Stochastic Analysis

Sheet 1

Problem 1. Let $(X_1, X_2, ...)$ be i.i.d. random variables with the uniform distribution on the interval (0,1). Let $(Y_1, Y_2, ...)$ be i.i.d. random variables such that each Y_i has the standard Gaussian distribution $\mathcal{N}(0,1)$. Construct explicitly a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and such sequences of random variables on this space. You may also present a construction in the canonical setup.

Problem 2. Let $(X_n)_{n\geq 1}$ be Gaussian random variables that converge in probability to a random variable X. Show that X is Gaussian, that the mean of X is the limit of the means of X_n , and that the variance of X is the limit of the variances of X_n . Does this imply that $X_n \to X$ also in L^2 ?

Problem 3. The lost problem

Problem 4. Let $(X_t)_{t\in T}$ be a Gaussian process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Denote by

$$H = \overline{\operatorname{span}} \{ X_t : t \in T \}$$

the closure in $L^2(\Omega, \mathcal{F}, \mathbb{P})$ of the linear span of the random variables X_t .

Show that H is a Gaussian space, that is, every finite collection of elements of H is jointly Gaussian.

Problem 5. Let $(B_t)_{t\geq 0}$ be a pre-Brownian motion, that is, a centered Gaussian process such

$$\mathbb{E}[B_s B_t] = \min\{s, t\}, \qquad s, t \ge 0.$$

Show that B is a pre-Brownian motion if and only if one of the following equivalent conditions

- (a) $B_0 = 0$, and for all $0 \le s < t$, the increment $B_t B_s$ is independent of $\sigma(B_r : r \le s)$ and is distributed as $\mathcal{N}(0, t-s)$.
- (b) $B_0 = 0$, the increments $(B_t B_s)_{0 \le s < t}$ are independent, and each increment $B_t B_s$ has distribution $\mathcal{N}(0, t - s)$.

(It is fine if you just show a) or b).)

Problem 6. Let $(B_t)_{t>0}$ be a pre-Brownian motion. Show that each of the following processes is also a pre-Brownian motion:

- (i) $(-B_t)_{t>0}$.
- (ii) For $\lambda > 0$, the scaled process $B_t^{(\lambda)} := \lambda^{-1} B_{\lambda^2 t}$. (iii) For $s \geq 0$, the shifted process $B_t^{(s)} := B_{t+s} B_s$.

Problem 7. Let $(B_t)_{t\geq 0}$ be a pre-Brownian motion with continuous sample paths, hence a Brownian motion. Construct another stochastic process $(B_t)_{t>0}$ which is a pre-Brownian motion but whose paths are not continuous.

Problem 8. Use a version of Kolmogorov's continuity theorem to show that the sample paths of Brownian motion are almost surely α -Hölder continuous for every $\alpha \in (0, \frac{1}{2})$.

Problem 9. Let $(B_t)_{t\in[0,1]}$ be a Brownian motion, and define the process $(R_t)_{t\in[0,1]}$ by

$$R_t := B_t - tB_1$$
.

- (i) Compute the finite-dimensional distributions of the process $(R_t)_{t\in[0,1]}$. (If you observe that this is a Gaussian process, it is sufficient that you determine the covariance structure.)
- (ii) Show that the process $(R_t)_{t\in[0,1]}$ has the same finite-dimensional distributions as the time-reversed process $(R_{1-t})_{t\in[0,1]}$.

Problem 10. There are two further standard ways to define the Brownian bridge on [0,1].

(i) As a centered Gaussian process $(\beta_t)_{t\in[0,1]}$ with covariance

$$\mathbb{E}[\beta_s \beta_t] = \min\{s, t\} - st, \qquad s, t \in [0, 1].$$

(ii) As the regular conditional law of Brownian motion $(B_t)_{t\in[0,1]}$ given $B_1=0$ (with $B_0=0$ understood), that is, a process $(\widetilde{\beta}_t)_{t\in[0,1]}$ whose finite-dimensional distributions satisfy

$$\mathcal{L}((\widetilde{\beta}_{t_1}, \dots, \widetilde{\beta}_{t_k})) = \mathcal{L}((B_{t_1}, \dots, B_{t_k}) | B_1 = 0), \quad 0 < t_1 < \dots < t_k < 1.$$

Conclude that the three objects above all have the same finite-dimensional distributions, in particular

$$\mathcal{L}((R_{t_1},\ldots,R_{t_k})) = \mathcal{L}((B_{t_1},\ldots,B_{t_k}) | B_1 = 0)$$

for all $0 < t_1 < \cdots < t_k < 1$. You may justify the conditioning either by an explicit Gaussian computation or via the limit

$$\mathbb{E}[f(B_{t_1},\ldots,B_{t_k})\,|\,B_1=0] = \lim_{\varepsilon\downarrow 0} \mathbb{E}[f(B_{t_1},\ldots,B_{t_k})\,|\,|B_1| \le \varepsilon]$$

for bounded continuous f.

Problem 11. Let $\Omega := \mathbb{R}^{[0,1]}$ be the set of all functions $\omega : [0,1] \to \mathbb{R}$. Equip Ω with the product topology (equivalently, the topology of pointwise convergence), and let \mathcal{B} be its Borel σ -algebra. Denote by

$$\mathcal{C} := \{ \omega \in \Omega : \omega \text{ is continuous on } [0,1] \}$$

the subset of continuous functions. Show that $C \notin \mathcal{B}$. In other words, the set of continuous functions is not measurable with respect to the Borel σ -algebra generated by the product topology on $\mathbb{R}^{[0,1]}$.

Problem 12. Let $(B_t)_{t>0}$ be a standard Brownian motion, and define the process

$$\widehat{B}_t := t \, B_{1/t}, \qquad t > 0,$$

and $\widehat{B}_0 := 0$.

Verify that $(\widehat{B}_t)_{t\geq 0}$ is again a Brownian motion. In particular, show that it is a centered Gaussian process with covariance

$$\mathbb{E}[\hat{B}_s \hat{B}_t] = \min\{s, t\}, \qquad s, t \ge 0.$$

Pay attention to the behaviour at t = 0 and justify the continuity of the sample paths at 0.

Problem 13. Let $(B_t)_{t\in[0,1]}$ be a Brownian motion. For each $n\in\mathbb{N}$, consider the equidistant partition of [0,1]

$$\pi_n := \left\{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\right\},\,$$

and define the quadratic variation along this partition by

$$Q_n := \sum_{k=1}^{n} (B_{k/n} - B_{(k-1)/n})^2.$$

Show that $\mathbb{E}[Q_n] = 1$ and compute $\operatorname{Var}(Q_n)$. Conclude that $Q_n \to 1$ in L^2 , and hence also in probability.

Problem 14. Let $(B_t)_{t\in[0,1]}$ be a Brownian motion, and let Q_n be as in the previous problem. Show that $Q_{2^m} \to 1$ almost surely as $n \to \infty$.

(Hint: For $m \in \mathbb{N}$, consider the filtration $\mathcal{F}_m := \sigma(B_{k/2^m} : 0 \le k \le 2^m)$, and define

$$M_m := Q_{2^m} - 1.$$

Show that $(M_m, \mathcal{F}_m)_{m\geq 0}$ is a martingale. Compute its second moments and apply the martingale convergence theorem to conclude almost sure convergence along the dyadic partitions.)

Problem 15. Let $(B_t)_{t>0}$ be a Brownian motion. Define

$$X_t := \frac{1}{t} \int_0^t B_s \, ds, \qquad t > 0.$$

Use Blumenthal's zero-one law to determine

$$\mathbb{P}\left(\lim_{t\downarrow 0} X_t = 0\right).$$

Problem 16. Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ be a filtered probability space, and let τ be a stopping time taking values in a countable set $S \subset [0, \infty]$. Recall that

$$\mathcal{F}_{\tau} := \{ A \in \mathcal{F} : A \cap \{ \tau \le t \} \in \mathcal{F}_t \text{ for all } t \ge 0 \}.$$

Show that for every $A \in \mathcal{F}_{\tau}$ there exists a family $(A_t)_{t \in S}$ with $A_t \in \mathcal{F}_t$ for all $t \in S$ such that

$$A = \bigcup_{t \in S} (A_t \cap \{\tau = t\}).$$

Problem 17. Let $(\mathcal{F}_t)_{t\geq 0}$ be a right-continuous filtration. For a random time $\tau:\Omega\to[0,\infty]$, show that the following statements are equivalent.

- (a) τ is a stopping time.
- (b) For every $t \geq 0$, the event $\{\tau < t\}$ belongs to \mathcal{F}_t .

Problem 18. Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ be a filtered probability space with right-continuous filtration, and let $(\tau_n)_{n\in\mathbb{N}}$ be a sequence of stopping times such that $\tau_n\downarrow\tau$ almost surely for some stopping time τ . Show that

$$\mathcal{F}_{ au} = \bigcap_{n=1}^{\infty} \mathcal{F}_{ au_n}.$$

Problem 19. Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ be a filtered probability space with right-continuous filtration. Show that a random time $\tau: \Omega \to [0, \infty]$ is a stopping time if and only if there exists a sequence of stopping times $(\tau_n)_{n\in\mathbb{N}}$, each taking values in a countable subset of $[0, \infty]$, such that $\tau_n \downarrow \tau$ almost surely. A convenient choice is

$$\tau_n(\omega) := \inf\{k2^{-n} : k \in \mathbb{N}, \ k2^{-n} \ge \tau(\omega)\}.$$

Remark 1. Let $D \subset [0,1]$ and $f: D \to \mathbb{R}$ be a function. For real numbers c < d, the number of upcrossings of the interval (c,d) by f is defined as

$$U_{c,d}(f) := \sup \{ k \in \mathbb{N} : \exists t_1 < s_1 < \dots < t_k < s_k \text{ in } D \text{ with } f(t_i) \le c, f(s_i) \ge d \}.$$

Problem 20. Let D be a countable dense subset of the interval [0,1], and let $f: D \to \mathbb{R}$ be a bounded function. Show the following implication. Assume there exists a function $F: [0,1] \to \mathbb{R}$ which extends f on D, has left limits everywhere, and is right-continuous. Prove that for every interval (c,d) with rational endpoints c < d, the function f has only finitely many upcrossings of the interval (c,d).

Problem 21. With the same assumptions on D and f as above, suppose that for every interval (c,d) with rational endpoints c < d, the function f has only finitely many upcrossings of the interval (c,d). Show that there then exists a function $F:[0,1] \to \mathbb{R}$ extending f on D, which has left limits at every point $t \in [0,1]$ and right limits at every point $t \in [0,1]$.

Problem 22. Given a finite sequence $x_0, \ldots, x_N \in \mathbb{R}$ show that the number of upcrossings of the interval [0,1] can be bounded in the form $\sum_{k < N} h_k(x_0, \ldots, x_k)(x_{k+1} - x_k) + |x_N|$. (Hint: you may want to think of a buy low, sell high strategy.)

Problem 23. Let $(X_k)_{k=0}^N$ be a submartingale in discrete time with respect to some filtration. Denote by $\overline{X}_k := \max\{X_0, \ldots, X_k\}$ the running supremum. Prove the following form of Doob's maximal inequality: for every $\lambda > 0$,

$$\lambda \mathbb{P}(\overline{X}_N > \lambda) \leq \mathbb{E}[(X_N)^+].$$