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Abstract

It is well known and not difficult to prove that if C ⊆ Z has positive upper
Banach density, the set of differences C − C is syndetic, i.e. the length of gaps is
uniformly bounded. More surprisingly, Renling Jin showed that whenever A and
B have positive upper Banach density, than A − B is piecewise syndetic.

Jin’s result follows trivially from the first statement provided that B has large
intersection with a shifted copy A−n of A. Of course this will not happen in general
if we consider shifts by integers, but the idea can be put to work if we allow “shifts
by ultrafilters”. As a consequence we obtain Jin’s Theorem.

The upper Banach density of C ⊆ Z is given by

d∗(C) := limm−n→∞
|C ∩ {n, . . . ,m}|

m − n + 1
.

A set S ⊆ Z is syndetic if the gaps of S are of uniformly bounded length, i.e. if there
exists some k > 0 such that S − {−k, . . . , k} = Z. A set P ⊆ Z is piecewise syndetic if
it is syndetic on large pieces, i.e. if there exists some k ≥ 0 such that P − {−k, . . . , k}
contains arbitrarily long intervals of integers.

It was first noted by Følner ([Føl54a, Føl54b]) that C − C = {c1 − c2 : c1, c2 ∈ C}
is syndetic provided that d∗(C) > 0. (To see this, pick a subset {i1, . . . , im} ⊆ Z which
is maximal subject to the condition that C − i1, . . . ,C − im are mutually disjoint. This
is possible since disjointness implies d∗(C − i1 ∪ . . . ∪ C − im) = m · d∗(C), therefore
m is at most 1/d∗(C). But then maximality implies that for each n ∈ Z there is some
ik, k ∈ {1, . . . ,m} such that (C − n) ∩ (C − ik) , ∅, resp. n ∈ (C − C) + ik. Thus⋃m

k=1(C −C) + ik = Z.)
Simple counterexamples yield that the analogous statement fails when two different

sets are considered, but Renling Jin discovered the following interesting result.

Theorem 1 ([Jin02]). Let A, B ⊆ Z, d∗(A), d∗(B) > 0. Then A−B is piecewise syndetic.

In Section 1 we reprove Jin’s Theorem by reducing it to the C − C case. Subse-
quently we discuss some modifications of our argument which allow to recover the
refinements resp. generalizations of Jin’s result found in [JK03, BFW06, Jin08, BBF].
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1 Ultrafilter proof of Jin’s Theorem
As indicated in the abstract, we aim to show that one can shift a given large set A ⊆ Z
by an ultrafilter so that it will have large intersection with another, previously specified
set. We motivate the definition of this ultrafilter-shift by means of analogy: For n ∈ Z
denote by e(n) the principle ultrafilter on Z which corresponds to n and notice that

A − n = {k ∈ Z : n ∈ A − k} = {k ∈ Z : A − k ∈ e(n)}.

Given an ultrafilter p on Z, we thus define {k ∈ Z : A − k ∈ p} as the official meaning
of “A − p”.

Lemma 2. Let A, B ⊆ Z. Then there exists an ultrafilter p on Z such that

d∗
(
(A − p) ∩ B

)
= d∗

(
{k : A − k ∈ p} ∩ B

)
≥ d∗(A) · d∗(B).

The proof of Lemma 2 requires some preliminaries.
For a fixed set A ⊆ Z we can choose an invariant mean, i.e. a shift invariant finitely

additive probability measure µ on (Z,P(Z))) such that d∗(A) = µ(A). This is well
known among aficionados (see for instance [Ber06, Theorem 5.8]) and not difficult
to prove. First pick a sequence of finite intervals In ⊆ Z such that |In| → ∞ and
d∗(A) = limn→∞ µn(A) where µn(B) := 1

|In |
|B ∩ In| for B ∈ P(B). Then let µ be a cluster

point of the set {µn : n ∈ N} in the (compact) product topology of [0, 1]P(Z).
We consider the Stone-Čech compactification βZ of the discrete space Z. For our

purpose it is convenient to view βZ as the set of all ultrafilters on Z. By identifying
integers with principal ultrafilters, Z is naturally embedded in βZ. A clopen basis for
the topology is given by the sets C := {p ∈ βZ : C ∈ p}, where C ⊆ Z. A mean µ on Z
gives rise to a positive linear functional Λ on the space B(Z) of bounded functions on
Z. Making the identification B(Z) � C(βZ) we find that, by the Riesz representation
Theorem, there exists a regular Borel probability measure µ̃ on βZ which corresponds
to the mean µ in the sense that µ(A) = µ̃

(
A
)

for all A ⊆ Z. (This procedure is carried
out in detail for instance in [Pat88, p 11].)

Proof of Lemma 2. Pick a sequence of intervals In ⊆ Z, |In| ↑ ∞ such that d∗(B) =

limn→∞
|In∩B|
|In |

. Pick an invariant mean µ such that µ(A) = d∗(A). Define fn : βZ→ [0, 1]
by

fn(p) :=
1
|In|

∑
k∈In∩B

1A−k(p) =
|In ∩ B ∩ {k : A − k ∈ p}|

|In|

and set f (p) := limn→∞ fn(p) ≤ d∗(B ∩ {k : A − k ∈ p}). By Fatou’s Lemma∫
f dµ̃ ≥ lim

n→∞

∫
1
|In|

∑
k∈In∩B

1A−k dµ̃ = lim
n→∞

1
|In|

∑
k∈In∩B

µ(A − k) = d∗(A) · d∗(B),

thus there exists p ∈ βZ such that d∗(A) · d∗(B) ≤ f (p). �

The above application of Fatou’s Lemma is inspired by the proof of [Ber85, Theo-
rem 1.1].
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Proof of Theorem 1. Assume that d∗(A), d∗(B) > 0. According to Lemma 2, pick an
ultrafilter p such that C := (A − p) ∩ B has positive upper Banach density. Then
S := (A− p)−B ⊇ C−C is syndetic. Also s ∈ (A− p)−B =⇒ A−B− s ∈ p. Thus for
each finite set {s1, . . . , sn} ⊆ (A− p)− B, we have

⋂n
i=1 A− B− si ∈ p. In particular this

intersection is non-empty, hence there exists t ∈ Z such that t + {s1, . . . , sn} ⊆ A − B.
Summing up, we find that A − B is piecewise syndetic since it contains shifted copies
of all finite subsets of the syndetic set (A − p) − B. �

2 Jin’s Theorem in countable amenable (semi-) groups
Following Jin’s original work, it was shown in [JK03] that Theorem 1 is valid in a
certain class of abelian groups (including in particular Zd) and in [Jin08] that it holds
in ⊕∞i=1Z. Answering a question posed in [JK03] it is proved in [BBF, Theorem 2]
that Jin’s theorem extends to all countable groups in which the notion of upper Banach
density can naturally be formulated, that is, to all countable amenable groups.

There is overwhelming evidence (see in particular [HS98]) that whenever ultrafil-
ters can be used to prove a certain combinatorial statement, then this ultrafilter proof
will automatically work in a quite abstract setup. In this spirit the approach of Section
1 effortlessly yields the just mentioned strengthenings of Jin’s Theorem; in fact it is not
even necessary to restrict the setting to groups.

If a semigroup (S , ·) admits left- and right Følner sequences1, the notions d∗L, d
∗
R of

left- resp. right upper Banach density are defined analogously to upper Banach density
in Z, but with left- resp. right Følner sequences taking the role of intervals {n, . . . ,m}.
Arguing precisely as in Section 1 we then get that for all A, B ⊆ S there is an ultrafilter
p on S such that d∗L

(
B ∩ (q−1A)

)
= d∗L

(
B ∩ {s : As−1 ∈ p}

)
≥ d∗R(A) · d∗L(B).

Consequently we have:

Theorem 3. Let (S , ·) be a semigroup which admits left- and right Følner sequences
and let A, B ⊆ S , d∗R(A), d∗L(B) > 0. Then AB−1 = {s ∈ S : ∃b ∈ B sb ∈ A} is (right)
piecewise syndetic.

A subset P of a semigroup (S , ·) is (right) piecewise syndetic if there exists a finite
set K ⊆ S such that for each finite set F ⊆ S there is some t ∈ S such that tF ⊆ PK−1.

If (S , ·) is an amenable group, Theorem 3 is equivalent to [BBF, Theorem 2] which
asserts that in this setup AB is (right) piecewise syndetic provided that d∗R(A), d∗R(B) > 0.

3 Connections with Bohr sets
So far, our results about the structure of A−B originated from the fact that for d∗(C) > 0
the set C − C is syndetic. Følner ([Føl54a, Føl54b]) proved a much stronger assertion,
namely that C−C is “almost” a Bohr0 set. Bohr0 sets are the neighborhoods of 0 in the
Bohr topology. (Equivalently, U ⊆ Z is a Bohr0 set iff there exist α1, . . . , αn ∈ T = R/Z
and ε > 0 such that {k ∈ Z : ‖kα1‖, . . . , ‖kαn‖ < ε} ⊆ U.) A Bohr set is a translate of a

1A sequence (Fn)n∈N of finite sets in a semigroup S is a left/right Følner sequence if
limn→∞ |(sFn)∆Fn |/|Fn | = 0 resp. limn→∞ |(Fn s)∆Fn |/|Fn | = 0 for all s ∈ S . The existence of Følner
sequences is sometimes used to define if a countable group / semigroup is amenable. We note that all abelian
semigroups and all solvable groups fall in this class. See for instance [Pat88].
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Bohr0 set. Every Bohr set is syndetic, but the converse fails badly. Følner showed that
if d∗(C) > 0, then there exist a Bohr0 set U and set N ⊆ Z with d∗(N) = 0 such that
C −C ⊇ U \ N.

In analogy to piecewise syndetic sets Bergelson, Furstenberg and Weiss introduced
piecewise Bohr sets. A set P is piecewise Bohr if it is Bohr on arbitrarily large intervals,
that is, if there exist a Bohr set U and a sequence of intervals In ⊆ Z, |In| ↑ ∞ such that
P ⊇ U ∩

⋃∞
n=1 In. Følner’s Theorem, d∗(C) > 0 trivially implies that C −C is piecewise

Bohr. We reprove the following refinement of Jin’s Theorem obtained in [BFW06].

Theorem 4. Let A, B ⊆ Z, d∗(A), d∗(B) > 0. Then A − B is piecewise Bohr.

Proof. As in the case of piecewise syndetic sets one readily shows that if a set P con-
tains a translate of every finite subset of a piecewise Bohr set, then P is piecewise Bohr
itself. In Section 1 we have seen that if d∗(A), d∗(B) > 0, then A − B contains shifts
of all finite pieces of a set C − C, d∗(C) > 0. By Følner’s Theorem the latter set is
piecewise Bohr, hence A − B is piecewise Bohr as well. �

In the spirit of Section 2 it is possible to proceed along these lines in an abstract
countable amenable group. This then leads to the amenable analog of Theorem 4 de-
rived in [BBF, Theorem 3].

It is natural to ask whether one can make assertions about the combinatorial rich-
ness of the set A − B beyond the fact that is piecewise Bohr. In a certain sense this
is not possible. For every piecewise Bohr set P ⊆ Z, there exist sets A, B ⊆ Z with
d∗(A), d∗(B) > 0 such that A − B ⊆ P ([BBF, Theorem 4]).
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cation, volume 27 of de Gruyter Expositions in Mathematics. Walter de
Gruyter & Co., Berlin, 1998. Theory and applications.

[Jin02] Renling Jin. The sumset phenomenon. Proc. Amer. Math. Soc., 130(3):855–
861, 2002.

[Jin08] Renling Jin. private communication, 2008.

[JK03] Renling Jin and H. Jerome Keisler. Abelian groups with layered tiles and
the sumset phenomenon. Trans. Amer. Math. Soc., 355(1):79–97, 2003.

[Pat88] Alan L. T. Paterson. Amenability, volume 29 of Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI, 1988.

5


