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1. Introduction

Initiated by Hobson [19], the theory of model-independent pricing has received sub-
stantial attention from the mathematical finance community, we refer to the survey [20].
Starting with [5, 17], the Skorokhod embedding approach has been complemented through
optimal transport techniques. In particular, first versions of a robust super-replication theo-
rem have been established: in discrete time we mention [1] and the important contribution
of Bouchard and Nutz [6]; for related work in a quasi-sure framework in continuous time
we refer to the work of Neufeld and Nutz [27] and Possamaı̈, Royer, and Touzi [30]. Our
results are more closely related to the continuous time super-replication theorem of Dolin-
sky and Soner [14], which we recall here: given a centered probability measure µ on R,
they study the primal maximization problem

P := sup
{
EP[G(S )]

}
where S denotes the canonical process on C[0, 1], the supremum is taken over all mar-
tingale measures P on C[0, 1] with S 1(P) = µ and G denotes a functional on the path
space satisfying appropriate continuity assumptions. The main result of [14] is a super-
replication theorem that appeals to this setup: they show that for each p > P there exists a
hedging strategy H and a “European payoff function” ψ with

∫
ψ dµ = 0 such that

p + (H · S )1 + ψ(S 1) ≥ G(S ).

This is in principle quite satisfying, however, a drawback is that the option G needs to
satisfy rather strong continuity assumptions, which in particular excludes all exotic option
payoffs involving volatility. Given the practical importance of volatility derivatives, it is
desirable to give a version of the Dolinsky-Soner theorem that appeals also to this case.
More recently, Dolinsky and Soner [15] have extended the original results of [14] to include
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càdlàg price processes, multiple maturities and price processes in higher dimensions; Hou
and Obłój [24] have also recently extended these results to incorporate investor beliefs via
a ‘prediction set’ of possible outcomes.

Subsequently, we shall establish a super-replication theorem that applies to G which
is invariant under time-changes in an appropriate sense. Opposed to the result of [14]
this excludes the case of continuously monitored Asian options but covers other prac-
tically relevant derivatives such as options on volatility or realized variance, lookback
options and discretely monitored Asian options. Notably, it constitutes a general du-
ality result appealing to the rich literature on the connection of model-independent fi-
nance and Skorokhod embedding. In a series of impressive achievements, Brown, Cox,
Davis, Hobson, Klimmek, Neuberger, Obłój, Pedersen, Raval, Rogers, Wang, and others
[31, 19, 7, 23, 8, 12, 10, 9, 11, 22, 21] were able to determine the values of related primal
and dual problems for a number of exotic derivatives/market data, proving that they are
equal. Here we establish the duality relation for generic derivatives, in particular recover-
ing duality for the specific cases mentioned above.

To achieve this we apply a pathwise approach to model-independent finance which was
introduced by Vovk [36, 37, 38]. In particular we rely on Vovk’s pathwise Dambis Dubins-
Schwarz theorem, which we combine with the duality theory for the Skorokhod embedding
problem recently developed in [4].

After the completion of this work, we learned that Guo, Tan, and Touzi [18] derived a
duality result similar in spirit to Proposition 4.4 and Theorem 4.7. Their approach relies
on different methods, and includes an interesting application to the optimal Skorokhod
embedding problem.

Organization of the paper: In Subsection 1.1 we outline our main results. In Section 2
Vovk’s approach to mathematical finance is introduced and preliminary results are given.
Section 3 is devoted to the statement and proof of our main result in its simplest form: a
super-replication theorem for time-invariant payoffs for one period. In Section 4 we present
an extension to finitely many marginals with “zero up to full information”; in particular we
will then obtain our most general super-replication result, Theorem 4.7.

1.1. Formulation of the super-replication theorem. The purpose of this subsection is
to illustrate heuristically the scope of the super-replication theorem presented below in
Section 3 and 4.

For n ∈ N let C[0, n] be the space of continuous functions ω : [0, n]→ R with ω(0) = 0.
The aim is to consider financial options G : C[0, n]→ R of the form

G(ω) = γ(t(ω)�[0,〈ω〉n], 〈ω〉1, . . . , 〈ω〉n), (1.1)

where 〈ω〉· stands for the quadratic variation process of the path ω and t(ω) stands for a
version of the path ω which is rescaled in time so that for each t its quadratic variation
up to time t equals precisely t. Intuitively, this means that γ sees only the path ω�[0,n] but
not its time-parametrization. Let S be the canonical process on C[0, n]. Under appropriate
regularity conditions on γ (cf. Theorems 3.1 and 4.7 below) we obtain the following robust
super-hedging result:

Theorem (See Theorems 3.1 and 4.7 for the precise statements). Suppose that n ∈ N,
I ⊆ {1, . . . , n}, n ∈ I and that µi is a centered probability measure on R for each i ∈ I.
Setting

Pn := sup
{
EP[G] : P is a martingale measure on C[0, n], S 0 = 0, S i ∼ µi for all i ∈ I

}
and

Dn := inf
{

a : there exist H and (ψ j) j∈I s.t.
∫
ψ j dµ j = 0,

a +
∑

j∈I ψ j(S j) + (H · S )n ≥ G((S t)t≤n)

}
,
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one has Pn = Dn. Here (H · S )n denotes the “pathwise stochastic integral” of H with
respect to S .

Of course the present statement of our super-replication result is imprecise in that nei-
ther the pathwise stochastic integral appearing in the formulation of Dn, nor the pathwise
quadratic variation in the definition of G, nor the operator t are properly introduced. We
will address this in the following sections.

Example. Many financial derivatives such as options on volatility or realized variance,
lookback options and discretely monitored Asian options are covered by the above super-
replication theorem. Mathematically speaking, examples of derivatives in the time-invariant
form (1.1) include the following:

– G1(ω) := F1(ω(1), . . . , ω(n), 〈ω〉1, . . . , 〈ω〉n),
– G2(ω) := F2(maxt∈[0,n] ω(t)),
– G3(ω) := F3(

∫ n
0 ϕ(ω(s), 〈ω〉s) d〈ω〉s),

– G4(ω) := F4(G1(ω),G2(ω),G3(ω)),
for functions Fi : Rmi → R with suitable regularity and growth conditions for some mi ∈ N
for i = 1, . . . , 4.

Examples that are not covered by our results are continuously monitored Asian options,
G5(ω) := F

( ∫ n
0 ω(s) ds

)
for a function F : R→ R. In that case we would have to discretize

time and consider the discretely monitored version G6(ω) := F
(∑n−1

k=0 ω(k)
)
.

Remark. Guo, Tan, and Touzi recently derived a similar result to the super-replication
theorem provided in the present paper, cf. [18, Theorem 3.1]. Both duality results provide
comparable primal and dual problems and cover a similar class of financial derivatives.

However, the main difference is that our dual problem Dn is formulated in terms of
pathwise super-hedging (i.e. the super-hedge has to hold for every path) while the super-
hedging in the dual problem of [18] is “only” required to hold quasi-surely under all mar-
tingale measures. One advantage of the stronger requirement of pathwise super-hedging is
that it allows us to formulate the dual problem independently of the measures considered in
the primal problem. On the other side the stochastic integrals that can be constructed using
the additional martingale measure structure allow Guo, Tan, and Touzi to consider super-
hedging along a fixed (non-simple) strategy, while here we have to consider sequences of
simple strategies, see the precise formulation in Theorem 3.1 or Theorem 4.7 below.

2. Super-hedging and outer measure

In recent years Vovk [36, 37, 38], see also [34], developed a new model free approach
to mathematical finance based on hedging. Without presuming any probabilistic structure,
Vovk considers the space of real-valued continuous functions as possible price paths and
introduces an outer measure on this space, which is based on a minimal super-hedging
price.

Vovk defines his outer measure on all continuous paths, and then shows that “typical
price paths” admit a quadratic variation. To simplify many of the statements and proofs
below, we restrict ourselves from the beginning to paths admitting quadratic variation. We
discuss in Remark 2.8 below why this is no problem.

To be precise, define for a continuous path ω : R+ → R and n ∈ N the stopping times

σn
0 := 0 and σn

k := inf
{
t ≥ σn

k−1 : ω(t) ∈ 2−nZ and ω(t) , ω(σn
k−1)

}
,

for k ∈ N. For n ∈ N the discrete quadratic variation of ω is given by

Vn
t (ω) :=

∞∑
k=0

(
ω(σn

k+1 ∧ t) − ω(σn
k ∧ t)

)2
, t ∈ R+.

We write Ωqv for the space of continuous functions ω : R+ → R with ω(0) = 0 such that
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• Vn(ω) converges locally uniformly in time to a continuous limit 〈ω〉 which has the
same intervals of constancy as ω, and

• for every ω ∈ Ωqv either limt→∞ ω(t) exists or 〈ω〉 is unbounded on R+.

The coordinate process on Ωqv is denoted by Bt(ω) := ω(t) and we introduce the natural
filtration (F qv

t )t≥0 := (σ(Bs : s ≤ t))t≥0 and set F qv :=
∨

t≥0 F
qv

t . Stopping times τ
and the associated σ-algebras F qv

τ are defined as usual. Occasionally we will also write
〈B〉(ω) = 〈ω〉.

A process H : Ωqv × R+ → R is called a simple strategy if it is of the form

Ht(ω) =

∞∑
n=0

Fn(ω)1(τn(ω),τn+1(ω)](t), (ω, t) ∈ Ωqv × R+,

where 0 = τ0(ω) < τ1(ω) < . . . are stopping times such that for every ω ∈ Ωqv one has
limn→∞ τn(ω) = ∞, and Fn : Ωqv → R are F qv

τn -measurable bounded functions for n ∈ N.
For such a simple strategy H the corresponding capital process

(H · B)t(ω) =

∞∑
n=0

Fn(ω)(Bτn+1(ω)∧t(ω) − Bτn(ω)∧t(ω))

is well-defined for every ω ∈ Ωqv and every t ∈ R+. A simple strategy H is called λ-
admissible for λ > 0 if (H · B)t(ω) ≥ −λ for all t ∈ R+ and all ω ∈ Ωqv. We write Hλ for
the set of λ-admissible simple strategies.

To recall Vovk’s outer measure as introduced in [37], let us define the set of processes

Vλ :=

h :=
(
Hk)

k∈N : Hk ∈ Hλk , λk > 0,
∞∑

k=0

λk = λ


for an initial capital λ ∈ (0,∞). Note that for every h =

(
Hk)

k∈N ∈ Vλ, all ω ∈ Ωqv, and all
t ∈ R+, the corresponding capital process

(h · B)t(ω) :=
∞∑

k=0

(Hk · B)t(ω) =

∞∑
k=0

(
λk + (Hk · B)t(ω)

)
− λ

is well-defined and takes values in [−λ,∞].
Then, Vovk’s outer measure on Ωqv is given by

Q(A) := inf
{
λ > 0 : ∃ h ∈ Vλ s.t. λ + lim inf

t→∞
(h · B)t(ω) ≥ 1A(ω)∀ω ∈ Ωqv

}
, A ⊆ Ωqv.

A slight modification of the outer measure Q was introduced in [28, 29], which seems more
in the spirit of the classical definition of super-hedging prices in semimartingale models.
In this context one works with general admissible strategies and the Itô integral against a
general strategy is given as limit of integrals against simple strategies. So in that sense the
next definition seems to be more analogous to the classical one.

Definition 2.1. The outer measure P of A ⊆ Ωqv is defined as the minimal super-hedging
price of 1A, that is

P(A) := inf
{
λ > 0 : ∃ (Hn) ⊆ Hλ s.t. lim inf

t→∞
lim inf

n→∞

(
λ + (Hn · B)t(ω)

)
≥ 1A(ω)∀ω ∈ Ωqv

}
.

A set A ⊆ Ωqv is said to be a null set if it has P outer measure zero. A property (A)
holds for typical price paths if the set A where (A) is violated is a null set.

Of course, for both definitions of outer measures it would be convenient to just mini-
mize over simple strategies rather than over the limit (inferior) along sequences of simple
strategies. However, this would destroy the very much appreciated countable subadditivity
of both outer measures.
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Remark 2.2. It is conjectured that the outer measure P coincides with Q. However, up to
now it is only known that P(A) ≤ Q(A) for a general set A ⊆ Ωqv, see [28, Section 2.4], and
that they coincide for time-superinvariant sets, see Definition 2.5 and Theorem 2.6 below.
Therefore, the outer measures P and Q are basically the same in the present paper since
we focus on time-invariant financial derivatives.

Perhaps the most interesting feature of P is that is comes with the following arbitrage
interpretation for null sets.

Lemma 2.3 ([28, Lemma 2.4]). A set A ⊆ Ωqv is a null set if and only if there exists a
sequence of 1-admissible simple strategies (Hn)n∈N ⊆ H1, such that

1 + lim inf
t→∞

lim inf
n→∞

(Hn · B)t(ω) ≥ ∞ · 1A(ω),

where we use the convention∞ · 0 := 0 and∞ · 1 := ∞.

A null set is essentially a model free arbitrage opportunity of the first kind. Recall that B
satisfies (NA1) (no arbitrage opportunities of the first kind) under a probability measure P
on (Ωqv,F qv) if the setW∞

1 :=
{
1 +

∫ ∞
0 Hs dBs : H ∈ H1

}
is bounded in probability, that

is if limn→∞ supX∈W∞
1
P(X ≥ n) = 0. The notion (NA1) has gained a lot of interest in recent

years since it is the minimal condition which has to be satisfied by any reasonable asset
price model; see for example [3, 26, 32, 25].

The next proposition collects further properties of P.

Proposition 2.4 ([29, Proposition 3.3]).
(1) P is an outer measure with P(Ωqv) = 1, i.e. P is nondecreasing, countably subad-

ditive, and P(∅) = 0.
(2) Let P be a probability measure on (Ωqv,F qv) such that the coordinate process B

is a P-local martingale, and let A ∈ F qv. Then P(A) ≤ P(A).
(3) Let A ∈ F qv be a null set, and let P be a probability measure on (Ωqv,F qv) such

that the coordinate process B satisfies (NA1) under P. Then P(A) = 0.

Especially, the last statement is of interest in robust mathematical finance because it
says that every property which is satisfied by typical price paths holds quasi-surely for all
probability measures fulfilling (NA1).

An essential ingredient to obtain our super-replication theorem for time-invariant deriva-
tives is a very remarkable pathwise Dambis Dubins-Schwarz theorem as presented in [37].
In order to give its precise statement here, we recall the definition of time-superinvariant
sets, cf. [37, Section 3].

Definition 2.5. A continuous non-decreasing function f : R+ → R+ satisfying f (0) = 0 is
said to be a time-change. The set of all time-changes will be denoted by G0, the group of
all time-changes that are strictly increasing and unbounded will be denoted by G. Given
f ∈ G0 we define T f (ω) := ω ◦ f . A subset A ⊆ Ωqv is called time-superinvariant if for all
f ∈ G0 it holds that

T−1
f (A) ⊆ A. (2.1)

A subset A ⊆ Ωqv is called time-invariant if (2.1) holds true for all f ∈ G.

For an intuitive explanation of time-superinvariance we refer to [37, Remark 3.3]. We
denote byW the Wiener measure on (Ωqv,F qv) and recall Vovk’s pathwise Dambis Dubins-
Schwarz theorem.

Theorem 2.6 ([37, Theorem 3.1]). Each time-superinvariant set A ⊆ Ωqv satisfies P(A) =

Q(A) =W(A).

Proof. For every A ⊆ Ωqv Proposition 2.4 and Remark 2.2 imply W(A) ≤ P(A) ≤ Q(A).
If A is additionally time-superinvariant, [37, Theorem 3.1] says Q(A) = W(A), which
immediately gives the desired result. �
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Let us now introduce the normalizing time transformation operator t in the sense of
[37]. We follow [37] in defining the sequence of stopping times

τt(ω) := inf {s ≥ 0 : 〈ω〉s > t} (2.2)

for t ∈ R+ and τ∞ := supn τn. The normalizing time transformation t : Ωqv → Ωqv is given
by

t(ω)t := ω(τt), t ∈ R+, (2.3)
where we set ω(∞) := limt→∞ ω(t) for all ω ∈ Ωqv with supt≥0〈ω〉t < ∞. Note that
t(ω)· stays constant from time 〈ω〉∞ on (which is of course only relevant if that time is
finite). Below we shall also use t : Cqv[0, n] → Ωqv which is defined analogously and
where Cqv[0, n] denotes the space of paths that are obtained by restricting functions in Ωqv

to [0, n]. On the product space Ωqv × R+ we further introduce

t̄(ω, t) := (t(ω), 〈ω〉t).

We are now ready to state the main result of [37]:

Theorem 2.7 ([37, Theorem 6.4]). For any non-negative Borel measurable function
F : Ωqv → R, one has

E[F ◦ t, 〈B〉∞ = ∞] =

∫
Ωqv

F dW,

where E is the obvious extension of P from sets to nonnegative functions and 〈B〉∞ :=
supt≥0〈B〉t.

Remark 2.8. It might seem like a strong restriction that we only deal with paths in Ωqv

rather than considering all continuous functions, however Vovk’s result holds on all of
C(R+), the continuous paths on R+ started in 0, and is only slightly more complicated to
state it in that case. In particular, Vovk shows that C(R+) \Ωqv is atypical in the sense that
for every ε > 0 there exists a sequence of ε-admissible simple strategies (Hn) on C(R+)
(which are defined in the same way as above, replacing every occurrence of Ωqv by C(R+))
such that for every ω ∈ C(R+) \ Ωqv we have lim inft→∞ lim infn→∞(Hn · B)t(ω) = ∞. In
particular, all our results continue to hold on C(R+) because on the set C(R+) \ Ωqv we
can superhedge any functional starting from an arbitrarily small ε > 0. To simplify the
presentation we restricted our attention to Ωqv from the beginning.

Remark 2.9. Vovk defines the normalizing time transformation slightly differently, re-
placing τt(ω) by inf{s ≥ 0 : 〈ω〉s ≥ t}, so considering the hitting time of [t,∞) rather
than (t,∞). This corresponds to taking the càglàd version (τt−)t≥0 of the càdlàg process
(τt)t≥0. But since on Ωqv the paths ω and 〈ω〉 have the same intervals of constancy, we get
ω(τt−) = ω(τt) for all ω ∈ Ωqv, and by Remark 2.8 more generally for all typical price
paths in C(R+).

3. Duality for one period

Here we are interested in a one period duality result for derivatives G on Cqv[0, 1] of
the form ω 7→ G(ω, 〈ω〉1) which are invariant under suitable time-changes of ω. Typical
examples for such derivatives are the running maximum up to time 1 or functions of the
quadratic variation. Formally, this amounts to

G = G̃ ◦ t̄(·, 1)

for some optional process (G̃t)t≥0 on (Ωqv, (F qv
t )t≥0), and more specifically we will focus on

processes G̃ which are of the form G̃t(ω) = γ(ω�[0,t], t), where ω�[0,t] denotes the restriction
of ω to the interval [0, t] and γ : Υ → R is an upper semi-continuous functional which is
bounded from above. Here we wrote Υ for the space of stopped paths

Υ := {( f , s) : f ∈ C[0, s], s ∈ R+},
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equipped with the distance dΥ (sometimes called the Dupire distance in the context of
functional Itô calculus) which is defined for s ≤ t by

dΥ

(
( f , s), (g, t)

)
:= max

(
|t − s|, sup

0≤u≤s
| f (u) − g(u)|, sup

s≤u≤t
|g(u) − f (s)|

)
, (3.1)

and which turns Υ into a Polish space. The space Υ is a convenient way to express option-
ality of a process on C(R+). Indeed, put

r : C(R+) × R+ → Υ, (ω, t) 7→ (ω�[0,t], t).

By [13, Theorem IV. 97], a process Y is predictable if and only if there is a function
H : Υ → R such that Y = H ◦ r. Moreover, since Ωqv is a subset of the set of continuous
paths, the optional and predictable processes coincide. Hence, Y is optional if and only
if such a function H exists. We can say that an optional process Y is Υ-(upper/lower
semi-) continuous if and only if the corresponding function H on Υ is (upper/lower semi-)
continuous.

Given a centered probability measure µ on R with finite first moment, we want to solve
the primal maximization problem

P := sup
{
EP[G] : P is a martingale measure on Cqv[0, 1] s.t. S 1(P) = µ

}
, (3.2)

where S denotes the canonical process on Cqv[0, 1].
Since µ satisfies

∫
|x| dµ(x) < ∞, there exists a smooth convex function ϕ : R → R+

with ϕ(0) = 0, limx→±∞ ϕ(x)/|x| = ∞, and such that
∫
ϕ(x) dµ(x) < ∞ (apply for example

the de la Vallée-Poussin Theorem). From now on we fix such a function ϕ and we define

ζt(ω) :=
1
2

∫ t

0
ϕ′′(S s(ω)) d〈S 〉s(ω), (ω, t) ∈ Cqv[0, 1] × [0, 1],

where we write 〈S 〉(ω) := 〈ω〉 for ω ∈ Ωqv. We then consider for α, c > 0 the set of
(generalized admissible) simple strategies

Qα,c :=
{
H : H is a simple strategy and (H·S )t(ω) ≥ −c−αζt(ω) ∀(ω, t) ∈ Cqv[0, 1]×[0, 1]

}
.

We also define the set of “European options available at price 0”:

E0 :=
{
ψ ∈ C(R) :

|ψ|

1 + ϕ
is bounded,

∫
ψ(x) dµ(x) = 0

}
.

In this setting we shall deduce the following duality result for one period.

Theorem 3.1. Let γ : Υ→ R be upper semi-continuous and bounded from above and let

G : Cqv[0, 1]→ R, G(ω) := γ(t(ω)�[0,〈ω〉1], 〈ω〉1).

Set

D := inf
{

p :
∃c, α > 0, (Hn) ⊆ Qα,c, ψ ∈ E0 s.t. ∀ω ∈ Cqv[0, 1]
p + lim infn(Hn · S )1(ω) + ψ(S 1(ω)) ≥ G(ω)

}
,

then we have the duality relation
P = D. (3.3)

Note that P does not depend on ϕ and therefore also the value of D does not depend on
it; the function ϕ is just needed to provide some compactness.

The inequality P ≤ D is fairly easy: If p > D, then there exists a sequence (Hn) ⊆ Qα,c
and a ψ ∈ C(R) with

∫
ψ(x) dµ(x) = 0 such that p+lim infn(Hn ·S )1(ω)+ψ(S 1(ω)) ≥ G(ω).

In particular, for all martingale measures P on Cqv[0, 1] with S 1(P) = µ we have

EP[G] ≤ EP[p + lim inf
n→∞

(Hn · S )1 + ψ(S 1)] ≤ p + lim inf
n→∞

EP[(Hn · S )1] + EP[ψ(S 1)] ≤ p,
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where in the second step we used Fatou’s lemma, which is justified because (Hn · S )1 is
uniformly bounded from below by −c−αζ1 and from Itô’s formula we get P-almost surely

ϕ(S t) =

∫ t

0
ϕ′(S s) dS s + ζt,

which shows that ζ is the compensator of the P-submartingale ϕ(S ) and therefore EP[ζ1] <
∞.

In the following we concentrate on the inequality P ≥ D and proceed in three steps:

1. Reduction of the primal problem P to optimal Skorokhod embedding P∗: P = P∗.
2. Duality of optimal Skorokhod embedding P∗ and a dual problem D∗: P∗ = D∗.
3. The new dual problem D∗ dominates the dual problem D: D ≤ D∗.

Step 1: The idea, going back to Hobson [19], is to translate the primal problem into an
optimal Skorokhod embedding problem. Let us start by observing that if P is a martingale
measure for S , then by the Dambis Dubins-Schwarz theorem the process (t(S )t∧〈S 〉1 )t≥0 is
a stopped Brownian motion under P in the filtration (F S

τt
)t≥0, where (F S

t )t∈[0,1] is the usual
augmentation of the filtration generated by S and where (τt)t≥0 are the stopping times
defined in (2.2). It is also straightforward to verify that 〈S 〉1 is a stopping time with respect
to (F S

τt
). Since moreover t(S )〈S 〉1 = S 1 ∼ µ, we deduce that there exists a new filtered

probability space (Ω̃, (Gt)t≥0,Q) with a Brownian motion W and a stopping time τ, such
that Wτ ∼ µ, the process W·∧τ is a uniformly integrable martingale, and

EP[G] = EQ[γ((Ws)s≤τ, τ)].

Conversely, let (Ω̃, (Gt)t≥0,Q) be a filtered probability space with a Brownian motion W
and a finite stopping time τ, such that Wτ ∼ µ and W·∧τ is a uniformly integrable martingale,
and define (S t := W(t/(1−t))∧τ)t∈[0,1]. Then S is a martingale on [0, 1] with 〈S 〉1 = τ, and
writing P for the law of S we get

EQ[γ((Ws)s≤τ, τ)] = EP[G̃ ◦ t̄(S , 1)] = EP[G].

To conclude, we arrive at the following observation:

Lemma 3.2. The value P defined in (3.2) is given by

P = P∗ := sup
{
EQ[γ((Ws)s≤τ, τ)] :

(Ω̃, (Gt)t≥0,Q) ∈ F, τ ∈ T((Gt)t≥0),
Wτ ∼ µ,W·∧τ is a u.i. martingale

}
, (3.4)

where F denotes all filtered probability spaces supporting a Brownian motion W and
T((Gt)t≥0) is the set of (Gt)t≥0-stopping times.

By [4, Lemma 3.11], the value P∗ is independent of the particular probability space as
long as it supports a Brownian motion and a G0-measurable uniformly distributed random
variable. Therefore, it is sufficient to consider the probability space (Ω̄, F̄ , (F̄t)t≥0, W̄),
where we take Ω̄ := C(R+) × [0, 1], F = (Ft)t≥0 to be the natural filtration on C(R+),
F̄ to be the completion of F ⊗ B([0, 1]), W̄(A1 × A2) := W(A1)L(A2), and F̄t the usual
augmentation of Ft ⊗ σ([0, 1]). Here, L denotes the Lebesgue measure andW the Wiener
measure. We will write B̄ = (B̄t)0≤t for the canonical process on Ω̄, that is B̄t(ω, u) := ω(t).

Given random times τ, τ′ on Ω̄ and a bounded continuous function f : C(R+)×R+ → R
we define

d f (τ, τ′) :=
∣∣∣EW̄[ f (τ) − f (τ′)]

∣∣∣ =

∣∣∣∣∣∫ [
f (ω, τ(ω, x)) − f (ω, τ′(ω, x))

]
W̄(dω, dx)

∣∣∣∣∣ .
We then identify τ and τ′ if d f (τ, τ′) = 0 for all continuous and bounded f . On the resulting
space of equivalence classes denoted by RT, the family of semi-norms (d f ) f gives rise to a
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Polish topology. An equivalent interpretation of this space is to consider the measures on
C(R+) × R+ induced by

ντ(A × B) =

∫
1ω∈A,τ(ω,x)∈B W̄(dω, dx). (3.5)

The topology above corresponds to the topology of weak convergence of the corresponding
measures. A random time τ is a F̄ -stopping time if and only if for any f ∈ C(R+) supported
on [0, t] the random variable f (τ) is F̄t-measurable which in turn holds if and only if for
all g ∈ Cb(C(R+)) we have (see also [4, Theorem 3.8])

EW̄[ f (τ)(g − EW[g|Ft])] =

∫
f (s)(g − EW[g|Ft])(ω) ντ(dω, ds) = 0, (3.6)

where on the left hand side we interpret g−EW[g|Ft] as a random variable on the extension
Ω̄ via (g − EW[g|Ft])(ω, x) = (g − EW[g|Ft])(ω). As a consequence, for a stopping time τ
on Ω̄ all elements of the respective equivalence class are stopping times. We will call this
equivalence class, as well as (by abuse of notation) its representatives randomized stopping
times (in formula: RST).

By the same argument as above, there is a continuous compensating process ζ1 : Υ→ R
such that (ϕ(Bt) − ζt) is a martingale underW. We write RST(µ) for the set of randomized
stopping times which embed a given measure µ (that is B̄τ ∼ µ and B·∧τ is a uniformly
integrable martingale), and such that EW̄[ζ1

τ ] < ∞, this last condition also being equivalent
to EW̄[ζ1

τ ] = V for V =
∫
ϕ(x) µ(dx). It it is then not hard to show that RST(µ) is com-

pact, see [4, Theorem 3.14 and Section 7.2.1]. Thereby, we have turned the optimization
problem (3.2) into the primal problem of the optimal Skorokhod embedding problem

P∗ = sup
τ∈RST(µ)

EW̄[γ((B̄s)s≤τ, τ)]. (3.7)

Step 2: In [4] a duality result for (3.7) is shown. To state it (and in what follows), it
will be convenient to fix a particularly nice version of the conditional expectation on the
Wiener space (C(R+),F ,W).

Definition 3.3. Let X : C(R+)→ R be a measurable function which is bounded or positive.
Then we define EW[X|Ft] to be the unique Ft-measurable function satisfying

EW[X|Ft](ω) :=
∫

X((ω�[0,t]) ⊕ ω̃)W(dω̃),

where (ω�[0,t])⊕ ω̃ is the concatenation of ω�[0,t] and ω̃, that is (ω�[0,t])⊕ ω̃(r) := 1r≤tω(r) +

1r>t(ω(t) + ω̃(r − t)). Similarly, for bounded or positive X : Ωqv → R we define EW[X|F qv
t ]

to be the unique F qv
t -measurable function satisfying

EW[X|F qv
t ](ω) =

∫
X((ω�[0,t]) ⊕ ω̃)W(dω̃).

Then EW[X|Ft](ω) as well as EW[X|F qv
t ](ω) depend only on ω�[0,t], and in particular we

can (and will) interpret the conditional expectation also as a function on Cqv[0, t] :=
{ω�[0,t] : ω ∈ Ωqv}.

We equip Ωqv with the topology of uniform convergence on compacts. Note that then
Ωqv is a metric space, but it is not complete due to the fact that it is possible to approximate
paths without quadratic variation uniformly by typical Brownian sample paths.

Proposition 3.4 ([4, Proposition 3.5]). Let X ∈ Cb(C(R+)). Then Xt(ω) := EW[X|Ft](ω)
defines a Υ-continuous martingale on (C(R+), (Ft),W). By restriction, it is also a Υ-
continuous martingale on (Ωqv, (F qv

t ),W).

Then the duality for the optimal Skorokhod embedding reads:
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Proposition 3.5. Let γ : Υ → R be upper semi-continuous and bounded from above. We
put

D∗ := inf

p :
∃α ≥ 0, ψ ∈ E0,m ∈ Cb(C(R+)) s.t. EW[m] = 0
and ∀(ω, t) ∈ C(R+) × R+ :
p + EW[m|Ft](ω) + αQ(ω, t) + ψ(Bt(ω)) ≥ γ(ω, t)

 ,
where we wrote Q(ω, t) := ϕ(Bt(ω)) − 1/2

∫ t
0 ϕ
′′(Bs(ω)) ds. Let P∗ be as defined in (3.4).

Then one has
P∗ = D∗.

Proof. This is essentially a restatement of [4, Theorem 4.2 and Proposition 4.3 (cf. the
proof of Theorem 4.2)], combined with the discussion before [4, Theorem 7.3], which
enables us to modify the statement to include the term αQ(ω, t) instead of α(ω(t)2 − t/2).

�

By Proposition 3.4 and the fact that Ωqv is dense in C(R+), we see that the value D∗

equals

D∗,qv := inf
{

p :
∃α ≥ 0, ψ ∈ E0,m ∈ Cb(Ωqv) s.t. EW[m] = 0 and ∀(ω, t) ∈ Ωqv × R+

p + EW[m|F qv
t ](ω) + αQ(ω, t) + ψ(Bt(ω)) ≥ γ(ω, t)

}
.

Step 3: Let now p > D∗ = P∗ = P. Then Proposition 3.5 gives us a function ψ ∈ E0,
a constant α ≥ 0, and a continuous bounded function m : Ωqv → R with EW[m] = 0 such
that for all (ω, t) ∈ Ωqv × R+

Mt(ω) := EW[m|F qv
t ](ω) ≥ −p − ψ(Bt(ω)) − αQ(ω, t) + γ(ω, t). (3.8)

Consider now the functional m̃ : Ωqv → R given by

m̃ := m ◦ t

which is G-invariant, i.e. invariant under all strictly increasing unbounded time-changes,
and satisfies EW[m̃] = EW[m] = 0. Denote by m0 the supremum of |m(ω)| over all ω ∈
Ωqv. Then m0 + m ≥ 0, and if we fix ε > 0 and apply Theorem 2.7 in conjunction with
Remark 2.2, we obtain a sequence of simple strategies (H̃n) ⊆ Hm0+ε such that

lim inf
t→∞

lim inf
n→∞

ε + (H̃n · B)t(ω) ≥ m̃(ω)1{〈B〉∞=∞}(ω), ω ∈ Ωqv.

By stopping we may suppose that (H̃n · B)t(ω) ≤ m0 for all (ω, t) ∈ Ωqv × R+. Set

M̃t(ω) := (M ◦ t̄)(ω, t), (ω, t) ∈ Ωqv × R+.

Lemma 3.6. For all (ω, t) ∈ Ωqv × R+ we have

ε + lim inf
n→∞

(H̃n · B)t(ω) ≥ M̃t(ω).

Proof. We claim that M̃t = EW[1{〈B〉∞=∞}m̃|F
qv

t ]. Indeed we have

M̃t
(
ω�[0,t] ⊕ ω̃, t

)
= (M ◦ t̄)

(
ω�[0,t] ⊕ ω̃, t

)
= M〈B〉t

(
t(ω�[0,t] ⊕ ω̃)

)
,

where the latter quantity actually does not depend on ω̃, i.e. with a slight abuse of notation
we may write it as M〈B〉t

(
t(ω�[0,t])

)
. Also, we have

EW[1{〈B〉∞=∞}m̃|F
qv

t ](ω�[0,t]) = EW[1{〈B〉∞=∞}m ◦ t |F
qv

t ](ω�[0,t])

=

∫
1{〈B〉∞=∞}(ω�[0,t] ⊕ ω̃)(m ◦ t)(ω�[0,t] ⊕ ω̃)W(dω̃)

=

∫
1{〈B〉∞=∞}(ω̃)m

(
t(ω�[0,t]) ⊕ t(ω̃)

)
W(dω̃)

=

∫
m
(
t(ω�[0,t]) ⊕ ω̃

)
W(dω̃)

= M〈B〉t
(
t(ω�[0,t])

)
,
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where we used that W-almost surely ω̃ = t(ω̃) and 〈B〉∞ = ∞. Writing (H̃n · B)s
t :=

(H̃n · B)s − (H̃n · B)t, we thus find

M̃t = EW[1{〈B〉∞=∞}m̃|F
qv

t ] ≤ ε + EW[lim inf
s→∞

lim inf
n→∞

(H̃n · B)s|F
qv

t ]

= ε + EW[lim inf
s→∞

lim inf
n→∞

((H̃n · B)t + (H̃n · B)s
t )|F qv

t ]

= ε + lim inf
n→∞

(H̃n · B)t + EW[lim inf
s→∞

lim inf
n→∞

(H̃n · B)s
t |F

qv
t ].

Now it is easily verified that (lim infn(H̃n · B)s
t )s≥t is a boundedW-supermartingale started

in 0 (recall that −m0 − ε ≤ (H̃n · B)s(ω) ≤ m0 for all (ω, s) ∈ Ωqv × R+, which yields
|(H̃n ·B)s

t (ω)| ≤ 2m0 +ε for all (ω, s) ∈ Ωqv×R+), and therefore the conditional expectation
on the right hand side is nonpositive, which concludes the proof. �

We are now ready to show that D ≤ D∗ and thus to prove the main result (Theorem 3.1)
of this section.

Proof of Theorem 3.1. Lemma 3.6 and (3.8) show that

ε + lim inf
n→∞

(H̃n · B)t(ω) ≥ −p − ψ((B ◦ t̄)(ω, t)) − α(Q ◦ t̄)(ω, t) + γ ◦ t̄(ω, t)

for all (ω, t) ∈ Ωqv×R+. Noting that ψ((B◦ t̄)(ω, t)) = ψ(Bt(ω)) and Q◦ t̄(ω, t) = ϕ(Bt(ω))−
ζt(ω), we get

p + ε + lim inf
n→∞

(H̃n · B)t(ω) + ψ(Bt(ω)) + α(ϕ(Bt(ω)) − ζt(ω))
)
≥ γ ◦ t̄(ω, t)

for all (ω, t) ∈ Ωqv×R+. It now suffices to apply Föllmer’s pathwise Itô formula [16] along
the dyadic Lebesgue partition defined in Section 2 to obtain a sequence of simple strategies
(Gn) ⊆ Q1,α such that limn→∞(Gn ·B)t(ω) = α(ϕ(Bt(ω))− ζt(ω)) for all (ω, t) ∈ Ωqv×R+; to
make the strategies (Gn) admissible it suffices to stop once the wealth at time t drops below
−1 − αζt(ω) < α(ϕ(Bt(ω)) − ζt(ω)). Hence, setting Hn := H̃n + Gn, we have established
that there exist (Hn) ⊆ Qm0+ε+1,α and ψ ∈ E0 such that

p + ε + lim inf
n→∞

(Hn · B)t(ω) + ψ(Bt(ω)) ≥ γ ◦ t̄(ω, t)

for all (ω, t) ∈ Ωqv×R+. Now for fixed t ∈ R+ the functionals on both sides only depend on
ω�[0,t], so we can consider them as functionals on Cqv[0, t], and thus the inequality holds in
particular for all (ω, t) ∈ Cqv[0, 1] × [0, 1]. Since p > P and ε > 0 are arbitrarily small, we
deduce that D ≤ P and thus that D = P. �

4. Duality in the multi-marginal case

In this section, we will show a general duality result for the multi-marginal Skorokhod
embedding problem and moreover, for a slightly more general problem. Our main result
will then follow by exactly the same steps and arguments as for the one marginal duality,
that is reduction of the primal problem to optimal multi-marginal Skorokhod embedding
(Step 1 in the last section) and domination of the dual problem via the dual in the optimal
multi-marginal Skorokhod embedding (Step 3 in the last section).

To this end, we introduce the set of all randomized multi stopping times or n-tuples
of randomized stopping times. As before we consider the space (Ω̄, F̄ , W̄) and denote its
elements by (ω, x). We consider all n-tuples τ = (τ1, . . . , τn) with τ1 ≤ . . . ≤ τn and τi ∈ RT
for all i. We identify two such tuples if

d f (τ, τ′) :=
∣∣∣EW̄[ f (τ1, . . . , τn) − f (τ′1, . . . , τ

′
n)]

∣∣∣ (4.1)

=

∣∣∣∣∣∫ [ f (ω, τ1(ω, x), . . . , τn(ω, x)) − f (ω, τ′1(ω, x), . . . , τ′n(ω, x))] W̄(dω, dx)
∣∣∣∣∣

vanishes for all continuous, bounded f : C(R+)×Rn
+ → R and denote the resulting space by

RTn. Moreover, we consider RTn as a topological space by testing against all continuous
bounded functions as in (4.1). As for the one-marginal case, for an ordered tuple τ1 ≤ . . . ≤
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τn of stopping times it follows from (3.6) that all elements of the respective equivalence
class are ordered tuples of stopping times as well. We will denote this class by RSTn.

Fix I ⊆ {1, . . . , n} with n ∈ I and |I| ≤ n measures (µi)i∈I = µ in convex order with finite
first moment. If i ∈ {1, . . . , n}\I, write i+ for the smallest element of { j ∈ I : j ≥ i}. For i ∈ I
we set i+ = i. By an iterative application of the de la Vallée-Poussin Theorem, there is an
increasing family of smooth, non-negative, strictly convex functions (ϕi)i=1,...,n (increasing
in the sense that ϕi ≤ ϕ j for i ≤ j) such that ϕi(0) = 0 and ϕi+1/ϕi → ∞ as x → ±∞, and∫
ϕi dµi+ < ∞ for all i = 1, . . . , n. Denote the corresponding compensating processes by ζ i

such that Qi := ϕi(B)−ζ i is a martingale. We also write Ei :=
{
ψ ∈ C(R) : |ψ|

1+ϕi
is bounded

}
.

Then, we define RSTn(µ) to be the subset of RSTn consisting of all tuples (τ1 ≤ . . . ≤
τn) such that B̄τi ∼ µi for all i ∈ I and EW̄[ζn

τn
] < ∞. Similar to the one-marginal case we

get

Lemma 4.1. For any I ⊆ {1, . . . , n} with n ∈ I and any family of measures (µi)i∈I = µ in
convex order the set RSTn(µ) is compact.

We introduce the space of paths where we have stopped n times:

Υn :=
{
( f , s1, . . . , sn) : ( f , sn) ∈ Υ, 0 ≤ s1 ≤ . . . ≤ sn

}
,

equipped with the topology generated by the obvious analogue of (3.1):

dΥn (( f , s1, . . . , sn), (g, t1, . . . , tn)) = max
(
|s1 − t1|, . . . , |sn − tn|, sup

u≥0
| f (u ∧ sn) − g(u ∧ tn)|

)
.

We put ∆n := {(s1, . . . , sn) ∈ Rn
+ : s1 ≤ . . . ≤ sn}. As a natural extension of an optional

process, we say that a process Y : C(R+)×∆n is optional if for any family of stopping times
τ1 ≤ · · · ≤ τn, the map Y(B̄, τ1, . . . , τn) is F̄τn -measurable. Put

rn : C(R+) × ∆n → Υn, (ω, s1, . . . , sn) 7→ (ω�[0,sn], s1, . . . , sn).

Just as in the one-marginal case a function Y : C(R+) × ∆n → R is optional if and only if
there exist a Borel function H : Υn → R such that Y = H ◦ rn.

Given γ : Υn → R, we are interested in the following n-step primal problem

P∗n := sup
{
EW̄[γ ◦ rn(ω, τ1, . . . , τn)] : (τi)n

i=1 ∈ RSTn(µ)
}

(4.2)

and its relation to the dual problem

D∗n := inf

a :
there exist (ψ j) j∈I , martingales (Mi)n

i=1,EW[Mi
∞] = 0,

∫
ψ j dµ j = 0,

a +
∑

j∈I ψ j(Bt j (ω)) +
∑n

i=1 Mi
ti (ω) ≥ γ(ω, t1, . . . , tn)

for all ω ∈ C(R+), (t1, . . . , tn) ∈ ∆n

 .
(4.3)

Remark 4.2. Note that in the primal as well as dual problem only the stopping times truly
live on Ω̄. The martingales Mi as well as the compensators ζ i live on C(R+) × R+ in that
they satisfy e.g. Mi

t(ω, x) = Mi
t(ω). We stress this by suppressing the x variable and writing

e.g. EW[Mi
∞] = 0 rather than EW̄[Mi

∞] = 0.

Important convention 4.3. In the formulation of D∗n in (4.3) and in the rest of this section
M1, . . . ,Mn will range over Υ-continuous martingales such that Mi

t(ω) = EW̄[mi|F 0
t ](ω) +

Qt(ω) for some mi ∈ Cb(Ω) and Qt(ω) = f (Bt(ω)) − ζ f
t (ω) where f is a smooth function

such that | f |/(1 + ϕi) is bounded, and ζ f is the corresponding compensating process ζ f =
1
2

∫ ·
0 f ′′(Bs) ds. In addition, we assume that ψi ∈ Ei for all i ≤ n.

Proposition 4.4. Let γ : Υn → R be upper semicontinuous and bounded from above. Un-
der the above assumptions we have P∗n = D∗n.

As usual the inequality P∗n ≤ D∗n is not hard to see. The proof of the opposite inequality
is based on the following minmax theorem.
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Theorem 4.5 (see e.g. [33, Theorem 45.8] or [2, Theorem 2.4.1]). Let K, L be convex
subsets of vector spaces H1 respectively H2, where H1 is locally convex, and let F : K×L→
R be given. If

(1) K is compact,
(2) F(·, y) is continuous and convex on K for every y ∈ L,
(3) F(x, ·) is concave on L for every x ∈ K,

then
sup
y∈L

inf
x∈K

F(x, y) = inf
x∈K

sup
y∈L

F(x, y).

The inequality P∗n ≥ Dn∗ will be proved inductively on n. To this end, we need the
following preliminary result.

Proposition 4.6. Let c : C(R+) × ∆2 → R be upper semicontinuous and bounded from
above and let Vi =

∫
ϕi dµi < ∞ for i = 1, 2. Put

PV2 := sup
{
EW̄[c(ω, τ1, τ2)] : τ1 ∈ RST1(µ1),EW̄[ζ2

τ2
] ≤ V2, (τ1, τ2) ∈ RT2

}
and

DV2 := inf
{∫

ψ1 dµ1 :
m ∈ Cb(C(R+)), ψ1 ∈ Cb(R+),EW[m] = 0,∃α1, α2 ≥ 0
m(ω) + ψ1(ω(t1)) −

∑2
i=1 αi(Vi − ζ

i
ti (ω)) ≥ c(ω, t1, t2)

}
.

Then, we have
PV2 = DV2 .

Proof. The inequality PV2 ≤ DV2 follows easily. We are left to show the other inequality.
The idea of the proof is to use a variational approach together with Theorem 4.5 to reduce
the claim to the classical duality result in optimal transport.

Using standard approximation procedures (see [35, Proof of Theorem 5.10 (i), step 5]),
we can assume that c is continuous and bounded, bounded from above by 0 and satisfies
for some L

supp(c) ⊆ C(R+) × [0, L]2.

In the following, we want to apply Theorem 4.5 where we take for K certain subsets of
RT2. The convexity of these subsets is easily seen by interpreting elements of these sets as
measures via the obvious extension of (3.5). Compactness follows by Prokhorov’s Theo-
rem: this is shown by a trivial modification of the argument in [4, Theorem 3.14]).

Hence, it follows using Theorem 4.5 that

sup
τ1∈RST1(µ1)
EW̄[ζ2

τ2
]≤V2

(τ1,τ2)∈RT2

EW̄[c(ω, τ1, τ2)] = sup
τ1∈RST1(µ1)
τ2≤max{L,τ1}
(τ1,τ2)∈RT2

inf
α≥0
EW̄[c(ω, τ1, τ2) + α(V2 − ζ

2
τ2

(ω))]

= inf
α≥0

sup
τ1∈RST1(µ1)
τ2≤max{L,τ1}
(τ1,τ2)∈RT2

EW̄[c(ω, τ1, τ2) + α(V2 − ζ
2
τ2

(ω))]

= inf
α≥0

sup
τ1∈RST1(µ1)

EW̄[cα(ω, τ1)],

where
cα(ω, t1) := sup

t1≤t2≤max{L,t1}
c(ω, t1, t2) + α(V2 − ζ

2
t2 (ω)).

Hence, cα is a continuous and bounded function on C(R+) × R+ since c is bounded, ζ2

is continuous and increasing, and {t2 : t1 ≤ t2 ≤ max{L, t1}} is closed. To move closer to a
classical transport setup we define F : C(R+) × R+ × R→ [−∞, 0] by

F(ω, t, y) :=

cα(ω, t) if ω(t) = y
−∞ else

,
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which is an upper semicontinuous and bounded function supported on C(R+) × [0, L] × R.
Moreover, we define JOIN(µ1) to consist of all pairs of random variables (τ,Y) on (Ω̄, W̄)
such that Y ∼ µ1 and τ ∈ RST satisfies EW̄[ζ1

τ ] < ∞. If τ1 ∈ RST(µ1), then (τ1, B̄τ1 ) ∈
JOIN(µ1) and

EW̄[cα(ω, τ1)] = EW̄[F(ω, τ1, B̄τ1 )] > −∞.

Conversely, if (τ,Y) ∈ JOIN(µ1) with EW̄[F(ω, τ,Y)] > −∞ almost surely Y = Bτ ∼ µ1 so
that τ ∈ RST(µ1). Therefore, by the same argument as above,

sup
τ1∈RST(µ1)

EW̄[cα(ω, τ1)] = sup
(τ,Y)∈JOIN(µ1)

EW̄[F(ω, τ,Y)]

= inf
β≥0

sup
Y∼µ1

EW̄[Fβ(ω,Y)],

where Fβ(ω, y) := sup0≤t≤L F(ω, t, y) + β(V1 − ζ
1
t1 ) is upper semicontinuous and bounded

from above. The last supremum is the primal problem of a classical optimal transport
problem written in a probabilistic fashion. Hence, employing the classical duality result,
e.g. [35, Section 5], we obtain

sup
τ1∈RST(µ1)

EW̄[cα(ω, τ1)]

= inf
β≥0

inf
{∫

m dW +

∫
ψ dµ1 : m ∈ Cb(R+), ψ ∈ Cb(R),m(ω) + ψ(y) ≥ Fβ(ω, y)

}
≥ inf

{∫
m dW +

∫
ψ dµ1 :

∃β ≥ 0,m ∈ Cb(C(R+)), ψ ∈ Cb(R) s.t.
m(ω) + ψ(y) − β(V1 − ζ

1
t (ω)) ≥ F(ω, t, y)

}
= inf

{∫
m dW +

∫
ψ dµ1 :

∃β ≥ 0,m ∈ Cb(C(R+)), ψ ∈ Cb(R) s.t.
m(ω) + ψ(ω(t)) − β(V1 − ζ

1
t (ω)) ≥ cα(ω, t)

}
.

Putting everything together yields the result. �

Proof of Proposition 4.4. By [35, Proof of Theorem 5.10 (i), Step 5] we can assume that
γ is continuous and bounded. We will show the result inductively by including more and
more constraints (respectively Lagrange multipliers) in the duality result Proposition 3.5.
In fact, we will only show the result for the two cases n = 2, I = {2} and n = |I| = 2.
The general claim follows then by an iterative application of the arguments that lead to
Proposition 4.6 and the arguments below. We first consider the case where n = |I| = 2.

Recall from (3.6) that a random time τ is a stopping time if and only if EW̄[ f (τ)(g −
EW[g|Ft])] = 0 for all g ∈ Cb(C(R+))) and f ∈ C(R+) supported on [0, t]. We write
H for the set of all functions h : C(R+) × R+ → R such that h(ω, s) =

∑n
i=1 fi(s)(gi −

EW[gi|Fui ])(ω) for n ∈ N, gi ∈ Cb(C(R+)), and fi ∈ Cb(R+) supported on [0, ui]. Then
applying Theorem 4.5 again we have

sup
(τ1,τ2)∈RST2(µ1,µ2)

EW̄[γ ◦ r2(ω, τ1, τ2)]

= sup
τ1∈RST(µ1)
(τ1,τ2)∈RT2
EW̄[ζ2

τ2
]≤V2

inf
ψ2∈Cb(R)

h∈H

EW̄

[
γ ◦ r2(ω, τ1, τ2) + h(ω, τ2) − ψ2(ω(τ2)) +

∫
ψ2 dµ2

]

= inf
ψ2∈Cb(R)

h∈H

sup
τ1∈RST(µ1)
(τ1,τ2)∈RT2
EW̄[ζ2

τ2
]≤V2

EW̄
[
γψ2,h(ω, τ1, τ2)

]
,

where we set

γψ2,h(ω, t1, t2) := γ ◦ r2(ω, t1, t2) + h(ω, t2) − ψ2(ω(t2)) +

∫
ψ2 dµ2 ∈ Cb (C(R+) × ∆2) .
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Applying Proposition 4.6, we get

sup
(τ1,τ2)∈RST2(µ1,µ2)

EW̄[γ ◦ r2(ω, τ1, τ2)]

= inf
ψ2∈Cb(R)

h∈H

inf


∫

ψ1 dµ1 :
ψ1 ∈ Cb(R) s.t.
∃m ∈ Cb(C(R+)),EW[m] = 0, α1, α2 ≥ 0 s. t.
m(ω) + ψ1(ω(t1)) −

∑2
i=1 αi(Vi − ζ

i
ti (ω)) ≥ γψ2,h(ω, t1, t2)

 .
Take m, ψ1, α1, α2 satisfying

m(ω) + ψ1(ω(t1)) −
2∑

i=1

αi(Vi − ζ
i
ti (ω)) ≥ γψ2,h(ω, t1, t2). (4.4)

Observe that EW[ f (t)(g − EW[g|Fu])|Ft] = 0 whenever supp( f ) ⊆ [0, u]. Fixing t1 and
t2 inequality (4.4) can be seen as an inequality between functions of ω. Hence, taking
conditional expectations with respect to Ft2 in the sense of Definition 3.3 and using the
optionality of γ yields

EW[m|Ft2 ](ω) +

2∑
i=1

ψi(ω(ti)) −
∫

ψ2 dµ2 −

2∑
i=1

αi(Vi − ζ
i
ti (ω)) ≥ γ ◦ r2(ω, t1, t2).

Hence,

sup
(τ1,τ2)∈RST2(µ1,µ2)

EW̄[γ ◦ r2(ω, τ1, τ2)]

≥ inf
ψ2∈Cb(R)

inf


∫

ψ1 dµ1 +

∫
ψ2 dµ2 :

there exist a Υ-continuous martingale M,
M0 = 0, ψ1 ∈ Cb(R+) and α1, α2 ≥ 0 s.t.∑2

i=1(ψi(ω(ti)) + Mt2 (ω))
−

∑2
i=1 αi(Vi − ϕi(ω(ti)) + ϕi(ω(ti)) − ζ i

ti (ω))
≥ γ ◦ r2(ω, t1, t2)


= inf

ψ1,ψ2∈E1×E2


∫

ψ1 dµ1 +

∫
ψ2 dµ2 :

there exist two Υ-continuous martingales Mi,
Mi

0 = 0, s.t.∑2
i=1(ψi(ω(ti)) + Mi

ti (ω)) ≥ γ ◦ r2(ω, t1, t2)


= D∗2,

where in the final step we used the fact that EW̄[ϕi(Bτi )] = EW̄[ζ i
τi

],
∫
ϕi dµi = Vi, ϕi(B0) =

0, and that ϕi(B) − ζ i is a martingale.
For later use, we write:

D(γ) :=

(ψ1, ψ2) ∈ E1 × E2 :
there exist two Υ-continuous martingales Mi,
Mi

0 = 0, s.t.∑2
i=1(ψi(ω(ti)) + Mi

ti (ω)) ≥ γ ◦ r2(ω, t1, t2)

 .
We now consider the case where n = 2, |I| = 1 and I = {2}, so we are prescribing µ2 but

not µ1. Writing ρ � ν to denote that ρ precedes ν in convex order, we use the result of the
case where |I| = 2 to see that:

P∗2 = sup
(τ1,τ2)∈RST2(µ2)

EW̄[γ ◦ r2(ω, τ1, τ2)] = sup
µ1�µ2

sup
(τ1,τ2)∈RST2(µ1,µ2)

EW̄[γ ◦ r2(ω, τ1, τ2)]

= sup
µ1�µ2

inf
(ψ1,ψ2)∈D(γ)

{∫
ψ1 dµ1 +

∫
ψ2 dµ2

}
.

We now need to introduce some additional compactness. Recall from the definitions of ϕi

that ϕ2/ϕ1 → ∞ as x→ ±∞. Now let ε > 0 and write

Dε(γε) :=

(ψε1, ψ2) :
ψε1 + εϕ2 ∈ E1, ψ2 ∈ E2, and there exist two Υ-continuous
martingales Mi,Mi

0 = 0 such that:
ψε1(ω(t1)) + ψ2(ω(t2)) +

∑2
i=1 Mi

ti (ω)) ≥ γε ◦ r2(ω, t1, t2)

 .
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In particular, we have (ψ1, ψ2) ∈ D(γ) ⇐⇒ (ψ1 − εϕ2, ψ2) ∈ Dε(γ − εϕ2(ω(t1))) and so
(with ψε1 = ψ1 − εϕ2, γ

ε = γ − εϕ2(ω(t1)))

inf
(ψ1,ψ2)∈D(γ)

{∫
ψ1 dµ1 +

∫
ψ2 dµ2

}
= inf

(ψε1,ψ2)∈Dε(γε)

{∫
(ψε1 + εϕ2) dµ1 +

∫
ψ2 dµ2

}
= inf

(ψε1,ψ2)∈Dε(γε)

{∫
ψε1 dµ1 +

∫
ψ2 dµ2

}
+ ε

∫
ϕ2 µ1(dx).

In particular, the final integral can be bounded over the set of µ1 � µ2, and so by taking
ε > 0 small, this term can be made arbitrarily small. Moreover, by neglecting it we get a
quantity that is smaller than P.

If we introduce the set

CV :=
{
c : R→ R : c convex, c(x) ≥ 0, c smooth, c(x) ≤ L(1 + |x|), some L ≥ 0

}
,

then we may test the convex ordering property by penalising against CV. In particular, we
can write after another application of Theorem 4.5

P∗2 ≥ inf
(ψε1,ψ2)∈Dε(γε)

sup
µ1�µ2

{∫
ψε1 dµ1 +

∫
ψ2 dµ2

}
= inf

(ψε1,ψ2)∈Dε(γε)
sup
µ1

inf
c∈CV

{∫
(ψε1 − c) dµ1 +

∫
(ψ2 + c) dµ2

}
.

In addition, for fixed ψε1 ∈ Dε(γε), we observe that, by the fact that ψε1 + εϕ2 ∈ E1, we must
have ψε1(x) → −∞ as x → ±∞. Hence, we can find a constant K, which may depend on
ψε1, so that ψε1(x) < ψε1(0) for all x < [−K,K]. In particular, we may restrict the supremum
over measures µ1 above to the set of probability measures PK := {µ : µ([−K,K]c) = 0},
where Ac denotes the complement of the set A. Note that this set is compact, so we can
then apply Theorem 4.5 to get:

inf
(ψε1,ψ2)∈Dε(γε)

sup
µ1�µ2

{∫
ψε1 dµ1 +

∫
ψ2 dµ2

}
= inf

(ψε1,ψ2)∈Dε(γε)
inf

c∈CV
sup
µ1∈PK

{∫
(ψε1 − c) dµ1 +

∫
(ψ2 + c) dµ2

}
= inf

(ψε1,ψ2)∈Dε(γε)
inf

c∈CV

{
sup

x∈[−K,K]

[
ψε1(x) − c(x)

]
+

∫
(ψ2 + c) dµ2

}
.

In particular, for any δ > 0, we can find (ψε1, ψ2) ∈ Dε(γε) and c ∈ CV such that

P∗2 ≥ sup
x∈R

[
ψε1(x) − c(x)

]
+

∫
(ψ2 + c) dµ2 − δ.

Take ψε2(ω(t2)) := supx∈R

[
ψε1(x) − c(x)

]
+ ψ2(ω(t2)) + c(ω(t2)) + εϕ2(ω(t2)). Then there

exist M1,M2 such that

γε ◦ r2(ω, t1, t2) ≤ ψε1(ω(t1)) + ψ2(ω(t2)) +

2∑
i=1

Mi
ti (ω)

= ψε2(ω(t2)) +

2∑
i=1

Mi
ti (ω) − εϕ2(ω(t2)) − c(ω(t2)) + c(ω(t1))

+
[
ψε1(ω(t1)) − c(ω(t1))

]
− sup

x∈R

[
ψε1(x) − c(x)

]
.
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Hence,

γ ◦ r2(ω, t1, t2) ≤ ψε2(ω(t2)) +

2∑
i=1

Mi
ti (ω) + ε(ϕ2(ω(t1)) − ϕ2(ω(t2)))

− c(ω(t2)) + c(ω(t1))

= ψε2(ω(t2)) +

2∑
i=1

Mi
ti (ω)

+ ε
[
(ϕ2(ω(t1)) − ζ2

t1 ) − (ϕ2(ω(t2)) − ζ2
t2 )

]
+ ε(ζ2

t1 − ζ
2
t2 )

+
[
(c(ω(t1)) − ζc

t1 ) − (c(ω(t2)) − ζc
t2 )

]
+ (ζc

t1 − ζ
c
t2 ).

Since ζ2
t is an increasing process, compensating ϕ2, then ζt2 − ζt1 ≥ 0 whenever t1 ≤ t2.

Similarly, ζc
t is the increasing process compensating c, and the same argument as above

holds. Note that ζc is Υ-continuous since c is assumed smooth. It follows that (ψε1, ψ2) ∈
Dε(γε) implies ψε2 ∈ D′(γ), where

D′(γ) :=
{
ψ2 ∈ E2 :

there exist two Υ-continuous martingales Mi,Mi
0 = 0

such that ψ2(ω(t2)) +
∑2

i=1 Mi
ti (ω) ≥ γ ◦ r2(ω, t1, t2)

}
.

It follows by making ε, δ small that

P∗2 ≥ inf
ψ2∈D′(γ)

∫
ψ2 dµ2(x),

and as usual, the inequality in the other direction is easy.

To establish the claim in the general case we can now successively introduce more and
more constraints accounting for more and more Lagrange multipliers and use either only
the first or the first and the second argument to prove the full claim. �

To conclude, we can follow the reasoning of Section 3, more precisely Step 1 and Step 3,
and obtain the following robust super-hedging result:

Theorem 4.7. Suppose that n ∈ N, I ⊆ {1, . . . , n}, n ∈ I and that µi is a centered probability
measure on R for each i ∈ I and let G : Cqv[0, n]→ R be of the form

G(ω) = γ(t(ω)�[0,〈ω〉n], 〈ω〉1, . . . , 〈ω〉n), (4.5)

where γ is Υn-upper semi-continuous and bounded from above. Let us define

Pn := sup
{
EP[G] : P is a martingale measure on C[0, n], S 0 = 0, S i ∼ µi for all i ∈ I

}
and

Dn := inf

a :
∃c > 0, f ∈ C∞(R,R) s.t. | f |/(1 + ϕn) is bounded,
(Hm)m∈N ⊆ Q f ,c and (ψ j) j∈I ,

∫
ψ j dµ j = 0 s.t. ∀ω ∈ Cqv[0, n]

a +
∑

j∈I ψ j(S j(ω)) + lim infm→∞(Hm · S )n(ω) ≥ G(ω)

 ,
where for f ∈ C2(R,R) we set

Q f ,c :=
{
H : H is a simple strategy and (H ·S )t(ω) ≥ −c−ζ f

t (ω) ∀(ω, t) ∈ Cqv[0, n]×[0, n]
}
.

Under the above assumptions we have Pn = Dn.

Finally, we note that Theorem 4.7 could be further extended based on the above argu-
ments. For example, we could include additional market information on prices of further
options of the invariant form (4.5).
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