
STOCHASTIC MASS TRANSFER

Abstract

The theory of optimal transport (OT) has seen a tremendous development in the last 25
years with fascinating applications ranging from geometric and functional inequalities over
PDEs and geometry to image analysis and statistics. In recent years, variants of the optimal
transport problem with additional stochastic constraints have received increasing attention,
e.g. weak optimal transport (WOT), entropic optimal transport (EOT), martingale optimal
transport (MOT) and causal/adapted optimal transport (COT).

The aim of this lecture1 is to serve as an introduction into the stochastic variants of the
transport problem. After a quick recall of the classical OT problem we will start investi-
gating the above mentioned probabilistic versions.

Frequently used notation

• X,Y denote Polish spaces
• For a Polish space X we denote the probability measures over X by P(X), the set

of Borel measures byM(X), and the Borel sets by B(X).
• For a map T : X→ Y and λ ∈ P(X) we denote the image measure of λ under T by

T (λ) = T]λ = λ ◦ T−1

• The Lebesgue measure will be denoted by Leb.
• The set of all all couplings between two probability measures µ, ν will be denoted

by Cpl(µ, ν).
• Cb(X) continuous and bounded functions on f : X→ R.
• For integrable f : X→ R and µ ∈ M(X) we often write µ( f ) :=

∫
f dµ.

1. The optimal transport problem

In this section we will give a short introduction into the theory of optimal transport.
This will serve as a benchmark or guidance for what to expect for the different stochastic
variations of the transport problem we will consider in the next sections.

For reference and further reading we refer to the books [San15, AG13, Vil03].

1.1. On how mass is transported.

Definition 1.1. A topological space (X, τ) is called Polish, iff it is separable and there
exists a metric d metrizing τ s.t. (X, d) is a complete metric space.

Let X,Y be Polish spaces and denote the set of probability measures by P(X),P(Y).
Given two distributions of mass µ ∈ P(X), ν ∈ P(Y) we are interested in ways of transport-
ing mass distributed according to µ into mass distributed according to ν. In mathematical
terms:

Definition 1.2. For a Borel function T : X → Y we define the push-forward of µ by T or
the image measure of µ under T by

T (µ) := T]µ = µ ◦ T−1,

i.e. T (µ)(A) = µ(T−1(A)) for all A ∈ B(Y). If T (µ) = ν we call T a transport map (or
Monge transport) from µ to ν.

1These notes are based on earlier lectures / lecture notes of Julio Backhoff-Veraguas, Martin Huesmann and
Gudmund Pammer.
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Figure 1. A possible transport from a distribution µ to a distribution ν
via a map T .

This problem was first formulated by Gaspard Monge in 1781 in the article “Sur la
theorie des déblais et des remblais” [Mon81] where he was interested in minimizing the
transport cost of moving a pile of sand.

Remark 1.3. In X = Y = Rd, if µ, ν have densities and T is regular enough, then T is a
transport map between µ and ν iff

det(DT )
dν
dx
◦ T =

dµ
dx
,

as follows from the change of variables formula. This is a complicated PDE in the unknown
T , called the Monge-Ampère Equation. Finding an optimal map then boils down to finding
a solution with further structural properties.

In general, transport maps from µ to ν might not exist:

Example 1.4. Assume µ = δ0 ∈ P(R) and ν , δa for all a ∈ R. Since, T (µ) = δT (0) for any
transport map T there cannot be a map T s.t. T (µ) = ν.

Another problem with the notion of transport maps is that the constraint T (µ) = ν is not
weakly sequentially closed w.r.t. a reasonable topology.

Definition 1.5. Let µ ∈ P(X), ν ∈ P(Y). A coupling of µ and ν is a measure π ∈ P(X × Y)
with marginals µ and ν, i.e.

π(A × Y) = µ(A) for all A ∈ B(X) and q(X × B) = ν(B) for all B ∈ B(Y).

The set of all couplings of µ and ν will be denoted by Cpl(µ, ν).

Stochastically, a coupling π of µ and ν is a joint law of two random variables (X,Y) such
that Lawπ(X) = µ and Lawπ(Y) = ν. In particular, conditioning on X = x we can interpret
the regular conditional probability π(·|X = x) as a plan on how to transport the mass at
x. Therefore, we will often call coupling transport plans. Analytically, this corresponds
to disintegrating π w.r.t. its first marginal µ to obtain a family of probability measures
(πx(dy))x∈X (see Theorem ??). Writing projX : X × Y → X, (x, y) 7→ x, projY : X × Y →
Y, (x, y) 7→ y a measure π ∈ P(X × Y) is an element of Cpl(µ, ν) iff projX(π) = µ and
projY(π) = ν.

The set Cpl(µ, ν) is always non-empty. Indeed the product coupling (stochastically, the
independent coupling) satisfies µ ⊗ ν ∈ Cpl(µ, ν).

Remark 1.6. Observe, that any transport map T : X → Y from µ to ν induces a transport
plan πT := (Id,T )(µ) ∈ Cpl(µ, ν). We call πT a Monge coupling or the coupling induced by
the map T .

We give some further examples of transport maps / couplings:

Example 1.7. Let ν be a probability measure on R and write Fν for its distribution function.
The corresponding quantile function is given by the generalized inverse qν : (0, 1) → R
defined by

qν(u) := inf{x : F(x) > 0}. (1.1)
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Writing λ for the Lebesgue measure on the unit interval, we have qν#(λ) = ν, that is qν if a
Monge-map which takes λ to ν.

If ν has an atom, then so does Fν(ν) and in particular Fν is not a Monge-map from ν to
λ.

On the other hand, if µ is a continuous probability on R (i.e. has no atoms), than Fµ
# (µ) =

λ. In this situation the map T := qν ◦ Fµ is a Monge-transport from µ to ν, the so called
monotone transport mapping.

Example 1.8. If µ, ν are (non necessarily continuous) measures on the real line, π :=
(qµ, qν)#λ is a coupling of µ, ν, the so called co-monotone coupling.

1.2. The Monge and Kantorovich optimal transport problem. Fix a Borel measurable
function function c : X × Y → [0,∞]. We will interpret c as the cost of transporting a unit
of mass from x ∈ X to y ∈ Y. Therefore, we will call such a function a cost function.

Definition 1.9. Let µ ∈ P(X), ν ∈ P(Y) and c a cost function. The Monge problem is to
solve

PM
c := PM

c (µ, ν) := inf
∫

c(x,T (x)) µ(dx), (MP)

where the infimum runs over all transport maps T : X → Y such that T (µ) = ν. Any map
T attaining the infimum in (MP) is called optimal transport map.

Definition 1.10. Let µ ∈ P(X), ν ∈ P(Y) and c a cost function. The Kantorovich problem
is to solve

PK
c := PK

c (µ, ν) := inf
∫

c(x, y) π(dx, dy), (KP)

where the infimum runs over all couplings q ∈ Cpl(µ, ν). Any coupling π attaining the
infimum in (KP) is called optimal coupling or optimal transport plan.

As we will see, the Kantorovich problem is much better behaved than the Monge prob-
lem. For instance, the following properties are immediate.

Remark 1.11. • The set Cpl(µ, ν) is convex.
• The map q 7→

∫
c dq is linear.

Moreover, Cpl(µ, ν) is compact in a natural topology which will allow us to show exis-
tence of optimal couplings under some assumption on the cost function c.

Recall that a sequence of measures (µn)n∈N ⊆ P(X) converges weakly to µ ∈ P(X) iff∫
f dµn →

∫
f dµ, for all f ∈ Cb(X),

where Cb(X) denote the continuous and bounded functions on X. We call the induced
topology on P(X) the weak topology.

Theorem 1.12 (Prokhorov). Let X be a Polish space. A family A ⊆ P(X) of probability
measures on X is relatively compact w.r.t. the weak topology iff it is tight, i.e. for every
ε > 0 there exists Kε ⊆ X compact such that

sup
µ∈A

µ(X \ Kε) ≤ ε.

For a proof we refer to [Bil99].

Lemma 1.13. If A1 ⊆ P(X), A2 ⊆ P(Y) are tight so is A3 := {q ∈ P(X × Y) : projX(q) ∈
A1 and projY(q) ∈ A2}.

Proof. Let q ∈ A3 and ε > 0 be given. Pick K1 ⊆ X,K2 ⊆ Y such that µ(X \ K1) ≤
ε, ν(Y \K2) ≤ ε for all µ ∈ A1, ν ∈ A2. Since, K1×K2 ⊆ X×Y is compact the claim follows
from

q(X × Y \ K1 × K2) ≤ q((X \ K1) × Y) + q(X × (Y \ K2)) = µ(X \ K1) + ν(Y \ K2) ≤ 2ε.

�



4 STOCHASTIC MASS TRANSFER

Corollary 1.14. The set Cpl(µ, ν) is compact.

Proof. Since {µ} ⊆ P(X), {ν} ⊆ P(Y) are tight, Cpl(µ, ν) is tight by Lemma 1.13. It remains
to show that it is closed. Pick (qn)n∈N ⊆ Cpl(µ, ν) with limit q. We have to show that q has
marginals µ and ν. Pick ϕ ∈ Cb(X) and define ϕ̄(x, y) := ϕ(x) so that ϕ̄ ∈ Cb(X × Y). Then,
we know that ∫

ϕdq =

∫
ϕ̄dq = lim

n

∫
ϕ̄dqn = lim

n

∫
ϕdqn =

∫
ϕdµ

so that projX(q) = µ. Similarly, it follows that projY(q) = ν. �

A function f : Z → [0,∞] is lower semi-continuous if for all sequence z, z1, z2, . . . ∈ Z,
limn→∞ zn = z we have lim inf f (zn) ≥ f (z). Equivalently, f is lower semicontinuous if
there is a sequence of continuous bounded functions f1, f2, . . . : Z → [0,∞) such that
f = supn fn.

In this case, also the mapping

π→

∫
f dπ

is lower semicontinuous (on P(Z)) since it is a supremum of the continuous bounded func-
tions π→

∫
fn dπ.

Note also that a lower semicontinuous function attains its infimum on every compact
sets. From these observations we obtain:

Theorem 1.15. Assume that c is lower semi-continous and bounded from below. Then
there exists a minimizer π∗ to (KP), i.e. π∗ ∈ arg minπ∈Cpl(µ,ν)

∫
cdπ.
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