
d p

+ W p
dN :N ,p

]1/p
,

...

R1:N :=
(
R × P p(R2:N ), d1:N

)
with d1:N :=

[
d p

+ W p
d2:N ,p

]1/p
,

where at each stage t , the space P p(Rt :N ) is endowed with the p-Wasserstein distance with
respect to the metric dt :N on Rt :N , which we denote Wdt :N ,p. The set of nested distributions (of
depth N ) with pth moment is defined as P p(R1:N ).

Each of the spaces Rt :N (t = 1, . . . N ) is a Polish space. Indeed, a complete metric is given
explicitly and the spaces are separable since P(R) is complete and separable whenever (R, ρ)
is complete and separable (cf. [12]). We endow P p(R1:N ) with the complete metric Wd1:N ,p.
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Example 4.3. When N = 2, we have that R1:2 = R × P p(R) and for P, Q ∈ P p(R1:2) the
distance is

Wd1:2,p(P, Q) =

{
inf

Γ∈Π (P,Q)

∫∫ (
d(x, y)p

+ W p
p (µ, ν)

)
Γ (dx, dµ, dy, dν)

}1/p

(4.1)

with Wp the classical p-Wasserstein distance for measures on the line and with respect to the
metric d . The formulation (4.1) notably exactly corresponds to the recursive descriptions (3.2)
and (3.3).

4.1. Embedding

We demonstrate that the nested distributions of depth N introduced in Definition 4.2 extend
the notion of probability measures in RN in a metrically meaningful way. Let us introduce
the following function, already present in [21], which associates µ ∈ P p(RN ) with the nested
distribution I [µ] ∈ P p(R1:N ) given by

I [µ] := L
(

X1 , LX1
(

X2 , . . . , LX1:N−2
(
X N−1 , LX1:N−1 (X N )

)))
, (4.2)

where (X1, . . . , X N ) is a vector with law µ. We used the shorthand LX1:k for the conditional
law given (X1, . . . , Xk) (and missing superscripts indicate unconditional law).

Remark 4.4. To provide an example, LX1:N−1 (X N ) is the law of X N given the past up to time
N −1, then LX1:N−2

(
X N−1 , LX1:N−1 (X N )

)
is the joint law of LX1:N−1 (X N ) and X N−1 given the

past up to time N − 2. The nested distribution I [µ] is obtained by repeating this procedure
backwards in time.

Remark 4.5 (Motivation and Relation to Stochastic Optimization). The embedding (4.2)
naturally appears in stochastic optimization. Indeed, suppose that a stochastic process X1:t

has already materialized up to time t , then the remaining distribution follows the conditional
measure LX1:t . The embedding I [µ] in (4.2) provides the holistic perspective for the entire
time horizon from t = 1 up to t = N .

Theorem 4.6 (Isometric Embedding). Let d = dp. Then the classical Wasserstein distance
of nested distributions extends the nested distance of classical distributions. More precisely,
the mapping I defined in (4.2) embeds the metric space (P p(RN ), dnd

p ) defined via (3.1)
isometrically into the separable complete metric space (P p(R1:N ), Wd1:N ,p). In particular
(P p(RN ), dnd

p ) is a separable metric space.

Proof. It is enough to consider N = 2. For a probability measure µ on R2 consider its
disintegration measure

µ(A × B) =
∫

A µx1 (B) p1
∗
µ(dx1),

where p1 is the projection onto the first coordinate. An embedding of µ in the space P
(
R ×

P(R)
)

is given by the probability measure generated uniquely by (here A, B are Borel sets of
R and P(R) respectively)

I [µ](A × B) := µ
(

A ∩ T −1
µ (B)

)
= p1

∗
µ
(

A ∩ T −1
µ (B)

)
,



J.B. Veraguas, M. Beiglböck, M. Eder et al. / Stochastic Processes and their Applications 130 (2020) 5575–5591 5583

where Tµ is the Borel measurable function

Tµ : R → P(R)

x1 ↦→ µx1 (dx2).

In this way we find that I [µ] is the µ-law of x1 ↦→ (x1, µx1 (dx2)). For µ ∈ P p(R2) we also
have ∫ {

d(x, 0)p
+ W p

p (ν, δ0)
}

I [µ](dx, dν) =

∫ {
d(x1, 0)p

+ W p
p (µx1 , δ0)

}
p1

∗
µ(dx1)

=

∫ {
d(x1, 0)p

+ d(x2, 0)p} µ(dx1, dx2) < ∞

and thus I [µ] ∈ P p(R1:2).
We now observe that the embedding µ ↦→ I [µ] is actually an isometry between (P p(RN ),

dnd
p ) and (P p(R1:N ), Wd1:N ,p). To this end, first note that every coupling between I [µ] and I [ν]

(i.e., every Γ ∈ Π (I [µ], I [ν])) is of the form γ̄ (dx1, dy1) δTµ(x1)(dM) δTν (y1)(dN ) for some
γ̄ ∈ Π (p1

∗
µ, p1

∗
ν) and vice-versa. Hence from (4.1) and (3.2) we have that

Wd1:2,p
(
I [µ], I [ν]

)p
= inf

γ̄∈Π (p1
∗µ,p1

∗ν)

∫ {
d(x1, y1)p

+ W p
p (µx1 , ν y1 )

}
γ̄ (dx1, dy1)

= dnd
p (µ, ν)p, (4.3)

and hence the isometry by (3.3). Finally, since the image of I is a subspace of the separable
metric space (P p(R1:N ), Wd1:N ,p), it is separable itself. We conclude that (P p(RN ), dnd

p ) is
separable too. □

Remark 4.7 (Surjectivity). From the preceding arguments follows that the embedding I in (4.2)
is onto if and only if N = 1.

Remark 4.8 (Duality). Returning to Example 4.3 and applying (4.3) we find for µ, ν ∈ P1(R2)
that

dnd
1 (µ, ν) = Wd1:2,1

(
I [µ], I [ν]

)
= sup

{∫
F(x, µx ) p1

∗
µ(dx) −

∫
F(x, νx ) p1

∗
ν(dx)

}
,

where the supremum is among all (bounded) functions F : R × P1(R) → R with Lipschitz
constant at most one (with respect to the metric d + W1). Indeed, this is a consequence of
the Kantorovich–Rubinstein Theorem ([32, Theorem 1.14]) for the 1-Wasserstein metric on
P1(R × P1(R)). Similar results apply for µ, ν ∈ P1(RN ) by using R1:N instead.

4.2. The completion

In what follows we identify the space of nested distributions as the completion of the
space (P p(RN ), dnd

p ). This result thus provides the natural link between these two separate
mathematical objects.

Theorem 4.9 (Completion). The space
(
P p(R1:N ), Wd1:N ,p

)
of nested distributions is the

completion of
(
P p(RN ), dnd

p

)
.
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Proof. We provide an isometry J from (P p(RN ), dnd
p ) into (P p(R1:N ), Wd1:N ,p) which has a

dense range. We shall prove that J := I defined in (4.2) does this task. This can be done for
arbitrary N at notational costs, but already the case N = 2 is representative for the general
situation. We thus assume N = 2 in what follows.

The set of convex combinations of Dirac measures is dense in P p(R1:N ) with respect to the
metric Wd1:N ,p. This is actually true for any Wasserstein metric (cf. [12]) and thus particularly
for Wd1:2,p, which in itself is a Wasserstein metric (see also Example 4.3 for concreteness). So
it is sufficient to prove that convex combinations of Dirac measures lie in the closure of the
range of I .

Let A := (a1, . . . , ak) be a k-tuple of points in R and m1, . . . , mk be measures on the line
with finite pth moment. Given weighs {λi }

k
i=1 we are interested in the measure

P(dx, dm) =

k∑
i=1

λi δ(ai ,mi )(dx, dm)

over R1:2. Now take any sequence An
:= {an

1 , . . . , an
k } such that componentwise An

→ A as
n → ∞ and, for each n fixed, all coordinates of An are distinct. We now define µn ∈ P p(R2)
as the measure whose first marginal is

∑k
i=1 λ j δan

j
and such that µn(dx2 | x1 = an

j ) = m j (dx2).
It is elementary, and this is the main point of having made the an

j ’s distinct for a fixed n, that

I [µn] =

∑
λ j δ(an

j ,m j ).

Consequently we get that I [µn] → P with respect to Wd1:2,p when n → ∞, as desired. □

5. The weak nested topology

It was demonstrated in the previous section that(
P p(RN ), dnd

p

)
(5.1)

is not complete (Example 4.1); its completion was identified to be the space of nested
distributions (Theorem 4.9).

At this point recall that the interval (0, 1) is not complete as a subspace of [0, 1], if equipped
with the usual distance. Nonetheless the open interval (0, 1) is Polish, as it is homeomorphic
to the real line R.

The situation for the space (5.1) is similar. In what follows we shall demonstrate that the
topology of the space (5.1) is Polish, although the genuine distance dnd

p does not reveal this
property.

5.1. The weak nested topology

We introduce the space P(R1:N ) just as we did for P p(R1:N ), but now denoting Rt−1:N :=

R × P(Rt :N ) at each step of the recursive definition and equipping Rt−1:N with the product
topology of Euclidean distance in the first component and the usual weak topology in the
second one. Doing so, we conclude that P(R1:N ) is a Polish space of measures on the likewise
Polish space R1:N . Inspired by the isometric embedding in Theorem 4.6, which we denoted I
in (4.2), a mapping I : P(RN ) → P(R1:N ) can be obtained by direct generalization.

Definition 5.1 (Weakly Nested Convergence). We say that a net {µα}α in P(RN ) converges
weakly nested to µ ∈ P(RN ), if and only if I [µα] converges weakly in P(R1:N ) to I [µ]. We
call the corresponding topology weak nested topology.
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By definition, the weak nested topology is the initial topology for the embedding map I .

Remark 5.2 (Cf. Remark 7.13(iii) in [32]). Suppose that X is Polish and that ρ is a compatible
bounded complete metric. Then the corresponding p-Wasserstein topology is precisely the
weak topology. Likewise, we obtain that the weak nested topology is generated by the nested
distance dnd

p as soon as we choose d as a compatible bounded metric for the usual topology
on R. For instance, we may choose the metric d(a, b) = |a − b| ∧ 1, i.e.,

d(x, y) =

N∑
t=1

|xt − yt | ∧ 1.

In this way we obtain that the weak nested topology coincides with a p-nested topology of the
form we have already treated.

Although there are more direct ways to prove it, the previous remark implies the following:

Lemma 5.3. The weak nested topology is separable and metrizable.

5.2. The weak nested topology is Polish

We will establish that the weak nested topology (and actually the nested distance topologies)
is Polish.

We recall that a set of a topological space is a Gδ if it is the countable intersection of open
sets. Recall also that every separable metrizable space is homeomorphic to a subspace of the
Hilbert cube [0, 1]N, the latter equipped with the product topology; see [18, Theorem 4.14]. A
compatible metric on the Hilbert cube is

D
(
(xn), (yn)

)
:=

∑
n=1

2−n
|xn − yn|.

Lemma 5.4. Suppose that m ∈ P(X ×Y ) with X Polish and (Y, ρ) a separable metric space.
Let ι : Y → [0, 1]N denote the embedding of Y into the Hilbert cube. Then the following are
equivalent:

(i) m
(
Graph( f )

)
= 1 for f : X → Y Borel;

(ii) inf
{∫

X×Y ρ
(

f (x), y
)

m(dx, dy) : f : X → Y Borel
}

= 0;
(iii) inf

{∫
X×Y D

(
F(x), ι(y)

)
m(dx, dy) : F : X → [0, 1]N Borel

}
= 0;

(iv) inf
{∫

X×Y D
(
F(x), ι(y)

)
m(dx, dy) : F : X → [0, 1]N continuous

}
= 0.

Proof. Clearly (i) H⇒ (ii) H⇒ (iii). Denote µ the first marginal of m. Given F : X → [0, 1]N

Borel, F(x) = (Fn(x))n , we can approximate it in L1(X, µ; [0, 1]N) by continuous functions.
This follows since coordinate-wise we can approximate Fn ∈ L1(X, µ; [0, 1]) by continuous
functions. So also (iii) H⇒ (iv).

To establish (iv) H⇒ (i) let {Fn} be a sequence of continuous functions approximating the
infimum in (iv) and denote Gn(x) :=

∫
D
(
Fn(x), ι(y)

)
mx (dy) so Gn is Borel, non-negative

and ∥Gn∥L1(X,µ;R) → 0 by definition. It follows that Gn → 0 in L1(X, µ;R) so up to a
subsequence Gn(x) → 0 for µ-a.e. x . From now on we work on such a full measure set, on
which we can further assume that mx

∈ P(Y ). Assume that we had that |supp(mx )| > 1. Then
there would exist disjoint compact sets K 1

x , K 2
x ⊂ Y with Mx = min{mx (K 1

x ), mx (K 2
x )} > 0.
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Obviously ι(K 1
x ), ι(K 2

x ) are also disjoint compact sets, so Dx := D
(
ι(K 1

x ), ι(K 2
x )
)

> 0. By the
triangle inequality, max{D

(
Fn(x), ι(K 1

x )
)
, D
(
Fn(x), ι(K 2

x )
)
} ≥ Dx/2, thus Gn(x) ≥ Mx Dx/2,

yielding a contradiction. We conclude that µ-a.s. |supp(mx )| = 1 and therefore we must have
ι
(

f (x)
)

:= limn fn(x) exists, for some f : X → Y Borel. Thus mx (dy) = δ f (x)(dy), µ − a.s.,
which proves (i). □

Observe that it is crucial for point (iv) in Lemma 5.4 to embed Y in the Hilbert cube.
Indeed, if X is connected and Y discrete, then the only continuous functions f : X → Y are
the constants. The following result is interesting in its own:

Proposition 5.5. Let X and Y be Polish spaces. Then

S := {m ∈ P(X × Y ) : m
(
Graph( f )

)
= 1, some Borel f : X → Y },

with the relative topology inherited from P(X × Y ), is Polish too.

Proof. Let ρ be a compatible metric for Y , which we may assume bounded. By Lemma 5.4
we have

S =

⋂
n∈N

⋃
F : X→[0,1]N,
F continuous

{
m ∈ P(X × Y ) :

∫
D
(
F(x), ι(y)

)
m(dx, dy) <

1
n

}
, (5.2)

where ι : Y → [0, 1]N is an embedding. Since (x, y) ↦→ D
(
F(x), ι(y)

)
is continuous

bounded if F is continuous, the set in curly brackets is open in the weak topology. Thus
the union of these is open too and we get that S is a Gδ subset. We conclude by employing
[18, Theorem 3.11]. □

Theorem 5.6. The weak nested topology on P(RN ) is Polish.

Proof. For N = 2 we have P(R1:2) = P(R × P(R)) and, by definition, P(R2) equipped with
the weak nested topology is homeomorphic to I [P(R2)] equipped with the relative topology
inherited from P(R1:2). We have

I [P(R2)] =
{

P ∈ P(R × P(R)) : P
(
Graph( f )

)
= 1, some Borel f : R → P(R)

}
.

To wit, if P ∈ I [P(R2)], then by definition of the embedding I we have P = (id, T )∗(p1
∗
µ)

for some µ ∈ P(R2) and T (x) = µx (see also the proof of Theorem 4.6). Taking f = T
we then get that P belongs to the right hand side above. Conversely, given P on the right
hand side, we denote by µ1 its first marginal and define µx (dy) := f (x)(dy). The measure
µ(dx, dy) := µ1(dx)µx (dy) ∈ P(R2) satisfies I [µ] = P .

By Proposition 5.5 we conclude that I [P(R2)] is Polish and then so is P(R2), as desired.
The case for general N is identical; one observes by reverse induction that if P(Rt :N ) is Polish,
then so is P(Rt−1:N ) using the above arguments. □

Remark 5.7. An immediate consequence of Theorem 5.6 is that the weak nested topology
and the weak topology on P(RN ) generate the same Borel sets. This follows from a result
of Lusin and Suslin (cf. [18, Theorem 15.1]) concerning the measurability of the inverse of a
continuous injective function between Polish spaces.

Proposition 5.5, and more specifically (5.2), permit to actually find a compatible complete
metric for the weak nested topology. The embedding into the Hilbert cube would make such
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metric look more complicated than necessary. As we argue now, there is a way to identify a
slightly less abstract compatible complete metric. For simplicity of notation we just consider
N = 2 here:

Corollary 5.8. Let ρ be a bounded metric compatible with the weak topology on P(R) and
dw a complete metric compatible with the weak topology on P(R × P(R)). Then the weak
nested topology on P(R2) is generated by the complete metric

dwnt (P, Q) := dw(I [P], I [Q]) +

∑
n∈N

2−n
∧

⏐⏐⏐⏐ 1
dw(I [P], An)

−
1

dw(I [Q], An)

⏐⏐⏐⏐ , (5.3)

where

An := {m ∈ P
(
R×P(R)

)
:

∫
ρ(F(x), y) m(dx, dy) ≥ 1/n, ∀ F : R → P(R) continuous},

with the embedding I as in (4.2) and An ,

dw(·, An) := inf
m∈An

dw(·, m),

the distance to the set

Proof. We first observe that for Lemma 5.4 and Y = P(R), we may bypass the embedding
into the Hilbert cube. One way to do this is to follow the “Tietze extension” argument in the
proof of [13, Proposition C.1], establishing the equivalence of (i) and (iv) in Lemma 5.4 where
now the continuous functions map from X = R to P(R). We can thus write (5.2), in the case
Y = P(R), without the embedding ι. Using this and following the proof of [18, Theorem 311]
we find a compatible complete metric for I [P(R2)] with the relative topology inherited from
P(R × P(R)), via

I [P(R2)] ∋ (P̄, Q̄) ↦→ dw(P̄, Q̄) +

∑
n

2−n
∧
⏐⏐dw(P̄, An)−1

− dw(Q̄, An)−1
⏐⏐ .

This is then transformed into a complete metric for P(R2) via the homeomorphism I , yielding
(5.3). □

Remark 5.9. Notice that Example 4.1 shows that the weak nested topology is strictly stronger
than the weak topology for N ≥ 2. In this case, it also shows that even if a sequence of
measures has their support contained in a common compact, there need not exist a convergent
subsequence, unlike in the weak topology.

Analogous considerations show that P p(R1:N ) with the p-nested distance is Polish as well.
Having established the completion and the Polish character of the p-nested distance, it remains
an open question, whether there is a more amenable compatible complete metric than the one
identified in Corollary 5.8.

6. Extreme points of related sets

Employing the notation as in the definition of bicausal transport plans (Definition 2.2) we
say that γ ∈ Π (µ, ν) is causal if the mappings

RN
∋ x ↦→ γ x (B)
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are Ft -measurable for any B ∈ Ft , t < N . This is a weaker condition than bicausality. The set
of such couplings is denoted

Πc(µ, ν).

We will write Π (µ, ·) meaning that the second marginal of these couplings is left unspecified,
with similar notation for the causal and bicausal case.

We are interested in determining the extreme points of the convex sets

Πc(µ, ·) and Πbc(µ, ·).

Such extreme points are expected to play an important role when one is interested in
“simplifying” the process law µ without changing its information structure. To investigate this
question let

ΠMonge
c (µ, ·) :=

{
γ = (id, T )∗µ : T : RN

→ RN is Borel and adapted
}

(6.1)

and

Π
Monge
bc (µ, ·) :=

{
γ = (id, T )∗µ : T : RN

→ RN is
Borel, adapted and
µ-a.s. invertible

}
, (6.2)

where ‘T is µ-a.s. invertible’ means that there is a Borel adapted map R : RN
→ RN such that

R ◦ T = id (µ-a.s.) and T ◦ R = id (T∗µ-a.s.).

We recall that T = (T1, . . . , TN ) is adapted if Ti (x1, . . . , xN ) = Ti (x1, . . . , xi ) for each i .
Mappings having the properties specified in (6.2) have been called “isomorphism of filtered
probability spaces” in the literature.

We use the notation ext and conv to denote the extreme points and the convex hull of a set.
We can now state the main result of this section.

Theorem 6.1 (Extreme Points). It holds that

ΠMonge
c (µ, ·) = ext Πc(µ, ·),

and

Π
Monge
bc (µ, ·) ⊂ ΠMonge

c (µ, ·)
⋂

Πbc(µ, ·) = ext Πbc(µ, ·).

Proof. It is clear that Π
Monge
c (µ, ·) ⊂ Πc(µ, ·). From this one sees that Π

Monge
c (µ, ·) ⊂

ext Πc(µ, ·), since a coupling supported on the graph of a function cannot arise as the
combination of two couplings without this property. Similarly, we have Π

Monge
bc (µ, ·) ⊂

Π
Monge
c (µ, ·)

⋂
Πbc(µ, ·) ⊂ ext Πbc(µ, ·).

We first prove that ΠMonge
c (µ, ·) ⊃ ext Πc(µ, ·). It is easy to see from [5, Proposition 2.4],

especially part 4. therein, that γ ∈ Πc(µ, ·) is equivalent to∫
F dγ = 0

for all F of either of the two following forms:

(i) F = φ(x1, . . . , xN ) −
∫

φ(x̄1, . . . , x̄N ) µ(dx̄1, . . . , dx̄N ), with φ =: φx bounded
measurable,
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(ii) F =
∑

t<N H y
t [M x

t+1 − M x
t ], with H y a bounded continuous process adapted to the

y-variables, M x a bounded µ-martingale adapted to the x-variables (namely H y
t =

Ht (y1, . . . , yt ) and M x
t = Mt (x1, . . . , xt )).

We consider now the vector space V generated by the constant 1 and the functions on RN
×RN

of the form (i) and (ii). Explicitly, we have

V =
{
c + φx

+
∑

t H y
t [M x

t+1 − M x
t ] : with φx , H y, M x as described in (i)–(ii), c ∈ R

}
.

By Douglas’ Theorem [30, Ch. V, (4.4)] we have that γ ∈ ext Πc(µ, ·) is equivalent to V
being dense in L1(γ ). We take γ such an extreme point, an arbitrary i ∈ {1, . . . , N } and
h a Borel bounded function. We will show that h(yi ) =

∫
h(ȳi )γ x1,...,xi (dȳi ) holds γ -a.s.

This would immediately imply the existence of measurable functions T i such that for all
i : yi = T i (x1, . . . , xi ) holds γ -a.s. This then implies γ ∈ Π

Monge
c (µ, ·).

We start by observing that∫
h(yi )φx dγ =

∫
[h(ȳi )γ x1,...,xN (dȳi )] φx dµ =

∫
[h(ȳi )γ x1,...,xi (dȳi )] φx dµ,

since by causality xi+1, . . . , xN are γ -independent of yi given x1, . . . , xi . Now we prove the
desired

h(yi ) =
∫

h(ȳi )γ x1,...,xi (dȳi ),

which we do by induction in i . For i = 1, we get∫
h(y1)H y

t [M x
t+1 − M x

t ]dγ =
∫

[h(ȳ1)γ x1 (dȳi )] H y
t [M x

t+1 − M x
t ]dγ,

since by the same conditional independence argument both sides are equal to 0 (indeed, M x

must be by causality a martingale in the filtration of the x and y variables). It follows that∫ {
h(y1) −

∫
h(ȳ1)γ x1 (dȳi )

}
v(x1, . . . , xN , y1, . . . , yN ) dγ = 0, ∀v ∈ V .

Since V is dense in L1(γ ), we obtain the claim for i = 1. Now let us suppose this has been
proved for all indices i ≤ j . In order to establish the result for j + 1, the key is to prove that∫

h(y j+1)H y
t [M x

t+1 − M x
t ]dγ =

∫ [
h(ȳ j+1)γ x1,...,x j+1 (dȳ j+1)

]
H y

t [M x
t+1 − M x

t ]dγ.

But this is true by the same argument as above if t > j (one verifies that both sides are equal
to 0). In case t ≤ j , by induction we have that H y

t = H̃t (x1, . . . , xt ) γ -a.s. so we obtain that
the left hand side is equal to

∫ [
h(ȳ j+1)γ x1,...,xN (dȳ j+1)

]
H y

t [M x
t+1 − M x

t ]dγ , and this is the
equal to the right hand side by causality.

We now prove Π
Monge
c (µ, ·) ⊃ ext Πbc(µ, ·). Here V must be replaced by

Ṽ =
{

c + φx
+
∑

t H y
t [M x

t+1 − M x
t ] +

∑
t Gx

t [N y
t+1 − N y

t ]
}
,

with the obvious extension of the notation used so far. By essentially the same arguments as
above one obtains that for γ ∈ ext Πbc(µ, ·) we have yt = T t (x1, . . . , xt ) γ -a.s. Indeed the
only thing that need be observed, is that under γ any martingale with respect to the y-filtration
remains a martingale if we adjoin the x-filtration. This shows Π

Monge
c (µ, ·) ⊃ ext Πbc(µ, ·)

and hence Π
Monge
c (µ, ·)

⋂
Πbc(µ, ·) = ext Πbc(µ, ·). □

Remark 6.2. The inclusion in Theorem 6.1 is strict unless µ is concentrated in a single
point. Indeed, for a ∈ RN denote T a(x) := a and observe that γa := (id, T a)∗µ ∈

Π
Monge
c (µ, ·) ∩ Πbc(µ, ·). However, γa ∈ Π

Monge
bc (µ, ·) if and only if µ is concentrated in a

point.
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7. Summary

This article investigates fundamental topological and metric properties of the nested distance.
In contrast to classical Wasserstein distances, for example, its topology cannot be characterized
via integration on test functions, so that complete stochastic programs appear as the natural
distinguishing element of the topology induced by the nested distance. The nested distance is
also not complete, which again is in contrast to the classical Wasserstein distance.

We obtain two main results. First, we demonstrate that the metric completion of the
nested distance is the space of nested distributions with their classical Wasserstein metric, as
introduced in [21]. This provides a connection between two hitherto unrelated mathematical
objects. Second, we established that the topology generated by the nested distance is Polish,
which we hope opens the way for future applications. Along these lines, this article starts the
study of extreme points of sets of measures relevant for stochastic optimization.
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