
Stochastic Analysis
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Problem 1. Let (X1, X2, . . . ) be i.i.d. random variables with the uniform distribution on the
interval (0, 1). Let (Y1, Y2, . . . ) be i.i.d. random variables such that each Yi has the standard
Gaussian distribution N (0, 1). Construct explicitly a probability space (Ω, F ,P) and such se-
quences of random variables on this space. You may also present a construction in the canonical
setup.

Problem 2. Let (Xn)n≥1 be Gaussian random variables that converge in probability to a random
variable X. Show that X is Gaussian, that the mean of X is the limit of the means of Xn, and
that the variance of X is the limit of the variances of Xn. Does this imply that Xn → X also in
L2?

Problem 3. The lost problem
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Problem 4. Let (Xt)t∈T be a Gaussian process on a probability space (Ω, F ,P). Denote by

H = span{ Xt : t ∈ T }

the closure in L2(Ω, F ,P) of the linear span of the random variables Xt.
Show that H is a Gaussian space, that is, every finite collection of elements of H is jointly

Gaussian.

Problem 5. Let (Bt)t≥0 be a pre-Brownian motion, that is, a centered Gaussian process such
that

E[BsBt] = min{s, t}, s, t ≥ 0.

Show that B is a pre-Brownian motion if and only if one of the following equivalent conditions
holds:

(a) B0 = 0, and for all 0 ≤ s < t, the increment Bt − Bs is independent of σ(Br : r ≤ s) and
is distributed as N (0, t − s).

(b) B0 = 0, the increments (Bt − Bs)0≤s<t are independent, and each increment Bt − Bs has
distribution N (0, t − s).

(It is fine if you just show a) or b).)

Problem 6. Let (Bt)t≥0 be a pre-Brownian motion. Show that each of the following processes
is also a pre-Brownian motion:

(i) (−Bt)t≥0.
(ii) For λ > 0, the scaled process B

(λ)
t := λ−1Bλ2t.

(iii) For s ≥ 0, the shifted process B
(s)
t := Bt+s − Bs.

Problem 7. Let (Bt)t≥0 be a pre-Brownian motion with continuous sample paths, hence a
Brownian motion. Construct another stochastic process (B̃t)t≥0 which is a pre-Brownian motion
but whose paths are not continuous.
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Problem 8. Use a version of Kolmogorov’s continuity theorem to show that the sample paths of
Brownian motion are almost surely α-Hölder continuous for every α ∈ (0, 1

2).

Problem 9. Let (Bt)t∈[0,1] be a Brownian motion, and define the process (Rt)t∈[0,1] by

Rt := Bt − tB1.

(i) Compute the finite-dimensional distributions of the process (Rt)t∈[0,1]. (If you observe that
this is a Gaussian process, it is sufficient that you determine the covariance structure.)

(ii) Show that the process (Rt)t∈[0,1] has the same finite-dimensional distributions as the time-
reversed process (R1−t)t∈[0,1].

Problem 10. There are two further standard ways to define the Brownian bridge on [0, 1].
(i) As a centered Gaussian process (βt)t∈[0,1] with covariance

E[βsβt] = min{s, t} − st, s, t ∈ [0, 1].

(ii) As the regular conditional law of Brownian motion (Bt)t∈[0,1] given B1 = 0 (with B0 = 0
understood), that is, a process (β̃t)t∈[0,1] whose finite-dimensional distributions satisfy

L
(
(β̃t1 , . . . , β̃tk

)
)

= L
(
(Bt1 , . . . , Btk

)
∣∣ B1 = 0

)
, 0 < t1 < · · · < tk < 1.

Conclude that the three objects above all have the same finite-dimensional distributions, in
particular

L
(
(Rt1 , . . . , Rtk

)
)

= L
(
(Bt1 , . . . , Btk

)
∣∣ B1 = 0

)
for all 0 < t1 < · · · < tk < 1. You may justify the conditioning either by an explicit Gaussian
computation or via the limit

E
[
f(Bt1 , . . . , Btk

)
∣∣ B1 = 0

]
= lim

ε↓0
E

[
f(Bt1 , . . . , Btk

)
∣∣ |B1| ≤ ε

]
for bounded continuous f .

Problem 11. Let Ω := R[0,1] be the set of all functions ω : [0, 1] → R. Equip Ω with the product
topology (equivalently, the topology of pointwise convergence), and let B be its Borel σ-algebra.
Denote by

C := { ω ∈ Ω : ω is continuous on [0, 1] }

the subset of continuous functions. Show that C /∈ B. In other words, the set of continuous
functions is not measurable with respect to the Borel σ-algebra generated by the product topology
on R[0,1].
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Problem 12. Let (Bt)t>0 be a standard Brownian motion, and define the process

B̂t := t B1/t, t > 0,

and B̂0 := 0.
Verify that (B̂t)t≥0 is again a Brownian motion. In particular, show that it is a centered

Gaussian process with covariance

E[B̂sB̂t] = min{s, t}, s, t ≥ 0.

Pay attention to the behaviour at t = 0 and justify the continuity of the sample paths at 0.

Problem 13. Let (Bt)t∈[0,1] be a Brownian motion. For each n ∈ N, consider the equidistant
partition of [0, 1]

πn :=
{

0, 1
n , 2

n , . . . , 1
}

,

and define the quadratic variation along this partition by

Qn :=
n∑

k=1
(Bk/n − B(k−1)/n)2.

Show that E[Qn] = 1 and compute Var(Qn). Conclude that Qn → 1 in L2, and hence also in
probability.

Problem 14. Let (Bt)t∈[0,1] be a Brownian motion, and let Qn be as in the previous problem.
Show that Q2m → 1 almost surely as n → ∞.

(Hint: For m ∈ N, consider the filtration Fm := σ(Bk/2m : 0 ≤ k ≤ 2m), and define

Mm := Q2m − 1.

Show that (Mm, Fm)m≥0 is a martingale. Compute its second moments and apply the martingale
convergence theorem to conclude almost sure convergence along the dyadic partitions.)

Problem 15. Let (Bt)t≥0 be a Brownian motion. Define

Xt := 1
t

∫ t

0
Bs ds, t > 0.

Use Blumenthal’s zero–one law to determine

P
(

lim
t↓0

Xt = 0
)

.
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Problem 16. Let (Ω, F , (Ft)t≥0,P) be a filtered probability space, and let τ be a stopping time
taking values in a countable set S ⊂ [0, ∞]. Recall that

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0}.

Show that for every A ∈ Fτ there exists a family (At)t∈S with At ∈ Ft for all t ∈ S such that

A =
⋃
t∈S

(
At ∩ {τ = t}

)
.

Problem 17. Let (Ft)t≥0 be a right-continuous filtration. For a random time τ : Ω → [0, ∞],
show that the following statements are equivalent.

(a) τ is a stopping time.
(b) For every t ≥ 0, the event {τ < t} belongs to Ft.

Problem 18. Let (Ω, F , (Ft)t≥0,P) be a filtered probability space with right-continuous filtration,
and let (τn)n∈N be a sequence of stopping times such that τn ↓ τ almost surely for some stopping
time τ . Show that

Fτ =
∞⋂

n=1
Fτn .

Problem 19. Let (Ω, F , (Ft)t≥0,P) be a filtered probability space with right-continuous filtration.
Show that a random time τ : Ω → [0, ∞] is a stopping time if and only if there exists a sequence
of stopping times (τn)n∈N, each taking values in a countable subset of [0, ∞], such that τn ↓ τ
almost surely. A convenient choice is

τn(ω) := inf{k2−n : k ∈ N, k2−n ≥ τ(ω)}.
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Remark 1. Let D ⊂ [0, 1] and f : D → R be a function. For real numbers c < d, the number of
upcrossings of the interval (c, d) by f is defined as

Uc,d(f) := sup
{

k ∈ N : ∃ t1 < s1 < · · · < tk < sk in D with f(ti) ≤ c, f(si) ≥ d
}

.

Problem 20. Let D be a countable dense subset of the interval [0, 1], and let f : D → R be a
bounded function. Show the following implication. Assume there exists a function F : [0, 1] → R
which extends f on D, has left limits everywhere, and is right-continuous. Prove that for every
interval (c, d) with rational endpoints c < d, the function f has only finitely many upcrossings of
the interval (c, d).

Problem 21. With the same assumptions on D and f as above, suppose that for every interval
(c, d) with rational endpoints c < d, the function f has only finitely many upcrossings of the
interval (c, d). Show that there then exists a function F : [0, 1] → R extending f on D, which
has left limits at every point t ∈ [0, 1] and right limits at every point t ∈ [0, 1].

Problem 22. Given a finite sequence x0, . . . , xN ∈ R show that the number of upcrossings of
the interval [0, 1] can be bounded in the form

∑
k<N hk(x0, . . . , xk)(xk+1 − xk) + |xN |.

(Hint: you may want to think of a buy low, sell high strategy.)

Problem 23. Let (Xk)N
k=0 be a submartingale in discrete time with respect to some filtration.

Denote by Xk := max{X0, . . . , Xk} the running supremum. Prove the following form of Doob’s
maximal inequality: for every λ > 0,

λP
(
XN > λ

)
≤ E

[
(XN )+]

.
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