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Abstract

A primary quantity of interest in the study of infectious diseases is the aver-
age number of new infections that an infected person produces. This so-called
reproduction number has significant implications for the disease progression.
There has been increasing literature suggesting that superspreading, the signif-
icant variability in number of new infections caused by individuals, plays an
important role in the spread of COVID-19. In this paper, we consider the ef-
fect that such superspreading has on the estimation of the reproduction number
and subsequent estimates of future cases. Accordingly, we employ a simple ex-
tension to models currently used in the literature to estimate the reproduction
number and present a case-study of the progression of COVID-19 in Austria.
Our models demonstrate that the estimation uncertainty of the reproduction
number increases with superspreading and that this improves the performance
of prediction intervals. In a simplified model, we derive a transparent formula
that connects the extent of superspreading to the width of credible intervals for
the reproduction number.
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1. Introduction

A benchmark method for the estimation of the basic reproduction number R
was developed by Cori et al. [2]. An influential framework that allows to quantify
the phenomenon of superspreading is provided by Lloyd-Smith et al. [8]. In this
report we extend the model of Cori et al. [2] to include the phenomenon of
superspreading in the sense of Lloyd-Smith et al. [8]. The goal is not to derive
more accurate estimates of R but rather to better quantify the uncertainty
inherent in this type of estimate.

Ultimately we are interested in the estimation of R and specifically the ques-
tion whether, given current case numbers, we can claim with statistical guar-
antees that R ≤ 1 or R > 1. Given the growing body of evidence about the
existence and importance of superspreaders, we incorporate this feature into our
models. We observe two important effects: first, it becomes increasingly difficult
to accurately estimate the population reproduction number R in the presence
of superspreading; second, models with superspreading produce prediction in-
tervals for new cases that have improved coverage compared to those without
superpreading. Both of these are demonstrated in our Austrian case-study in
Section 3.

In particular, the width of a credible interval for R should decrease as a
function of total number of cases used during estimation and increase with the
extent of superspreading. Let S be the set of days used to estimate R in the
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nowcasting framework presented in Section 1.1 and assume that the (average)
reproduction number does not change over time. One would then expect that
credible intervals have width approximately equal to

const.√
k
∑
s∈S Is

, (1.1)

for values of dispersion parameter k much smaller than 1. This is supported in
models derived in Section 2.2.1. Small values of k correspond to high super-
spreading in our framework which follows that of Lloyd-Smith et al. [8].

1.1. Nowcasting

The goal of nowcasting is to get accurate estimates of the current state of
the pandemic. Given that our observed infections are random observations from
an underlying process, our goal is to understand the parameters of that process,
particularly with respect to the reproduction number. In addition, we define
a time-varying parameter we call the “momentum” of the epidemic, which is a
random realization of population infectiousness at a time-point which accounts
for superspreading. This is introduced formally in Section 2.1.

A benchmark for estimating R is the method developed in Cori et al. [2]
implemented in the software package ‘EpiEstim’. An improved extension of
this framework is given in Thompson et al. [11] which accounts for variability
in the generation interval (defined below). A substantial extension (‘EpiNow’)
of the EpiEstim-package that is used to estimate R on an international level
was developed by a group of researchers at the London School of Hygiene and
Tropical Medicine [1]. An important overview of the challenges involved in
estimating R in the current situation is given in [6], a comparative analysis of
statistical methods to estimate R is given in [10].

If the epidemic is at an early stage, the reproduction number R and the
rate of exponential growth are connected by the Euler-Lotka equation, see for
instance [12, 9] for a discussion in the context of epidemiology.

As we follow the framework of Cori et al. [2], we briefly describe their basic
model. Let I0 be the number of initial infections and I1, I2, . . . be the number of
new infections on days 1, 2, . . .. By (wn)n≥1 we denote the generation interval
distribution. If Dm denotes the number of people infected by a specific person
on the m-th day after this person got infected, then we have for m ∈ N

wm =
E[Dm]∑∞
l=1 E[Dl]

.

We assume that a newly infected individual does not cause secondary cases
on the same day, corresponding to w0 = 0. The generation interval can be
interpreted as the infectiousness profile of infected persons.

The basic model of Cori et al. [2] assumes that the stochastic process (It)t∈Z
satisfies

It ∼ Poisson

(
Rt

∞∑
m=1

It−mwm

)
, (1.2)
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for a sequence of numbers Rt, t ∈ Z, and where we put Im = 0 for m < 0. The
latter convention could be interpreted as assuming that no cases occurred before
time 0. In practice it is often assumed that the generation interval distribution
is given as a Gamma distribution that has been discretized in such a way that
wm = 0 for all m larger than some cut-off number ν. As a result, the sum
in (1.2) will only have ν ∈ N summands and to make assertions about It we
only have to consider the case numbers It−ν , . . . , It−1. As ν is a parameter that
can vary between diseases, this term is kept and used throughout our model
description in Section 2.1.

When estimating the time-varying reproduction number, Cori et al. [2] as-
sume that the reproductive number has stayed constant over a window of τ
days. Thus (1.2) simplifies to

It ∼ Poisson

(
R

ν∑
m=1

It−mwm

)
. (1.3)

Note that the reproduction number in the sense of (1.3) does not denote
the number of people that actually have been infected by a given individual,
rather describes what one expect in an “average” evolution of the epidemic.
Furthermore, while Rt = R is assumed to be constant over the window of width
τ , as this window moves through time the method produces estimates of Rt
that slowly vary over time.

1.2. Heterogeneity in Reproduction Numbers

The motivation for our hierarchical Bayes approach follows the framework
of superspreading provided in Lloyd-Smith et al. [8]. Even if the reproduction
number Rt = R is constant over a small window of time, it might vary between
individuals. We consider the reproduction number of a specific person with
index x to be drawn randomly as

rx ∼ Gamma(k, k/R).

This distribution has mean R and variance R2/k. The degenerate case k = ∞
corresponds to the deterministic case where rx = R for all individuals. Given
rx = r, this person causes Pois(r) new infections. If one integrates out the
Poisson parameter r, one is left with the unconditional number of descendants
which follows a negative binomial distribution with mean R and variance R +
R2/k as in Section 2.2.1.

Apparently, (1.3) corresponds to the case where each individual has the
same basic reproduction number R, i.e., k =∞. A basic extension of (1.3) that
follows the concept of random individual reproduction numbers in the sense of
Lloyd-Smith et al. [8] is to assign, on day t, the individual reproduction numbers
rt1, . . . , r

t
It

to the It individuals that got infected on this day. This leads to the
recursion

It ∼ Poisson

 ν∑
m=1

wm

It−m∑
x=1

rt−mx

 , (1.4)
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where the individual reproduction numbers rmx are i.i.d. according to a Gamma
distribution with mean R and dispersion parameter k. Note that for the degen-
erate case k =∞, (1.4) recovers (1.3). This forms the foundation of the model
explained in detail in Section 2.1.

The theme of the present paper is close to that of [3], in which heterogeneity
in R between groups is explicitly modeled. While the high-level descriptions
of these models sound nearly identical, those models are relevantly different
than ours. In particular, [3] are interested in estimating group-specific or time-
varying reproduction numbers for different geographical regions and age groups.
On one hand, with sufficient group-specific data, this provides tools of a much
broader scope than we present here; while on the other hand, it is assumed that
within-group variability is negligibly small. Instead, we focus on aggregate data
from a single geographical region but do not assume that individual variability is
negligible. Rather, this is precisely the variability we are interested in modeling.
Similarly, our critiques of the estimability of the reproduction number transfers
to their setting as well: if within-group variability exists, group-specific repro-
duction numbers are more difficult to estimate than previously acknowledged.

2. Methods

2.1. The “Momentum” Model

As mentioned in the introduction, we identify an unobserved random vari-
able which we term the “momentum” of the pandemic. This follows from a
simple notational change in 1.4 according to the observation that a sum of i.i.d.
Gamma random variables is also Gamma distributed with the same dispersion
parameter. We rewrite 1.4 as

It ∼ Poisson

(
ν∑

m=1

wmθt−m

)
, (2.1)

where

θt =

It∑
x=1

rtx ∼ Gamma(Itk, k/R). (2.2)

The terms (θt)t≥0 are collectively referred to as the “momentum” of the disease
and will be treated as a set of nuisance parameters of the offspring distribution
as our primary interest lies in estimating the hyperparameter R. Equation (2.1)
describes the distribution of It conditioned on its whole past, i.e., Is, θs, s < t.
Analogously, equation (2.2) describes θs given its history. The difference in
what we understand as the relative past originates from θt being conceptually
determined “after” It.

For increased clarity of the form of the model and the estimation methods
required, we recast our model as a Bayesian Poisson regression using vector
notation. This is made painfully explicit by using an arrow as in ~I for vectors.
As our model is estimated over a set of τ days as in Cori et al. [2], we specify
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the regression function over this window. To simplify notation, we use [l], for
l ∈ N, to be the vector (1, 2, . . . , l). Similarly, [l, m] for l, m ∈ N is shorthand
for the vector (l, l + 1, . . . ,m), i.e., [l] = [1, l]. This notation will primarily be
used for vector indices. Furthermore, the indices of our vectors increase in time.
As such, our generation interval truncated to ν days can be condensely written
as ~w[ν] = (w1, . . . , wν). Similarly, we have ~I[t−τ+1, t] = (It−τ+1, . . . , It).

As a regression model for ~I[t−τ+1, t] = (It−τ+1, . . . , It), equation (2.1) can be
written as

~I[t−τ+1,t] ∼ Pois(W~θ[t−ν+τ−1,t−1])

W =


wν wν−1 . . . w1 0 0 · · · 0
0 wν wν−1 . . . w1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . . · · ·
...

0 · · · 0 wν wν−1 . . . w1 0
0 · · · 0 0 wν wν−1 . . . w1


~θ[t−ν+τ−1,t−1] ∼ Gamma(~I[t−ν+τ−1,t−1]k, k/R)

R ∼ Inv-Gamma(3.69, 6.994) (mean = 2.6; var = 4)

This regression formulation is important as it highlights the latent variables
~θ that are required to fully determine the generative model. It also focuses
attention on which observations are conditioned upon and which are treated as
random, i.e., the τ observations to which we fit the model. This is relevant as
more than τ nuisance parameters are present, namely ν + τ − 1. Observe that
the earliest data point is It−τ+1, which itself requires a history of ν momentum

values of ~θ to determine. This also identifies a fixed covariate matrix W which
is a function of the generation interval w[ν].

While we also think of individual reproduction numbers as changing over
time due to factors such as changes in social restrictions, the assumption of
constant R over a period renders this moot. For now, the dispersion parameter
k is assumed constant as it is best estimated with contact tracing data instead
of case count data. We set k = .072, in line with the results of Laxminarayan
et al. [7], which estimated the extent of superspreading for COVID-19 from
Indian data. This is also within the range of parameter values identified in
Endo et al. [4] using Chinese data.

As we have parameterized the gamma prior on θt to have mean ItR, it is
transparent below that R has an inverse-gamma distribution. Hence we use an
Inv-Gamma(α, β) hyperprior where these hyperparameters are set such that
R has mean 2.6 and standard deviation 2 as in Abbott et al. [1]. This yields
α = 3.69 and β = 6.994. We are suppressing notation for conditioning on all
observations before time t− τ + 1. Furthermore, given ~θ[t−1], It is independent

of ~I[t−1].

A full derivation of the posterior distribution of the pair R, ~θ[t] given ~I[t] is
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given in Appendix A. We obtain as posterior

p(R, ~θ[t−τ−ν+1, t−1]|~I[t−τ−ν+1, t])

∝ p(~I[t−τ+1, t], ~θ[t−τ+1, t−1]|~θ[t−τ−ν+1, t−τ ], ~I[t−τ−ν+1, t−τ ], R)p(~θ[t−τ ], R|~I[t−τ ])

∝

(
t∏

s=t−τ+1

(∑
m<s

ws−mθm

)Is
e−

∑
m<s ws−mθm

)

·

(
t−1∏

s=t−τ+1

kIsk

Γ(Isk)RIsk
θIsk−1s e−

k
R θs

)

·

(
t−τ∏

s=t−ν−τ+1

kIsk

Γ(Isk)RIsk
θIsk−1s e−

k
R θs

)(
R−α−1e−β/R

)
, (2.3)

where the last line in the display corresponds to the chosen prior for R and the
momentum values ~θ[t−τ−ν+1, t−τ ] given the corresponding infections ~I[t−τ−ν+1, t−τ ].

In particular, we treat ~I[t−τ−ν+1, t−τ ] as constant so that the model does not
further specify nuisance parameters before time t− τ − ν + 1. This prevents an
infinite recursion in historical observations. Hence we need not only a prior for
R, but also for ~θ[t−τ−ν+1, t−τ ].

In order to condense notation for summations in exponents, let S be the
index set for the second product; i.e., S = {t−ν− τ +1, t−ν− τ +2, . . . , t−1}.
The additional shorthand below drops “s ∈” from s ∈ S. With this notation,
the posterior distribution of R given ~θ and ~I is

p(R|~θ[t−1], ~I[t]) ∝ R−k
∑
S Is−α−1e(−k

∑
S θs−β)R

−1

,

which is Inv-Gamma(k
∑
S Is + α, k

∑
S θs + β). A perhaps counter-intuitive

observation is that the posterior distribution of R does not depend on the gen-
eration interval ~w[ν]. This is the result of conditioning on ~θ versus integrating
it out as done in Lloyd-Smith et al. [8]. In our case, this approach is infeasible

as the dependence on ~θ is too complex. If we truly know population infectious-
ness, i.e., the pandemic momentum at all points in time, then ~w[ν] is irrelevant

for estimating R, because ~w[ν] just determines how we learn about ~θ. More

concretely, there are no terms in (2.3) that include all of R, ~θ, and w[ν].
The posterior expectation and variance of R are

E[R|~θ, ~I] =
k
∑
S θs + β

k
∑
S Is + α− 1

and

Var[R|~θ, ~I] =
(k
∑
S θs + β)2

(k
∑
S Is + α− 1)2(k

∑
S Is + α− 2)

.

The denominator of the variance picks up an additional k term, making credible
intervals wider when k is small. The dependence on ~θ is difficult to remove in
this general setting. Section 2.2.1 considers a simpler setting in which ~θ can
be integrated out in order to derive a transparent function for credible interval
width.

7



To estimate this model, we alternate between a Gibbs-step to sample R and
a Metropolis-Hastings step to sample ~θ. As E[θs|Is, R] = IsR, we can initialize

reasonable starting values for ~θ using various values of R such that we require
little burn-in. We find total chain length to be the more important tuning
parameter for valid prediction and credible intervals. In all models presented
in this paper, we set ν = τ = 13 and ~w[ν] a discretized gamma distribution
with mean 4.46 and standard deviation 2.63. Inference is conducted using the
106 samples that remain after a burn-in of 1,000 and thinning by 5. Model
validation is presented in Appendix B.

2.2. Metaday Model

This section describes a so-called “metaday” model, in which the momentum
model can be simplified by integrating out the momentum parameters θ. This
produces the standard negative binomial model discussed in Lloyd-Smith et al.
[8]. Reparameterizing this model and adding suitable priors produces a concep-
tually and computationally simpler model. In order to apply this model to the
current setting, it is necessary to model larger units than daily infections, hence
the creation of “metadays”. While the results are not as strong, it provides a
quick approximation that still performs well. Furthermore, we can derive an
explicit connection between the length of credible intervals and k.

2.2.1. Trivial Generation Interval

In order to directly relate the dispersion parameter k to the width of the
credible interval, we consider the trivial generation interval in which an infected
person is only infectious for a single day. Furthermore, such a simple formula
comes at the cost of making several approximations as explained below. As such,
results in this section should be considered heuristic as opposed to concrete.

When the generation interval w is of this form, ~w[1] = (1)′, the model is
purely Markovian and the data follow a Galton-Watson process. Recall that
a Poisson(λ)-distributed random variable Y , where λ is a hyperparameter dis-
tributed according to Gamma(α, β), follows a negative binomial distribution
[8]:

Y ∼ NB
(
α,

1

1 + β

)
, p(Y ) =

Γ(Y + α)

Y !Γ(α)

(
β

1 + β

)α(
1

1 + β

)Y
. (2.4)

Applying (2.4) to the model from Section (2.1) yields the following distribution
for the infections It:

It|~I[t−1], R, k ∼ NB
(
kIt−1,

R

R+ k

)
, (2.5)

p(It|~I[t−1], R, k) =
Γ(It + kIt−1)

It!Γ(kIt−1)

(
k

R+ k

)kIt−1
(

R

R+ k

)It
. (2.6)

8



Figure 1: Comparison of priors on R and R/(R+ k).

Due to the tower property, the joint distribution of ~I[t−τ+1:t]|~It−τ , R, k decom-
poses into a product of factors of the form (2.6). We have

p(~I[t−τ+1:t]|~I[t−τ ], R, k) =

t∏
s=t−τ+1

p(Is|~I[s−1], R, k)

=

t∏
s=t−τ+1

Γ(Is + kIs−1)

Is!Γ(kIs−1)

(
k

R+ k

)kIs−1
(

R

R+ k

)Is
.

The structure of this likelihood suggests estimating R/(R + k) instead of R.

When treating ~I[t−τ ] and k as fixed, Bayes’ theorem yields the posterior distri-
bution of R/(R+ k):

p

(
R

R+ k

∣∣∣∣~I[t], k) ∝ ( k

R+ k

)k∑t−1
s=t−τ Is

(
R

R+ k

)∑t
s=t−τ+1 Is

p

(
R

R+ k

∣∣∣∣I[t−τ ], k) .
(2.7)

Given this functional form, it is natural to put a beta prior on R/(R + k).
For small k, as shown in Figure 1, this corresponds to putting an appropriate
inverse-gamma prior on R, while for larger k this would correspond to a gamma
prior. Therefore, to mimic the R ∼ Inf-Gamma(3.69, 6.994) prior distribution
used in Section 2.1, we can use a Beta(α̃ = 71.63, β̃ = 3.755) prior on R/(R+k).
The posterior distribution of R/(R+k) has a Beta distribution with parameters

α = α̃+

t∑
s=t−τ+1

Is, β = β̃ + k

t−1∑
s=t−τ

Is.
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While the hyperparameter values are not so small as to be uninformative, they
are easily outweighed by the data in most settings. By a change of variables
from R/(R+ k) back to R, we derive the posterior distribution of R to be

p
(
R
∣∣∣~I[t], k) ∝ k

(R+ k)2

(
R

R+ k

)α−1(
k

R+ k

)β−1
. (2.8)

As a final simplifying step, we compute the normal approximation of this pos-
terior [5, Section 4.1]. To this end, the first and second derivatives of the
log-posterior density are

d

dR
log p(R|~I[t],k) =

α− 1

R
− α+ β

R+ k
,

d2

dR2
log p(R|~I[t], k) = −α− 1

R2
+

α+ β

(k +R)2
.

Thus, the mode of the posterior is

R̂ =
k(α− 1)

β + 1
,

and the variance estimate is(
− d2

dR2
p(R|~I[t], k)(R̂)

)−1
=
k2(α+ β)(α− 1)

α+ β
.

This yields a normal approximation of the posterior of

p(R|~I[t], k) ≈ N
(
k(α− 1)

β + 1
,
k2(α+ β)(α− 1)

(β + 1)3

)
.

Consider the common setting in which β ≈ k · α. Ignoring the prior pa-
rameters momentarily, we see that

∑t
s=t−τ+1 Is and k

∑t−1
s=t−τ Is already are of

this approximate ratio. So long as the estimation window τ is not extremely
small, e.g., 1 or 2, the terms in these two sums almost entirely overlap. Fur-
thermore, while the hyperparameters α̃ and β̃ are of moderate size, they also
approximately satisfy β̃ ≈ k ∗ α̃. This yields the following simplification of the
variance of the normal approximation:

k2(α+ β)(α− 1)

(β + 1)3
≈ k2α2(k + 1)

k3α3
=
k + 1

kα
≈ k + 1

k
∑t
s=t−τ+1 Is

.

Hence, the approximate length of a credible interval for R behaves like

const√
k
∑t
s=t−τ+1 Is

.
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2.2.2. Estimation of “Metadays”

It is clear that the assumption ν = 1 is highly unrealistic for COVID-19.
In order to bridge this gap, we estimate the model over metadays instead of
conventional days. Assuming the reproduction number R is fixed and not too
large, the negative binomial model estimated using metadays is approximately
equivalent to the momentum model estimated using conventional days. We
define a metaday to have length equal to the mean of the generation interval,
i.e.,

Dmeta :=

ν∑
t=0

tωt.

Given the modeling assumptions we have made for COVID-19, this means a
metaday comprises approximately 4.87 conventional days. When a model is
defined over metadays, setting ν = 1 is equivalent to assuming that someone is
infectious over Dmeta days.

In order to account for non-integer-valued metadays, defineDmeta = bDmetac+
Dfrac, where Dfrac ∈ [0, 1). For simplicity, we assume that new infections are
uniformly distributed during the day. In order to not confuse subscripts index-
ing days and metadays, metaday times will be indicated by t̃ instead of t. Lastly,
as we are interested in using the most recent data, we care about matching the
right endpoint of our time series. As such, we compute the metadays backwards
from a reference day t.

Let day t be the maximal day in our data set. We define the corresponding
metaday incidence, Ĩt̃, to be

Ĩt̃ =

bDmetac−1∑
s=0

It−s +Dfrac · It−bDmetac.

Infections for previous metadays then sum similarly over the historical data
such that the metadays form a partition of days in our data set. It is easiest to
represent the entire process if we allow the indices of the summation notation
to be real numbers via

c2∑
s=c1

It−s = (dc1e − c1)It−bc1c+1 +

bc2c−1∑
s=dc1e

It−s + (c2 − bc2c)It−bc2c

for c1, c2 ∈ R where c1 < c2. The metaday infection series is then given simply
by

Ĩt̃−i =

(i+1)·Dmeta∑
s=i·Dmeta

It−s,

for i ∈ N0.
We assume R is constant for τ days in the metaday model as in the momen-

tum model. The corresponding parameter in the metaday model is τmeta :=
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τ/Dmeta, where we account for non-integer values as before. Estimating pa-
rameters and producing forecasts requires similar modifications for non-integer
values. Conceptually, however, these correspond to the same sums as before,
just over metadays instead of conventional days. This can be represented con-
cisely in the notation for real-valued summation as

α = α̃+

τmeta∑
s=0

Ĩt̃−s, and (2.9)

β = β̃ + k

τmeta+1∑
s=1

Ĩt̃−s. (2.10)

To compare the metaday model to the momentum model it is more sensi-
ble to compare the cumulative incidence of several, say T, days. We forecast
d T
Dmeta

e metadays Ĩt̃, where

Ĩt̃|R, Ĩt̃−1 ∼ NB
(
Ĩt̃−1k,

R

k +R

)
.

Our T cumulative metaday forecast is then given via

XT =

b T
Dmeta

c∑
s=1

Ĩt̃+s +

(
T

Dmeta
−
⌊

T

Dmeta

⌋)
Ĩt̃+d T

Dmeta
e.

In the case study of the next section, we forecast the total weekly cases, i.e.,
T = 7.

3. Results

This section primarily focuses on understanding the evolution of the repro-
duction number in Austria between April and November. As the momentum
model effectively needs τ + ν observations to be fit, this is approximately as
early as estimates can be provided for Austria. Our goals are three-fold: to
demonstrate the increase in estimated variability in R due to superspreading,
to provide valid prediction intervals for new cases, and to compare to similar
models without superspreading. Some results will be shown for other countries
to help establish the validity of our method, but the focus is on Austrian data.

An important component of estimating the reproduction number on a given
date is to account for the delay distribution between infections and observed
cases as discussed in Gostic et al. [6]. If a delay of length d occurs between
infection and observation, then an infection observed at time t actually occurred
on day t − d. In this case, we have a “true infection history” that is distinct
from the reported case numbers. Abbott et al. [1] estimate and sample true
potential infection histories given observed case numbers. As our primary goal
is to understand the uncertainty in estimating R as opposed to providing best in
class predictions of R for a given date, we ignore this complication. This allows

12



Figure 2: Summary of new cases of COVID-19 in Austria: raw infection data (Raw), the 7-day
moving average of Raw (Raw (MA)), each sampled infection history (Sampled Inf.), and the
daily median of the sampled infection histories (Sampled Inf. (M))

us to take as model input the historical 7-day moving average of reported cases
and to compare methods with simple, transparent input. As a result, however,
the x-axis of “date” in the following results should be interpreted as “prediction
date”, not an estimate of the true infections or reproduction number on this
date.

Data on the progression of COVID-19 in Austria is shown in Figure 2. This
graph includes curves for the raw infection data as reported by the European
Center for Disease Prevention and Control (Raw), the 7-day moving average
of Raw (Raw (MA)), each sampled infection history (Sampled Inf.), and the
daily median of the sampled infection histories (Sampled Inf. (M)). Observe
that the boundary of the “band” created by the sampled infection histories is
not smooth, as it is created from 1,000 separate faded lines. Note that using
sampled infection histories effectively shifts the time series backward in time.
In order for the infection histories to approximately match the reported case
numbers, we have aligned them in time.

As mentioned in Section 2.1, we sample one million total samples of R and
the momentum vector ~θ. To forecast future cases, we use an individual sample
of parameters and run the momentum model for a specified period of time. Our
graphs show results for the average number of new cases over the following week.
There is no additional smoothing of the raw data or predictions. As our input
is the 7-day moving average, our prediction is the 7-day-ahead forecast of this
moving average. Forecasts and intervals are shown every day between April 1,
2020 and October 31, 2020.
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Figure 3: Prediction intervals for forecast of the total new cases in the following week with
Austrian Data.

In all of the following graphs, we plot predictions and intervals from three
models: the momentum model with k = .072, the metaday model of Section 2.2,
and the EpiEstim model of Cori et al. [2]. We label the EpiEstim model “Epi*”,
as the estimates are produced directly via equation (3.1) below instead of using
the EpiEstim R package. As in Cori et al. [2], we fix a generation interval, as
opposed to taking samples of a generation interval estimated from a separate
data source as in Thompson et al. [11]. As a result, we are not comparing to the
best in class model within the EpiEstim/EpiNow framework, but with a model
of corresponding complexity to the momentum model. Other improvements to
the modeling framework could then be built on top of the momentum model as
they have been for the model of Cori et al. [2].

To estimate the model of Cori et al. [2], we estimate the parameters of the
Cori et al. [2] posterior distribution directly from the infection data:

p(Rt|I[t]) = Gamma

(
a+

t∑
s=t−τ+1

Is, b+

t∑
s=t−τ+1

ν∑
m=1

wmIs−m

)
, (3.1)

where a and b are the shape and rate parameter of the gamma prior distribution
on R. The the historical 7-day moving average, we estimate this posterior
distribution, draw one million samples for R, and run the corresponding data
generating process (1.2) for the required number of days.
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Table 1: Table of coverage of prediction intervals for number of total cases in the following
week.

Country Model Forecast Cov.5 Cov.9

Austria k = .072 7-Day Ahead 0.46 0.79
Metaday 7-Day Ahead 0.47 0.73
Epi* 7-Day Ahead 0.16 0.38

Croatia k = .072 7-Day Ahead 0.48 0.85
Metaday 7-Day Ahead 0.49 0.77
Epi* 7-Day Ahead 0.18 0.47

Czechia k = .072 7-Day Ahead 0.40 0.69
Metaday 7-Day Ahead 0.39 0.66
Epi* 7-Day Ahead 0.12 0.32

Figure 3 shows the difference between models with and without superspread-
ing on Austrian data. All of the prediction curves track the observed cases
similarly as forecasts are only produced for the coming week. The difference
in their prediction intervals, however, is significant. Most notably, the intervals
for the momentum model with k = .072 are much wider than those of Epi*.
Similarly, the metaday variant of this model produces intervals which are wider
still. If one looks closely, one can see that the Epi* model lags behind the true
data when cases are both increasing and decreasing. On the other hand, the
momentum and metaday models “overshoot” the peaks and troughs in the time
series. This is likely due to the model estimating greater momentum during
these periods.

To assess accuracy, Table 1 shows, for each method, the proportion of true
weekly new cases that fall within the prediction intervals over the prediction
period. Coverage is shown for the 50% and 90% prediction intervals for the
raw infection data. For all countries, the momentum models with superspread-
ing provide coverage which is far closer to the nominal level for both the 50%
and 90% intervals. Clearly coverage is still not exact, and all models perform
worse on the Czech data. It is still notable that the momentum models provide
approximate coverage in these cases even with the inherent messiness of the
COVID-19 case data.

Figure 4 shows the same graphs but for the Czech Republic and Croatia.
The disease progression in the Czech Republic is similar to that of Austria over
the shown period. Croatia is a common Austrian tourist destination and the
disease progression is markedly different there than in Austria. The estimated
coverage probabilities of the prediction intervals are also shown in Table 1. The
story remains the same as before: coverage is far better for the momentum model
with superpreading than without. Similarly, Epi* appears shifted relative to the
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Figure 4: Prediction intervals for 7-day ahead forecast 7-day moving average in Croatia and
Czechia.

observed cases, particularly for the Czech data. Here we see that the momentum
model performs better than the metaday model, particularly around peaks in
the time series.

As the reproduction number is unobserved, we are unable to compare our
predictions within a supervised setting as we compared our model forecasts.
Given the previous discussion though, we see that the additional variability
provided by the momentum model is needed to provide prediction intervals with
approximate coverage. Figure 5 shows the 90% credible intervals for R derived
by the momentum and Epi* models. The figure clearly demonstrates that the
intervals for R are drastically different: with superspreading, intervals for R are
roughly 2-3 times as wide as those without. This could have potentially large
implications for policy making as we know that relatively small changes in the
size of R can lead to large differences in the number of new cases if the disease
is allowed to progress unchecked.

At the beginning of our estimation period, at the time when restrictions
were being relaxed in Austria, it quickly becomes infeasible to claim that the
reproduction number is below 1; i.e., the credible intervals estimated around
May/June include the value 1. While there have been some fluctuations over
the summer, the majority of the period was worsening though remained in-
distinguishable from R = 1. This fall, however, has seen long periods with
reproduction numbers significantly greater than 1, even with our comparatively
wide credible intervals. Intervals are, in general, asymmetric, and skewed toward
higher values.

Figure 6 shows the corresponding graphs but for the Czech Republic and
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Figure 5: Credible intervals for R in Austria.

Croatia. The story is again primarily the same, in which the momentum model
with superspreading produces much wider credible intervals. One obvious fea-
ture of the Croatian data, however, is a steep decline and subsequent steep
increase in June. This corresponds to a large increase and plateau in cases as
seen in Figure 4. The Epi* model estimates that R increases to well over 2
within a short period of time before decreasing again to previous levels. Alter-
natively, in the same period, the momentum model provides a noticeably lower
median estimate but with an incredibly wide interval. Further exploration of the
feature is warranted, though it is reasonable that such a large deviation over a
small window of time should produce significantly more uncertainty in the value
of the underlying parameter, particularly when the model is estimated under
the assumption that R is constant over τ = 13 days. Within the momentum
model, such short-term deviations can be captured by an increase or decrease
in disease momentum instead of just an increase in R. On the other hand, this
feature appears to show a flaw within the metaday model, as both the estimated
R and interval estimate have extreme spikes. This is likely due to the short-
term nature of the case increase and the metaday model only using roughly 3
metadays for estimation.
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Figure 6: Credible intervals for R in Croatia and Czechia

4. Conclusion

In this paper, we provide a simple extension of the Cori et al. [2] model to
account for superspreading. This “momentum” model, incorporates unobserved
random variables which drive the process of new infections. Even if case numbers
and R are relatively small, the presence of superspreaders can increase the
momentum of the disease beyond what would be expected if all individuals
have the same infectiousness. The momentum model produces wider credible
intervals and wider posterior predictive intervals. We find that these wider
intervals significantly improve the coverage of the prediction intervals. Lastly,
we derived a simple equation to relate the width of credible intervals to the
degree of superspreading via a simplification of the momentum model.
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Appendix A. Likelihood Derivation

This appendix derives the posterior distribution of R and ~θ[t−τ−ν+1,t−1]

given the relevant observable past, i.e., ~I[t−τ−ν+1,t]. We briefly restate some
basic properties and definitions of our model.

Let wi denote the expected proportion of future infections caused by an
infected person which occur on day i after infection. Let ν denote the length
of infectiousness, i.e., wν+k = 0 for all k > 0. Lastly, τ denotes the number of
days over which we assume R is constant.
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Our distributional assumptions are as follows:

It|~θ[0,t−1], ~I[0,t], R ∼ Pois

(
ν∑
s=1

ωsθt−s

)
, i.e.,

p(It|~θ[0,t−1], ~I[0,t], R) =
1

It!

(
ν∑
s=1

ωsθt−s

)It
e−

∑ν
s=1 ωsθt−s ; and

θs|R, ~I[0,s], ~θ[0,s−1] ∼ Γ

(
Isk,

k

R

)
, i.e.,

p(θs|R, ~I[0,s], ~θ[0,s−1]) =

(
k
R

)Isk
Γ(Isk)

θIsk−1s e−
θsk
R .

We want to calculate the joint distribution:

P (~θ[t−τ−ν+1,t−1], R|~I[t−τ−ν+1,t])

= P (~θ[t−τ−ν+1,t−1], R|~I[t−τ−ν+1,t−τ ], ~I[t−τ+1,t])

∝ P (~I[t−τ+1,t]|~I[t−τ−ν+1,t−τ ], ~θ[t−τ−ν+1,t−1], R)P (~θ[t−τ−ν+1,t−1], R|~I[t−τ−ν+1,t−τ ])

= P (~I[t−τ+1,t], ~θ[t−τ−ν+1,t−1], R|~I[t−τ−ν+1,t−τ ])

= P (It, θt−1|~I[t−τ−ν+1,t−1], ~θ[t−τ−ν+1,t−2], R)

·P (~I[t−τ+1,t−1], ~θ[t−τ−ν+1,t−2], R|~I[t−τ−ν+1,t−τ ])

= P (It|~θ[t−ν,t−1])P (θt−1|It−1, R)P (~I[t−τ+1,t−1], ~θ[t−τ−ν+1,t−2], R|~I[t−τ−ν+1,t−τ ]).

In the last step we used the conditional independence properties for It and
θt−1, respectively. Repeating this process to separate I[t−τ+2,t] and θ[t−τ+1,t−1]
from the rest yields:

P (~θ[t−τ−ν+1,t−1], R|~I[t−τ−ν+1,t])

∝
t∏

s=t−τ+2

P (Is|~θ[s−ν,s−1])

·
t−1∏

s=t−τ+1

P (θs|Is, R)P (It−τ+1, ~θ[t−τ−ν+1,t−τ ], R|~I[t−τ−ν+1,t−τ ])

Now, focusing on the last term, we have
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P (It−τ+1, ~θ[t−τ−ν+1,t−τ ], R|~I[t−τ−ν+1,t−τ ])

= P (It−τ+1, ~θ[t−τ−ν+1,t−τ ]|~I[t−τ−ν+1,t−τ ], R)P (R|~I[t−τ−ν+1,t−τ ])

= P (It−τ+1|~I[t−τ−ν+1,t−τ ], ~θ[t−τ−ν+1,t−τ ], R)P (~θ[t−τ−ν+1,t−τ ]|~I[t−τ−ν+1,t−τ ], R)

·P (R|~I[t−τ−ν+1,t−τ ])

= P (It−τ+1|~θ[t−τ−ν+1,t−τ ])

t−τ∏
s=t−τ−ν+1

P (θs|~I[t−τ−ν+1,t−τ ], R)P (R|~I[t−τ−ν+1,t−τ ]).

In the last equation, we used the fact that the individual θs are conditionally
independent given the vector ~I. At this point, the terms P (θs|~I[t−τ−ν+1,t−τ ], R)
become problematic. Knowledge of the terms Im for m > s certainly should
shed some insight on the value of θs; however, it is not clear how this can be
feasibly handled. It is not possible to prevent the occurrence of such terms
due to the hierarchical nature of this model: the distribution of Is requires
previous θ values, which in return demand the inclusion of previous I values ad
infinitum. This problem could be avoided by modeling all data from the start
of the pandemic, at which point we could confidently set all values of I and θ
corresponding to times prior to the onset of the pandemic to 0. This, however,
would require treating the value of R as fixed for the entire pandemic, rendering
our approach irrelevant as this assumption is clearly false.

As a solution, we propose putting a prior distribution on these problematic
θs such that P (θs|~I[t−τ−ν+1,t−τ ], R) ∼ Γ(Isk, k/R), essentially disregarding the
additional information provided by future observations. Using a different prior,
such as setting P (θs|~I[t−τ−ν+1,t−τ ], R) = δRIs—which has the appeal of creating
terms such as those in Cori et al. [2]—is statistically unsound, as we would draw
different θs from different types of distributions.

All this taken together yields:

P (~θ[t−τ−ν+1,t−1], R|~I[t−τ−ν+1,t])

∝
t∏

s=t−τ+1

P (Is|~θ[s−ν,s−1])
t−1∏

s=t−τ+1

P (θs|Is, R)
t−τ∏

s=t−τ−ν+1

P (θs|Is, R)

·P (R|~I[t−τ−ν+1,t−τ ])

Using an inverse-gamma prior on R and using the densities of the other
terms as discussed before evaluates to the same likelihood as in the main text.

Appendix B. Model Validation

Here we summarize estimation results for simulated data in order to more
precisely show the effect of superspreading in a setting in which true parameters
are known. The coverage and length of intervals are shown in Figure B.7. All
simulations were run using an initial sequence of cases that had constant value of
50. Simulations were repeated 20 times in order to asses coverage probabilities.
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(a) (b)

Figure B.7: Illustration of average credible interval coverage and length on simulated data. As
there is a single R parameter but 25 elements of ~θ, the coverage of the latter are summarized
via a violin plot.

Of greatest initial import is verifying that the 90% credible intervals for R
indeed cover the true value with approximately nominal probability. The case
R = 1 is of primary importance, as it represents the bright-line between the
epidemic growing or shrinking. That we have nearly exact coverage in this
setting is indication that our credible intervals do not achieve coverage merely
by being extremely wide. Furthermore, the intervals for ~θ also cover the true
values with the specified probability in the R = 1 and R = 1.5 cases. With our
initial sequence of cases and R = .7, the epidemic sometimes dies out, which
can be missed by the model. As such, the R = .7 cases has worse coverage over
the momentum parameters ~θ.

After establishing coverage, our motivation for modeling superspreading is
verified by looking at the lengths of the credible intervals: for k small, our inter-
vals need to be extremely wide. In fact, the interval for k = .1 is approximately
2.5 times longer than the interval for k = 10 for both R = .7 and R = 1. For
R = 1.5, the estimation problem becomes relatively easy as case numbers grow
substantially. This leads to very small credible intervals.

As the explicit conditional distribution of the momentum parameters ~θ is
intractable, we present a summary of the samples observed through the MCMC
simulation in Figure B.8. This includes all 25 momentum parameters required
when τ = ν = 13 as well as R. As R = 1.5 in this setting, one can observe
that the scale increase for θs as s increases. It is clear that the parameters
vary widely through MCMC estimation, even though the are initialized at the
marginal MLE: θ̂s = IsR̂. Multiple chains are run, each with a separate initial
value for R̂. When k is small, variability in ~θ is large, requiring both tuning of
the proposal distribution and long chains to be simulated in order to overcome
high auto-correlation in the MCMC draws of ~θ.
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Figure B.8: Samples of MCMC draws of parameters. The vertical, red lines indicate true
values.
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