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Abstract. It is well known that several solutions to the Skorokhod problem optimize cer-
tain “cost”- or “payoff”-functionals. We use the theory of Monge-Kantorovich transport to
study the corresponding optimization problem. We formulate a dual problem and establish
duality based on the duality theory of optimal transport. Notably the primal as well as
the dual problem have a natural interpretation in terms of model-independent no arbitrage
theory.

In optimal transport the notion of c-monotonicity is used to characterize the geometry
of optimal transport plans. We derive a similar optimality principle that provides a geo-
metric characterization of optimal stopping times. We then use this principle to derive the
Root- and Rost solutions to the Skorokhod embedding problem.
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1. Introduction

Throughout this paper we denote by λ a measure on the real line which has bary-
center 0 and finite second moment. Let B be a Brownian motion on some stochastic basis
(Ω,F , (Ft)t≥0,P). It is well known that then there exists a stopping time τ which solves1

the Skorokhod embedding-problem

Bτ ∼ λ, E[τ] =
∫

x2 λ(dx) . (1.1)

There exist a variety of different constructions of a stopping time τ which solves the em-
bedding problem (1.1), we refer to the survey of Obloj [Obł04].

Starting with Hobson’s seminal paper [Hob98] the Skorokhod embedding problem has
received significant attention in the mathematical finance community due to its relevance
in the theory of model-independent finance, see [Hob11] for an overview. Here we do not
elaborate on this connection; we just mention that a large class of problems corresponds to
an optimization problem which relates to (1.1) and which we now formalize.

1.1. The Primal Problem. We consider the set of stopped paths

S = {( f , s) : f : [0, s]→ R is continuous, f (0) = 0}. (1.2)

Throughout the paper we consider a functional

γ : S → R.

The primal problem which we study consists in

Pγ(λ) = sup
{
E
[
γ
(
(Bt)t≤τ

)]
: τ solves (1.1)

}
. (1.3)

The authors thank Walter Schachermayer for many discussions and Nizar Touzi for helpful comments. The
first author was supported by the FWF-grant p21209, the second author by the CRC 1060.

1In particular we allow here that the stopping time τ depends on external randomization. The condition
E[τ] =

∫
x2 λ(dx) is imposed to exclude trivial (degenerate) solution of the embedding problem.
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We say that the problem is well-posed iff E
[
γ
(
(Bt)t≤τ

)]
exists with values in [−∞,∞) for

all τ which satisfy (1.1) and is finite for one such τ.
Typical examples of the functional γ which are relevant in model-independent finance

are given by the running maximum γ(( f , s)) := f̄ := maxt≤s f (t) or the convex/concave
functions of time, e.g., γ(( f , s)) = h(s), where h : R+ → R is convex/concave.

The set of all randomized stopping times (see (4.2) below) solving the Skorokhod Prob-
lem (1.1) is compact in a natural sense and as a consequence we will establish:

Proposition 1.1. Let γ : S → R be upper semi-continuous. Then (1.3) admits a maximizer
τ̂ whenever the optimization problem is well-posed.

Here we can talk about the continuity properties of γ since S carries a naturally Polish
topology: Let ( f , s), (g, t) ∈ S and assume wlog s ≤ t. We then say that ( f , s) and (g, t) are
ε-close if

max
(
t − s, sup0≤u≤s | f (u) − g(u)|, sups≤u≤t |g(u) − g(s)|

)
< ε. (1.4)

1.2. The Dual Problem. Related to the above primal problem is a dual problem which
has a financial interpretation in terms of robust super-hedging. In the formulation given
below we take the probability space to be the path space C(R+) of continuous functions
starting in 0 equipped with the Wiener measureW and we take (Bt)t≥0 to be the canonical
process, i.e. Bt(ω) = ω(t).

Theorem 1.2. Let γ : S → R be upper semi-continuous, bounded from above2, predictable
and assume that (1.3) is well posed. Put

Dγ(λ) = inf
{∫

ψ(y) dλ(y) : ∃(H),
(H · B)t + ψ(Bt) ≥ γ((Bs)s≤t, t)
for all t ∈ R+,W-a.s.

}
,

where H runs through all predictable processes with
∫ t

0 EH2
s ds ≤ at + b for some a, b > 0.

Then there is no duality gap, i.e.

Pγ(λ) = Dγ(λ). (1.5)

1.3. Variational Principle. A basic and fundamental notion in the theory of optimal
transport is c-cyclical monotonicity which we recall in (3.6) below. The remarkable feature
of this optimality criterion is that the optimality of the measure π is linked to the geometry
of the support set supp(π). Often this is key to understanding the transport problem.

We establish a corresponding result which applies to the theory of Skorokhod embed-
ding. Let B be a Brownian motion (on some stochastic basis (Ω,F , (Ft)t≥0,P)) and τ a
stopping time. Let Γ be a Borel subset of the set S defined in (1.2). We say that τ is
concentrated on Γ if P-a.s. (

(Bt)t≤τ, τ
)
∈ Γ. (1.6)

Suppose now that τ̂ is an optimizer of the primal problem Pγ(λ) for some function γ.
Intuition from optimal transport suggest that in this case there exists a set Γ ⊆ S which
supports τ̂ and reflects the optimality of τ̂:

Suppose that τ̂ stops a path once it reaches (g, t) and some other path is still living in
( f , s). Assume also that

f (s) = g(t) and
“stop in ( f , s), don’t stop in (g, t)” leads to a better γ-payoff. (1.7)

2It is possible to relax this condition, see Remark 5.2 below.
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Then we will say that
(
( f , s), (g, t)

)
is a bad pair3 w.r.t. γ and write BP for the set of all(

( f , s), (g, t)
)

satisfying (1.7). If τ̂ is optimal we should not encounter bad pairs for which
( f , s) is still living with respect to τ̂ while the process is dying in (g, t). After all, in this
case it would be better to switch the role of ( f , s) and (g, t) under the stopping time τ̂.

The following result formalizes this heuristic idea.

Theorem 1.3 (Variational Principle). Assume that γ : S → R is upper semi-continuous,
the optimization problem (1.3) is well-posed and that τ̂ is an optimizer of Pγ(λ). There is
a stopping set Γ ⊆ S such that τ̂ is supported by Γ and there are no bad pairs with respect
to Γ, i.e. if

(
( f , s), (g, t)

)
∈ BP, then at least one of the following applies:

(1) ( f , s) is not before the right end of Γ, i.e. ( f , s) has no proper extension ( f ′, s′) ∈ Γ.
(2) (g, t) < Γ.

We call a set Γ verifying (1) and (2) γ-monotone.

Writing

Γ< := {( f , s) : ∃(g, t) ∈ Γ, f = gx[0,s], s < t} (1.8)

for the set of all ( f , s) which are before (the right end of) Γ, the properties (1), (2) can
also be expressed as

BP ∩ Γ< × Γ = ∅. (1.9)

Notice that, in general, the sets Γ< and Γ are not disjoint. In fact, for a stopping time τ there
exists a set Γ such that τ is supported by Γ and Γ< ∩ Γ = ∅ iff the stopping time τ depends
only on the evolution of B but not on external randomization, i.e. if τ is a stopping time for
the filtration generated by B.

In Section 2 we will use Theorem 1.3 to give short derivations of the Root- and the Rost
solution of the Skorokhod problem.

1.4. Connections with the Literature. The idea to relate the theory of optimal transport
with model-independent finance first appeared in the papers [GHT12, BHP12].

While the article [BHP12] is concerned with a discrete time setup, Galichon, Henry-
Labordere, and Touzi [GHT12] study the Skorokhod embedding problem as an optimal
stopping problem. By connecting the Skorokhod embedding problem to a free boundary
problem they derive the Azema-Yor solution to the Skorokhod-embedding.

Through the Dambis-Dubins-Schwarz theorem, the optimization problems (1.3) and
(5.4) are related to the pricing of financial derivatives whose payoff is invariant under time-
changes; this idea goes back to [Hob98]. In mathematical finance terms, Theorem 1.2 is
a robust super-replication theorem comparable to the recent result of Dolinsky and Soner
[DS12]. Dolinsky and Soner processed through a discretization of the problem. Opposed
to our result this allows to treat also functionals γ which are not necessarily invariant w.r.t.
time-changes. On the other hand, in [DS12] it is necessary to assume stricter conditions
on the continuity of the functional γ, hence excluding functionals involving the quadratic
variation. For related duality results in a quasi-sure context we refer to [PRT13].

The idea to consider an analogue of c-cyclical monotonicity in the martingale con-
text comes from [BJ12] where the corresponding notion is introduced in a discrete time
framework and applied to obtain a 1-dimensional martingale analogue of Brenier’s theo-
rem. A different and more explicit approach to this Brenier-type result is given by Henry-
Labordere and Touzi in [HT13].

3The formal definition will be given in (2.1) (and (6.2) resp.) below.
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1.5. Organization of the Article. In Section 2 we establish the Root- and the Rost-
embedding based on Theorem 1.3. In Section 3 we recall some principal definitions and
results from optimal transport. In Section 4 we consider randomized stopping times on the
Wiener space and establish some basic properties. In Section 5 we develop the dual side
of the problem and prove Theorem 1.2. In Sections 6 and 7 we will establish Theorem 1.3
by combining the duality theory of optimal transport with the Choquet-capacity theorem.

2. Particular embeddings

In this section we explain how Theorem 1.3 can be used to derive particular solutions
to the Skorokhod embedding problem. We first define the notion of “bad pairs”.

Definition 2.1. Write (g ⊕ h, t + u) for the path obtained from concatenating (g, t) and
(h, u) ∈ S . Then the set of bad pairs for γ : S → R is given by

BP =
{(

( f , s), (g, t)
)

: f (s) = g(t), for all (h, u) ∈ S , u > 0

γ(( f ⊕ h, s + u)) + γ((g, t)) < γ(( f , s)) + γ((g ⊕ h, t + u))
}
.

2.1. The Root embedding. A set R ⊆ R × R+ is a barrier if (x, s) ∈ R and s < t im-
plies that (x, t) ∈ R. Root [Roo69] established that there exists a barrier R such that the
Skorokhod problem is solved by the stopping time

τRoot = inf{t ≥ 0 : (Bt, t) ∈ R}. (2.1)

To see this let γ( f , t) = h(t), where h : R+ → R is a strictly concave function such that

sup{E[h(τ)] : τ solves the Skorokhod-problem} (2.2)

is well posed and pick a maximizer τ̂ of (2.2) by Proposition 1.1. Then we have:

Theorem 2.2. There exists a barrier R such that τ̂ = inf{t ≥ 0 : Bt ∈ R}. In particular the
Skorokhod problem has a solution of barrier-type (2.1).

Proof. Pick, by Theorem 1.3, a γ-monotone set Γ ⊆ S such that P(τ̂ ∈ Γ) = 1. Note that
due to the concavity of h the set of bad pairs is given by

BP = {(( f , s), (g, t)) ∈ S : f (s) = g(t), t < s}.

As Γ is γ-monotone, Γ< × Γ ∩ BP = ∅. Define a left and a right barrier by

RL := {(x, s) : ∃(g, t) ∈ Γ, g(t) = x, t ≤ s}, (2.3)
RR := {(x, s) : ∃(g, t) ∈ Γ, g(t) = x, t < s}. (2.4)

and denote the respective hitting times by τL and τR. We claim that τL ≤ τ̂ ≤ τR a.s.
Note that τL ≤ τ̂ holds by definition of τL. To show the other inequality pick ω satis-

fying
(
(Bt(ω))t≤τ̂(ω), τ̂(ω)

)
∈ Γ and assume for contradiction that τR(ω) < τ̂(ω). Then there

exists s < τ̂(ω) such that Bs(ω) ∈ RR. By definition of the right barrier, this means that there
is some (g, t) ∈ Γ such that t < s and g(t) = Bs(ω). But then ( f , s) := (Bu(ω))u≤s, s) ∈ Γ<,
hence

(
( f , s), (g, t)

)
∈ BP ∩ Γ< × Γ which is the desired contradiction.

It remains to show that BτL ∼ BτR . This is evident from the properties of one-dimensional
Brownian motion but can also be seen by a “softer” argument: Consider

RεL := {(x, s) : ∃(g, t) ∈ Γ, g(t) = x, t + ε ≤ s}

and the corresponding hitting time τε. Then the law of Bτε tends to the law BτL in the total
variation norm. To see this, write Bε for Brownian motion started at time −ε and note that
BετL
∼ Bτε . �
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A consequence of this proof is that (on a given stochastic basis) there exists exactly
one solution4 of the Skorokhod embedding problem which maximizes (2.2): Assume that
maximizers τ1 and τ2 are given. Then we can use an independent coin-flip to define a new
maximizer τ̄ which is with probability 1/2 equal to τ1 and with probability 1/2 equal to τ2.
By Theorem 2.2, τ̄ is of barrier-type and hence τ1 = τ2.

We also note that the above proof of Theorem 2.3 is based on a heuristic derivation
of the optimality properties of the Root-embedding given by Hobson in [Hob11]. Indeed
Hobson’s approach was the starting point of the present paper.

2.2. The Rost embedding. A set R ⊆ R × R+ is an inverse barrier if (x, s) ∈ R and s > t
implies that (x, t) ∈ R. It has been shown by Rost that under the condition5 λ({0}) = 0 there
exists an inverse barrier such that the corresponding hitting time (in the sense of (2.1))
solves the Skorokhod problem. We derive this using an argument almost identical to the
one above:

Let γ( f , t) = h(t), where h : R+ → R is a strictly convex function such that the problem
to maximize E[h(τ)] over all solutions to the Skorokhod-problem (1.1) is well posed. Pick,
by Proposition 1.1, a maximizer τ̂. Then we have:

Theorem 2.3. There exists an inverse barrier R such that τ̂ = inf{t ≥ 0 : (Bt, t) ∈ R}. In
particular the Skorokhod problem can be solved by a hitting time of an inverse barrier.

Proof. Pick, by Theorem 1.3, a γ-monotone set Γ ⊆ S such that P(τ̂ ∈ Γ) = 1. Note that
due to the convexity of h the set of bad pairs is given by

BP = {(( f , s), (g, t)) ∈ S : f (s) = g(t), s < t}.

As Γ is γ-monotone, Γ< × Γ ∩ BP = ∅. Define a left and a right inverse barrier by

RL := {(x, s) : ∃(g, t) ∈ Γ, g(t) = x, s < t}, (2.5)
RR := {(x, s) : ∃(g, t) ∈ Γ, g(t) = x, s ≤ t}. (2.6)

and denote the respective hitting times by τL and τR. We claim that τR ≤ τ̂ ≤ τL a.s.
Note that τR ≤ τ̂ holds by definition of τR. To show the other inequality pick ω satis-

fying
(
(Bt(ω))t≤τ̂(ω), τ̂(ω)

)
∈ Γ and assume for contradiction that τL(ω) < τ̂(ω). Then there

exists s < τ̂(ω) such that Bs(ω) ∈ RL. By definition of the left barrier, this means that there
is some (g, t) ∈ Γ such that s < t and g(t) = Bs(ω). But then ( f , s) := (Bu(ω))u≤s, s) ∈ Γ<,
hence

(
( f , s), (g, t)

)
∈ BP ∩ Γ< × Γ which is the desired contradiction.

Similar to the previous proof we have BτL ∼ BτR . �

As in the case of the Root-embedding we obtain that the maximizer of E[h(τ)] is unique.

2.3. Remarks. It is well known (see for instance [Obł04, Hob11]) that the Root- and
Rost-embedding can be shown to maximize E[h(τ)] for convex resp. concave h. In the
above approach we have turned this upside down: the optimization problem is used as an
auxiliary tool to derive the Root- and Rost-solution of the Skorokhod problem.

The arguments used here do not use the properties of one-dimensional Brownian mo-
tion. We believe that the above approach generalizes to a multi-dimensional setup and
(sufficiently regular) continuous Markov-processes. Also it does not matter for the argu-
ment whether the starting distribution is a Dirac in 0 as in our setup or rather a more general
distribution.

4This was first established in [Ros76], together with the optimality property of Root-solution.
5It is not hard to see that without this condition some additional randomization is required.
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We also mention two recent accounts on the Root-embedding given in [CW12] and
[Od13]. These approaches are based on PDE techniques and in particular allow for much
more explicit description of the barrier than the proof given in Theorem 2.3.

3. The classical Transport Problem

To establish Theorem 1.2 and Theorem 1.3 we link the Skorokhod embedding problem
to the Monge-Kantorovich optimal transport. This allows us to use the duality theorem
of optimal transport and techniques related to c-cyclical monotonicity in the context of
Brownian motion.

In abstract terms the transport problem (cf. [Vil03, Vil09]) can be stated as follows:
For probabilities µ, ν on Polish spaces X,Y the set Cpl(µ, ν) of transport plans consists of
all couplings between µ and ν. These are all measures on X × Y with X-marginal µ and
Y-marginal ν. Associated to a cost function c : X × Y → [0,∞] and π ∈ Cpl(µ, ν) are the
transport costs

∫
X×Y c(x, y) dπ(x, y). The Monge-Kantorovich problem is then to determine

the value
inf

{ ∫
c dπ : π ∈ Cpl(µ, ν)

}
(3.1)

and to identify an optimal transport plan π̂ ∈ Cpl(µ, ν), i.e. a minimizer of (3.1). Going
back to Kantorovich, this is related to the following dual problem. Consider the set Φ(µ, ν)
of pairs (ϕ, ψ) of integrable functions ϕ : X → [−∞,∞) and ψ : Y → [−∞,∞) which
satisfy ϕ(x) +ψ(y) ≤ c(x, y) for all (x, y) ∈ X × Y . The dual part of the Monge-Kantorovich
problem then consists in maximizing

J(ϕ, ψ) =
∫

X ϕ dµ +
∫

Y ψ dν (3.2)

for (ϕ, ψ) ∈ Φ(µ, ν). In the literature duality has been established under various conditions,
see for instance [Vil09, p 98f] for a short overview.

Theorem 3.1 (Monge-Kantorovich Duality). Let (X, µ), (Y, ν) be Polish probability spaces
and c : X × Y → [0,∞] be lower semi-continuous6 ([Kel84, Theorem 2.2]). Then

inf
{ ∫

c dπ : π ∈ Π(µ, ν)
}

= sup
{
J(ϕ, ψ) : (ϕ, ψ) ∈ Φ(µ, ν)

}
. (3.3)

Moreover the duality relation pertains if the optimization in the dual problem is restricted
to bounded functions ϕ, ψ.

We will need the following straightforward corollary:

Corollary 3.2. Let c̃ : X × Y × [0, t0] → R be upper semi-continuous and bounded from
above. Then

sup
{ ∫

c̃ dπ : π ∈ P(X × Y × [0, t0]), projX(π) = µ, projY (π) = ν} (3.4)

= inf
{
J(ϕ, ψ) : (ϕ, ψ) ∈ L∞(µ) × L∞(ν), ϕ(x) + ψ(y) ≥ c̃(x, y, t)

}
. (3.5)

A basic and important goal is to characterize minimizers through a tractable property
of their support sets: a Borel set Γ ⊆ X × Y is c-cyclically monotone iff

c(x1, y2)−c(x1, y1) + . . . + c(xn−1, yn)−c(xn−1, yn−1) + c(xn, y1)−c(xn, yn) ≥ 0 (3.6)

whenever (x1, y1), (x2, y2), . . . , (xn, yn) ∈ Γ. A transport plan π is c-cyclically monotone if
it assigns full measure to some cyclically monotone set Γ.

Concerning the origins of c-cyclical monotonicity in convex analysis and the study of
the relation to optimality we mention [Roc66, KS92, Rüs96, GM96]. Intuitively speaking,

6If c takes only values in [0,∞), then it suffices to assume plain measurability ([BS09]).
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c-cyclically monotone transport plans resist improvement by means of cyclical rerouting
and optimal transport plans are expected to have this property. Indeed we have:

Theorem 3.3. Let c : X × Y → R+ be a lower semi-continuous cost function. Then a
transport plan is optimal if and only if it is c-cyclically monotone.

Even in the case where c is the squared Euclidean distance this a non trivial result, posed
as an open question by Villani in [Vil03, Problem 2.25]. Following contributions of Am-
brosio and Pratelli [AP03], this problem was resolved by Pratelli [Pra08] and Schachermayer-
Teichmann [ST09] who established the clear-cut characterization stated in Theorem 3.3.7

Notably Theorem 1.3 above is only a first step towards a full characterization of op-
timality as provided in Theorem 3.3. To obtain a necessary and sufficient condition for
optimality in the Skorokhod embedding case (1.3) an extension from pairs to a finite num-
ber of stopped paths will be required.

4. Preliminaries on stopping times and filtrations

4.1. Spaces and Filtrations. In this section we mainly discuss the formal aspects of fil-
trations, measure theory, etc. Confident readers might want to skip this section.

We consider the space Ω = C(R+) of continuous paths with the topology of uniform
convergence on compact sets. The elements of Ω will be denoted byω. As explained above
we consider the set S of all continuous functions defined on some initial segment [0, s] of
R+; we will denote the elements of S by ( f , s) and (g, t). The set S admits a natural partial
ordering; we say that (g, t) extends ( f , s) if t ≥ s and the restriction gx[0,s] = f . In this case
we write ( f , s) ≺ (g, t).

For two sets A, B the projection from A × B to A (resp. B) will be denoted by projA
(resp. projB). For a map T : X → Y and a measure µ on X the push forward of µ by T will
be denoted by T (µ). The set of all probability (resp. sub-probability) measures on a Polish
space Z will be denoted by P(Z) (resp. P≤1(Z)). The set of all finite nonnegative measures
on a set Z will be denoted byM(Z). The complement of a set A will be denoted by {A.

For our arguments it will be important to be precise about the relationship between the
sets C(R+) × R+ and S . We therefore discuss the underlying filtrations in some detail.

We consider three different filtrations on the Wiener space C(R+), the canonical or
natural filtration F 0 = (F 0

t )t∈R+
, the right-continuous filtration F + = (F +

t )t∈R+
, and the

augmented filtration F a = (F a
t )t∈R+

obtained from (F 0
t )t∈R+

by including all W-null sets
in F 0

0 . As the Brownian motion is a continuous Feller process, F a is automatically right-
continuous, all F a-stopping times are predictable and all right-continuous F a-martingales
are continuous. In particular, the F a-optional and the F a-predictable σ-algebra coincide
(see e.g. [RY99, Corollary IV 5.7]). This will allow us to use the following result.

Theorem 4.1 ([DM78, Theorem 78]). For every F a-predictable process (Xt)t∈R+
there is

an F 0-predictable process (X′t )t∈R+
which is indistinguishable from (Xt)t∈R+

. If τ is an F a-
stopping time, there exists an F 0-stopping time τ′ such that τ = τ′ a.s.

Of course, every F a-martingale has a continuous version. Not so commonly used but
entirely straightforward is the following: if M is an F 0-martingale then there is a version
M′ of M which is an F 0-martingale and almost all paths of M′ are continuous.

7We refer to [BGMS09] and [BC10] for more general results, in particular it turns out that lower semi-
continuity of the cost function is not required.
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The message of the proposition below is that a process (Xt)t∈R+
is F 0-predictable iff

Xt(ω) can be calculated from the restriction ωx[0,t]. We introduce the mapping

r : C(R+) × R+ → S , r(ω, t) = (ωx[0,t], t). (4.1)

Note that the topology on S introduced in (1.4) coincides with the terminal topology in-
duced by the mapping r; in particular r is continuous.

Proposition 4.2. (1) A set D ⊆ C(R+) × R+ is F 0-predictable iff there is a Borel set
A ⊆ S with D = r−1(A).

(2) A process X = (Xt)t∈R+
is F 0-predictable iff there is a Borel measurable H : S →

R such that X = H ◦ r.

Remark 4.3. In the following we will say that H : S → R is continuous / right-continuous
/ etc. if the corresponding property holds for the process H ◦ r. Similarly we say that
H1,H2 : S → R are indistinguishable if this holds for the processes H1 ◦ r,H2 ◦ r w.r.t.
Wiener measure. We will also often used the notation H(ωx[0,t]) = H(ωx[0,t], t).

To establish Proposition 4.2 we use a result from [DM78]. Adjoin to R a coffin state
ð. We let D be the set of all cadlag paths with lifetime, i.e. all cadlag functions f : R+ →

R ∪ {ð} for which {t : f (t) = ∞} is a closed, possibly empty, half line [a,∞). Define a
killing operation kt : D→ D by

(ktω)s =

ωs if s < t
ð if s ≥ t.

Proposition 4.2 then follows from the following result.

Theorem 4.4 ([DM78, Theorem 97]). Let Z = (Zt)t∈R+
be an adapted process with paths

in D. Then Z is F 0-predictable iff Zt = Zt ◦ kt for all t ∈ R+.

We will primarily work with the natural filtration F 0 on Ω = C(R+).

4.2. Preliminaries on stopping times. Working on the path space C(R+), a stopping time
τ is a mapping which assigns to each path ω the time τ(ω) at which the path is stopped.
Assuming that a stopping time depends on some external randomization we may think
that a path ω is not stopped at a particular point τ(ω) but rather that there exists a sub-
probability µω on R such that the path ω is stopped randomly according to the law µω. Let
us make this idea precise.

We consider the space

M := {µ ∈ P≤1(C(R+) × R+) : µ(dω, dt) = µω(dt)W(dω), µω ∈ P≤1(R) forW a.e. ω},

where (µω)ω∈Ω is a disintegration of µ w.r.t. the first coordinate ω ∈ Ω.
We equip M with the weak topology induced by the continuous bounded functions on

C(R+) × R+.
In particular, we will be interested in the subset RST of all elements which are “adapted”.

Formally we define the set RST of all randomized stopping times8 to consist of all µ ∈ M
satisfying one of the equivalent properties in the following theorem.

Theorem 4.5. Let µ ∈ M. Then the following are equivalent:

8The relation of usual (non-randomized) stopping times and randomized stopping times is analogous to the
relation of (Monge) transport-maps to (Kantorovich) transport-plans in theory of optimal transport.
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(1) There is a Borel function H : S → [0, 1] such that H is right-continuous, decreas-
ing and

µω([0, s]) := 1 − H(ωx[0,s]) (4.2)

defines a disintegration of µ w.r.t. toW.
(2) For every disintegration (µω)ω∈Ω of µ, for all t ∈ R+ and every Borel set A ⊆ [0, t]

the random variable

Xt(ω) = µω(A)

is F a
t -measurable.

(3) There is a disintegration (µω)ω∈Ω of µ such that for all t ∈ R+ and all f ∈ Cb(R+)
such that the support of f lies in [0, t] the random variable

Xt(ω) = µω( f )

is F 0
t -measurable.

(4) There exists a Brownian motion B′ on some stochastic basis Ω′ = (Ω′,F , (F ′t ),P′)
and a stopping time τ′ on Ω′ such that the function

Φ : Ω′ → C(R+) × R+, Φ(ω′, t′) =
(
(B′s)s∈R+

(ω′), τ′(ω)
)

satisfies µ = Φ(P′).

Proof. The argument is fairly straightforward. We establish that (2) implies (1). Consider
a disintegration (µω)ω∈Ω of µ. Define a process H̄ by

H̄t(ω) := 1 − µω([0, t]).

Then H̄ is right continuous and F a-adapted, hence F a-progressive. By Theorem 4.1 and
Proposition 4.2 there exist a Borel function H on S such that H̄ is indistinguishable from
H ◦ r. This function H is as required.

�

Remark 4.6. (1) The function H in (4.2) is unique up to indistinguishability (cf. Re-
mark 4.3). We will designate this function Hµ in the following. This function has
a natural interpretation. Hµ( f , s) is the probability that a particle is still alive at
time s given that it has followed the path f . We call Hµ the lively-hood function
associated to µ.

(2) We will say µ is a non-randomized stopping time or a deterministic stopping time
iff there is a disintegration (µω)ω∈Ω of µ such that µω is a Dirac-measure (of mass
1) for every ω. Clearly this means that µω = δτ(ω) a.s. for some usual stopping
time τ. µ is a deterministic stopping time iff there is a version of Hµ which only
attains the values 0 and 1.

Definition 4.7. A randomized stopping time is finite iff µ(C(R+) × R+) = 1. The set of all
finite randomized stopping times will be denoted by RST1.

Note, that on the set RST equipped with the topology inherited from M, it is sufficient
to consider continuous, bounded, adapted processes as test functions.

Proposition 4.8. The set RST is closed.
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Proof. Assume that a sequence (µn)n∈N in RST tends to µ. Fix a continuous bounded
random variable Y : C(R+) → R+ and a continuous function f : R+ → R+ which has
support in [0, t]. Then, using the above notation,

EW[YXn
t ] =

∫
C(R+)

Y(ω)µn
ω( f )W(dω) =

∫
C(R+)

Y(ω)
∫
R+

f (t) µn
ω(dt)W(dω) (4.3)

=

∫
C(R+)×R+

Y(ω) f (t) µn(dω, dt)→
∫

C(R+)×R+

Y(ω) f (t) µ(dω, dt) = EW[YXt].

(4.4)

That is, Xn
t converges to Xt weakly in L2(Ω,W). All Xn

t are F 0
t -measurable, hence also Xt

can be taken to be F 0
t -measurable.

�

4.3. Randomized Stopping of Martingales. Given µ ∈ M and s ∈ R+ we define the
measure µ ∧ s ∈ M to be the random time which is the minimum of µ and s; formally this
means that for ω ∈ Ω and A ⊆ R+

(µ ∧ s)ω(A) := µω(A ∩ [0, s)) + δs(A)(1 − µω([0, s))).

Assume that (Us)s∈R+
is a process on Ω. Then the stopped process (Uµ

s ) is given by

Uµ
s (ω) :=

∫
Ut(ω) (µ ∧ s)ω(dt),

where ((µ ∧ s)ω)ω∈C(R+) denotes a disintegration of µ ∧ s.
Recall (Definition 4.7) that the random time µ is finite if the measure µ has mass one.

If (Ut)t≥0 is uniformly integrable, then we may consider

Uµ := Uµ
∞ = lim

s→∞
Uµ

s .

Of course the optional stopping theorem applies:

Proposition 4.9. Let µ ∈ RST and let (Mt)t∈R+
be a martingale. Then (Mµ

t )t∈R+
is a

martingale and we have
M0 = EW[Mµ

t ].
If (Mt)t∈R+

is uniformly integrable then

M0 = EW[Mµ].

Subsequently we will use that this property actually characterizes whether a given ran-
dom time is a stopping time:

Proposition 4.10. (1) Let µ ∈ M. Then µ ∈ RST iff for every martingale M =

(Mt)t∈R+
and all t ∈ R+

M0 = EW[Mµ
t ]. (4.5)

(2) If µ is a finite time, then µ ∈ RST iff

M0 = EW[Mµ] (4.6)

for every uniformly integrable martingale M.

Subsequently we will often use the following notation: Let f : C(R+) → R be a
continuous bounded function. Then we write f M for the F 0-martingale defined through

f M
t := E[ f |F 0

t ] (4.7)

whose paths are almost surely continuous.
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Then, by Proposition 4.10, µ ∈ M is a randomized stopping time if and only if for all
continuous bounded functions f : C(R+)→ R∫

C(R+)×R+

f (ω) dµ(ω, t) =

∫
C(R+)×R+

f M
t (ω) dµ(ω, t).

Proof of Proposition 4.10. We show (2), the proof of (1) is the same. The first implication
follows from optional stopping, so assume that (4.6) holds for all uniformly integrable
martingales. If µ is not a randomized stopping time then for some t there exist an F 0

t ⊗

B(R+)-measurable set A ⊆ C(R+) × R+ and a Borel set D ∈ F∞ such that

µ(A ∩ (θ−1
t (D) × R)) , µ(A)W(D),

where θt : C(R+)→ C(R+) is defined by

θt(ω) = (ωs − ωt)s≥t.

It follows that there also exist a bounded continuous function H : C(R+)→ R such that∫
1A(ω, t) · H ◦ θt(ω) µ(dω, dt)) , µ(A)EW[H].

Subtracting EW[H] from H, we may here assume that EW[H] = 0. We then define a
bounded martingale M by

M∞(ω) := 1A(ω) · H ◦ θt(ω), Mt := E[M∞|F a
t ].

Then M0 = 0 while

E[Mµ] =

∫
1A · H ◦ θt µ(dω) , 0.

This is the desired contradiction. �

4.4. Relation with Skorokhod-Embedding. As is customary in the theory of Skorokhod
embedding we consider stopping times which are minimal, that is, we are interested in
finite randomized stopping times µ such that (Bµt )t∈R+

is uniformly integrable. Given a
centered probability measure λ on R we denote by

RST(λ)

the set of minimal stopping times µ such that Bµ ∼ λ. From now on we make the assump-
tion that λ has finite second moment9

V :=
∫

x2 λ(dx) < ∞. (4.8)

Denote by T the projection
T : C(R+) × R+ → R+.

For µ ∈ RST(λ) we then have (by uniform integrability of (Bµt ) and Jensen’s inequality)

Eµ[T ] = lim
t→∞
Eµ∧t[T ] = lim

t→∞
EW[〈B〉µ∧t] = lim

t→∞
EW[B2

µ∧t] = lim
t→∞
EW[E[Bµ|Ft]2] ≤ E[B2

µ] = V.

On the other hand if Bµ ∼ λ then Eµ[T ] < ∞ implies that (Bµt )t≤∞ is uniformly integrable:
(Bt)2 − t =: Mt defines a martingale and

0 = EW[M0] = EW[Mµ
t ] = EW[(Bµt )2] − Eµ[T ∧ t].

Hence EW[(Bµt )2] ≤ EµT such that (Bµt )t∈R+
is an L2-martingale and a posteriori Eµ[T ] =

EW[B2
µ] = V.

9Modulo some technicalities one could replace this condition by assuming that λ has only finite first moment.
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Summing up we obtain the following fact (which is of course well known in theory of
Skorokhod-embedding):

Lemma 4.11. Using the above notations and assumptions, the following are equivalent
for µ ∈ RST with Bµ = λ:

(1) µ is minimal.
(2) Eµ[T ] < ∞.
(3) Eµ[T ] = V.

The main reason why we consider randomized stopping times is that they have the
following property:

Theorem 4.12. The set RST(λ) is compact.

Proof. By Prohorov’s theorem we have to show that RST(λ) is tight and that RST(λ) is
closed.

Tightness.
Fix ε > 0 and take R so large that V/R ≤ ε/2. Then, for any µ ∈ RST(λ) we have

µ(T > R) ≤ ε/2. As C(R+) is Polish there is a compact set K̃ ⊆ C(R+) s.t.W({K̃) ≤ ε/2.
Put K := K̃ × [0,R]. Then K is compact and we have for any µ ∈ RST(λ)

µ({K) ≤W({K̃) + µ(T > R) ≤ ε.

Hence, RST(λ) is tight.
Closedness. Take a sequence (µn)n∈N in RST(λ) converging to some µ. Putting h :

C(R+) × R+, (ω, t) 7→ ω(t) we have to show that h(µ) = λ and that Eµ[T ] < ∞. Note that
h is a continuous map. Take any g ∈ Cb(R). Then g ◦ h ∈ Cb(C(R+) × R+). Thus, we have
that ∫

g dλ = lim
n

∫
C(R+)×R+

g ◦ h dµn =

∫
C(R+)×R+

g ◦ h dµ =

∫
g dh(µ).

Hence, we have h(µ) = λ. Moreover, the set {(ω, t) : t ≤ L} is closed. Hence, by the
Portmanteau Theorem we have that for any L ≥ 0

lim sup µn(t ≤ L) ≤ µ(t ≤ L).

This readily implies that Eµ[T ] ≤ lim supEµn [T ] = V < ∞. �

4.5. Joinings / Tagged Stopping Times. We now add another dimension: assume that
(Y, ν) is some Polish probability space. The set of all tagged random times or joinings
JOIN(W, ν) = JOIN(ν) is given by{
π ∈ P≤1(C(R+) × R+ × Y), projC(R+)×R+

(πxC(R+)×R+×B) ∈ RST, B ∈ B(R), projY (π) ≤ ν
}
.

We shall also write JOIN1(W, ν)/JOIN1(ν) for the subset of measures which have mass 1.

Remark 4.13. Write pred for the σ-algebra of F 0-predictable sets in C(R+) × R+.
We call a set A ⊆ C(R+) × R+ × Y predictable if it is an element of pred ⊗ B(Y). We

will say that a function defined on C(R+) × R+ × Y is predictable if it is measurable w.r.t.
pred ⊗ B(Y).
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5. The Optimization Problem and Duality

5.1. The Primal Problem.

Recall that we consider a function γ : S → R+ which is continuous –(or at least upper
semi-continuous).

A randomized stopping time µ gives rise to the probability measure µS := r(µ). Given
an F a-predictable function γ̃ on C(R+)×R+ we can find a Borel function γ on S such that
γ ◦ r is indistinguishable from γ̃ and then∫

C(R+)×R+

γ̃(ω, t) µ(d(ω, t)) =

∫
S
γ( f , s) µS (d( f , s)). (5.1)

As long as there is no danger of confusion we will not distinguish strictly between γ̃ and γ
as well as µ and µS , respectively.

We assume that there exists at least one µ ∈ RST(λ) which satisfies that∫
γ(ω, t) dµ(ω, t) > −∞. (5.2)

and that the integral in (5.2) is less than∞ for all µ ∈ RST(λ). The maximization problem
introduced in the introduction can then also be written as

Pγ(W, λ) = sup
{∫

γ(ω, t) dµ(ω, t), µ ∈ RST(λ)
}
. (5.3)

It is straightforward to see that the functional (5.1) is upper semi-continuous provided that
γ is (upper semi-) continuous. (This is spelled out in detail for instance in [Vil09, Chapter
4] in the context of classical optimal transport.) In particular (5.3) then admits an optimizer
according to the compactness properties derived above.

5.2. The dual problem.

Theorem 5.1. Let γ : C(R+) × R+ → R be upper semi-continuous, bounded from above
and predictable. Put

Dγ(W, λ) = inf
{∫

ψ(y) dλ(y) : ψ ∈ L1(λ),∃ϕ,
ϕ is a continuous martingale, ϕ0 = 0
ϕt(ω) + ψ(ω(t)) ≥ γ(ω, t) for all t,W-a.s.

}
where ϕ runs through all continuous F a-martingales with Eϕ2

t ≤ at + b for some a, b > 0.
Then we have the duality relation

Pγ(W, λ) = Dγ(W, λ). (5.4)

By the martingale-representation theorem, Theorem 5.1 and Theorem 1.2 are equiva-
lent.

As usual the inequality Pγ(W, λ) ≤ Dγ(W, λ) is straight-forward to verify.

Remark 5.2. The assumption that γ is bounded from above can be relaxed: Assume that
ϕ, ψ is an admissible dual pair such that ψ : R → R, ϕ : C(R+) × R+ → R+ are lower
semi-continuous. Then the duality relation for the function γ follows from Theorem 5.1 if
we consider γ̃(ω, t) := γ(ω, t) − (ϕt(ω) + ψ(ω(t))).

A more natural assumption on the function γ would be that Dγ(W, λ) < ∞ but presently
we are not able to establish Theorem 5.1 in this case.
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The key idea for the proof of Theorem 5.1 is to translate the embedding problem for λ
into a transportation problem between the Wiener measureW and λ using the cost function

c(ω, t, y) =

γ(ω, t) if ω(t) = y
−∞ else,

for (ω, t, y) ∈ C(R+) × R+ × R. The result of choosing this special cost function is that
Pγ(W, λ) = PC(R+)×R+×R

c (W, λ), where

PC(R+)×R+×R
c (W, λ) = sup

{∫
c(ω, t, y) π(dω, dt, dy), π ∈ JOIN1(W, λ),Eπ[T ] ≤ V

}
,

(5.5)
where T is the projection on R+,V =

∫
x2 λ(dx) and we used Y = R in the definition of

JOIN1(W, λ) (see Section 4.5).
To see this, define p(ω, t, y) = (ω, t). Then, if π ∈ JOIN1(W, λ) is concentrated on

{(ω, t, y) : ω(t) = y} we have µ = p(π) ∈ RST(λ) and
∫

c dπ =
∫
γ dµ.

On the other hand, let h(ω, t) = ω(t). If µ ∈ RST(λ) then π = (id, h)(µ) ∈ JOIN1(W, λ)
and as before

∫
c dπ =

∫
γ dµ.

In Proposition 5.6 we will establish a dual problem corresponding to PC(R+)×R+×R
c (W, λ)

and Theorem 5.1 will then be a simple consequence. However we need some preparations
before we can establish Proposition 5.6.

5.3. A Non-Adapted (NA) Duality Result.
We first prove a “non adapted version” of the desired result and afterwards we use the
min-max Theorem 5.4 to introduce adaptedness. To this end, put

TMV (W, λ) = {π ∈ P(C(R+) × R+ × R) : projC(R+)(π) =W, projR(π) = λ,Eπ[T ] ≤ V},
(5.6)

and

DCV
NA(c) =

{
(ϕ, ψ) ∈ L∞(W) × L∞(λ) : ∃α ≥ 0,

ϕ(ω) + ψ(y) + α(t − V) ≥ c(ω, t, y)
W-a.s. for all y ∈ R, t ≥ 0

}
.

Note that the set TMV is compact as a consequence of Prohorov’s Theorem.

Proposition 5.3. Let c : C(R+) × R+ × R → R ∪ {−∞} be upper semi-continuous and
bounded from above. Then

PNA
c = sup

π∈TMV (W,λ)

∫
c dπ = inf

(ϕ,ψ)∈DCV
NA(c)
W(ϕ) + λ(ψ) = DNA

c . (5.7)

Again it is easy to show that DNA
c ≥ PNA

c . To show the other inequality we first collect
some ingredients which will also be useful later on. In particular, we will use the min-max
theorem in the following form.

Theorem 5.4 (see e.g. [Str85, Thm. 45.8] or [AH96, Thm. 2.4.1]). Let K, L be convex
subsets of vector spaces H1 resp. H2, where H1 is locally convex and let F : K × L → R
be given. If

(1) K is compact,
(2) F(·, y) is continuous and concave on K for every y ∈ L,
(3) F(x, ·) is convex on L for every x ∈ K

then
inf
y∈L

sup
x∈K

F(x, y) = sup
x∈K

inf
y∈L

F(x, y).
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Lemma 5.5. If (5.7) is valid for a sequence of continuous bounded functions cn, n ≥ 1
such that cn ↓ c then (5.7) applies also to c.

Proof. To keep track of the different cost functions we write

PNA
cn

= sup
TMV (W,λ)

∫
cn dπ and DNA

cn
= inf

(ϕ,ψ)∈DCV
NA(cn)

(EW[ϕ] + Eλ[ψ]) ,

where DCV
NA(cn) is to remind us on the dependence of the dual constraint set on cn. PNA

c
and DNA

c are defined analogously. We have to prove that DNA
c ≤ PNA

c . For each k let
πk ∈ TMV (W, λ) be such that

PNA
ck
≤

∫
ck dπk +

1
k
.

By compactness of TMV (W, λ) there is a subsequence, still denoted by k, such that (πk)k

converges weakly to some π ∈ TMV (W, λ). Then by monotone convergence using the
monotonicity of the sequence (ck)k∈N we have

PNA
c ≥

∫
c dπ = lim

m→∞

∫
cm dπ = lim

m→∞

(
lim
k→∞

∫
cm dπk

)
≥ lim

m→∞

(
lim
k→∞

∫
ck dπk

)
= lim

k→∞
PNA

ck
.

Since, ck ≥ c implies PNA
ck
≥ PNA

c and DNA
c ≤ DNA

ck
this allows us to deduce that

DNA
c ≤ DNA

ck
= PNA

ck
↘ PNA

c .

�

Proof of Proposition 5.3. We may assume that c is bounded from above by zero. Hence,
by Lemma 5.5 it is sufficient to establish (5.7) for continuous functions whose support
satisfies

supp c ⊆ C(R+) × [0, t0] × R (5.8)

for some t0 ∈ R+. Put

TMV
t0 (W, λ) = {π : projC(R+)(π) =W, projR(π) = λ,Eπ[T ] ≤ V, supp π ⊆ C(R+) × [0, t0] × R},

and

DCV
NA,t0 (c) =

{
(ϕ, ψ) ∈ L∞(W) × L∞(λ) : ∃α ≥ 0,

ϕ(ω) + ψ(y) + α(t − V) ≥ c(ω, t, y)
W-a.s. for all y ∈ R, t ≤ t0

}
.

Assume now that c satisfies (5.8) for some t0 ≥ V .
We then have

sup
π∈TMV (W,λ)

∫
c dπ = sup

π∈TMV
t0

(W,λ)

∫
c dπ and (5.9)

inf
(ϕ,ψ)∈DCV

NA(c)
W(ϕ) + λ(ψ) = inf

(ϕ,ψ)∈DCV
NA,t0

(c)
W(ϕ) + λ(ψ). (5.10)

Formally the conditions involving V disappear in TMV
t0 (W, λ) and DCV

NA,t0 (c) if we put
V = ∞, we therefore define

TM∞t0 (W, λ) = {π : projC(R+)(π) =W, projR(π) = λ, supp π ⊆ C(R+) × [0, t0] × R},

DC∞NA,t0 (c) = {(ϕ, ψ) ∈ L∞(W) × L∞(λ) : ϕ(ω) + ψ(y) ≥ c(ω, t, y) for t ≤ t0, y ∈ R W-a.s.}
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As a consequence of the classical Monge-Kantorovich duality theorem (3.1) we have (see
Corollary 3.2)

sup
π∈TM∞t0 (W,λ)

∫
c̃ dπ = inf

(ϕ,ψ)∈DC∞NA,t0
(c̃)
W(ϕ) + λ(ψ) (5.11)

for c̃ upper semi-continuous and bounded from above.
Using the min-max Theorem 5.4 with the function

F(π, α) =

∫
c − α(t − V) dπ

for π ∈ TM∞t0 (W, λ) and α ≥ 0 we thus obtain

sup
π∈TMV

t0
(W,λ)

∫
c dπ = sup

π∈TM∞t0 (W,λ)

∫
c dπ + inf

α≥0
(−α)

∫
t − V dπ (5.12)

= inf
α≥0

sup
π∈TM∞t0 (W,λ)

∫
c − α(t − V) dπ (5.13)

= inf
α≥0

inf
(ϕ,ψ)∈DC∞NA,t0

(c−α(t−V))
W(ϕ) + λ(ψ). (5.14)

= inf
(ϕ,ψ)∈DCV

NA,t0
(c)
W(ϕ) + λ(ψ), (5.15)

where we have applied (5.11) to the function c̃ = c − α(t − V) to establish the equality
between (5.13) and (5.14).

This concludes the proof. �

5.4. Introducing Adaptedness.

We can test “adaptedness” of a measure π ∈ P(C(R+) × R+ × R) by testing it against
martingales: Put

JOINV (W, λ) = JOIN1(W, λ) ∩ TMV (W, λ).

For a continuous and bounded function f : C(R+) → R+ we consider the martingale f M

defined through f M
t = E[ f |Ft] as in (4.7). Then π ∈ TM(W, λ) satisfies π ∈ JOIN1(W, λ) if

and only if for all continuous bounded functions f : C(R+)→ R, g : R→ R∫
f g dπ =

∫
f Mg dπ. (5.16)

This follows in complete analogy to Proposition 4.10 and will be crucial for the subsequent
argument.

Consider now the following set of dual candidates:

DCV (c) =

{
(ϕ, ψ) :

ϕ is a continuous bounded martingale, ψ ∈ L∞(λ), ∃α ≥ 0,
ϕt(ω) + ψ(y) + α(t − V) ≥ c(ω, t, y),W-a.s. for all y ∈ R, t ∈ R+

}
.

Then we can derive the following, adapted version of Proposition 5.3.

Proposition 5.6. Let c : C(R+)×R+×R→ R∪{−∞} be upper semi-continuous, predictable
(cf. Remark 4.13) and bounded from above. Then,

PC(R+)×R+×R
c (W, λ) = sup

π∈JOINV (W,λ)

∫
c dπ = inf

(ϕ,ψ)∈DCV (c)
W(ϕ) + λ(ψ) =: DC(R+)×R+×R

c (W, λ).
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Proof. Let us start with the case that c is continuous and bounded. The general case will
follow by approximation, cf. Lemma 5.5. We will use again the notation f M

t = E[ f |Ft].
We want to use the min-max Theorem 5.4 with the function

F(π, h) =

∫
c dπ +

∫
C(R+)×R+

h̄ dπ

for π ∈ TMV (W, λ) and

h(ω, y) =

n∑
i=1

fi(ω)gi(y), h̄ =

n∑
i=1

( fi − f M
i )gi, (5.17)

where n ∈ N, fi ∈ Cb(C(R+)), gi ∈ Cb(R+).
The set TMV (W, λ) is convex and compact by Prohorov’s theorem and the set of all

h ∈ Cb(C(R+)) ×Cb(R+) of the form (5.17) is convex as well. Then we have

PC(R+)×R+×R
c = sup

π∈JOINV (W,λ)

∫
c dπ

= sup
π∈TMV (W,λ)

inf
h

(∫
c dπ +

∫
C(R+)×R+

h̄ dπ
)

Thm5.4
= inf

h
sup

π∈TMV (W,λ)

(∫
c + h̄ dπ

)
= inf

h
inf

(ϕ,ψ)∈DCV
NA(c+h̄)

(W(ϕ) + λ(ψ)) .

The last equality holds by Proposition 5.3. We set ch = c + h̄. For (ϕ, ψ) ∈ DCV
NA(ch) there

is some α ≥ 0 such that

ch(ω, t, y) ≤ ϕ(ω) + ψ(y) + α(t − V).

Taking conditional expectation w.r.t. F 0
t we get using predictability of c (cf. Remark 4.13)

ch(ω, t, y) = E
[
c +

∑n
i=1( fi − f M

i,t )gi

∣∣∣Ft ⊗ B(R)
]
(ω, t, y) ≤ ϕM

t (ω) + ψ(y) + α(t − K).

This implies that (ϕt, ψ) ∈ DCV (c). BecauseW(ϕM
t ) = W(ϕ) this implies that DCV

NA(ch) ⊆
DCV (c). Therefore, we have

PC(R+)×R+×R
c = inf

h∈Cb(C)
inf

(ϕ,ψ)∈DCV
NA(c+h̄)

(W(ϕ) + λ(ψ))

≥ inf
(ϕ,ψ)∈DCV (c)

(W(ϕ) + λ(ψ)) = DC(R+)×R+×R
c .

(5.18)

As usual, the other inequality is straightforward.
�

Proof of Theorem 5.1. We already saw in the beginning of this section that Pγ(W, λ) =

PC(R+)×R+×R
c (W, λ) if we set

c(ω, t, y) =

γ(ω, t) if ω(t) = y
−∞ else.

Moreover, as γ was assumed to be upper semi-continuous, also c is upper semi-continuous.
Indeed, take any sequence (ωn, tn, yn) converging to (ω, t, y). If lim supn c(ωn, tn, yn) =

−∞ there is nothing to prove. On the other hand, if lim supn c(ωn, tn, yn) > −∞ there is
a subsequence (ωnk , tnk , ynk ) with ωnk (tnk ) = ynk converging to some (ω, t, y). Then, we



18 MATHIAS BEIGLBÖCK AND MARTIN HUESMANN

necessarily have that ω(t) = y because |ω(t)−y| ≤ |ω(t)−ωnk (tnk )|+ |ynk −y|. Thus the upper
semi-continuity of c follows from the upper semi-continuity of γ.

Hence, by Proposition 5.6 to see that

Pγ(W, λ) ≥ Dγ(W, λ)

and it remains to show that DC(R+)×R+×R
c (W, λ) ≥ Dγ(W, λ). A bounded pair (ϕ, ψ) belongs

to DCV (c) iff there is α ≥ 0 such thatW-a.s. for all y ∈ R, t ∈ R+

ϕt(ω) + ψ(y) + α(t − V) ≥ c(ω, t, y)

which holds iff
ϕt(ω) + ψ(ω(t)) + α(t − V) ≥ γ(ω, t).

This is trivially equivalent to[
ϕt(ω) − α(ω(t)2 − t)

]
+

[
ψ(ω(t)) + αω(t)2 − αV

]
≥ γ(ω, t). (5.19)

The alternative representation in (5.19) is useful to us since ω(t)2 − t is a martingale.
Putting

ϕ̄t(ω) = ϕt(ω) − α(ω(t)2 − t) and ψ̄(y) = ψ(y) + αy2 − αV,

we have ϕ̄t(ω) + ψ̄(ω(t)) ≥ γ(ω, t). This means that (ϕ̄ − ϕ̄0, ψ̄ + ϕ̄0) satisfy the constraint
in the dual problem in (5.4). Recalling that V was defined by V =

∫
y2λ(dy) we have∫

ψ̄(y) λ(dy) =
∫
ψ(y) λ(dy). Therefore, we can conclude that

DC(R+)×R+×R
c (W, λ) ≥ Dγ(W, λ).

�

6. Bad Pairs and Closed Stochastic Intervals

In the following, ν will always denote an optimizer of the primal optimization problem
(5.3).

The notion of BP given in Definition 2.1 requires that all possible extensions (h, u) are
considered. In this section we will also consider a weaker notion which is sensitive to the
stopping measure ν. To this end we introduce the conditional randomized stopping time
given ( f , s).

Definition 6.1. Let µ ∈ RST be given and consider the livelyhood function Hµ as in
Remark 4.6. The conditional randomized stopping time of µ, given ( f , s) ∈ S , denoted by
µ( f ,s), is defined to be

µ
( f ,s)
ω ([0, t]) :=

1
H( f , s)

(
1 − H( f ⊕ ωx[0,t], s + t)

)
, (6.1)

if H( f , s) > 0 and 0 otherwise.

This is the normalized stopping measure given that we followed the path f up to time
s. In other words this is the normalized stopping measure of the “bush” which follows the
“stub” ( f , s).

Definition 6.2. The set of bad pairs relative to ν is defined by

BPν =

{(
( f , s), (g, t)

)
: f (s) = g(t), (6.2)∫

γ( f ⊕ ωx[0,s+r], s + r) dν( f ,s)(ω, r) + γ(g, t) < γ( f , s) +

∫
γ(g ⊕ ωx[0,t+r], t + r) dν( f ,s)(ω, r)

}
.
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The interpretation of BPν is that in average it is better to stop at ( f , s), chop off the
“bush” and transfer it onto the “stub” (g, t).

The following result constitutes an important intermediate step towards Theorem 1.3.
In the formulation as well as in the proof we interpret the space (C(R+)×R+)×(C(R+)×R+)
as a product X × Y so that we can make sense of the projections projX and projY .

Proposition 6.3. Let ν be a randomized stopping time which maximizes (5.3). Then (Y, ν) =

(C(R+) × R+, ν) is a Polish probability space. Assume that π ∈ JOIN(τ, ν) (where τ can be
arbitrary) satisfies

HprojX (π)( f , s) > 0 =⇒ Hν( f , s) > 0 for ( f , s) ∈ S . (6.3)

Then we have π(BPν) = 0.

The interpretation of (6.3) is that if a particle has a strictly positive chance to be alive
w.r.t. projX(π) then the probability that this particle is still alive w.r.t. ν is positive as well.

Proof. Note that, given ν′ ∈ RST(λ′) and ν′′ ∈ RST(λ′′), we have that (ν′ + ν′′)/2 ∈
RST((λ′ + λ′′)/2). The probabilistic interpretation of this easy fact goes by visualizing the
random stopping time (ν′ + ν′′)/2 as flipping a coin at time t = 0 and subsequently either
applying the randomized stopping rule ν′ or ν′′.

Working towards a contradiction we assume that there is π ∈ JOIN(τ, ν) such that
π(BPν) > 0. Set ν0 = ν1 := ν. We then use π to define two modification νπ0 and νπ1 of ν such
that the following hold true:

(1) The terminal distributions λ0, λ1 corresponding to νπ0 and νπ1 satisfy (λπ0+λπ1)/2 = λ.
(2) νπ0 stops paths earlier than ν0 = ν while νπ1 stops later than ν1 = ν.
(3) The cost of νπ0 plus the cost of νπ1 is less than twice the costs of ν, i.e.∫

γ(ωx[0,t], t) dν0(ω, t) +

∫
γ(ωx[0,t], t) dν1(ω, t) < 2

∫
γ(ωx[0,t], t) dν(ω, t).

More formally, (2) asserts that for every s ≥ 0,

(νπ0)ω[0, s] ≥ νω[0, s], a.s. (6.4)

and (νπ1)ω[0, s] ≤ νω[0, s], a.s., (6.5)

where νω∈Ω, (νπ0)ω∈Ω, (νπ1)ω∈Ω are disintegrations of ν0, ν
π
0, ν

π
1 respectively w.r.t.W.

If we are able to construct such a νπ0, ν
π
1, then (νπ0 + νπ1)/2 is a randomized stopping time

in RST(λ) which is strictly better then ν which yields the desired contradiction.
To define νπ0, we first consider p0 = projX(π) which is a randomized stopping time. As

in Remark 4.6 we can view p0 as right-continuous decreasing livelyhood-function Hp0 :
S → [0, 1] which starts at 1. Possibly p0 does not decrease to 0 since we allow that
particles survive until∞.

We now define the randomized stopping time νπ0 as the product

Hνπ0 ( f , s) := Hp0 ( f , s) · Hν( f , s).

The probabilistic interpretation of this definition is that a particle is stopped by νπ0 if it is
stopped by p0 or stopped by ν, where these events are taken to be conditionally independent
given the path ω ∈ C(R+). Comparing ν0 and νπ0 the latter will stop some particles earlier
than the first one. We note that this in particular implies that Eνπ0 [T ] ≤ Eν[T ] < ∞.

Let us now turn to the definition of νπ1. Set p1 := projY (π). (Recall that we write
(C(R+) × R+) × (C(R+) × R+) = X × Y , so that projY denotes the projection on the second
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coordinate.) Fix an F 0-measurable10 disintegration (νω)ω∈C(R+) of ν. Given ( f , s) ∈ S
and (ω, t) ∈ C(R+) × R+ we define a measure on R with support in [t,∞) by setting for
A ⊆ [t,∞)

ν( f ,s),(ω,t)(A) := Hν( f , s) · ν( f⊕θt(ω)
)(A − t + s), (6.6)

where θt(ω) = (ωs+t − ωt)s≥0.
As discussed above, randomized stopping times can be represented either as probability

measures on C(R+)×R+ or as probability measures on S . Formally the tagged random time
π is a measures on (C(R+)×R+)× (C(R+)×R+). However in defining νπ1 we consider π as
a probability on S × (C(R+) × R+).11 Define the probability measure νπ1 on C(R+) × R+ by

νπ1(B) =ν1(B) − p1(B)+∫(
( f ,s),(ω,t)

)
∈S×B

[
ν( f ,s),(ω,t)(Bω) +

(
1 − ν( f ,s),(ω,t)(R)

)
· δ(ω,t)(B)

]
dπ

(
( f , s), (ω, t)

)
,

where Bω = {t ∈ B : (ω, t) ∈ B}.
We then have
(1) νπ0, νπ1 ∈ RST and Eνπ0 [T ],Eνπ1 [T ] < ∞.
(2) νπ = (νπ0 + νπ1)/2 ∈ RST(λ).

Finally ∫
γ d(νπ − ν) =

=

∫
dπ

(
( f , s), (g, t)

) (
Hν( f , s)

[ ∫
γ( f ⊕ ωx[0,s+r], s + r) dν( f ,s)(ω, r) + γ(g, t)−

(
γ( f , s) +

∫
γ(g ⊕ ωx[0,t+r], t + r) dν( f ,s)(ω, r)

)])
.

This quantity is strictly positive by the definition of bad pairs and Assumption (6.3)
�

6.1. Approximation by particular stopping times.
Lemma 6.4. Let τ be a non-randomized stopping time w.r.t. the right-continuous filtration
F +. For any ε, η > 0 there is an F +-stopping time ρ such that

(1) ρ ≤ τ
(2) W(τ − ρ ≥ ε) ≤ η
(3) W({τ = ∞, ρ < ∞}) ≤ η
(4) ~0, ρ� is closed in C(R+) × R+.

Proof. Fix ε, η > 0. Assume first that

τ(ω) =

t ω ∈ A
∞ else

,

for some F 0
t -measurable set A. By Proposition 4.2, there is a Borel set A0 ⊆ C([0, t])

such that A = A0 × C((t,∞)). In this proof we will often use this kind of identification of
F 0

t -measurable events with measurable subsets of C([0, t]) without explicitly mentioning

10I.e. a disintegration which satisfies that νω(A) = νω′ (A) whenever A ⊆ [0, t] and ωx[0,t] = ω′x[0,t]. Formally
this is achieved by referring to an F 0-predictable representent of Hν(ω, t) = 1 − νω([0, t]).

11Recall that we denote by r the natural “projection” from C(R+) × R+ to S . To represent π as a measure on
S × (C(R+) × R+), we may formally set π̃ := (r × Id)(π).
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it. In particular, we will loosely write W(D) instead of W(D × C((t,∞))) or WxC([0,t])(D)
for some measurable D ⊆ C([0, t]).

By outer regularity ofW there is an open set O ∈ C[0, t],O ⊇ A0 such thatW(O \A0) ≤
η/2.Moreover, O can be written as a countable union of open sets On, n ≥ 1,where for each
n the set On is an open sausage corresponding to some continuous function fn : [0, t]→ R
and some ηn > 0, i.e. On = {g : R+ → R, sups≤t | fn(s) − g(s)| < ηn}. For all n ≥ 1 there
is t − ε ≤ tn < t such that the open sausage O′n corresponding to ηn and the function fn
restricted to [0, tn] satisfies W(O′n \ On) ≤ 2−(n+1)η. Put, O′ = ∪n≥1O′n. Then O ⊆ O′ and
W(O′ \ O) ≤ η/2 and thereforeW(O′ \ A0) ≤ η. Set

ρn(ω) =

tn ω ∈ O′n
∞ else

.

Then, �ρn,∞� is open and ~0, ρn� is closed. Put U =
⋃

n�ρn,∞� and define

ρ(ω) = inf{t : (ω, t) ∈ U}.

Then, we have
~0, ρ� =

⋂
n~0, ρn�,

which implies that ρ(ω) = infn ρn(ω).Hence, ρ is an F + stopping time and ~0, ρ� is closed.
Moreover, because t−ε ≤ tn < t we have that for all n ≥ 1 it holds that t−ε ≤ ρn(ω) < τ(ω).
Hence, it also holds that t − ε ≤ ρ(ω) < τ(ω). Therefore, we can conclude that

W({|τ − ρ| > ε}) =W({τ = ∞, ρ < ∞}) =W(O′ \ A0) ≤ η.

This proves the Lemma for the case that τ is an F 0-stopping time which only takes the
values t and ∞. From here it is straightforward to prove the Lemma for the case where τ
takes values in a discrete subset of R+.

Assume now that τ is an arbitrary F 0-stopping time. Since τ is predictable, there is an
F 0-stopping time τ̄ such that τ̄ ≤ τ,W(τ− ε/2 < τ̄) ≥ 1− η/2. Pick a sequence of stopping
times (τn)n∈N which for any n take only values in some discrete set such that τn ↓ τ̄. Put
εn = 2−nε/2 and ηn = 2−nη/2. According to what we have proved above pick ρn which are
very close (in terms of εn, ηn) to the τn and satisfy that �ρn,∞� is open. Then set

V :=
⋃

n�ρn,∞�

and
ρ := inf{t : (ω, t) ∈ V}

such that V =�ρ,∞� is open. Note that ρ = infn ρn. Hence, by construction ρ ≤ τ satisfies
the required properties. Indeed, we only have to check thatW(τ − ρ ≥ ε) ≤ η. To this end,
one easily checks that

{τ − τ̄ < ε/2} ∩
⋂

n

{τn − ρn < εn} ⊆ {τ − ρ < ε},

which directly yields the estimate.
If τ is an F +-stopping time, it can be represented as a decreasing limit of F 0-stopping

times and repeating the above argument yields the result also in this case. �

Corollary 6.5. Let τ be a non-randomized F +-stopping time12. Then there is a sequence
of F +-stopping times τn such that

(1) τn ↑ τW-a.s.

12If τ is an F a-stopping time then the result still applies with a minor modification: we have to allow for an
exceptional null set N.
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(2) W({τ = ∞} ∩ {τn < ∞})→ 0.
(3) For each n the stochastic interval ~0, τn� is closed in C(R+) × R+.

Proof. For each n apply the previous lemma with εn = ηn = 2−n. �

For two randomized stopping times µ and µ̃ we have Hµ ≤ Hµ̃ iff µ([0, t]) ≥ µ̃([0, t])
for all t. The last inequality means that µ stops paths before µ̃. In this case we say that µ is
before µ̃.

Corollary 6.6. Let µ be a randomized stopping time. There exists a sequence of stopping
times µn such that

(1) for each n there exist stopping times τ1 ≤ . . . ≤ τk and convex coefficients α1, . . . , αk

such that

Hµn ◦ r =

k∑
i=1

αi1~0,τi~ ≤

k∑
i=1

αi1~0,τi� ≤ Hµ ◦ r

up to indistinguishability. Moreover the τi can be chosen so that ~0, τi� is closed.
(2) for each n, the stopping time µn is before µ, i.e. Hµn ≤ Hµ and µn → µ weakly.

Proof. Fix n and define for ω ∈ C(R+) and 1 ≤ i ≤ 2n,

τ̃i(ω) = inf
{
s : Hµ(ωx[0,s]) ≤

i
2n

}
.

Put Hn = 2−n ∑2n

i=1 1~0,τ̃i~. Then Hn ≤ Hn+1 ≤ Hµ. Indeed, take any (ω, t). Then there is k
such that Hµ(ωx[0,t]) = α ∈ (k/2n, (k + 1)/2n]. This implies that

τ̃i(ω) =

 ≤ t if i > k
> t if i ≤ k.

This in turn yields Hn(ωx[0,t]) = k/2n < α.
By Lemma 6.4 there are stopping times τi < τ̃i withW(τ̃i − τi > 3−n) ≤ 3−n and such

that ~0, τi� is closed. Defining µn by

Hµn := 2−n
2n∑
i=1

1~0,τi~,

(µn)n≥1 is as required. �

In the following we assume that τ is a non-randomized, bounded stopping time such
that ~0, τ� is closed. Then the set

Mτ := {µ ∈ M : µ(�τ,∞�) = 0} (6.7)

is compact as a consequence of Prohorov’s theorem. We also let RSTτ = RST∩Mτ. Since
RSTτ is closed we have the following

Lemma 6.7. Let τ be a finite stopping time. The set RSTτ is compact in the topology
induced by the continuous bounded functions on C(R+) × R+.

Recall the definition of joinings in Section 4.5.
We set

JOIN(τ, ν) =
{
π ∈ JOIN(W, ν) : projC(R+)×R+

(π) ∈ RSTτ
}
.

Observe:

Lemma 6.8. Under the above assumptions, the set JOIN(τ, ν) of tagged random times
/ joinings is compact with respect to the topology coming from the continuous bounded
functions on C(R+) × R+ × R.
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7. A Filtered Kellerer-type Lemma and the Principle Of Pointwise Determination

In this section we establish the following result which implies Theorem 1.3 stated in
the introduction.

Theorem 7.1. Assume that γ : S → R is Borel-measurable, the optimization problem (5.3)
is well-posed and that ν ∈ RST(λ) is an optimizer of Pγ(λ). There is a Borel set Γ ⊆ S
such that ν(r−1(Γ)) = 1 and there are no bad pairs with respect to Γ, i.e.

BPν ∩ Γ< × Γ = ∅,

where BPν is as in Definition 6.2 and Γ< as in (1.8).

As an intermediate step towards the proof of Theorem 7.1 we will look for two different
sets ΓL ⊆ S and ΓD ⊆ S where ΓL (which roughly corresponds to Γ<) represents the “still
living pairs”, while ν is concentrated on ΓD which represents the paths which get killed by
ν. Here ΓL is a subset of all ( f , s) which lie before the “death”-set ΓD. The above condition
on Γ then corresponds to: for

(
( f , s), (g, t)

)
∈ BPν, at least one of the following applies:

(1) ( f , s) < ΓL (( f , s) is not living).
(2) (g, t) < ΓD ((g, t) is not dying).

As in (1.9) above, this can equivalently be expressed as

BPν ∩ ΓL × ΓD = ∅. (7.1)

Define a (non-randomized) stopping time τν by

τν(ω) := inf{t : Hν ◦ r(ω, t) = 0}.

Using Lemma 6.5 we can pick a sequence τn, n ≥ 1 of stopping times such that
(1) τn ↑ τν.
(2) τn ≤ n.
(3) ~0, τn� is closed.
(4) τn < inf{t : νω[0, t] ≥ 1 − 1/n}

Fix n. Then every joining π ∈ JOIN(τn, ν) satisfies the assumptions of Proposition 6.3
and hence π(BPν) = 0. We write again X = C(R+) × R+ ≈ S . In the proof of Theorem 7.1
we will also specify Y = S .

Subsequently we will prove:

Lemma 7.2 (filtered Kellerer Lemma). Assume that τ is a (non-randomized) bounded F +-
stopping time such that ~0, τ� is closed.

Let X = C(R+) × R+ and let (Y, ν) be a polish probability space. Consider a (“bad”)
set B ⊆ X × Y which is predictable in the sense of Remark 4.13. If π(B) = 0 for all
π ∈ JOIN(τ, ν), then there exist a (non randomized) stopping time κ and a set N ⊆ Y such
that B ⊆ ~κ,∞� × Y ∪ X × N andW(κ < τ) = ν(N) = 0.

Admitting Lemma 7.2 we set ΓL = ~0, κ~ and ΓD = Y \ N to obtain (7.1).

Proof of Theorem 7.1 from Lemma 7.2. Specify Y = (S , ν). Throughout the proof we will
use freely that BPν can be viewed as a subset of (C(R+) × R+) × S as well as a subset of
S × S . Of course we have to be careful to finally find the desired set Γ within S . We admit
Lemma 7.2 and apply it to the stopping times τn defined above to find κn and Γn := S \ Nn

such that
BPν ∩ ~0, κn~×Γn = ∅
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andW(κn < τn) = 0, ν(Γn) = 1. Setting Γ̃ :=
⋂

n Γn we have BPν ∩ ~0, κn~× Γ̃ = ∅ for all
n. With κ := supn κn we have

~0, κ~=
⋃

n~0, κn~,

hence

BPν ∩ ~0, κ~× Γ̃ = ∅. (7.2)

By construction of (τn)n∈N and (κn)n∈N we have νω([0, κ(ω)]) = 1 almost surely, hence
ν(~0, κ�) = 1.

To defined the desired set Γ as a subset of S we need to replace the stochastic interval
~0, κ~ by a subset of S . To this end, note that (7.2) is equivalent to

~0, κ~∩ projX(BPν ∩ S × Γ̃) = ∅. (7.3)

Set R = projX(BPν ∩ S × Γ̃) ⊆ S and

R+ = {(g, t) : ∃( f , s) ∈ R : (g, t) extends ( f , s)} (7.4)

R++ = {(g, t) : ∃( f , s) ∈ R : (g, t) properly extends ( f , s)}. (7.5)

Note that while R,R+,R++ are not necessarily Borel-measurable, they are analytic sets and
in particular universally measurable. Moreover, since ν(~0, κ�) = 1 we have ν(R++) = 0.
Thus also ν(Γ) = 1 for Γ = Γ̃ \ R++. Set L = S \ R++ and L− = S \ R+ and note that
BPν ∩ L− × Γ̃ = ∅. But then L ⊇ Γ implies that L− ⊇ Γ< and therefore BPν ∩ Γ< × Γ = ∅.

Finally we can replace Γ by a Kσ-subset which still has full ν measure. �

It remains to establish Lemma 7.2 which we shall now do.
Important Convention. For the remainder of this section we fix a (finite) non-randomized
stopping time τ such that ~0, τ� is closed and satisfies τ ≤ t0 for some t0 ∈ R+.

7.1. An auxiliary Optimization Problem. We fix a Polish probability space (Y, ν) which
eventually will be taken to be (S , ν), where ν denotes an optimizer of the primal problem
5.3. We are interested in the following maximization problem

P≤1 = P≤1
c (Wτ, ν) = sup

π∈JOIN(τ,ν)

∫
C(R+)×R+×Y

c dπ = sup
π∈JOIN(τ,ν)

Ic(π) (7.6)

and its relation to the dual problem

D≤1 = D≤1
c (Wτ, ν) = inf

(ϕ,ψ)∈DC
(EW[ϕτ] + Eν[ψ]) , where (7.7)

DC = {(ϕ, ψ) : ϕ, ψ ≥ 0, (ϕ, ψ) ∈ L1(Ω) × L1(ν), c(ω, t, y) ≤ ϕM
t (ω) + ψ(y) t ≤ τ, y ∈ Y W-a.s.}.

To indicate the dependence of DC on the cost function c and the stopping time τ we some-
times write DC(c) or DC(c, τ).Note that for integrable ϕwe always have EW[ϕ] = EW[(ϕτ)]

by optional stopping. Note that this is different from the already established duality
results because we allow subprobability measures.

We first establish the easy inequality

Lemma 7.3. With the above notations and assumptions we have D≤1 ≥ P≤1.

Proof. Take (ϕ, ψ) ∈ DC and π ∈ JOIN(τ, ν). Then, by definition of tagged random time
we have

EWϕ + Eνψ ≥

∫
C(R+)×R+×Y

ϕM
t + ψ dπ ≥

∫
C(R+)×R+×Y

c dπ.

The last inequality holds by the dual constraint. �
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7.2. Duality.

Theorem 7.4. Let c : C(R+)×R+ × Y → R+ be predictable (in the sense of Remark 4.13),
upper semi-continuous and bounded from above. Assume that τ is a bounded stopping time
such that ~0, τ� is closed. Then

P≤1 = sup
π∈JOIN(τ,ν)

∫
C(R+)×R+×Y

c dπ = inf
(ϕ,ψ)∈DC

(EW[ϕ] + Eν[ψ]) = D≤1

We will first prove a version which applies to not necessarily predictable c. Afterwards,
we will use Proposition 4.10 to derive the predictable version. Let us start with

Theorem 7.5. Let c : C(R+) × R+ × Y → R+ be (upper semi-) continuous and bounded
from above. Then

P≤1,NA := sup
π∈TM(τ,ν)

∫
C(R+)×R+×Y

c dπ = inf
(ϕ,ψ)∈D̃C

(EW[ϕ] + Eν[ψ]) =: D≤1,NA,

where D̃C = {(ϕ, ψ) ≥ (0, 0) : c((ω, t), y) ≤ ϕ(ω) + ψ(y) for all y ∈ Y, t ≤ τ, W-a.s.}.

Here the set of all tagged random measures is given by

TM(τ, ν) :=
{
π ∈ P≤1(C(R+) × R+ × Y), projC(R+)×R+

(π) ∈ Mτ, projY (π) ≤ ν
}
.

Proof of Theorem 7.5. We reduce the theorem to the classical duality theorem in optimal
transport. Put c̄(ω, y) = supt≤τ(ω) c(ω, t, y). As ~0, τ� is closed and bounded c̄ is continuous.

Then the dual constraint set can be written as

D̃C = {(ϕ, ψ) : c̄(ω, y) ≤ ϕ(ω) + ψ(y)W-a.s., for all y}.

From the classical duality theorem of optimal transport (3.1) we know that

inf
(ϕ,ψ)∈D̃C

W(ϕ) + ν(ψ) = sup
q∈Cpl(W,ν)

∫
Ω×Y

c̄(ω, y) q(dω, dy) =: P̌.

It remains to show that P̌ = P≤1,NA. From the definition of c̄ and TM it is clear that we
always have P≤1,NA ≤ P̌. To prove the other inequality fix ε > 0 and take q ∈ Cpl(W, ν).
For any (ω, y) there is t(ω, y) ≤ τ(ω) such that c((ω, t(ω, y)), y) + ε ≥ c̄(ω, y). Putting
π(dω, ds, dy) := q(dω, dy)δt(ω,y)(ds) ∈ TM we get∫

C(R+)×R+×Y
c((ω, t), y) π(dω, ds, dy) + ε ≥

∫
C×Y

c̄(ω, y) q(dω, dy).

This implies that P≤1,NA + ε ≥ P̌. Letting ε go to zero we obtain the claim. �

Remark 7.6. A consequence of allowing partial transports or sub-probability measures π
in the definition of the set JOIN is the following: Assume that we are given a cost function
c which is non positive. Then, P≤1(c) = 0 as the zero measure is admissible and everything
else is worse. Also the value of the dual problem is zero, D≤1(c) = 0, as the constraint is
satisfied for ϕ, ψ ≡ 0. Similarly, for a general cost function c we have P≤1(c) = P≤1(c ∨ 0)
and also D≤1(c) = D≤1(c ∨ 0). Hence, the requirement that c is nonnegative is not a
restriction.

Lemma 7.7. Let g : C(R+)×R+×Y → R+ be continuous and assume that supπ∈JOIN(τ,ν)

∫
g dπ <

∞. Then the map

π 7→

∫
g dπ

is continuous on JOIN(τ, ν) (w.r.t. to the topology of weak convergence).
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Proof. This is a direct consequence of tightness as the integrals∫
g≥R

g dπ→ 0

uniformly in π as R→ 0 by assumption. �

Proof of Theorem 7.4. As c is bounded from above we have P≤1 < ∞. Arguing as in
Lemma 5.5, we may assume that the cost function c is continuous.

We will now argue as in Proposition 5.6. I.e. we consider again the functions h, h̄ as in
(5.17)

and we shall apply Theorem 5.4 to the function

F(π, h) =

∫
c dπ +

∫
C(R+)×R+

h̄ dπ

for π ∈ TM(τ, ν). The set TM(τ, ν) is convex and compact by Prohorov’s theorem and the
set of h under consideration is convex as well. The function F is continuous by Lemma
7.7.

This allows us to deduce

P≤1 = sup
π∈JOIN(τ,ν)

∫
c dπ

= sup
π∈TM(τ,ν)

inf
h

(∫
c dπ +

∫
C(R+)×R+

h̄ dπ
)

Thm5.4
= inf

h
sup

π∈TM(τ,ν)

(∫
(c + h̄) dπ

)
= inf

h
inf

(ϕ,ψ)∈D̃C(c+h̄)
(W(ϕ) + ν(ψ))

The last equality holds by Theorem 7.5. Write

ch(ω, t, y) = c(ω, t, y) +

n∑
i=1

( fi(ω) − f M
i,t (ω))g(y).

For (ϕ, ψ) ∈ D̃C(ch) it holds that (see Remark 7.6)

ch(ω, t, y)+ = ch(ω, t, y) ∨ 0 ≤ ϕ(ω) + ψ(y).

Taking conditional expectation w.r.t. F 0
t ⊗B(Y) we get using the adaptedness (predictabil-

ity) of c

c(ω, t, y) = E[c(·, t, y) +
∑n

i=1( fi(·) − f M
i,t (·))g(y)|Ft ⊗ B(Y)](ω)

≤ E[(c(·, t, y) +
∑n

i=1( fi(·) − f M
i,t (·))g(y))+|Ft ⊗ B(Y)](ω) ≤ ϕt(ω) + ψ(y).

This implies that (ϕt, ψ) ∈ DC(c). Because W(ϕt) = W(ϕ) this implies that D̃C(ch) ⊆
DC(c). Therefore, we have

P≤1 = inf
f∈Cb(C)

inf
(ϕ,ψ)∈D̃C(c+h̄)

(W(ϕ) + ν(ψ))

≥ inf
(ϕ,ψ)∈DC(c)

(W(ϕ) + ν(ψ)) = D≤1.

By Lemma 7.3 we always have D≤1 ≥ P≤1 and therefore D≤1 = P≤1. �

Having established the duality we can start drawing conclusions.
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Corollary 7.8. Let K ⊆ ~0, τ� × Y be closed and predictable (see Remark 4.13). Then

sup
π∈JOIN(τ,ν)

π(K) ≤ inf
(κ,B)∈Cov(K)

(
W(κ < τ) + ν(B)

)
≤ 2 sup

π∈JOIN(τ,ν)
π(K),

where

Cov(K) = {κ is a stopping time, B ⊆ Y : K ⊆ ~κ,∞� × Y ∪ (C(R+) × R+) × B}.

Proof. Without loss of generality we may assume that K = K ∩ ~0, τ�. We want to apply
the previous theorem with the cost function c = 1K . Clearly, P≤1(1K) = supπ∈JOIN(τ,ν) π(K).
We have to show that

D≤1(1K) ≈ inf
(κ,B)∈Cov

(
W(κ < ∞) + ν(B)

)
.

To this end take (ϕ, ψ) ∈ DC. As the cost function is {0, 1}-valued, the dual constraint

c((ω, t), y) ≤ ϕτt (ω) + ψ(y)

implies that

K ⊆ {(ω, t) : ϕτt (ω) ≥ 1/2} × Y ∪C(R+) × R+ × {y : ψ(y) ≥ 1/2} .

Hence, on the cost of a factor 2 we can replace ψ by the indicator of a set B ⊆ Y . We can
just take B = {ψ ≥ 1/2}. In particular, given ψ we can safely replace it by ψ̃ = 1Bψ ∧ 1
because ψ̃ has smaller expectation and at least as good covering properties as ψ.Obviously,
1/2ν(B) ≤ Eνψ̃ ≤ ν(B).

Let us turn our attention to the set E = {(ω, t) : ϕτt (ω) ≥ 1} (where we dropped the 1/2
out of notational convenience on the cost of another factor of 2). Define the stopping time

κ(ω) = inf{t ≥ 0 : ϕτt (ω) ≥ 1}

with inf(∅) = ∞ and the martingale ϕ̃t = E[ϕ̃|Ft] through

ϕ̃(ω) =

1 κ(ω) ≤ τ
0 κ(ω) = ∞

.

Then, ϕ̃ has expectation smaller than or equal to ϕτ and is at least as good in covering K
as ϕ. Indeed, the stopped martingales satisfy ϕκ ≥ ϕ̃κ. Put Ẽ = {ϕ̃t ≥ 1}, then Ẽ ⊇ E. Take
(ω, t) ∈ E. Then, κ(ω) ≤ t which implies that (ω, t) ∈ Ẽ. Moreover, EWϕ̃ = W(κ < ∞).
Remembering the factor of 2 we can therefore deduce

inf
(κ,B)∈Cov(K)

(
1
2
W(κ < ∞) +

1
2
ν(B)

)
≤ sup

π∈JOIN(τ,κ)
π(K) ≤ inf

(κ,B)∈Cov(K)
(W(κ < ∞) + ν(B)) .

�

7.3. A Choquet-argument. We now want to extend the previous result to the more gen-
eral case of a merely measurable set K.

In the proof we will use Choquet’s theorem similarly as in [BLS12]. In the proof we
rely on Lemma 6.5 and the Lemma 7.9. Recall that we assume that the stopping time τ is
smaller than or equal to some number t0.

A simple stopping time is a right-continuous increasing, F +-predictable process

F : C(R+) × R+ → [0, 1]

which takes only finitely many values and is constant after time t0. Write SST for the set
of all simple stopping times.
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Lemma 7.9. Consider the set of simple coverings of the set K

CovS (K) =

{
(ϕ, F) : ϕ : Y → [0, 1], F ∈ SST,
F(ω, t) + ϕ(y) ≥ 1K(ω, t, y)W-a.s. for all y ∈ Y, t ≤ t0

}
.

Then

D(K) := inf
{∫

ϕ dν +

∫
Ft0 dW : (ϕ, F) ∈ CovS (K)

}
.

is a capacity.

Proof. To show that D defines a capacity we have to check the three defining properties
of capacities; monotonicity, continuity from below and continuity from above for compact
sets. The monotonicity is clear. Let us turn to the continuity from below.

Take an increasing sequence A1 ⊆ A2 ⊆ . . . ⊆ C(R+) × R+ × Y of measurable sets
and put A =

⋃
n An. For all n there are simple stopping times Fn and measurable functions

ϕn : S → [0, 1] such that (ϕn, Fn) ∈ CovR(An) and

ν(ϕn) +W((Fn)t0 ) ≤ D(An) +
1
n
.

Using a Komlos type lemma we can assume that some appropriate convex combinations
of ϕn and Fn converge a.s. to functions ϕ and F. Let us be a little bit more precise here. By
[CS06] there exist convex coefficients αn

n, . . . , α
n
kn
, n ≥ 1, kn < ∞, and full measure subsets

Ω1 ⊆ C(R+), Y1 ⊆ Y such that with F̃n :=
∑kn

i=n α
(n)
i Fi, ϕ̃n :=

∑kn
i=n α

(n)
i ϕi we have that for

all ω ∈ Ω1 and y ∈ Y1

lim
n→∞

F̃n(ω, t) =: F(ω, t) and lim
n→∞

ϕ̃n(y) =: ϕ(y) (7.8)

exist. Extend these functions to C(R+) and Y , resp., through

lim sup
n→∞

F̃n(ω, t) =: F(ω, t) and lim sup
n→∞

ϕ̃n(y) =: ϕ(y). (7.9)

Given m ≤ n we have
1Am (ω, t, y) ≤ F̃n(ω, t) + ϕ̃n(y),

hence 1Am (ω, t, y) ≤ F(ω, t) + ϕ(y) and thus also

1A(ω, t, y) ≤ F(ω, t) + ϕ(y).

We can then replace F by its right-continuous version which of course does not effect
W(Ft0 ). Given ε > 0, by Corollary 6.6 we can find a simple stopping time Fε ≥ F such
thatW(Fε

t0 ) − ε <W(Ft0 ) = limW((F̃n)t0 ).
Therefore we can conclude

D(A) ≤ lim sup
n

D(An) + 1
n + ε.

To show continuity from above for compact sets, take a sequence K1 ⊇ K2 ⊇ . . . of
compact sets in C(R+) × R+ × Y and put K =

⋂
n Kn. Fix ε > 0. Then there is (ϕ, F) ∈

CovS (K) s.t. ∫
ϕ dν +

∫
Ft0 dW ≤ D(K) + ε.

Using Corollary 6.5 / Corollary 6.6 and the regularity of the measure ν we can, on the cost
of another ε, assume that

ϕ =

m∑
i=1

ai1Bi , F ≤
n∑

j=1

b j1�τi,∞~ ≤ Fε,
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where ai, b j ≥ 0 and Bi, �τi,∞~ are open and Fε ↓ F such that W(Fε
t0 − Ft0 ) ≤ ε/2.

By compactness of the Kn, n ≥ 1 it follows that there is some N such that also (ϕ, Fε) ∈
CovS (KN). Hence D(KN) ≤ D(K) + 2ε.

�

Proof of Lemma 7.2. By Lemma 7.9 and Choquet’s Theorem it follows that for each ε > 0
there exist a simple stopping time F and a function ϕ such that (ϕ, F) ∈ COVS (K) and
ν(ϕ) +W(Ft0 ) < ε. Set N = {ϕ ≥ 1/2} and κ := inf{t : Ft ≥ 1/2}. Then K ⊆ ~κ,∞~×Y ∪
C(R+) × R+ × N andW(κ < τ) + ν(N) ≤ 2ε.

Fix η > 0 and pick for each k some κk, Nk such that K ⊆ ~κk,∞~×Y ∪C(R+)×R+ ×Nk

andW(κk < τ) + ν(Nk) ≤ η2−k. Then

K ⊆
⋂

j

~κ j,∞~×Y ∪C(R+) × R+ ×
(⋃

k

Nk

) = ~sup
j
κ j,∞~×Y∪C(R+)×R+×

(⋃
k

Nk

)
.

This shows that κ can be chosen so thatW(κ < τ) = 0. Repeating this argument for the set
N we obtain the desired result. �
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