
STOCHASTIC MASS TRANSFER

Abstract

The theory of optimal transport (OT) has seen a tremendous development in the last 25
years with fascinating applications ranging from geometric and functional inequalities over
PDEs and geometry to image analysis and statistics. In recent years, variants of the optimal
transport problem with additional stochastic constraints have received increasing attention,
e.g. weak optimal transport (WOT), entropic optimal transport (EOT), martingale optimal
transport (MOT) and causal/adapted optimal transport (COT).

The aim of this lecture1 is to serve as an introduction into the stochastic variants of the
transport problem. After a quick recall of the classical OT problem we will start investi-
gating the above mentioned probabilistic versions.

Frequently used notation

• X,Y denote Polish spaces
• For a Polish space X we denote the probability measures over X by P(X), the set

of Borel measures byM(X), and the Borel sets by B(X).
• For a map T : X→ Y and µ ∈ P(X) we denote the image measure of µ under T by

T (µ) = T#µ = µ ◦ T−1

• The set of all all couplings between two probability measures µ, ν will be denoted
by Cpl(µ, ν).

• Cb(X) denotes the continuous and bounded functions f : X→ R.
• For integrable f : X→ R and µ ∈ M(X) we often write µ( f ) :=

∫
f dµ.

1. The optimal transport problem

In this section we will give a short introduction into the theory of optimal transport.
This will serve as a benchmark or guidance for what to expect for the different stochastic
variations of the transport problem we will consider in the next sections.

For reference and further reading we refer to the books [San15, AG13, Vil03].

1.1. On how mass is transported.

Definition 1.1. A topological space (X, τ) is called Polish, iff it is separable and there
exists a metric d metrizing τ s.t. (X, d) is a complete metric space.

Let X,Y be Polish spaces and denote the set of probability measures by P(X),P(Y).
Given two distributions µ ∈ P(X), ν ∈ P(Y) we are interested in ways of transporting mass
distributed according to µ into mass distributed according to ν. In mathematical terms:

Definition 1.2. For a Borel function T : X → Y we define the push-forward of µ by T or
the image measure of µ under T by

T (µ) := T#µ = µ ◦ T−1,

i.e. T (µ)(A) = µ(T−1(A)) for all A ∈ B(Y). If T (µ) = ν we call T a transport map (or
Monge transport) from µ to ν.

This problem was first formulated by Gaspard Monge in 1781 in the article “Sur la
theorie des déblais et des remblais” [Mon81] where he was interested in minimizing the
transport cost of moving a pile of sand.

1These notes are based on earlier lectures / lecture notes of Julio Backhoff-Veraguas, Martin Huesmann and
Gudmund Pammer.
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Figure 1. A possible transport from a distribution µ to a distribution ν
via a map T .

Remark 1.3. In X = Y = Rd, if µ, ν have densities and T is regular enough, then T is a
transport map between µ and ν iff

det(DT )
dν
dx
◦ T =

dµ
dx
,

as follows from the change of variables formula. This is a complicated PDE in the unknown
T , called the Monge-Ampère Equation. Finding an optimal map then boils down to finding
a solution with further structural properties.

In general, transport maps from µ to ν might not exist:

Example 1.4. Assume µ = δ0 ∈ P(R) and ν , δa for all a ∈ R. Since, T (µ) = δT (0) for any
transport map T there cannot be a map T s.t. T (µ) = ν.

Another problem with the notion of transport maps is that the constraint T (µ) = ν is not
closed w.r.t. a reasonable topology.

Definition 1.5. Let µ ∈ P(X), ν ∈ P(Y). A coupling of µ and ν is a measure π ∈ P(X × Y)
with marginals µ and ν, i.e.

π(A × Y) = µ(A) for all A ∈ B(X) and π(X × B) = ν(B) for all B ∈ B(Y).

The set of all couplings of µ and ν will be denoted by Cpl(µ, ν).

Stochastically, a coupling π of µ and ν is a joint law of two random variables (X,Y) such
that lawπ(X) = µ and lawπ(Y) = ν. In particular, conditioning on X = x we can interpret
the regular conditional probability π(·|X = x) as a plan on how to transport the mass at
x. Therefore, we will often call coupling transport plans. Analytically, this corresponds
to disintegrating π w.r.t. its first marginal µ to obtain a family of probability measures
(πx(dy))x∈X. In terms of the projections

projX : X × Y→ X, (x, y) 7→ x, projY : X × Y→ Y, (x, y) 7→ y

a measure π ∈ P(X × Y) is an element of Cpl(µ, ν) iff projX(π) = µ and projY(π) = ν. A
further equivalent characterization of Cpl(µ, ν) is

{π ∈ P(X × Y) :
∫

f (x) dπ(x, y) =
∫

f dµ,
∫

g(y) dπ(x, y) =
∫

g dµ for f ∈ Cb(X), g ∈ Cb(Y)}.
(1.1)

The set Cpl(µ, ν) is always non-empty. Indeed the product coupling (stochastically, the
independent coupling) satisfies µ ⊗ ν ∈ Cpl(µ, ν).

Remark 1.6. Observe, that any transport map T : X → Y from µ to ν induces a transport
plan πT := (Id,T )(µ) ∈ Cpl(µ, ν). We call πT a Monge coupling or the coupling induced by
the map T .

We give some further examples of transport maps / couplings:

Example 1.7. Let ν be a probability measure on R and write Fν for its distribution function.
The corresponding quantile function is given by the generalized inverse qν : (0, 1) → R
defined by

qν(u) := inf{x : F(x) > 0}. (1.2)
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Writing λ for the Lebesgue measure on the unit interval, we have qν#(λ) = ν, that is qν if a
Monge-map which takes λ to ν.

If ν has atoms, then so does Fν(ν) and in particular Fν is not a Monge-map from ν to λ.

On the other hand, if µ is a continuous probability on R (i.e. has no atoms), than Fµ
# (µ) =

λ. In this situation the map T := qν ◦ Fµ is a Monge-transport from µ to ν, the so called
monotone transport mapping.

Example 1.8. If µ, ν are (non necessarily continuous) measures on the real line, π :=
(qµ, qν)#λ is a coupling of µ, ν, the so called co-monotone coupling.

1.2. The Monge and Kantorovich optimal transport problem. Fix a Borel measurable
function c : X × Y → [0,∞]. We will interpret c as the cost of transporting a unit of mass
from x ∈ X to y ∈ Y. Therefore, we will call such a function a cost function.

Slightly more generally we will also consider c : X × Y → (−∞,∞] which is lower
bounded in the sense that there exists a ∈ L1(µ), b ∈ L1(ν), such that a(x) + b(y) ≤ c(x, y)
for x ∈ X, y ∈ Y. Problems for such cost functions can be reduced to the case of non-
negative costs functions by considering the mapping (x, y) 7→ c(x, y) + a−(x) + b−(y) which
leads to an equivalent optimization problem.

In virtually all applications c is continuous or at least lower semi-continuous and we
will freely make this assumption if it simplifies arguments.

Definition 1.9. Let µ ∈ P(X), ν ∈ P(Y) and c a cost function. The Monge problem is to
solve

PM
c := PM

c (µ, ν) := inf
∫

c(x,T (x)) µ(dx), (MP)

where the infimum runs over all transport maps T : X → Y such that T (µ) = ν. Any map
T attaining the infimum in (MP) is called optimal transport map.

Definition 1.10. Let µ ∈ P(X), ν ∈ P(Y) and c a cost function. The Kantorovich problem
is to solve

PK
c := PK

c (µ, ν) := inf
∫

c(x, y) π(dx, dy), (KP)

where the infimum runs over all couplings π ∈ Cpl(µ, ν). Any coupling π attaining the
infimum in (KP) is called optimal coupling or optimal transport plan.

Remark 1.11 (Kantorovich problem in probabilistic terms). Let (Ω,F ,P) be a (non-atomic)
probability space and write X,Y,Z for random variables on Ω. Then Cpl(µ, ν) = { law(X,Y) :
X ∼ µ,Y ∼ ν} and we can formulate the transport problem as

PK
c := inf{E[c(X,Y)] : X ∼ µ,Y ∼ ν}.

As we will see, the Kantorovich problem is much better behaved than the Monge prob-
lem. For instance, the following properties are immediate.

Remark 1.12. • The set Cpl(µ, ν) is convex.
• The map π 7→

∫
c dπ is linear.

Moreover, Cpl(µ, ν) is compact in a natural topology which will allow us to show ex-
istence of optimal couplings under some assumption on the cost function c: Recall that a
sequence of measures (µn)n∈N ⊆ P(X) converges weakly to µ ∈ P(X) iff∫

f dµn →
∫

f dµ, for all f ∈ Cb(X),

where Cb(X) denote the continuous and bounded functions on X. We call the induced
topology on P(X) the weak topology.

Theorem 1.13 (Prokhorov). Let X be a Polish space. A family A ⊆ P(X) of probability
measures on X is relatively compact w.r.t. the weak topology iff it is tight, i.e. for every
ε > 0 there exists Kε ⊆ X compact such that

sup
µ∈A

µ(X \ Kε) ≤ ε.
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For a proof we refer to [Bil99].

Lemma 1.14. If A1 ⊆ P(X), A2 ⊆ P(Y) are tight so is A3 := {π ∈ P(X × Y) : projX(π) ∈
A1 and projY(π) ∈ A2}.
Proof. Let π ∈ A3 and ε > 0 be given. Pick K1 ⊆ X,K2 ⊆ Y such that µ(X \ K1) ≤
ε, ν(Y \K2) ≤ ε for all µ ∈ A1, ν ∈ A2. Since, K1×K2 ⊆ X×Y is compact the claim follows
from

π(X × Y \ K1 × K2) ≤ π((X \ K1) × Y) + π(X × (Y \ K2)) = µ(X \ K1) + ν(Y \ K2) ≤ 2ε.

�

Corollary 1.15. The set Cpl(µ, ν) is compact.

Proof. Since {µ} ⊆ P(X), {ν} ⊆ P(Y) are tight, Cpl(µ, ν) is tight by Lemma 1.14. It remains
to show that it is closed. Pick (πn)n∈N ⊆ Cpl(µ, ν) with limit π. We have to show that π has
marginals µ and ν. Pick ϕ ∈ Cb(X) and define ϕ̄(x, y) := ϕ(x) so that ϕ̄ ∈ Cb(X × Y). Then,
we know that ∫

ϕ dπ =

∫
ϕ̄ dπ = lim

n

∫
ϕ̄ dπn = lim

n

∫
ϕ dπn =

∫
ϕ dµ

so that projX(π) = µ. Similarly, it follows that projY(π) = ν. �

A function f : Z → (−∞,∞] is lower semi-continuous (l.s.c.) if for all sequence
z, z1, z2, . . . ∈ Z, limn→∞ zn = z we have lim inf f (zn) ≥ f (z). Equivalently, f is l.s.c. if
there is a sequence of continuous functions f1, f2, . . . : Z → [0,∞) such that f = supn fn.
(Clearly f1, f2, . . . can be chosen to be upper bounded and if f is lower bounded, they can
be chosen to be upper and lower bounded.) Alternative a function f is l.s.c. iff its epigraph
is closed or iff its level sets {x : f (x) ≤ α} are closed.

If c : X × Y→ [0,∞) is lower semi continuous, also the mapping

π→
∫

c dπ

is lower semicontinuous (on P(Z)) since it is a supremum of the continuous bounded func-
tions π→

∫
c ∧ n dπ, n = 1, 2, . . ..

Note also that a lower semicontinuous function attains its infimum on every compact
set. From these observations we obtain:

Theorem 1.16. Assume that c : X×Y→ [0,∞] is lower semi-continous and bounded from
below. Then there exists a minimizer π∗ to (KP), i.e. π∗ ∈ arg minπ∈Cpl(µ,ν)

∫
cdπ.

As a consequence of the relaxation of the Monge problem to the Kantorovich problem
we can guarantee the existence of optimal couplings in some generality. However, there
are several natural questions. For instance,

• When is the optimal coupling unique?
• What is the relationship between (KP) and (MP)?
• Can we characterize the structure of optimal couplings? Are there necessary/sufficient

conditions for optimality?
A powerful tool to answer these questions lies in the notion of cyclical monotonicity (more
precisely, c-cyclical monotonicity) and the dual problem.

1.3. The dual problem and characterization of optimal couplings. A fundamental in-
sight of Kantorovich was the transport problem admits a dual formulation:

Definition 1.17 (Dual problem). For µ ∈ P(X), ν ∈ P(Y) the dual problem is to maximize∫
ϕ(x)dµ(x) +

∫
ψ(y)dν(y)

over ϕ ∈ Cb(X), ψ ∈ Cb(Y) such that ϕ(x) + ψ(y) ≤ c(x, y) for all (x, y) ∈ X × Y. We denote
the maximal value by DK

c := DK
c (µ, ν).
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We will often write ϕ ⊕ ψ for the function given by

ϕ ⊕ ψ(x, y) = ϕ(x) + ψ(y), (x, y) ∈ X × Y.

It is often useful allow for the larger set of dual candidates

D(c) = {(ϕ, ψ) : ϕ : X → [−∞,∞), ψ : Y → [−∞,∞), ϕ ∈ L1(µ), ψ ∈ L1(ν), ϕ ⊕ ψ ≤ c}
which has the advantage that it will be easier to find maximizers for the dual problem.

It is immediate that DM
c ≤ PM

c since for any candidates ϕ, ψ, π it follows from the
marginal constraint on π that∫

ϕdµ +

∫
ψdµ =

∫
(ϕ(x) + ψ(y))π(dx, dy) ≤

∫
c dπ.

We will say that duality holds if DM
c = PM

c .

Remark 1.18. Let ϕ, ψ be integrable with ϕ ⊕ ψ ≤ c. Then µ(ϕ) + ν(ψ) = π(c) if and
only if duality holds and ϕ, ψ dual maximizers. In this case π({c = ϕ ⊕ ψ}) = 1, in fact
it is straightforward (please check for yourself) that π̄ ∈ Cpl(µ, ν) is optimal if and only
if π̄({c = ϕ ⊕ ψ}) = 1. Theorem 1.30 below provides relatively general conditions which
guarantee that we are in this situation.

For the understanding of the transport problem it is extremely useful that duality holds:

Theorem 1.19 (Duality). Let µ ∈ P(X), ν ∈ P(Y) and c : X × Y→ [0,∞] be l.s.c. Then,

PK
c = inf

q∈Cpl(µ,ν)

∫
c dq = sup{µ(ϕ)+ν(ψ) : ϕ ∈ Cb(X), ψ ∈ Cb(Y), ϕ(x)+ψ(y) ≤ c(x, y)} = Dk

c.

A relatively simple approach is based on the following result from convex analysis:

Theorem 1.20 (see e.g. [Str85, Thm. 45.8] or [AH96, Thm. 2.4.1]). Let K, L be convex
subsets of vector spaces H1 resp. H2, where H1 is locally convex and let F : K × L → R
be given. If

(1) K is compact,
(2) F(·, y) is continuous and convex on K for every y ∈ L,
(3) F(x, ·) is concave on L for every x ∈ K

then
sup
y∈L

inf
x∈K

F(x, y) = inf
x∈K

sup
y∈L

F(x, y).

Proof in the compact case. We will give a proof under the additional assumption that X,Y
are compact spaces and that c is continuous bounded. Write

χ(π) =

0 if π ∈ Cpl(µ, ν)
∞ else.

= sup
(ϕ,ψ)∈Cb(X)×Cb(Y)

µ(ϕ) + ν(ψ) −
∫

(ϕ(x) + ψ(y))dπ(x, y).

AsP(X×Y) is compact for compact spaces X,Y we can apply Theorem 1.20 to interchange
inf and sup to obtain

inf
π∈Cpl(µ,ν)

∫
c dπ = inf

π∈P(X×Y)

∫
c dπ + χ(π)

= inf
π∈P(X×Y)

sup
(ϕ,ψ)∈Cb(X)×Cb(Y)

∫
c(x, y) − ϕ(x) − ψ(y) dπ + µ(ϕ) + ν(ψ)

= sup
(ϕ,ψ)∈Cb(X)×Cb(Y)

inf
π∈P(X×Y)

∫
c(x, y) − ϕ(x) − ψ(y) dπ + µ(ϕ) + ν(ψ)

= sup
(ϕ,ψ)∈Cb(X)×Cb(Y)

inf
(x,y)∈X×Y

c(x, y) − ϕ(x) − ψ(y) + µ(ϕ) + ν(ψ)

= sup
(ϕ,ψ)∈Cb(X)×Cb(Y),ϕ⊕ψ≤c

µ(ϕ) + ν(ψ). �
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From the above proof one can first obtain duality for general Polish spaces X,Y by
approximating µ, ν with compactly supported measures. It is then easy to extend from the
case of a continuous bounded cost function to a l.s.c. cost function c : X × Y → [0,∞] by
approximating c from below with continuous bounded functions.

Other proofs of transport duality often use further tools from convex analysis such as
the Fenchel-Moreau theorem.

Below we give another proof of duality which uses the notion of c-cyclical monotonicity
which is of interest in its own right. It allows to characterize optimality of transport plans
through a “combinatoric optimality property” of its support set:

Definition 1.21. Let Γ ⊆ X × Y and c : X × Y→ R. We call Γ c-cyclically monotone if for
all n ∈ N and sequences (x1, y1), . . . , (xn, yn) ∈ Γ, we have with the convention yn+1 := y1

n∑
i=1

c(xi, yi) ≤
n∑

i=1

c(xi, yi+1). (1.3)

Let π ∈ P(X × Y) and c : X × Y → R. We call π c-cyclically monotone if there is a
c-cyclically monotone set Γ with π(Γ) = 1.

This is a generalization of the notion of cyclical monotonicity which arose in convex
analysis and corresponds to c-cyclical monotonicity in the special case where c(x, y) =

−xy, x, y ∈ Rd.
Note that if c is continuous than the closure of every c-cyclically monotone set is again

c-cyclically monotone. In this case a transport plan is c-cyclically monotone precisely if
supp π is c-cyclically monotone.

Lemma 1.22 (c-cyclical monotonicity: necessary). Let µ ∈ P(X), ν ∈ P(Y), and c ∈
C(X × Y). If π ∈ Cpl(µ, ν) is an optimal coupling (w.r.t. the cost function c) with finite
value, then supp(π) is c-cyclically monotone (so in particular π is c-cyclically monotone).

In fact c-cyclical monotonicity is also sufficient for optimality. However the proof is
more involved and will be given later.

Proof of Lemma 1.22. Let π∗ ∈ Cpl(µ, ν) be an optimizer for Vc(µ, ν) and assume that there
exist n ∈ N and (x1, y1), . . . , (xn, yn) ∈ supp(π) such that

n∑
i=1

c(xi, yi) >
n∑

i=1

c(xi, yi+1).

By continuity of c there are neighbourhoods Ui of xi and V j of y j such that for all ui ∈
Ui, v j ∈ V j, 1 ≤ i, j ≤ n

n∑
i=1

c(ui, vi) >
n∑

i=1

c(ui, vi+1) (1.4)

In the next step, we will use this property to construct a competitor π̄ of π with strictly
lower transport cost. To this end, consider mi := π(Ui × Vi) (which is positive as supp(π) 3
(xi, yi) ∈ Ui × Vi) and 1

mi
π|Ui×Vi ∈ Cpl(µi, νi) (where (µi, νi) simply denote the renormalized

marginals of π∗|Ui×Vi ). We define

π̄ := π +
min j m j

n

n∑
i=1

µi ⊗ νi+1 − 1
mi
π∗|Ui×Vi .

Since π|Ui×Vi − min j m j

mi
π|Ui×Vi ≥ 0, we have that

π −
n∑

i=1

min j m j

n mi
π|Ui×Vi ∈ Cpl

µ − min j m j

n

∑
i

µi, ν −
min j m j

n

∑
i

νi

 ,
is a positive measure and observe π̄ ∈ Cpl(µ, ν). By (1.4) we find

∫
c dπ̄ <

∫
c dπ which

contradicts optimality of π. �
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Given a candidate pair (ϕ, ψ) ∈ D(c) we can always improve it by replacing ϕ (which
satisfies ϕ(x) ≤ c(x, y) − ψ(y)) by

ϕ̃(x) := inf
y

c(x, y) − ψ(y).

Then, (ϕ̃, ψ) ∈ D(c) and since ϕ ≤ ϕ̃ it follows that µ(ϕ) ≤ µ(ϕ̃) so that the pair (ϕ̃, ψ)
yields a higher value in the dual problem. Note that ϕ̃ is the biggest function f such that
f (x) + ψ(y) ≤ c(x, y). Similarly, we can replace ψ by ψ̃ defined by

ψ̃(y) := inf
x

c(x, y) − ϕ̃(x)

producing an even better candidate for the dual problem. This motivates the following
definition

Definition 1.23 (c-transform). Let c : X × Y → R be a Borel measurable cost function.
For a function ϕ : X → R we define its c-transform (also called c-conjugate function)
ϕc : Y→ R by

ϕc(y) := inf
x∈X

c(x, y) − ϕ(x). (1.5)

Analogously, we define the c-transform of ψ : Y→ R by

ψc(x) := inf
y∈Y

c(x, y) − ψ(y).

We say that a function ψ : Y → R is c-concave if ψ = ϕc for some ϕ (and analogously for
ψ : Y→ R).

Formally the definition of the c-transform of a function χ depends on whether the do-
main of χ is X or Y . In most applications we will have X = Y and c will be symmetric.

The c-transform of a function χ ‘regularizes’ χ: if c is continuous, then (1.5) is an
infimum of continuous functions and thus upper semicontinuous (i.e. its negative is l.s.c.).
In particular all c-concave functions are then u.s.c. and in particular measurable.

From the previous considerations it is clear that in the dual problem we can restrict
to pairs of c-concave functions. One could go on trying to “improve” these functions,
however, we have the following result:

Lemma 1.24. Suppose that c is real valued. For any ϕ : X → R ∪ {−∞} it holds that
ϕcc := (ϕc)c ≥ ϕ. We have ϕcc = ϕ iff ϕ is c-concave (i.e. for any ϕ : X → R it holds that
ϕccc := ((ϕc)c)c = ϕc.); in general, ϕcc is the smallest c-concave function larger than ϕ.

Proof. Exercise. �

Importantly, c-concave functions share many properties of concave (convex) functions.
Indeed, the terminology is inspired by the Legendre transform

ϕ∗(y) := sup
y∈x

xy − ϕ(x)

from convex analysis. Specifically, up to a sign switch, the Legendre transform corresponds
to c transform for the for cost function c(x, y) = −xy, see Example 1.27 below.

Definition 1.25. Let ϕ : X→ [−∞,∞) be c-concave. Its c-superdifferential is defined as

∂cϕ = {(x, y) ∈ X × Y : ϕ(x) + ϕc(y) = c(x, y)}.
We also write2

∂cϕ(x) = {y : (x, y) ∈ ∂cϕ} = {y : ϕ(x) + ϕc(y) = c(x, y)} = arg min
y

c(x, y) − ϕc(y). (1.6)

Similarly, we define the c-superdifferential of a c-concave function ψ : Y→ [−∞,∞).

Remark 1.26. Note that if ϕ is a c-concave function and ϕ, c are continuous bounded (to
avoid integrability issues), then any transport plan concentrated on ∂cϕ is optimal between
its marginals.

2It is worthwhile to reflect a bit about the equalities in (1.6).
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Example 1.27. a) Let X = Y, c(x, y) = d(x, y) be a distance. Then ϕ is c-concave
(“d-concave”) if and only if ϕ is 1-Lipschitz and ϕc = −ϕ.
Proof. ϕd(·) = infx d(x, ·)−ϕ(x) is an infimum over 1-Lipschitz functions and thus
1-Lipschitz, hence any d-concave function is 1-Lipschitz. If ϕ is 1-Lipschitz, then
ϕ(y) − ϕ(x) ≤ d(x, y) implies −ϕ(x) ≤ infy d(x, y) − ϕ(y) = ϕc(x) and here equality
is attained for x = y. Conversely, it is immediate that any 1-Lipschitz function
with ϕd(x) = −ϕ(x) is d-concave. �

b) X = Y = Rn, c(x, y) = −x · y, the standard Euclidean inner product. In this case
ϕc = −((−ϕ)∗), where

χ∗(y) := sup
y

xy − χ(x)

denotes the Legendre-transform. In particular, ϕ is c-concave iff ϕ is concave and
u.s.c. In convex analysis the subdifferential ∂χ(x) of a convex function χ : Rn →
(−∞,∞] in a point x equals

∂χ(x) = {y : y(x′ − x) ≤ χ(x′) − χ(x),∀x ∈ Rn} = arg max
y

xy − χ(x),

with the superdifferential (or supergradient) being defined analogously. In partic-
ular, the c-superdifferential of ϕ is precisely the classical superdifferential ∂ϕ of ϕ
from convex analysis.

The link between optimal transport and convex analysis becomes even more
transparent if we switch to maximization in the primal transport problem and to
minimization in the dual problem, i.e. consider the optimization problems

PK
c = supπ∈Cpl(µ,ν)

∫
xy dπ(x, y), Dk = inf{µ(ϕ) + ν(ψ) : ϕ(x) + ψ(y) ≥ xy}. (1.7)

In this formulation, the c-transform becomes precisely the convex conjugate and
c-convexity is just ordinary convexity.

c) Put c(x, y) = 1
2 |x − y|2. Then, ϕ is c-concave iff ϕ̄(x) := |x|2

2 − ϕ(x) is convex and
l.s.c.

Rockafeller’s theorem (see e.g. [Vil03, Theorem 2.27]) characterizes when a set Γ ⊆
Rd × Rd is the subgradient of a convex function through cyclical monotonicity.

We spell it out for c-concave functions:

Theorem 1.28. Let c : X × Y → R. A set Γ ⊆ X × Y is c-cyclically monotone iff Γ ⊆ ∂cϕ
for some c-concave function ϕ.

Proof. First observe that ∂cϕ is c-cyclical monotone. Indeed, for any n ∈ N and tuples
(x1, y1), . . . , (xn, yn) ∈ ∂cϕ with yn+1 := y1 by definition of c-concavity that

n∑
i=1

c(xi, yi) =

n∑
i=1

ϕ(xi) + ϕc(yi) =

n∑
i=1

ϕ(xi) + ϕc(yi+1) ≤
n∑

i=1

c(xi, yi+1).

The converse direction is a bit technical and we first try to give some motivation for the
proof. For this we suppose that we have found a pair of functions a, b such that a ⊕ b ≤ c
with equality on the set Γ. Let further (x0, y0) ∈ Γ and assume that a(x0) = 0. Consider
(x1, y1), . . . , (xn, yn) ∈ Γ and let x ∈ X be arbitrary. Then we have

c(x, yn) − c(xn, yn)︸                 ︷︷                 ︸
≥a(x)+b(yn)−a(xn)−b(yn)

+ c(xn, yn−1) − c(xn−1, yn−1)︸                          ︷︷                          ︸
≥a(xn)+b(yn−1)−a(xn−1)−b(yn−1)

+ . . . + c(x1, y0) − c(x0, y0)︸                  ︷︷                  ︸
≥a(x1)+b(y0)−a(x0)−b(y0)

≥ a(x). (1.8)

Hence fixing x ∈ X and (x0, y0) ∈ Γ, (1.8) gives an upper bound of a(x) for any choice
of (x1, y1), . . . , (xn, yn) ∈ Γ. Taking the infimum over all such choices will us thus give a
natural (“largest possible”) candidate for a dual function.

That is, to rigorously start our proof we set ϕ(x0) = 0 for x ∈ X
ϕ(x) := inf{c(x, yn) − c(xn, yn) + c(xn, yn−1) − c(xn−1, yn−1) + . . . + c(x1, y0) − c(x0, y0) :

n ∈ N; (x1, y1), . . . , (xn, yn) ∈ Γ}
(1.9)
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Since c is real valued and Γ , ∅we have ϕ < ∞ on X. Note also that c-monotonicity implies
that ϕ(x0) ≥ 0, and that equality is attained by choosing n = 1 and (x1, y1) = (x0, y0).

Next, writing

−ψ(y) := inf{ − c(xn, yn) + c(xn, yn−1) − c(xn−1, yn−1) + . . . + c(x1, y0) − c(x0, y0) :
n ∈ N; (x1, y1), . . . , (xn, yn) ∈ Γ, yn = y}

we see that
ϕ(x) = inf

y∈Y
c(x, y) − ψ(y) = ψc(x).

(Observe, that ψ(y) > −∞ iff y ∈ projY(Γ), i.e. there is x ∈ X such that (x, y) ∈ Γ.)
To show that Γ ⊆ ∂cϕ it is sufficient to show ϕ(x) + ϕc(y) ≥ c(x, y) on Γ since the

other inequality follows from c-concavity. Since ϕc = ψcc ≥ ψ (see Lemma 1.24) it is
enough to show ϕ(x) + ψ(y) ≥ c(x, y) on Γ. So pick ε > 0 and (x, y) ∈ Γ. Since ϕ = ψc

there is some ỹ ∈ projY(Γ) such that c(x, ỹ) − ψ(ỹ) < ϕ(x) + ε. From the definition of ψ it
follows that −ψ(y) ≤ −c(x, y) + c(x, ỹ) − ψ(ỹ) (estimating the inf with a particular choice
of tuples approximating −ψ(ỹ)). Together this gives −ψ(y) ≤ −c(x, y) + c(x, ỹ) − ψ(ỹ) <
−c(x, y) + ϕ(x) + ε. Since ε > 0 is arbitrary this proves the claim. �

Remark 1.29. If c is not continuous, the functions ϕ and ϕc constructed in Theorem 1.28
may not be Borel measurable. When c is Borel measurable and Γ a Borel subset of X × Y,
then one can show that ϕ and ϕc are universally measurable. This means, for any marginals
µ and ν there exist Borel measurable functions ϕ̃ : X→ [−∞,∞) and ψ̃ : Y→ [−∞,∞) such
that ϕ̃ = ϕ µ-a.s. and ψ̃ = ϕc ν-a.s.

Theorem 1.28 allows us to prove the following result, sometimes referred to as funda-
mental theorem of optimal transport, or characterization of optimizers, or monotonicity
principle of OT.

Theorem 1.30 (Fundamental theorem of OT). Let c : X × Y → R be continuous and
assume that that |c(x, y)| ≤ a(x) + b(y) for some a ∈ L1(µ), b ∈ L1(ν). Let π ∈ Cpl(µ, ν).
Then the following are equivalent:

i) π is an optimal coupling;
ii) the support supp(π) of π is c-cyclical monotone;

iii) there exists a c-concave function ϕ with s.t. supp(π) ⊆ ∂cϕ (i.e. π({(x, y) : ϕ(x) +

ϕc(y) = c(x, y)} = 1).

In this case ϕ ∈ L1(µ), ϕc ∈ L1(ν), duality holds and ϕ, ϕc are maximizers of the dual
problem. Furthermore every primal optimizer is supported by ∂cϕ.

Proof. We want to replace c by the mapping (x, y) 7→ c(x, y) + a(x) + b(y) to reduce the
argument to the case where c ≥ 0. Clearly this works provided a, b are continuous but if a, b
are merely measurable, the new cost function might no longer be continuous. This problem
can be avoided with the help of a trick from descriptive set theory. [Kec95, Theorem 08.15]
asserts that one can refine the topologies of X,Y to (still) Polish topologies with respect to
which the functions a, b are continuous. Doing this, we can proceed with the proof under
the assumption that c is continuous and non-negative. (Note that is in general not possible
to equip X,Y with finer Polish topologies such that a given Borel function defined on X×Y
becomes continuous)

We now proceed with the proof.

i)⇒ ii): This follows by Lemma 1.22.
ii)⇒ iii): This follows by Theorem 1.28.
iii)⇒ i): As

ϕ ⊕ ϕc ≤ c ≤ a ⊕ b

it follows that ϕ+ and ψ+ (where ψ := ϕc) are integrable. Given a function χ we write
χ(n) := (χ∨ n)∧ n. Then ϕ(n) → ϕ,

∫
ϕ(n) dµ→

∫
ϕ dµ and analogously for ψ. Furthermore
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ϕ(n) ⊕ ψ(n) ≤ c with equality holding π-a.s. Thus∫
c dπ =

∫
limn ϕ

(n) ⊕ ψ(n) dπ = limn
∫
ϕ(n) ⊕ ψ(n) dπ =

limn
∫
ϕ(n) dµ + limn

∫
ψ(n) dν =

∫
ϕ dµ +

∫
ψ dν.

Thus ϕ, ψ are (integrable) dual maximizers, π is a primal maximizer and all primal maxi-
mizers are concentrated on ∂ϕ = {ϕ ⊕ ψ = c}.

We conclude by Remark 1.18. �

Remark 1.31. As mentioned above, duality for l.s.c. c : X×Y→ [0,∞] claimed in Theorem
1.19 follows directly from Theorem 1.30 by approximating c from below with continuous
bounded functions. Duality for upper bounded measurable functions was established in
[Kel84] and duality for lower bounded, finitely valued cost functions was established in
[BS11]. Optimal transport plans are c-cyclically monotone for all measurable c : X × Y→
[0,∞] while c-cyclically monotone transport plans are optimal for measurable c : X×Y→
[0,∞] provided that {c = ∞} is contained in the union of a closed set and a µ ⊗ ν-null set
[BGMS09a, Bei15] but not for arbitrary l.s.c. c : X × Y→ [0,∞], see [AP03].

Example 1.32. A standard example where duality does not hold (i.e. there is a ‘duality
gap’) is the following: Let X,Y = [0, 1], µ = ν = Leb|[0,1] and

c(x, y) =


0 x < y
1 x = y
∞ else

.

Then the primal problem has the value 1 while the dual problem has the value 0.

Remark 1.33. An important consequence of Theorem 1.30 is that the optimality of a given
coupling depends solely on geometric properties of its support (and it does not matter
how the mass is distributed over the support). In particular, if π is optimal and π̃ another
probability with supp(π̃) ⊆ supp(π), then it is an optimal coupling between its marginals.
For instance, a restriction of an optimal coupling is optimal (between its marginals).

One can argue similarly for transport maps T . If there exists a c-concave functions ϕ
such that for all x ∈ X it holds that T (x) ∈ ∂cϕ(x), then for any µ ∈ P(X) the map T is
optimal between µ and T (µ) (up to integrability isssues of the cost c w.r.t. µ and ν). Hence,
it makes sense to say that T is an optimal transport map without specifying any measure.

Definition 1.34. A c-concave function ϕ such that the pair (ϕ, ϕc) is a maximizing pair for
the dual problem is called a c-concave Kantorovich potential, or Kantorovich potential, of
the measures µ, ν.

1.4. Consequences of Theorem of 1.30 – Brenier’s Theorem. As first consequence of
Theorem of 1.30 (and Example 1.27) we obtain

Corollary 1.35 ((Kantorovich-Rubinstein formula)). Let X = Y, c(x, y) = d(x, y) a dis-
tance and assume that µ, ν have finite first moment.3 Then

inf
π∈Cpl(µ,ν)

∫
c dπ = sup

ϕ is 1-Lipschitz

∫
ϕ(dµ − dν)

and inf, sup are attained. If ϕ is a maximizer of the dual problem, then π is optimal if and
only if

π({(x, y) : ϕ(x) − ϕ(y) = d(x, y)}) = 1.

Note that the right hand side immediately implies that infπ∈Cpl(µ,ν)
∫

cdq =: W1(µ, ν) is a
distance. Moreover, we can use this formula and extend this to non-probability measures
as well. In this case for any finite non-negative measure η it holds that W1(µ + η, ν + η) =

W1(µ, ν).

3I.e.
∫

d(x0, x) dµ(x) < ∞ for some and then any x0 ∈ X.
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By Theorem 1.30 we know that an optimal coupling is concentrated on the superdiffer-
ential ∂cϕ of a c-concave function ϕ. In particular, if we can show that for µ-a.e. x ∈ X the
set ∂cϕ(x) is single-valued any optimal coupling π needs to be induced by a transport map.

We will first use this observation in the context of the maximization version of the
transport problem for the cost function c(x, y) = xy, x, y ∈ Rd. We assume that µ, ν have
finite second moments such that xy is dominated by a⊕ b where a(x) = b(x) = x2 is µ- and
ν-integrable so that Theorem 1.30 is applicable. Thus π ∈ Cpl(µ, ν) is optimal for

PK
c = supπ∈Cpl(µ,ν)

∫
xy dπ(x, y). (1.10)

if and only if there exists a l.s.c. convex ϕ : Rn → [−∞,∞) such that π is concentrated on
the subgradient

∂ϕ = {(x, y) : ϕ(x) + ϕ∗(y) = xy}.
By Rademacher’s theorem, every convex function is almost surely differentiable (where it
is finite). From this we obtain a particularly satisfying characterization of the dual maxi-
mizer in the case of absolutely continuous marginal µ:

Corollary 1.36. Assume that µ, ν ∈ P(Rn) have finite second moment and that µ � Leb.
Then there is a unique optimal π∗ ∈ Cpl(µ, ν) for the problem (1.10). Given a Kantorovich
potential ϕ, the optimizer π∗ is of the form (Id,∇ϕ)#µ. In particular there exists a unique
optimal transport mapping T : Rn → Rn and T is the gradient of a convex function.
Moreover T is the only gradient of a convex function which pushes µ to ν.

Proof. From Theorem 1.30 we know that there exists a convex potential ϕ and that π(∂ϕ) =

1 for any primal optimizer π.
Since a convex function is locally Lipschitz (on the set where it is finite) it is differ-

entiable Leb-a.e. by Rademacher’s theorem so that ∇ϕ(x) exists µ-a.e. Furthermore, on
the set of differentiability of ϕ it holds that ∇ϕ(x) = y iff y ∈ ∂ϕ(x). Hence, any optimal
coupling π is concentrated on the graph of ∇ϕ.

This immediately implies that the optimal coupling is unique. Indeed, assume there are
two optimal couplings π1, π2 both concentrated on the graph of some maps T1,T2. Then,
π3 = 1

2 (π1 + π2) is optimal again by linearity of the Kantorovich problem. By the first part
of the theorem, π3 has to be concentrated on the graph of some function. By construction
it is concentrated on the union of the graphs of T1 and T2. This is only possible if T1 = T2
µ-a.s.

For the last statement, note that any ∇ϕ̄ with ∇ϕ̄(µ) = ν is optimal since the graph
defines a c-cyclically monotone set. By uniqueness, we can conclude. �

Remark 1.37. In probabilistic terms, (1.10) reads

sup{E[XY] : X ∼ µ,Y ∼ ν}. (1.11)

The covariance of random variables X,Y is given by cov(X,Y) := E[(X−E[X])(Y−E[Y])] =

E[XY]−E[X]E[Y], so problem (1.12) is further equivalent to finding the coupling of X and
Y which maximizes the mutual covariance, i.e.

sup{cov(X,Y) : X ∼ µ,Y ∼ ν}. (1.12)

Remark 1.38 (Uniqueness). Observe, that we proved uniqueness by showing that any opti-
mal coupling has to satisfy a property which is not stable under convex combinations (here
being concentrated on the graph of a function). This is essentially the only way we can
prove uniqueness of optimal couplings.

Being the gradient of a convex function ϕ : Rn → [−∞,∞) can be seen as a natural
n-dimensional analogue of be an increasing (non-decreasing) function.

Definition 1.39. Let µ ∈ P(Rn). A function T : Rn → Rn is called monotone if there exists
a convex function ϕ : Rn → [−∞,∞) which is µ-a.s. differentiable and satisfies T = ∇ϕ.
µ-a.s.
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Rather then maximizing w.r.t. the cost function (x, y) 7→ xy, we can consider the mini-
mization problem for the quadratic distance cost function (x, y) 7→ 1

2 |x − y|2. In this terms,
Corollary 1.36 amounts

Theorem 1.40 (Brenier’s Theorem). Let X = Y = Rn, c(x, y) = 1
2 |x − y|2. Assume that

µ, ν ∈ P(X) have finite second moment and that µ � Leb. Then, there is a unique optimal
coupling π∗ ∈ Cpl(µ, ν). This optimizer is of the form π∗ = (Id,∇ϕ̄)(µ) for some convex
function ϕ̄ : X→ R.4

Moreover, there exists a µ-a.e. unique map T of the form T = ∇ϕ̄ such that T (µ) = ν
and for any convex ϕ̃, the map T̃ = ∇ϕ̃ is optimal between µ and T̃ (µ).

Remark 1.41. One can relax the condition µ � Leb a little bit. From the proof it is clear
that it is sufficient to assume that µ does not charge the set of non-differentiability points
of convex functions. For instance it would be sufficient to assume that µ does not charge
any set of Hausdorff dimension less or equal than n − 1. We will refer to this property by
saying µ does not charge small sets.

Remark 1.42. The question of regularity of the optimal transport maps is an interesting
story in itself which goes way beyond the scope of this course. For instance if µ and ν
have α-Hölder continuous density and convex support then the optimal map is C1,α. If the
densities are only bounded from above and below the optimal maps are only Cα for some
α < 1.

In Brenier’s theorem we could show that ∂cϕ(x) is single-valued µ a.s. by playing ev-
erything back to convex functions. However, the two properties that we really needed are
the following: If ϕ is c-concave and (x, y) ∈ ∂cϕ then

• ϕ, c(·, y) are differentiable at x (µ-a.e.) with ∇ϕ(x) = ∇xc(x, y)
• ∇xc(x, ·) is invertible.

Assuming differentiability of ϕ and c, the second part of the first item can be argued via
c-concavity (ϕ(x) = c(x, y)−ϕc(y), ϕ(z) ≤ c(z, y)−ϕc(y) all z ∈ X). If the second item holds,
then y = (∇xc(x, y))−1 (∇ϕ(x)) so that we can write down a map x 7→ y with (x, y) ∈ ∂cϕ
implying uniqueness as for Brenier’s result.

Let us consider two cases:
i) c(x, y) = h(x − y), with h superlinear and strictly convex (e.g. h(x) = |x|2/2)

ii) c(x, y) = h(|x − y|), with h strictly concave.
Let us start with i). Then, ∇xc(x, y) = ∇h(x − y) and ∇h is defined (a.e.) and invertible

with (∇h)−1 = ∇h∗ where h∗(y) = supx x · y − h(x) is the Legendre transform of h. This
means that ∇xc(x, y) = u ⇔ y = x − ∇h∗(u). Thus, if ϕ is c-concave and differentiable at
x, then

∂cϕ(x) = {x − ∇h∗(∇ϕ(x))}.
In this situation one can show that a c-concave function is locally Lipschitz on the interior
of the set where it is finite (short int(Dom(ϕ))). Then, Rademacher’s theorem implies that
ϕ is differentiable Leb-a.e. on int(Dom(ϕ)). Summarizing we obtain

Theorem 1.43 (Gangbo-McCann, [GM96]). Let X = Y = Rn, c(x, y) = h(x − y) where h
is superlinear, strictly convex and bounded from below. Let µ, ν ∈ P(X) with µ � Leb.
Assume that PK

c < ∞. Then, there exists a unique optimal coupling q∗. It is a Monge
coupling induced by a transport map of the form T (x) = x−∇h∗(∇ϕ(x)) for some c-concave
function ϕ.

Furthermore, any map T of this form is optimal between µ and T (µ).

Let us turn to item ii) so c(x, y) = h(|x− y|) with h : R+ → R strictly concave and h ≥ 0.

Theorem 1.44 (Gangbo-McCann, [GM96]). Assume PK
c < ∞. Put µ0 = (µ − ν)+, ν0 =

(µ − ν)−, µ ∧ ν = µ − µ0 = ν − ν0. Then, there is a unique optimal coupling q∗. Write

4Explicitly we can take ϕ̄ =
|x|2
2 − ϕ(x), where ϕ is a Kantorovich potential.
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q∗ = q∗d + q∗o with q∗d = q∗|{(x,x):x∈Rd}. Then, q∗ = (Id, Id)(µ ∧ ν) and qo is a Monge coupling
induced by a map T of the form T (x) = x − ∇h∗(∇ϕ(x)) µ-a.e. for some c-concave ϕ.

The crucial idea to prove this result relies on the following observation. Wlog we can
assume c(x, x) = h(0) = 0. Then the strict concavity of h implies that c is a metric with
strict triangular inequality (Exercise!). Then, the common mass has to stay put. Indeed,
we have the following result:

Lemma 1.45. Let µ, ¸ν ∈ P(X), c a metric on X. Let q ∈ Cpl(µ, ν), µ ∧ ν = µ − (µ − ν)+ =

ν − (ν − µ)+. Then, qd ≤ (Id, Id)(µ ∧ ν). If c satisfies the strict triangular inequality and q
is optimal for c, then there is equality.

Proof. Exercise. �

Arguing as in the convex case yields the result.

Example 1.46. (The one-dimensional case) Let X = Y = R, c(x, y) = h(y − x) for some
strictly convex h, e.g. h(r) = |r|p, p > 1. Pick a c-c.m. set Γ and (xi, yi) ∈ Γ for i = 1, 2.
Wlog we can assume that y1 < y2. We want to understand whether c-c.m. forces x1 ≤ x2
or x2 ≤ x1? Note that these are geometric constraints on Γ.

Put a = y2 − y1 > 0. Setting

b = y1 − x1, d = y1 − x2

we have
b + a = y2 − x1, d + a = y2 − x2.

Since Γ is c-c.m., (1.3) with n = 2 implies

h(b) + h(d + a) ≤ h(b + a) + h(d)
⇔ h(d + a) − h(d) ≤ h(b + a) − h(b).

Since h is strictly convex and a > 0 the map x 7→ h(x + a) − h(x) is (strictly) increasing
implying b > d and hence x1 < x2.

Note that this property uniquely determines any coupling π living on Γ to be the quan-
tile coupling/monotone rearrangement between its marginals. More precisely, if π has
marginals µ and ν with cumulative distribution functions Fµ and Fν, then

π = (F−1
µ , F

−1
ν )(Leb|[0,1]).

Observe, that in this situation we only considered cyclical monotonicity using 2-cycles. A
set Γ ⊆ X×Y satisfying (1.3) for n = 2 is called monotone set. In dimension 1 monotonicity
is equivalent to c-cyclical monotonicity for c(x, y) = h(x−y) and h strictly convex. In higher
dimensions this is not true any more.

1.5. Kantorovich-Wasserstein distance and interpolation of probability measures. For
various applications of optimal transport a key object are the Kantorovich-Wasserstein dis-
tances Wp. They inherit various geometric properties of the base space and induce an
useful interpolation of probability measures.

We denote the set of probability measures with finite p-th moment by

Pp(X) =

{
µ ∈ P(X) :

∫
dp(x, x0) µ(dx) < ∞, for some, hence any x0 ∈ X

}
.

Definition 1.47. The p-Wasserstein distanceWp is defined for µ, ν ∈ Pp(X) as

Wp(µ, ν) =

(
inf

π∈Cpl(µ,ν)

∫
dp(x, y) π(dx, dy)

) 1
p

.

Note that by Jensen’s inequality Wp(µ, ν) ≤ Wq(µ, ν) whenever 1 ≤ p ≤ q < ∞, in
particularW1 is the weakest of all Wasserstein distances.

Observe thatWp(δx, δy) = d(x, y), hence,Wp can be seen as a natural extension of d
from X to Pp(X).

Let us show thatWp is in fact a distance.
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Theorem 1.48. Wp defines a distance on Pp(X).

Proof. Since the d(x, y) = d(y, x) it follows thatWp(µ, ν) = Wp(ν, µ) andWp(µ, µ) = 0.
IfWp(µ, ν) = 0 there is a coupling π (note that dp is continuous and bounded from below
so that we have existence of optimal couplings) which is concentrated on the diagonal
{(x, x) : x ∈ X} since d(x, y) = 0 iff x = y. Hence, µ = ν.

It remains to show the triangle inequality. To this end, pick µ1, µ2, µ3 ∈ Pp(X). and let
q1 be optimal between µ1 and µ2 and q2 be optimal between µ2 and µ3. Then there exists
Markov-process X1, X2, X3 on some probability space (Ω,F ,P) such that Xi ∼ µi, i = 1, 2, 3
and (X1, X2) ∼ q1, (X2, X3) ∼ q2. Using the triangle inequality on Lp(P) it follows that

Wp(µ1, µ3) ≤ (E|X1 − X3|p)
1
p ≤ (E|X1 − X2|p)

1
p + (E|X2 − X3|p)

1
p

=Wp(µ1, µ2) +Wp(µ2, µ3)

Finally, we need to show thatWp is real valued. From the triangle inequality we obtain

Wp(µ, ν) ≤ Wp(µ, δx0 ) +Wp(ν, δx0 ) =

(∫
dp(x, x0)(dµ(x) + dν(x))

) 1
p

< ∞

by definition of Pp(X). �

Theorem 1.49. If the metric on X is bounded, thenWp metrizes the weak topology.

In the proof we use the following probabilistic characterization of the weak topology:

Theorem 1.50 (Skorohod representation). Let X be a Polish space and µn, µ ∈ P(X) with
µn → µ weakly. Then there exists a probability space supporting random variables Xn, X
with Xn ∼ µn and X ∼ µ such that Xn → X a.s.

Proof of Theorem 1.49. Let µn → µ weakly. Then there exists by the Skorohod represen-
tation theorem a probability space supporting Xn, X with Xn ∼ µn and X ∼ µ such that
Xn → X a.s. Write πn := law(Xn, X) ∈ P(µn, µ). We have

lim sup
n
Wp

p(µn, µ) ≤ lim sup
n

∫
dp(xn, y) dπn(xn, x) = lim sup

n
E[dp(Xn, X)] = 0,

by dominated convergence.

For the converse direction assume thatW1(µn, µ) → 0. Let f ∈ Cb(X) and ε > 0. On a
bounded Polish space, Lipschitz functions are uniformly dense in the continuous bounded
functions, so pick a Lipschitz function g which is uniformly ε/2-close to f . Then we have
by (the trivial part of) Kantorovich-Rubinstein

µn( f ) − µ( f ) ≤ µn(g) − µ(g) + ε ≤ ε + Lip(g)W1(µn, µ)

and, by symmetry also µ( f ) − µn( f ) ≤ ε + Lip(g)W1(µn, µ). �

Definition 1.51 (Weak convergence in Pp(X)). Let (µn)n be a sequence in Pp(X) and µ ∈
Pp(X). We say that (µn)n converges weakly in Pp(X) to µ if for some (and therefore any)
x0 ∈ X

µn → µ and
∫

dp
X(x, x0) dµn(x)→

∫
dp

X(x, x0) dµ(x).

We stress that in the above definition the condition “
∫

dp(x, x0) µn(dx)→
∫

dp(x, x0) µ(dx)
for some x0 ∈ X” can be replaced by “

∫
f (x) µn(dx) →

∫
f (x) µ(dx) for all f continuous

of at most p-th order growth”.

Theorem 1.52. The p-Wasserstein distance metrizes weak convergence in Pp(X).
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Proof. Let µn, µ ∈ Pp(X), n ∈ N and x0 ∈ X.
IfWp(µn, µ) → 0 then we know by Theorem 1.49 that µn → µ weakly. Moreover, by

the triangle inequality∣∣∣∣∣∫ dp
X(x, x0) (µn(dx) − µ(dx))

∣∣∣∣∣ ≤ ∣∣∣Wp
p(µn, δx0 ) −Wp

p(µ, δx0 )
∣∣∣ ≤ 2p−1Wp(µn, µ)→ 0,

which proves that µn → µ in Pp(X).
On the other hand, if µn → µ in Pp(X) then there exists by the Skorohod repre-

sentation theorem a probability space with Xn ∼ µn, X ∼ µ and Xn → X a.s. As
dp

X(x, y) ≤ 2p−1(dp
X(x, x0) + dp

X(y, x0)), we have by Fatou’s lemma that

lim sup
n
Edp

X(Xn, X) − 2p−1(dp
X(Xn, x0) + dp

X(X, x0)) ≤ −2pEdp
X(X, x0),

and therefore limn Edp(Xn, X) = 0. As in Theorem 1.49 we conclude that Wp(µn, µ) →
0. �

Lemma 1.53. A family E is relatively compact in Pp(X) if and only if E is tight and

lim
R→∞

sup
µ∈E

∫
1{x∈X:dX(x,x0)≥R}d

p
X(x, x0) µ(dx) = 0. (1.13)

Proof. In the proof of Theorem 1.52 we have seen that µn → µ in Pp(X) if and only if there
exists a probability space (Ω,F ,P) with Xn ∼ µn, X ∼ µ such that dp

X(X, Xn)→ 0 in L1(P).
By the Vitali convergence theorem we have that (dp

X(X, Xn))n is uniformly integrable, from
where it easily follows that also (dX(Xn, x0))n is uniformly integrable. Hence,

lim
R→∞

sup
n

∫
1{x∈X:dX(x,x0)≥R}d

p
X(x, x0) µn(dx) = 0.

If E is relatively compact, then any sequence (µn)n in E admits a convergent subse-
quence with limit in Pp(X). Then E is tight and by the first observation we also get (1.13).

If E is tight and satisfies (1.13), then any sequence admits a convergent subsequence
with limit in P(X). Since supµ∈E

∫
dp

X(x, x0) µ(dx) < ∞ and the map µ 7→
∫

dp
X(x, x0) µ(dx)

is l.s.c. on P(X), the limit has finite p-th moment. When (µn)n is a sequence in E such that
µn → µ in P(X), then there exists by the Skorohod representation theorem a probability
space with Xn ∼ µn, X ∼ µ and Xn → X a.s. By (1.13), (dp

X(Xn, x0))n is uniformly integrable
and dp

X(Xn, x0) → dp
X(X, x0) in L1, which implies that µn → µ in Pp(X). As (µn)n was

arbitrary, E is relatively compact in Pp(X). �

Finally we show:

Theorem 1.54. (Pp(X),W(X)) is Polish.

Proof. The weak topology is separable, so we only have to show that (Pp(X),Wp(X))
is complete. That is, given a Cauchy-sequence (µn)n, we have to find an accumulation
point. For simplicity we assume that d is bounded and p = 1, but both assumptions are not
necessary. Passing to a subsequence if necessary, we may assume thatW(µn, µn+1) < 2n+1.
Next pick (Ω,F ,P) and random variables X1, X2, . . . such that Xn ∼ µn,Ed(Xn, Xn + 1) =

W(µn, µn+1). Then (Xn)n is an L1(P)-Cauchy sequence. As X is complete, it converges
along a subsequence to a random variable X and µ := lawX is the desired accumulation
point of (µn)n. �

1.6. Displacement interpolation. Let X = Y = Rd endowed with the Euclidean norm and
let (X0, X1) be distributed according to anWp-optimal coupling π ∈ Cpl(µ0, µ1). For two
points x0, x1 ∈ Rd a curve connecting x0 and x1 is given by xt := (1 − t)x0 + tx1 which is
the unique constant speed geodesic, i.e., |xt − xs| = |t − s||x0 − x1|. The coupling π induces
via the displacement interpolation a curve of measures (µt)t∈[0,1]

µt := law(Xt) where Xt := (1 − t)X0 + tX1.
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Define πs,t := law(Xs, Xt) ∈ Cpl(µs, µt) which yields

Wp(µs, µt) ≤ E [|Xs − Xt |p] 1
p = E

[|t − s|p|X0 − X1|p] 1
p = |t − s|Wp(µ0, µ1).

Combining this (when 0 ≤ s ≤ t ≤ 1) with the triangle inequality we get

Wp(µ0, µ1) ≤ Wp(µ0, µs) +Wp(µs, µt) +Wp(µt, µ1)

≤ (s + (t − s) + (1 − t))Wp(µ0, µ1) =Wp(µ0, µ1),

which leads to

|t − s|Wp(µ0, µ1) =Wp(µs, µt) ∀s, t ∈ [0, 1]. (1.14)

Curves (µt)t∈[0,1] in Pp(X) that satisfy (1.14) are called constant speed geodesics. We con-
clude that optimal couplings induce via displacement interpolation constant speed geodesics
on Pp(Rd). The converse is also true (c.f. [Lis09, Theorem 6]): if (µt)t∈[0,1] is a constant
speed geodesic in Pp(Rd) then it is the displacement interpolation w.r.t. an optimal cou-
pling in Cpl(µ0, µ1).

Example 1.55 (convex interpolation vs displacement interpolation). When p > 1 the
(unique) p-Wasserstein constant speed geodesic between two dirac measures δx and δy

is given by (δxt )t where xt := (1 − t)x + ty. Contrary to that, the convex interpolation
νt := (1 − t)δx + tδy is not of constant speed, since

Wp(νt, νs) = |t − s| 1p |x − y|,
which is strictly greater than |t − s||x − y| = |t − s|Wp(δx, δy) as p > 1.

Let ∇ϕ : Rd → Rd be the gradient of a convex function with ν = ∇ϕ#µ and X0 ∼ µ.
Define Xt := (1 − t)X0 + t∇ϕ(X0) and observe that a.s. X = (Xt)t∈[0,1] ∈ AC (where AC
denotes here the set of absolutely continuous curves on Rd) with derivative Ẋt = ∇ϕ(X0) −
X0. We know by Brenier’s theorem that the law of (X0,∇ϕ(X0)) is anW2-optimal coupling,
hence,

W2
2(µ, ν) = E

[
|X0 − X1|2

]
=

∫ 1

0
E

[
|Ẋt |2

]
dt.

On the other hand, when X = (Xt)t∈[0,1] is a.s. absolutely continuous such that X0 ∼ µ and
X1 ∼ ν, we have

W2
2(µ, ν) ≤ E

[
|X0 − X1|2

]
= E

∣∣∣∣∣∣
∫ 1

0
Ẋt dt

∣∣∣∣∣∣2
 ≤ ∫ 1

0
E

[
|Ẋt |2

]
.

We have derived the following dynamic optimal transport formulation: Given µ, ν ∈ P2(Rd),
it holds that

W2
2(µ, ν) = inf

{∫ 1

0
E[|Ẋt |2] dt : X ∈ AC, X0 ∼ µ, X1 ∼ ν

}
.

Benamou and Brenier [BB00] introduced a dynamic formulation of the Wasserstein-2 dis-
tance where they connect the Wasserstein-2 distance to curves of measures (µt)t satisfying
weak formulation of the continuity equation ∂tµt + ∇ · (µtvt) = 0 for some velocity field
v(t, x). Otto [Ott01] observed that the Benamou-Brenier formula can formally be inter-
preted as the length distance induced by a Riemannian metric on P2(Rd). This observation
allowed to interpret solutions of certain PDEs as gradient flows w.r.t. the Wasserstein ge-
ometry. Even though this is a very exciting direction of research, proceeding here would
go beyond the scope of these lecture notes For the interested reader we refer to [FG21] for
an introduction to this topic and [AGS08] for a thorough study of gradient flows in Pp(X).
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1.7. Multi-marginal optimal transport. Given µ1, . . . , µN ∈ Pp(X) and a cost function
c : XN → R ∪ {∞}, the multi-marginal optimal transport problem is given by

Vc(µ1, . . . , µN) := inf
π∈Cpl(µ1,...,µN )

∫
c(x1, . . . , xN) dπ(x1, . . . , xN), (1.15)

where Cpl(µ1, . . . , µN) := {π ∈ P(XN) : projn# π = µn, n = 1, . . . ,N}. With minor modifi-
cations of the proofs in the previous section, we find when c is lower semicontinuous and
bounded from below that

(1) the optimal value Vc(µ1, . . . , µN) is attained,
(2) the optimal value map (µ1, . . . , µN) 7→ Vc(µ1, . . . , µN) is lower semicontinuous,
(3) there holds duality

Vc(µ1, . . . , µN) = sup
(ϕ1,...,ϕN )∈Cb(X)N∑N
n=1 ϕ(xn)≤c(x1,...,xN )

N∑
n=1

µn(ϕn).

A very natural multi-marginal transport problem is given by the so called Wasserstein-
barycenter introduced in [AC11].

The Wasserstein distance induces a metric on the set of probability measures that lifts
the metric structure of the base space X onto the set of probability measures on X. Given
data from multiple sources in form of distributions µ1, . . . , µN ∈ Pp(X), the Wasserstein
barycenter is a way of summarizing them which contrary to a convex combination also
takes into account the geometry of the underlying space. A p-Wasserstein barycenter of
(µ1, . . . , µN) is a minimizer of

inf
µ∈Pp(X)

1
N

N∑
n=1

Wp
p(µn, µ). (1.16)

Theorem 1.56. Let µ1, . . . , µN ∈ P2(Rd) and c(x1, . . . , xN) := 1
N

∑N
n=1 |xn − T (x1, . . . , xN)|2

where T (x1, . . . , xN) := x̄N := 1
N

∑N
n=1 xn. Then (1.16) admits a minimizer and we have

Vc(µ1, . . . , µN) = inf
µ∈P(Rd)

1
N

N∑
n=1

W2
p(µn, µ). (1.17)

Moreover, if π∗ ∈ Cpl(µ1, . . . , µN) is optimal then T#π
∗ ∈ Pp(Rd) is a p-Wasserstein

barycenter of (µ1, . . . , µN).

Proof. Plainly we have

inf
µ∈P(Rd)

1
N

N∑
n=1

W2
p(µn, µ) = inf

X,X1∼µ1,...,XN∼µN

N∑
i=1

E[|Xi − X|p] (1.18)

= inf
X1∼µ1,...,XN∼µN

N∑
i=1

E[|Xi − X̄N |p] (1.19)

= inf
π∈Cpl(µ1,...,µN )

∫
c(x1, . . . , xN) dπ(x1, . . . , xN). (1.20)

�
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2. Weak optimal transport

Let π be a probability measure on X×Y with first marginal µ. The disintegration theorem
tells us that for any measurable functions c : X×Y→ R∪ {∞} that is bounded from below,
we have the identity

π(c) =

∫ ∫
c(x, y) πx(dy) µ(dx).

In this case, we can define the measurable map C(x, ρ) :=
∫

c(x, y) ρ(dy) with domain
X × P(Y), which allows us to reformulate the optimal transport problem as

Vc(µ, ν) = inf
π∈Cpl(µ,ν)

∫ ∫
c(x, y) πx(dy) µ(dx) = inf

π∈Cpl(µ,ν)

∫
C(x, πx) µ(dx).

2.1. Problem formulation. Weak optimal transport is a generalization of optimal trans-
port that is concerned with cost functions C : X × Pp(Y) → R ∪ {∞}. Cost functions of
this type are called weak transport costs. For µ ∈ Pp(X) and ν ∈ Pp(Y), the weak optimal
transport problem is defined as

VWT
C (µ, ν) := inf

π∈Cpl(µ,ν)

∫
X

C(x, πx) µ(dx). (2.1)

Example 2.1 (Entropic optimal transport). Let µ ∈ P(X), ν ∈ P(Y), and c ∈ Mb(X × Y) a
cost function. The entropic transport problem is given by

VEOT
c (µ, ν) := inf

π∈Cpl(µ,ν)
π(c) + H(π|µ ⊗ ν),

where H denotes the relative entropy

H(η|ρ) =


∫

log
(

dη
dρ (x)

)
dη(x) η � ρ,

∞ else,

for η, ρ ∈ P(X). This problem can be reformulated as a weak transport problem: When
π � µ ⊗ ν the density satisfies dπ

dµ⊗ν (x, y) = dπx
dν (y) which we use to compute

H(π|µ ⊗ ν) =

∫
log

(
dπ

dµ ⊗ ν
)

dπ =

∫ ∫
log

(
dπx

dν

)
dπx dµ =

∫
H(πx|ν) µ(dx),

hence,

VEOT
c (µ, ν) = inf

π∈Cpl(µ,ν)

∫ (∫
c(x, y) πx(dy) + H(πx|ν)

)
µ(dx).

We will discuss that (µ, ν) 7→ H(µ|ν) is bounded from below, jointly lower semicontinuous
and jointly convex in a later chapter.

Definition 2.2. Let µ, ν ∈ P1(Rd), and define mean: P1(Rd)→ R : ρ 7→
∫

y ρ(dy).
A coupling π ∈ Cpl(µ, ν) is called a martingale coupling if

mean(πx) = x for µ-a.e. x.

The subset of all martingale couplings is denoted by CplM(µ, ν).

Example 2.3 (Martingale optimal transport). Let c : Rd ×Rd → R∪{∞} and µ, ν ∈ P1(Rd).
The martingale optimal transport problem consists of minimizing

VMOT
c (µ, ν) := inf

π∈CplM(µ,ν)
π(c). (2.2)

The martingale constraint on the disintegration kernel (πx)x can be incorporated into a weak
transport cost. Indeed, we can define

C(x, ρ) :=


∫

c(x, y) ρ(dy) mean(ρ) = x,
∞ else.

Since the mapping mean: P1(Rd) → R is continuous, we have that the set {(x, ρ) :
mean(ρ) = x} ⊆ Rd × P1(Rd) is closed. We observe that, when c is bounded from be-
low and lower semicontinuous, then C is bounded from below, lower semicontinuous and
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convex in its second argument. Since π(c) =
∫

C(x, πx) µ(dx) < ∞ implies that π is a
martingale coupling, we conclude

VMOT
c (µ, ν) = inf

π∈Cpl(µ,ν)

∫
C(x, πx) µ(dx).

2.2. Basic properties. The fact that disintegration of measures is a non-continuous oper-
ation, complicates the study of the weak transport problem. For example, given a weak
transport cost C ∈ Cb(X × P(Y)) the map

π 7→
∫

C(x, πx) µ(dx).

is in general just measurable.
We note that in Examples 2.1 and 2.3 the function C : X × Pp(Y) → R ∪ {∞} is lower

semicontinuous, bounded from below and convex in its second argument.
Indeed, this is satisfied for most natural appearances of weak transport problems and we

will mostly work under this assumption.
What makes the weak transport problem slightly challenging, is that lower semi-continuity

of C : P(X × P(Y)) → (−∞,∞] is not as directly applicable as in the case of the classical
transport. We first need to pass from the transport plan π to its disintegration with respect
to the first marginal µ. This operation is in general not continuous with respect to the weak
topology and requires some attention.

To deal with the disintegration, we introduce the injection J : P(X × Y)→ P(X ×P(Y))
which is defined by

J(π) := ((x, y) 7→ (x, πx))# π.

(1) The injection J is well-defined, since the disintegration kernel is unique up to null
sets.

(2) Measurability of J is trickier. A possible way is to first show that

F := {P ∈ P(X × P(Y)) : P is supported by the graph of a function }
is a Gδ-subset of P(X × P(Y)). Thus, F equipped with the trace topology is
Polish. Restricting the image yields that J : P(X × Y) → F is a bijection and its
right-inverse is continuous. (Explicitly, the right inverse is given by the mapping
Î defined in (2.5) below.)

Therefore, by the Lusin-Souslin theorem [Kec95, Theorem 15.1] (which states
that the injective image of a Borel set under a continuous function between two
Polish spaces is again Borel) we have that J−1(B) = J−1(B ∩F ) ∈ B(P(X × Y).
We conclude that J is measurable.

2.3. The intensity operator. To better exploit the (lower semi-) continuity of the cost
function C, we will introduce a counterpart to the set of transport plans in P(X×P(Y)). The
formal definition of this set Λ(µ, ν) will be given subsequently in Definition 2.9.

Definition 2.4 (Intensity operator). The intensity operator I : P(P(X)) → P(X) maps a
measure P ∈ P(P(X)) to the element I(P) ∈ P(X) satisfying, for any f ∈ Cb(X),∫

X
f (x) I(P) =

∫
P(X)

p( f ) P(dp). (2.3)

Remark 2.5. Some immediate properties of the intensity operator:

(1) The intensity operator is well-defined as for all B ∈ B(X) the map P(X) 3 p 7→
p(B) is measurable and therefore it is straightforward to verify that the right-hand
side in (2.3) defines a probability measure on X. Instead of (2.3), we could define
the intensity by asserting that for all measurable B ⊆ X

I(P)(B) =

∫
P(X)

p(B) P(dp). (2.4)
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(2) It is also possible (and sometimes useful) to related the intensity operator to a
form of expectation. Specifically, let Z be a P(X)-valued random variable. Its
expectation is the probability E(Z) ∈ P(X) satisfying

E[Z](B) = E[Z(B)]

for all measurable B ⊆ X. We thus have

E[Z] = I(law(Z)).

The expectation of a measure-valued random variables Z relates to the intensity of
law(Z) in precisely the same way as the usual expectation of a random variable X
relates to the barycenter of the law of X.

Of course one can also define the conditional expectation of a measure valued
random variable (which corresponds to the intensity of the conditional law of this
random variable). E inherits the basic properties of the usual expectation operator
such as the tower law.

(3) From the definition of the weak topology, we have that, for f ∈ Cb(X), the map
F f : P(X)→ R : p 7→ p( f ) is continuous, which has continuity of I w.r.t. the weak
topology as consequence.

(4) Restricted to Pp(Pp(X)), the intensity operator maps continuously to Pp(X), in-
deed it is 1-Lipschitz for the respective Wasserstein metrics.
Proof. Indeed, fix P,Q ∈ Pp(Pp(X)) and observe that, for f , g ∈ Cb(X) with f (x)+

g(y) ≤ dp
X(x, y), we have η( f ) + ρ(g) ≤ infπ∈Cpl(η,ρ)

∫
dp

X(x, y) dπ =Wp
p(η, ρ) for all

η, ρ ∈ Pp(X). Therefore, we have by optimal transport duality

Wp
p(I(P), I(Q)) = sup

f (x)+g(y)≤dp
X(x,y),

f ,g∈Cb(X)

P(F f ) + Q(Fg)

≤ sup
F(η)+G(ρ)≤Wp

p(η,ρ)
F,G∈Cb(Pp(X))

P(F) + Q(G) =Wp
p(P,Q). �

(5) We have the following Jensen-type inequality: let f : Pp(Pp(X)) → (−∞,∞] be
lower semicontinuous, convex and bounded from below, and P ∈ Pp(Pp(X)). Then

f (I(P)) ≤
∫

f (ρ) dP(ρ).

Indeed if Z is a random variable with law P, then this amounts to

f (E(Z)) ≤ E( f (Z)).

Proof. With the law of large numbers, for example, one can show that there is
a sequence of discrete measures with Pn → P and Pn( f ) → P( f ). We obtain
Jensen’s inequality

f (I(P)) ≤ lim inf
n

f (I(Pn)) ≤ lim inf
n

Pn( f ) = P( f ) =

∫
f (ρ) dP(ρ),

where we used continuity of I and lower semicontinuity for the first and convexity
for the second inequality. �

Lemma 2.6. A set E ⊆ Pp(Pp(X)) is relatively compact if and only if I(E ) ⊆ Pp(X) is
relatively compact.

Proof idea. To sketch the main idea we prove the assertion for dX bounded, which means
that all spaces are equipped with the weak topology, c.f. Theorem 1.49. The general case
is not much different but slightly more technical as it requires, besides showing tightness,
to adequately treat moments. A complete proof can be found in [BVBP19].

Assume that E is relatively compact. Since the image of a relatively compact set under
a continuous map is again relatively compact, the first implication follows by continuity of
I.
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Next, assume that I[E ] is relatively compact in Pp(X). Fix ε > 0 and choose for every
n ∈ N a compact Kn ⊆ X such that

sup
µ∈I[E ]

µ(Kc
n) <

ε2

22n .

The following set

K :=
({
µ ∈ Pp(X) : ∀n ∈ N, µ(Kc

n) ≤ ε

2n

})
is by Portmanteau’s theorem closed and by construction tight, thus, compact by Prohorov’s
theorem. Let P ∈ E . Using Markov’s inequality, the next computation shows tightness

P(Kc) ≤
∑

n

P({µ : µ(Kc
n) >

ε

2n ) ≤
∑

n

2n

ε

∫
ρ(Kc

n) P(dρ) <
∑

n

ε

2n = ε. �

It is convenient to introduce another intensity operator Î : Pp(X × Pp(Y))→ Pp(X × Y)
where Î(P) is given by

Î(P)( f ) =

∫ ∫
f (x, y) p(dy) P(dx, dp) ∀ f ∈ Mb(X × Y). (2.5)

Similarly to the intensity operator I, we have that Î is well-defined and continuous.

Corollary 2.7. A subset E ⊆ Pp(X × Pp(Y)) is relatively compact if and only if Î[E ] ⊆
Pp(X × Y) is relatively compact.

Proof. The set Î[E ] is relatively compact if and only if its set of X- and Y-marginals are
relatively compact in Pp(X) and Pp(Y) respectively. By Lemma 2.6 this is precisely the
case when the set of X- and Pp(Y)-marginals are relatively compact. But, this is equivalent
to E being relatively compact. �

Lemma 2.8. Let P = µ ⊗ κ ∈ P(X × P(Y)) for a kernel κ : X → P(P(Y)). Then we have
the identity Î(P) = µ ⊗ I(κ). In particular, I(κ) : X→ P(Y) is a disintegration of Î(P).

Proof. Fix f ∈ Mb(X × Y). By definition of I, Î and as I is measurable we find

Î(P)( f ) =

∫ ∫ ∫
f (x, y) p(dy) κx(dp) µ(dx) =

∫ ∫
f (x, y) I(κx)(dy) µ(dx).

Hence, I(κ) is a disintegration. �

Definition 2.9. Let µ ∈ P(X), ν ∈ P(Y). Then we set

Λ(µ, ν) := Î
−1(Cpl(µ, ν)) ⊆ P(X × P(Y)).

Note that

Λ(µ, ν) = {P : projX(P) = µ, I◦projP(Y)(P) = ν} = {P :
∫

ϕ(x) dP(x, ρ) = µ(ϕ),
∫

ψ(ρ) dP(x, ρ) = ν(ψ), ϕ ∈ Cb(X), ψ ∈ Cb(Y)}.

We then have

Corollary 2.10. Assume that µ ∈ Pp(X), ν ∈ Pp(ν). Then Λ(µ, ν) is compact with respect
to p-weak convergence.

2.4. Existence. From Corollary 2.10 we know that

inf
P∈Λ(µ,ν)

∫
C(x, p) dP(x, p)

is attained for lower semicontinuous c. If C is convex in the second argument and we
denote π := Î(P), P̄ := J(π), we have by Jensen’s inequality that

P(C) =

∫ ∫
C(x, p) Px(dp) µ(dx) ≥

∫
C(x, I(Px)) µ(dx) =

∫
C(x, πx) µ(dx) = P̄(C).

(2.6)
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Putting these facts together we obtain that for l.s.c. C which is convex in the second argu-
ment

inf
π∈Cpl(µ,ν)

∫
C(x, πx) dµ(x) = inf

P∈Λ(µ,ν)

∫
C(x, p) dP(x, P) (2.7)

and both sides are attained.
Indeed we will show a bit more below.

Proposition 2.11. Let C : X×Pp(Y)→ R∪{∞} be jointly lower semicontinuous, bounded
from below and convex in the Pp(Y)-coordinate, then the mapping

Pp(X × Y) 3 π 7→
∫

C(x, πx) µ(dx)

is lower semicontinuous.

Proof. Let (πn)n with πn = µn⊗πn
x be a sequence that converges in Pp(X×Y) to π = µ⊗πx.

Then we have by Lemma 2.7 that also the set (Pn := J(πn))n is relatively compact. There-
fore, we can find a convergent subsequence (Pnk )k with limit P such that lim infn Pn(C) =

lim infk Pnk (C). The intensity Î is continuous, which yields π = limn π
n = limn Î(J(πn)) =

Î(P) and P = µ ⊗ Px. Due to Jensen’s inequality (which holds here true since p 7→ C(x, p)
is lower semicontinuous and convex) we find

P(C) =

∫ ∫
C(x, p) Px(dp) µ(dx) ≥

∫
C(x, I(Px)) µ(dx) =

∫
C(x, πx) µ(dx), (2.8)

where we used that by Lemma 2.8 πx = I(Px) µ-a.s. Hence, we conclude

lim inf
n

∫
C(x, πn

x) µn(dx) = lim inf
n

Pn(C) ≥ P(C) =

∫
C(x, πx) µ(dx).

�

Theorem 2.12. The optimal value map VWOT
C : Pp(X) × Pp(Y)→ R ∪ {∞} is jointly lower

semicontinuous, convex in its second argument and the infimum is attained.

Proof. To see convexity, note that when π1, π2 ∈ Cpl(µ, ν) so is π := 1
2 (π1 + π2) and

πx = 1
2 (π1

x + π2
x), thus, 1

2

∫
C(x, π1

x) + C(x, π2
x) µ(dx) ≥

∫
C(x, πx) µ(dx).

Attainment and lower semicontinuity of the optimal value is a consequence of compact-
ness (see Lemma 1.53) and lower semicontinuity of the value function π 7→

∫
C(x, πx) µ(dx)

(see Proposition 2.11). �

2.5. Duality.

Definition 2.13. Given the cost C, the set of admissible dual variables is given by

D(C) :=
{
(ϕ, ψ) : ϕ ∈ M(X; R̄), ψ ∈ Mp(Y), ϕ(x) + ρ(ψ) ≤ C(x, ρ)

}
.

Definition 2.14 (C-conjugate). Let C : X × Pp(Y) → R ∪ {∞} be a cost function. For a
function ψ : Y→ R we define its C-transform ψC : X→ R ∪ {∞} by

ψC(x) := inf
ρ∈Pp(Y)

C(x, ρ) − ρ(ψ).

Remark 2.15. Similarly to the c-transform from optimal transport, one can argue by ab-
stract arguments from descriptive set theory that ψC is analytically measurable if C and ψ
are Borel. This suffices for our purposes. In the examples below, either C will be continu-
ous (thus, ψC is upper semicontinuous) or one can directly argue measurability.

Theorem 2.16 (Duality). Let C : X × Pp(Y)→ R ∪ {∞} be lower semicontinuous. Then

inf
π∈Cpl(µ,ν)

∫
C(x, πx) µ(dx) = sup

(ϕ,ψ)∈D(C)
ϕ∈Cb(X),ψ∈Cp(Y)

µ(ϕ) + ν(ψ) = sup
ψ∈Cb,p(Y)

µ(ψC) + ν(ψ).
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Remark 2.17. For general ψ ∈ Cp(Y), their C-transform might not be µ-integrable. To
avoid this, we restrict to ψ that are additionally bounded from above, that is ψ ∈ Cb,p(Y).
We have for (ϕ, ψ) ∈ D(C) ∩ (Cb(X) ×Cp(Y)) by monotone convergence that

ϕ(x) ≤ ψC(x) = inf
k∈N

(ψ ∨ k)C(x),

thus, µ(ϕ) + ν(ψ) ≤ limk µ((ψ ∨ k)C) + ν(ψ ∨ k).

Proof. We prove the theorem under the additional assumption that X,Y are compact. In
this case we can use the min-max argument we have seen in the classical case almost
verbatim. As before we write

χ(P) =

0 if P ∈ Λ(µ, ν)
∞ else.

= sup
(ϕ,ψ)∈Cb(X)×Cb(Y)

µ(ϕ) + ν(ψ) −
∫

ϕ(x) + p(ψ) dP(x, p).

As P(X × P(Y)) is compact for compact spaces X,Y we can apply Theorem 1.20 to inter-
change inf and sup to obtain

inf
P∈Λ(µ,ν)

∫
C dP = inf

P∈P(X×P(Y))

∫
c dπ + χ(π)

= inf
P∈P(X×P(Y))

sup
(ϕ,ψ)∈Cb(X)×Cb(Y)

∫
C(x, p) − ϕ(x) − p(ψ) dP(x, p) + µ(ϕ) + ν(ψ)

= sup
(ϕ,ψ)∈Cb(X)×Cb(Y)

inf
P∈P(X×P(Y))

∫
C(x, p) − ϕ(x) − p(ψ) dP(x, p) + µ(ϕ) + ν(ψ)

= sup
(ϕ,ψ)∈Cb(X)×Cb(Y)

inf
(x,p)∈X×P(Y)

C(x, p) − ϕ(x) − p(ψ) + µ(ϕ) + ν(ψ)

= sup
(ϕ,ψ)∈Cb(X)×Cb(Y),ϕ(x)+p(ψ)≤C(x,p)

µ(ϕ) + ν(ψ). �

To prove the result in the general case, one can either use approximation arguments or
apply the Fenchel-Moreau theorem, see [BVBP20].

2.6. Strassen’s theorem. Given two marginals µ, ν ∈ P1(Rd) Strassen [Str65] character-
ized the existence of a martingale coupling with said marginals. By Jensen’s inequality a
necessary condition is that µ and ν are in the convex order:

Definition 2.18 (convex order). We say µ and ν are in convex order and write µ �c ν if, for
all convex f : Rd → R ∪ {∞}, µ( f ) ≤ ν( f ).

To show Strassen’s theorem, we need the following lemma:

Lemma 2.19. Let ϕ : Rd → R ∪ {∞} be lsc and bounded from below. Then ϕ∗∗(x) =

inf{ρ(ϕ) : ρ ∈ P1(Rd),mean(ρ) = x}.
Proof. Observe that ϕ∗∗ is the largest lower semicontinuous and convex function below ϕ.
For example, this can be seen from the Fenchel-Moreau theorem and by monotonicity of
the biconjugate, i.e., ϕ1 ≤ ϕ2 then ϕ∗∗1 ≤ ϕ∗∗2 .

On the one hand, one can verify that ψ(x) := inf{ρ(ϕ) : ρ ∈ P1(Rd),mean(ρ) = x} is
lower semicontinuous, convex and dominated by ϕ, thus, ψ ≤ ϕ∗∗. On the other hand, we
have by Jensen’s inequality that

ϕ∗∗(mean(ρ)) ≤ ρ(ϕ∗∗) ≤ ρ(ϕ),

thus, ϕ∗∗ ≤ ψ which completes the proof. �

Theorem 2.20 (Strassen). Let µ, ν ∈ P(Rd). Then µ �c ν if and only if CplM(µ, ν) , ∅.
Proof. Let C(x, ρ) : Rd × P1(Rd)→ [0,∞] be given by

C(x, ρ) :=

0 mean(ρ) = x,
∞ else.
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Clearly, CplM(µ, ν) is non empty iff the weak transport problem associated to the cost C is
0. Since C is bounded from below, lower semicontinuous and convex, we can apply the
duality theorem and get

inf
π∈Cpl(µ,ν)

∫
C(x, πx) µ(dx) = sup

ψ∈Cb,1(Rd)
ν(ψ) + µ(ψC).

We find for any ψ ∈ Cb,1(Rd) that

ψC(x) = inf
ρ∈P1(Rd)

C(x, ρ) − ρ(ψ) = inf
ρ∈P1(Rd)

mean(ρ)=x

ρ(−ψ) = (−ψ)∗∗(x), (2.9)

where we applied Lemma 2.19 for the last equality. As (−ψ)∗∗ ≤ −ψ we have

sup
ψ∈Cb,1(Rd)

ν(ψ) + µ(ψC) = sup
ψ∈Cb,1(Rd)

−ν((−ψ)∗∗) + µ((−ψ)∗∗) = sup
ψ∈Cb,1(Rd),

concave

ν(−ψ) − µ(−ψ).

We conclude that CplM(µ, ν) , ∅ if and only if µ �c ν. �

2.7. Convex Kantorovich-Rubinstein duality. Now we let C(x, ρ) := |x − mean(ρ)|. In
this case we obtain the barycentric Kantorovich-Rubinstein formula.

inf
π∈Cpl(µ,ν)

∫
|x −mean(πx)| µ(dx) = sup

ψ : Rd→R
1-Lipschitz, concave

ν(ψ) − µ(ψ). (2.10)

Proof. Towards applying duality (Theorem 2.16) we compute

ψC(x) = inf
ρ∈P1(Rd)

|x −mean(ρ)| − ρ(ψ) = inf
z∈Rd

inf
ρ∈P1(Rd)
mean(ρ)=z

|x − z| − ρ(ψ) = inf
z∈Rd
|x − z| + (−ψ)∗∗(z),

where we used Lemma 2.19 for the last equality. As (x, z) 7→ |x − z| + (−ψ)∗∗(z) is jointly
convex, we deduce convexity of ψC . Moreover, ψC is also 1-Lipschitz with ψC(x) ≥ −ψ(x).
By Example 1.27 we conclude that ψC = −ψ if ψ is concave and 1-Lipschitz. We conclude
that

VWOT
C (µ, ν) = sup

ψ : Rd→R
1-Lipschitz, concave

ν(ψ) − µ(ψ).

�

No that the barycentric Kantorovich-Rubinstein formula implies Strassen’s theorem,
indeed it can be seen as a quantitative version of Strassen’s theorem.

2.8. Brenier-Strassen theorem.

Lemma 2.21. Let C be continuous. If π∗ ∈ Cpl(µ, ν) be optimizer of VWOT
C (µ, ν) < ∞.

Then supp(J(π∗)) = cl({(x, π∗x) : x ∈ X}) ⊆ X × Pp(Y) satisfies:
when (x1, p1), (x2, p2) ∈ supp(J(π∗)) and q1, q2 ∈ Pp(Y) with p1 + p2 = q1 + q2 then

C(x1, p1) + C(x2, p2) ≤ C(x1, q1) + C(x2, q2).

Proof. This can be shown similarly to Lemma 1.22. �

Theorem 2.22. Let µ ∈ P2(Rd) and ν ∈ P1(Rd). There exists a unique µ∗ ≤c ν s.t.

W2
2(µ∗, µ) = inf

η≤cν
W2

2(η, µ) = inf
π∈Cpl(µ,ν)

∫
|x −mean(πx)|2 µ(dx). (2.11)

Moreover, there exists a continuously differentiable convex function ϕ : Rd → R with ∇ϕ
being 1-Lipschitz, such that ∇ϕ(µ) = µ∗. Finally, an optimal coupling π∗ ∈ Π(µ, ν) for
V(µ, ν) exists, and a coupling π ∈ Π(µ, ν) is optimal for V(µ, ν) if and only if mean(πx) =

∇ϕ(x) µ-a.s.
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Proof. First, we prove (2.11). If π ∈ Cpl(µ, ν), set T (x) := mean(πx) and observe that
(Id,T )#µ ∈ Cpl(µ,T#µ) with T#µ �c ν by Jensen’s inequality. We have W2

2(µ,T#µ) ≤∫
|x −mean(πx)|2 µ(dx).
If π1 = µ ⊗ K1 ∈ Cpl(µ, η) with η �c ν and π2 = η ⊗ K2 ∈ CplM(η, ν) (which exists by

Strassen’s theorem), then the gluing π := µ ⊗ (K1K2) ∈ Cpl(µ, ν) with∫
|x − y|2 π1(dx, dy) =

∫ ∫
|x − y|2K1

x (dy) µ(dx)

=

∫ ∫
|x −mean(K2

y )|2 K1
x (dy) µ(dx) ≥

∫
|x −mean(K1K2

x )|2 µ(dx),

where we used mean(K2
y ) = y π1-a.s. for the second equality and Jensen’s inequality for

the first inequality. We have shown (2.11).
SinceW2

2(µ, δmean(ν)) is finite, so is (2.11).
If π1, π2 ∈ Cpl(µ, ν) are both optimal, so is 1

2 (π1 + π2). By strict convexity of | · |2 this
shows that mean(π1

x) = mean(π2
x), from which we derive that there is a unique µ∗ �c ν that

minimizes infη�cνW2
2(µ, η).

Next, we claim that if π∗ ∈ Cpl(µ, ν) then T (x) = mean(π∗x) is µ-a.s. 1-Lipschitz. Indeed,
by Lemma 2.21 we have, for (x, π∗x), (y, π∗z ) ∈ supp(J(π∗)) that

|x − T (x)|2 + |z − T (z)|2 ≤ |x −mean((1 − h)π∗xhπ∗z )|2 + |z −mean((1 − h)π∗z + hπ∗x)|2.
Differentiating the right-hand side w.r.t. h and evaluating at 0 yields

0 ≤ (x−T (x)) ·(T (x)−T (z))+(z−T (z)) ·(T (z)−T (x)) = (x−z) ·(T (x)−T (z))−|T (x)−T (z)|2.
By the Cauchy-Schwartz inequality we deduce that |T (x) − T (z)| ≤ |x − z|.

So let µ∗ be optimal and T be the optimal map with T#µ = µ∗. If µ ∼ Lebd, then
Theorem 1.40 would tell us the existence of a convex function ϕwith∇ϕ#µ = µ∗, which has
to be differentiable as T = ∇ϕ a.e. As T is 1-Lipschitz, we conclude that ϕ is differentiable
with T = ∇ϕ.

In general, we can approximate µ by a sequence µn → µ and µn ∼ Lebd. This can be
easily achieved by scaled convolution with a non-degenerate Gaussian kernel. For each n
we find convex ϕn with 1-Lipschitz ∇ϕn. W.l.o.g. let ϕn(0) = 0. Since {η �c ν} and (µn)n

are both tight, there is a compact set K with

inf
n
µn(K) ∧ ∇ϕn

#µn(K) >
1
2
.

In particular, for every n there is x ∈ K with ∇ϕn(x) ∈ K. As K is bounded, this shows
that supn supx∈K |∇ϕn(x)| < ∞. Therefore, (ϕn)n and (∇ϕn)n are both locally equicontin-
uous and locally bounded, which allows us to apply the Arzelà-Ascoli theorem and find
subsequences such that ϕnk → ϕ and ∇ϕnk → T . As locally uniform convergence preserves
gradient fields, we conclude that ∇ϕ = T .

Finally, by lower semicontinuity we have that lim infnW2
2(µn,∇ϕn

#µn) ≥ W2
2(µ,∇ϕ#µ).

We claim that ∇ϕ#µ is optimal. It suffices to show that lim supn VWOT
C (µn, ν) ≤ VWOT

C (µ, ν).
To this end, let π = µ ⊗ K ∈ Cpl(µ, ν) be optimal for VWOT

C and µn ⊗ Kn ∈ Cpl(µn, µ) be
W2-optimal. Define πn := µ ⊗ (KnK) ∈ Cpl(µn, ν). We have∫
|x −mean(KnKx)|2, µn(dx) =

∫ ∣∣∣∣∣x −mean(Kn
x ) +

∫
y −mean(Ky) Kn

x (dy)
∣∣∣∣∣2 µn(dx)

≤
∫
|x − y|2 − 2(x −mean(Kn

x )) · (
∫

y −mean(Ky) Kn
x (dy)) +

∣∣∣∣∣∫ y −mean(Ky) Kn
x (dy)

∣∣∣∣∣2 µn(dx)

≤ W2
2(µn, µ) + 2

(∫
|x −mean(Kn

x )|2 µn(dx)
) 1

2
(∫
|y −mean(Ky)|2 µ(dy)

) 1
2

+ VWOT
C (µ, ν)

≤ W2
2(µn, µ) + 2W2(µn, µ)VWOT

C (µ, ν)
1
2 + VWOT

C (µ, ν).

For n→ ∞ the final display converges to VWOT
C (µ, ν), which shows lim supn VWOT

C (µn, ν) ≤
VWOT

C (µ, ν). �
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3. Martingale optimal transport & robust finance

3.1. Motivation: A very quick primer in (robust) finance. In this section we introduce
the martingale optimal transport problem, that is motivated by the pricing problem in robust
finance. We start with a very quick review of some of the main concepts in finance. For
a more detailed introduction in mathematical finance (without robustness) we refer to the
manuscripts [FS16] and [DS06] (the first chapters give a very nice and quick introduction
without the technical subtleties from the general theory).

Let us consider the following simplified setup:

• we are given one risk-free asset and one risky asset, that can be traded at times
t = 0, 1, . . . ,T ;

• there is no interest rate (so w.l.g. the risk-free asset can be assumed to have con-
stant value 1), and the market is friction-less (no trading costs, both long and short
positions are allowed, holding fractions of assets is allowed,...);

• the value of the risky asset at time t is denoted by S t, and its evolution till maturity
T by S = (S 0, . . . , S T );

• a derivative or option written on the underlying S is a financial security whose
value/payoff depends on the evolution of S , i.e. it is a function of S . We write
f (S ) = f (S 0, . . . , S T ).

The fundamental problem in mathematical finance is to find a fair price for f = f (S ). We
start by noticing that, if f ≤ g then we expect price( f ) ≤ price(g), and for any quantity
a ≥ 0, we expect price(a f ) = a · price( f ). That is, we are looking for a functional “price”
which is a linear operator on the space of all derivatives. We will see below that this will
take the form of an expectation w.r.t. a probability measure in an appropriate space.

We will only consider self-financing strategies, in the sense that, given an initial amount
x ∈ R invested in the two assets at time 0, at every future time t = 1, . . . ,T the holdings
can be rebalanced between the two assets, without injecting money in the portfolio nor
withdrawing from it. Then, given an initial amount x, a trading strategy will be completely
defined by the holdings in the risky asset S , that we denote by H = (H0, . . . ,HT−1) (so that
Ht ∈ R are the units of S held in our portfolio between time t and t + 1). We will use the
notation H · S for the gain or loss process from trading in S using the strategy H. From
the self-financing property, one can see that H · S is a stochastic integral, so that in discrete
time we have (H · S )0 = 0 and

(H · S )t :=
t−1∑
s=0

Hs(S s+1 − S s), t = 1, . . . ,T.

In particular, as H runs over the set of all admissible strategies, the set of random variables
obtained as terminal values of such integrals, (H · S )T , represents all payoffs reachable
starting with zero initial endowment.

Classical setting. In the classical (model-dependent) approach, to model uncertainty re-
lated to future evolution of S , one fixes a filtered probability space (Ω,F = (Ft)T

t=0,P),
where the filtration F represent the evolution of the available information, and one as-
sumes S to be F -adapted (i.e., the evolution S 0, . . . , S t is known at time t). Similarly, the
strategy H is assumed to be F -adapted, so that holdings at time t are decided according to
the information available at that time. We denote by H the set of self-financing adapted
strategies.

A crucial assumption in order to be able to talk of fair price in a market, is that of
absence of opportunities which are “too good”, in the sense of (self-financing) trading
strategies that produce gains without incurring in any risk. In this spirit, we say that the
market satisfies the no arbitrage condition, short NA, if, for any H ∈ H ,

(H · S )T ≥ 0 P − a.s. ⇒ (H · S )T = 0 P − a.s.. (NA)
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This means that, by starting with no initial capital, and investing in the market, if we obtain
an a.s. non-negative payoff, then it must be a.s. zero.

If two measures Q and P are equivalent, meaning that they have the same null-sets, we
write Q ∼ P. We say S is a Q-martingale if it is a martingale under Q. This simply means
that S is Q-integrable and that EQ[S t+1|Ft] = S t for all t = 0, . . . ,T − 1. We recall one
of the pillars of mathematical finance, the so-called fundamental theorem of asset pricing
(FTAP), connecting (NA) to the theory of martingales.

Theorem 3.1 ([DMW90]). P satisfies NA ⇔ there exists Q ∼ P such that S is a Q-
martingale.

Note that the direction⇐ of the proof is straightforward since any nonnegative martin-
gale with mean zero is constant. The other direction is far less trivial.

Any measureQ as in Theorem 3.1 is called an equivalent martingale measure, or pricing
measure. The reason for the latter is justified by the fact that fair pricing rules are exactly
given by EQ, for any fixed equivalent martingale measure Q. Here we only provide the
argument that shows that any such expectation provides indeed a fair pricing. We are
under the assumption of NA, and we consider p being a fair price for a derivative f if by
introducing the product f at price p in the market we do not introduce arbitrage. Note that,
in this extended market, the notion of NA reads as

a( f − p) + (H · S )T ≥ 0 P − a.s. ⇒ a( f − p) + (H · S )T = 0 P − a.s., (3.1)

for all a ∈ R and H ∈ H . Now, if there is an equivalent martingale measure Q s.t.
EQ[ f ] = p, the r.h.s. of (3.1) has expectation zero under Q, thus the implication in (3.1)
is clearly satisfied. Conversely, that NA in the extended market implies that there is an
equivalent martingale measure Q s.t. EQ[ f ] = p, can be seen from the next theorem, that
relates the two fundamental problems of pricing and hedging (i.e. replication) of financial
derivatives. We recall that a derivative f is said to be replicable (resp. super-replicable) if
there exists an endowment x ∈ R and a trading strategy H ∈ H s.t.

x + (H · S )T = f (resp. ≥ f ) P-a.s.. (3.2)

Theorem 3.2. Let P satisfy (NA) and let f ∈ L1(P). Then

sup{EQ[ f ] : Q equivalent martingale measure} = inf{a ∈ R : ∃H ∈ H , a+(H·S )T ≥ f P-a.s.}.
The above theorems states that the “maximal fair price” for a derivative is given by

the smallest initial amount needed in order to super-replicate the derivative. Similarly, the
“minimal fair price” equals the biggest initial amount needed in order to sub-replicate the
derivative:

inf{EQ[ f ] : Q equivalent martingale measure} = sup{a ∈ R : ∃H ∈ H , a+(H·S )T ≤ f P-a.s.}.
(3.3)

We are interested in determining these extreme values, as they define the interval of all fair
prices for the derivative f (S ).

Robust setting. In contrast to the classical approach, the model-independent approach
lifts any assumption about an underlying probability space, and instead aims to analyse
the problems of pricing and hedging only based on available market prices. Here S =

(S 0, . . . , S T ) can be regarded as the canonical process on RT+1
≥0 .

Denote by Ct,k = (S t−k)+ the payoff of a European Call option with strike k and maturity
t. This is the typical example of a particular, frequently traded financial derivative. Hence
we assume that these options are “liquidly” traded (at time 0) and that the market gives us
the price for these options, namely the function (t, k) 7→ pt(k) is given:

price(Ct,k) = pt(k).

Let us fix t and check which properties the function k 7→ pt(k) should reasonably have:
(1) As the payoff is nonnegative, we should have pt ≥ 0.
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(2) Let k1 < k2, λ ∈ (0, 1), and set k := (1 − λ)k1 + λk2. Then, it holds that

(1 − λ)Ct,k1 + λCt,k2 ≥ Ct,k.

Consequently, for a linear pricing rule,

(1 − λ)pt(k1) + λpt(k2) ≥ pt(k) = pt((1 − λ)k1 + λk2),

so that pt is convex in k.
(3) As the stock price is non-negative, we have Ct,0 = S t, so that pt(0) = S 0.
(4) For every value of S t it holds that limk→∞Ct,k = 0. Hence, limk→∞ pt(k) = 0.
(5) For k1 < k2 we have

0 ≤ Ct,k1 −Ct,k2 ≤ k2 − k1,

and therefore, for a monotone pricing rule,

0 ≤ pt(k1) − pt(k2) ≤ k2 − k1,

so that pt is decreasing and convex with slope at least −1 (close to 0) and at most
0 (close to∞).

Interestingly, any function pt satisfying these five properties is induced by a measure in
the following sense:

Lemma 3.3 (Breeden-Litzenberger [BL78]). Assume that k 7→ p(k) satisfies properties
(1)-(5) above. Then, there exists a unique probability µ on R+ s.t.

p(k) =

∫
(x − k)+µ(dx).

Moreover,

p(0) =

∫
xµ(dx) and µ((k,∞]) = −p′(k+),

where p′(k+) denotes the right derivative of p at k.

Proof. By convexity of p, the right derivative exists. From (5) it is clear that |p′(0+)| ≤ 1
and allowing an atom at 0 the function p therefore defines a unique probability measure
on R+. Since conditions (3) and (4) above fix the boundary data the rest is straightforward,
e.g. by using calculus for Riemann-Stieltjes integrals. �

As a consequence of Lemma 3.3, if the prices at a given maturity t for Call options with
strike k for all k ≥ 0 are known, then there exists a unique measure µt such that, for every
derivative with payoff f (S t), we have

price( f ) =

∫
f dµt.

The reason is that we can approximate any such f via the functions Ct,k, i.e.

f ∼
n∑

i=1

Ct,ki .

Differently said, Lemma 3.3 implies that the knowledge of the prices for all Call options
with maturity t uniquely defines the distribution of S t under the measure used for pricing.

As such options are liquidly traded in t = 0, they can be used for hedging in a static
sense, i.e., these can be bought or sold in 0 and such position kept till maturity. We will see
how this explicitly appears in the super-replication theorem presented in the next section.

In the current setting, the extreme pricing values of a derivative f are given by

inf / sup{EQ[ f ] : Q martingale measure, S i ∼Q µi}. (3.4)

In the following section we will analyse this problem in some detail looking again at the
“basic” questions of existence, duality (which has the interpretation of robust sub/superhedging)
and characterization of optimizers.
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3.2. Existence, duality, and geometry of optimizers: discrete time. We want to analyze
(3.4) and focus for (notational) simplicity on the case of one period, so t ∈ {1, 2}. All the
results that we present have multi-period versions, some of them are only notational more
complex, while some (e.g. geometry of optimizers) are on a technical as well as on an
intuitive level much more complex.

For comparison with the first chapter of these notes, we focus on the minimization
problem only, and consider

X = Y = R, µ := µ1 ∈ P1(R), ν := µ2 ∈ P1(R), c(·) := f (·),
so that the object of study becomes:

V M
c (µ, ν) := inf

π∈CplM(µ,ν)

∫
c dπ, (MOT)

where CplM(µ, ν) = {π ∈ Cpl(µ, ν) : Eπ[S 2|S 1] = S 1}, c.f. Definition 2.2. In analogy to
(KP) we call this the Martingale Optimal Transport problem.

Remark 3.4. In the literature on MOT, one often considers the maximization problem in-
stead of the minimization problem due to the relation to the superhedging result. However,
mathematically speaking, the maximization and minimization problems are equivalent. For
consistency with the rest of our manuscript, we have opted to work with the minimization
problem.

Example 3.5. To familiarize with the martingale constraint, we note:

(1) Due to the martingale constraint, there cannot be Monge-type martingale cou-
plings T (µ) = ν other than for T = Id, since then, for π ∈ CplM(µ, ν) with
(Id,T )#µ = π,

T (x) = mean(πx) = x µ-a.s.

Hence, CplM(µ, µ) = {(Id, Id)#µ} consists of a single coupling whereas in general
CplM(µ, µ) consists of many couplings. In general, the minimal mass splitting one
can hope for is that the optimal martingale coupling is concentrated on the graph
of two functions.

(2) When µ = δx and ν ∈ P1(R) with mean(ν) = x, then Cpl(µ, ν) = {µ ⊗ ν} =

CplM(µ, ν).
(3) For general martingales, there can be many martingale couplings. Let µ = 1

2 (δ−1 +

δ1) and ν = 1
3 (δ−4 + δ0 + δ4) and define, for 1

4 ≤ α ≤ 2
3 ,

πα(dx, dy) := µ × παx where

παx =

( 2
3 + 1

4 − α)δ−4 + ( 2
3 − 5

4 + 2α)δ0 + ( 2
3 − α)δ4 x = 1,

(α − 1
4 )δ−4 + ( 5

4 − 2α)δ0 + αδ4 x = 1.

It is straightforward to check that {πα : 1
4 ≤ α ≤ 2

3 } = CplM(µ, ν), so that there are
uncountably many martingale couplings with marginals µ and ν.

We recall that, by Strassen theorem (Theorem 2.20), the set CplM(µ, ν) is non-empty if
and only if µ is in convex order with ν.

Lemma 3.6. Let µ, ν ∈ Pp(Rd), then CplM(µ, ν) is convex and compact in Pp(Rd × Rd).

Proof. We start the proof by characterizing the martingale constraint. Let π ∈ P1(Rd ×Rd)
with proj1 π = µ. We have

mean(πx) = x µ-a.s. ⇐⇒
∫
|x −mean(πx)| µ(dx) = 0

⇐⇒ ∀i = 1, . . . , d,
∫
|xi −mean(πx)i| µ(dx) = 0,
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where we write y = (yi)d
i=1 ∈ Rd. Since |xi| = sign(xi)xi, sign : R → {−1, 0, 1} is measur-

able, and Cb(Rd) is dense in L1(µ), we obtain

mean(πx) = x µ-a.s. ⇐⇒ ∀g ∈ Cb(Rd;Rd),
∫

g(x)(x − y) π(dx, dy) = 0.

The map (x, y) 7→ g(x)(x−y) =: h(x, y) is continuous with at most linear growth. Therefore,
π 7→ π(h) is convex and continuous on P1(R × R), c.f. Definition 1.51 and subsequent
discussion. Since{

π ∈ Pp(Rd × Rd) : π is martingale measure
}

=
⋂

g∈Cb(Rd ;Rd)

{
π ∈ Pp(Rd × Rd) :

∫
g(x)(x − y) π(dx, dy) = 0

}
,

it immediately follows that the set of all martingale probabilities is convex and closed in
Pp(Rd ×Rd) (for any p ≥ 1). Hence, as Cpl(µ, ν) is convex and by Lemma 1.53 a compact
subset of Pp(Rd×Rd), we conclude that CplM(µ, ν) (as intersection of a convex, closed and
a convex, compact set) is also convex and compact. �

As in the case of classical transport we obtain:

Corollary 3.7. Assume that c is l.s.c. and bounded from below. Then there exists an opti-
mal martingale coupling.

This settles the problem of existence. Note that for these arguments neither the restric-
tion to a single period nor to dimension one are necessary. Next we turn to the question of
duality.

Theorem 3.8. Let c be l.s.c. and bounded from below, then

V MOT
c (µ, ν) = sup

{
µ( f ) + ν(g) : f , g,H ∈ Cb(R) s.t.

f (x) + g(y) + H(x)(y − x) ≤ c(x, y) ∀x, y ∈ R}. (3.5)

Remark 3.9. The dual problem can be interpreted as a robust subhedging problem of the
option with payoff c. In this sense, Theorem 3.8 is a robust version (i.e. independent of the
reference model P) of (3.3). The strategies used for subreplicating c in (3.5) involve trading
in the asset S and in the European options f , g with maturity t = 1 and t = 2 respectively.
Since µ = µ1 and ν = µ2 are known, the payoffs of these options can be approximated
by the liquidly traded European call options with maturity t = 1 and t = 2, and their fair
prices are given by µ( f ) and ν(g). So, (3.5) tells us that the smallest robust fair price for
the derivative c is given by the largest initial amount needed to buy the options f and g in
order to sub-replicate c.

In a multi-period setting, the trading in S would be done dynamically (that is, possi-
bly changing the portfolio in a self-financing way at every intermediate time), while the
trading in the European options would still be done in a static way (i.e. with buy-and-hold
strategies established at time 0, since this is the time when these are liquidly traded).

Mathematically, the term H(x)(y − x) can be understood as a Lagrange multiplier ac-
counting for the martingale constraint in the primal problem.

Proof of Theorem 3.8. Justified by Lemma 3.6 and its proof, we get by applying Theo-
rem 1.20 with K = Cpl(µ, ν), Y = Cb(R) and h(π,H) =

∫
c(x, y) − H(x)(y − x) π(dx, dy)

and Theorem 1.19, that

V MOT
c (µ, ν) = inf

π∈Cpl(µ,ν)
sup

H∈Cb(R)
h(π,H) = sup

H∈Cb(R)
VcH (µ, ν)

= sup
( f ,g,H)∈Cb(R)×Cb(R)

∀(x,y)∈R2, f (x)+g(y)≤c(x,y)−H(x)(y−x)

µ( f ) + ν(g),

where cH(x, y) := c(x, y) − H(x)(y − x). �

The next examples illustrate that duality and dual attainment is a delicate question.
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Example 3.10. (1) Let µ = ν = Leb|[0,1]. Then CplM(µ, ν) = {Q̂} with Q̂ = (Id, Id)#µ.
Let

c(x, y) = 1{x=y} =

1 x = y
0 else

.

Then V M
c = 1 and we claim that DM

c = 0. Indeed, let ϕ, ψ and h be Borel bounded
s.t. ϕ(x) + ψ(y) + H(x)(y − x) ≤ c(x, y) for all x, y ∈ [0, 1]. Then ϕ(x) + ψ(y) +

H(x)(y − x) ≤ 0 for all x , y. Fixing ε > 0, by Lusin’s theorem, there is a Borel
set A ⊆ [0, 1] with µ(A) > 1 − ε s.t. ψ|A is continuous. Moreover, A can be chosen
to be perfect (i.e., every point of A is a limit point of A). Let x ∈ A and (xn)n ⊆ A
with xn → x and xn , x. Then

ϕ(x) + ψ(xn) + H(x)(xn − x) ≤ 0

for all n ∈ N and thus ϕ(x) + ψ(x) ≤ 0. As ε > 0 is arbitrary, µ({x : ϕ(x) + ψ(x) ≤
0}) = 1 and hence∫

ϕdµ +

∫
ψdν =

∫
ϕ(x)dx +

∫
ψ(x)dx ≤ 0.

A different argument: Define T ε(x) = ε + x (mod 1), so that for any ε ∈ (0, 1) we
have T ε(x) , x, T ε(Leb|[0,1]) = Leb|[0,1], and T ε(x) − x is equal to ε on [0, 1 − ε]
and equal to ε − 1 on (1 − ε, 1]. Hence ϕ(x) + ψ(T ε(x)) ≤ −H(x)[T ε(x) − x] and
integrating w.r.t. Lebesgue we get∫
ϕdµ +

∫
ψdν =

∫
ϕ(x)dx +

∫
ψ(x)dx ≤

∫ 1

1−ε
H(x)dx − ε

∫ 1

0
H(x)dx→ 0.

In any case, a maximizing triplet is given by ϕ = ψ = H = 0.
(2) Consider the following setting:

µ =
1
2

(δ−1 + δ1), ν =
1
4

Leb(−2,2), and c(x, y) :=

0 xy < 0,
−√|xy| xy ≥ 0.

We claim that then the right-hand side in (3.5) is not attained. Indeed, assume that
( f , g,H) ∈ L1(µ) × L1(ν) × L1(µ) with f (x) + g(y) − H(x)(y − x) ≤ c(x, y) for all
(x, y) ∈ R2. As CplM(µ, ν) = { 12 (δ−1 ⊗ ( 1

2 Leb(−2,0)) + δ1 ⊗ ( 1
2 Leb(0,2)) =: π}, we have

that π is the optimizer and find

π( f ⊕ g) = π(c) = 0,

from where we deduce (modulo a ν-null set) that

f (x) + g(y) + H(x)(y − x) = 0 on {(x, y) ∈ {−1, 1} × (−2, 2) : xy ≥ 0}.
We derive that g is piece-wise affine and is given by

g(y) =

− f (1) − H(1)(y − 1) y > 0,
− f (−1) − H(−1)(y + 1) y < 0.

(3.6)

Thus, for ν-a.e. y ∈ (0, 2) we have

−√y ≥ f (1) + g(−y) + H(1)(−y − 1),

−√y ≥ f (−1) + g(y) + H(−1)(y + 1).

Adding these two inequalities and using (3.6), we obtain

−2
√

y ≥ f (1) + f (−1) + g(y) + g(−y) + y(H(−1) − H(1)) + H(−1) − H(1)
= 2y(H(−1) − H(1)),

which is impossible to hold for all ν-a.e. y ∈ (0, 2) because

lim
y↘0
−
√

y
y

= −∞ < H(−1) − H(1).

We conclude that (3.5) is not attained.
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The reason that duality and attainment fail in the Examples 3.10 is that the dual problem,
as defined in Theorem 3.8, is too restrictive. Financially speaking: in the dual problem we
hedge against scenarios that are not possible given the market observations! To clarify this,
we need the concept of irreducibility.

Definition 3.11. Let µ, ν ∈ P1(Rd) be in the convex order. We call the pair (µ, ν) irreducible
if there exists π ∈ CplM(µ, ν) such that

∀A, B ∈ B(Rd) : µ(A), ν(B) > 0 =⇒ π(A × B) > 0.

In one dimension, the convex order can be described via potential functions.

Definition 3.12. For a finite measure µ on R with
∫
|x| µ(dx) < ∞, we define its potential

function uµ : R→ R by

uµ(y) :=
∫
|x − y| µ(dx).

It is possible to read off various properties of µ, as total mass, mean, atoms etc., from
the behaviour of uµ.

Lemma 3.13. Let µ, ν ∈ P1(R). Then
(1) µ ≤cx ν if and only if uµ ≤ uν.

Further, if ν is not a Dirac measure and µ ≤cx ν, then
(2) (µ, ν) is irreducible if and only if {uµ < uν} is an interval and µ({uµ < uν}) = 1.

Proof. The first claim follows from the following two observations: Firstly, the function
y 7→ |x − y| is convex and secondly, and convex function can be approximated from below
by convex combinations of elements in { f (y) = a|x − y| + by + c : a ∈ R+, x, b, c ∈ R}.

The second claim is slightly harder. The missing parts will be shown in the next sub-
section.

Assume that there exists z ∈ R s.t. uµ(z) = uν(z). Then any π ∈ CplM(µ, ν) satisfies

uν(z) =

∫
|y − z| π(dx, dy) =

∫ ∫
|y − z| πx(dy) µ(dx)

Jensen≥
∫
|mean(πx) − z| µ(dx) =

∫
|x − z| µ(dx) = uµ(z) = uν(z).

In particular, we get equality in Jensen’s inequality, and hence any π ∈ CplM(µ, ν) satisfies

π(y ≥ z | x > z) = 1,
π(y ≤ z | x < z) = 1,
π(y = z | x = z) = 1 (if µ({z}) > 0 ).

In other words, z is a barrier for any martingale-transport plan between µ and ν, i.e. the
level z cannot be strictly crossed by any such martingale. �

Theorem 3.14. Let (µ, ν) be irreducible, compactly supported, and c ∈ Mb(R2). Then
there exists ( f , g,H) ∈ L1(µ) × L1(ν) × M(R) with f (x) + g(y) + H(x)(y − x) ≤ c(x, y) for
µ-a.e. x and ν-a.e. y such that

VMOT
c (µ, ν) = µ( f ) + ν(g).

Proof. Very technical. �

Remark 3.15. Here, we presented only the case when (µ, ν) is irreducible. In one dimension
and µ and ν in convex order, there is a unique decomposition of them into subprobability
measures (µk)k∈N and (νk)k∈N such that µ1 = ν1, (for k ≥ 2) (µk, νk) is irreducible, and any
martingale coupling π ∈ CplM(µ, ν) can be written as

π =
∑

k

πk where πk ∈ CplM(µk, νk).

Building on this decomposition, it is possible to also split the primal and dual problems
along these decompositions.
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In order to get a better understanding of irreducibility, we study a particular martingale
in continuous time which induces (in case of irreducibility) a martingale coupling with the
required property. In contrast to potential functions, this approach is not limited to d = 1.

3.3. Stretched Brownian motion. We have seen in Section 1 that the optimal transport
problem associated with the cost function c(x, y) = |x − y|2 is structurally rich. Contrary to
that, this cost is not particularly interesting in the martingale world: if π ∈ CplM(µ, ν) then
we have∫

|x − y|2 π(dx, dy) =

∫
|x|2 − 2x · y + |y|2 π(dx, dy)

=

∫
|x|2 µ(dx) −

∫
2x ·

∫
y πx(dy) µ(dx) +

∫
|y|2 ν(dy)

=

∫
|y|2 ν(dy) −

∫
|x|2 µ(dx).

So, the value of
∫
|x − y|2 π(dx, dy) only depends on the marginals as long as π is a martin-

gale coupling. Similarly in continuous time, when B is a d-dimensional Brownian motion
and X =

∫
σt dBt with X0 ∼ µ and X1 ∼ ν for some progressively measurable square-

integrable process σ, we have by Itô’s isometry that

E

[∫ 1

0
tr

(
σ2

t

)
dt

]
= E

[
|X1 − X0|2

]
=

∫
|y|2 ν(dy) −

∫
|x|2 µ(dx).

Another perspective on optimal transport is provided by the Benamou-Brenier formula.
We recall that

W2
2(µ, ν) = inf

{∫ 1

0
E

[
|Ẋt |2

]
dt : X0 ∼ µ, X1 ∼ ν, X ∈ AC

}
. (3.7)

In the Euclidean geometry, one could interpret the right-hand side as follows: Choose as a
reference motion straight lines (in direction v ∈ Rd) and find a process X that connects the
marginals µ and ν resembling this reference motion. We compute∫ 1

0
|Ẋt − v|2 dt =

∫ 1

0
|Ẋt |2 − 2Ẋt · v + |v|2 dt =

∫ 1

0
|Ẋt |2 dt − 2(X1 − X0) · v + |v|2.

and obtain by taking expectations that (3.7) is (up to constants) equivalent to the minimiza-
tion of

inf
{∫ 1

0
E

[
|Ẋt − v|2

]
dt : X0 ∼ µ, X1 ∼ ν, X ∈ AC

}
.

Arguable, in the martingale world, when speed is measured w.r.t. the quadratic variation,
Brownian motion is the analogon to the straight lines of the Euclidean world. Consider
a filtered probability spaces (Ω,F ,F = (Ft)t,P) with a Brownian motion B. Let X be a
real-valued F-martingale with X0 ∼ µ and X1 ∼ ν and compute

E [[X − B]1] = E [[X]1 − 2[X, B]1 + [B]1] = E
[
|X1 − X0|2

]
− 2E [[X, B]1] + 1 (3.8)

Observe that, when X is of the form Xt =
∫
σt dBt for some progressively measurable σ,

then, as [X − B]1 =
∫ 1

0 (σt − 1)2 dt, E [[X, B]1] = E
[∫ 1

0 σt dt
]
. In multiple dimensions the

minimization of (3.8) is equivalent to the maximization of the trace of the covariance

VMBB(µ, ν) := sup
{∫ 1

0
E [tr(σt)] dt : X0 ∼ µ, X1 ∼ ν, X = X0 +

∫
σt dBt

}
, (MBB)

where the infimum runs over all filtered probability spaces that support a Brownian motion
B and progressively measurable σ with values in the symmetric and positive semidefinite
matrices. Note that as consequence of the product rule for Itô processes one could also
maximize E[(X1 − X0) · B1] in (MBB).

Definition 3.16. An optimizer of (MBB) is called stretched Brownian motion.

The next example explains the wording stretched.



34 STOCHASTIC MASS TRANSFER

Example 3.17 (Bass martingale). Let µ = δx̄, x̄ ∈ Rd, and ν be arbitrary with mean x̄, so that
µ �c ν. Recall that γd denotes a d-dimensional standard Gaussian. Let ∇ϕ be the Brenier
map with ∇ϕ#µ = ν. Let B ≡ (Bt)t∈[0,1] be a d-dimensional standard Brownian motion with
natural filtration (Ft)t∈[0,1]. Denote by Ps the heat semigroup, i.e. Psg(x) = E[g(x + Bs)].
Define for t ∈ [0, 1]

Mt := E[∇ϕ(B1)|Ft] = E[∇ϕ(B1)|Bt] = P1−t∇ϕ(Bt),

where the second equality follows by the Markov property and the third equality by in-
dependence of increments of Brownian motion (B1 = Bt + B1 − Bt). Observe that M1 =

∇ϕ(B1) ∼ ν and M0 = P1 f (0) = E[∇ϕ(B1)] = mean(ν) = x̄ so that M0 ∼ µ. In this way,
we can construct martingales between a Dirac mass and any terminal measure ν in convex
order. Let X be another martingale with X0 ∼ µ and X1 ∼ ν. We have

E [[X, B]1] = E [(X1 − X0)B1] = E[X1B1] ≤ E[M1B1] = E [[M, B]1] , (3.9)

since X1 ∼ M1 = ∇ϕ(B1) and the latter maximizes the covariation to B1. Hence, the hereby
constructed Bass martingale is an optimizer of VMBB(µ, ν). Further, M =

∫
σ∗t dBt where

σ∗ can be easily derived due to Itô’s formula and, when ϕ ∈ C2(Rd), then σ∗t = Pt(Hϕ)(Bt).

Theorem 3.18. The problem (MBB) admits an unique-in-law optimizer M∗ and M∗ is a
continuous strong Markov martingale.

The key to prove this result is to link it to a discrete-time optimization problem in the
form of a weak optimal transport problem.

VMWOT(µ, ν) := inf
π∈CplM(µ,ν)

∫
W2

2(πx, γ
d) µ(dx), (MWOT)

where γd denotes the d-dimensional standard normal distribution. Note that

ṼWMOT(µ, ν) :=VMWOT(µ, ν) − 1 −
∫
|y|2 ν(dy)

=
1
2

sup
π∈CplM (µ,ν)

∫
sup

χ∈Cpl(πx,γd)

∫
y · z dχ(y, z) µ(dx).

(3.10)

Theorem 3.19. Assume µ, ν ∈ P2(Rd) are in the convex order. The optimization problem
(MWOT) and (MBB) are equivalent. More precisely,

(1) ṼMWOT(µ, ν) = VMBB(µ, ν) < ∞;
(2) (MWOT) has a unique optimizer π∗;
(3) (MBB) has a unique-in-law optimizer M∗;
(4) π∗ = law(M∗0,M

∗
1) and M∗t = P1−t(∇ϕM∗0 )(Bt) where ∇ϕx is the Brenier map be-

tween γd and π∗x.

Proof. Since µ, ν ∈ P2(Rd) are in the convex order, by Strassen’s theorem there is π ∈
CplM(µ, ν). Hence,

VWMOT(µ, ν) ≤ 2
∫
|y|2 + 1 π(dx, dy) < ∞.

As the map ρ 7→ W2
2(ρ, γd) isW2-continuous, there is by Proposition 2.11 a coupling π∗ ∈

CplM(µ, ν) that attains (MWOT). Uniqueness of the optimizer of (MWOT) follows from
strict convexity of ρ 7→ W2

2(ρ, γd). The latter can be seen as follows: let ρ1, ρ2 ∈ P2(Rd).
By Brenier’s theorem there are convex potentials ϕi with ∇ϕi

#γ
d = ρi. We have

W2
2

(
1
2

(ρ1 + ρ2), γd
)
≤ 1

2

(∫
|z − ∇ϕ1(z)|2 + |z − ∇ϕ2(z)| dγd(z)

)
,

where equality can only hold if ∇ϕ1 = ∇ϕ2 γd-a.s. (as consequence of the uniqueness part
of Brenier’s theorem), which yields the claim.

Write ϕx for the Brenier potential of γd and π∗x. As in Example 3.17 we construct a
martingale M∗ via

M∗t := E
[
∇ϕx(B1)|F̄t

]
= P1−t(∇ϕM∗0 )(Bt),
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where we enlarge the natural filtration (Ft)t generated by the Brownian motion B at initial
time by adding an independent random variable M∗0 ∼ µ, i.e., F̄t = Ft ∨ σ(M∗0). This is
always possible on a potentially larger probability space. As the law of (M∗0,M

∗
1) maxi-

mizes (3.10), we have for any martingale X =
∫
σt dBt with X0 ∼ µ and X1 ∼ ν, where σ

is progressively measurable with values in the positive semidefinite matrices, that

E

[∫ 1

0
tr(σt) dt

]
= E [(X1 − X0)B1] ≤ E

[
(M∗1 − M∗0) · B1

]
= E

[∫ 1

0
tr(σ∗t ) dt

]
, (3.11)

where σ∗ is given by Itô’s formula. We have shown that both problems, (MBB) and
(MWOT), admit optimizers whereas the latter one is unique, and that VMBB(µ, ν) = ṼMWOT(µ, ν).
So let X be another optimizer of (MBB), then there is equality in (3.11) and by uniqueness
of the optimizer of (MWOT) we have (X0, X1) ∼ (M∗0,M

∗
1). As in Example 3.17 we neces-

sasrily get that X1 = ∇ϕX0 (B1). Due to the martingale property we have Xt = E[X1|Ft] =

P1−t(∇ϕX0 )(Bt), which a.s. determines the paths of X. In particular, X ∼ M∗. �

Remark 3.20. The proof of Theorem 3.19 reveals the procedure how to build the optimizer
of (MBB):

(1) Find the unique optimizer π∗ of (MWOT).
(2) For x ∈ Rd, find the Brenier potential ϕx of γd and π∗x.
(3) Define Mx

t := E[∇ϕx(B1)|Bt] = P1−t∇ϕx(Bt).
(4) Take X ∼ µ independent of B and let M∗t := MX

t .

To prove that the stretched Brownian motion M∗ connecting µ and ν (with µ ≤cx ν) has
the strong Markov property, we establish a dynamic programming principle: Fix a filtered
probability space (Ω,F , (Ft)t,P) that supports a uniform distribution U independent of F1.
For any (Ft)t-stopping time 0 ≤ τ ≤ 1 we define

V(τ, 1, µ, ν) := sup
M=M0+

∫
σt dBt

Mτ∼µ,M1∼ν

E

[∫ 1

τ

tr (σt) dt
]
, (3.12)

so that VSBM(µ, ν) = V(0, 1, µ, ν).

Lemma 3.21 (Dynamic programming principle). Let µ, ν ∈ P2(Rd) be in the convex order.
For every stopping time 0 ≤ τ ≤ 1, we have

V(0, 1, µ, ν) = sup
M=M0+

∫
σt dBt

M0∼µ

{
E

[∫ τ

0
tr(σt) dt

]
+ V(τ, 1, law(Mτ), ν)

}
, (3.13)

with the convention that sup ∅ = −∞. Further, the process M∗ is the unique optimizer
of V(τ, 1, law(M∗τ), ν) and law(M∗1 |M∗τ) = law(M∗1 |Fτ) almost surely. In particular, M∗ is
strongly Markovian.

Sketch. Obviously the left-hand side of (3.13) is smaller than the right-hand side of (3.13).
To see the reverse inequality, pick M1 = M1

0 +
∫
σ1

t dBt such that M1
0 ∼ µ and law(M1

τ ) ≤cx

ν. With similar reasoning as in the proof of Theorem 3.19 and Remark 3.20 (one has to
properly rephrase the problem in a weak transport problem), we can construct an optimizer
M2 of V(τ, 1, law(M1

τ ), ν) where law(M2
1 |M2

τ ) = law(M2
1 |Fτ). By adequately concatenating

M1 with M2 we obtain a martingale M, admissible in V(0, 1, µ, ν), which provides the
reverse inequality.

Since M∗ is the unique maximizer of V(0, 1, µ, ν), we get from the first part, by letting
M1 = M∗, that M∗ is also the unique maximizer of V(τ, 1, law(M∗τ), ν), and therefore,
law(M∗1 |M∗τ) = law(M∗1 |Fτ) almost surely.

Finally, M∗ has the strong Markov property as by the second part and the construction
of M∗, there is, for every measurable map g ∈ Mb(R), a measurable map f : R× [0, 1]→ R
such that for every stopping time τ,

f (Xτ, τ) = E(g(Xτ+h)|Fτ) a.s.



36 STOCHASTIC MASS TRANSFER

�

Proposition 3.22. Given µ, ν ∈ P2(Rd) in the convex order, it holds

VWMOT(µ, ν) = sup
ψ∈C2(Rd)
|·|2−ψ convex

ν(ψ) + µ(ψC), (3.14)

where

C(x, ρ) =

W2
2(ρ, γd) mean(ρ) = x,

+∞ else,
and ψC(x) = inf

ρ∈P2(Rd)
mean(ρ)=x

W2
2(ρ, γd) − ρ(ψ).

Further, the right-hand side is attained by a dual potential ψ if and only (µ, ν) is irreducible.
In this case, the stretched Brownian motion M is given by

Mt = E[∇ψ(B1)|Bt] where B0 ∼ ∇(P1ψ)∗#µ.

Proof. The duality follows from Theorem 2.16. The second part is more technical. �

4. The Skorokhod embedding problem from an optimal transport perspective

In this section we briefly introduce the Skorokhod embedding problem and explain how
it can be investigated from an optimal transport perspective. In analogy to the previous
sections, versions of the basic results on existence, duality and the characterization of
optimality through cyclical monotonicity hold here. The proofs for this result are based on
the ideas we have seen previously but are technically tedious as it is necessary to bridge
the gap to the theory of stochastic processes. We therefore refer to [BCH17] for the proofs
of these results and focus on the application to the Skorokhod embedding problem.

4.1. Overview. Let B be a Brownian motion started in 0 and consider a probability µ
on the real line which is centered and has second moment. The Skorokhod embedding
problem is to construct a stopping time τ embedding µ into Brownian motion in the sense
that

Bτ is distributed according to µ, E[τ] < ∞. (SEP)

Here, the second condition is imposed to exclude certain undesirable solutions, and can
be modified to extend to measures without a second moment. As already demonstrated by
Skorokhod [Sko61, Sko65] in the early 1960s, it is always possible to construct solutions to
the problem. Indeed, the survey article [Obł04] of Obłój classifies 21 distinct solutions to
(SEP), although this list (from 2004) misses many more recent contributions. A common
inspiration for many of these papers is to construct solutions to (SEP) that exhibit additional
desirable properties or a distinct internal structure.

Recently it has been observed that (SEP) profits from an optimal transport perspective:
it allows to obtain many previous developments as applications of one unifying principle
(Theorem 4.3) and several difficult problems are rendered tractable. Moreover, it allows to
easily handle a number of more general versions of the problem: for example, integrable
measures, general starting distributions, and Rd-valued Feller processes.

To illustrate the transport approach we introduce Root’s construction, [Roo69], which
is one of the earliest solutions to (SEP), and it is prototypical for many further solutions
to (SEP) in that it has a simple geometric description and possesses a certain optimality
property in the class of all solutions.

Root established that there exists a barrier R (which is essentially unique) such that the
Skorokhod embedding problem is solved by the stopping time

τRoot = inf{t ≥ 0 : (t, Bt) ∈ R}. (4.1)

A barrier is a Borel setR ⊆ R+×R such that (s, x) ∈ R and s < t implies (t, x) ∈ R. The Root
construction is distinguished by the following optimality property: among all solutions to
(SEP) for a fixed terminal distribution µ, it minimizes E[τ2]. For us, the optimality property
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R

τ̂ t

Bt

Figure 2. Root’s solution of (SEP).

will be the starting point from which we deduce a geometric characterization of τRoot. To
this end, we now formalize the corresponding optimization problem.

We consider the set of stopped paths

S = {( f , s) : f : [0, s]→ R is continuous, f (0) = 0}. (4.2)

Throughout the section we consider a function

γ : S → R.
We fix a stochastic basis Ω = (Ω,G, (Gt)t≥0,P) which is sufficiently rich to support a Brow-
nian motion B and a uniformly distributed G0-random variable, independent of B. The
optimal Skorokhod embedding problem is to construct a stopping time τ on Ω which opti-
mizes

Pγ = inf
{
E
[
γ
(
(Bt)t≤τ, τ

)]
: τ solves (SEP)

}
. (OptSEP)

We emphasize that (OptSEP) does not depend on the particular choice of the underlying
basis as long as it is rich enough in the above sense, cf. [BCH17, Lemma 3.11]. We will
usually assume that (OptSEP) is well posed in the sense that E

[
γ
(
(Bt)t≤τ, τ

)]
exists with

values in (−∞,∞] for all τ which solve (SEP) and is finite for one such τ.
The Root stopping time solves (OptSEP) in the case where γ( f , s) = s2. Other exam-

ples where the solution is known include functions depending on the running maximum
γ(( f , s)) := f̄ (s) := maxt≤s f (t) or functions of the local time at 0.

The solutions to (SEP) have their origins in many different branches of probability
theory, and in many cases, the original derivation of the embedding occurred separately
from the proof of the corresponding optimality properties. Moreover, the optimality of a
given construction is often not immediate; for example, the optimality property of the Root
embedding was first conjectured by Kiefer [Kie72] and subsequently established by Rost
[Ros76].

In contrast, we will start with the optimization problem (OptSEP) and we seek a system-
atic method to determine the minimizer for a given function γ. To develop a general theory
for this optimization problem we interpret stopping times in terms of a transport plan from
the Wiener space (C0(R+),W) to the target measure µ, i.e. we want to think of a stopping
time τ as transporting the mass of a trajectory (Bt(ω))t∈R+

to the point Bτ(ω)(ω) ∈ R. Note
that this is not a coupling betweenW and µ in the usual sense and one cannot directly apply
optimal transport theory. Nevertheless the transport perspective provides a useful intuition.

As in optimal transport, it is crucial to consider (OptSEP) in a suitably relaxed form, i.e.
in (OptSEP) one has to optimize over randomized stopping times (see [BCH17, Definition
3.7]). These can be viewed as usual stopping times on a possibly enlarged probability space
but in our context it is more natural to interpret them as stopping times of ‘Kantorovich-
type’ (in the sense of optimal transport), i.e. stopping times which terminate a given path
not at a single deterministic time instance but according to a distribution.

Exactly as in classical transport theory, (OptSEP) can be viewed as a linear optimization
problem. The set of couplings in mass transport is compact and similarly the set of all
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randomized stopping times solving (SEP) on Wiener space is compact in a natural sense.
Under the standing assumption that B is defined on a sufficiently rich stochastic basis, these
considerations yield:

Theorem 4.1. Let γ : S → R be lsc and bounded from below. Then (OptSEP) admits a
minimizing stopping time τ.

Here we can talk about the continuity properties of γ since S possesses a natural Polish
topology.

As in the previous chapters, we have a natural dual problem.

Theorem 4.2. Let γ : S → R be lsc and bounded from below, and set

Dγ = sup
{∫

ψ(y) dµ(y) : ψ ∈ C(R),∃M,
M is a continuous G-martingale,M0 = 0
P − a.s.,∀t ≥ 0,Mt + ψ(Bt) ≤ γ((Bs)s≤t, t)

}
where M, ψ satisfy |Mt | ≤ a + bt + cB2

t , |ψ(y)| ≤ a + by2 for some a, b, c > 0. Then we have
the duality relation

Pγ = Dγ. (4.3)

Next we consider a monotonicity principle which links the optimality of a stopping time
τ with ‘geometric’ properties of τ. Combined with Theorem 4.1, this principle will turn
out to be surprisingly powerful. For the first time, all the known solutions to (SEP) with
optimality properties can be established through one unifying principle. Moreover, the
monotonicity principle allows to treat the optimization problem (OptSEP) in a systematic
manner, generating further embeddings as a by-product.

Theorem 4.3 (Monotonicity Principle). Let γ : S → R be Borel measurable. Suppose
that (OptSEP) is well posed and τ is an optimizer. Then there exists a γ-monotone (cf.
Definition 4.5 below) Borel set Γ ⊆ S such that P-a.s.

((Bt)t≤τ, τ) ∈ Γ . (4.4)

If (4.4) holds, we will loosely say that Γ supports τ. The significance of Theorem 4.3
is that it links the optimality of the stopping time τ with a particular property of the set
Γ, i.e. γ-monotonicity. In applications, the latter turns out to be much more tangible. We
emphasize that we do not require continuity assumptions on γ in this result.

To link the optimality of a stopping time with properties of the set Γ we consider the
minimization problem (OptSEP) on a pathwise level. Consider two paths ( f , s), (g, t) ∈ S
which end at the same value, i.e. f (s) = g(t). We want to determine which of the two paths
should be stopped and which one should be allowed to go on further, bearing in mind that
we try to minimize E[γ((Bs)s≤τ, τ)]. To make this definition formal, we need to perform an
operation at the level of individual paths. We will write f ⊕ h for the concatenation of the
two paths ( f , s), (h, u) ∈ S , specifically:

( f ⊕ h)(r) :=

 f (r) r ≤ s
f (s) + h(r − s) r ∈ (s, s + u]

.

Then we set

γ( f ,s)⊕(h, u) := γ( f ⊕ h, s + u). (4.5)

We will call
(
( f , s), (g, t)

)
a stop-go pair if it is advantageous to stop ( f , s) and to go on after

(g, t) in the following sense:

Definition 4.4. The pair
(
( f , s), (g, t)

) ∈ S ×S is a stop-go pair, written
(
( f , s), (g, t)

) ∈ SG,
iff f (s) = g(t) and

E
[
γ( f ,s)⊕ (

(Bu)u≤σ , σ
)]

+ γ(g, t) > γ( f , s) + E
[
γ(g,t)⊕ (

(Bu)u≤σ , σ
)]

(4.6)

for every (F B
t )t≥0-stopping time σ which satisfies 0 < E[σ] < ∞ and for which both sides

of (4.6) are well defined and the left hand side is finite.
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Here (F B
t )t≥0 denotes the natural filtration generated by the Brownian motion B. A

consequence of considering only (F B
t )t≥0-stopping times is that the set SG does not depend

on the particular choice of the underlying stochastic basis.

t + σ
s t

gf

s + σ
s t

gf

Figure 3. The left hand side of (4.6) corresponds to averaging the func-
tion γ over the stopped paths on the left picture; the right hand side to
averaging the function γ over the stopped paths on the right picture.

The idea to relate a swapping of paths to Skorokhod embedding (as illustrated in Fig-
ure 3) was used by Hobson [Hob11, p 34] to provide a heuristic derivation of the optimality
properties of the Root embedding.

Recalling (4.4), we see that the set Γ ⊆ S contains the stopped paths: that is, a path (g, t)
is in Γ if there is some possibility that the optimal stopping rule decides to stop at time t
having observed the path (g(u))u∈[0,t]. In addition, we need to consider those paths which
we observe as the initial section of a longer, stopped, path: these are the going paths

Γ< :=
{
( f , s) : ∃( f̃ , s̃) ∈ Γ, s < s̃ and f ≡ f̃ on [0, s]

}
. (4.7)

We can now formally introduce γ-monotonicity.

Definition 4.5. A set Γ ⊆ S is called γ-monotone iff Γ< × Γ contains no stop-go pairs, i.e.

SG ∩ (
Γ< × Γ

)
= ∅. (4.8)

By the monotonicity principle, Theorem 4.3, an optimal stopping time is supported
by a set Γ such that Γ< × Γ contains no stop-go pair

(
( f , s), (g, t)

)
. Intuitively, such a

pair gives rise to a possible modification, improving the given stopping rule: as f (s) =

g(t), we can imagine stopping the path ( f , s) at time s, and allowing (g, t) to go on by
transferring all paths which extend ( f , s), the ‘remaining lifetime’, onto (g, t), which is now
going (see Figure 3). By (4.6) this guarantees an improved value of Pγ, contradicting the
optimality of our stopping rule. Observe that the condition f (s) = g(t) is what guarantees
that a modified stopping rule still embeds the measure µ. In Section 4.2 below we will
briefly indicate how the monotonicity principle can be used to derive existing solutions
to the Skorokhod embedding problem as well as a whole family of novel solutions to the
Skorokhod embedding problem; many further examples are provided in [BCH17].

Importantly, the transport-based approach readily admits a number of strong general-
izations and extensions. With only minor changes the existence result, Theorem 4.1, the
duality result, Theorem 4.2, and the monotonicity principle, Theorem 4.3 below, extend
to general starting distributions and Brownian motion in Rd, and more generally to suffi-
ciently regular Markov processes. This is notable since other constructions usually exploit
rather specific properties of Brownian motion.

4.2. Particular embeddings. In this section we explain how Theorem 4.3 can be used to
derive particular solutions to the Skorokhod embedding problem, (SEP), using the opti-
mization problem (OptSEP). We only consider (SEP) for measures µ where

∫
x2 µ(dx) <

∞. This constraint can be weakened to require only the first moment to be finite, subject
to the restriction that the stopping time is minimal: that is, if τ is a stopping time such that
Bτ ∼ µ, then for any stopping time τ′,

Bτ′ ∼ µ and τ′ ≤ τ implies τ′ = τ a.s. (4.9)

In the case where µ has a second moment, minimality and E[τ] < ∞ are equivalent.
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4.3. The Root embedding. We recall the definition of the Root embedding, τRoot, from
(4.1), and we wish to recover Root’s result ([Roo69]) from an optimization problem. Re-
member that, according to Root’s terminology, a (closed) set R ⊆ R+ × R is a barrier if
(s, x) ∈ R implies (t, x) ∈ R whenever t > s. Then Root’s construction of a solution to the
Skorokhod embedding problem can be summarized as follows:

Theorem 4.6. Let γ( f , t) = h(t), where h : R+ → R is a strictly convex function such
that (OptSEP) is well posed. Then a minimizer of (OptSEP) exists, and moreover for any
minimizer τ̂, there exists a barrier R such that τ̂ = inf{t ≥ 0 : (t, Bt) ∈ R}. In particular the
Skorokhod embedding problem has a solution of barrier type as in (4.1).

Proof. Step 1. We first pick — by Theorem 4.1 — a stopping time τ̂ which attains Pγ. By
Theorem 4.3 there exists a set Γ ⊆ S such that

(
(Bs)s≤τ̂ , τ̂

) ∈ Γ almost surely, and such that
(Γ< × Γ) ∩ SG = ∅.
Step 2. Next, consider paths ( f , s), (g, t) ∈ S such that f (s) = g(t). We consider when(
( f , s), (g, t)

) ∈ SG, i.e. under which conditions ( f , s) should be stopped and Brownian
motion should continue to go after (g, t). In the present case (4.6) amounts to

E
[
h(s + σ)

]
+ h(t) > h(s) + E

[
h(t + σ)

]
. (4.10)

Thus, by strict convexity of h,
(
( f , s), (g, t)

) ∈ SG iff t < s. We define two barriers by

Rcl := {(s, x) : ∃(g, t) ∈ Γ, g(t) = x, t ≤ s},
Rop := {(s, x) : ∃(g, t) ∈ Γ, g(t) = x, t < s}.

Fix (g, t) ∈ Γ. Then we have (t, g(t)) ∈ Rcl. Suppose for contradiction that inf{s ∈ [0, t] :
(s, g(s)) ∈ Rop} < t. Then there exists s < t such that ( f , s) :=

(
g�[0,s], s

) ∈ Γ< and
(s, f (s)) ∈ Rop. By definition of Rop, it follows that there exists another path (k, u) ∈ Γ such
that k(u) = f (s) and u < s. But then

(
( f , s), (k, u)

) ∈ SG ∩ (
Γ< × Γ

)
which cannot be the

case. Hence,

(g, t) ∈ Γ =⇒ inf{s ∈ [0, t] : (s, g(s)) ∈ Rcl} ≤ t ≤ inf{s ∈ [0, t] : (s, g(s)) ∈ Rop}.
Step 3. Now consider ω ∈ Ω such that (g, t) =

(
(Bs(ω))s≤τ̂(ω) , τ̂(ω)

)
∈ Γ. Then it follows

immediately that:

τcl(ω) := inf{s : (s, Bs(ω)) ∈ Rcl} ≤ τ̂(ω) ≤ inf{s : (s, Bs(ω)) ∈ Rop} =: τop(ω). (4.11)

We finally observe that τcl = τop a.s. by the strong Markov property, and the fact that
one-dimensional Brownian motion immediately returns to its starting point. �

A consequence of this proof is that (on a given stochastic basis) there exists exactly
one solution of the Skorokhod embedding problem which minimizes E[h(τ)]; this property
was first established in [Ros76], together with the optimality property of Root’s solution.
To see this, assume that minimizers τ1 and τ2 are given. Then we can use an independent
coin-flip to define a new minimizer τ̄ which is with probability 1/2 equal to τ1 and with
probability 1/2 equal to τ2. By Theorem 4.6, τ̄ is of barrier type and hence τ1 = τ2.

Remark 4.7. We highlight here the nature of the proof of Theorem 4.6. The proof divides
into three steps, two of these steps (Steps 1 and 3) being probabilistic in nature, making
arguments about random variables on a particular probability space. The second step,
however, is purely a pointwise argument about the properties of subsets of Γ in relation
to the function γ which we look to optimize. The latter arguments are not probabilistic in
nature.

Remark 4.8. The following argument, due to Loynes [Loy70], can be used to argue that
barriers are unique in the sense that if two barriers solve (SEP), then their hitting times must
be equal. Suppose that R and S are both closed barriers which embed µ. Note that we can
take the closed barriers without altering the stopping properties. Consider the barrier R∪S:
let A ⊆ ΩR := {x : (t, x) ∈ S =⇒ (t, x) ∈ R}. Then P(BτR∪S ∈ A) ≤ P(BτR ∈ A) = µ(A).
Similarly, for A′ ⊆ ΩS := {x : (t, x) ∈ R =⇒ (t, x) ∈ S}, P(BτR∪S ∈ A′) ≤ P(BτS ∈ A′) =

µ(A′). Since µ(ΩR ∪ΩS) = 1, τR∪S embeds µ.
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Figure 4. The barriers corresponding to the Rost and Cave embeddings

It is known (see Monroe [Mon72]) that, when µ has a second moment, the second
condition in (SEP), E[τ] < ∞ is equivalent to minimality of the stopping time (recall
(4.9)). It immediately follows from the argument above that if the barriers R and S solve
(SEP), then τR = τS a.s. With minor modifications the argument of Loynes also applies to
the Rost solution discussed below as well as to a number of further classical embeddings
exhibiting optimality properties.

4.4. The Rost embedding. A set R ⊆ R+ × R is an inverse barrier if (s, x) ∈ R and s > t
implies that (t, x) ∈ R. It has been shown by Rost [Ros76] that under the condition µ({0}) =

0 there exists an inverse barrier such that the corresponding hitting time (in the sense of
(4.1)) solves the Skorokhod problem. It is not hard to see that without this condition some
additional randomization is required. We derive this using an argument almost identical to
the one above.

Theorem 4.9. Suppose µ({0}) = 0. Let γ( f , t) = h(t), where h : R+ → R+ is a strictly
concave function such that (OptSEP) is well posed. Then a minimizer τ̂ of (OptSEP)
exists, and moreover for any minimizer τ̂, there exists an inverse barrier R such that τ̂ =

inf{t ≥ 0 : (t, Bt) ∈ R}. In particular the Skorokhod embedding problem has a solution
which is the hitting time of an inverse-barrier.

Proof. Our proof follows closely the proof of Theorem 4.6. In particular, Steps 1 and 2
can be carried out almost verbatim to get an optimizer τ̂ and a γ-monotone set Γ ⊆ S such
that P(((Bt)t≤τ̂, τ̂) ∈ Γ) = 1. By concavity of h, the set of stop-go pairs is now given by

SG = {(( f , s), (g, t)) ∈ S × S : f (s) = g(t), s < t}.
We remove all paths ( f , s) with f (s) = 0 from Γ, as µ({0}) = 0 this does not alter the full
support property (or the γ-monotone property). Next we define inverse barriers by

Rop := {(s, x) : ∃(g, t) ∈ Γ, g(t) = x, s < t},
Rcl := {(s, x) : ∃(g, t) ∈ Γ, g(t) = x, s ≤ t}.

Denoting the respective hitting times by τop and τcl the argument familiar from the Root
case yields τcl ≤ τ̂ ≤ τop a.s. and it remains to show τcl = τop a.s. The argument is slightly
more involved than in the Root case but again entirely probabilistic:

We define b(t) := inf{x > 0 : (t, x) ∈ Rcl}, c(t) := sup{x < 0 : (t, x) ∈ Rcl} and note that

inf{t > 0 : Bt < (c(t), b(t))} ≤ τcl ≤ τop ≤ inf{t > 0 : Bt < [c(t), b(t)]}.
Concentrating on the function b, we have for ε > 0

inf{t > 0 : Bt ≥ b(t)}︸                    ︷︷                    ︸
=:σb

≤ inf{t > 0 : Bt > b(t)}︸                    ︷︷                    ︸
=:σ+

b

≤ inf{t > 0 : Bt − εt ≥ b(t)}︸                          ︷︷                          ︸
=:σεb

.

By Girsanov’s Theorem, limε→0 P(σεb ≤ t) = P(σb ≤ t) for each t ∈ R+ hence σ+
b = σb a.s.

Arguing likewise on c, we obtain τcl = τop a.s. �

As in the case of the Root embedding we obtain that the minimizer of E[h(τ)] is unique.
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4.5. The cave embedding. In this section we give an example of a new embedding that
can be derived from Theorem 4.3. It can be seen as a unification of the Root and Rost
embeddings. A set R ⊆ R+ × R is a cave barrier if there exists t0 ∈ R+, an inverse barrier
R0 ⊆ [0, t0] × R and a barrier R1 ⊆ [t0,∞) × R such that R = R0 ∪ R1. We will show that
there exists a cave barrier such that the corresponding hitting time (in the sense of (4.1))
solves the Skorokhod problem. We derive this using an argument similar to the one above:

Fix t0 ∈ R and pick a continuous function ϕ : R+ → [0, 1] such that
• ϕ(0) = 0, limt→∞ ϕ(t) = 0, ϕ(t0) = 1
• ϕ is strictly concave on [0, t0]
• ϕ is strictly convex on [t0,∞).

It follows that ϕ is strictly increasing on [0, t0] and strictly decreasing on [t0,∞).

Theorem 4.10 (Cave embedding). Suppose µ({0}) = 0. Let γ( f , t) = ϕ(t). Then a mini-
mizer τ̂ of (OptSEP) exists, and moreover for any minimizer τ̂, there exists a cave barrier
R such that τ̂ = inf{t ≥ 0 : (t, Bt) ∈ R}. In particular the Skorokhod embedding problem
has a solution which is the hitting time of a cave barrier.

Since this construction does not already appear in the literature, we emphasize that the
result remains true for integrable (centered) measures µ (see Section 7).

Proof of Theorem 4.10. Note that since ϕ is bounded, the problem (OptSEP) is well posed.
Following the steps of the proofs of Theorems 4.6 and 4.9, we find an optimizer τ̂ and a
γ-monotone set Γ ⊆ S such that P(((Bt)t≤τ̂, τ̂) ∈ Γ) = 1. The set of stop-go pairs is given by

SG = {(( f , s), (g, t)) ∈ S × S : f (s) = g(t); s < t ≤ t0 or t0 ≤ t < s}.
Indeed, for s < t ≤ t0 and any (h, r) ∈ S we have

γ(( f ⊕ h, s + r)) + γ((g, t)) > γ(( f , s)) + γ((g ⊕ h, t + r))
⇔ ϕ(s + r) − ϕ(s) > ϕ(t + r) − ϕ(t)

which holds iff t 7→ ϕ(t + r) − ϕ(t) is strictly decreasing on [0, t0] for all r > 0. If t + r, t ∈
[0, t0] this follows from concavity of ϕ. In the case that t ≤ t0, t + r > t0 this follows since
ϕ′ is strictly positive on [0, t0) and strictly negative on (t0,∞). The case t0 ≤ t < s can be
established similarly.

Then, we define an ‘open’ cave barrier by

R0
op := {(t, x) : ∃( f , s) ∈ Γ, t < s ≤ t0}, R1

op := {(t, x) : ∃( f , s) ∈ Γ, t0 ≤ s < t}
and Rop := R0

op ∪ R1
op (resp. a ‘closed’ cave barrier where we allow t ≤ s and s ≤ t in R0

cl

and R1
cl resp.). We denote the corresponding hitting time by τRop = τR0

op
∧ τR1

op
(resp. τRcl ).

By the same argument as for the Root and Rost embeddings it then follows that τRcl ≤
τ̂ ≤ τRop a.s. and also that τRcl = τRop a.s., proving the claim. �

Other recent approaches to the Root and Rost embeddings can be found in [GMO15,
GOdR15, CP15, CW13]. These papers largely exploit PDE techniques, and as a conse-
quence, are able to produce more explicit descriptions of the barriers, however the methods
tend to be highly specific to the problem under consideration.
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XIII (Univ. Strasbourg, Strasbourg, 1977/78), volume 721 of Lecture Notes in Math., pages 90–115.
Springer, Berlin, 1979.

[BB00] Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the monge-
kantorovich mass transfer problem. Numerische Mathematik, 84(3):375–393, 2000.

[BC10] S. Bianchini and L. Caravenna. On optimality of c-cyclically monotone transference plans. C. R.
Math. Acad. Sci. Paris, 348(11-12):613–618, 2010.
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