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Abstract. The Skorokhod embedding problem is to represent a given probability as the
distribution of Brownian motion at a chosen stopping time. Over the last 50 years this has
become one of the important classical problems in probability theory and a number of au-
thors have constructed solutions with particular optimality properties. These constructions
employ a variety of techniques ranging from excursion theory to potential and PDE theory
and have been used in many different branches of pure and applied probability.

We develop a new approach to Skorokhod embedding based on ideas and concepts
from optimal mass transport. In analogy to the celebrated article of Gangbo and McCann
on the geometry of optimal transport, we establish a geometric characterization of Sko-
rokhod embeddings with desired optimality properties. This leads to a systematic method
to construct optimal embeddings. It allows us, for the first time, to derive all known optimal
Skorokhod embeddings as special cases of one unified construction and leads to a variety
of new embeddings. While previous constructions typically used particular properties of
Brownian motion, our approach applies to all sufficiently regular Markov processes.
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1. Introduction

Let B be a Brownian motion started in 0 and consider a probability µ on the real line
which is centered and has second moment. The Skorokhod embedding problem is to con-
struct a stopping time τ embedding µ into Brownian motion in the sense that

Bτ is distributed according to µ, E[τ] < ∞. (SEP)

Here, the second condition is imposed to exclude certain undesirable solutions. It is not
hard to see that E[τ] =

∫
x2 µ(dx) for any solution of (SEP). As already demonstrated by

Skorokhod [48] in the mid-1960’s, it is always possible to construct solutions to the prob-
lem. Indeed, the survey article of Obłój classifies 21 distinct solutions to (SEP), although
this list (from 2004) misses many more recent contributions. A common inspiration for
many of these papers is to construct solutions to (SEP) that exhibit additional desirable
properties or a distinct internal structure. These have found applications in different fields
and various extensions of the original problem have been considered. We refer to the sur-
vey of Obłój [35] (and the 120+ references therein) for a comprehensive account of the
field.

Our aim is to develop a new approach to (SEP) based on ideas of optimal transporta-
tion. Many of the previous developments are thus obtained as applications of one unifying
principle (Theorem 1.2) and several difficult problems are rendered tractable.

1.1. A motivating example — Root’s construction. To illustrate our approach we intro-
duce a solution that will serve as inspiration in the rest of the paper: Root’s construction
[41] which is one of the earliest solutions to (SEP). It is prototypical for many further
solutions to (SEP) in that it has a simple geometric description and possesses a certain
optimality property in the class of all solutions.
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Figure 1. Root’s solution of (SEP).

Root established that there exists a barrier R (which is essentially unique) such that the
Skorokhod embedding problem is solved by the stopping time

τRoot = inf{t ≥ 0 : (t, Bt) ∈ R}. (1.1)

A barrier is a Borel setR ⊆ R+×R such that (s, x) ∈ R and s < t implies (t, x) ∈ R. The Root
construction is distinguished by the following optimality property: among all solutions
to (SEP) for a fixed terminal distribution µ, it maximises E[

√
τ]. For us, the optimality

property will be the starting point from which we deduce a geometric characterization of
τRoot. To this end, we now formalize the corresponding optimization problem.

1.2. Optimal Skorokhod Embedding Problem. We consider the set of stopped paths

S = {( f , s) : f : [0, s]→ R is continuous, f (0) = 0}. (1.2)

Throughout the paper we consider a functional

γ : S → R.

The optimal Skorokhod embedding problem is to construct a stopping time optimizing

Pγ(µ) = sup
{
E
[
γ
(
(Bt)t≤τ, τ

)]
: τ solves (SEP)

}
. (OptSEP)

We will usually assume that (OptSEP) is well-posed in the sense that E
[
γ
(
(Bt)t≤τ, τ

)]
exists

with values in [−∞,∞) for all τ which solve (SEP) and is finite for one such τ.
As mentioned above, the Root stopping time solves (OptSEP) in the case where γ( f , s) =

√
s. Other examples where the solution is known include functionals depending on the run-

ning maximum γ(( f , s)) := f̄ (s) := maxt≤s f (t) or functionals of the local time at 0.
The solutions to (SEP) have their origins in many different branches of probability

theory, and in many cases, the original derivation of the embedding occurred separately
from the proof of the corresponding optimality properties. Moreover, the optimality of a
given construction is often not entirely obvious; for example, the optimality property of
the Root embedding was first conjectured by Kiefer [28] and subsequently established by
Rost [43].

In contrast, our starting point will be the optimization problem (OptSEP) and we seek
a systematic method to construct the maximizer for a given functional γ. To develop a
general theory for this optimization problem we interpret stopping times in terms of a
transport plan from the Wiener space (C(R+),W) to the target measure µ, i.e. we want to
think of a stopping time τ as transporting the mass of a trajectory (Bt(ω))t∈R+

to the point
Bτ(ω)(ω) ∈ R. Note that this is not a coupling betweenW and µ in the usual sense and one
cannot directly apply optimal transport theory. Instead we develop an analogous theory,
which in particular needs to account for the adaptedness properties of stopping times. To
this end, it is necessary to combine ideas and results from optimal transportation with
concepts and techniques from stochastic analysis.
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As in optimal transport, it is crucial to consider (OptSEP) in a suitably relaxed form, i.e.
in (OptSEP) we will optimize over randomized stopping times (see Theorem 4.12 below).
These can be viewed as usual stopping times on a possibly enlarged probability space but
in our context it is more natural to interpret them as “Kantorovich-type” stopping times,
i.e. stopping times which terminate a given path not at a single deterministic time instance
but according to a distribution.

This relaxation will allow us to transfer many of the convenient properties of classi-
cal transport theory to our probabilistic setup. Exactly as in classical transport theory,
(OptSEP) can be viewed as a linear optimization problem. The set of couplings in mass
transport is compact and similarly the set of all randomized stopping times solving (SEP)
is compact in a natural sense. As a particular consequence we will establish:

Theorem 1.1. Let γ : S → R be upper semi-continuous and bounded from above in the
sense1 that for some constants a, b, c ∈ R+

γ( f , s) ≤ a + b · s + c ·max
r≤s

f (r)2, ( f , s) ∈ S . (1.3)

Then (OptSEP) admits a maximizer τ̂. More precisely, there exists a Brownian motion B
on some stochastic basis Ω = (Ω,F , (Ft)t≥0,P) and a stopping time τ̂ of B which attains
(OptSEP).

Here we can talk about the continuity properties of γ since S possesses a natural Polish
topology (cf. (4.1)).

In terms of linear optimization, Theorem 1.1 is a primal problem. In Section 5 we will
introduce the corresponding dual problem and establish that there is no duality gap.

1.3. Geometric Characterization of Optimizers — Montonicity Principle. A funda-
mental idea in optimal transport is that the optimality of a transport plan is reflected by the
geometry of its support set. Often this is key to understanding the transport problem. On
the level of support sets, the relevant notion is c-cyclical monotonicity which we recall in
(3.4) below. Its relevance for the theory of optimal transport has been fully recognized by
Gangbo and McCann [20], based on earlier work of Knott and Smith [30] and Rüschendorf
[44, 45] among others.

Inspired by these results, we establish a monotonicity principle which links the opti-
mality of a stopping time τ with “geometric” properties of τ. Combined with Theorem 1.1,
this principle will turn out to be surprisingly powerful. For the first time, all the known
solutions to (SEP) with optimality properties can be established through one unifying prin-
ciple. Moreover, the monotonicity principle allows us to treat the optimization problem
(OptSEP) in a systematic manner, generating further embeddings as a by-product.

Importantly, this transport-based approach readily admits a number of strong gener-
alisations and extensions. With only minor changes our existence result, Theorem 1.1,
and the monotonicity principle, Theorem 1.2, extend to general starting distributions and
Brownian motion in Rd and more generally to sufficiently regular Markov processes; see
Sections 6, 7 and 9. This is notable since previous constructions usually exploit rather
specific properties of Brownian motion.

Theorem 1.2 (Monotonicity Principle). Let γ : S → R be Borel measurable, B be a Brow-
nian motion on some stochastic basis (Ω,F , (Ft)t≥0,P) and τ an optimizer of (OptSEP).
Then, there exists a γ-monotone Borel set Γ ⊆ S such that P-a.s.

((Bt)t≤τ, τ) ∈ Γ . (1.4)

1In terms of Brownian motion, Assumption (1.3) amounts to γ((Br)r≤s, s) ≤ a + b · s + c · maxr≤s B2
r and

naturally holds in all our intended applications. Other conditions which guarantee uniform integrability of the
positive part of γ w.r.t. solutions of (SEP) would suffices as well.
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If (1.4) holds, we will loosely say that Γ supports τ. The significance of Theorem 1.2
is to link the optimality of the stopping time τ with a particular property of the set Γ, i.e.
γ-monotonicity. In applications, the latter turns out to be much more tangible.

The precise definition of γ-monotonicity is intricate and we present it in its simplest and
most strict form in this introductory section. (See Definition 7.1 for a more general version
that leads to a stronger assertion in Theorem 1.2.) We observe that γ is only required to be
Borel. This will be important when we apply our results.

The notion of γ-monotonicity expresses the following idea, which we first introduce
informally. The set Γ ⊆ S contains all the possible stopped paths: that is, a path (g, t) is in
Γ if there is some possibility that the optimal stopping rule decides to stop at time t having
observed the path ( f (r))r∈[0,t]. Corresponding to the set of stopped, or “killed” paths is
the set of paths which we may observe, and at which we may not yet have stopped: these
are the “living” paths. Since all paths must eventually be killed, we deduce that a path
may be living if there is a longer, killed path which contains the living path as a sub-path.
Specifically, if (g, t) ∈ Γ is a killed path, then the sub-paths ( f , s) = ((g(r))t∈[0,s], s) are
living for all s < t. We will write Γ< for the set of living paths corresponding to the killed
paths Γ, so:

Γ< := {( f , s) : ∃(g, t) ∈ Γ, s < t and f ≡ g on [0, s]} (1.5)

We now consider a possible modification to a given stopping rule. Imagine that we
have one “living” path ( f , s) ∈ Γ< and a second “killed” path (g, t) ∈ Γ. If f (s) = g(t), then
we can imagine “killing” the path ( f , s) at time s, and allowing (g, t) to live by transferring
all paths which extend ( f , s), the “remaining lifetime”, onto the newly-living (g, t). If this
guarantees an improved value of γ in total for any possible remaining lifetime, then we
call (( f , s), (g, t)) a bad pair, since our original rule would be improved by this swapping
procedure. If the set Γ and its living sub-paths Γ< contain no bad pairs, we call the set Γ

a γ-monotone set. Observe that the condition f (s) = g(t) is necessary to guarantee that
a modified stopping rule still embeds the measure µ. A pictorial representation of this
process is given in Figure 2.

We formalise these ideas in the following definition:

Definition 1.3. We say that
(
( f , s), (g, t)

)
∈ S is a bad pair iff f (s) = g(t) and for all

(h, u) ∈ S it holds that

γ(( f ⊕ h, s + u)) + γ((g, t)) < γ(( f , s)) + γ((g ⊕ h, t + u)), (1.6)

where f ⊕ h denotes the concatenation2 of the the two paths f and h. The set of bad pairs
will be denoted by BP. Then a set Γ ⊆ S is called γ-monotone iff

BP ∩
(
Γ< × Γ

)
= ∅.

g

t s

fg
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f

Figure 2. The left side shows a bad pair in the Root case γ( f , s) =
√

s.
Here (1.6) asserts

√
s + u +

√
t <
√

s +
√

t + u. Intuitively, switching the
roles of f and g improves the embedding since s > t.

2More precisely, f ⊕ h(t) = f (t) for t ∈ [0, s] and f ⊕ h(t) = f (s) + h(t − s) for t ∈ [s, s + u].
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In Section 2 below we give a short teaser on how particular embeddings are obtained
as a consequence of Theorem 1.2: there we establish the Root and the Rost solutions of
(SEP), as well as a continuum of new embeddings which “interpolate” between them. It
will become clear that the essence of the proof is already contained in Figure 2.

The monotonicity principle, Theorem 1.2, is the most complex part of this paper, and
requires substantial preparation in order to combine the relevant concepts from stochas-
tic analysis and optimal transport. The preparation and proof of this result will therefore
comprise the majority of the paper. Without the elements from stochastic analysis, the
“classical” optimal transport version of Theorem 1.2 can be established through fairly di-
rect arguments, at least in a reasonably regular setting, cf. [3, Thms. 3.2, 3.3] and [51, Ex.
2.38]. However, these approaches do not extend easily to our probabilistic setup. The ar-
gument given subsequently is more in the spirit of [5, 7] and requires a fusion of ideas from
optimal transport and stochastic analysis. To achieve this, we will need to revisit a number
of classical notions from the theory of stochastic processes within a novel framework.

1.4. New Horizons. The methods and results presented in this paper are limited to the
case of the classical Skorokhod embedding problem for Markov processes with continu-
ous paths, however we believe that our methods are sufficiently general that a number of
interesting and important extensions, which previously would have been intractable, may
now be within reach:

(1) Markov processes: The results presented in this paper should extend to a more
general class of Markov processes with càdlàg paths. The main technical issues
this would present lie in the generalisation of the results in Section 4, where the
specific structure of the space of continuous paths is exploited.

(2) Multiple path-swapping: In our monotonicity principle, Theorem 1.2, we con-
sider the impact of swapping mass from a single unstopped path onto a single
stopped path, and argue that if this improve the objective γ on average, then we
cannot observe such behaviour under an optimiser. In classical optimal transport,
it is known that single swapping is not sufficient to guarantee optimality; rather,
one needs to consider the impact of allowing a finite “cycle” of swaps to occur,
and moreover, that this is both a necessary and sufficient condition for optimality.
It is natural to conjecture that a similar result occurs in the present setup.

(3) Multiple marginals: A natural generalisation of the Skorokhod embedding prob-
lem is to consider the case where a sequence of measures, µ1, µ2, . . . , µn are given,
and the aim is to find a sequence of stopping times τ1 ≤ τ2 ≤ · · · ≤ τn such
that Bτk ∼ µk, and such that the chosen sequence of stopping times maximises
E[γ((Bt)t≤τn , τ1, . . . , τn)] for a suitable functional γ. In this setup, it is natural to
ask whether there exists a suitable monotonicity principle, corresponding to The-
orem 1.2.

(4) Constrained embedding problems: In this paper, we consider classical embed-
ding problems, where the optimisation is carried out over the class of solutions
to (SEP). However, in many natural applications, one needs to further consider
the class of constrained embedding problems: for example, where one maximises
some functional over the class of embeddings which also satisfy a restriction on
the probability of stopping after a given time. It would be natural to derive gen-
eralisations of our duality results, and a corresponding monotonicity principle for
such problems.

1.5. Background. Since the first solution to (SEP) by Skorokhod [48] the embedding
problem has received frequent attention in the literature, with new solutions appearing
regularly, and exploiting a number of different mathematical tools. Many of these solutions
also prove to be, by design or accident, solutions of (OptSEP) for a particular choice of γ,
e.g. [41, 43, 4, 26, 50, 36]. The survey [35] is a comprehensive account of all the solutions



6 MATHIAS BEIGLBÖCK, ALEXANDER M. G. COX, AND MARTIN HUESMANN

to (SEP) up to 2004, and references many articles which use or develop solutions to the
Skorokhod embedding problem. More recently, novel twists on the classical Skorokhod
embedding problem have been investigated by: Last et. al. [31], who consider the closely
related problem of finding unbiased shifts of Brownian motion (and where there are also
natural connections to optimal transport); Hirsch et. al. [22] have used solutions to the
Skorokhod embedding problem to construct Peacocks; and Gassiat et. al. [21], who have
exploited particular properties of Root’s solution to construct efficient numerical schemes
for SDEs.

The Skorokhod embedding problem has also recently received substantial attention
from the mathematical finance community. This goes back to an idea of Hobson [23]:
through the Dambis-Dubins-Schwarz Theorem, the optimization problems (OptSEP) are
related to the pricing of financial derivatives, and in particular to the problem of model-risk,
where the Skorokhod embedding problem has become a central tool; we refer the reader
to the survey article [24] for further details.

Recently there has been much interest in optimal transport problems where the trans-
port plan must satisfy additional martingale constraints. Such problems arise naturally in
the financial context, but are also of independent mathematical interest, for example —
mirroring classical optimal transport — they have important consequences for the study of
martingale inequalities. The first papers to study such problems include [25, 6, 19, 18], and
this field is commonly referred to as martingale optimal transport. The Skorokhod embed-
ding problem has been considered in this context by Galichon et. al. in [19]; through a
stochastic control problem they recover the Azèma-Yor solution of the Skorokhod embed-
ding problem. Notably, their approach is very different from the one pursued in the present
paper: the approach of this paper is instead to use an analogue of c-cyclical monotonicity
from classical optimal transport in the martingale context.

1.6. Organization of the Article. In Section 2 we establish the Root and the Rost em-
bedding as well as a family of new embeddings. In Section 3 we recall some required
definitions and results from optimal transport. In Section 4 we consider randomized stop-
ping times on the Wiener space and establish some basic properties. In Section 5 we
develop a dual problem to (OptSEP) and prove our duality using classical duality results
from optimal transport. In Sections 6 and 7 we will finally establish Theorem 1.2 by com-
bining the duality theory with Choquet’s capacity theorem. In Section 8 we use our results
to establish the known solutions to (OptSEP) as well as further embeddings. In Section 9
we describe extensions to Feller processes under certain assumptions, which we are able
to verify for a large class of processes.

2. Particular embeddings

In this section we explain how Theorem 1.2 can be used to derive particular solutions
to the Skorokhod embedding problem, (SEP), using the optimisation problem (OptSEP).
For much of the paper, we will consider (SEP) for measures µ where

∫
x2µ(dx) < ∞. This

constraint can be weakened to require only the first moment to be finite, subject to the
restriction that the stopping time is minimal: that is, if τ solves (SEP), τ is minimal if, for
any solution τ′ to (SEP), τ′ ≤ τ a.s. implies τ′ = τ a.s.. In the case where µ has a second
moment, minimality and E[τ] < ∞ are equivalent. The extension of our results to the more
general case will be discussed in Section 9.

We first recall one of the key parts of Definition 1.3

Definition 2.1. Write (g ⊕ h, t + u) for the path obtained from concatenating (g, t) and
(h, u) ∈ S . Then the set of bad pairs for γ : S → R is given by

BP =
{(

( f , s), (g, t)
)

: f (s) = g(t), for all (h, u) ∈ S , u > 0

γ(( f ⊕ h, s + u)) + γ((g, t)) < γ(( f , s)) + γ((g ⊕ h, t + u))
}
.
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2.1. The Root embedding. We recall the definition of the Root embedding, τRoot, from
(1.1), and we wish to recover Root’s result ([41]) from an optimisation problem. Let
γ( f , t) = h(t), where h : R+ → R is a strictly concave function such that

sup{E[h(τ)] : τ solves (SEP)} (2.1)

is well posed and pick a maximizer τ̂ of (2.1) by Theorem 1.1. Then we have:

Theorem 2.2. There exists a barrier R such that τ̂ = inf{t ≥ 0 : (t, Bt) ∈ R}. In particular
the Skorokhod embedding problem has a solution of barrier type (1.1).

Proof. Pick, by Theorem 1.2, a γ-monotone set Γ ⊆ S such that P(((Bt)t≤τ̂, τ̂) ∈ Γ) = 1.
Note that due to the concavity of h the set of bad pairs is given by (cf. Figure 2)

BP = {(( f , s), (g, t)) ∈ S : f (s) = g(t), t < s}.

As Γ is γ-monotone, (Γ< × Γ) ∩ BP = ∅. Define a closed and an open barrier by

Rcl := {(s, x) : ∃(g, t) ∈ Γ, g(t) = x, t ≤ s}, (2.2)
Rop := {(s, x) : ∃(g, t) ∈ Γ, g(t) = x, t < s}, (2.3)

and denote the respective hitting times by τcl and τop. We claim that τcl ≤ τ̂ ≤ τop a.s..
Note that τcl ≤ τ̂ holds by definition of τcl. To show the other inequality pick ω

satisfying
(
(Bt(ω))t≤τ̂(ω), τ̂(ω)

)
∈ Γ and assume for contradiction that τop(ω) < τ̂(ω). Then

there exists s < τ̂(ω) such that (s, Bs(ω)) ∈ Rop. By definition of the open barrier, this
means that there is some (g, t) ∈ Γ such that t < s and g(t) = Bs(ω). But then ( f , s) :=
((Bu(ω))u≤s, s) ∈ Γ<, hence

(
( f , s), (g, t)

)
∈ BP∩(Γ<×Γ) which is the desired contradiction.

We finally observe that τcl = τop by the Strong Markov property, and the fact that one-
dimensional Brownian motion immediately returns to its starting point. �

A consequence of this proof is that (on a given stochastic basis) there exists exactly
one solution3 of the Skorokhod embedding problem which maximizes (2.1). Assume that
maximizers τ1 and τ2 are given. Then we can use an independent coin-flip to define a new
maximizer τ̄ which is with probability 1/2 equal to τ1 and with probability 1/2 equal to τ2.
By Theorem 2.1, τ̄ is of barrier-type and hence τ1 = τ2.

In Section 8.4 we will prove generalisations of Theorem 2.2 which admit similar con-
clusions in Rd and for general initial distributions.

We also note that the above proof of Theorem 2.2 is based on a heuristic derivation of
the optimality properties of the Root embedding given by Hobson in [24]. Indeed Hobson’s
approach was the starting point of the present paper.

2.2. The Rost embedding. A set R ⊆ R+ × R is an inverse barrier if (s, x) ∈ R and s > t
implies that (t, x) ∈ R. It has been shown by Rost [43] that under the condition µ({0}) = 0
there exists an inverse barrier such that the corresponding hitting time (in the sense of
(1.1)) solves the Skorokhod problem. It is not hard to see that without this condition some
additional randomization is required. We derive this using an argument almost identical to
the one above:

Let γ( f , t) = h(t), where h : R+ → R is a strictly convex function such that the problem
to maximize E[h(τ)] over all solutions to the Skorokhod-problem (SEP) is well posed.
Pick, by Theorem 1.1, a maximizer τ̂. Then we have:

Theorem 2.3. Suppose µ({0}) = 0. Then there exists an inverse barrier R such that τ̂ =

inf{t ≥ 0 : (t, Bt) ∈ R}. In particular the Skorokhod problem can be solved by a hitting
time of an inverse barrier.

3This was first established in [43], together with the optimality property of Root’s solution.
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Proof. Pick, by Theorem 1.2, a γ-monotone set Γ ⊆ S such that P(((Bt)t≤τ̂, τ̂) ∈ Γ) = 1.
Note that due to the convexity of h the set of bad pairs is given by (cf. Figure 2)

BP = {(( f , s), (g, t)) ∈ S : f (s) = g(t), s < t}.

As Γ is γ-monotone, (Γ< × Γ) ∩ BP = ∅. Define open and closed inverse barriers by

Rop := {(s, x) : ∃(g, t) ∈ Γ, g(t) = x, s < t}, (2.4)
Rcl := {(s, x) : ∃(g, t) ∈ Γ, g(t) = x, s ≤ t}, (2.5)

and denote the respective hitting times by τop and τcl. We claim that τcl ≤ τ̂ ≤ τop a.s..
Note that τcl ≤ τ̂ holds by definition of τcl. To show the other inequality pick ω

satisfying
(
(Bt(ω))t≤τ̂(ω), τ̂(ω)

)
∈ Γ and assume for contradiction that τop(ω) < τ̂(ω). Then

there exists s < τ̂(ω) such that (s, Bs(ω)) ∈ Rop. By definition of the open inverse barrier,
this means that there is some (g, t) ∈ Γ such that s < t and g(t) = Bs(ω). But then
( f , s) := ((Bu(ω))u≤s, s) ∈ Γ<, hence

(
( f , s), (g, t)

)
∈ BP ∩ (Γ< × Γ) which is the desired

contradiction.
Then there exists an increasing function b(t) = inf{x > 0 : (t, x) ∈ Rcl} and a decreasing

function c(t) = sup{x < 0 : (t, x) ∈ Rcl} such that τcl is the first time Bt < (c(t), b(t)).
It then follows that τop and τcl are almost surely equal — see for example equation (2.9)

of [12]. �

In Section 8.4 we will give a generalisation of this result, which includes a more direct
verification of the final part of this proof, which does not rely on the result of [12].

As in the case of the Root embedding we obtain that the maximizer of E[h(τ)] is unique.

2.3. The cave embedding. In this section we give an example of a new embedding that
can be derived from Theorem 1.2. It can be seen as a unification of the Root and Rost
embeddings. A set R ⊆ R+ × R is a cave barrier if there exists t0 ∈ R+, an inverse barrier
R0 ⊆ [0, t0] × R and a barrier R1 ⊆ [t0,∞) × R such that R = R0 ∪ R1. We will show that
there exists a cave barrier such that the corresponding hitting time (in the sense of (1.1))
solves the Skorokhod problem. We derive this using an argument similar to the one above:

Fix t0 ∈ R and pick a continuous function ϕ : R+ → [0, 1] such that
• ϕ(0) = 0, limt→∞ ϕ(t) = 0, ϕ(t0) = 1
• ϕ is strictly concave on [0, t0]
• ϕ is strictly convex on [0, t0] .

Let γ(( f , s)) = ϕ(s). Since ϕ is bounded, the problem to minimise E[ϕ(τ)] over all solutions
to (SEP) is well posed. Pick, by Theorem 1.1, a minimiser τ̂. Then we have:

Theorem 2.4 (Cave embedding). Suppose µ({0}) = 0. Then there exists a cave barrier R
such that τ̂ = inf{t ≥ 0 : (t, Bt) ∈ R}. In particular the Skorokhod embedding problem can
be solved by a hitting time of a cave barrier.

Proof. Pick, by Theorem 1.2, a γ-monotone set Γ ⊆ S such that P(((Bt)t≤τ̂, τ̂) ∈ Γ) = 1.
We define an open cave barrier by

R0
op := {(t, x) : ∃( f , s) ∈ Γ, t < s ≤ t0}, R1

op := {(t, x) : ∃( f , s) ∈ Γ, t0 ≤ s < t}

and Rop = R0
op ∪ R

1
op (resp. a closed cave barrier where we allow t ≤ s and s ≤ t in R0

cl and
R1
cl resp.). We denote the corresponding hitting time by τRop = τR0

op
∧ τR1

op
(resp. τRcl ). We

claim that τRcl ≤ τ̂ ≤ τRop W-a.s.. The first inequality follows by construction. To show
the second inequality, we argue by contradiction. Suppose that τR0

op
< τ̂ on a set of positive

mass. Then there exist ( f , s) ∈ Γ< and (g, t) ∈ Γ with g(t) = f (s) and s < t ≤ t0. We claim
that (( f , s), (g, t)) ∈ BP. Indeed, since we are minimising the objective, for any (h, r) ∈ S
we have

γ(( f ⊕ h, s + r)) + γ((g, t)) > γ(( f , s)) + γ((g ⊕ h, t + r))
⇔ ϕ(s + r) − ϕ(s) > ϕ(t + r) − ϕ(t)
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which holds iff t 7→ ϕ(t + r) − ϕ(t) is strictly decreasing on [0, t0] for all r > 0. If t + r, t ∈
[0, t0] this follows from concavity of ϕ. In the case that t ≤ t0, t + r > t0 this follows since
ϕ′ is strictly positive on [0, t0) and strictly negative on (t0,∞). Hence, τR0

op
≥ τ̂. Similarly

it follows that τR1
op
≥ τ̂ and therefore τRop ≥ τ. As in Theorems 2.2 and 2.3 above, we can

deduce that τRcl = τRop a.s., proving the claim. �

2.4. Remarks. The arguments given here only use the properties of one-dimensional
Brownian motion to show that our candidate stopping times τop and τcl are the same. In
Section 8.4 we will show that these arguments can be adapted to prove the existence of
Rost and Root embeddings in a more general setting. In fact, in Sections 8 and 9 we will
show that the above approach generalizes to a multi-dimensional setup and (sufficiently
regular) Markov processes. In the case of the Root embedding it does not matter for the
argument whether the starting distribution is a Dirac in 0 as in our setup or rather a more
general distribution λ. For the Rost embedding a general starting distribution is slightly
more difficult. In the case where λ and µ have common mass, then it may be the case
that projR(Rcl ∩ (A × R+)) = {0} for some set A — that is, all paths which stop at x ∈ A
do so at time zero. In this case it is possible that τop < τcl when the process starts in A,
and in general, some proportion of the paths starting on A must be stopped instantly. As a
result, in the case of general starting measures, independent randomisation is necessary. In
the Rost case, it is also straightforward to compute the independent randomisation which
preserves the embedding property.

Other recent approaches to the Root and Rost embeddings can be found in [13, 34,
12, 14]. These papers largely exploit PDE techniques, and as a result, are able to produce
more explicit descriptions of the barriers, but the methods tend to be highly specific to the
problem under consideration.

3. The classical Transport Problem

We will shortly review here some notions of transport theory which are used below or
which will serve as motivations for analogous concepts in our probabilistic setup.

In abstract terms the transport problem (cf. [51, 52]) can be stated as follows: For
probabilities λ, µ on Polish spaces X,Y the set Cpl(λ, µ) of transport plans consists of all
couplings between λ and µ. These are all measures on X × Y with X-marginal λ and Y-
marginal µ. Associated to a cost function c : X × Y → [0,∞] and π ∈ Cpl(λ, µ) are the
transport costs

∫
X×Y c(x, y) dπ(x, y). The Monge-Kantorovich problem is then to determine

the value
inf

{ ∫
c dπ : π ∈ Cpl(λ, µ)

}
(3.1)

and to identify an optimal transport plan π̂ ∈ Cpl(λ, µ), i.e. a minimizer of (3.1). Going
back to Kantorovich, this is related to the following dual problem. Consider the set Φ(λ, µ)
of pairs (ϕ, ψ) of integrable functions ϕ : X → [−∞,∞) and ψ : Y → [−∞,∞) which
satisfy ϕ(x) + ψ(y) ≤ c(x, y) for all (x, y) ∈ X × Y . The dual counterpart of the Monge-
Kantorovich problem is then to maximize

J(ϕ, ψ) =
∫

X ϕ dλ +
∫

Y ψ dµ (3.2)

over (ϕ, ψ) ∈ Φ(λ, µ). In the literature duality has been established under various condi-
tions, see for instance [52, p. 98f] for a short overview.

Theorem 3.1 (Monge-Kantorovich Duality, [27, Theorem 2.2]). Let (X, λ), (Y, µ) be Polish
probability spaces and c : X × Y → [0,∞] be lower semi-continuous. Then

inf
{ ∫

c dπ : π ∈ Cpl(λ, µ)
}

= sup
{
J(ϕ, ψ) : (ϕ, ψ) ∈ Φ(λ, µ)

}
. (3.3)

Moreover the duality relation pertains if the optimization in the dual problem is restricted
to continuous and bounded functions ϕ, ψ.
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A basic and important goal is to characterize minimizers through a tractable property
of their support sets: a Borel set Γ ⊆ X × Y is c-cyclically monotone iff

c(x1, y2)−c(x1, y1) + . . . + c(xn−1, yn)−c(xn−1, yn−1) + c(xn, y1)−c(xn, yn) ≥ 0 (3.4)

whenever (x1, y1), (x2, y2), . . . , (xn, yn) ∈ Γ. A transport plan π is c-cyclically monotone if
it assigns full measure to some cyclically monotone set Γ.

Concerning the origins of c-cyclical monotonicity in convex analysis and the study of
the relation to optimality we mention [39, 29, 46, 20]. Intuitively speaking, c-cyclically
monotone transport plans resist improvement by means of cyclical rerouting and optimal
transport plans are expected to have this property. Indeed we have:

Theorem 3.2. Let c : X × Y → R+ be a lower semi-continuous cost function. Then a
transport plan is optimal if and only if it is c-cyclically monotone.

Even in the case where c is the squared Euclidean distance this is a non trivial result,
posed as an open question by Villani in [51, Problem 2.25]. Following contributions of
Ambrosio and Pratelli [3], this problem was resolved by Pratelli [37] and Schachermayer
and Teichmann [47] who established the clear-cut characterization stated in Theorem 3.2.
Lower semi-continuity of the cost function can also be relaxed, as shown in [5] and [7].

We will need the following straightforward corollary of Theorem 3.1. In this article,
we usually consider maximisation problems. Therefore, we switch the sup and inf in the
corollary as we will use it in this form in Section 5. However, by considering c̃ := −c this
is clearly equivalent to the usual convention.

Corollary 3.3. Let c̃ : X × Y × [0, t0] → R be upper semi-continuous and bounded from
above. Then

sup
{ ∫

c̃ dπ : π ∈ P(X × Y × [0, t0]), projX(π) = λ, projY (π) = µ} (3.5)

= inf
{
J(ϕ, ψ) : (ϕ, ψ) ∈ L∞(λ) × L∞(µ), ϕ(x) + ψ(y) ≥ c̃(x, y, t)

}
. (3.6)

Again, the duality relation pertains if the optimization in the dual problem is restricted to
continuous and bounded functions ϕ, ψ.

4. Preliminaries on stopping times and filtrations

4.1. Spaces and Filtrations. In this section we mainly discuss the formal aspects of fil-
trations, measure theory, etc., and how classical notions relate to properties of functions on
the space S introduced above.

We consider the space Ω = C(R+) of continuous paths with the topology of uniform
convergence on compact sets. The elements of Ω will be denoted by ω. We denote the
canonical process on Ω by (Bt)t≥0, i.e. Bt(ω) = ωt. As explained above we consider the set
S of all continuous functions defined on some initial segment [0, s] of R+; we will denote
the elements of S by ( f , s) and (g, t). The set S admits a natural partial ordering; we say
that (g, t) extends ( f , s) if t ≥ s and the restriction g�[0,s] of g to the interval [0, s] equals
f . In this case we write ( f , s) ≺ (g, t). We consider S with the topology determined by the
following metric: let ( f , s), (g, t) ∈ S and suppose s ≤ t. We then say that ( f , s) and (g, t)
are ε-close if

dS (( f , s), (g, t)) := max
(
t − s, sup0≤u≤s | f (u) − g(u)|, sups≤u≤t |g(u) − g(s)|

)
< ε. (4.1)

Equipped with this topology, S is a Polish space.
For our arguments it will be important to be precise about the relationship between the

sets C(R+) × R+ and S . We therefore discuss the underlying filtrations in some detail.
We consider three different filtrations on the Wiener space C(R+), the canonical or

natural filtration F 0 = (F 0
t )t∈R+

, the right-continuous filtration F + = (F +
t )t∈R+

, and the
augmented filtration F a = (F a

t )t∈R+
obtained from (F 0

t )t∈R+
by including all W-null sets
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in F 0
0 . As Brownian motion is a continuous Feller process, F a is automatically right-

continuous, all F a-stopping times are predictable and all right-continuous F a-martingales
are continuous. In particular, the F a-optional and the F a-predictable σ-algebras coincide
(see e.g. [38, Corollary IV 5.7]). By [16, Thm. IV. 97, Rem. IV. 98] we also have that
the F 0-predictable,-optional and -progressive σ-algebras coincide because Ω is the set of
continuous paths. Moreover, we will often use the following result.

Theorem 4.1 ([16, Theorem IV. 78]). For every F a-predictable process (Xt)t∈R+
there is

an F 0-predictable process (X′t )t∈R+
which is indistinguishable from (Xt)t∈R+

. If τ is an F a-
stopping time, there exists an F 0-stopping time τ′ such that τ = τ′ a.s..

Of course, every F a-martingale has a continuous version. Not so commonly used but
entirely straightforward is the following: if M is an F 0-martingale then there is a version
M′ of M which is an F 0-martingale and almost all paths of M′ are continuous.

The message of Proposition 4.4 below is that a process (Xt)t∈R+
is F 0-predictable iff

(Xt)t∈R+
is F 0-optional iff Xt(ω) can be calculated from the restriction ω�[0,t]. We introduce

the mapping

r : C(R+) × R+ → S , r(ω, t) = (ω�[0,t], t). (4.2)

Note that the topology on S introduced in (4.1) coincides with the final topology induced
by the mapping r; in particular r is a continuous open mapping. The mapping r is not a
closed mapping: it is easy to see that there exist closed sets in C(R) × R with a non-closed
image under r. However this does not happen for closed optional sets, see Proposition 4.4.

Remark 4.2. In the following we will say that H : S → R is continuous / right-continuous
/ etc. if the corresponding property holds for the process H ◦ r. Similarly we say that
H1,H2 : S → R are indistinguishable if this holds for the processes H1 ◦ r,H2 ◦ r w.r.t.
Wiener measure. We will also often use the notation H(ω�[0,t]) = H(ω�[0,t], t).

Definition 4.3. We say that a process Xt(ω) is S - continuous if there exists a continuous
function h : S → R such that

Xt(ω) = h((ω�[0,t], t))
for all t ≥ 0,W-a.s..

It is trivially true that an S - continuous process is F 0-adapted, and continuous (W-
a.s.). The converse is not generally true — consider the case where Xt is the local time
of the Brownian motion at a level x. This is a continuous, F 0-adapted process, however
the corresponding function h is not a continuous mapping from S to R. (Indeed, any path
which has strictly positive local time can be approximated uniformly by paths with both
zero and infinite local time).

Proposition 4.4. F 0-optional sets / functions on C(R+)×R+ correspond to Borel-measurable
sets / functions on S . More precisely we have:

(1) A set D ⊆ C(R+)×R+ is F 0-optional iff there is a Borel set A ⊆ S with D = r−1(A).
(2) A process X = (Xt)t∈R+

is F 0-optional iff there is a Borel measurable H : S → R
such that X = H ◦ r.

An F 0-optional set A ⊆ C(R+) × R+ is closed in C(R+) × R+ iff the corresponding set r(A)
is closed in S . An F 0-optional process X = H ◦ r is S - continuous iff H : S → R is
continuous.

For the proof of Proposition 4.4 we need another result from [16]. Write at : Ω→ Ω for
the stopping operation, i.e. at(ω) is the path which agrees with ω until t and stays constant
afterwards.

Theorem 4.5 (cf. [16, Theorem IV. 97]). Let Z = (Zt)t∈R+
be a measurable process on

Ω = C(R+). Then Z is F 0-optional iff Zt = Zt ◦ at for all t ∈ R+.
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Proof of Proposition 4.4. We will only prove the second assertion; the first one being an
obvious consequence.

Set Ω′ = Ω×R+ and a′(ω, t) = (at(ω), t). Then Zt = Zt ◦at for all t ∈ R+ is equivalent to
asserting that Z = Z ◦ a′. Let S ′ be the set of all (ω, t) ∈ Ω′ for which a′(ω, t) = (ω, t) (i.e.
ω remains constant from t on). Note that r is a homeomorphism from S ′ to S and denote
its inverse by r−1.

Assume now that Z is an optional process. Then Z = Z ◦ a′. Since r = r ◦ a′ we have
Z = Z ◦ r−1 ◦ r ◦ a′ = (Z ◦ r−1) ◦ r. Hence we may take H = Z ◦ r−1 in Proposition 4.4.

Conversely, if Z = H ◦ r, then we have Z ◦ a′ = H ◦ r ◦ a′ = H ◦ r = Z. Hence Z is
optional.

The last assertion of the proposition follows from the identification of S with S ′. �

Definition 4.6. We call a set D ⊆ S right complete if (g, t) ∈ D and (g, t) ≺ ( f , s) implies
( f , s) ∈ D. We say D ⊆ S is left complete if (g, t) ∈ D and (g, t) � ( f , s) implies ( f , s) ∈ D.

Subsequently we will be interested in the stochastic intervals ~0, τ� for stopping times
τ. In particular, recall that ~0, τ� = {(ω, t) : t ∈ [0, τ(ω)]} ⊆ C(R+) × R+. The following
lemma connects characterisations of stopping times, sets in S , and stochastic intervals.

Lemma 4.7. (1) Suppose τ is an F 0-stopping time. Then the set D = r(~τ,∞~) ⊆ S
satisfies
(a) D is Borel and right complete;
(b) if ( f , s) ∈ D, the set {t : ( f�[0,t], t) ∈ D} has a smallest element.

Moreover, given such a set D, there exists an F 0-stopping time τ determined by
~τ,∞~= r−1(D).

(2) Suppose τ is an F +-stopping time. Then the set D = r(�τ,∞~) ⊆ S satisfies
(a) D is Borel, and right complete;
(b) if ( f , s) ∈ D, the set {t : ( f�[0,t], t) ∈ D} has no smallest element.

Moreover, given such a set D, there exists an F +-stopping time τ determined by
�τ,∞~= r−1(D).

Proof. (1) First observe that if we set τ(ω) = inf{t ≥ 0 : (ω�[0,t], t) ∈ D}, it follows
that τ is the required F 0-stopping time. On the other hand, if τ is a F 0-stopping
time, then D is Borel (by Proposition 4.4), since ~τ,∞~ is an optional set, and the
other properties are straightforward.

(2) Observe that if τ is a F + stopping time, then τn = τ + 1/n is a sequence of strictly
decreasing F 0-stopping times, and �τ,∞~=

⋃
n∈N~τn,∞~. The conclusions follow

from (1). �

By Proposition 4.4 we then have:

Corollary 4.8. The map r leaves stochastic intervals of F +-stopping times invariant, i.e.
for every F +-stopping time κ it holds that r−1(r(~0, κ�)) = ~0, κ�. If κ is an F 0-stopping
time then also r−1(r(~0, κ~)) = ~0, κ~.

Recalling Definition 4.3, we call a martingale (Xt)t∈R+
a S - continuous martingale if it

can be written as Xt(ω) = h((ω�[0,t], t)) for some h : S → R, which is continuous.

Definition 4.9. Let X : C(R+)→ R be a measurable function which is bounded or positive.
Then we define E[X|F 0

t ] to be the unique F 0
t -measurable function satisfying

E[X|F 0
t ](ω) =

∫
X((ω�[0,t]) ⊕ ω′) dW(ω′).

Proposition 4.10. Let X ∈ Cb(C(R+)). Then Xt(ω) := E[X|F 0
t ](ω) defines a S - continuous

martingale. We denote this martingale by XM .
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Proof. Note that ( fn, sn)→ ( f , s) in S implies fn⊕ω→ f⊕ω in C(R+) for everyω ∈ C(R+),
where g ⊕ h denotes concatenation of paths as usual. Hence, putting Xg(ω) := X(g ⊕ ω)
the convergence ( fn, sn) → ( f , s) implies the pointwise convergence X fn (ω) → X f (ω) for
all ω ∈ C(R+) by continuity of X. Moreover, for ( f , s) ∈ S∫

X f (ω)W(dω) =: XM( f , s)

is a function of ( f , s). Since X is bounded, this allows to deduce using the dominated
convergence theorem that

XM( fn, sn)→ XM( f , s).

This means that XM is continuous on S , hence, S - continuous. �

Proposition 4.11. Suppose X is a bounded lower semi-continuous function on S . Then
there exists a continuous martingale ψ such that XM

τ = ψτ almost surely for every F +-
stopping time τ.

Proof. Since X is lower semi-continuous, we can approximate from below by (bounded)
continuous functions. In particular, let ϕn ↑ X, and then the corresponding martingales
ϕM,n are S - continuous. In addition, we know that there exists a version of the martingale
(E[X|F 0

t ])t∈R+
denoted by (ψt)t∈R+

whose paths are almost surely continuous. It follows
that ϕM,n

τ ↑ ψτ almost surely, and the claimed result holds. �

4.2. Randomized stopping times. Working on the path space C(R+), a stopping time τ is
a mapping which assigns to each path ω the time τ(ω) at which the path is stopped. If the
stopping time depends on external randomization, then we may consider a path ω which is
not stopped at a single point τ(ω), but rather that there is a sub-probability measure ξω on
R which represents the probability that the path ω is stopped at a given time, conditional
on observing the path ω. The aim of this section is to make this idea precise, and to
establish connections with related properties in the literature. Specifically, the notion of a
randomized stopping time has been established previously in [32], and is closely connected
to the class of pseudo-stopping times, which we will also exploit.

We consider the space

M := {ξ ∈ P≤1(C(R+) × R+) : ξ(dω, dt) = ξω(dt)W(dω), ξω ∈ P≤1(R+) forW-a.e. ω},

where (ξω)ω∈Ω is a disintegration of ξ in the first coordinate ω ∈ Ω. We equip M with the
weak topology induced by the continuous bounded functions on C(R+) × R+.

Recall that our principle interest is in the probability space (Ω,F ,P), where Ω = C(R+)
and P = W. Sometimes we will also consider the associated, right-continuous and com-
plete filtration (F a

t )t≥0. In what follows, we will also use a natural extension of the fil-
tered probability space denoted (Ω̄, F̄ , (F̄t)t≥0, P̄), where we take Ω̄ = Ω × [0, 1], F̄ =

F ⊗ B([0, 1]), P̄(A × B) = P(A)Leb(B), and set F̄t = F a
t ⊗ σ([0, 1]).

We have the following result characterising the class of randomized stopping times.

Theorem 4.12. Let ξ ∈ M. Then the following are equivalent:

(1) There is a Borel function H : S → [0, 1] such that H is right-continuous, decreas-
ing and

ξω([0, s]) := 1 − H(ω�[0,s]) (4.3)

defines a disintegration of ξ w.r.t. toW.
(2) For every disintegration (ξω)ω∈Ω of ξ, for all t ∈ R+ and every Borel set A ⊆ [0, t]

the random variable
Xt(ω) = ξω(A)

is F a
t -measurable.
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(3) There is a disintegration (ξω)ω∈Ω of ξ such that for all t ∈ R+ and all f ∈ Cb(R+)
such that the support of f lies in [0, t] the random variable

Xt(ω) = ξω( f )

is F 0
t -measurable.

(4) On the probability space (Ω̄, F̄ , (F̄t)t≥0, P̄), the random time

ρ(ω, u) = inf{t ≥ 0 : ξω([0, t]) ≥ u} (4.4)

defines an F̄ -stopping time.
We call a measure ξ ∈ M satisfying one of these conditions a randomized stopping time.
We denote the subset of M containing the randomized stopping times RST.

Proof. We show each of the later conditions is equivalent to (1).
We first establish that (1) implies (2). Let ξω and ξ′ω be disintegrations of ξ. From (1)

it follows that there is some function H such that ξω([0, s]) = 1 − H(ω�[0,s]), s ≤ t, and
t 7→ 1 − H(ω�[0,t]) is an increasing, càdlàg function for fixed ω. It follows that ξω(A) =∫

A d(1 − H(ω�[0,s])) is F 0
t -measurable, and hence, since ξ′ω(A) = ξω(A) W-a.s., ξ′ω(A) is

F a
t -measurable. We next establish that (2) implies (1). Consider a disintegration (ξω)ω∈Ω

of ξ. Define a process H̄ by
H̄t(ω) := 1 − ξω([0, t]).

Then H̄ is càdlàg and therefore F a-optional, hence F a-predictable in our setup. By The-
orem 4.1 and Proposition 4.4 there exists a Borel function H on S such that H̄ is indis-
tinguishable from H ◦ r. This function H is as required. Similar arguments establish the
equivalence of (1) and (3).

Finally, it is straightforward to deduce (4) from (1). To see (1) given (4), observe that
ξt(ω) =

∫
1{ρ(ω, u) ≤ t} du and hence is F a

t -measurable, càdlàg, and hence (as above) we
get the required function H. �

Remark 4.13. (1) The function H in (4.3) is unique up to indistinguishability (cf.
Remark 4.2). We will designate this function Hξ in the following. This function
has a natural interpretation. Hξ( f , s) is the probability that a particle is still alive
at time s given that it has followed the path f . We call Hξ the survival function
associated to ξ.

(2) We will say ξ is a non-randomized stopping time iff there is a disintegration (ξω)ω∈Ω
of ξ such that ξω is a Dirac-measure (of mass 1) for every ω. Clearly this means
that ξω = δτ(ω) a.s. for some (non-randomized) stopping time τ. ξ is a non-
randomized stopping time iff there is a version of Hξ which only attains the values
0 and 1.

Corollary 4.14. The set RST is closed.

Proof. We consider condition (2) resp. (3) in Theorem 4.12; the goal is to express measur-
ability of Xt(ω) := ξω( f ), supp f ⊆ [0, t] in a different fashion. Note that a bounded Borel
function h is F 0

t -measurable iff for all bounded Borel functions g

E[hg] = E[hE[g|F 0
t ]],

of course this does not rely on our particular setup. By a functional monotone class argu-
ment, for F 0

t -measurability of Xt it is sufficient to check that

E[Xt(g − E[g|F 0
t ])] = 0 (4.5)

for all g ∈ Cb(C(R+)). In terms of ξ, (4.5) amounts to

0 = E[Xt(g − E[g|F 0
t ])] =

∫
W(dω)

∫
ξω(ds) f (s)(g − E[g|F 0

t ])(ω) (4.6)

=

∫
f (s)(g − E[g|F 0

t ])(ω) ξ(dω, ds) (4.7)



OPTIMAL TRANSPORT AND SKOROKHOD EMBEDDING 15

which is a closed condition by Proposition 4.10. �

Definition 4.15. A randomized stopping time is finite iff ξ(C(R+) × R+) = 1. The set of all
finite randomized stopping times will be denoted by RST1.

Recall from (1.5) that Γ< = {( f , s) : ∃(g, t) ∈ Γ, s < t, ( f , s) = (g�[0,s], s)} for Γ ⊆ S .

Lemma 4.16. Let ξ ∈ RST1. Then there exists a Borel set Γ ⊆ S with ξ(Γ) = 1 and
Γ< ∩ Γ = ∅ iff ξ = δτ for some F a-stopping time τ.

Proof. Let τ be an F a-stopping time. By Theorem 4.1, there exists an F 0-stopping time
τ′ with τ = τ′ W-a.s.. Then Γ = r(ω, τ′(ω)) satisfies Γ< ∩ Γ = ∅ and ξ = δτ is concentrated
on Γ. Here Γ is an analytic set and hence universally measurable. We may thus replace Γ

with a Borel subset of full ξ-measure to obtain the desired conclusion.
Pick ξ ∈ RST1 and a set Γ on which ξ is concentrated. Γ<∩Γ = ∅ implies that for any ω

the set {t : r(ω, t) ∈ Γ} is at most single-valued. Put D := {(g, t) : ∃ ( f , s) ∈ Γ, ( f , s) ≺ (g, t)}.
By Lemma 4.7 this defines an F 0-stopping time on a subset of full measure (recall that ξ
is only concentrated on Γ) proving the result. �

Given ξ ∈ M and s ∈ R+ we define the measure ξ ∧ s ∈ M to be the random time which
is the minimum of ξ and s; formally this means that for ω ∈ Ω and A ⊆ R+

(ξ ∧ s)ω(A) := ξω(A ∩ [0, s)) + δs(A)(1 − ξω([0, s))),

or equivalently, in terms of the survival function:

Hξ∧s( f , t) = Hξ( f , t)1{t<s}.

Assume that (Ms)s∈R+
is a process on Ω. Then the stopped process (Mξ

s )s∈R+
is defined

to be the probability measure on R such that for all bounded and measurable functions f∫
R

f (x) Mξ
s (dx) :=

∫
f (Mt(ω)) (ξ ∧ s)(dω, dt).

Otherwise said Mξ
s is the image measure of ξ ∧ s under the map M : C(R+) × R+ →

R, (ω, t) 7→ Mt(ω). We write lims→∞ Mξ
s = Mξ if it exists.

4.3. Pseudo-randomized stopping times and dual optional projections. We wish to
characterise the subset of M corresponding to RST. A natural candidate for such a condi-
tion would be via the optional stopping theorem:

Definition 4.17. Let PRST be the set of all pseudo-randomized stopping times, that is, the
set of ξ ∈ M satisfying ∫

X(ω)W(dω) =

∫
XM

s (ω) (ξ ∧ t)(dω, ds), (4.8)

for all t ≥ 0 and all X ∈ Bb(C(R+)), the class of bounded Borel functions on C(R+).

Unfortunately RST is a proper subset of PRST; it is not hard to see this from [33]. By
a functional monotone class argument it is sufficient to check (4.8) for all X ∈ Cb(C(R+)),
in particular we have:

Proposition 4.18. The set PRST is closed.

Fortunately, the difference between RST and PRST is not seen by optional processes:
given a pseudo-randomized stopping time ξ there always exists a randomized stopping time
ξ̄ such that for every optional bounded or positive process X we have

∫
X dξ =

∫
X dξ̄.

Lemma 4.19. Let ξ ∈ PRST. Set At(ω) := ξω([0, t]). Define ξo through ξo
ω([0, t]) := Ao

t (ω),
where Ao denotes the dual optional projection of A. Then ξo ∈ RST.
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Proof. We prove this for a finite time ξ. By Theorem 4.12, we have to show that Ao
t is

F a
t -measurable for every t, Ao is increasing nonnegative and bounded by 1. The only

property that does not follow directly from the definition of dual optional projection is the
boundedness by 1. As ξ ∈ PRST we have using X ≡ 1

E[Ao
∞] = 1.

Hence, it is sufficient to show that Ao
∞ ≤ 1. To this end, assume that D := {Ao

∞(ω) > 1} has
positive mass. Then we have using (4.8) and X = 1D

W(D) = E[X] = E[XM
0 ] = Eξ[XM] = E

∫ ∞

0
XM

s dAs = E

∫ ∞

0
XM

s dAo
s = EXAo

∞ >W(D),

implying thatW(D) = 0. Hence, ξo ∈ RST. �

Clearly every pseudo-randomized stopping time ξ ∈ PRST can be represented as a
positive random variable on Ω̄ in a similar manner to (4.4) by taking ρ(ω, u) = inf{t ≥ 0 :
ξω([0, t]) ≥ u}. The message of the above result is that, for any such ξ, and any optional
bounded or positive process X on Ω, there exists a stopping time ρo on the extended space

(Ω̄, F̄ , F̄t, P̄) such that Ē
[
X̄ρ∧t

]
= E

[
Xξ

t

]
= E

[
Xξ0

t

]
= Ē

[
X̄ρo∧t

]
for any t ≥ 0, where

X̄(ω, u) = X(ω). Of course, we will eventually be interested in the subset of stopping times
corresponding moreover to (SEP) — that is, we are specifically interested in the subset of
PRST which both embed µ, and which satisfy a further natural criteria corresponding to
the second condition in (SEP). However, by taking the optional processes Xt = f (Bt) for
bounded f and Xt = t, we immediately see that B̄ρ ∼ B̄ρo and Eξ[T ] = Eξo [T ] = Ē[ρo],
where we denote by T the projection

T : C(R+) × R+ → R+. (4.9)

We observe also that to show the process Bξt is uniformly integrable, we need to show
limR→∞ supt

∫
|x|>R |x| B

ξ
t (dx) = 0. However, with the above definitions, we have Bξt (dx) =

Bξ
o
(dx), and so Bξ is uniformly integrable if and only if Bξ

o
is also.

From now on we make the assumption that the measure µ which we want to embed has
mean 0 and finite second moment4

V :=
∫

x2 µ(dx) < ∞. (4.10)

Then by the above arguments, and as a direct consequence of the same result for the stop-
ping time ρo, we have:

Lemma 4.20. Let ξ ∈ PRST. Assume that B#ξ = µ, i.e. B̄ρ ∼ µ, where ρ is the random
time on B̄ corresponding to ξ. Then the following are equivalent:

(1) Ē[ρ] < ∞,
(2) Ē[ρ] = V,
(3) (B̄ρ∧t) is uniformly integrable.

Definition 4.21. We denote by PRST(µ) the set of all pseudo-randomized stopping times
satisfying the conditions in Lemma (4.20). Similarly, we define RST(µ) = PRST(µ)∩RST.

An immediate consequence is:

Corollary 4.22. Let Xt be an optional process. Then for every ξ ∈ PRST(µ), there exists
ξo ∈ RST(µ) with E[Xξ] = E[Xξo ].

The main reason why we consider randomized stopping times and their pseudo-rando-
mized counterparts is that they have the following property:

Theorem 4.23. The set PRST(µ) is compact.

4This assumption is only made for ease of exposition. We refer to Section 9 and in particular Proposition 9.3
for the general case.
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Proof. By Prohorov’s theorem we have to show that PRST(µ) is tight and that PRST(µ) is
closed.

Tightness. Fix ε > 0 and take R such that V/R ≤ ε/2. Then, for any ξ ∈ PRST(µ)
we have ξ(T > R) ≤ ε/2. As C(R+) is Polish there is a compact set K̃ ⊆ C(R+) such that
W({K̃) ≤ ε/2. Set K := K̃ × [0,R]. Then K is compact and we have for any ξ ∈ PRST(µ)

ξ({K) ≤W({K̃) + ξ(T > R) ≤ ε.

Hence, PRST(µ) is tight.
Closedness. Take a sequence (ξn)n∈N in PRST(µ) converging to some ξ. Putting h :

C(R+) × R+ → R, (ω, t) 7→ ω(t) we have to show that h(ξ) = µ and that Eξ[T ] < ∞. Note
that h is a continuous map. Take any g ∈ Cb(R). Then g ◦ h ∈ Cb(C(R+) × R+). Thus, we
have that ∫

g dµ = lim
n

∫
C(R+)×R+

g ◦ h dξn =

∫
C(R+)×R+

g ◦ h dξ =

∫
g dh(ξ).

Hence, we have h(ξ) = µ. Moreover, the set {(ω, t) : t ≤ L} is closed. Hence, by the
Portmanteau theorem, for any L ≥ 0

lim sup ξn(t ≤ L) ≤ ξ(t ≤ L).

This readily implies that Eξ[T ] ≤ lim inf Eξn [T ] = V < ∞. �

Since RST is a closed set we also have:

Corollary 4.24. The set RST(µ) of all randomized stopping times which embed µ is com-
pact.

4.4. Joinings / Tagged Stopping Times. We now add another dimension: assume that
(Y, ν) is some Polish probability space. The set of all tagged pseudo-randomized stopping
times or rather joinings JOIN(W, ν) = JOIN(ν) is given by{
π ∈ P≤1(C(R+) × R+ × Y), projC(R+)×R+

(π�C(R+)×R+×B) ∈ PRST, B ∈ B(Y), projY (π) ≤ ν
}
.

We shall also write JOIN1(W, ν)/JOIN1(ν) for the subset of π ∈ JOIN(ν) having mass 1.

Remark 4.25. Write pred for the σ-algebra of F 0-predictable sets in C(R+) × R+.
We call a set A ⊆ C(R+) × R+ × Y predictable if it is an element of pred ⊗ B(Y). We

will say that a function defined on C(R+) × R+ × Y is predictable if it is measurable w.r.t.
pred ⊗ B(Y).

5. The Optimization Problem and Duality

5.1. The Primal Problem.

Recall that our aim is to maximise the value given by functional γ : S → R, where the
maximization is taken over randomized stopping times. Each randomized stopping time ξ
gives rise to the probability measure ξS := r(ξ). Given an F 0-predictable function γ̃ on
C(R+) ×R+ we can find a Borel function γ on S such that γ ◦ r is indistinguishable from γ̃
and then ∫

C(R+)×R+

γ̃(ω, t) ξ(d(ω, t)) =

∫
S
γ( f , s) ξS (d( f , s)). (5.1)

Where there is no danger of confusion, we will not distinguish between γ̃ and γ or ξ and
ξS .

We assume that there exists at least one ξ ∈ RST(µ) such that∫
γ(ω, t) dξ(ω, t) > −∞, (5.2)
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and that the integral in (5.2) is less than∞ for all ξ ∈ RST(µ). The maximization problem
introduced in the introduction, see (OptSEP), can then also be written as

Pγ(W, µ) = sup
{∫

γ(ω, t) dξ(ω, t), ξ ∈ RST(µ)
}
. (5.3)

We make the important comment that the optimization problem is not altered if the set
RST(µ) is replaced by PRST(µ) (cf. Corollary 4.22).

It is straightforward to see that the functional (5.1) is upper semi-continuous provided
that γ : S → R is (upper semi-) continuous and bounded from above by a constant. (This is
spelled out in detail for instance in [52, Chapter 4] in the context of classical optimal trans-
port.) In particular (5.3) then admits an optimizer according to the compactness properties
derived above.

Next, assume that γ admits only the bound (1.3), i.e. γ( f , s) ≤ a+b · s+c ·maxr≤s f (s)2.
Using the pathwise Doob-inequality (see [1])

max
r≤s

f (r)2 ≤

∫ s

0
4 max

t≤r
| f (t)| d f (r)︸                     ︷︷                     ︸

=:Ms

+4 f (s)2

we obtain that
γ( f , s) ≤ a + bs + c · (Ms + 4 f (s)2).

It follows that γ̃( f , s) := γ( f , s) − bs − c · (Ms + 4 f (s)2) is bounded from above and gives
rise to the same optimization problem as γ. Hence, applying the above argument to the
function γ̃, Theorem 1.1 follows also in the general case.

5.2. The dual problem.

Theorem 5.1. Let γ : S → R be S - upper semi-continuous, bounded from above in the
sense of (1.3), i.e. γ( f , s) ≤ a + b · s + c ·maxr≤s f (s)2 for some constants a, b, c ∈ R+, and
predictable. Put

Dγ(W, µ) = inf
{∫

ψ(y) dµ(y) : ψ ∈ Cb(R),∃ϕ,
ϕ is a S - continuous martingale, ϕ0 = 0
ϕt(ω) + ψ(ω(t)) ≥ γ(ω, t) ∀ (ω, t)

}
where ϕ runs through all S - continuous F 0-martingales with |ϕt | ≤ at + bB2

t + c for some
a, b, c > 0 depending on ϕ. Then we have the duality relation

Pγ(W, µ) = Dγ(W, µ). (5.4)

We note that through Hobson’s time change approach ([23, 24]) Theorem 5.1 can be
interpreted as super-replication theorem for robust finance. In this sense, Theorem 5.1 is
parallel to the work of Dolinsky and Soner [17]. Comparable duality results in a discrete
time framework are established by Bouchard and Nutz [8] among others.

Using the same argument as above, we see that it suffices to establish Theorem 5.1 in
the case where γ is bounded from above.

As usual the inequality Pγ(W, µ) ≤ Dγ(W, µ) is straightforward to verify:

Lemma 5.2. With the above notations and assumptions we have Pγ(W, µ) ≤ Dγ(W, µ).

Proof. Take (ϕ, ψ) satisfying the dual constraint and ξ ∈ RST(µ). Then we have∫
ψ(y) µ(dy) =

∫
ψ(ω(t)) ξ(dω, dt) +

∫
ϕM

t (ω) ξ(dω, dt) ≥
∫
γ(ω, t) ξ(dω, dt),

where the inequality holds by the dual constraint. �

The key idea for the proof of Theorem 5.1 is to translate the embedding problem for µ
into a transportation problem between the Wiener measureW and µ using the cost function

c(ω, t, y) =

γ(ω, t) if ω(t) = y
−∞ otherwise,
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for (ω, t, y) ∈ C(R+) × R+ × R. The result of choosing this special cost function is that
Pγ(W, µ) = PC(R+)×R+×R

c (W, µ), where

PC(R+)×R+×R
c (W, µ) = sup

{∫
c(ω, t, y) π(dω, dt, dy), π ∈ JOIN1(W, µ),Eπ[T ] ≤ V

}
. (5.5)

Here T is the projection on R+,V =
∫

x2 µ(dx) and we used Y = R in the definition of
JOIN1(W, µ) (see Section 4.4).

To see this, define p(ω, t, y) = (ω, t). If π ∈ JOIN1(W, µ) is concentrated on {(ω, t, y) :
ω(t) = y} we have ξ = p(π) ∈ PRST(µ) and

∫
c dπ =

∫
γ dξ.

On the other hand, let h(ω, t) = ω(t). If ξ ∈ PRST(µ) then π = (id, h)(ξ) ∈ JOIN1(W, µ)
and as before

∫
c dπ =

∫
γ dξ.

In Proposition 5.6 we will establish a dual problem corresponding to PC(R+)×R+×R
c (W, µ)

and Theorem 5.1 will then be a simple consequence. However we need some preparation
before we can establish Proposition 5.6.

5.3. A Non-Adapted (NA) Duality Result.
We first prove a “non-adapted” version of the desired result and afterwards we use the
min-max theorem (Theorem 5.4) to introduce adaptedness. To this end, put

TMV (W, µ) = {π ∈ P(C(R+) × R+ × R) : projC(R+)(π) =W, projR(π) = µ,Eπ[T ] ≤ V},

and

DCV
NA(c) =

{
(ϕ, ψ) ∈ Cb(Ω) ×Cb(R) : ∃α ≥ 0,

ϕ(ω) + ψ(y) + α(t − V) ≥ c(ω, t, y)
for all ω ∈ Ω, y ∈ R, t ≥ 0

}
.

Note that the set TMV is compact as a consequence of Prohorov’s theorem.

Proposition 5.3. Let c : C(R+) × R+ × R → R ∪ {−∞} be upper semi-continuous and
bounded from above. Then

PNA
c = supπ∈TMV (W,µ)

∫
c dπ = inf(ϕ,ψ)∈DCV

NA(c)W(ϕ) + µ(ψ) = DNA
c . (5.6)

Again it is easy to show that DNA
c ≥ PNA

c (cf. Lemma 5.2). To show the other inequality
we first collect some ingredients which will also be useful later on. In particular, we will
use the min-max theorem in the following form.

Theorem 5.4 (see e.g. [49, Thm. 45.8] or [2, Thm. 2.4.1]). Let K, L be convex subsets of
vector spaces H1 resp. H2, where H1 is locally convex and let F : K × L→ R be given. If

(1) K is compact,
(2) F(·, y) is continuous and concave on K for every y ∈ L,
(3) F(x, ·) is convex on L for every x ∈ K

then
inf
y∈L

sup
x∈K

F(x, y) = sup
x∈K

inf
y∈L

F(x, y).

Lemma 5.5. If (5.6) is valid for a sequence of continuous bounded functions cn, n ≥ 1
such that cn ↓ c then (5.6) applies also to c.

Proof. To keep track of the different cost functions we write

PNA
cn

= supTMV (W,µ)

∫
cn dπ and DNA

cn
= inf(ϕ,ψ)∈DCV

NA(cn)

(
EW[ϕ] + Eµ[ψ]

)
,

where DCV
NA(cn) is to remind us on the dependence of the dual constraint set on cn. PNA

c
and DNA

c are defined analogously. We have to prove that DNA
c ≤ PNA

c . For each k let
πk ∈ TMV (W, µ) be such that

PNA
ck
≤

∫
ck dπk + 1/k.
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By compactness of TMV (W, µ) there is a subsequence, still denoted by k, such that (πk)k

converges weakly to some π ∈ TMV (W, µ). Then by monotone convergence using the
monotonicity of the sequence (ck)k∈N we have

PNA
c ≥

∫
c dπ = lim

m→∞

∫
cm dπ = lim

m→∞

(
lim
k→∞

∫
cm dπk

)
≥ lim

m→∞

(
lim
k→∞

∫
ck dπk

)
= lim

k→∞
PNA

ck
.

Since, ck ≥ c implies PNA
ck
≥ PNA

c and DNA
c ≤ DNA

ck
this allows us to deduce that

DNA
c ≤ DNA

ck
= PNA

ck
↘ PNA

c . �

Proof of Proposition 5.3. We may assume that c is bounded from above by zero. Hence,
by Lemma 5.5 it is sufficient to establish (5.6) for bounded continuous functions whose
support satisfies

supp c ⊆ C(R+) × [0, t0] × R (5.7)

for some t0 ∈ R+. Put

TMV
t0 (W, µ) = {π ∈ TMV (W, µ) : supp π ⊆ C(R+) × [0, t0] × R},

and

DCV
NA,t0 (c) =

{
(ϕ, ψ) ∈ Cb(Ω) ×Cb(R) : ∃α ≥ 0,

ϕ(ω) + ψ(y) + α(t − V) ≥ c(ω, t, y)
for all ω ∈ Ω, y ∈ R, t ≤ t0

}
.

Assume now that c satisfies (5.7) for some t0 ≥ V . We then have

sup
π∈TMV (W,µ)

∫
c dπ = sup

π∈TMV
t0

(W,µ)

∫
c dπ and (5.8)

inf
(ϕ,ψ)∈DCV

NA(c)
W(ϕ) + µ(ψ) = inf

(ϕ,ψ)∈DCV
NA,t0

(c)
W(ϕ) + µ(ψ). (5.9)

Formally the conditions involving V disappear in TMV
t0 (W, µ) and DCV

NA,t0 (c) if we put
V = ∞, we therefore define TM∞t0 (W, µ) and DC∞NA,t0 (c) through

TM∞t0 (W, µ) := {π : projC(R+)(π) =W, projR(π) = µ, supp π ⊆ C(R+) × [0, t0] × R},

DC∞NA,t0 (c) := {(ϕ, ψ) ∈ Cb(Ω) ×Cb(R) : ϕ(ω) + ψ(y) ≥ c(ω, t, y) for t ≤ t0, y ∈ Rω ∈ Ω}.

As a consequence of the classical Monge-Kantorovich duality, Theorem 3.1, we have (see
Corollary 3.3)

sup
π∈TM∞t0 (W,µ)

∫
c̃ dπ = inf

(ϕ,ψ)∈DC∞NA,t0
(c̃)
W(ϕ) + µ(ψ) (5.10)

for c̃ upper semi-continuous and bounded from above. Using the min-max theorem (The-
orem 5.4) with the function

F(π, α) =

∫
c − α(t − V) dπ

for π ∈ TM∞t0 (W, µ) and α ≥ 0 we thus obtain

sup
π∈TMV

t0
(W,µ)

∫
c dπ = sup

π∈TM∞t0 (W,µ)

∫
c dπ + inf

α≥0
(−α)

∫
t − V dπ

= inf
α≥0

sup
π∈TM∞t0 (W,µ)

∫
c − α(t − V) dπ (5.11)

= inf
α≥0

inf
(ϕ,ψ)∈DC∞NA,t0

(c−α(t−V))
W(ϕ) + µ(ψ) (5.12)

= inf
(ϕ,ψ)∈DCV

NA,t0
(c)
W(ϕ) + µ(ψ),
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where we have applied (5.10) to the function c̃ = c − α(t − V) to establish the equality
between (5.11) and (5.12). This concludes the proof. �

5.4. Introducing Adaptedness.

Using the defining property of PRST, we are able to test the “adaptedness” of a measure
π ∈ P(C(R+) × R+ × R) by testing against martingales: Set

JOINV (W, µ) = JOIN1(W, µ) ∩ TMV (W, µ).

For a continuous and bounded function f : C(R+) → R+ we consider the S - continuous
martingale f M as in Proposition 4.10. Then π ∈ TMV (W, µ) satisfies π ∈ JOINV (W, µ) if
and only if for all continuous bounded functions f : C(R+)→ R, g : R→ R∫

f g dπ =
∫

f Mg dπ. (5.13)

This is a direct consequence of the definition of PRST and JOIN, see Definition 4.17 and
Section 4.4.

Consider now the following set of dual candidates:

DCV (c) =

{
(ϕ, ψ) :

ϕ is an S - continuous bounded martingale, ψ ∈ Cb(R), ∃α ≥ 0,
ϕt(ω) + ψ(y) + α(t − V) ≥ c(ω, t, y), for all ω ∈ Ω, y ∈ R, t ∈ R+

}
.

Then we can derive the following, adapted version of Proposition 5.3.

Proposition 5.6. Let c : C(R+)×R+×R→ R∪{−∞} be upper semi-continuous, predictable
(cf. Remark 4.25) and bounded from above. Then,

PC(R+)×R+×R
c (W, µ) = sup

π∈JOINV (W,µ)

∫
c dπ = inf

(ϕ,ψ)∈DCV (c)
W(ϕ) + µ(ψ) =: DC(R+)×R+×R

c (W, µ).

Proof. Let us start with the case that c is continuous and bounded. The general case will
follow by approximation, cf. Lemma 5.5. For the S - continuous martingale induced by a
continuous and bounded function f we recall the notation f M

t introduced in Proposition
4.10. We want to use the min-max theorem, Theorem 5.4, with the function

F(π, h) =

∫
c + h̄ dπ

for π ∈ TMV (W, µ) and

h(ω, y) =

n∑
i=1

fi(ω)gi(y), h̄(ω, t, y) =

n∑
i=1

( fi(ω) − f M
i (ω, t))gi(y), (5.14)

where n ∈ N, fi ∈ Cb(C(R+)), gi ∈ Cb(R+).
The set TMV (W, µ) is convex and compact by Prohorov’s theorem and the set of all h

of the form (5.14) is convex as well. Then we have

PC(R+)×R+×R
c = sup

π∈JOINV (W,µ)

∫
c dπ

= sup
π∈TMV (W,µ)

inf
h

(∫
c + h̄ dπ

)
Thm. 5.4

= inf
h

sup
π∈TMV (W,µ)

(∫
c + h̄ dπ

)
= inf

h
inf

(ϕ,ψ)∈DCV
NA(c+h̄)

(W(ϕ) + µ(ψ)) ,

where the last equality holds by Proposition 5.3.
We write ch = c + h̄. For (ϕ, ψ) ∈ DCV

NA(ch) there is some α ≥ 0 such that

ch(ω, t, y) ≤ ϕ(ω) + ψ(y) + α(t − V).
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Taking conditional expectations w.r.t. F 0
t in the sense of Definition 4.9 we obtain

c(ω, t, y) ≤ ϕM
t (ω) + ψ(y) + α(t − V)

for all ω ∈ Ω, t ∈ R+, y ∈ R since c is predictable. This implies that (ϕM
t , ψ) ∈ DCV (c).

BecauseW(ϕM
t ) =W(ϕ) this implies that DCV

NA(ch) ⊆ DCV (c). Therefore, we have

PC(R+)×R+×R
c = inf

h
inf

(ϕ,ψ)∈DCV
NA(c+h̄)

(W(ϕ) + µ(ψ))

≥ inf
(ϕ,ψ)∈DCV (c)

(W(ϕ) + µ(ψ)) = DC(R+)×R+×R
c .

(5.15)

As usual, the other inequality is straightforward. �

Proof of Theorem 5.1. At the start of the section, we showed that Pγ(W, µ) = PC(R+)×R+×R
c (W, µ)

if we set

c(ω, t, y) =

γ(ω, t) if ω(t) = y
−∞ else.

Moreover, as γ was assumed to be upper semi-continuous, also c is upper semi-continuous.
Indeed, take any sequence (ωn, tn, yn) converging to (ω, t, y). If lim supn c(ωn, tn, yn) =

−∞ there is nothing to prove. On the other hand, if lim supn c(ωn, tn, yn) > −∞ there
is a subsequence (ωnk , tnk , ynk ) with ωnk (tnk ) = ynk converging to some (ω, t, y). Then we
necessarily have that ω(t) = y because |ω(t)−y| ≤ |ω(t)−ωnk (tnk )|+ |ynk −y|. Thus the upper
semi-continuity of c follows from the upper semi-continuity of γ.

Hence, by Proposition 5.6, to see that

Pγ(W, µ) ≥ Dγ(W, µ)

it remains to show that DC(R+)×R+×R
c (W, µ) ≥ Dγ(W, µ). A bounded pair (ϕ, ψ) belongs to

DCV (c) iff there is α ≥ 0 such that for all ω ∈ Ω, y ∈ R, t ∈ R+

ϕt(ω) + ψ(y) + α(t − V) ≥ c(ω, t, y)

which holds iff
ϕt(ω) + ψ(ω(t)) + α(t − V) ≥ γ(ω, t).

This is trivially equivalent to[
ϕt(ω) − α(ω(t)2 − t)

]
+

[
ψ(ω(t)) + αω(t)2 − αV

]
≥ γ(ω, t). (5.16)

The alternative representation in (5.16) is useful to us since ω(t)2 − t is an S - continuous
martingale.

Putting

ϕ̄t(ω) = ϕt(ω) − α(ω(t)2 − t) and ψ̄(y) = ψ(y) + αy2 − αV,

we have ϕ̄t(ω) + ψ̄(ω(t)) ≥ γ(ω, t). This means that (ϕ̄ − ϕ̄0, ψ̄ + ϕ̄0) satisfy the constraint
in the dual problem in (5.4). Recalling that V was defined by V =

∫
y2µ(dy) we have∫

ψ̄(y) µ(dy) =
∫
ψ(y) µ(dy). Therefore, we can conclude that

DC(R+)×R+×R
c (W, µ) ≥ Dγ(W, µ). �

5.5. General starting distribution. In this section we consider Ω̃ = C̃(R+), the set of all
continuous functions on R+, and

S̃ = {( f , s) : f : [0, s]→ R is continuous}.

Let λ be a centered probability measure on R with second moment Vλ =
∫

x2 λ(dx) < ∞
and prior to µ in convex order — i.e.,

∫
f (x) λ(dx) ≤

∫
f (x) µ(dx) for any convex function

f (x). This ensures the existence of solutions to the Skorokhod embedding problem with
general starting distribution and finite first moment. Denote by Wx the law of Brownian
motion starting in x and put Wλ(dω) = Wx(dω)λ(dx) for ω ∈ Ω̃, the law of Brownian
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motion starting at a random point according to the distribution λ. Given a functional γ :
S̃ → R we are interested in the maximization problem

Pγ(Wλ, µ) = sup
{∫

γ̃(ω, t)ξ(dω, dt), ξ ∈ RST(λ, µ)
}
, (5.17)

where RST(λ, µ) is the set of all randomized stopping times ξ on (Ω̃,Wλ) embedding µ
and satisfying Eξ[T ] = V − Vλ; in particular projΩ̃(ξ) = Wλ and h(ξ) = µ for the map
h : Ω̃ × R+, (ω, t) 7→ ω(t). We then have the following result:

Theorem 5.7. Let γ : S̃ → R be S̃ - upper semi-continuous, bounded from above and
predictable. Put

Dγ(Wλ, µ) = inf
{∫

ψ(y) dµ(y) : ψ ∈ Cb(R),
∃ S̃ - continuous mart. ϕ,EWλ

[ϕ0] = 0,
ϕt(ω) + ψ(ω(t)) ≥ γ(ω, t), t ∈ R+, ω ∈ Ω̃

}
where ϕ runs through all S̃ - continuous F 0-martingales with |ϕt | ≤ at + bB2

t + c for some
a, b, c > 0 depending on ϕ. Then we have the duality relation

Pγ(Wλ, µ) = Dγ(Wλ, µ). (5.18)

More generally, the result still holds if γ is only S̃ - upper semi-continuous and predictable,
and Dγ(Wλ, µ) < ∞.

The proof goes along the same lines as the proof of Theorem 5.1. The inequality
Pγ(Wλ, µ) ≤ Dγ(Wλ, µ) is straightforward. For the other direction we can use the same
argument as before. However, we have to replace W by Wλ and V by Ṽ := V − Vλ.
Up to equation (5.16) everything can be copied line to line. Then we have to use the
decomposition

ϕt(ω) + ψ(ω(t)) + α(t − V + Vλ)

= [ϕt(ω) − α(ω(t)2 − t − Vλ)] + [ψ(ω(t)) + α(ω(t)2 − V)]

and note that EWλ
[ω(t)2] = t + Vλ. The proof then concludes as before.

6. Bad Pairs and Closed Stochastic Intervals

In Section 7 we will assume that τ is a non-randomized, bounded stopping time such
that ~0, τ� is closed5. Then the set

Mτ := {ξ ∈ M : ξ(�τ,∞�) = 0} (6.1)

is compact as a consequence of Prohorov’s theorem. We also let RSTτ = RST ∩ Mτ and
PRSTτ = PRST ∩Mτ. Since RSTτ and PRSTτ are closed we have the following result:

Lemma 6.1. Let τ be a bounded stopping time such that ~0, τ� is closed. Then RSTτ as
well as PRSTτ is compact in the topology induced by the continuous bounded functions on
C(R+) × R+.

Recall the definition of joinings in Section 4.4. Then the joinings before τ is the set

JOIN(τ, ν) =
{
π ∈ JOIN(W, ν) : projC(R+)×R+

(π) ∈ PRSTτ
}
. (6.2)

We make the important comment that all the results involving JOIN(τ, ν) do not change if
we require projC(R+)×R+

(π) ∈ RSTτ in (6.2) by an application of Lemma 4.19.
We make a straightforward observation:

Lemma 6.2. Under the above assumptions, the set JOIN(τ, ν) of tagged pseudo-random
times / joinings before τ is compact with respect to the topology coming from the continuous
bounded functions on C(R+) × R+ × R.

5We emphasize that this means that ~0, τ� is closed as a subset of C(R+) × R+.
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In the following, ν will always denote an optimizer of the optimization problem (5.3).
The notion BP introduced in Definition 2.1 requires that all possible extensions (h, u)

are considered. In this section we consider also a relaxed notion which is sensitive to the
stopping measure ν. To this end we introduce the conditional randomized stopping time
given ( f , s).

Definition 6.3. Let ξ ∈ RST be given and consider the survival function Hξ as in Remark
4.13. The conditional randomized stopping time of ξ, given ( f , s) ∈ S , denoted by ξ( f ,s), is
defined to be

ξ
( f ,s)
ω ([0, t]) :=

1
Hξ( f , s)

(
Hξ( f , s) − Hξ( f ⊕ ω�[0,t], s + t)

)
, (6.3)

if Hξ( f , s) > 0 and 0 otherwise.

This is the normalized stopping measure given that we followed the path f up to time
s. In other words this is the normalized stopping measure of the “bush” which follows the
“stub” ( f , s). Note that we can equivalently write

ξ
( f ,s)
ω ([0, t]) =

1
Hξ( f , s)

(
ξ f⊕ω([0, t + s]) − ξ f⊕ω([0, s])

)
.

Definition 6.4. The set of bad pairs relative to ν is defined by

BPν =

{(
( f , s), (g, t)

)
: f (s) = g(t), (6.4)∫

γ( f ⊕ ω�[0,r], s + r) dν( f ,s)(ω, r) + γ(g, t) < γ( f , s) +

∫
γ(g ⊕ ω�[0,r], t + r) dν( f ,s)(ω, r)

}
.

The interpretation of BPν is that in average it is better to stop at ( f , s), chop off the
“bush” and transfer it onto the “stub” (g, t).

The following result constitutes an important intermediate step towards Theorem 1.2.
In the formulation as well as in the proof we interpret the space (C(R+)×R+)×(C(R+)×R+)
as a product X ×Y so that we can make sense of the projections projX and projY.

Proposition 6.5. Let ν be a randomized stopping time which maximizes (5.3) for a Borel
measurable function γ : S → R. Then (Y, ν) = (C(R+) × R+, ν) is a Polish probability
space. Assume that π ∈ JOIN(τ, ν) (where τ can be arbitrary) satisfies

HprojX(π)( f , s) > 0 =⇒ Hν( f , s) > 0 for ( f , s) ∈ S . (6.5)

Then we have π(BPν) = 0.

The interpretation of (6.5) is that if a particle has a strictly positive chance to be alive
under projX(π) then the probability that this particle is still alive under ν is positive as well.

Proof. Note that, given ν′ ∈ RST(µ′) and ν′′ ∈ RST(µ′′), we have that (ν′ + ν′′)/2 ∈
RST((µ′ + µ′′)/2). The probabilistic interpretation of this easy fact goes by visualizing the
random stopping time (ν′ + ν′′)/2 as flipping a coin at time t = 0 and subsequently either
applying the randomized stopping rule ν′ or ν′′.

Working towards a contradiction we assume that there is π ∈ JOIN(τ, ν) such that
π(BPν) > 0. By looking at π̄ := π�BPν

we can assume that π is concentrated on BPν.
As BPν is predictable (recall Remark 4.25) we can assume that projX(π) ∈ RSTτ. Set
ν0 = ν1 := ν. We then use π to define two modifications νπ0 and νπ1 of ν such that the
following hold true:

(1) The terminal distributions µ0, µ1 corresponding to νπ0 and νπ1 satisfy (µ0+µ1)/2 = µ.
(2) νπ0 stops paths earlier than ν0 = ν while νπ1 stops later than ν1 = ν.
(3) The cost of νπ0 plus the cost of νπ1 is bigger than twice the cost of ν, i.e.∫

γ(ω�[0,t], t) dνπ0(ω, t) +

∫
γ(ω�[0,t], t) dνπ1(ω, t) > 2

∫
γ(ω�[0,t], t) dν(ω, t).
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More formally, (2) asserts that for every s ≥ 0,

(νπ0)ω[0, s] ≥ νω[0, s], a.s. (6.6)

and (νπ1)ω[0, s] ≤ νω[0, s], a.s., (6.7)

where νω∈Ω, (νπ0)ω∈Ω, (νπ1)ω∈Ω are disintegrations of ν0, ν
π
0, ν

π
1 respectively w.r.t.W.

If we are able to construct such a pair νπ0, ν
π
1, then (νπ0 + νπ1)/2 is a randomized stopping

time in RST(µ) which is strictly better than ν and therefore yields the desired contradiction.
To define νπ0, we first consider ρ0 = projX(π) which is a randomized stopping time.

As in Remark 4.13 we can view ρ0 as right-continuous decreasing survival function Hρ0 :
S → [0, 1] which starts at 1. It is possible that ρ0 does not decrease to 0 since we allow
particles to survive until∞.

We now define the randomized stopping time νπ0 as the product

Hνπ0 ( f , s) := Hρ0 ( f , s) · Hν( f , s).

The probabilistic interpretation of this definition is that a particle is stopped by νπ0 if it is
stopped by ρ0 or stopped by ν, where these events are taken to be conditionally independent
given the path ω ∈ C(R+). Comparing ν0 and νπ0 the latter will stop some particles earlier
than the first one. We note that this in particular implies that Eνπ0 [T ] ≤ Eν[T ] < ∞, where
T is the projection from C(R+) × R+ onto R+ as defined in (4.9). Also clearly, νπ0 ∈ RST,
i.e. νπ0 inherits adaptivity from ρ0 and ν. Equivalently we can define νπ0 by setting for
A ⊆ C(R+) × R+

νπ0(A) =

∫
A

Hν(ω, t) dρ0(ω, t) +

∫
A

Hρ0 (ω, t) dν(ω, t).

Let us now turn to the definition of νπ1. For A ⊆ C(R+) × R+ we define

ρ1(A) =

∫
S×A

Hν( f , s) dπ(( f , s), (g, t)).

Fix anF 0-measurable disintegration (νω)ω∈C(R+) of ν by (1) of Theorem 4.12. Given ( f , s) ∈
S and (ω, t) ∈ C(R+) × R+ we define a measure on R with support in [t,∞) by setting for
A ⊆ [t,∞)

ν( f ,s),(ω,t)(A) := ν f⊕θt(ω)(A − t + s) = Hν( f , s) ν( f ,s)
θt(ω)(A − t + s), (6.8)

where θt(ω) = (ωs+t − ωt)s≥0. Note that this is a slight generalization of a conditional ran-
domized stopping time, see (6.3). Here we additionally allow a shift of the time parameter
and do not normalize (hence the additional factor Hν( f , s)). This is necessary as in the next
step – for defining νπ1 – we need to trim bushes; i.e. we need to cut some paths at time s
and plant them on a stub at time t. Additionally, we can only move the mass that is present
which accounts for the Hν( f , s) appearing in (6.8) and the definition of ρ1. Moreover, note
that for a set A ⊆ (t, t + u) given ( f , s) the map

(ω, t) 7→ ν( f ,s),(ω,t)(A)

is σ(ωl, t ≤ l ≤ u)-measurable.
As discussed above, randomized stopping times can be represented either as probability

measures on C(R+)×R+ or as probability measures on S . Formally the tagged random time
π is a measure on (C(R+) × R+) × (C(R+) × R+). However in defining νπ1 we consider π as
a probability on S × (C(R+) × R+) which, formally, we could do by defining the measure
π̃ := (r × Id)(π), where r is the natural “projection” from C(R+) × R+ to S .

We define the probability measure νπ1 on C(R+) × R+ by

νπ1(B) = ν1(B) − ρ1(B) +

∫
S×B

ν( f ,s),(ω,t)(Bω) dπ
(
( f , s), (ω, t)

)
,

where Bω = {t ∈ R+ : (ω, t) ∈ B}. The interpretation of this definition is the following. The
support of the randomized stopping time ν can be thought as a tree. The joining π defines
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a plan how to trim the tree, i.e. cut a bush at position ( f , s) and plant it on top of (g, t).
Hence, we take the tree, ν, prepare the position where something will be newly planted,
subtract ρ1 which takes away some mass, and plant as much as possible on these stubs to
end up with a tree of mass one again. Due to the measurability properties of (ω, t) 7→ ν

( f ,s)
(ω,t)

we directly see that νπ1 ∈ RST. Moreover, as projY(π) ≤ ν by the definition of JOIN(τ, ν)
we directly get Eνπ1 [T ] ≤ 2Eν[T ] < ∞.

Summing up we have constructed νπ0, νπ1 ∈ RST such that Eνπ0 [T ],Eνπ1 [T ] < ∞. To prove
the theorem we need to show that νπ = 1

2 (νπ0 + νπ1) ∈ RST(µ) and that
∫
γ dνπ >

∫
γ dν. To

this end let us consider the constributions of νπ0 and νπ1 separately. For A ⊆ Ω × R+ it holds
that

νπ0(A) − ν(A) =

∫
A

Hν(ω, t) dρ0(ω, t) −
∫

A
(ρ0)ω([0, t]) dν(ω, t).

Furthermore, ∫
A
(ρ0)ω([0, t]) dν(ω, t)

=

∫
A

∫
Y

∫ t

0
π((ω, du), d(g, s))νω(dt)W(dω)

=

∫
Ω

∫
Y

∫
R+

∫ ∞

u
1A(ω, t) νω(dt) π((ω, du), d(g, s))W(dω)

=

∫
Ω

∫
Y

∫
R+

Hν(ω, u)ν(ω,u)
θu(ω)(Aω)π((ω, du), d(g, s))W(dω),

where Aω = {t ∈ R+ : (ω, t) ∈ A}. This yields∫
γd(νπ0 − ν) =

∫
π(d( f , s), d(g, t)) Hν( f , s)

[
γ( f , s) −

∫
γ( f ⊕ ω�[0,u], s + u)ν( f ,s)(d(ω, u))

]
.

(6.9)

For νπ1 we can compute∫
γd(νπ1 − ν) =

∫
π(d( f , s), d(g, t))Hν( f , s)

[∫
γ(g ⊕ ω�[0,u], t + u)ν( f ,s)(d(ω, u)) − γ(g, t)

]
.

(6.10)

Putting this together yields

2
∫

γ d(νπ − ν)

=

∫
dπ

(
( f , s), (g, t)

) (
Hν( f , s)

[
−

∫
γ( f ⊕ ω�[0,r], s + r) dν( f ,s)(ω, r) − γ(g, t)+

γ( f , s) +

∫
γ(g ⊕ ω�[0,r], t + r) dν( f ,s)(ω, r)

])
,

which is strictly positive by the definition of bad pairs relative to ν and Assumption (6.5).
Moreover, the last identity holds for any measurable function F : C(R+)×R+ → R instead
of γ. In particular, taking F(ω, t) = G(ω(t)) for some measurable G : R→ R we get

2
∫

G d(νπ − ν)

=

∫
dπ

(
( f , s), (g, t)

) (
Hν( f , s)

[
−

∫
G( f ⊕ ω�[0,r](s + r)) dν( f ,s)(ω, r) −G(g(t))+

G( f (s)) +

∫
G(g ⊕ ω�[0,r](t + r)) dν( f ,s)(ω, r)

])
= 0,
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because {( f , s), (g, t)} ∈ BPν implies that f (s) = g(t) and π is concentrated on BPν. This
proves νπ ∈ RST(µ). Hence, we derive at a contradiction and the claim is proven. �

6.1. Approximation by particular stopping times.

Lemma 6.6. Let τ be a non-randomized F +-stopping time. For any ε, η > 0 there is an
F +-stopping time ρ such that

(1) ρ ≤ τ
(2) W(τ − ρ ≥ ε) ≤ η
(3) W({τ = ∞, ρ < ∞}) ≤ η
(4) ~0, ρ� is closed in C(R+) × R+ and S .

Recall from Lemma 4.7 that for an F +-stopping time, the stochastic interval ~0, ρ� can
be identified with the Borel subset r(~0, ρ�) of S and from Proposition 4.4 that ~0, ρ� is
closed in C(R+) × R iff r(~0, ρ�) is closed in S .

Proof. Fix ε, η > 0. Assume first that

τ(ω) =

t ω ∈ A
∞ otherwise

,

for some F 0
t -measurable set A. If t = 0 we are done, so we assume t > 0. By Proposition

4.4, there is a Borel set A0 ⊆ C([0, t]) such that A = A0 ⊕ C((t,∞)). In this proof we will
often use this kind of identification of F 0

t -measurable events with measurable subsets of
C([0, t]) without explicitly mentioning it. In particular, we will loosely writeW(D) instead
ofW(D ⊕C((t,∞))) orW�C([0,t])(D) for some measurable D ⊆ C([0, t]).

By outer regularity ofW there is an open set O ⊆ C[0, t],O ⊇ A0 such thatW(O\A0) ≤
η/2.Moreover, O can be written as a countable union of open sets On, n ≥ 1,where for each
n the set On is an open sausage corresponding to some continuous function fn : [0, t]→ R
and some ηn > 0, i.e. On = {g : R+ → R, sups≤t | fn(s) − g(s)| < ηn}. For all n ≥ 1 there
is t − ε ≤ tn < t such that the open sausage O′n corresponding to ηn and the function fn
restricted to [0, tn] satisfies W(O′n \ On) ≤ 2−(n+1)η. Put, O′ = ∪n≥1O′n. Then O ⊆ O′ and
W(O′ \ O) ≤ η/2 and thereforeW(O′ \ A0) ≤ η. Set

ρn(ω) =

tn ω ∈ O′n
∞ otherwise

.

Then, �ρn,∞� is open and ~0, ρn� is closed. Put U =
⋃

n�ρn,∞� and define

ρ(ω) = inf{t : (ω, t) ∈ U}.

Then, we have
~0, ρ� =

⋂
n~0, ρn�,

which implies that ρ(ω) = infn ρn(ω).Hence, ρ is an F + stopping time and ~0, ρ� is closed.
Moreover, because t−ε ≤ tn < t we have that for all n ≥ 1 it holds that t−ε ≤ ρn(ω) ≤ τ(ω),
and ρn < τ if ρn < ∞. Hence, it also holds that t − ε ≤ ρ(ω) ≤ τ(ω). Therefore, we can
conclude that

W({|τ − ρ| > ε}) =W({τ = ∞, ρ < ∞}) =W(O′ \ A0) ≤ η.

This proves the Lemma for the case that τ is an F 0-stopping time which only takes the
values t and ∞. From here it is straightforward to prove the Lemma for the case where τ
takes values in a discrete subset of R+.

Assume now that τ is an arbitrary F 0-stopping time. Pick a sequence of stopping times
(τn)n∈N which for any n take only values in some countable discrete set such that τn ↓ τ.
Put ηn = 2−nη/2. According to what we have proved above pick ρn which are very close
(in terms of ε, ηn) to the τn and satisfy that �ρn,∞� is open. Then set

V :=
⋃

n�ρn,∞�
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and
ρ := inf{t : (ω, t) ∈ V}

such that V =�ρ,∞� is open. Note that ρ = infn ρn. Hence, by construction ρ ≤ τ satisfies
the required properties. Indeed, we only have to check thatW(τ − ρ ≥ ε) ≤ η. To this end,
one easily checks that ⋂

n

{τn − ρn < ε} ⊆ {τ − ρ < ε},

which directly yields the estimate.
If τ is an F +-stopping time, it can be represented as a decreasing limit of F 0-stopping

times and repeating the above argument yields the result also in this case. �

Remark 6.7. To prove the previous lemma for a general starting distribution λ we need to
make an additional approximation step for stopping times of the form

τ(ω) =

0 ω0 ∈ A
∞ else

.

Just take an open set O ⊇ A with λ(O \ A) ≤ η. The rest of the argument stays the same.

Corollary 6.8. Let τ be a non-randomized F +-stopping time. Then there is a sequence of
F +-stopping times τn such that

(1) τn ↑ τW-a.s.
(2) W({τ = ∞} ∩ {τn < ∞})→ 0.
(3) For each n the stochastic interval ~0, τn� is closed in C(R+) × R+ and S .

Proof. For each n apply the previous lemma with εn = ηn = 2−n. �

If τ is an F a-stopping time then the result still applies with a minor modification: we
have to allow for an exceptional null set N.

7. A Filtered Kellerer-type Lemma and theMonotonicity Principle

Recall for a set Γ ⊆ S the definition of Γ< from (1.5) and for ν ∈ RST(µ) the definition
of BPν from Definition 6.4.

Definition 7.1. Let ν ∈ RST(µ). Then a set Γ ⊆ S is called γ-monotone iff

BPν ∩ (Γ< × Γ) = ∅.

The following theorem implies Theorem 1.2 stated in the introduction.

Theorem 7.2. Assume that γ : S → R is Borel-measurable, the optimization problem
(5.3) is well-posed and that ν is an optimizer of (OptSEP). Then, ν is supported on a
γ-monotone Borel set Γ ⊆ S .

As an intermediate step towards the proof of Theorem 7.2 we will look for two different
sets ΓL ⊆ S and ΓD ⊆ S where ΓL (which roughly corresponds to Γ<) represents the “still
living pairs”, while ν is concentrated on ΓD which represents the paths which get killed by
ν. Here ΓL is a subset of all ( f , s) which lie before the “death”-set ΓD. The above condition
on Γ then corresponds to: for

(
( f , s), (g, t)

)
∈ BPν, at least one of the following applies:

(1) ( f , s) < ΓL (( f , s) is not living).
(2) (g, t) < ΓD ((g, t) is not dying).

This can equivalently be expressed as

BPν ∩ (ΓL × ΓD) = ∅. (7.1)

Define a (non-randomized) stopping time τν by

τν(ω) := inf{t : Hν ◦ r(ω, t) = 0}.
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Using Lemma 6.6 and Corollary 6.8, by choosing a suitable foretelling sequence of the
stopping times inf{t : Hν(r(ω, t)) ≤ 1/n}, we can pick a sequence τn, n ≥ 1 of F +-stopping
times such that

(1) τn ↑ τν.
(2) τn ≤ n.
(3) ~0, τn� is closed.
(4) τn < inf{t : Hν(r(ω, t)) ≤ 1/n} on {ω : Hν(r(ω, 0)) > 1/n}.

Recall the definition of JOIN(τ, ν) from the beginning of Section 6. Fix n. Then every
joining π ∈ JOIN(τn, ν) satisfies the assumptions of Proposition 6.5 and hence π(BPν) = 0.

For a non-randomized stopping time τwe write τ̄ for the random measure given through
τ̄(dω, dt) = W(dω)δτ(ω)(dt). Note that we can view τ̄ also as a measure on S , as in (5.1).
We also recall from Definition 4.6 that a subset of S is left/right complete iff it is closed
under forming restrictions/extensions of its paths. Subsequently we will prove:

Lemma 7.3 (Filtered Kellerer Lemma). Assume that τ is a (non-randomized) bounded
F +-stopping time such that ~0, τ� is closed.

Let (Y, ν) be a Polish probability space. Consider a (“bad”) set B ⊆ S ×Y. If π(B) = 0
for all π ∈ JOIN(τ, ν), then there exists a right complete set D ⊆ S and a set N ⊆ Y such
that B ⊆ (D × Y) ∪ (S × N) and τ̄(D) = ν(N) = 0.

Admitting Lemma 7.3 we set ΓL = S \ D and ΓD = Y \ N to obtain (7.1).

Proof of Theorem 7.2 from Lemma 7.3. Specify Y = (S , ν). We admit Lemma 7.3 and
apply it to the stopping times τn defined above to find left complete sets Ln := S \ Dn and
sets Γn := S \ Nn such that

BPν ∩ (Ln × Γn) = ∅

and τ̄n(Ln) = 1, ν(Γn) = 1. Setting Γ̃ :=
⋂

n Γn we have BPν ∩ (Ln × Γ̃) = ∅ for all n. With
L :=

⋃
n Ln we have

BPν ∩ (L × Γ̃) = ∅. (7.2)

Put

L+ := {(g, t) : (g�[0,s], s) ∈ L for all s < t}.

Note that L+ is universally measurable: its complement S \ L+ is given by

{(g, t) : ∃s < t, (g�[0,s], s) < L} (7.3)

= projS
{(

(g, t), s
)
∈ S × [0, t) : (g�[0,s], s) < L

}
(7.4)

and is hence analytic.
Because L is left complete we have L ⊆ L+ and also (L+)< ⊆ L. Clearly τ̄n(L) =

τ̄(L+) = 1 for all n. Moreover, the set {t : r(ω, t) ∈ L+} is either empty or closed. Hence,
the convergence τn ↗ τν almost surely implies that τ̄ν(L+) = 1 and therefore ν(L+) = 1.
Hence, setting Γ̄ := L+∩Γ̃ we have ν(Γ̄) = 1, Γ̄< ⊆ (L+)< ⊆ L and by (7.2) we can conclude

BPν ∩ (Γ̄< × Γ̄) = ∅.

Of course this pertains if we replace Γ̄ by a Borel-subset of full measure. �

It remains to establish Lemma 7.3 which we shall now do.

Important Convention. For the remainder of this section we fix a (finite) non-randomized
stopping time τ such that ~0, τ� is closed and satisfies τ ≤ t0 for some t0 ∈ R+.
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7.1. An auxiliary Optimization Problem. We fix a Polish probability space (Y, ν) which
eventually will be taken to be (S , ν), where ν denotes an optimizer of the primal problem
(5.3). Let c : C(R+) × R+ × Y → R+ be a predictable and S - upper semi-continuous
function. We are interested in the following maximization problem

P≤1 = P≤1
c (W, τ, ν) = sup

π∈JOIN(τ,ν)

∫
C(R+)×R+×Y

c dπ (7.5)

and its relation to the dual problem

D≤1 = D≤1
c (W, τ, ν) = inf

(ϕ,ψ)∈DC

(
EW[ϕM

τ ] + Eν[ψ]
)
, (7.6)

DC = {(ϕ, ψ) ∈ Cb(Ω) ×Cb(Y) : ϕ, ψ ≥ 0, c(ω, t, y) ≤ ϕM
t (ω) + ψ(y),∀t ≤ τ, y ∈ Y, ω ∈ Ω},

where ϕM is an S - continuous martingale (cf. Proposition 4.10). To indicate the depen-
dence of DC on the cost function c and the stopping time τ we sometimes write DC(c)
or DC(c, τ). Note that for integrable ϕ we always have EW[ϕ] = EW[(ϕM

τ )] by optional
stopping. This result differs from the already established duality also in that we allow
subprobability measures.

Observe that due to predictability of c the maximization problem is not altered if we
replace PRSTτ by RSTτ in the definition of JOIN(τ, ν), cf. (6.2).

As in Lemma 5.2 it is easy to show D≤1 ≥ P≤1. We now consider the other inequality.

Theorem 7.4. Let c : C(R+)×R+ ×Y → R+ be predictable (in the sense of Remark 4.25),
S - upper semi-continuous and bounded from above. Assume that τ is a bounded stopping
time such that ~0, τ� is closed. Then

P≤1 = sup
π∈JOIN(τ,ν)

∫
C(R+)×R+×Y

c dπ = inf
(ϕ,ψ)∈DC

(EW[ϕ] + Eν[ψ]) = D≤1.

We will first prove a version which applies to not necessarily predictable c. After-
wards, we will use the defining property of PRST, Equation (4.8), to derive the predictable
version.

Theorem 7.5. Let c : C(R+) × R+ × Y → R+ be (upper semi-) continuous and bounded
from above. Then

P≤1,NA := sup
π∈TM(τ,ν)

∫
C(R+)×R+×Y

c dπ = inf
(ϕ,ψ)∈D̃C

(EW[ϕ] + Eν[ψ]) =: D≤1,NA,

where D̃C = {(ϕ, ψ) ∈ Cb(Ω) × Cb(Y) : ϕ, ψ ≥ 0, c(ω, t, y) ≤ ϕ(ω) + ψ(y) for all y ∈ Y, t ≤
τ, ω ∈ Ω}.

Here the set of all tagged random measures is given by

TM(τ, ν) :=
{
π ∈ P≤1(C(R+) × R+ × Y), projC(R+)×R+

(π) ∈ Mτ, projY(π) ≤ ν
}
.

Proof of Theorem 7.5. We reduce the theorem to the classical duality theorem in optimal
transport. Put c̄(ω, y) = supt≤τ(ω) c(ω, t, y). As ~0, τ� is closed and bounded c̄ is continuous.

Then the dual constraint set can be written as

D̃C = {(ϕ, ψ) ∈ Cb(Ω) ×Cb(Y) : ϕ, ψ ≥ 0, c̄(ω, y) ≤ ϕ(ω) + ψ(y) for all y ∈ Y, ω ∈ Ω}.

From the classical duality theorem of optimal transport (3.1) we know that

inf
(ϕ,ψ)∈D̃C

W(ϕ) + ν(ψ) = sup
q∈Cpl(W,ν)

∫
Ω×Y

c̄(ω, y) q(dω, dy) =: P̌.

It remains to show that P̌ = P≤1,NA. From the definition of c̄ and TM it is clear that we
always have P≤1,NA ≤ P̌. To prove the other inequality fix ε > 0 and take q ∈ Cpl(W, ν).
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For any (ω, y) there is t(ω, y) ≤ τ(ω) such that c(ω, t(ω, y), y) + ε ≥ c̄(ω, y). Putting
π(dω, ds, dy) := q(dω, dy)δt(ω,y)(ds) ∈ TM we get∫

C(R+)×R+×Y

c(ω, s, y) π(dω, ds, dy) + ε ≥

∫
C×Y

c̄(ω, y) q(dω, dy).

This implies that P≤1,NA + ε ≥ P̌. Letting ε go to zero we obtain the claim. �

Proof of Theorem 7.4. As c is bounded from above we have P≤1 < ∞. Arguing as in
Lemma 5.5, we may assume that the cost function c is continuous.

We will now argue as in Proposition 5.6, i.e. we consider again the functions h, h̄ as in
(5.14) and we shall apply Theorem 5.4 to the function

F(π, h) =

∫
c + h̄ dπ

for π ∈ TM(τ, ν). The set TM(τ, ν) is convex and compact by Prohorov’s theorem and the
set of h under consideration is convex as well. The function F is continuous by definition
of TM.

This allows us to deduce

P≤1 = sup
π∈JOIN(τ,ν)

∫
c dπ

= sup
π∈TM(τ,ν)

inf
h

(∫
c + h̄ dπ

)
Thm5.4

= inf
h

sup
π∈TM(τ,ν)

(∫
(c + h̄) dπ

)
= inf

h
inf

(ϕ,ψ)∈D̃C(c+h̄)
(W(ϕ) + ν(ψ)) .

The last equality holds by Theorem 7.5. Write

ch(ω, t, y) = c(ω, t, y) +

n∑
i=1

( fi(ω) − f M
i,t (ω))g(y).

For (ϕ, ψ) ∈ D̃C(ch) it holds that

ch(ω, t, y) ≤ ϕ(ω) + ψ(y).

Taking conditional expectations w.r.t. F 0
t in the sense of Definition 4.9 we get using pre-

dictability of c

c(ω, t, y) ≤ ϕM
t (ω) + ψ(y).

This implies that (ϕ, ψ) ∈ DC(c), hence D̃C(ch) ⊆ DC(c). Because W(ϕM
t ) = W(ϕ) this

implies that

P≤1 = inf
h

inf
(ϕ,ψ)∈D̃C(c+h̄)

(W(ϕ) + ν(ψ))

≥ inf
(ϕ,ψ)∈DC(c)

(W(ϕ) + ν(ψ)) = D≤1.

As also D≤1 ≥ P≤1 we can conclude D≤1 = P≤1. �
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7.2. A Choquet argument. Denote by LS Cb(X) the set of bounded lower semi-continuous
functions on X. The following lemma is a simple consequence of Theorem 7.4.

Lemma 7.6. Let c : C(R+)×R+ ×Y → [0, 1] be predictable (in the sense of Remark 4.25)
and S - upper semi-continuous. Assume that τ is a bounded stopping time such that ~0, τ�
is closed. Then

P≤1 = sup
π∈JOIN(τ,ν)

∫
C(R+)×R+×Y

c dπ = inf
(ϕ,ψ)∈DC′

(EW[ϕ] + Eν[ψ]) = D′,

where

DC′ = {(ϕ, ψ) ∈ LS Cb(Ω) × LS Cb(Y) : ϕ, ψ ∈ [0, 1], c(ω, t, y) ≤ ϕM
t (ω) + ψ(y),∀ t ≤ τ, y ∈ Y, ω ∈ Ω}.

(7.7)

Proof. Pick by Theorem 7.4 two continuous, bounded and non-negative functions ϕ, ψ ∈
DC. Then ψ̄ := ψ ∧ 1 is still continuous and as ϕ ≥ 0 we also have (ϕ, ψ̄) ∈ DC. Put
ρ = inf{t ≥ 0 : ϕM

t > 1}. Due to continuity of ϕM the set D := {ϕM > 1} is open.
Hence also {ρ < ∞} = projΩ D is open as projections are open maps. Then the map
ω 7→ ϕM

ρ(ω)(ω) =: ϕ̄(ω) ≤ 1 is lower semi-continuous. Clearly, (ϕ̄, ψ̄) ∈ DC′ with EW[ϕ̄] +

Eν[ψ̄] ≤ EW[ϕ] + Eν[ψ]. �

Corollary 7.7. Let K ⊆ C(R+) × R+ × Y be predictable. Assume that τ is a bounded
stopping time such that ~0, τ� is closed. Then

P≤1 = sup
π∈JOIN(τ,ν)

∫
C(R+)×R+×Y

1K dπ = inf
(ϕ,ψ)∈DC′′

(EW[ϕ] + Eν[ψ]) = D′′, (7.8)

where DC′′ is given by

{(ϕ, ψ) ∈ LS Cb(Ω) × LS Cb(Y) : ϕ, ψ ∈ [0, 1],1K(ω, t, y) ≤ ϕM
t (ω) + ψ(y), t ≤ τ, ω ∈ Ω, y ∈ Y}.

Proof. To indicate the dependence on the set K we write D′′(K) and for notational con-
venience we drop the two primes and simply write D(K). The left hand side in (7.8) is
clearly a capacity. To establish the claim, it is therefore sufficient to show that D(K) is also
a capacity on S ×Y, because the indicator of a closed set is upper semi continuous and the
result then follows from Lemma 7.6 and Choquet’s theorem.

Hence, we need to show the three definining properties of a capacity, namely mono-
tonicity, continuity from below and continuity from above for compact sets. The mono-
tonicity is clear. Let us turn to the continuity from below.

Take an increasing sequence A1 ⊆ A2 ⊆ . . . ⊆ C(R+) × R+ × Y of Borel measurable
predictable sets and put A =

⋃
n An. For all n there are lower semi-continuous functions

ϕn : C(R+) → [0, 1] and ψn : Y → [0, 1] such that 1An (ω, t, y) ≤ ϕM
n (ω, t) + ψn(y) for all

ω, t, y and

ν(ψn) +W(ϕn) ≤ D(An) +
1
n
.

Using a Komlos type lemma we can assume that some appropriate convex combinations
of ψn and ϕn converge a.s. to functions ψ and ϕ. Let us be a little bit more precise here.
By [9, Proposition 3.3], there exist convex coefficients αn

n, . . . , α
n
kn
, n ≥ 1, kn < ∞, and full

measure subsets Ω1 ⊆ Ω,Y1 ⊆ Y such that with ϕ̃n :=
∑kn

i=n α
n
i ϕi, ψ̃n :=

∑kn
i=n α

n
i ψi we have

that for all ω ∈ Ω1 and all y ∈ Y1

lim
n→∞

ϕ̃n(ω) =: ϕ(ω) and lim
n→∞

ψ̃n(y) =: ψ(y) (7.9)

exist. Extend these functions to X and Y, resp., through

lim sup
n→∞

ϕ̃n(ω) =: ϕ(ω) and lim sup
n→∞

ψ̃n(y) =: ψ(y). (7.10)
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Due to the boundedness of ϕ̃n the same equalities hold with ϕM
t and ϕ̃M

n (·, t) in place of ϕ
and ϕ̃n for all t ≥ 0. Given m ≤ n we have for all ω, t, y

1Am (ω, t, y) ≤ ϕ̃M
n (ω, t) + ψ̃n(y),

hence 1Am (ω, t, y) ≤ ϕM
t (ω) + ψ(y) and thus also

1A(ω, t, y) ≤ ϕM
t (ω) + ψ(y).

Given ε > 0, we can find lower semi continuous functions ϕε ≥ ϕ and ψε ≥ ψ such that
W(ϕε) − ε/2 < W(ϕ) = limW(ϕ̃n) and ν(ψε) − ε/2 < ν(ψ) = lim ν(ψ̃n). Therefore we can
conclude

D(A) ≤ lim sup
n

D(An) + 1
n + ε.

To show continuity from above for compact sets, take a sequence K1 ⊇ K2 ⊇ . . . of
compact and predictable sets in X × Y and put K =

⋂
n Kn. Fix ε > 0. Then there is

(ϕ, ψ) ∈ DC′′ s.t. ∫
ψ dν +

∫
ϕ dW ≤ D(K) + ε.

As (ϕ, ψ) ∈ DC′′ it holds that K ⊆ {ϕM + ψ ≥ 1}. On the cost of another ε we can find two
lower semi-continuous functions ϕε ≥ ϕ and ψε ≥ ψ such that Eϕε + ν(ψε) ≤ Eϕ+ ν(ψ) + ε
and K ⊆ {(ϕε)M + ψε > 1}. By lower semi-continuity, {(ϕε)M + ψε > 1} is open. Hence,
there is an N such that for all n ≥ N we must have 1Kn ≤ (ϕε)M + ψε. This implies that

D(Kn) ≤ D(K) + 2ε,

proving the claim. �

Corollary 7.8. Let K ⊆ ~0, τ� × Y be predictable (see Remark 4.25) and assume that
supπ∈JOIN(τ,ν) π(K) < 1/2. Then

1
2

sup
π∈JOIN(τ,ν)

π(K) ≤ inf
(κ,A)∈Cov(K)

(
W(κ < τ) + ν(A)

)
≤ 2 sup

π∈JOIN(τ,ν)
π(K),

where

Cov(K) = {κ is a F +-stopping time, A ⊆ Y : K ⊆�κ,∞� × Y ∪ (C(R+) × R+) × A}.

Proof. We want to apply the previous Corollary. Clearly, P≤1(1K) = supπ∈JOIN(τ,ν) π(K).
We have to show that

D(K) ≈ inf
(κ,A)∈Cov

(
W(κ < ∞) + ν(A)

)
.

To this end take (ϕ, ψ) ∈ DC′′. As the cost function is {0, 1}-valued, the dual constraint

1K((ω, t), y) ≤ ϕM
t (ω) + ψ(y)

implies that

K ⊆ {(ω, t) : ϕM
t (ω) ≥ 1/2} × Y ∪C(R+) × R+ × {y : ψ(y) ≥ 1/2} .

Hence, on the cost of a factor 2 we can replace ψ by the indicator of a set A ⊆ Y. We can
just take A = {ψ ≥ 1/2}. In particular, given ψ we can safely replace it by ψ̃ = 1Aψ ∧ 1
because ψ̃ has smaller expectation and at least as good covering properties as ψ.Obviously,
1/2ν(A) ≤ Eνψ̃ ≤ ν(A).

Let us turn our attention to the set E = {(ω, t) : ϕM
t (ω) ≥ 1

2 }. By the condition on π
given in the corollary, we may assume that ϕM

0 < 1
2 , and choose 1

2 − ϕ
M
0 > ε > 0. Define

the stopping time
κ(ω) = inf{t ≥ 0 : ϕM

t (ω) > 1/2 − ε},
with inf(∅) = ∞. As ϕM is S - lower semi-continuous, the set

�κ,∞~= {(ω, t) : ∃s < t, ϕM
s (ω) >

1
2
− ε} =

⋃
s

r−1({(g, t) : t > s, ϕM(g�[0,s]) >
1
2
− ε})
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is open, and therefore defines an F +-stopping time by Lemma 4.7. Due to lower semi-
continuity we have E ⊆ �κ,∞~. Therefore, (κ, A) ∈ Cov(K).

By Proposition 4.11, there is a continuous martingale ζ which almost surely equals ϕM

at all stopping times. This allows us to deduce that

E[ϕM
0 ] = E[ϕM

κ ] = E[ζκ] ≥
(

1
2
− ε

)
W(κ < τ).

As ε > 0 is arbitrary, this implies

inf
(κ,A)∈Cov(K)

(
W(κ < τ) + ν(A)

)
≤ 2 sup

π∈JOIN(τ,ν)
π(K).

To show the other inequality, take an open set O ⊇ {κ < τ} satisfyingW(O) ≤ 2W(κ < τ).
Define a martingale ϕ̄M by putting

ϕ̄(ω) = 1O(ω).

As O is open ϕ̄ is lower semi-continuous and ϕ̄M is an S - lower semi-continuous martingale
and we have Eϕ̄ ≤ 2W(κ < τ). Take an open set Ā ⊇ A satisfying ν(Ā) ≤ 2ν(A). Then,
(ϕ̄,1Ā) ∈ DC′′ and we can conclude

1
2

sup
π∈JOIN(τ,ν)

π(K) ≤ inf
(κ,A)∈Cov(K)

(
W(κ < τ) + ν(A)

)
.

�

7.3. Proof of Lemma 7.3. Recall that we assume that the stopping time τ is smaller than
or equal to some number t0. Moreover, recall that for anF + stopping time κwe can identify
the set �κ,∞~ with a right complete Borel set in S by Lemma 4.7.

Proof of Lemma 7.3. By Corollary 7.8, for each ε > 0 there exist an F +-stopping time κ
and a set N ⊆ Y such that B ⊆ (�κ,∞~×Y) ∪ (S × N) and W(κ < τ) + ν(N) ≤ 2ε. Put
D =�κ,∞~ and note that τ̄(D) + ν(N) ≤ 2ε.

Fix η > 0 and pick for each k some right complete set Dk ⊆ S and sets Nk ⊆ Y such
that B ⊆ (Dk × Y) ∪ (S × Nk) and τ̄(Dk) + ν(Nk) ≤ η2−k. Then setting D̃ =

⋂
k Dk which is

still right complete we get

B ⊆
⋂

k

(
(Dk × Y) ∪

(
S ×

(⋃
j N j

)))
⊆

(
D̃ × Y

)
∪

(
S ×

(⋃
j N j

))
.

This shows that D,N can be chosen so that τ̄(D) = 0 and ν(N) < ε, for any ε > 0.
Similarly, taking a sequence of such right complete sets D′k and sets N′k such that τ̄(D′k) = 0
and ν(N′k) < η2−k, we see that

B ⊆
⋃

k

(
D′k × Y

)
∪

S × ⋂
l

N′l

 .
The desired conclusion follows upon taking the right complete set D =

⋃
k D′k and N =⋂

k N′k. �

8. Embeddings in abundance

In this section, we will show that all existing solutions to (OptSEP) can be established
by Theorem 7.2. Moreover, we will give further examples to demonstrate how new embed-
dings as well as higher dimensional versions of classical embeddings can be constructed
using the monotonicity principle.
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8.1. A secondary maximisation result. In certain cases, it is useful to identify particular
solutions as the solutions not only to a primary optimisation result, but to further identify
the unique optimiser within this class of a second maximisation problem in order to resolve
possible non-uniqueness of a maximiser. To this end, we begin by making the following
definition: suppose γ : S → R is a Borel-measurable function, we write Opt(γ, µ) for the
set of optimisers of Pγ(W, µ). Observe that, when Pγ(W, µ) < ∞, and the map π 7→

∫
γ dπ

is upper semi-continuous the set Opt(γ, µ) is a closed subset of RST(W, µ), and hence also
compact.

Theorem 8.1. Let γ, γ′ be Borel measurable functions on S . Suppose that Opt(γ, µ) , ∅
and that ν ∈ Opt(γ, µ) is an optimiser of:

Pγ′ |γ(W, µ) = sup
ν̃∈Opt(γ,µ)

∫
γ′dν̃. (8.1)

Then there exists a Borel set Γ ⊆ S such that ν(Γ) = 1 and

(BPν ∪ SBPν) ∩ (Γ< × Γ) = ∅, (8.2)

where

SBPν =

{(
( f , s), (g, t)

)
: f (s) = g(t), (8.3)∫

γ( f ⊕ ω�[0,r], s + r) dν( f ,s)(ω, r) + γ(g, t) = γ( f , s) +

∫
γ(g ⊕ ω�[0,r], t + r) dν( f ,s)(ω, r),∫

γ′( f ⊕ ω�[0,r], s + r) dν( f ,s)(ω, r) + γ′(g, t) < γ′( f , s) +

∫
γ′(g ⊕ ω�[0,r], t + r) dν( f ,s)(ω, r)

}
.

Proof. We will show that π(BPν ∪ SBPν) = 0 for all π ∈ JOIN(τn, ν) with τn defined as
in the proof of Theorem 7.2. Then the very same proof as for Theorem 7.2 applies again.
Hence, the result follows by the following straighforward variant of Proposition 6.5. �

Proposition 8.2. Let ν be a randomized stopping time which maximizes (8.1). Assume that
π ∈ JOIN(τ, ν) (where τ can be arbitrary) satisfies

HprojX(π)( f , s) > 0 =⇒ Hν( f , s) > 0 for ( f , s) ∈ S .

Then we have π(BPν ∪ SBPν) = 0.

Proof. As ν ∈ Opt(γ, µ) we only have to show that π(SBPν) = 0 by Proposition 6.5.
However, by the very same construction as in the proof of Proposition 6.5 we can again
argue by contradiction proving the claim. Indeed, we only have to evaluate the integrals of
γ and γ′ as in (6.9) and (6.10), sum them up, use the assumptions and derive a contradiction.

�

Theorem 8.1 will be most useful if we combine it with the following Lemma which
allows us to find a particularly nice set Γ reflecting many properties of Brownian motion.
To this end take ν ∈ Opt(γ, µ) and put

U0 :=
{

( f , s) ∈ S : Hν( f , s) > 0,
∫

ω(t) dν( f ,s)(ω, t) , 0
}

U1 :=

( f , s) ∈ S : Hν( f , s) > 0,
∫

ω(t)2 dν( f ,s)(ω, t) −
(∫

ω(t) dν( f ,s)(ω, t)
)2

= 0

 ,
and U := U0 ∪ U1.

Take the sequence of stopping times (τn)n∈N as in the proof of Theorem 7.2. Due to the
defining martingale property of PRST we have:

Lemma 8.3. For every π ∈ PRSTτn it holds that π(U) = 0.
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Proof. We will prove that π(Ui) = 0 for i = 0, 1 seperately. Let us start with U0. We will
argue by contradiction. Put

U+
0 :=

{
( f , s) ∈ S : Hν( f , s) > 0,

∫
ω(t) dν( f ,s)(ω, t) > 0

}
and assume that there is π ∈ PRSTτn such that π(U+

0 ) > 0. By Lemma 4.19, we can
assume that π ∈ RSTτn . Let ρ be the representation of π given by Theorem 4.12 (4) and α
the representation of ν. Then, there exists a set A ∈ F̄ρ with P̄(A) > 0 such that

AS := {r(ω, ρ(ω, u)), (ω, u) ∈ A} ⊆ U+
0 .

Define Mt := B̄t Ē[1A|F̄t] where B̄t(ω, u) = Bt(ω). Then, (Mρ+s)s≥0 is an F̄ρ+s martingale
as A ∈ F̄ρ. Define κ := ρ ∨ α. Applying optional stopping twice, we get ĒMκ = ĒMρ.
However,

Ē(Mκ − Mρ) =

∫
AS

Hν( f , s)
∫

ω(t) dν( f ,s)(ω, t) dπ(( f , s)) > 0,

by the choice of A and κ. This is a contradiction.

Let us turn to U1. By the first part of the proof we can assume that
∫
ω(t) dν( f ,s)(ω, t) = 0.

Also, as before we assume that there is π ∈ RSTτn with π(U1) > 0 and consider the
representations ρ and α of π and ν respectively. We find again a set A1 ∈ F̄ρ such that
P̄(A1) > 0 and

{r(ω, ρ(ω, u)), (ω, u) ∈ A1} ⊆ U1.

Considering M1
t := 1A1 (B̄2

t − t) with B̄t as above and applying optional stopping twice, with
ρ and κ = ρ ∨ α we get ĒM1

ρ = ĒM1
κ . However, as π ≤ τn we also have using the definition

of U1

Ē[M1
κ − M1

ρ] = Ē[1A1 (ρ − κ)] < 0,

deriving a contradiction. �

Then another application of Lemma 7.3 gives:

Proposition 8.4. Assume we are in the situation of Theorem 8.1. Then there is a set Γ ⊆ S
such that (8.2) holds and

U ∩ Γ< = ∅. (8.4)

Proof. Either by Corollary 7.8 or by applying Lemma 7.3 with Y = {y} and probability
measure δy for any n we get the existence of a left complete set Ln such that

U ∩ Ln = ∅

and τ̄n(Ln) = 1. Proceeding as in the proof of Theorem 7.2 yields the claim. �

8.2. Recovering classical embeddings.

Theorem 8.5 (The Azéma-Yor embedding, cf. [4]). Let ϕ : R+ → R be a bounded, strictly
increasing right-continuous function. There exists a stopping time τAY which maximises

E

[
ϕ

(
sup
t≤τ

Bt

)]
over the set RST(µ), and which is of the form τAY = inf

{
t > 0 : Bt ≤ ψ

(
sups≤t Bs

)}
a.s., for

some increasing function ψ.

For subsequent use, it will be helpful to write, for ( f , s) ∈ S , f̄ = supr≤s f (r),
¯
f =

infr≤s f (r) and | f |∗ = supr≤s | f (r)|.
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Proof. Fix another bounded and strictly increasing continuous function ϕ̃ : R+ → R.
Observe that we can define S - upper-semi-continuous functions γ(( f , s)) = ϕ( f̄ ) and
γ′(( f , s)) = −ϕ̃( f̄ )( f (s))2. By the assumptions on ϕ and the second moment condition
on µ, both Pγ(W, µ) and Pγ′ |γ(W, µ) are finite, and hence optimisers exist. Choose one
such optimiser, which we denote τAY (although this may be in RST(µ)). We can therefore
apply Proposition 8.4 to obtain the existence of a set Γ ⊆ S such that (8.2) and (8.4) hold.

Define

Rcl = {(m, x) : ∃(g, t) ∈ Γ, ḡ ≤ m, g(t) = x}

Rop = {(m, x) : ∃(g, t) ∈ Γ, ḡ < m, g(t) = x} ∪ {(m,m) : ∃(g, t) ∈ Γ, ḡ = m, g(t) = m} ,

and write τcl, τop for the first entrance times of the process (B̄t(ω), Bt(ω)) into the sets Rcl
and Rop respectively. Then we claim τcl ≤ τAY ≤ τop a.s. First observe that τAY is supported
in Γ, so (B̄τAY , BτAY ) ∈ ΓW-a.s., and hence τcl ≤ τAY W-a.s..

We now suppose for a contradiction that τAY > τop with positive probability. In partic-
ular, we observe that there exist paths ( f , s) ∈ Γ< such that ( f̄ , f (s)) ∈ Rop. Consider first
the case where ( f̄ , f (s)) ∈ {(m, x) : ∃(g, t) ∈ Γ, ḡ < m, g(t) = x}. Then we can find (g, t) ∈ Γ

such that g(t) = f (s) and f̄ > ḡ. In particular, consider the effect of transferring the bush
τ

( f ,s)
op onto (g, t). This will certainly not worsen γ, and will strictly improve the average,

unless no paths in the bush have a maximum greater than ḡ. Hence, (( f , s), (g, t)) ∈ BPτAY

unless no paths have a maximum above ḡ. However, in the latter case, it is immediate that
we are in SBPτAY .

So it remains to argue in the case where there exists ( f , s) ∈ Γ< such that ( f̄ , f (s)) ∈
{(m,m) : ∃(g, t) ∈ Γ, ḡ = m, g(t) = m}. We choose (g, t) ∈ Γ such that g(t) = ḡ = f̄ . Since
( f , s) ∈ Γ<, we may assume HτAY (( f , s)) > 0, and hence there is a ( f ′, s′) ∈ Γ< such that
( f ′, s′) � ( f , s), f (s) = f ′(s′) and f̄ ′ > f̄ . It follows that (( f ′, s′), (g, t)) ∈ BPτAY , and
therefore we deduce that τcl ≤ τAY ≤ τop W-a.s..

Finally, we define
ψ(m) = sup{x : ∃(m, x) ∈ Rcl}.

It follows from the definition of Rcl that ψ(m) is increasing, right-continuous, and τcl =

inf{t ≥ 0 : Bt ≤ ψ(B̄t)}. Moreover, we see that

Rcl\Rop ⊆ {(m, x) : x ≤ ψ(m) < m, ψ(m−) , ψ(m)}∪{(m, ψ(m)) : ψ(m) < m, ψ(m−) = ψ(m)}.

However, {m : ψ(m−) , ψ(m)} is countable, and hence by standard properties of Brownian
motion, a Brownian motion never hits the first of these two sets. On the other hand, if
ψ(m) < m, then a Brownian motion started at ψ(m) immediately enters (−∞, ψ(m)), and so
τcl = τop a.s.. �

Theorem 8.6 (The Jacka Embedding, cf. [26]). Let ϕ : R+ → R be a bounded, strictly
increasing right-continuous function. There exists a stopping time τJ which maximises

E

[
ϕ

(
sup
t≤τ
|Bt |

)]
over the set RST(µ), and which is of the form

τJ = inf
{

t > 0 : Bt ≥ γ−

(
sup
s≤τ
|Bs|

)
or Bt ≤ γ+

(
sup
s≤τ
|Bs|

)}
a.s., for some functions γ+, γ−, where γ− is decreasing, and γ+(y) ≥ γ−(y) for all y > y0,
γ−(y) = −γ+(y) = ∞ for y < y0, some y0 ≥ 0.

Proof. The proof runs along similar lines to the proof of Theorem 8.5, once we define

Rcl = {(m, x) : ∃(g, t) ∈ Γ, |g|∗ ≤ m, g(t) = x}

Rop = {(m, x) : ∃(g, t) ∈ Γ, |g|∗ < m, g(t) = x}

∪ {(x,m) : ∃(g, t) ∈ Γ, |g|∗ = m, g(t) = x, |x| = m} ,
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τAY

Bt

Bt

(a) The Azéma-Yor construction.

τ̂ t

Bt

(b) The Root construction

τ̂
t

Bt

(c) The Rost construction

t0 τ̂ t

Bt

(d) The Cave construction

Figure 3. Graphical representations of the Azéma-Yor, Root, Rost and
Cave constructions.

and then take

γ−(m) = inf{x : ∃(m, x) ∈ Rcl}
γ+(m) = sup{x : ∃(m, x) ∈ Rcl}.

�

Remark 8.7. We observe that both the results hold for one-dimensional Brownian motion
with an arbitrary starting distribution λ satisfying the usual convex ordering condition.

Theorem 8.8 (The Perkins Embedding, cf. [36]). Suppose µ({0}) = 0. Let ϕ : R2
+ → R

be a bounded function which is strictly increasing and left-continuous in both arguments.
There exists a stopping time τP which minimises

E

[
ϕ

(
sup
t≤τ

Bt,− inf
t≤τ

Bt

)]
over the set RST(µ), and which is of the form τP = inf

{
t > 0 : Bt <

(
γ+(B̄t), γ−(

¯
Bt)

)}
a.s.,

for some decreasing functions γ+(m) and γ−(i) which are left- and right-continuous respec-
tively.

Proof. Our primary objective function will of course be to maximise
∫
γ(( f , s)) dξ, where

γ(( f , s)) = −ϕ( f̄ ,−
¯
f ); observe that this is an upper-semi-continuous function on S . We

again introduce a secondary maximisation problem: specifically, we consider the func-
tional γ′(( f , s)) = ( f (s))2ϕ̃( f̄ ),−

¯
f ) for some bounded continuous and strictly increasing

function ϕ̃ : R2
+ → R. As above, we observe that both the primary and secondary problems

are well-posed, and hence admit maximisers, and we can apply Theorem 8.1. Take Γ to be
the resulting set supporting an arbitrary optimiser which we denote τP.

Observe from the fact that µ({0}) = 0 that we can always restrict Γ to the set of points
such that

¯
f < 0 < f̄ . We first show that Γ can be assumed to contain no points of the
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type: {( f , s) :
¯
f < f (s) < f̄ }. This is straightforward from the secondary monotonicity

principle, since if there were such a point ( f , s) with f (s) = x say, then we must also have
passed through x on the way to set the most recent extremum (i.e. either between setting the
current minimum and the current maximum, or vice versa). Then there exists (g, t) ∈ Γ<

such that g(t) = x and ϕ(ḡ,−
¯
g) < ϕ( f̄ ,−

¯
f ), contradicting Theorem 8.1.

Now consider the sets:

Rcl =
{
(m, x) : ∃(g, t) ∈ Γ, g(t) = x =

¯
g, ḡ ≥ m

}
∪

{
(i, x) : ∃(g, t) ∈ Γ, g(t) = x = ḡ,

¯
g ≤ i

}
=

¯
Rcl ∪ R̄cl

Rop =
{
(m, x) : ∃(g, t) ∈ Γ, g(t) = x =

¯
g, ḡ > m

}
∪

{
(i, x) : ∃(g, t) ∈ Γ, g(t) = x = ḡ,

¯
g < i

}
=

¯
Rop ∪ R̄op,

and their respective hitting times, τcl, τop. It is immediate that τcl ≤ τP a.s., and an essen-
tially identical argument to that used in the proof of Theorem 8.5 gives τP ≤ τop a.s..

We now set

γ+(m) = sup{x < 0 : (m, x) ∈
¯
Rcl}

γ−(i) = inf{x > 0 : (i, x) ∈ R̄cl}.

Then the functions are both clearly decreasing and left- and right-continuous respectively,
by definition of the respective sets

¯
Rcl, R̄cl. Moreover, it is immediate that

τcl = inf
{
t > 0 : Bt <

(
γ+(B̄t), γ−(

¯
Bt)

)}
,

and we deduce that τcl = τop a.s. by standard properties of Brownian motion. The conclu-
sion follows. �

Theorem 8.9 (Maximizing the range). Let ϕ : R2
+ → R be a bounded function which is

strictly increasing and right-continuous in both variables. There exists a stopping time τxr

which maximises

E

[
ϕ

(
sup
t≤τ

Bt,− inf
t≤τ

Bt

)]
over the set RST(µ), and which is of the form

τxr = inf
{
t > 0 : (

¯
Bt, B̄t, Bt) ∈

(
γ−(

¯
Bt, B̄t), γ+(

¯
Bt, B̄t)

)}
a.s.,

for some right-continuous functions γ−(i,m) increasing in i decreasing in m and γ+(i,m)
increasing in m decreasing in i.

Proof. We again introduce a secondary maximisation problem: specifically, we consider
the functional γ′(( f , s)) = −ϕ̃( f̄ ,

¯
f ) f (s)2 for some bounded continuous strictly increasing

function ϕ̃ : R2
+ → R. As above, we observe that both the primary and secondary problems

are well-posed, and hence admit maximisers, and we can apply Theorem 8.1. Take Γ to be
the resulting set supporting an arbitrary optimiser which we denote τxr.

We put I(
¯
b, b̄) := conv({g(t) : (g, t) ∈ Γ,

¯
g =

¯
b, ḡ = b̄}), where conv denotes the convex

hull. Moreover, we set γ−(
¯
b, b̄) = min{x : x ∈ I(

¯
b, b̄)} and γ+(

¯
b, b̄) = max{x : x ∈ I(

¯
b, b̄)}.

If γ−(
¯
b, b̄) =

¯
b we set γ−(

¯
d, d̄) =

¯
d for all

¯
d ≤

¯
b and d̄ ≥ b̄ and anologously for γ+.

We claim that γ+ is increasing in b̄ and decreasing in
¯
b and γ− is decreasing in b̄ and

increasing in
¯
b, i.e. I(

¯
b, b̄) ⊆ I(

¯
d, d̄) if

¯
d ≤

¯
b and b̄ ≤ d̄. Assume the contrary, then with the

notation as before there is x ∈ I(
¯
b, b̄)\ I(

¯
d, d̄).W.l.o.g. we can assume that x = γ−(

¯
b, b̄) >

¯
b.

Then there is ( f , s) ∈ Γ<, (g, t) ∈ Γ with
¯
g =

¯
b, ḡ = b̄, g(t) = γ−(

¯
b, b̄) = f (s) and

¯
f =

¯
d, f̄ =

d̄.
Now consider the effect of transferring the bush τ( f ,s)

xr onto (g, t). As for the Azéma-Yor
embedding, this will not worsen γ, and it will strictly improve the average unless no paths
in the bush have a minimum which is less or equal to

¯
g =

¯
b. In the former case we have

(( f , s), (g, t)) ∈ BPτxr and in the latter case we have (( f , s), (g, t)) ∈ SBPτxr .
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Putting
Rcl = {(

¯
b, b̄, b) : b ∈ I(

¯
b, b̄)}

and

Rop = {(
¯
b, b̄, b) : ∃

¯
d ≥

¯
b, d̄ ≤ b̄ one inequality being strict, s.t. b ∈ I(

¯
d, d̄)}

with respective hitting times τcl and τop we can deduce similarly as in the Azéma-Yor
embedding that τcl ≤ τrx ≤ τop a.s. and also that τcl = τop a.s. and the conclusion follows.

�

Remark 8.10. Considering the last argument we see that looking for minimizers of the
range the picture turns inside out. The stopping region will be of the form (−∞, a)∪ (b,∞)
and we can directly deduce that we only stop in a minimum or a maximum, i.e. the three
dimensional picture reduces to a two dimensional picture and we are back in the Perkins
case. This symmetry is similar to the symmetry in the Root and Rost embedding.

Remark 8.11. We observe that, in the case of Theorem 8.9, the characterisation provided
would not appear to be sufficient to identify the functions γ+, γ− given the measure µ. This
is in contrast to the constructions of Azéma-Yor, Perkins and Jacka, where knowledge of the
form of the embedding is sufficient to identify the corresponding stopping rule: consider
the Azéma-Yor embedding: from Theorem 8.5 it is clear that if we stop with maximum
above s, then we must hit s before stopping, and there exists y = ψ(s) such that we stop at
or above y if our maximum is above s. Moreover, we only stop above y if our maximum
is at least s. We conclude that, conditional on hitting s before stopping, we must embed µ
restricted to [y,∞) (with some more care needed if there are atoms of µ). However there is
a unique y such that this distribution has mean s, and this y must then be ψ(s).

8.3. The Vallois-embedding and optimizing functionals of local time. In this section
we shall be interested to determine the stopping rule which solves

sup{E[h(Lτ)] : τ solves (SEP)}, (8.5)

where L the denotes the local time of Brownian motion in 0 and h is a convex or concave
function.

A large part of the argument is virtually identical to the argument which we used in
the previous section. The most involved part will in fact be to show that the problem
(8.5) admits a maximizer. As mentioned below Definition 4.3, L is not S - continuous.
Nevertheless we will prove the following result.

Lemma 8.12. Let ξn, n ≥ 1, ξ ∈ RST(µ) and assume that ξn → ξ weakly. Then Lξn → Lξ
weakly. In fact, if ρn, ρ are the representations of ξn, ξ on Ω̄, then L̄ρn → L̄ρ in L1(Ω̄,P⊗λ).

We first give a simple result on the connection between convergence of stopping times
in RST(µ) and their representations.

Proposition 8.13. Let ξn, ξ, ρn and ρ be as in Lemma 8.12. Then ξn → ξ weakly iff ρn → ρ
in probability.

Proof. Let X ∈ Cb(C(R+) × R+). Recall that∫
Xt(ω) dξ(ω, t) =

∫
W(dω)

∫
ξω(dt)Xt(ω) =

∫
W(dω)

∫
X(ω, t) dAξ

t (ω) = (8.6)

=

∫
W(dω)

∫
λ(dx)Xρ(x,ω)(ω) = ĒXρ, (8.7)

and hence∫
Xt(ω) d(ξ − ξn)(ω, t) =

∫
W(dω)

∫
λ(dx)

[
Xρ(x,ω)(ω) − Xρn(x,ω)(ω)

]
. (8.8)

Considering processes which depend only on the time t but not ω, i.e. Xt(ω) = Xt, we
obtain that ξn → ξ weakly implies that ρn → ρ in probability. Conversely, if ρn → ρ
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in probability under P̄, then also ρn → ρ almost surely along some subsequence of every
subsequence. By dominated convergence, ξn → ξ weakly. �

Proof of Lemma 8.12. As a consequence of Proposition 8.13 we have that ρn∧ρ→ ρ, ρn∨

ρ → ρ. Note also that for every minimal embedding ξ′ ∈ RST(µ′), Eξ′L =
∫
|x| dµ′(x).

Write µn for the law embedded by ρn ∧ ρ. Then µn → µ weakly, and Lρn∧ρ ≤ Lρ, so (using
Lemma 4.20) ĒLρn∧ρ =

∫
|x| dµn →

∫
|x| dµ and hence ĒLρn∧ρ → ĒLρ. This implies that

Lρn∧ρ → Lρ in L1(Ω̄,P ⊗ λ). Since Lρn∨ρ + Lρn∧ρ = Lρ + Lρn we also find that ĒLρn∨ρ =

Ē
[
Lρn + (Lρ − Lρn )+

]
= ĒLρ + Ē

[
(Lρ − Lρn )+

]
→ ĒLρ, where we used that ξn, ξ ∈ RST(µ).

Thus Lρn∨ρ → Lρ in L1(Ω̄,P ⊗ λ). Combining these results, we see that Lρn → Lρ in
L1(Ω̄,P ⊗ λ). �

With these tools, we are now able to show:

Theorem 8.14. Let h : [0,∞)→ R be a bounded, strictly concave function.
(1) There exists a stopping time τV− which maximises

E [h (Lτ)]

over the set RST(µ), and which is of the form τV− = inf {t > 0 : Bt < (ϕ− (Lt) , ϕ+ (Lt))}
a.s., for some decreasing, non-negative function ϕ+ and increasing, non-positive
function ϕ−.

(2) There exists a stopping time τV+ which minimises

E [h (Lτ)]

over the set RST(µ), and which is of the form inf {t > 0 : Bt < (ϕ− (Lt) , ϕ+ (Lt))} ∧
Z a.s., for some increasing, non-negative function ϕ+, decreasing, non-positive
function ϕ−, and an F0-measurable random variable Z with P(Z = 0) = µ(0).

Proof. We consider the second case, the first case being slightly simpler. We will apply
Theorem 8.1 to the optimisations corresponding to: γ((ω, t)) = −h(Lt(ω)) and γ′((ω, t)) =

−e−Lt(ω)B2
t (ω).

By Lemma 8.12 we observe that, if ξn ∈ RST(µ) is a sequence of stopping times
such that V∗ = limE[h(Lξn )] = sup{E[h(Lτ)] : τ ∈ RST(µ)}, then (possibly passing to a
subsequence) ξ = limn ξn satisfies E[h(Lξ)] = V∗. Hence, the set Opt(γ, µ) is non-empty
and closed and we can apply Theorem 8.1. Write τV+ = ξ.

By an application of Theorem 4.1 and Proposition 4.4, there is a function L : S → R+

such that forW-a.e. ω ∈ C(R+) it holds that Lt(ω) = L(ω�[0,t], t). Define the sets

Rop = {(l, x) : ∃(g, t) ∈ Γ, g(t) = x, L((g, t)) > l} ,

Rcl = {(l, x) : ∃(g, t) ∈ Γ, g(t) = x, L((g, t)) ≥ l} .

It follows immediately that τcl ≤ τV+. Moreover, by the monotonicity principle, we imme-
diately observe that (l, 0) < Rop for any l ≥ 0, and τV+ ≤ τop. It follows that τV+

(Ω × {0}) =

µ({0}). We consider τV+ on {τV+ ≥ η}, for η > 0. Write τηop = inf{t ≥ η : (Lt, Bt) ∈ Rop}
and τηcl = inf{t ≥ η : (Lt, Bt) ∈ Rcl}. Then on this set τηcl ≤ τV+ ≤ τ

η
op. Moreover, define

ϕ+(l) = inf{x > 0 : (l, x) ∈ Rop} and ϕ−(l) = sup{x < 0 : (l, x) ∈ Rop}. Observe that,
since τV+ ≤ τop, if P(τV+ > η) > 0, then |ϕ+(η) − ϕ−(η)| > 0. Moreover, ϕ+(l) is clearly
right-continuous, and increasing, so it must have at most countably many discontinuities,
and similarly for ϕ−(l). Moreover, we can write

inf {t ≥ η : Bt < (ϕ− (Lt) , ϕ+ (Lt))} ≤ τ
η
cl ≤ τ

η
op ≤ inf

{
t ≥ η : Bt <

[
ϕ− (Lt+) , ϕ+ (Lt+)

]}
and observe that (by standard properties of Brownian motion) the stopping times on the
left and right are almost surely equal (since there are at most countably many discon-
tinuities, and ϕ+(l) and −ϕ−(l) are bounded away from zero on [η,∞)). It follows that
τV+ = inf {t ≥ η : Bt < (ϕ− (Lt) , ϕ+ (Lt))} on {τV+ ≥ η}, and since η > 0 was arbitrary, we
get the desired behaviour. �
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Remark 8.15. The arguments above extend from local time at 0 to a general continuous
additive functional A. Writing Lx for local time in x, A can be represented in the form At :=∫ t

0 Lx
s dmA(x). Let f be a convex function such that f ′′ = mA in the sense of distributions.

If
∫

f dµ < ∞, then Proposition 8.13 still holds with A in place of L; the above proof is
easily adapted to the more general situation.

In this manner, we deduce the existence of optimal solutions to (SEP) for functionals
depending on A. By analogy with Theorem 8.14 this can be used to generate (inverse-
/cave-) barrier-type embeddings of various kinds. Other generalisations and variants may
be considered in a similar manner. We leave specific examples as an exercise for the reader.

Remark 8.16. In Cox and Obłój [15], embeddings are constructed which maximise certain
double-exit probabilities: for example, to maximise the probability that both B̄τ ≥ b̄ and

¯
Bt ≤ ¯

b, for given levels b̄ and
¯
b. In this case, the embedding is no longer naturally viewed

as a barrier-type construction; instead, it is natural to characterise the embedding in terms
of where the paths with different crossing behaviour for the barriers finish (for example,
the paths which only hit the upper level may end up above a certain value, or between
two other values). However, it is possible, again using a suitable secondary maximisation
problem, to show that there exists an optimiser demonstrating the behaviour characterising
the Cox-Obłój embeddings. (Specifically, if we write Hb(( f , s)) = inf{t ≤ s : f (t) = b},

¯
H = H

¯
b ∧ Hb̄ and H̄ = H

¯
b ∨ Hb̄ then the secondary maximisation problem γ′(( f , s)) =

(( f (s) −
¯
H(( f , s)))21

¯
H≤s/2 − (( f (s) − H̄(( f , s)))21H̄≤s is sufficient to rederive the form of

these embeddings.)

8.4. Root and Rost Embeddings in Higher Dimensions. In this section we consider
the Root and Rost constructions of Sections 2.1 and 2.2 in the case where the Brownian
motion is in Rd, for d ≥ 2 and we have a general initial distribution. In Rd, since the
Brownian motion is transient, it is no longer straightforward to assert the existence of an
embedding. In general, [42] gives necessary and sufficient conditions for the existence of
an embedding, and without the additional condition that E[τ] < ∞. In the Brownian case,
Rost’s conditions for d ≥ 3 can be written as follows.6 There exists a stopping time τ such
that B0 ∼ λ and Bτ ∼ µ if and only if for all x ∈ Rd∫

u(x, y)λ(dx) <
∫

u(x, y)µ(dy), where u(x, y) = |x − y|2−d.

However, it is not clear that such a stopping time will satisfy the condition

E[τ] = d−1
(∫
|x|2(µ − λ)(dx)

)
.

As a result, it is not straightforward to give simple criteria for the existence of a solution in
RST(µ). However, assuming that we do have such a solution, then we are able to state the
following:

Theorem 8.17. Suppose RST(µ) is non-empty. If h is a strictly convex function and τ̂ ∈
RST(µ) maximises E[h(τ)] over τ ∈ RST(µ) then there exists a barrier R such that τ̂ =

inf{t > 0 : (Bt, t) ∈ R} on {τ̂ > 0} a.s..

The proof of this result is much the same as that of Theorem 2.2, except we no longer
show that τcl = τop. Generally, in higher dimensions with general initial laws, it is easy
to construct examples where there are common atoms of λ and µ, but where the size of
the atom in λ is strictly larger than the atom of µ. By the transience of the process, it
is clear that the optimal (indeed, only) behaviour is to stop mass starting at such a point
immediately with a probability strictly between 0 and 1, however the stopping times τcl

6For d = 2, it would seem that the same condition, but with u(x, y) = − ln |x − y| would also be a natural
condition for the existence of an embedding, however this is not so immediate from Rost’s results, and we are
unaware of an explicit proof of this result.
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and τop will always stop either all the mass, or none of this mass respectively. For this
reason, we do not say anything about the behaviour of τ̂ when τ̂ = 0. Trivially, the above
result tells us that the solution of the optimal embedding problem is given by a barrier if
there exists a set D such that λ(D) = 1 = µ({D).

Proof of Theorem 8.17. The first part of the proof proceeds similarly to the proof of The-
orem 2.2. In particular, we define the sets Rcl,Rop and the stopping times τcl, τop as in the
proof of this result. We fix δ > 0, and consider the set {τ̂ ≥ δ}.

For η ≥ 0, we then define B−ηt = Bt+η, for t ≥ −η and also set

τ
η,δ
cl = inf{t ≥ δ : (t, B−ηt ) ∈ Rcl}.

Then τη,δcl ≥ δ, and for any ε > 0, we can choose η > 0 sufficiently small that

dTV (B−ηδ , Bδ) < ε

and hence from the Strong Markov property of Brownian motion, it follows that

dTV (B−η
τ
η,δ
cl

, Bτ0,δ
cl

) < ε.

In particular, we have weak convergence of the law of B−η
τ
η,δ
cl

to the law of Bτ0,δ
cl

as η→ 0.
It also follows that

τ
η,δ
cl = inf{t ≥ η + δ : (t − η, Bt) ∈ Rcl},

so τη,δcl ≥ τ
0,δ
R , and moreover, τη,δcl → τ0,δ

op a.s. as η → 0. Hence, B−η
τ
η,δ
cl

→ Bτ0,δ
op

in probability,

as η → 0, so we have weak convergence of the law of B−η
τ
η,δ
cl

to the law of Bτ0,δ
op

, and hence
Bτ0,δ
op
∼ Bτ0,δ

cl
.

We now observe that, by an essentially identical argument to that in the proof of The-
orem 2.2, we must have: τ0,δ

cl ≤ τ̂ ≤ τ0,δ
op on {τ̂ ≥ δ}. However, in the argument above,

we know that τ0,δ
cl ≤ τ̂ ≤ τ0,δ

op , and τ
η,δ
cl →D τ0,δ

cl and τ
η,δ
cl →D τ0,δ

op as η → 0 (where D
denotes convergence in distribution). It follows that τ0,δ

cl =D τ0,δ
op and hence τ0,δ

cl = τ0,δ
op a.s.

In particular, Bτ0,δ
cl

= Bτ0,δ
op

= Bτ̂ on {τ̂ ≥ δ}. Letting δ → 0 we observe that τ0,δ
op → τop, and

hence the required result holds on taking R = Rop. �

We now consider the generalisation of the Rost embedding. We recall that (λ∧µ)(A) :=
infB⊆A (λ(B) + µ(A \ B)) defines a measure.

Theorem 8.18. Suppose λ, µ are measures in Rd and τ̂ ∈ RST(µ) maximises E[h(τ)] over
all stopping times in RST(µ), for a convex function h : R+ → R, with E[h(τ)] < ∞. Then
P(τ̂ = 0, B0 ∈ A) = (λ∧ µ)(A), for A ∈ B(R), and on {τ̂ > 0}, τ̂ is the first hitting time of an
inverse barrier.

Proof. We follow the proof of Theorem 2.3 to recover the sets Rop and Rcl, and their
corresponding hitting times τop, τcl. For 0 ≤ η ≤ δ, we define in addition the stopping
times

τ
η,δ
cl = inf{t ≥ δ : (t, Bηt ) ∈ Rcl},

τ
η,δ
op = inf{t ≥ δ : (t, Bηt ) ∈ Rop},

where Bηt = Bt−η, for t ≥ η.
It follows from an identical argument to that in the proof of Theorem 2.3 that τ0,δ

cl ≤

τ̂ ≤ τ0,δ
op on {τ̂ ≥ δ}. However, by similar arguments to those used above, we deduce that

τ0,δ
op and τ0,δ

cl have the same law on {τ̂ ≥ δ}, and hence that τ̂ = τ0,δ
op on this set, and then by

taking δ→ 0, we get τ̂ = τop on {τ̂ > 0}.
To see the final claim, we note that trivially P(τ̂ = 0, B0 ∈ A) ≤ (λ ∧ µ)(A). If there is

strict inequality, then there exist some paths which start at x ∈ A, and paths which stop at
x at strictly positive time, violating the monotonicity principle. �
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9. Embedding Feller processes

In this section we discuss which changes are needed to extablish the duality result,
Theorem 5.1, as well as the monotonicity principle, Theorem 7.2, for continuous Feller
processes. In fact, most of our arguments are abstract and do not use any specific structure
of the Wiener measure. The relation between the spaces S and X = C(R+) × R+ as well
as the approximation of stopping times rely on abstract theory of stochastic processes and
topological properties of S andX. The proof of Theorem 7.2 uses duality theory of optimal
transport and Choquet’s theorem. Proposition 4.10 is very valuable to identify certain
hitting times as stopping times. To prove the duality statement we use again duality theory
of optimal transport and — crucially — the compactness of PRST(µ).

This last point, the compactness of PRST(µ) and the characterization of minimal stop-
ping times in terms of the expection Eξ[T ] = V < ∞ is in fact the only point where we use
specific properties of Brownian motion (apart from Section 8).

So we assume now that we are given a continuous Feller process Z = (Zt)t≥0. As usual
we assume Z to be the canonical process on the space of continuous functions. We write
(Px)x∈R for the law of the Feller process started in x and P for the law of the process started
with law λ.

We define the set PRST of pseudo-randomized stopping times as before with P replac-
ingW. Let µ ∈ P(R). We say that ξ ∈ PRST is a minimal embedding of µ if ξ embeds µ in
Z and if for any ξ̄ ∈ PRST with ξ̄ ≤ ξ P-a.s. and also embedding µ it holds that ξ̄ = ξ P-a.s.

Definition 9.1. For µ ∈ P(R) we define PRST(µ) to be the set of all minimal pseudo-
randomized stopping times embedding the measure µ, and RST(µ) = PRST(µ) ∩ RST.

We observe that, by taking optional projections, the set RST(µ) is equivalently the
subset of RST which embeds µ, and such that there is no strictly smaller ξ̄ ∈ PRST, or in
RST embedding µ.

Assumption 9.2. From now on we assume that the set PRST(µ) is non-empty, compact,
and either:

(1) That there exists an increasing, F 0-optional process ζ : X → R with ζs → ∞

P-a.s. as s→ ∞ such that the following hold true:
• For a finite ξ ∈ PRST with Zξ ∼ µ we have E[ζξ] < ∞ if and only if ξ is

minimal.
• There is a corresponding S -continuous martingale Xt = h(Zt) − ζt such that

Xt∧ξ is uniformly integrable for all ξ ∈ RST(µ).
or

(2) That ξ ∈ PRST and Bξ ∼ µ implies ξ is minimal (i.e. all embeddings are minimal).

Below we will verify that this assumption is satisfied in a number of natural examples.
Note that compactness of PRST(µ) is equivalent to the existence of an increasing and
diverging function G : R+ → R such that

sup
ξ∈PRST(µ)

Eξ[G(T )] =: VG < ∞.

We first note that 9.2 (1) is also relevant in the usual Brownian setup, where it allows
us to dispose of the second moment condition.

Proposition 9.3. Let Z be Brownian motion and assume that λ and µ are in convex order.
Then Assumption 9.2 (1) holds.

Proof. By the de la Vallée-Poussin theorem (see e.g. [16, Thm. II 22]) there exists a pos-
itive, smooth and symmetric function F : R → R+ with strictly positive, bounded second
derivative and limx→∞ F(x)/x = ∞ such that V :=

∫
F(x) µ(dx) < ∞. We set

ζt(ω) =
1
2

∫ t

0
F′′(ωs) ds
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and note that by Ito’s formula and our conditions on F,

Xt = F(Zt) −
1
2

∫ t

0
F′′(Zs) ds = F(Zt) − ζt

is an S - continuous martingale.
Note also that in the present Brownian case, it is known that the minimality of a finite

stopping time ξ is equivalent to (Zt∧ξ)t≥0 being a uniformly integrable martingale. This
follows (in the case of a general starting law) from Lemma 12 and Theorem 17 of [10].

Assume now that Zξ ∼ µ and that (Zt∧ξ)t≥0 is uniformly integrable. Then for each t, the
law of Zt∧ξ is bounded by µ in the convex order and in particular EF(Zt∧ξ) ≤ V . We obtain

Eζξ = lim
t→∞
Eζt∧ξ = lim

t→∞
F(Zt∧ξ) − EF(Z0) = V − EF(Z0) < ∞.

Next assume that Eζξ < ∞. Then supt≥0 EF(Zt∧ξ) < ∞, hence (Zt∧ξ)t≥0 is uniformly
integrable.

To see that limt→∞ ζt = ∞, note that P
( ∫ ∞

0 1[−1,1](Zt) dt = ∞
)

= 1 and that F′′ is
bounded away from 0 on [−1, 1].

Finally it remains to show that X is uniformly integrable. To see this we apply again
the de la Vallée-Poussin theorem to obtain an increasing, super-linear, convex function
g : R+ → R+ such that

∫
g ◦ F dµ < ∞. Since g ◦ F is convex we obtain (as above) that

supt E[g ◦ F(Zξ∧t)] < ∞. Thus (F(Zξ∧t))t≥0 is uniformly integrable and this carries over to
X. �

Definition 9.4. Let X : C(R+)→ R be a measurable function which is bounded or positive.
Then we define E[X|F 0

t ] to be the unique F 0
t -measurable function satisfying

E[X|F 0
t ](ω) =

∫
X((ω|[0,t]) ⊗ ω′) dPω(t)(ω′).

Then the natural analogue of Proposition 4.10 holds by the Feller property of X:

Proposition 9.5. Let X ∈ Cb(C(R+)). Then Xt(ω) := E[X|F 0
t ](ω) defines an S -continuous

martingale. We denote this martingale by XM .

Proof. By the Feller property, we have for any continuous and bounded function X and
any sequence xn → x that also

∫
X dPxn →

∫
X dPx. Combining this with the proof of

Proposition 4.10 yields the result. �

This allows us to prove the following duality result:

Theorem 9.6. Let γ : S → R be S -upper semi-continuous and bounded from above.
Suppose that Assumption 9.2 holds. Put

Pγ(P, µ) := sup
ξ∈PRST(µ)

∫
γ dξ = sup

ξ∈RST(µ)

∫
γ dξ.

Let DC(γ) be the set of all pairs (ψ, ϕ) where ψ ∈ Cb(R) and ϕ is a P-semimartingale with
decomposition ϕ = Mϕ + Aϕ where Mϕ is an S -continuous and bounded P-martingale
starting at zero and Aϕ is an increasing process satisfying supξ∈RST(µ)

∫
Aϕ dξ ≤ 0. Put

Dγ(P, µ) := inf
(ψ,ϕ)∈DC(γ)

∫
ψ dµ.

Then, it holds that Pγ(P, µ) = Dγ(P, µ). Moreover, in case (1) of Assumption 9.2, the pro-
cess Aϕ may be assumed to be zero at the expense of assuming that Mϕ

t∧ξ is only uniformly
integrable for all ξ ∈ RST(µ).

Proof. Consider first case (2) of Assumption 9.2. Let G(t) be an increasing, diverging
function such that supξ∈PRST(µ) Eξ[G(T )] =: VG < ∞, and note that the set

TMV (P, µ) := {π ∈ P(C(R+) × R+ × R) : projC(R+)(π) =W, projR(π) = µ,Eπ[G(T )] ≤ VG}
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is compact. This allows us to establish the non-adapted duality result. Putting

DCV (c) :=
{

(ψ, ϕ) :
ϕ is an S -continuous bounded P-martingale, ψ ∈ Cb(R), ∃α ≥ 0,
ϕt(ω) + ψ(y) + α(G(t) − V) ≥ c(ω, t, y), for all ω ∈ Ω, y ∈ R, t ∈ R+

}
we can derive the corresponding version of Proposition 5.6. Finally, we have to note that
α(G(t) − V) is an increasing process as claimed to deduce that

DC(R+)×R+×R
c (P, µ) ≥ Dγ(P, µ)

proving the claim.
To show case (1) of Assumption 9.2, we argue along the lines above, noting that we

can replace the condition Eπ[G(T )] ≤ V by E[ζπ] ≤ V , so

TMV (P, µ) := {π ∈ P(C(R+) × R+ × R) : projC(R+)(π) =W, projR(π) = µ,E[ζπ] ≤ V}.

Observe that this set is compact: suppose ε > 0. Since ζt → ∞, P-a.s., we deduce the
existence of a K > 0 such that P(ζK < 2V/ε) < ε/2. Hence E[ζπ] ≤ V implies π(T ≥ K) <
ε, and TMV is indeed compact.

Finally, observe that we can use the S -continuous martingale h(ω(t)) − ζt to replace
ω(t)2 − t in (5.16) to deduce that

DC(R+)×R+×R
c (P, µ) ≥ Dγ(P, µ).

�

Apart from the abstract theory the main ingredients in the proof of Theorem 7.2 are
Proposition 6.5 to apply Lemma 7.3 and Proposition 4.10 to identify certain hitting times
as F +-stopping times in the proof of Lemma 7.3. In fact, Proposition 6.5 is still valid and
we just proved the analogue of Proposition 4.10, namely Proposition 9.5. Then, the very
same proof yields the following:

Theorem 9.7. Assume that γ : S → R is Borel-measurable, the optimization problem
(5.3) is well-posed and that ν ∈ RST(µ) is an optimizer of Pγ(P, µ). Then ν is supported by
a γ-monotone set Γ.

9.1. Examples: One-dimensional Diffusions. Let Zt be a regular (time-homogenous)
one-dimensional diffusion on an interval I ⊆ R, with inaccessible or absorbing endpoints
(see [40] for the relevant definitions and terminology) and Z0 ∼ λ, some λ ∈ P(I). In
particular, Zt is a Feller process ([40, Proposition V.50.1]). Then (on a possibly enlarged
probability space) there exists a scale function s(x) and a continuous, strictly increasing
time change At such that Bt = s(ZAt ) is a Brownian motion up to the exit of s(I◦). Recalling
the discussion in [11, Section 5], with the obvious extension of our notation, it is clear that
there exists a stopping time ξ ∈ RST(µ; Z) if and only if there exists a stopping time
ξ′ ∈ RST(s(µ); B) such that ξ′(~0, τs(I)�) = 1, where τs(I) = inf{t ≥ 0 : Bt < s(I◦)}. Write
A−1

t to be the inverse of At, so A−1
At

= t. We now consider three cases:
• Suppose s(I◦) = (a, b) for a, b ∈ R. Then it follows from [10, Theorems 17 and

22] that RST(µ; Z) is non-empty if and only if s(λ) precedes s(µ) in convex order,
and in fact, any ξ ∈ RST(Z) with Zξ ∼ µ is minimal (so ξ ∈ RST(µ,Z)).

• Suppose s(I◦) = (a,∞) for a ∈ R, and s(λ), s(µ) are integrable measures. Write
mλ =

∫
s(y)λ(dy), and mµ =

∫
s(y)µ(dy). Then it follows from Theorems 17 and

22 and the discussion at the top of p. 245 of [10] that RST(µ; Z) is non-empty if
and only if −

∫
|s(y) − x|µ(dy) ≤ −

∫
|s(y) − x|λ(dy) + (mλ − mµ) for all x ≥ a, or

equivalently, that
∫

(s(y) − x)+µ(dy) ≤
∫

(s(y) − x)+λ(dy) for all x ≥ a. Again, any
ξ ∈ RST(Z) with Zξ ∼ µ is minimal. By symmetry, similar results for the case
where s(I◦) = (−∞, b) for b ∈ R can be given.

• Suppose s(I◦) = (−∞,∞), and
∫

(s(y))2λ(dy),
∫

(s(y))2µ(dy) < ∞. Then we are
in the classical case, and a stopping time ξ ∈ RST(Z) is minimal if and only
if Zξ ∼ µ, and E[A−1

ξ ] < ∞. In particular, compactness of RST(µ; Z) follows
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directly from compactness of RST(s(µ); B). Further, if the scale function s is
suitably differentiable, one can show that Xt = s(Zt)2 − A−1

t is an S -continuous
martingale, and under the condition that

∫
(s(y))2λ(dy),

∫
(s(y))2µ(dy) < ∞, we

deduce that Xt∧ξ is uniformly integrable for all ξ ∈ RST(µ; Z). In particular, (1) of
Assumption 9.2 is satisfied.

More generally, when only the integrals
∫

s(y)λ(dy) and/or
∫

s(y)µ(dy) are fi-
nite, we are in the situation of Proposition 9.3 and Assumption 9.2 (1) is satisfied.

Remark 9.8. Observe that none of the constructions described in Section 8.2 rely on fine
properties of Brownian motion — the main properties used are the continuity of paths, the
Strong Markov property, and the regularity and diffusive nature of paths (that the process
started at x immediately returns to x, and immediately enters the sets (x,∞) and (−∞, x).
It follows that all the given constructions extend to the case of regular one-dimensional
diffusions described above.

9.1.1. Brownian motion with drift. Let Zt = Bt + dt for some d < 0 with Z0 ∼ λ, and
I = (−∞,∞). Then a possible choice of the scale function is s(x) = exp(−2dx), and
s(I◦) = (0,∞). Let λ, µ ∈ P(R) be such that s(λ), s(µ) are integrable, and suppose∫

(exp(−2dy) − x)+µ(dy) ≤
∫

(exp(−2dy) − x)+λ(dy),

for all x ≥ 0. By the arguments above, there exists an embedding and all stopping times
embedding µ are minimal. Then the set PRST(µ) is compact as can be seen by the follow-
ing estimate inserted in the proof of Theorem 4.23. Fix ε > 0 and take K > 0 such that
µ((−∞,−K)) ≤ ε/4. Then there is R > 0 such that

Pλ({∃ R′ ≥ R : ZR′ ≥ −K}) ≤ ε/4.

Then ξ ∈ PRST(µ) implies that ξ(T > R) ≤ ε/2.

9.1.2. Geometric Brownian motion. Let Zt be a geometric Brownian motion and µ be
concentrated on the positive reals (0,∞). Then the compactness of PRST(µ) follows from
the compactness in the case of Brownian motion with drift as exp : R → (0,∞) is a
homeomorphism. Similarly, conditions for the existence and minimality of ξ ∈ PRST(µ)
follow directly from the case of Brownian motion with drift, or more generally, from the
observation that Zt is a regular diffusion.

9.1.3. Three-dimensional Bessel process. Let Zt = ‖Bt‖ for a three-dimensional Brownian
motion (Bt)t≥0 (or d-dimensional with d ≥ 3) with Z0 ∼ λ. Let µ ∈ P((0,∞)) be such
that there exists at least one embedding. Then any embedding is minimal and PRST(µ) is
compact. This can be seen by similar argument as in the case of Brownian motion with
drift as Bt is transient in dimension three and higher. Indeed, fix ε > 0 and take K > 0 such
that µ((K,∞)) ≤ ε/4. By the transience of Bt there is R > 0 such that

P(∃ R′ ≥ R : ZR′ ≤ K) ≤ ε/4,

which implies that ξ(T > R) ≤ ε/2 implying the compactness of PRST(µ) by a straight-
forward modification of Theorem 4.23.

9.1.4. Ornstein-Uhlenbeck Processes. Let Zt be an Ornstein-Uhlenbeck process, given for
example as the solution to the SDE dZt = −Zt dt + dWt. Then Zt is a regular diffusion
on I = (−∞,∞) with scale function given (up to constants) by s′(x) = exp(x2). Then
s(I◦) = (−∞,∞). Suppose λ, µ are measures on R with s(λ), s(µ) square integrable, and
in convex order. Then RST(µ; Z) is compact and ξ ∈ RST(µ; Z) if and only if Zξ ∼ µ and
E[A−1

ξ ] < ∞.
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9.1.5. The Hoeffding-Frechet Coupling as a very particular Root Solution. Let Zt be the
deterministic process given by dZt = dt started in Z0 ∼ µ. Let ν be another probability
and assume for simplicity that max supp µ ≤ min supp ν. Then the problem to minimize
E[τ2] is of course solved by the Root solution. But note also that since τ = Zτ − Z0, this
minimization problem corresponds precisely to finding the joint distribution (Z0,Zτ) which
minimizes E[(Zτ − Z0)2]: the classical transport problem in a most simple setup. I.e. the
Root solution for the particular case of the process Z corresponds precisely to the monotone
(Hoeffding-Frechet) coupling. In the same fashion the Rost solution corresponds to the co-
monotone coupling between µ and ν.
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