Stochastic Analysis
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Problem 1. Let (X1, Xa,...) be i.i.d. random variables with the uniform distribution on the
interval (0,1). Let (Y1,Ya,...) be i.i.d. random variables such that each Y; has the standard
Gaussian distribution N'(0,1). Construct explicitly a probability space (Q, F,P) and such se-
quences of random variables on this space. You may also present a construction in the canonical
setup.

Problem 2. Let (X,)n,>1 be Gaussian random variables that converge in probability to a random
variable X. Show that X is Gaussian, that the mean of X is the limit of the means of X,,, and
that the variance of X 1is the limit of the variances of X,,. Does this imply that X,, — X also in
L??

Problem 3. The lost problem
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Problem 4. Let (Xy)ier be a Gaussian process on a probability space (0, F,P). Denote by
H=span{ X;:teT}

the closure in L*(Q, F,P) of the linear span of the random variables X;.
Show that H is a Gaussian space, that is, every finite collection of elements of H is jointly
Gaussian.

Problem 5. Let (B:):>0 be a pre-Brownian motion, that is, a centered Gaussian process such
that
E[BsB:] = min{s, t}, s,t > 0.

Show that B is a pre-Brownian motion if and only if one of the following equivalent conditions
holds:
(a) By =0, and for all 0 < s < t, the increment By — By is independent of o(B, : r < s) and
is distributed as N'(0,t — s).
(b) By =0, the increments (By — Bs)o<s<t are independent, and each increment By — By has
distribution N'(0,t — s).
(1t is fine if you just show a) or b).)

Problem 6. Let (Bi)i>0 be a pre-Brownian motion. Show that each of the following processes
is also a pre-Brownian motion:
(i) (=Bt)iz0-
(i) For X\ > 0, the scaled process Bt(’\) = A"1By2.
(iii) For s > 0, the shifted process Bt(s) := Byys — Bs.
Problem 7. Let (Bt)i>o0 be a pre-Brownian motion with continuous sample paths, hence a

Brownian motion. Construct another stochastic process (Bt)¢>0 which is a pre-Brownian motion
but whose paths are not continuous.
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Problem 8. Use a version of Kolmogorov’s continuity theorem to show that the sample paths of
Brownian motion are almost surely a-Hélder continuous for every o € (0, %)

Problem 9. Let (By)icpo,1) be a Brownian motion, and define the process (Ryi)ic[o,1) by
Rt = Bt - tBl.

(i) Compute the finite-dimensional distributions of the process (Ry)ic(0,1)- (If you observe that
this is a Gaussian process, it is sufficient that you determine the covariance structure.)

(ii) Show that the process (Ryi)icpo,1) has the same finite-dimensional distributions as the time-
reversed process (R1—¢)e(o,1)-

Problem 10. There are two further standard ways to define the Brownian bridge on [0, 1].
(i) As a centered Gaussian process (Bt)iejo,1) with covariance

E[Bs6:] = min{s,t} — st, s, t €0, 1].

(ii) As the regular conditional law of Brownian motion (Bt)ejo) given Br =0 (with By = 0

understood), that is, a process (Et)te[o,l] whose finite-dimensional distributions satisfy

L((Biys-- - Be)) = L((Bty, ..., By,) | BL = 0), 0<t; < - <tp<l.

Conclude that the three objects above all have the same finite-dimensional distributions, in

particular
L((Rtys---,R)) = L((Bty,---,By,) | B1 =0)

forall0 <t; < --- <ty < 1. You may justify the conditioning either by an explicit Gaussian
computation or via the limit

]E[f(Bt17"')Btk) | B1 = 0] = IEIJI}’]lE[f(BtI, . 7Btk) ’ ‘Bl| S 8}

for bounded continuous f.

Problem 11. Let Q := RO pe the set of all functions w : [0,1] = R. Equip Q with the product
topology (equivalently, the topology of pointwise convergence), and let B be its Borel o-algebra.
Denote by

C:={weN:wis continuous on [0,1] }

the subset of continuous functions. Show that C ¢ B. In other words, the set of continuous
functions is not measurable with respect to the Borel o-algebra generated by the product topology
on RO,
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Problem 12. Let (By)i>0 be a standard Brownian motion, and define the process
Et ::tBl/t7 t>0,

and EO = 0.
Verify that (By)i>0 5 again a Brownian motion. In particular, show that it is a centered
Gaussian process with covariance

E[B,B;] = min{s, t}, s,t > 0.
Pay attention to the behaviour at t = 0 and justify the continuity of the sample paths at 0.

Problem 13. Let (Bt)ico,1) be a Brownian motion. For each n € N, consider the equidistant
partition of [0, 1]
Tp 1= {O,%,%,...,l},

and define the quadratic variation along this partition by

@Qn =Y _(Bijn — Bum1)/n)*-
k=1

Show that E[Q,] = 1 and compute Var(Q,,). Conclude that Q, — 1 in L%, and hence also in
probability.

Problem 14. Let (Bt)te[o,l] be a Brownian motion, and let QQ, be as in the previous problem.
Show that Qom — 1 almost surely as n — oo.
(Hint: For m € N, consider the filtration Fp, := o (Bjom : 0 < k < 2™), and define

Mm = sz —1.

Show that (M, Fm)m>0 is a martingale. Compute its second moments and apply the martingale
convergence theorem to conclude almost sure convergence along the dyadic partitions.)

Problem 15. Let (B;);>0 be a Brownian motion. Define
1 gt
Xt::f/Bsds, t> 0.
t Jo

Use Blumenthal’s zero—one law to determine

tl0
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Problem 16. Let (2, F, (Fi)i>0,P) be a filtered probability space, and let T be a stopping time
taking values in a countable set S C [0,00]. Recall that

Fr={AecF:An{r <t} € F for allt > 0}.
Show that for every A € F; there exists a family (A¢)ies with Ay € Fy for allt € S such that

A:U(Atﬂ{T:t}).

tesS

Problem 17. Let (Fi)i>0 be a right-continuous filtration. For a random time T : Q@ — [0, 00|,
show that the following statements are equivalent.

(a) T is a stopping time.

(b) For every t > 0, the event {T < t} belongs to F;.

Problem 18. Let (2, F, (Ft)t>0,P) be a filtered probability space with right-continuous filtration,
and let (Tp)nen be a sequence of stopping times such that T, | T almost surely for some stopping
time 7. Show that

Fr= () Fra-
n=1

Problem 19. Let (Q, F, (Ft)t>0,P) be a filtered probability space with right-continuous filtration.
Show that a random time 7 : Q — [0, 00] is a stopping time if and only if there exists a sequence
of stopping times (Tn)nen, each taking values in a countable subset of [0,00], such that 7, | T
almost surely. A convenient choice is

Tp(w) :=1nf{k27" : k€ N, k27" > 7(w)}.
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Remark 1. Let D C [0,1] and f : D — R be a function. For real numbers ¢ < d, the number of
upcrossings of the interval (¢, d) by f is defined as

Uea(f) = Sup{kEN:Eltl <51 <o <ty < s in D with f(t;) <c, f(si) Zd}.

Problem 20. Let D be a countable dense subset of the interval [0,1], and let f: D — R be a
bounded function. Show the following implication. Assume there exists a function F :[0,1] — R
which extends f on D, has left limits everywhere, and is right-continuous. Prove that for every
interval (c,d) with rational endpoints ¢ < d, the function f has only finitely many upcrossings of
the interval (c,d).

Problem 21. With the same assumptions on D and f as above, suppose that for every interval
(c,d) with rational endpoints ¢ < d, the function f has only finitely many upcrossings of the
interval (¢,d). Show that there then exists a function F :[0,1] — R extending f on D, which
has left limits at every point t € [0,1] and right limits at every point t € [0, 1].

Problem 22. Given a finite sequence xg,...,xny € R show that the number of upcrossings of
the interval [0,1] can be bounded in the form Y, hi(xo, ..., xk) (XK1 — zx) + 2N ]
(Hint: you may want to think of a buy low, sell high strategy.)

Problem 23. Let (Xk){y:o be a submartingale in discrete time with respect to some filtration.
Denote by X}, := max{Xo, ..., Xy} the running supremum. Prove the following form of Doob’s
mazimal inequality: for every A > 0,

MP(Xy > A) <E[(Xn)*].



