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ABsTrRACT. We develop Brenier theorems on iterated Wasserstein spaces. For a separa-
ble Hilbert space H and N > 1, we construct a full-support probability A on 'PéV(H) =
Pa(...P2(H)...) that is transport regular: for every @ with finite second moment, transport-
ing A to @ with cost 1/\/22 admits a unique optimizer, and this optimizer is of Monge type.
The analysis rests on a characterization of optimal couplings on P2(H) and, more generally,
on 7;2N (H) via convex potentials on the Lions lift; in the latter case we employ a new adapted
version of the lift tailored to the N-step structure. A key idea is a new identification between
optimal-transport c-conjugation (with ¢ given by maximal covariance) and classical convex
conjugation on the lift.

A primary motivation comes from the adapted Wasserstein distance AWs: our results yield
a first Brenier theorem for AWy and characterize AW%-optimal couplings through convex
functionals on the space of La-processes.

keywords: optimal transport for random measures, Brenier’s theorem, Lions lift, convex con-
jugate, Monge problem, adapted optimal transport.

1. INTRODUCTION

Let (X,d) be a Polish metric space and write P2(X) for the probabilities with finite second
moments. For p, v € Py(X) we write Cpl(u,v) for the set of couplings or transport plans and

1 7 = inf 2dr = inf E[d(X,Y)?
( ) WZ(M7V) TrGClII)ll(p,,u)/d dr X,Y:(Q,P)i)r;(,XN/J,,YNV [d( ’ ) ]

for the squared Wasserstein-2 distance. Brenier’s theorem [26], see also [55, 72|, asserts that if
X is the Euclidean space and p < A, the minimization problem (1) admits a unique optimizer
7* and that 7* is of Monge type, i.e., concentrated on the graph of a function. Moreover, the
optimal Monge-transport is the gradient a convex function. This result stands at the beginning
of the breathtaking development of optimal transport over the last decades and has inspired
a number of powerful generalizations and refinements, see [46, 61, 43, 62, 9, 4, 34, 39] among
others.

We extend it to iterated Wasserstein spaces, i.e., we consider (X, d) = (P2(H), W>) and more
generally (Pa(...P2(H)...),Ws) = (PN (H), W) where H denotes a separable Hilbert space.

Theorem 1.1 (Monge solutions). There exists a full support probability A on P (H) which is
transport regular. That is, for every probability Q on P (H) with finite second moment

2 inf W2 (p1, v) dL(p, v) = inf BV (X, Y
(2) HeCIpI}(A,Q)/ 2, v) dll (g v) X,Y:(Q,P)%PélVI}H%X’VA*YNQ i :

admits a unique minimizer II* ~ (X,Y") and IT* is of Monge type.

In fact we obtain here transport regularity of all orders, i.e., A is concentrated on probabilities
1 which are again transport regular, etc. Since every P < A is also transport regular, we have
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Corollary 1.2. The set of Wy-transport regular measures on PN (H) is dense.

Most closely related to our work are the concurrently written article of Savare-Pinzi [71] (see
Section 1.4 below) and the work of Emami-Pass [39] which is concerned with P2 (M), where M is
a smooth Riemannian manifold. As pointed out in [39] in the setting X = Pa(M), the choice of an
appropriate reference measure is non-trivial. Recent deep work of Dello Schiavo [37] establishes a
version of Rademacher’s theorem on Wasserstein spaces for a class of reference measures satisfying
certain assumptions which allows Emami-Pass to conclude transport regularity. It can be shown
that probabilities satisfying these assumptions exist in the case where M is the 1-dimensional
torus but it seems difficult to extend the approach to higher dimensions and in particular the
case Py (M), for N > 2. Rather the approach put forward here and in [71] exploits a connection
to the Lions lift which allows to use tools from convex analysis.

We also note that while our main interest lies in results for P (R?) and their applications to
the adapted Wasserstein distance, we will work with a separable Hilbert space H throughout.
The reason is that the proofs for both cases are identical, in fact our argument for the existence
of transport regular measures on P2 (R?) already requires the construction of a transport regular
measure on Py(H) for infinite dimensional H.

Next we describe the construction of the measure A and the characterization of optimizers in
terms convex functions on the Lions’ lift.

1.1. Characterization of optimal transport maps via convex Lions lifts. To set the stage
we recall the formulation of Brenier’s theorem for measures on H in terms of couplings of random
variables. We use A to denote Lebesgue measure in the classical case H = R? (see [26]) or a
regular Gaussian measure in the case of infinite-dimensional H (see [8]). If X : (2, F,P) - H
is a random variable with LpX < A and ¢ : H — (—00, 00| is convex with 9p(X) # ) a.s., then
O0p(X) consists of exactly one element which we denote by Vi (X).

Theorem 1.3 (Brenier’s Theorem (26, 8|). Let m € Cpl(u, v) where u, v are probability measures
on H with finite second moment, p < A, and let X : (Q,F,P) — H be a random variable with
X ~ u. Then 7w is an optimal coupling for squared-distance cost if and only if

(3) ™~ (X, Vp(X))

for some convez lsc p : H — (—00, 00] with dp(X) # 0 a.s.
Moreover we have uniqueness, i.e., there is exactly one such coupling.

Following classical transport theory, optimal plans are characterized in terms of dual poten-
tials. A key finding (see Theorem 1.8 below) is that for optimal transport of measures on P2 (H),
optimal dual potentials ¢ : Po(H) — (—o00, 00| are best understood through their Lions lift given
by

@2 La([0,1]; H) = (=00, 00],  B(X) := p(LA(X)).
Here we use Ly([0,1]; H) to denote the Lao-space of H-valued square-integrable functions on
([0,1], A), where X is the Lebesgue measure on [0,1]. Evidently a functional @ on Lo ([0,1]; H)
appears as the Lions lift of some function ¢ on Po(H) if and only if it is law invariant, i.e.,
2(X) = (YY) provided that £(X) = L(Y).

In the case H = R? we take A to be the occupation measure of d-dimensional Brownian motion
B = (Bt)iejo,1)- Recall that for a path b : [0,1] — R< of Brownian motion, the occupation measure
of b is given by £3b = by (\) € Pa(R?) and the occupation measure of B has law

(4) A= (W Ly(Bw))%(P) = Lp(LAB) € Pao(Pa(R?)).

In the case where H has infinite dimension, we take A to be the law of the occupation measure
of a standard Wiener process, see Section 3.2 below.
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The desired Brenier theorem for measures on P2(H) is then obtained from Theorem 1.3 by
replacing H with Lo([0,1]; H) in the domain of the convex potential and the state space of
random variables, resp.

Theorem 1.4 (Brenier theorem on Py(H)). Let I € Cpl(P,Q), where P and @ are probability
measures on Pa(H) with finite second moments, P < A, and let X : (Q, F,P) — Lo([0,1]; H) be
a random variable such that X ~ P. Then II is a W3-optimal coupling if and only if

(5) I~ (LAX, L\Vp(X))

for a convex, Isc, law-invariant ¢ : Lo([0,1]; H) — (—o00, 00] with 0p(X) # 0 a.s.
Moreover we have uniqueness, i.e., there is exactly one such coupling.

To tackle the case of general P (H), N > 1, we introduce an adapted version of the Lions’
lift. We consider the filtered probability space ([0, 1]V, (F;)N 1, \), where X denotes the uniform
distribution on [0,1]" and (F;)Y; the filtration generated by the coordinate projections. For
X,Y € Ly([0,1]¥; H) we define the adapted law

LAYX) = L(L(... L(X|Fn-1) ... |F1) € Py (H)
and write X ~,q Y if £84(X) = £24(Y). A basic but crucial fact which renders this representa-
tion useful is that

©) WaPQ) = min X =Yl

see Proposition 5.7 below.! The adapted Lions lift of ¢ : PN (H) — (—o0, 0] is
7 La([0, 1 H) = (=00, 00],  B(X) = p(L£2X).

Evidently © is of this form if and only if it is adapted-law invariant in the sense that p(X) = (Y)
for X, Y with X ~.q Y.

Here A is from an H-valued Wiener sheet which is the NV parameter version of the standard
Wiener process, see Section 7 below. Using these notions we obtain:

Theorem 1.5 (N-iterated Brenier). Let IT € Cpl(P, Q), where P and QQ are probability measures
on PN (H) with finite second moments, P < A, and let X : (Q,F,P) — L2([0,1]V; H) be a
random variable such that £L24(X) ~ P. Then 11 is a W2-optimal coupling if and only if

(7) (LX), L*(Vp(X))) ~ 11,

for some convex, Isc, adapted-law invariant @ : La([0,1]V; H) — (—o0, o0] with 0p(X) # 0 a.s.
Moreover we have uniqueness, i.e., there is exactly one such coupling.

A first ingredient to Theorems 1.4 and 1.5 is the fundamental theorem of optimal transport
together with a new connection between c-conjugates in the sense of optimal transport and
convex analysis on the Lions lift; we describe this in Section 1.2 below.

A further important role is played by the ability to switch back and forth between a stochastic
process viewpoint and the Wasserstein on Wasserstein viewpoint. Specifically the map £24 turns
out to be an isometry between martingales equipped with the adapted Wasserstein distance
and (PN, W,). We discuss this connection as well as Brenier type theorems for the adapted
Wasserstein distance in Section 1.3.

The construction of the transport regular measure A uses that convex functions on Hilbert
spaces are almost surely differentiable with respect to Gaussian measures as well as path prop-
erties of Wiener processes. E.g. already for the case N = 1 and H = R we use the fact the for a

1By Lisini’s work [59], any Py, P, € PN (H) are joined by a geodesic. We note that (6) yields this explicitly:
Pick Xo ~aq Po, X1 ~aq P1 with Wa(Po, P1) = || Xo — X1|| and set P := Ead((l — )Xo +tX1), t €0,1].
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typical Brownian path b : [0,1] — R%, the occupation measure £b is a transport regular prob-
ability on R?. This appears to be somewhat remarkable since the support of £,b has Hausdorff
dimension 2 for every d > 2.

We conclude this section with a result that does not appeal to a particular reference measure.
It provides a characterization of primal optimizers in terms convex potentials on Ly ([0, 1]V; H)
and asserts that typically (in the Baire category sense) couplings are of Monge type.

Theorem 1.6. Let I1 € Cpl(P,Q) where P,Q are probability measures on P (H) with finite
second moment. Then 11 is a Wa-optimal coupling if and only if for some X,Y : (Q, F,P) —
Ly([0,1)N; H) and 3 : Lo([0,1]V; H) — (—00, 00| convex Isc adapted-law invariant

(8) I~ (£*X, £*Y), Y € 0p(X) as.

Moreover, the set of (P,Q) for which there exists a unique W3-optimal coupling ©* and 7* is
concentrated on the graph of a bijection, is comeager in Py T (H) x Py TH(H).

1.2. Fundamental theorem of optimal transport, M C-convexity and L-convexity. As
we are interested in the connection to convex analysis on Lo([0, 1]; H), it is convenient to switch
from the minimization of the squared-distance cost to the equivalent problem of finding the
‘maximal covariance’

9) MC(u,v) =  sup /Jr ydr(r,y) = sup E[X-Y]

meCpl(p,v) Xe~p,Yov
of probabilities p, v on H with finite second moment. Likewise, for probabilities P, @Q on Pa(H)
with finite second moment we replace (1) by

(10) MC(P,Q) = sup /MC(M, v)dr(p,v).
T€CPL(P,Q)
For P,Q € PN (H), N > 2 we define MC(P, Q) through the natural iteration of (10).

Optimal transport plans can be characterized in terms of dual potentials. This is made precise
in the ‘fundamental theorem of optimal transport’ (see e.g. [8] or [75]) which we recall in a form
convenient for MC costs. For continuous symmetric ¢ : X x X — R the c-convex conjugate of
©: X = [—o0,+o0] is

©°(y) := sup c(z,y) — p(z).
reX

Here, ¢ is called c-convex if ¢°° = ¢ and each such ¢ is Isc. We also note that ¢°¢ = ¢°. The
subdifferential of a c-convex ¢ is

Ocp = {(z,y) : °(2)+p(y) = clz,y)} = {(z,y) : c(z,y)—p(x) > c(z,y)—p(z) for all z € X},
and O.p(x) = {y : (x,y) € d.p}. The primal and dual transport problem w.r.t. ¢ are given by

(11) OTprimal == sup /Cdﬂ', OTgqual := inf /tpdu—}—/(,f duv.

meCpl(p,v) PEL (1), lIsc
Theorem 1.7 (Fundamental theorem of optimal transport). Assume that ¢ : X X X — R is
symmetric, continuous and satisfies |c| < a ® b, a € L*(u),b € L' (v). The primal problem is
attained and the dual problem is attained by a c-convex function . Moreover for any such ¢ we
have that m € Cpl(u,v) is optimal for the primal problem if and only if supp(n) C O..

In the setting of Brenier’s theorem, ¢(z,y) = x - y, c-convexity is just ordinary convexity and
Theorem 1.7 yields that transport plans are optimal if and only if they are concentrated on the
subgradient of a convex function.

In the case X = Py(H) and c(p, v) = MC(p, v), Theorem 1.7 asserts that transport plans are
optimal if and only if they are concentrated on the MC-subgradients of MC-convex functions.
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The link to convex law invariant functions as in Theorem 1.4 is given in the following result
which also appears to be of independent interest:

Theorem 1.8. Let ¢ : Py (H) — (—oc0,+00], N > 1 be proper. Then
P = MO
In particular, the convex conjugate of an adapted-law invariant function is adapted-law invariant.

Theorem 1.8 provides a bridge between the abstract conjugates on P4 (H) and classical convex
analysis on the Hilbert space Ly([0,1]V; H). In particular, convex functions on Lo([0, 1]™; H)
are significantly more tractable and amenable to the standard tools of convex analysis, making
this identification conceptually and technically valuable.

In the case N = 1, convexity of the lift 7 is tantamount to convexity of ¢ along all curves of
the form

(12) (1e)tefo,n),  pe = ((1 =) pro +tpry)g(m), ™ € Cpl(p, v).

Functionals with this property are called totally convex [32] or acceleration-free convex [66] or
simply convex (in the context of risk measures). Total convexity is equivalent to displacement
convexity if ¢ : Po(H) — R is continuous [32], but not in general ([66]). By Theorem 1.8 we
have

Corollary 1.9. For a lsc functional ¢ : Py(H) — (—00, 0], the following are equivalent:

(1) ¢ is totally conver.
(2) © is conver.
(3) ¢ is MC-conver.

1.3. Stochastic processes and Brenier theorems for the adapted Wasserstein distance.
Authors from several fields have independently refined the weak topology on the laws of stochastic
processes in order to take the temporal flow of information into account, see [5, 48, 49, 24, 67,
68, 64] among others. In finite discrete time, all these approaches define the same adapted weak
topology on Py (H™) which is metrized by the adapted Wasserstein distance AWs, see [11, 65, 19).
The Monge-formulation of the (squared) adapted Wasserstein distance of p, v € P2(H) is

13 Al =t [ 17G) = ol ),
Here T : HYN — HY is called triangular (or adapted) if each T} does depend on (z1,...,,)
only through the first k coordinates. It is bi-triangular if it is invertible and 7,7~! are both
triangular. Restricting to triangular / adapted mappings in the definition ensures that the
adapted Wasserstein distance adequately respects the information structure inherent in stochastic
processes.

The Kantorovich type relaxation is given by allowing for bi-causal couplings, i.e.,

(14) W) = _inf [l = o dne.g),

mECPly (p,v)
A coupling 7 is called causal if for t < N and Borel B C H

(15) Tr(}/t6B|X15"'aXN):W(EEB‘Xlw"th)a

where we use (Xi,...,Xn),(Y1,...,Yn) to denote the projections onto the first and second
(respectively) coordinate of H x H. The coupling 7 is called bi-causal, if this also holds when
switching the roles of X and Y.

Already in the first non-trivial instance H = R, N = 2 it is easy to find absolutely continuous
probability measures which are not transport regular, see Example 8.26 below. The deeper reason
for this is that via a specific isometry, adapted transport for processes with /N time intervals can



6 MATHIAS BEIGLBOCK, GUDMUND PAMMER, AND STEFAN SCHROTT

be seen as a Wh-transport problem on P& (HY) and the corresponding push-forward of the
Lebesgue measure to Py (H™) plays no particular role.

However based on our results for optimal transport on Py (H™) we are able to show that
typically optimizers of (14) are unique and bi-triangular Monge.

Theorem 1.10 (Baire—Brenier theorem for AW5). The set of (u,v) for which AWz (u, v) admits
a unique optimal coupling 7 and 7* is given by a bi-triangular map T : HY — HY is comeager
m PQ(HN) X PQ(HN).

As mentioned above, AW5 is considered as a natural metric for the adapted weak topology
on Po(HY) but (like other compatible metrics) it is not complete. It is shown in [14] that
the completion of (Po(HY), AW5) consists precisely in the space of stochastic processes with
filtration, where two stochastic processes are identified, in signs X ~,q Y if they have the
same probabilistic properties. This can be made precise, e.g. by asserting that X and Y have
Markovian lifts with the same laws, see [23].

To present the completion in terms of Lo ([0, 1]V; H), we recall that (F;)Y; denotes the coor-
dinate filtration on ([0, 1], \) and set

Lé\,fad(H) = {X = (X)X, € Ly([0,1)V; HY) : X, is F;-measurable},
AWs(X,Y) = it {||X" = Y'|la : X' ~aq X, Y ~pq Y.

Elements of Py(HY) correspond to (equivalence classes of) naturally filtered processes X €
Lé\jad(H). X is naturally filtered if E[f(X)|F] = E[f(X)|X1,..., X;] forallt < Nand f : HY —
R continuous bounded. Intuitively this means that the coordinate filtration (F}); contains no
extra information on the process beyond what can be inferred from the past of the process. Using
this embedding, the completion? of (Po(HYN), AW,) is given by

(Lé\jad(H)/ ~ad; AWs) =: (filtered processes, AW3).

Our main result for the adapted Wasserstein distance is the following characterization of
optimal couplings in terms of convex functions on the set of adapted processes. Notice that the
case N =1, H = R¢ corresponds once more to the classical Brenier theorem.

Theorem 1.11 (Brenier Theorem for AW5). Let X,Y € Lé\fad(H). Then (X,Y) is an optimal
coupling (i.e., | X —Y|2 = AW2(X,Y)) if and only if

(16) Y(ui,...) € 0B(X (u,...)), w €[0,1]

for some convex adapted-law invariant @ : H X Lé\fa_dl (H) = (—00, 00].
Moreover, a coupling m € Cply.(p,v), p,v € Po(HN) is optimal if and only if m ~ L(X,Y)
for some naturally filtered processes X,Y satisfying (16).

Importantly (Po(HY), AW>) is a dense G5 subset of its completion (filtered processes, AW>),
see [38, 12|. This is crucial to deduce Theorem 1.10 from Theorem 1.11 and ultimately goes back
to the fact that Monge couplings are a G5 subset of the set of couplings with fixed first marginal,
see [63] and [36, TV, 43].

2The space of filtered processes equipped with AWy admits a number of convenient properties. It is a Polish
geodesic space, the set of martingales is closed and geodesically convex, there is a Prohorov-type compactness
criterion, finite state Markov chains are dense and Doob decomposition, optimal stopping, Snell-envelope, pricing,
hedging, utility maximization, etc. are Lipschitz continuous w.r.t. AWa, cf. [14| and the references therein.
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1.4. Related literature. Starting from the classical Monge and Kantorovich formulations, the
modern theory of optimal transport originated around Brenier’s discovery that, for quadratic
costs on Euclidean space, optimal plans are gradients of convex potentials [26], see also [55, 72].
In particular it paved the way for McCann’s displacement convexity [60] and the interpreta-
tion of many PDEs as gradient flows on the Wasserstein space. These developments were sys-
tematized in the metric-measure framework and gradient-flow theory of Ambrosio-Gigli-Savaré
[8, 7] and in Villani’s monographs [74, 75|, with more recent expositions by Santambrogio 73]
and Figalli-Glaudo [42]. Beyond the Euclidean Brenier setting, there is a rich line of extensions
and refinements — covering structure/uniqueness of optimal maps, displacement convexity and
convex-order tools, and regularity /duality on general spaces — see, among others [43] (general
convex costs), [61] (Brenier/polar factorization on manifolds), [44, 4] (multi-marginal transport
and barycenters), [40] (Monge transport on abstract Wiener spaces via Cameron-Martin con-
vexity, existence/uniqueness of maps) and [41] (infinite-dimensional Monge-Ampére on Wiener
space, regularity /structure of the transport) [9] (Monge maps for strictly convex costs), [8] (Bre-
nier theorem for Gaussian on Hilbert spaces), [33, 34| (existence of Monge optimizers under low
regularity), [46] (convex potential beyond smooth Euclidean settings), [17] (Skorokhod embed-
ding), [18, 50, 45| (martingale transport), [29] (connection to Knothe-Rosenblatt coupling), [47]
(weak optimal transport).

In optimal transport and mean field games, the “Lions’ lift” refers to the idea of studying
maps defined on the Wasserstein space of probability measures by lifting them to functions on a
Hilbert space of square-integrable random variables. This was introduced by Lions in his Collége
de France lectures [58] and became widely known through Cardaliaguet’s lecture notes [27] and
Carmona—Delarue’s monographs [30, 31] which employ the Lions derivative as an essential tool
in the theory of mean field games.

Emami and Pass [39] were the first to establish existence and uniqueness of Monge solutions for
measures on Py (M) and W3-costs. Emami and Pass consider a smooth Riemannian manifold M
and use structural assumptions on a reference measure on Po(M). A central ingredient in their
analysis is Dello Schiavo’s Rademacher theorem on Wasserstein spaces [37], that allows a classical
optimal-map strategy to be carried out on the space of measures. Notably it is challenging to
construct measures satisfying Dello Schiavo’s hypothesis together with the absolute continuity
hypothesis necessary for the main Monge result of [39] and examples are only known in the case
where M is the one dimensional torus.

Independently and in parallel with an earlier version of this manuscript, Pinzi-Savaré [71],
see also [70, 69|, analyzed the case N = 1 of measures on Py(H) for separable Hilbert spaces
H, developing a Brenier-type theory via totally convex functionals and their Lagrangian/Lions
lift, and identifying natural classes of full-support, transport-regular laws for which the Monge
formulation is uniquely solved. Our initial preprint [21], posted the same day their preprint
appeared, likewise treated N = 1 but focused on R?: the restriction to R? was due to the
then-open problem of constructing a transport-regular reference measure on infinite-dimensional
Hilbert spaces, while all other arguments were dimension-agnostic. The present version advances
in two directions: it covers arbitrary N and it works on general separable Hilbert spaces. The
extension relies on an adapted Lions lift tailored to the N-step structure. In particular, we
construct a transport-regular measure A on Py(H) and, by induction, on P (H); here it is
essential to include the case of infinite dimensional H even to establish the N-level result in R?
for N > 1, since the induction from lower levels requires the Hilbert-space setting. We note that
the construction of A as the occupation measure of a Wiener process (resp. based on the Wiener
sheet for N > 1) is original to this paper to the best of our knowledge.

A main motivation for this article was to establish a Brenier theorem for the adapted Wasser-
stein distance, which requires to understand the Ws-optimizers on P (H) for general N. As
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noted above, the adapted variant of Wasserstein distance is useful when measuring the distance
between stochastic processes since it accounts for the inherent information structure of the pro-
cesses. It has applications from stochastic optimization, stochastic control, and mathematical
finance to the theory of geometric inequalities and machine learning; see [68, 57, 77, 14, 1, 35,
52, 15, 3] and the references therein.

1.5. Organization of the paper. Section 2 recalls the Lions lift and basic continuity properties.
We identify c-conjugation for ¢ = MC with classical convex conjugation on the lift (Theorem 2.2)
and relate total/Lions convexity, MC-convexity, and subdifferentials.

Section 3 treats the case of optimal transport between measures on Po(H) (N = 1). We char-
acterize Wi-optimizers on Py (H) via convex, law-invariant potentials on the lift (Theorem 3.1)
and construct transport-regular reference laws: on R? using Brownian sheets and on separable
Hilbert spaces using Q-Wiener processes (Theorem 3.5).

Appendix A develops a Baire-category viewpoint: we quantify non-regularity via 7¢, prove
upper semicontinuity, and deduce that c-transport-regular laws form a G5 subset of P, (X) (The-
orem A.5).

Section 4 introduces the iterated max-covariance MC on P (H) and the characterization of
MC-optimal couplings in terms of MC-convex potentials. We also derive a DPP which will be
necessary to establish the characterization of MC-convex potentials in terms of convex conjuga-
tion in Section 6.

In Section 5 we provide a Hilbert-space representation of laws on Pév (H), an adapted transfer
principle, and a Skorokhod-type representation (Proposition 5.2, Corollary 5.6, Proposition 5.7).

Section 6 identifies MC-conjugation with the convex conjugate of the adapted lift (Theo-
rem 6.1), establishes the MC-order which is used to establish the existence of the Lions derivative
in the adapted setting, and links MC-subdifferentials with subdifferentials on the lift.

Section 7 constructs full-support, transport-regular measures on P4 (H); this yields the N-
level Brenier theorems stated in the introduction (Theorems 1.4, 1.1 and 1.5 and Corollary 1.2).

Section 8 applies the theory to the adapted Wasserstein distance AW5: via the adapted law
isometry we obtain a Brenier theorem for AW, and a Baire-Brenier uniqueness/Monge statement
(Theorem 1.11, Theorem 1.10).

Technical measurability, selection, and auxiliary results are collected in the appendix.
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2. LIONS LIFT AND CONVEXITY OF LAW INVARIANT FUNCTIONS

Notation 1.1 (Q, F,P) denotes a standard probability space. We use u, v for elements
of Py(H) and X,Y for their representatives in Lo(H) = Lo(Q, F,P; H), i.e., random
variables satisfying X ~ pu, ¥ ~ v. Given a function ¢ : Py(H) — (—o0,+0o0], the
function @ : Lo(H) — (—00, +00] always denotes its Lions lift 3(X) = p(L(X)).

In this section we develop the connection of MC-convexity and MC-subdifferentials with their
Hilbert space counterparts. We start by giving the representations of Wa(u,v) on Lo(H) in
Lemma 2.1. The important Theorem 2.2 asserts that lifts of MC-conjugates are precisely convex
conjugates of lifts. Likewise, Theorem 2.4 links lifts of MC-subdifferentials to classical Hilbertian
subdifferentials of lifts. We call ¢ MC-differentiable at u € Po(H) if the MC-subdifferential
is a singleton. Equivalently, the subdifferential of ¢ is a singleton at every random variable
X ~ p. In this case there is a unique £ : H — H such that Oycoe(p) = {€xp}, or equivalently
0p(X) = {¢(X)} for every X ~ u. That is, depending on the context, & is either the Brenier
map or the Lions derivative at u, see Theorem 2.7. The proof of this differs somewhat from the
usual arguments, since we need to work with a weaker notion of derivative in view of our main
results on the existence of transport-regular measures.

2.1. From MC-convexity to convexity on H. A technical but relevant detail is that not all
representations X € Lo(H) of p are ‘regular’ in the following sense: We say that X allows for
independent randomization if it satisfies any of the following equivalent conditions:

(1) there exists a uniformly distributed U € Ls(R) which is independent of X;

(2) the disintegration (P*),cpy of P w.r.t. X satisfies that P* is continuous p-a.s;

(3) for any m € Py(H x H) with first marginal p there exists Y € Lo(H) such that (X,Y) ~ .
The last characterization underlines the significance of independent randomization in our context.

The following lemma can be interpreted as an instance of the (L2-)Skorokhod representation

theorem. The non-standard bit is that the representation X of u can be taken to be fixed.
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Lemma 2.1 (Skorokhod representation). Let u,v € Po(H) and X ~ p. Then
(17) MC(u,v) = sup E[X - Y], Wa(p,v) = )i/nf X —Y]>.
Y~y ~v

If X allows independent randomization or u is transport reqular, then an optimal Y exists.

Proof. If X allows independent randomization or y is transport regular, the result is clear. In
the general case, pick X’ ~ p which allows for independent randomization. By [30, Lemma 5.23],
there exists for each n € N a measure preserving bijection T;, :  — Q such that | X' — X oT, |2 <
1/n. Pick Y ~ v such that E[X’-Y’] = MC(p,v). Then Y,, := Y’ o T, ! satisfies Y,, ~ v and
EX Y, =E[XoT, Y] —=E[X  Y']=MC(u,v). O

Note that Lemma 2.1 implies that W3 is the quotient metric of || - |2 w.r.t. the law map. In
particular, the lift 3 of a function ¢ is continuous / lIsc if and only if ¢ has this property.

Recall from Section 1.2 that o™ denotes the c-transform of ¢ with cost ¢ = MC, i.e. pMC(v) =
SUP,ep, (1) (MC(;L, V) — <p(,u)). The following result plays a fundamental role for this paper.

Theorem 2.2 (Correspondence of conjugacy). Let ¢ : Po(H) — (—o0, 00| be proper. Then
7" =M.
In particular, the convex conjugate of a law-invariant function is law-invariant.
Proof. For Y € Ly(H) we have by Lemma 2.1
(V)= sup E[X-Y]-p(X)= sup supE[X Y]-o(n)

Xe€Lz(H) WEP2(H) X~p
= sup  MC(p, L(Y)) — @(u) = @V(L(Y)) = pMO(Y). O
HEP2(H)

Recall from Section 1.2 that a proper function ¢ : Po(H) — (—00, +o0] is MC-convex if there
exists a proper function v : Po(H) — (—o0, +00] such that ¢ = pMC. Tt follows immediately
that a proper function ¢ is MC-convex if and only if it is of the form sup;c; MC(.,v;) + ¢; for
some v; € Po(H), c; e R, 1€ 1.

Further recall from (12) that ¢ : Po(H) — (—o0, 0] is totally convex if it is convex on all
curves (pit)iefo,1], pt := ((1 —t) prg +tpry)um, m € Cpl(p, v). Theorem 2.2 has the immediate

Corollary 2.3. For proper, lsc ¢ : Po(H) — (=00, +00|, the following are equivalent:
(1) @ is totally convez,
(2) @ is convex,
(3) ¢ is MC-convez.

Proof. Tt is straightforward that (1) < (2). Further, (2) < (3) follows from Theorem 2.2. O

In particular, a function ¢ : Po(H) — (—o00, +00] is MC-convex if and only if it is proper, lsc,
and totally convex.

A further application of Corollary 2.3 arises by considering functions of the form ¢, = MC(-, v)
for v € Py(H). Since g,(X) = supy., E[X - Y] is convex, the function ¢, is MC-convex.
Expressing this observation in terms of W3(-,v) recovers [8, Theorem 7.3.2|.

2.2. Subdifferentials. Recall that the MC-subdifferential of ¢ : Po(H) — (—o00, +00] is

(18)  Omce(n) ={v € P2(H) : ¢(p) = p(n) + MC(p,v) — MC(p, v) for every p € P2(H)}.

The following result shows how to express the subdifferential of the lift in terms of the MC-
subdifferential and vice versa. A noteworthy caveat is that the subdifferential may be ‘too small’
if X does not admit independent randomization and £(X) is not transport-regular.
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Theorem 2.4. Let ¢ : Po(H) — (—00,4+00] be MC-convez, p € Po(H), X ~ pu. Then we have
(19) 0p(X) = (Y : L(Y) € ducp(), (X,Y) is optimal },

(20) {L(Y):Y € dp(X)} o (n).

If X allows independent randomization or u is transport regular, then we have equality in (20).
Proof. We first prove ‘C’ in (19). Let Y € 9g(X) and v = L(Y"). By definition we have

(21) ?(2) 2 9(X) +E[(Z - X) - Y],

for every Z € Lo(H). If Z ~ p, we have §(X) = @(Z) and (21) yields E[X - Y] > E[Z - Y].
Hence, E[X - Y] = MC(u, v) by Lemma 2.1. Therefore £(X,Y") is an optimal coupling. Next, fix
p € P2(H) and € > 0. By Lemma 2.1 there is Z ~ p such that E[Z-Y] > MC(p,v) —e. Applying
(21) then yields ¢(p) > o(u) + MC(p,v) — MC(u,v) — e. Thus v € dvcep(p).

Conversely, to show ‘O’ in (19), assume that v € dyce(p) and that Y ~ v satisfies E[X - Y] =
MC(p, v). Then, for every Z € Lo(H), we have writing p = £(Z)

?(2) = ¢(p) = p(p) + MC(p,v) = MC(u,v) > 3(X) + E[Z-Y] - E[X - Y].
Hence, Y € 0%(X).

Evidently, (19) implies (20). Finally, assume that X allows independent randomization or
that p is transport regular. Pick any v € dycp(p). By Lemma 2.1 there is Y ~ v such that
(X,Y) is optimal. By (19), Y € 0%(X). Thus we obtain equality in (20). O

Note that (19) implies that the subdifferential of a law-invariant convex function @ consists
of optimal couplings, i.e., if (X,Y) € 0p then £(X,Y) is optimal between its marginals. In this
sense the Lions lift contains more information than the MC-subdifferential of ¢ which carries
only information on the marginals £(X) and L(Y).

The inclusion in (20) may be strict, see Example 2.17 below. In our definition of differentia-
bility we exclude this:

Definition 2.5. Let ¢ : Po(H) — (—00,00] be MC-convex and p € dom(p). We say that ¢ is
MC-differentiable at p if dmcp (i) is a singleton.

Lemma 2.6. Let ¢ : Po(H) — (—00,00] be MC-conver and p € dom(p). Then the following
are equivalent:

(1) ¢ is MC-differentiable in p,

(2) for all X with X ~ p, 0p(X) is a singleton,

(3) for some X ~ p admitting independent randomization, 0p(X) is a singleton.

Proof. (1) = (2): Suppose that there are Z; # Z5 € 0p(X) for some X ~ u. By Theorem 2.4,
we have L£(Z1),L(Z2) € Omcy(p). Hence, if L(Z1) # L(Z3), we conclude that dvcp(p) is not
a singleton. Otherwise, observe that Z := 1(Z; + Z3) € 95(X) and hence £(Z) € duce(p). If
[+ H — R is any strictly convex function of quadratic growth, we have E[f(Z)] < 3 (E[f(Z1)] +
E[f(Z2)]) = E[f(Z1)]. Hence, L(Z) # L(Z1) showing that dyce(p) is no singleton.

(2) = (3) is trivial.

(3) = (1): Suppose there are distinct v1,v5 € Omce(p). Since X ~ p allows independent
randomization, there are 7, Zy € 0p(X) with Zy ~ vy, Zy ~ vo. In particular, Z; # Zs. O

Next we establish the existence of the Lions derivative in the case of MC-differentiable, MC-
convex functions.

Theorem 2.7. Let ¢ : Po(H) — (—00,00] be MC-convex and MC-differentiable at . Then
there exists a measurable function & : H — H such that 0p(X) = {£(X)} for all X ~ p.
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We need some preparations for the proof. Recall that ¢, = MC(-,v), v € Py(H) is MC-convex.
The convex order, denoted by <., is the partial order on Py(H) defined by p <. v whenever
[ fdu < [ fdv for all convex functions f : H — (—00,+00]. The following characterization of
the convex order is due to Carlier [28] (see also Wiesel-Zhang [76] and Proposition 6.3 below for
the case that H is infinite dimensional).

Proposition 2.8. For p,v € Py(H), the following are equivalent:

(1) p=ecv;
(2) o) < pp(v) for every p € Pa(H).

Note that Proposition 2.8 implies in particular that the functions ¢, are increasing in the
convex order. As every MC-convex function is the supremum of functions ¢,, plus constants and
monotonicity is preserved under suprema, we obtain

Lemma 2.9. Any MC-convez ¢ : Py(H) — (—00, +00] is increasing in the convex order.
As a consequence we have

Lemma 2.10. Let § : La(H) — (—o0,+00] be law invariant convexr. If Z € Jp(X), then
E[Z|X] € 09(X).

Proof. Using that i is monotone in the convex order (see Lemma 2.9) we find for every Y € Lo(H)
?(Y) 2 p(E[Y[X]) =2 2(X) + E[(E[Y[X] - X) - 7] = 2(X) + E[(Y - X) - E[Z]X]]. [

Proof of Theorem 2.7. Let X ~ p and Z € 0g(X). By Lemma 2.10 we have E[Z|X] € 0p(X).
As 0p(X) is a singleton, we have Z = E[Z]X], hence there exists a measurable £ such that
7Z = £(X). Next, we need to argue that the function £ does not depend on the choice of the
random variable X ~ p. To that end, let X1, X2 ~ p with 95(X*) = {¢/(X*)} fori € {1,2}. Pick
X ~ pu that allows for independent randomization. We then have ¢(X) € 9p(X) for i € {1,2}
by Theorem 2.4. As 9p(X) is a singleton, we have &' = ¢2 p-a.s. O

Corollary 2.11. Let ¢ : Po(H) — (—00,+00] be MC-conver and p € P2(H). If ¢ is MC-
differentiable at p with derivative v, then the optimal coupling of u,v is unique and of Monge
type.

Proof. Let X ~ p allow for randomization. By Theorem 2.4, we have Cpl, (1, v) = {£(X,Y) :
Y € 09(X)}. By Lemma 2.6 this set is a singleton and by Theorem 2.7 it consists of a Monge
coupling. (Il

Remark 2.12. There are different possible notions of differentiability for MC-convex functions
¢ : Pa(H) — (—00,+00] at p € dom(yp):

(1) ®is Frechet differentiable at some X ~ p. This is the common notion of L-differentiability,
see [30, Definition 5.22]. By [30, Proposition 5.24| this is equivalent to @ being Frechet
differentiable at any X ~ pu.

(2) ¢ is MC-differentiable according to Definition 2.5, i.e., ducp(p) is a singleton. This is
the notion adopted in the present article and it is equivalent to 0g(X) being a singleton
at any X ~ pu (see Lemma 2.6). Provided that ¢ is continuous at pu, this equivalent to @
being Gateaux differentiable at any X ~ p.3

(3) 0p(X) is a singleton at some X ~ p.

3Indeed, © is continuous at any X ~ p by Lemma 2.1. Moreover, a convex function is Gateaux differentiable
at a point if it is continuous there and its subdifferential is a singleton; see, e.g., [16, Proposition 17.26].
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It is clear that (1) is stronger than (2) which is again stronger than (3). We will see in Exam-
ple 2.16 and Example 2.17 below that the converse implications are in general not true, even if
H is finite dimensional.

For the purposes of this article (2) is the correction notation as it allows to characterize and
obtain existence of transport regular measures on Po(H). This is because this weaker notion,
compared to the classical L-differentiability outlined in (1), yields almost sure differentiability
results for the dual potentials.

2.3. Examples and basic MC-convex functions. The results of this section elucidate the
previous results but will not be required for our main theorems.

In usual convex analysis, linear functions serve as fundamental building blocks. In the present
setting of MC-convexity, the role of linear functions is played by

v, = MC(+,v), v e Py(H).
We summarize some important properties:

Proposition 2.13. Let v € Py(H) and set C, =conv{Y € La(H): Y ~ v }. Then:
(1) @, is the support function of C,, i.e., 3, (X) = supy., E[X - Y] = supyco E[X -Y];
(2) The MC-conjugates satisfy x?{ff =, and <,011YIC = X{p: p<ov};
(3) {LY): YeC}={peP(H): p<.v}

Proof. (1) For X € Lo(H), Lemma 2.1 gives %, (X) = supy., E[X - Y]. The right-hand side
is unchanged if we take the supremum over the closed convex hull of {Y : Y ~ v}, hence
?v(X) = supy ¢, E[X - Y].

(2) It is immediate from the definition of the MC-transform that X?ﬁ = ¢,. To see the second
claim note that
MC/(,y _
¢oC(p) = sup (MC(u,p) — MC(p,v)).
HEP2(H)

First consider the case p <. v. By monotonicity of MC in the convex order we have MC(pu, p) —
MC(u,v) < 0 and choosing p = v yields pMC(p) = 0. Now, let p £, v. Then Proposition 2.8
provides some p with MC(u, p) > MC(u, v); scaling u shows the supremum is +oc.

(3) By (2) we have xMSMY = x(,. ,<_,1. On the other hand, by Theorem 2.2, the Lions lift of

{r}
X%?MC is the 1sc convex hull of in convex indicator of {Y € Lo(H) : Y ~ v}, which is precisely

the convex indicator of C,,. Il

Call B C Py(H) MC-convex if it is a sublevel set of a MC-convex function or equivalently if
it contains all curves (it)seo,1], #t := ((1 —1t) pro +tpry)um, ™ € Cpl(uo, u1) where pg, 1 € B.

Example 2.14. By Proposition 2.13, the closed MC-convex hull of {v} is given by {p € P2(H) :
p <c v}. In particular, singletons are MC-convex sets if and only if they consist of a Dirac
measure.

Below we will see that MC-subdifferentials of MC-convex functions are singletons in most
points (cf. Example 2.14) and is usually not MC-convex by Example 2.14. However, it is convex
along generalized geodesics with base point p, as a consequence of Theorem 2.4.

It is an easy consequence of Theorem 2.4 that the subdifferential of a law invariant convex
function @ : Lo(H) — (—o0, +00] can be decomposed into subdifferentials of basis functions, i.e.
for X ~ p we have

9p(X) = U{Y € 09, (X) 1 v € Oucp(p) }-
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This highlights the importance of understanding the subdifferential of these basis functions,
which is addressed in the following proposition. This proposition can also be seen as an analog
of the results of Alfonsi-Jourdain [6] in the language of MC-differentiability.

Proposition 2.15. The following are equivalent for u,v € Po(H)

(1) @, is strictly <c-increasing from below at v, i.e., n <. v, N # v = ou(n) < ¢.(v);
(2) For p € P2(H), the map ¢, is MC-differentiable at u;
(8) The optimal coupling of p,v is unique and of Monge type.

In this case, Omcwn (1) = {v}, and the Lions derivative is given by the optimal map from u to v.

Proof. (1) < (2): Recall that n € Oucw, (i) if and only if ¢, (u) + ©M€(n) = MC(u,n). By
Proposition 2.13 (2) this is equivalent to MC(p,v) = MC(u, n) and 1 <. v.

(2) = (3) follows from Corollary 2.11.

(3) = (2): n € ey, (p). By the argument above, n <. v. Hence, there exist random vari-
ables (X,Y”’,Y) with (X,Y”) is optimal and E[Y|Y’, X] =Y a.s. Then, MC(u,v) = MC(u,n) =
E[X -Y'] = E[X - Y] and thus (X,Y) is optimal. By our hypothesis, Y = T(X) for some map T
Hence, Y =E[Y|Y',X] =Y as. and n = v. O

We conclude this section with two examples that show that the notions of differentiability
discussed in Remark 2.12 are indeed different.

Example 2.16. For every P € Py(Py(R?)) there exists a continuous MC-convex function ¢ :
Py (R%) — R such that for P-a.e. i the Lions lift 3 is not Frechet differentiable at any X ~ p. This
function ¢ can be constructed using a modification of the construction in [25, Example 4.6.10]:
As P is a Borel measure, there exists an increasing sequence (K7,),, of compact subsets of Py (R%)
such that P(K)) — 1. We write K,, for the MC-convex hull of K/ and note that K, is still
compact . We set ¢, (1) = distyy, (1, K,,) and ¢ := Y 27"¢p,.

We write C,, := {X : L(X) € K,,} and note that as C,, is law-invariant by Lemma 2.1

Dn(Y) = distyw, (L(Y), K,,) = Xiélén X =Y = diStH-Hz(Yv Cp).

This shows in particular that ¢, and hence ¢ is MC-convex. Moreover, it is shown in [25,
Exercise 4.2.6] that if C), is a closed convex set with empty interior, then dist).,(-,Cy) is in
every X € C, not Frechet differentiable. Hence, = >, 27"%, is not Frechet differentiable in
every point of J,, C.

Below we will show that for certain P € Py(P2(R?)) every MC-convex ¢ : Pa(R4) — (—o00, o]
is P-a.s. MC-differentiable. In particular that ¢ is MC-differentiable in p does not imply that @
is Frechet differentiable in some X ~ pu.

Example 2.17. There exist a MC-convex ¢ : Po(R%) — R and X, X’ with X ~ X' such
that |09(X)| = 1,|09(X’)] > 1. Specifically let d = 2, assume wlog that (Q,F,P) is the
unit square [0,1]? equipped with two dimensional Lebesgue measure A2 We set p = A\ ® dy,
Vi=A® % (where A denotes one dimensional Lebesgue measure), ¢ = ¢, = MC(.,v), take
X to be an isomorphism of ([0,1]%,%8,A?)) and (R?,B, 1) and set X’ (u1,us) := (u1,0).

Then X ~ p~ X' and it is straightforward to see that #9p(X) = 1, while #9p(X’) > 1. In
particular ¢ is Gateaux differentiable in X but not in X’.

4Recall that A C Py(R%) is Wh-relatively compact if and only if there is a convex increasing ¢ : [0, +00) —
[0, +00) with lim,— o (1) /72 = 400 such that sup,ea [ p(z]) du(z) < co. As p— [ (|z|) du(z) is MC-convex,
the closed MC-convex hull of a compact set is compact.
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3. BRENIER’S THEOREM FOR MEASURES ON Py (H)

This section is concerned with proving Theorem 1.4 announced in the introduction. To es-
tablish this theorem, we will work with random variables X,Y taking values in Lo(H). To
avoid ambiguity regarding the involved probability spaces, we reserve from here on (Q,F,P)
for an abstract probability space, and choose Lo(H) = Lo([0,1]%,\; H) where A denotes here
the k-dimensional Lebesgue measure on [0, 1]*. This choice is solely for notational clarity, and
analogous results hold when ([0, 1]*, \) is replaced by any standard probability space. In partic-
ular, we write £ (X) for the Py(H)-valued random measure obtained by applying pointwise the
pushforward of A by X (w) € Lo(H).

3.1. Characterization of MC-optimal couplings and criterion for transport regularity.

Theorem 3.1. Let P,Q € Py(P2(H)) and I € Cpl(P, Q). Then, the following are equivalent:
(1) 1T is optimal;
(2) there exists an MC-convex ¢ : Po(H) — (—00, +00] with I(Omcy) = 1;
(3) there exist proper, lsc, convex, and law-invariant @ : Lay(H) — (—o0,4+00] and random
variables X, Y : Q — Lo(H) such that

(LA(X),LA(Y)) ~T and (X,Y) € 0p almost surely.

Proof. The equivalence of (1) and (2) is due to Theorem 1.7.

As MC-convex functions are proper and lsc, we find by Corollary 2.3 that ¢ is MC-convex if
and only if P is proper, lsc, convex and law-invariant. Hence, (2) and (3) are equivalent. O
Proposition 3.2. Let P € Py(Pa2(H)). Then, the following are equivalent:

(1) P is transport-reqular;
(2) For every MC-convex ¢ : Po(H) — (—00, +00], we have
(22) P({p: #0mcp(p) > 1}) = 0;
(3) For every Lipschitz MC-convex ¢ : Po(H) — R, we have (22).

In particular, for every Q € Pa(Po(H)) the optimal coupling II € Cpl(P,Q) is induced by a
Monge map T : Po(H) — Pa2(H) and, in addition, for P-almost all p, Cpl,, (11, T(p)) consists
of a single element which is again of Monge type.

Proof. The characterization of transport-regularity of P simply follows from applying Lemma A.1
to the current setting. Specifically, we let (X, d) = (P2(P2(H)), W2) and ¢ = —MC, and note that
for every bounded set K C Py(H) we have that px 1= (oM + xx)MC is Lipschitz continuous.
Indeed, for p1, i € Po(H) we have

or (1) — pr(p') < sup MC(u,v) — MC(i',v) < Wa(u, 1) sup (/ Iylde) g
veK veK

To see the remaining claim, we recall that by Corollary 2.11

Omcp(p) = {v}y = 3r € Cpl,, (1, v) and 7 is Monge.
We conclude that IT has the claimed properties. O
Theorem 3.3. Let P € Py(P2(H)) and X with L5(X) ~ P. Assume that

(23) almost surely Lx(X) € Pa(H) is transport regular,
(24) L(X) € Po(Lay(H)) is transport regular.

Then, P 1is transport regular.
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Proof. By Proposition 3.2, we have to show that for every MC-convex ¢ : Py(H) — (—00, +00],
we have #0vcp(p) < 1 for P-almost every p. Recall that the lift B : Ly(H) — (—o0, +00] is
proper, convex lsc and law-invariant by Theorem 2.2. Hence, we have by (24) that

#0p(X) <1 almost surely.
Because of (23), we can use Theorem 2.4 to obtain
{LA(Y):Y € 0p(X)} = Omce(LA(X)) almost surely.
We deduce that #0yce(p) < 1 for P-almost every p. O

Example 3.4 (Regularization on R? by Brownian sheet). We construct transport-regular mea-
sures based on Brownian sheet. To this end, we consider the law of a (d, d)-Brownian sheet (d-
parameters and d-dimensions), denoted by W and viewed as a probability measure on Lo(R%) =
Ly([0,1]4, \; RY). That is, W is the centered, non-degenerate Gaussian measure on Ly(R?) in-
duced by the (d,d)-Brownian sheet. Naturally, W induces a measure P € Pa(P2(R%)) via

P(A) = W({X € Ly(RY) : Lx(X) € A}) = (L2)W(A),

for measurable A C Py(R9).

To see that P is transport-regular, we check the assumptions of Theorem 3.3. Since W
is a non-degenerate Gaussian measure on Ly(R%), we have by [8, Theorem 6.2.10] that W is
transport-regular. Furthermore, by [10, Theorem 3.1 and the preceding discussion] the Brownian
sheet admits almost surely a local time. Thus, £(X) is absolutely continuous w.r.t. Lebesgue
measure on R%, for W-a.e. X. Hence, the assumptions of Theorem 3.3 are satisfied which shows
that P is transport regular.

Clearly, measures that are absolutely continuous w.r.t. a transport-regular measure are also
transport-regular. Since W is non-degenerate, P has full support P5(R?), and it follows imme-
diately that transport-regular measures are dense in Pa(P2(R?)).

3.2. Regularization on H by Brownian motion/standard Wiener process. Throughout
this section, let B = (B;)¢c(o,1) be a one-dimensional Brownian motion and let W = (Wy)c0,1)
be a Q-Wiener process, where Q) : H — H is a symmetric, positive semi-definite linear operator
with finite trace. Recall that a Q-Wiener process (W;)icjo,1) on H is an H-valued stochastic
process such that each W; is a centered Gaussian random variable with covariance operator tQ,
the trajectories are continuous, Wy = 0, and for ¢t > s, the increment W; — Wy is independent of
the past and Gaussian with covariance (t — $)Q.

The main result of this section establishes the transport regularity of the law of the occupation
measure associated with a Q-Wiener process, where the covariance operator () is non-degenerate.
In particular, it applies to the law of the occupation measure of Brownian motion when H = R¢.

Theorem 3.5. Let QQ be a positive-definite, symmetric linear operator on H with finite trace.
Let W be a Q-Wiener process. Then, L(W) is almost surely transport-regular.

Since L(W) is a non-degenerate Gaussian measure on Lo(H), we have that it is transport-
regular by [8, Theorem 6.2.10]. Therefore, using Theorem 3.5, we deduce by Theorem 3.3 the
following

Corollary 3.6. Let Q be a positive-definite, symmetric linear operator on H with finite trace.
Let W be a Q-Wiener process. Then, L(Lx(W)) is a transport-reqular measure on Po(H).

To establish Theorem 3.5, following the classical approach, it suffices to show that continuous,
convex functions on H are almost surely Gateaux differentiable. By Zaji¢ek 78], the set of non-
differentiability points of a continuous convex function on a separable Hilbert space is contained
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in a countable union of (c—c)-hypersurfaces. Here, a (c—c)-hypersurface S is a subset of H such
that there are v € H and Lipschitz, convex f, g : {v}+ — span(v) with

S={x+ f(z) —g(z) : x € H with (z,v) =0}

Consequently, it suffices to prove that, almost surely, the occupation measure of a @Q-Wiener
process does not charge any (c—c)-hypersurface in H.

In fact, we will even show that, almost surely, Lipschitz hypersurfaces are not charged. To
prove this, the crucial observation is that the occupation measure by associated with a path
b:[0,1] — H charges no Lipschitz hypersurface if for all unit vectors v € H we have

o 06 b0
VACIL M >0 s iy v = >

where b = (b,v)v + b+ and using the convention that % =0.

Lemma 3.7. Let B be a 1-dimensional Brownian motion and let W be an independent Q- Wiener
process. Assume that

\BS—Bt|
25 P(3A C[0.1], \(A 0, s _
(25) (34 c . A > AT AT

Then there exists L > 0 such that for all € € (0,1)

oo) > 0.

|Bs*Bt|
P(3AC[0,1], MA) >1—¢, sup =2t <L) >o0.
(34 < 0.1, 2) s i <L)

Proof. Suppose that (25) holds. Then there exist 6 € (0,1) and L > 0 such that the event
E(0,L,0,1), defined for 0 < a < b <1 by

‘Bszt|
L.a.b):={3JACla.b A) > (b— T =L
£0.Lyat) = {34 € o8], MA4) 2 (b=l sup =g <L),

has positive probability.
Fix € € (0,1). Let A C [0,1] be a measurable set with A(4) > 0. By the Lebesgue density
theorem, there exists ¢ € (0,1) and r > 0 such that for all ¢’ € (0,r),
MAN(E =€, t+¢€))
2¢’
Let (gx)ren be a sequence of rational numbers converging to ¢. Then for sufficiently large n, we
have

>1—¢/2.

A -1 1 A -1 1
k—00 2/n 2/n
Hence, there exists (¢,n) € Q x N such that
AANTg,q+1/n])
1/n
Since A C [0, 1] with A(A) > 0 was arbitrary, we deduce
G, L0, 1C ] E(l—eL,qq+1/n).
(g,m)€QxN

Therefore, there exists some (¢,n) € Q x N such that P(£(1 —&,L,q,q+ 1/n)) > 0.
Since (B, W) is a Wiener process, we may assume w.l.o.g. that ¢ = 0. Then

>1—e.

: sup

1—¢ |Bs/nth/n‘ <L}
n s,tEA HWs/n - Wt/n” -

£(1—¢,L,0,1/n) = {3A C [0,1/n], A(A) >
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Note that by the scaling property
V1 ((Btjns Wegn)teio,n) ~ (B, W).

Hence,
0<P(E(1—¢,L,0,1/n))=P&(1—¢,L,01)),
which proves the claim. O

Theorem 3.8. Let B be a 1-dimension Brownian motion and let W be an independent QQ- Wiener
process. Then, we have

B,-B
(26) ]P’(EIA C [0, 1], A(4) > 0, sup - d

BBl
siea [|[Ws — Wil

Proof. Suppose, for contradiction, that the probability in (26) is positive. Then, by Lemma 3.7,
there exists L > 0 such that for all € € (0, 1),

IP’(EIA C 0.1, M(A) 21 —¢, sup 2=l < L) > 0.
sgeAa T
Consider the event

E::{ sup ||W, — Wi|| < 1, inf B, — B,| ZQL},
s,t€[0,1] s€[0,1/3],t€(2/3,1]

and set p :=P(FE) > 0. Fix ¢ > 0 with 4e < p. Let
A:={AC[0,1]: M(A) > 1 —¢€}.
ForneNand £=0,...,2" — 1, define h,, :=27", t, 1 := khy,, tp2n :==1 and
B k)i={ s W, = Wil <V,
S,te[tn,k7tn,k+1]

inf B, — B, > 2L\/an}.
Jt€tn kt1—hn /3, tn k1]

Observe that {E(n,k) : k = 0,...,2" — 1} are independent. By scale invariance of Brownian
motion and the Wiener process,

P(E(n, k) = P(E(n,0)) = P(E) = p > 0.

S€[n,kstn,k+hn/3]

For each n € N, define
Sp 1= {wEQ:hn#{k:weE(n,k)}les}, S = US”'

neN
Thus, for w € S, there exist n € N and pairwise distinct indices kq,...,ky with 42" < J € N
such that w € ﬂjzl E(n,k;).
Now, fix A € A and w € S,,. We claim that there exists at least on jo € {1,...,J} such that
[tn,kja tn,k]- =+ hn/g] NA 75 @ and [tn,ijrl — hn/?), tn,ijrl] nA 75 0.

To see this, write B := szl[tn7kj, tnk;+1]. Since A(A) > 1 —¢ and A(B) = Jh,, > 4¢, we have

AMAN B) > 3¢ and A(A® N B) < . Therefore,

1 1 3
)‘(A‘B) = NACNB > s — 1
L+ 5Gmey 1Te 4

IEANAN [tnk;, tak,+1]) < 2/3hy, forall j € {1,...,J}. Then,

2
37

J
AA|B) = Z A(AN [tr;\,(kg)tn,kjﬂ]) .
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which is a contradiction. Hence, we have shown the claim
As consequence of the claim, we find for every w € S and every A € A that

|Bs(w) — Bt(w”
S W) = W] = 2

Finally, write X, = Llp@it1) and Y, = hy, Zill Xn.k, and note that (Xn,k)%ll are iid
and Bernoulli-distributed with parameter p. We have Y,, has mean p and variance h, (1 — p)p.
Since p > 4e we conclude that lim, , P(Y;, > 4¢) = 1, and therefore lim, . P(S,) = 1.
Consequently,

and therefore

contradicting our assumption. This proves the theorem. ([l

When v is some vector in H and f : {v}+ — span(v), we write

P(f) = A{e+ f(2) sz e {v}').
Lemma 3.9. Let v,w € H with ||v|| = ||w| =1, and let f : {v}* — span(v) be L-Lipschitz. If

(v, w) > 1(1 - Lf
; 2 NEnEA
then there exists a Lipschitz function g : {w}*+ — R such that T'(g) 2 T(f).
Proof. We call ' C H L-Lipschitz in direction v if
Ve,y el [z —y,v)| < Llpry,ya(z -yl

By the Pythagorean theorem this is equivalent to

2

L
< o=yl

We apply this observation to I'(f) and find by Cauchy—Schwarz, for =,y € T'(f),

Ve,y €T, |<aj—y,v)|2 <

\(m—y,w>|2 < (|<x—y,w—v>| + |<x—y,v>\)2 < ||3;‘—ZUH2<HU—UJH =+ \/1:;_7L2>2

Hence, to have that I'(f) is Lipschitz in direction w we want ||[v — w| + ﬁ < 1. We compute

o=l = (1- =) = 1-2(,0) + 2 - 2
v —w — laay— = 1—2Z2(v,w —
VIt itz 1+12
L 2
= <1 — W) — 2<U,w> < 0,

which yields ||jv — w]| + J&T < 1.

We have shown that I'(f) is also Lipschitz in direction w, and {(pry,j. 2, (z,w)) : x € I'(f)}
defines the graph of a (real-valued) Lipschitz function. By extending this function, we get
Lipschitz § : {w}* — R such that g : {w}*+ — span(w) given by g(x) = z + j(x)w is Lipschitz
with T'(¢g) D I'(f). O
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Proof of Theorem 3.5. Fix v € H, v # 0. We decompose W into a one-dimensional process B
along span(v) and an orthogonal component B%* in {v}=:

BY := (Wy,v)v,  BYt:=W,—BY, tel0,1].
For w,w’ € {v}*, we compute
Cov(By, BY) = E[(Ws, v){(Wy,v)] = min(t, s) (Qu, v),
E[(B;", w) (BY*,w')] = min(t, s) (Qu, w').
Since @ is non-degenerate and non-negative, we have (Qu,v) > 0, and B" is a centered Ql{vyr-

Wiener process. Thus, by Theorem 3.8,

BY — B}
(27) IP’(HA C[0,1], AM(A) > 0: sup | B, al

e e )
sitea |BEE — B

Let Lip(v) denote the set of Lipschitz functions f : {v}* — span(v). As a direct consequence of
(27),

P(Vf € Lip(w) : A({t € [0,1] : W, € T(f)}) = o) =1

Denote by QY the corresponding full-probability event.
Since H is separable, there exists a countable dense family of unit vectors (v, )nen in the unit
ball of H. Define
Q= ﬂ Qvr,

neN
By Lemma 3.9, for every v € H and f € ~Lip(v) there exist n € N and g € Lip(v,,) such that
T'(f) =T'(g). Consequently, for every w € €,

Vv e H,Vf € Lip(v): A({te€[0,1]: Wy(w) € T(f)}) =0.

Hence, on Q, the occupation measure (¢ — W; (w))#A does not charge Lipschitz hypersurfaces of
H. By Zaji¢ek [78, Theorem 2|, this implies

P(Vgp : H — R continuous, convex, A({t € [0,1], #0p(W;) > 1}) = 0) =1.

Therefore, £ (W) is almost surely transport-regular by Lemma A.1. O

4. OPTIMAL TRANSPORT ON P (H)

The aim of the section is apply the fundamental theorem of optimal transport to transport
on P (H) to establish a duality in terms of MC-convex functions. Properties of MC-convex
functions, in particular, the connection to convex analysis via an appropriate version of the
Lions lift will be the subject of the subsequent section.

Starting with the max-covariance of two probabilities p, v € Po(H), which is given by

MO = swp [ o) dr(ay),
meCpl(p,v)

we now define its iterated counterpart for probabilities in Py (H).

Definition 4.1. Let N > 1 and P,Q € Py (H). We inductively define

MC(P,Q):=  sup / MC(p, q) dTI(p, q).
HECpl(P,Q)

where MC(p, q) is the max-covariance of p,q € Py’ ' (H).
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Note that we always use the same symbol MC for all max-covariance functionals MC :
PN(H) x PY(H) — R, N > 1 and trust that this causes no confusion as we always specify
the level of iterations we work with. In particular, for fixed N, we denote with capital letters
probabilities P,Q € PN(H) and with lower case letters probabilities p,q € P2 ~!(H) on the
underlying space.

We briefly state the connection between the iterated MC-functional and the iterated Wasser-
stein distance. Note that the iterated Wasserstein distance on Py (H), N > 1, is inductively
defined as

P = inf dIl .
WaPQ) = int [ Wap i

Given a Polish space X, we write I for the intensity operator I : P3(X) = Py(P2(X)) — Pa(X)
satisfying the characteristic property, for all measurable bounded f : X — R,

| rarp /P " | f@ante) P ).

As this operator is well-defined on any Polish space X, it is in particular possible if X is itself a
space of measures. This enables us to define the iterated intensity operator

IN=U PN (H) — Po(H).
The next lemma is then a straightforward consequence of the definition of W,, MC, and IV~

Lemma 4.2. Let P,Q € P2(H). We then have
(2) MC(P, P) = [ |z|> (IN~1P)(dz),
(8) II € Cpl(P, Q) is Wa-optimal iff it is MC-optimal.

This simple observation motivates the study of the max-covariance functional on iterated
spaces of probability measures. In order to obtain a characterization of its optimizers, we follow
in the footsteps of classical transport theory and specialize the corresponding definition of c-
transform and c-subdifferential to the case of ¢ = MC.

Definition 4.3. Let ¢ : PJ'(H) — (—o0, +00] be proper. We define its MC-transform as

MUQ) = sup MC(P,Q) — o(P).
PePN(H)

A function ¢ : PN (H) — (—o0,+00] is called MC-convex if there exists a proper function
¢ PN(H) — (—o0,+00] such that 1 = ¢MC. Moreover, the MC-subdifferential of ¢ at
P € PY(H) is defined as

ce(P) ={Q € Py (H) : ¢(R) > ¢(P) + MC(R, Q) — MC(P, Q) for every R € Py’ (H)},
and we write

ey = {(P,Q) : Q € ducy(P),P € Py (H)}.

We remark that for an MC-convex function ¢, the MC-subdifferential Oy consists precisely
of those (P, Q) € PN (H) x PN (H) with ¢(P) + ¢MC(Q) = MC(P,Q), see also |75, Definition
5.2]. Applying the fundamental theorem of optimal transport to this setting yields

Theorem 4.4. Let P,Q € Py (H). Then we have the duality relation

MC(P,Q) = inf /cde+/g0MC dQ,
W:Pév’l(g)%(—ooﬁroo]
MC-convex

and there exist both a primal optimizer II € Cpl(P, Q) and a dual optimizer ¢ : PQNA(H) —
(=00, +00].
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Moreover, the following complementary slackness condition holds: Candidates I1 and ¢ are
optimal for primal and dual problem, respectively, if and only

H(aMCQD) = 1a
that is, 11 is concentrated on the MC-subdifferential of .

Remark 4.5. Any MC-convex function ¢ : P ~1(H) — (—o0, +00] is integrable with respect
to every measure P € P (H). In particular, the integrals [ dP and [ ¢™M°dQ in the dual
formulation are always well defined (possibly taking the value 400).

Indeed, since ¢ is MC-convex, its MC-transform is proper. Hence, there is q € Pév ~1(H) such
that ©M¢(g) € R. Recalling that W2(p, q) = MC(p, p) —2MC(p, q¢) + MC(q, q) by Lemma 4.2 and
using the inequality ¢(p) > MC(p, q) — M (q), we conclude that 2¢ is dominated from below
by the P-integrable function p — MC(p, p) + MC(q, q) — W2(p, q) — 2¢M€(q).

Above we discussed how to solve the optimal transport problem on the outer most layer.
However, this procedure can be iterated according to the dynamic programming principle. More
specifically, if P,Q € P (H) and II € Cpl,,(P,Q), then one can again solve the optimal
transport problems between IT-almost every pair (p,q) € Py '(H) x PN "' (H) and gets a
selection of optimizers m,, € Cpl,(p,q). By gluing II and the kernel (7 4), 4, one arrives
at a measure that contains the information of the optimal transport on the first two layers.
Continuing this procedure leads to the following concept of N-couplings.

To give the definition of N-couplings, we need to introduce a notation for iterated pushfor-
wards. Let X and ) be Polish spaces and f : X — ) be Borel. We write P[f] for the pushforward
map

PUf]: P(X) = PY) s
and inductively

PN PY(X) = PY(Y) : P (PN Sf]) P
Definition 4.6. For P,Q € P (H), we set
Cpl(P,Q) = {Il € Py (H x H) : PN [pr,](I) = P, PN [pr,](IT) = Q},
and call elements of Cpl"¥ (P,Q) N-couplings of P and Q.

The following results make precise that elements of CplV (P, Q) encode the full information of
the transport across all layers.

Proposition 4.7. For P,Q € PN (H) we have
28 MC(P,Q) = cydIN Tz, y).
(28) (P,Q) e o) / Ty (z,9)

Proof. For N =1, the assertion follows directly from the definition of MC.
Next, assume that the statement holds for N — 1. By definition we have

MC(P,Q) = M 1T .
C(P,Q) weéfi%,@/ C(p, q) dll(p, q)

Fix an optimizer 7 € Cpl(P, Q) C Po(PY "1 (H) x PY~(H)). By the induction hypothesis,

29 MC(p, q) = inf z-ydIN 7L, (x,y),
(29) poy= ot feygdrY e
for p,q € Pév _1(H ). By a standard measurable selection argument (e.g. the Jankov—von Neu-
mann uniformization theorem [54, Theorem 18.1]), there is a universally measurable optimal
selector

O:PY Y H)xPYYH) - PY Y HxH): (pq)—Tl,,
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for the right-hand side of (29). Define Il := ® 47 € Py (H x H).
The marginal constraint 11, , € CplY ~!(p, ¢) amounts to PN ~![pr,] o ® = pr; for i € {1,2}.
Therefore, we obtain that
PN [pr,)(IL) = PN [pr, | (P[@](m)) = P[PV [pry] o @](7) = Plpry](m) = P,

and with the same argument PV [pr,|(IT) = Q, that is, IT € Cpl" (P, Q). Note that J 1L, g 7(dp,dg) =
I(®ym) = ITI. Hence, by optimality of 7,

MC(P,Q) = / MC(p, q) 7(dp, dq)
= [[ 2yt 2, e, dy) w(ap.da)

= /:I: -y INTMI(dz, dy).
This completes the induction step and proves (28). O

5. PROBABILISTIC REPRESENTATION OF ITERATED PROBABILITY MEASURES

The adapted Lions lift is designed to provide a Hilbert space representation of functionals
on PY(H) and will play a central role in analyzing the structure of WW2-optimal couplings of
measures on P2’ (H). In this section, we introduce the necessary notation and establish basic
properties of the representation of iterated probability measures in terms of filtrations. These
results form the foundation for the study of the adapted Lions lift in the subsequent Section 6.

Recall from Section 1.1 that (F;) ; denotes the coordinate filtration® on ([0, 1]™, \) and that

(30) LX) =L(L(..LX|Fn-1)...|F) €PY(H), X ~aa Y if £29(X) = £2YY)

for X,Y € Ly([0,1]"; H). In this section we show that every P € P (H) can be represented in
this way, establish an adapted transfer principle and derive a Skorokhod representation theorem
that links convergence on L ([0,1]¥; H) and P (HY).

To this end, it will be necessary to disentangle towers of measures / iterated conditional laws
which will require considerable notation which we now start to set up. In this section X will
always denote a Polish metric space. We will use the notation (30) also for X" instead of the
separable Hilbert space H and we employ the shorthand

Ly'(X) := L2([0,1]; ).
For t € {1,...,N} we write £7*(X) = L(X|F;). Writing multiple o-algebras in the super-
script indicates iterated conditional expectations, e.g. £721(X) = L7271(X) = L(L(X|F)|F1).
Moreover, we use the abbreviations
(31) ip,(X)=L£fw-ve(X)  t=1,...,N—1
ipy(X) = X.
Note that ip,(X) takes values in the space A; := P35’ ~*(H), where we use the convention PY(H) =
H. We write
ip(X) = (ip1(X), ..., ipy (X)), ip(X) =ippn(X), A =A1 X x4

and note that £34(X) = L(ip;(X)).
We also recall from the introduction that T : [0,1]Y — [0,1]" being bi-adapted means that
T is a bijection for which T,T~! are (F;-F;)-measurable for every t < N.

5Note that instead of ([0, 1]V, A, (Ft)N.;) we could also work with an abstract filtered space (2, G, P, (G)N ;)
where (€2, G, P) is standard Borel and for each ¢ < N there exists a continuous G¢41-measurable random variable
which is independent of G;.
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Lemma 5.1. Let T : [0,1]N — [0,1]Y be bi-adapted with TuX = X. Then for s <t,X € LY (H)
ﬁft""’fS(X ° T_1> _ E]—'t,A..,]-'S(X) ° T_l.
In particular, ip,(X o T™1) = ip,(X) o T~! and L24(X o T1) = L24(X).

Proof. We first show that for every random variable X € LY (X) and every ¢, we have £(X o
T~ YF) = L(X|F)oT~. To that end, let f: X — R be bounded and Borel, and write

Y :=E[f(XoT 1) F]oT

and note that Y is F;-measurable. Moreover, we find for every bounded F;-measurable random
variable Z using that Z o T~! is F;-measurable

EYZ] =EE[f(X o T Y)F]|ZoT | =E[f(X o T ) ZoT '] =E[f(X)Z].

Hence, Y = E[f(X)|F;]. As this is true for every bounded Borel f : X — R, we conclude
L(X oT YF)=L(X|F)oT

Since this claim is proven for random variables with values in an Polish space, we can iteratively
apply it and obtain

ﬁ}',,,...,]-'s (X o T—l) — £Ft7»--7fs+1(£-7:s(X) oT—l) - .= £Ft,...,f,< (X) o T_l. 0
Proposition 5.2. Let P € P (X). Then there is X € LY (X) such that £2(X) = P.

Proof. We assume w.l.o.g. that X is uncountable and we denote with (U;)Y; the coordinate
process on [0, 1]V. We show by induction on N that there is a Borel map

Oy PN (X)) x[0,1]N - X

such that £24(® (P, Uy.x)) = P for every P € PN (R9).
To show the claim for N =1, let ¥ : R — X be a Borel isomorphism. If ;1 € P2(R), we write
Q,, for its quantile function. We set

(I)l(P, Ul) = \P(Q\y;lp(Ul))

and observe that
L(@®1(P,U1) = U L((Qur p(U1)) = Wyl P = P,

Now suppose that the claim is true for N — 1. By the claim for NV = 1 applied with the metric
space P "1 (X) there is
Dy PY(X) x [0,1] = Py (X)
such that £(®1(P,Uy)) = P. By the claim for N — 1 there is
Oy g PY LX) x [0,V s x
such that £(L7N-12(dn_1(p, Us.n))) = p for every p € PY~H(X). We then set
ON(P,Urn) == PN_1(P1(P,U1), Uz.N).

As F; = o(Uy) is independent of Us.y and ®;(P,U;) is Fi-measurable, L7¥-11(®n(P,Uy.x)) =
®,(P,U;). Hence, £24(® (P, Uy.y)) = L(®1(P,U;)) = P. .

Note that Cpl(£24(X), £24(Y)) does not capture the entire information of the joint adapted
distribution of X and Y. For this reason we introduce the following notion.

Lemma 5.3. For P,Q € Py (H) we have
CplV (P, Q) = {L*(X,Y) : X ~aq P,Y ~aq Q}.
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Proof. If IT € Cpl™ (P, Q), then by Proposition 5.2 there is an H x H-valued random variable
(X,Y) with £24(X,Y) = II. We then have £2(X) = £*(pr(X,Y)) = PV¥[pry|(II) = P
and with the same argument £2(Y) = Q. Conversely, if X ~,q P and Y ~.q Q, then
PN pr ) (£24(X,Y)) = L24(X) = P and PV [pr,](L*(X,Y)) = L*(Y) = Q. O

Corollary 5.4. For P,Q € PY¥(H) we have

MC(P,Q) = XN’dr%:%;(N'dQE[X Y]

Proof. By Proposition 4.7, there is II € CplN(P, Q) € PN (H x H) optimal for MC(P, Q). By
Proposition 5.2, there exists an H x H-valued random variable (X,Y) such that £24(X,Y) = IL
In particular, we have £24(X) = £3(pr,(X,Y)) = PV [pr,](£24(X,Y)) = PV [pry](I]) = P and
with the same argument £24(Y) = Q.

Lemma 5.5. Let P,P' € PN(X) and X, X' be random variables with X ~uq P, X' ~,q P'.
Let ¢ :=¢c: X x X = R be continuous and |c(x,2')| < f(z) + g(z') for f(X),g(X") € L*(P).
Define recursively fort =1,..., N

D PH ) x PHX) = R,
,Q) — inf /c(tfl),’dw,’.
(@, Q) et o (¢,q") dm(q,q')
Then, for X ~aq P
NP, P = inf E[e(X o T, X")].

T:[0,11V —[0,1]
bi-adapted, Ty A=\

The proof of Lemma 5.5 is postponed to Appendix B.

Corollary 5.6. Let X, X’ € LY (X) with £24(X) = L24(X"). Then, for every e > 0, there exists
a measure-preserving bi-adapted bijection T : [0, 1] — [0, 1]V such that \(| X' — X oT| > ¢) < ¢.

Proof. Using that £29(X) = £34(X’), the claim follows directly from Lemma 5.5 applied with
X :=(0,1) x H and ¢(z,2’) := min(d(z,2'), 1). O

Proposition 5.7. For P,Q € Py (H) we have

WP @)=, min X =Y

Let PPy, Py,... € PN(H) and X ~.q P. Then the following are equivalent:

(1) Wa(P,, P) — 0,
(2) there are Xy, ~aq Py such that || X, — X||2 — 0.

In particular, the map L2 : (LY (H), || - |l2) = (PY(H), Ws) is continuous.
Proof. First note that Corollary 5.4 and Lemma 4.2 imply that for P,Q € P (H) we have

WP, @)=, min XYl
To see that (1) implies (2) first observe that applying this fact to P and P, yields Y,,, Z,, € LY (H)
with Y, ~aq P and Z,, ~aq P, such that Wh(P,,, P) = ||Y, — Z,||l2. By Corollary 5.6 there are
isomorphisms 7;, such that ||Y,, o T, — X||, — 0. We set X,, := Z, oT,, and not that by
Lemma 5.1, we have £24(X,,) = £24(Z,,) = P,,. Moreover, we have

| Xn = X|l2=|1ZnoTh —YnoT,+Y, 0T, — X|2 < |Z, —Yoll2 + |Yno T, — X2 — 0.
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Next, we show that (2) 1mphes (1). To that end, we show by backward induction on ¢ that
ip,(X,) — ipy(X) in LY (PY~'(H)). For t = N this trivial. Suppose it is true for ¢ + 1. Then,

W2 (ip; (Xn),ip (X)) = W22(£F (lpt+1( n))s cr (1pt+1(X)))
[WQ (lpt+1(Xn)a1pt+1( NIF]  as.,

where the inequality follows from the observation that £7*(ip, 1 (X, ), ip;; (X)) is a.s. a coupling
in Cpl(ip,(Xn),ip;(X)). Hence,

EDWV3 (ip,(Xn), 1D, (X))] < EPVS (ip41(Xn), 1D 41(X))] — 0.

This finishes the induction and in particular we have ip,(X,) — ip,(X) in LY (PY 1 (H)).
Hence, £24(X,,) = L(ip; (X)) — L(ip; (X)) = £24(X). O

6. THE ADAPTED LIONS LIFT

In this section we develop the basic theory of adapted Lions lift and its applications to MC-
convex functions.

In the following we write LY (H) := L2([0,1]"; H) and for ¢ : PN (H) — (—o0, +o0],
the function @ : LY (H) — (—o00,+0oc] always denotes the adapted Lions lift B(X) =
p(L£24(X) of .

We will first establish the crucial result Theorem 6.1 on the identification of MC-conjugacy
and convex conjugacy on LY (H). In particular this allows us to prove Theorem 1.3 on the char-
acterization of optimizers in terms of adapted-law invariant convex functions. We also introduce
the notion of MC-differentiability of MC-functions which yields a characterization of transport
regularity.

6.1. Connection between MC-transform and convex conjugate of the lift. Note that
for ¢ : PN (H) — (—00, +0c0], we have dom(p) = {X € LY (H) : £34(X) € dom(p)} and we will
see in Lemma 6.10 below that the corresponding statement holds also for the continuity points.

Theorem 6.1. Let ¢ : P (H) — (—00, +00] be proper. Then

(32) P = MO

In particular, the convex conjugate of an adapted-law invariant function is adapted-law invariant.
Moreover, the following are equivalent:

(1) @ is lsc convez;
(2) ¢ is MC-conver.

Proof. For Y € LY (H) we write Q = £24(Y). By Lemma 5.5 we find
(V)= sup EX-Y]-p(X)= swp sup E[X-Y]—g(P)

XeLY (H) PePN(H) X~aaP
= sup MC(P,Q) — ¢(P) = pM°(Q) = MO(Y).
PePN(H)

Next, we prove the equivalence of (1) and (2).
Suppose that P is Isc convex. By first applying the Fenchel-Moreau theorem and then (32)
twice we find -
=7 = (pMC* = pMOMC,
Hence, p = ¢ , which shows that ¢ is MC-convex.
Conversely assume that ¢ is MC-convex. Then ¢ = M€ for some proper function 1 :
PN (H) — (—o0, +00]. By (32), we have = ¢MC = ", which shows that 7 is Isc convex. [J

MCMC
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6.2. MC-order. In this section we introduce an order on P (H) which will subsequently be
used to establish the existence of the Lions derivative in the adapted setting.

Definition 6.2. Let P,Q € PJ(H). We say that P is smaller than @ in the MC-order, written
as P <mc Q if [¢dP < [ ¢dQ for every MC-convex function ¢ : Pa’ ' (H) — (—00, +-oc].

We recall the convention PY(H) = H and note that the MC-order extends the classical convex
order on Py(H). The main result of this subsection is the following characterization of the MC-
order, which is an analogue of Proposition 2.8.

Proposition 6.3. Let P,Q € P (H). Then the following are equivalent:

(1) P <wmc Q,
(2) MC(P, R) < MC(Q, R) for every R € PY (H).

We note that implies Proposition 6.3 that for every R € P (H) the function MC(-, R) is
increasing in the <yic-order.

Proof. We first show that (1) implies (2). To that end, let P <yc Q € PY(H) and fix R €
PN (H). Let ¢ be a dual optimizer for MC(Q, R). We then have

MC(P, R) < /ade—l—/cpMCdRS /ade—i—/(pMcdR:MC(Q,R).

To establish the reverse implication suppose that (1) is not satisfied and assume first that
N > 2. Then there exists a MC-convex ¢ : Ps'*(H) — (—o0,+00] such that [ ¢ dP > [¢dQ.
By approximating ¢ with MC-convex functions of the form (oM + y4)MC for bounded A C
PN=Y(H), we can additionally assume that ¢ is Lipschitz and, in particular, finitely valued. Let
[ PY"YH) — PY7Y(H) be an e-selection of MMC e,

¢(p) + @MC(f°(p)) <MC(p, f*(p)) +e, pe Py '(H)

Let 2¢ = [ @dP — [ dQ. Define the measure
RE = (fs)#P
Then, we have
MC(P, R.) > P(¢) + Re(¢M9) = £ > Q(¢) + R (") > MC(Q, R.),

which yields a contradiction.
In the case N = 1, the same argument applies, replacing Pévfl(H) by H, MC-conjugation
with convex conjugation, and MC by the inner product on H. (I

Proposition 6.4. Let p : Py (H) — (—00,0] be MC-convex. Then ¢ is increasing in the
<mMmc-order.

Proof. This follows because MC(+, R) is increasing in the <pc-order (see Proposition 6.3) and
every MC-convex function is by definition supremum of such functionals (plus constants). O

6.3. N-Monge Couplings. In this section we use X', ) to denote Polish metric spaces.
Recall from (31) that ip, = £L7v-0+(X) € A, = PN '(H).

Definition 6.5. Let P,Q € Py (X). We say that 1T € Cpl™ (P, Q) is N-Monge if there exists a
map & : A;.xy — X such that, whenever (X,Y) ~pq II, we have Y = £(ip(X)).

Crucially, being N-Monge is equivalent to the fact that ip(Y") = T'(ip(X)) as it is possible to
‘unfold” £ : A;.y — X toamap T : Aj.y — Aj.n that satisfies ip(Y) = T'(ip(X)).
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Proposition 6.6. Let P € PN (X) and let ¢ : Hi\’:1 PN=t(X) — Y be measurable. Write Y =
£(ip(X)) and Q := L2Y(Y) and inductively define mappings T =€ and, fort =N —1,...,1,

Ty A — Py H(X), T,(p",....p") =T (p', ... 0", )b
Then, for everyt =1,..., N, we have ip,(Y) = Ti(ip1.,(X)) almost surely.
Proof. We show the claim by backward induction. For t = IV, we trivially have
ipy(Y) =Y = £(ip(X)) = T (ipy.n (X))-
Next, suppose the claim is true for ¢ + 1. We have almost surely that

ip,(Y) = L(ipy1 (Y)[F2) = L(Tiq1(ipy.441 (X)) F2)
= (Ti2(ip14(X), )9 L(ipp41 (X))
= (Ti42(ip14(X), )P, (X) = Ti(ipy. (X)),

where the first, fourth and fifth equality hold by definition, the second by inductive assumption
and the third by Fi-measurability of ip;.,(X). This yields the claim. O

Corollary 6.7. Let P,Q € PN(H). Let II', 11> € Cpl™ (P, Q) be N-Monge. Then,
(IT' 4-11%) /2 is N-Monge <= II, = Il,.

Proof. Note that the <—=-implication is trivial.

To see the =>-implication, apply Proposition 6.6 with X = H, Y = H x H and {(ip(X)) =
(X, &4(ip(X))), where £ is the corresponding map associated with the N-Monge coupling IT¢,
i = 1,2. Using the assertion of Proposition 6.6 with ¢ = 1, we obtain Borel maps 7% with
T;‘%P =TII". As (II' + I12)/2 is assumed to be N-Monge, we deduce (by analogous reasoning as
above) that (IT* + I12)/2 is given by pushforward of some measurable map. This enforces that
T! = T? P-almost surely, and hence IT! = II2. O

Definition 6.8. We call (u,v) € P2(H) x Pa(H) a strict Monge pair if the optimal coupling
between p and v is unique and of Monge type.
For N > 2, we call (P,Q) € PY¥(H) x PY¥(H) a strict Monge pair if
e the optimal coupling between P and @ is unique and of Monge type, i.e., Cpl,,,(P, Q) =
{(id, T)4 P} for some T : PY Y (H) — Py~ (H);
e For P-almost every p, the pair (p, T(p)) is a strict Monge pair.

Proposition 6.9. Let P,Q € PY(H). Then, (P,Q) is a strict Monge pair if and only if
CplY (P, Q) = {11} and 11 is N-Monge.

opt

Proof. First, suppose that (P, Q) is a strict Monge pair. We need to show that there exists a
unique optimizer I € Cpl™ (P,Q) and that it is N-Monge. To this end, we show that there is
¢ : Ay — H such that for every optimizer II € Cpl" (P, Q) and random variables X,Y with
(X,Y) ~,q IT it holds Y = £(ip(X)) almost surely.

We show the claim by induction on N. For N = 1 it is clear. Suppose that the claim
holds for N — 1. That is, if (p,q) € Py ' (H) x P53’ ~'(H) is a strict Monge pair then there is
P9 1 Ay — H such that for all X', Y’ € LY~ (H) with ip,(X',Y") € Cpl); ! (p, q) we have
Y’ = ¢P4(ip(X’)) almost surely.

Fix an optimizer II € Cplé\;t(P, @) and random variables (X,Y) ~,q II. We then have a.s.

PN_l[Pfl](iP1(X7 Y)) =ipy(X) ~ P and PN_I[pfz](im(X’ Y)) =ip; (V) ~ Q.
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Therefore, we get

MC(PQ) = [ ydI Mo, y) =E[ [y I ip, (X, Y)(dr, )|
< E[MC(ipy (X), ip, ()] < MC(P,Q).

Thus, all inequalities are equalities. In particular, £(ip;(X),ip;(Y)) € Cpl,, (P, Q) and almost
surely ip; (X,Y) € Cplé\;;l(ipl(X), ip;(Y)). As (P, Q) is a strict Monge pair, this yields ip; (V) =

T(ip, (X)) for some map T : P 1 (H) — PY~'(H) and there is \-full set Q' € F; such that for
every w € Q' we have that

(ipy (X) (w), ip, (Y)(w)) € PYY(H) x PYL(H) is a strict Monge pair,
ipy (X, Y)(w) € CplLi " (ipy (X) (W), T(ipy (X) (@))).
By the induction hypothesis, we obtain that for all w €
V() = €I ipy (X))
Using this we can define (on a L(ip(X))-full set) the desired map & : A;.xy — H via

E(ip(X)) = g1 TR ) (i, (X)),
which satisfies £(ip(X)) =Y almost surely.

Conversely, we need to show that if Cplé\gt(P, Q) = {II} and II is N-Monge that then (P, Q)
is a strict Monge pair. Again, the claim is trivially satisfied when N = 1. Assume that the claim
holds for N — 1. That is, if (p,q) € Pa ' (H) x P3'~'(H) satisfies Cplé\;f(p, q) = {1, ,} and
I, 4 is (N —1)-Monge, then (p, q) is strict Monge. If there are 71,7y € Cpl,, (P, Q) with m # 7o
and I, , € Cplé\;l(p, q) is a measurable selection, then IT; := ((p, q) — I, 4 )7 € Cplé\;t (P,Q).
Thus, II = II; = II, which can only be the case if m; = my. Since II is N-Monge there is
a measurable map £ : A;.y — X such that (X,&(ip(X))) ~aa II for X ~nq P. As in the
first part, we have that L(ip;(X),ip;(£(ip(X)))) € Cpl,, (P, Q), from where it follows that
m = L(ip;(X),ip; (£(ip(X)))) is also of Monge type. By the inductive assumption, we have that
for almost surely (ip; (X),ip;(Y)) is a strict Monge pair. This completes the induction step and
concludes the proof. O

6.4. MC-subdifferentials. Before considering subdifferentials, we briefly compare continuity
on PY(H) and LY (H).

Lemma 6.10. Let ¢ : Py (H) — (—o00,+00] and P € PN (H). Then the following are equivalent:

(1) ¢ is continuous at P.
(2) For all X ~.q P, @ is continuous at X.
(8) There exists X ~,q P such that  is continuous at X.
In particular,
cont(p) = {X € LY(H) : £2(X) € cont(p)},

and hence cont(p) is adapted-law invariant.

With the same arguments as in the proof of Lemma 6.10 it follows that a function ¢ :
PN (H) — (—o0, +0c0] is Isc if and only if its adapted Lions lift % is lsc.

Proof of Lemma 6.10. To see that (1) implies (2) let X ~,q P and || X, — X||]2 — 0. Then,
Wa(L£24(X,,), £24(X)) — 0 and hence §(X,,) = ¢(L24(X,,) — »(L24(X)) = 5(X).

The implication from (2) to (3) is trivial.

Suppose that (3) holds true. Let P, — P in Ws. By Proposition 5.7 there are X,, ~.q P,
such that || X, — X||2 = 0. Hence, ¢(P,) = 3(X,) = 8(X) = ¢(P). O
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We recall the notion of MC-subdifferntials from Definition 4.3. For a function ¢ : P& (H) —
(—00,00] and P € PJ(H) its MC-subdifferential at P is defined as

Once(P) ={Q € Py (H) : p(R) 2 ¢(P) + MC(R, Q) — MC(P, Q) for every R € P,' (H)}.
Proposition 6.11. Let ¢ : P (H) — (—o0, +00] be proper and let X,Y € LY (H). If X ~nq P
and Z ~aq Q we have

Z € 0p(X) < Q € Ocp(P) and E[X - Z] = MC(P, Q)
Proof. The proof is line by line as the proof of (19). O

A crucial observation about subdifferentials of law invariant convex functions is that if Z €
0p(X), then E[Z|X] € 0p(X). This allowed us to conclude that if ¢ is MC-differentiable at
L(X) then 0p(X) = {£(X)}. Our next goal is to establish an analogue of this for adapted-law
invariant functionals. Specifically, we show that if Z € 0p(X) then E[Z]ip(X)] € 0%(X) and

therefore conclude that MC-differentiability of ¢ at £34(X) implies that dp(X) = {£(ip(X))}.
To this end, we need some auxilary results.

Lemma 6.12. Let X,Y € LY (H) such that E[Y |ip(X)] = 0. Then, we have
L2YX +Y) =mc L2YX).
Proof. By Lemma B.2 we can assume w.l.o.g. that X has a 0(Z;, Us41.n)-measurable version,
where Z; := £LFN-1:¢(X), forall t = 1,..., N — 1. Consider the family of random variables
Yo=Y, Y :=E[Y|Z1.t,Ui+1.n], Yn:=E[Y|X,Z1.n-1]=0.
We claim that £24(X +Y;) =mc £24(X +Yyyy) for t =0,..., N — 1, which we proceed to show

by induction.
Let ¢ be an MC-convex function, then we have as @ is convex and lsc

E[@(X +Y0)|Z1, Uain] 2 P(E[X + Y21, Uzn]) = B(X + E[Y[Z1, Us:n] = 2(X 4 11).

By taking the expectation on both sides, the resulting inequality shows the claim for ¢ = 0.
Next, assume that the claim holds true for t < N. Again, let ¢ be MC-convex, then

E@(X + Y)|Z1:4, Urr1.v] = PE[X + V3| Z14, Urra.n])
= P(X + E[Y3|Z1.4, Urg1:n]) = P(X + Vi)
As above we conclude that £24(X +Y;) =ymc £29(X + Yi41) and the assertion follows by tran-
sitivity of <yc and noting that X + Y, = X +Y as well as X = X + Yy. O

Proposition 6.13. Let % : LY(H) — (—o0,+oc] be adapted-law invariant and conver. If
Z € 0p(X), then
E[Zlip(X)] € 02(X).

Proof. Let Z € 0p(X). For every Y € LY (H), we have E[Y — E[Y|ip(X)][ip(X)] = 0. Hence, by
Lemma 6.12 we find

?(Y) > p(E[Ylip(X)))
X) + E[E[Y[ip(X)] - X) - Z]
E[Y — X|ip(X)] - Z]
(Y = X) - E[Z]ip(X)]].
Hence, E[Z]ip(X)] € 9p(X). O
Definition 6.14. Let ¢ : PY(H) — (—00, 0] be MC-convex and P € dom(p). We say that ¢
is MC-differentiable at P if |Opce(P)] =1
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Lemma 6.15. Let ¢ : PY(H) — (—00, <] be MC-convez and P € dom(y). Then the following
are equivalent:

(1) ¢ is MC-differentiable in P.

(2) For all X with X ~,q P we have #0p(X) = 1.

Proof. (1) implies (2): Suppose that there are Z; # Zy € 0p(X) for some X ~,q P. By
Proposition 6.11, we have £34(Z,), £24(Z,) € dycp(P). Hence, if not Z; ~.q Za, we conclude
that Oyce(P) is no singleton. Otherwise, observe that Z := 3(Z; + Z») € 0p(X) and hence
L(Z) € dmce(P). As || - ||3 is strictly convex, [|Z]|3 < 3(||Z1]3 + | Z2]13) = [|Z1]]3. Hence,
L(Z) # L(Z,) and in particular the adapted laws are different. This shows that dyce(P) is no
singleton.

(2) implies (1): Let Q1, Q2 € Omcy(P). By Proposition 5.2 and Corollary 5.4 there are random
variables X;,Y; € LY (H) with X; ~,q P and Y; ~,q Q; such that MC(P, Q;) = E[X; - Y], for
i = 1,2. By Proposition 6.11 we have that {Y;} = 0%(X;) and due to Proposition 6.13 there
exist measurable functions such that & (ip(X;)) = ¥;. Since

MC(P, Q1) = E[X; - 1] = E[X; - & (ip(X1))] = E[X3 - &1 (ip(X2))]

Hence, & (ip(X2)) € 0p(X2). By assumption #9¢(X2) = 1 and it follows that & (ip(X3)) = Ya.
Thus Q1 = £24(Y7) = £L24(Y2) = Q2. Hence ¢ is MC-differentiable at P. O

Proposition 6.16. Let ¢ : PY(H) — (—o0, 00] be MC-differentiable in P. Then there erists a
measurable function & : A1.y — H such that for all X ~.q P

9p(X) = {&(ip(X))}-
Proof. Let X ~,q P. Then Proposition 6.13 implies that 0p(X) = {¢(ip(X))}. It remains to
show that £ does not depend on the choice of X ~,q P. To that end, let X' ~,q P and ¢
such that 9p(X’) = {¢(ip(X’))}. By Proposition 6.11, we have £24(¢'(ip(X’))) € Omce(P)
and E[X" - £'(ip(X"))] = MC(P, Q). As E[X - ¢'(ip(X))] = E[X"- {'(ip(X"))] = MC(P, Q) and
L£34(¢(ip(X))) = L£24(¢'(ip(X"))) € duce(P), Proposition 6.11 implies that &' (ip(X)) € 9p(X).
As 0p(X) is a singleton, we have £ = £’ almost surely. O

6.5. Characterization of strict Monge pairs by differentiability of MC. In the following
we generalize the result of Alfonsi-Jourdain [6] that characterizes the existence of a unique
optimal transport that is induced by a map in terms of Lions differentiability of the Wasserstein
distance to the case of iterated probability measures.

Proposition 6.17. For P,Q € Py (H) the following are equivalent:

(1) MC(-, Q) is MC-differentiable at P.
(2) There is & : A1.x — H such that for some X ~,q P

{Y ~aa QE[X - Y] = MC(P,Q)} = {¢(ip(X))} = OMC(,, Q) (X).

(8) For some X ~,q P, the function MC(-, Q) is Frechet differentiable at X.

(4) The pair (P, Q) is a strict Monge pair.
Moreover, whenever one (and hence all) of the above conditions holds, statements (2) and (3)
are valid for every X ~.q P, and OucMC(-, Q)(P) = {Q}.

Proof. We start with proving the equivalence of (1), (2), (3), and (4).

(4) = (2): Assume that (4) holds and let X ~,q P. By Proposition 6.9 thereis & : A;.y — H
such that Cpl(])\;t (P,Q) = {£3(X,£(ip(X)))}. In particular, if Y ~,q Q with E[X - Y]

E[X - £(ip(X))] = MC(P, Q). Next, we show that MC(-, Q) is Frechet differentiable at X with
derivative £(ip(X)). To this end, let X,, — X in Ly. We then have

(33) MC(£*(X,), Q) > E[X, - (ip(X))] = MC(P, Q) + E[(X,, — X) - £(ip(X))].
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Next, let Y, ~aq Q with E[X,, - Y,,] > MC(£24(X,,), Q) — || X,, — X||2/n. We then find
MC(P,Q) > E[X - Y,]| =E[X,, - YV, ] + E[(X — X,,) - Y3,]
(34) > MC(L*(X,5), Q) + E[(X — Xy) - Yo] = | X0 — X[|/n
= MC(£(X,), Q) + E[(X — X) - £(ip(X))] + E[(X — X,) - (Y, — &(ip(X)))]
Rearranging the inequalities (33) and (34) yields

IMC(£4(X,), Q) — MC(P, Q) — E[(X,, — X) - £(ip(X))]|
< [B[(X = Xn) - (Yo = (X)) < [ X0 — Xl2[[Yn — £(0p(X)) 2.

Since lim;, oo ||Yr — £(ip(X))]]2 = 0 by Lemma 6.18, we find that MC(-, @) is Frechet differen-
tiable at X with derivative £(ip(X)).

(3) = (1): This implication is clear because Frechet differentiability of the Lions lift at some
X implies, by Theorem 6.19, its Frechet differentiability at all X’ ~,q P. Hence, [{OMC(-, Q)(X')| =
1 for all X' ~,q P. Thus, it follows from Lemma 6.15 that MC(-, Q) is MC-differentiability at
P.

(1) = (4): Assume that dcMC(-, Q)(P) = {Q}. For any II € Cplf)\;t(P, Q) and (X,Y) ~uq
I1, we have that MC(P, Q) = E[X - Y] and, by Proposition 6.11 we have also Y € dMC(-, Q)(X).
Consequently, by Proposition 6.13 we obtain that E[Y]ip(X)] € OMC(-,Q)(X) and, again
by Proposition 6.11, L*(E[Y]ip(X)]) € dmcMC(-,Q)(P). Hence, @ = L2(E[Y]ip(X)]) and
E[Y|?] = E[|E[Y|ip(X)]|?], from where we deduce from the equality case of Jensen’s inequality
that ¥ = E[Y|ip(X)] almost surely, i.e., Y is ip(X)-measurable. We have shown that every
ITe Cplé\gt(R Q) is N-Monge, which, by Corollary 6.7, yields that Cplé\gt(R Q) contains a single
element. We conclude that (P, Q) is a strict Monge pair by Proposition 6.9. O

Lemma 6.18. Let P,Q, P1,Q1, Py, Qa,--- € PN (H) and let X,Y, X1,Y1,Xa,Ys... be random
variables with X ~,q P, Y ~aq Q, X5 ~ad Pn, Y5 ~ad @n such that
E[X, -Y,] > MC(P,,Qn) —en, Qn— Q in Wy, and e, — 0.
If (P,Q) is a strict Monge pair and X,, — X in Lo, then
Y, €(p(X)) in La,
where & is the unique map with L(ip(X), &(ip(X))) € CplY, (P, Q).

opt

Proof. Note that since (P, Q) is a strict Monge pair, there exists a unique map ¢ : ”Pév “H(H)x---x
H — H with Y := £(ip(X)) ~aqa Q and £24(X,Y) =: II is the unique element in Cplé\;t(P, Q).
By Ws-relative compactness, up to extracting a subsequence, we can assume that

lim 1T, := £2Y(X,,,Y,) = I in Wh.

n— oo

Write ¢(z,y) = x - y, by Wh-continuity of ¢™) we get
/m-ydIN_lf[(x,y) =MC(P,Q) = lim MC(P,,Qn)

= lim [z ydN 'L, (z,y) :/3:~ydIN711:[(as,y).

n—oo

Hence, 11 € Cplé\lf)t (P,Q) and by uniqueness IT = I1. We have shown that

(X,,Y,) = (X,Y) = (X,¢(ip(X))) in adapted distribution.
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In particular, we have (ip(X,),ip(Y,)) — (ip(X),ip(Y)) in distribution and as ipy(Y;,) = Y,
and ipy (V) =Y, (ip(Xn),Yn) = (ip(X),Y) = (ip(X), £(ip(X))). Additionally, (U,ip(Xy)) =
(U,ip(X)) in probability and therefore in distribution. We can invoke [22, Lemma 6.4] to obtain

(35) (U,ip(Xy),Yn) — (U,ip(X),Y) in distribution,

and thus (U,Y,) — (U,Y) in distribution. As Y = £(ip(X)) and Y,, are functions of U, (35)
entails by [53, Lemma 3.14] that Y,, — Y in probability. Note that E[|Y,, %] = [ |y|? dI™V (Q,) —
[ lyl?dI™(Q) = E[|Y|?] and therefore Y,, — Y in Lo, which was the claim. O

The Ekeland-Lebourg theorem (see e.g. [16, Theorem 18.3]) guarantees that a convex func-
tion on an infinite dimensonal Hilbert space that is continuous in at least one point is Frechet
differentiable on a dense G subset of the closure of its domain. For our purposes, we need a
version of this result that is tailored to adapted-law invariant functions.

Theorem 6.19. Let % : LY (H) — (—o0, +00] be adapted-law invariant, convexr and continuous
at some p € dom(p). Then the set of Frechet-differentiability points of ¢ is dense in the closure
of dom(p) and it is the intersection of countable many open adapted-law invariant sets.

Sketch of the proof of Theorem 6.19. We write A C LY (H) for the set of Frechet differentiability
points of 3. The Ekeland-Lebourg theorem [16, Theorem 18.3] asserts that A is a dense G subset
of the closure of dom(%). It remains to observe that the dense open set O,, such that A =", O,
can chosen to be adapted-law invariant.

By [16, Proposition 18.1] we have that A =, .y On with

neN
0. = {X € cont(@) : sup B(X +nY)+B(X —nY) — 25(X) < g}
0 1¥ll2=1

Note that cont(y) is adapted-law invariant by Lemma 6.10. Hence, it is clear that O,, is adapted-
law invariant provided that p was. (]

Remark 6.20. Lemma 6.10 implies that a map f : P53 (H) — R is continuous if and only if
foLld: LY (H) — R is continuous. This is precisely the universal property of quotient topologies,
ie., PV(H) = LY (H)/ ~aq. Clearly, adapted-law invariant sets are precisely the saturated sets
w.r.t. ~,q and there is a one-to-one correspondence between open sets in Py (H) and open
adapted-law invariant sets in LY (H). Hence, dense sets in PY(H) correspond to adapted-law
invariant dense sets in LY (H) and Gy sets in Py (H) correspond to subsets of LY (H) that are
a countable intersection of open adapted-law invariant sets.

Corollary 6.21. Let ¢ : PY(H) — (—oo,+00] and suppose that cont(p) # 0. Then ¢ is
MC-differentiable on a dense Gs subset of the closure of dom(y).

Proof. We write A C LY (H) for the set of Frechet differentiability points of 3. By Theorem 6.19,
the set A =, O,, with O,, adapted-law invariant, open and dense in the closure of dom(%®).
By Remark 6.20, U,, := {£24(X) : X € O,} is open and dense in the closure of dom(y). As
Frechet-differentiability implies that the subdifferential is a singleton, Lemma 6.15 yields that ¢
is MC-differentiable on ), U,. O

Theorem 6.22. Let Q € PY(H). Then the set of P € PY(H) such that (P,Q) is a strict
Monge pair is a dense Gs set.

Proof. This follows from Proposition 6.17 and Corollary 6.21. O
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7. CONSTRUCTION OF TRANSPORT-REGULAR MEASURES IN P53 (H)

7.1. Criterion for transport regularity. The aim of this section is to provide a more accessi-
ble criterion for transport regularity of measures on iterated spaces of probability measures. To
this end, we leverage the adapted Lion’s lift which permits us to formulate the following criterion:

Theorem 7.1. Let P € PN (H) and X € LY (H) with £24(X) = P. Assume that
(36)  for almost every u, (it X (urg_1,1s, ) € Po(LYTH(H)) is transport regular,
forallt=1,...,N. Then, P is transport regular.

An important role in the proof of Theorem 7.1 plays the following

Proposition 7.2. Let ¢ : PY(H) — (—00, +00] be MC-convex and let P € PY(H). Then, for
all X € LY (H) with X ~uq P we have

{£2(Y): Y € 9p(X)} C Ouce(P).
Assume further that P is transport reqular, then we have

{£2(Y) 1Y € 95(X)} = dncp(P).
Proof. The first inclusion follows immediately from Proposition 6.11.

For the second part, since P is transport regular, we have by Proposition 6.9 that for every
Q € dcp(P), CplY (P,Q) = {L(ip(X),£&(ip(X)))} for some measurable map €. This readily

opt
yields the desired equality. O

Corollary 7.3. Let P € PY(H) and X € LY (H) with £24(X) = P. Assume that
(1) (uy + X (uy,-))gX is a transport reqular measure in Po(LY ~H(H)),
(2) for A\-almost every uy, £L2(X (u1,-)) is a transport regular measure in P3' ~*(H).

Then, P is transport regular.

Proof. By Lemma A.1, we have to show that for every MC-convex ¢ : Pa' ' (H) — (—o0, +-00],
we have #0\ce(p) < 1 for P-almost every p. Using assumption (1), we get

#0p(X (u1,-)) <1 for Aa.e. uy.
Next, assumption (2) allows us to invoke Proposition 7.2 and we obtain
{£29Y) Y € 0%(X (uy,-)} = Ocp(L(X (uq,-)))  for A-a.e. u;.

Hence, #0mcp(L2(X (u1,-))) < 1 for Ad-a.e. up or equivalently #dce(p) < 1 for P-a.e. p. As
 is an arbitrary MC-convex function, this shows transport regularity of P. (I

Proof of Theorem 7.1. We prove the claim by backward induction over t. More precisely, we
show for t = N, ... 1 that

for almost every u, Ead(X(ul;t_l, ) € PNFTIZU(H) is transport regular.
Base case (t = N): Using the assumption (36) with t = N, we find that for almost every uq.n_1
ﬁad(X(ulzN,l, ) = (un = X(ur:n—1,un))#A € P2(H) is transport regular.
Inductive step: Assume the claim holds for ¢ + 1. Using (36) with ¢, we have
for a.e. u, P"vt1 = (up = X(u1.4-1, s, ~))#>\ € Po(LYTH(H)) is transport regular.
Further, we derive from the induction hypothesis that, for a.e. u and P*“+-1-ae. Y, £24(Y) €
’Pév 7t(H ) is transport regular. Thus, we can invoke Corollary 7.3 and conclude that, for almost

every u, £L24(X (u1.4_1,-)) is transport regular.
Taking ¢ = 1, we yields that £34(X) is a transport regular measure in P35 (H). (]
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7.2. Existence of transport-regular measures. The criterion in Theorem 7.1 permits us to
build transport-regular measures on P4 (H) using non-degenerate Gaussian random fields. More
precisely, we will consider the H-valued analogue to a Brownian sheet.

Recall that an H-valued N-parameter Brownian sheet W with covariance operator @ is an
H-valued, continuous, centered Gaussian process indexed by [0, 1]V such that

N
(37) ]E[(W(u), x) (W (v), y)] = H min(ug, ve) (Qx, y),

t=1

for u,v € [0, 1}N and z,y € H. Here, Q : H — H is a non-negative, symmetric linear operator
with finite trace.

Theorem 7.4. Let Q € L(H) be a positive-definite, symmetric linear operator with finite trace.
Let W be an H-valued N -parameter Brownian sheet. Then Lp(L*(W)) is a transport-regular
measure on P (RY) with full support.

Proof. For t = 1,..., N, we write H, := LY ~*(H) using the convention that LY(H) = H. For
fixed uy.4,v14 € [0,1]F we have

E RW(ul:t» '), f>H, <W(Ul:t7 ')7 g>Hf:|

N
-/ T min(ues, 0@ (e s 1:v), 9005 1:3)) a1, Vg o).
[0,1]N—tx[0,1]N ¢ 1

Therefore, we can interpret W as an H-valued, t-parameter Brownian sheet whose covariance
operator Q; is given by
N
(Quf)(urs1:n) = / [T min(us,ve) Qf (vrs1:n) dveron,
0,1V s 2y

where u; 1.y € [0,1]V~% and f € H;. Since H; can be identified with Lévft(R) ® H, Q; can
be identified with the tensor product of the positive-definite, symmetric trace class operators Q
and @ on the separable Hilbert spaces Lév “!(R) and H, respectively. Therefore, Q; is a positive-
definite, symmetric trace class operator on H;. Indeed, Q); is symmetric, positivity follows from

@D = [

<Q [ ]f(ut+17N>dUt+1,Na f(ut+1,N)dUt+1,N>dw7
w,1

[0,1]N -t [w,1]
where [w, 1] := [wy_¢, 1] X -+ X [wy, 1], for all f € Hy, and it is trace class since
tr(Qt) = Z <Qt6n 2y fm7 en & fm>Ht
n,meN
N
= (Z/ H miH(US7Us)en(ut+1;N)€n(vt+1:N)d(ut+1:N,Ut+1:N))
NNt S
(D (@fm )
meN

=tr(Q) tr(Q) < oo,
for orthonormal bases (e, )nen of LY "*(R) and (fo,)men of H.
For fixed uy¢_ 1 € (0,1]*~! we have that
t

up = E[(W (urat, ), £ o, (W (i, ), 9)m,] = H us(Quf,9) m, s

s=1
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and thus uy — W (uy..—1,us, -) is a Wiener process with positive-definite covariance operator. By
Theorem 3.5, we deduce that

(38) a.s.  (ur — W(ui.g,-))#A is a transport-regular measure on H; = LY ~*(H).

By Theorem 7.1, £24(W) is almost surely transport regular in P (H). Since £(W) is a non-
degenerate Gaussian measure on LY (H) it is transport regular, see e.g. [8, Theorem 6.2.10].
Another application of Proposition 7.2 yields that Lp(£24(W)) € PN *(H) is transport regular,
as claimed.

Finally, we show that the support of P is the whole space. Since L(WW) as Gaussian measure
on LY (H) is non-degenerate, we have that the support of £(W) is the whole space. As £24 :
LY (H) — PY (H) is continuous by Proposition 5.7 and surjective by Proposition 5.2, we conclude
that the support of Lp(L£*d(B)) coincides with P (H). O

7.3. Proofs of Section 1.1.

Proof of Theorem 1.1. Theorem 7.4 provides a transport-regular measure A on P2 (H) with full
support, and yields the claim. O

Proof of Corollary 1.2. By Theorem 1.1 there exists a transport-regular measure A on P35 (H)
with full support. Therefore, {Q € Py (H) : Q < P} is dense and consists of transport-regular
measures as consequence of Lemma A.1. [l

Proof of Theorem 1.5. First, let ¢ be any MC-convex function. Since P < A and the latter is
transport regular, we have by Lemma A.1 that #dcp(p) < 1 for P-a.e. p € Py (H). Because
of Proposition 6.11 and Lemma 6.15 the adapted Lions lift satisfies #9p(X) < 1 a.s.

Next, recall that by Lemma 4.2 and Theorem 4.4, IT € Cpl(P, Q) is W3-optimal if and only
if there exists an MC-convex ¢ with II(Oyce) = 1. By the first part we find that, for P-a.e. p,
Ocw(p) = {L24(Vp(Y))} with Y ~,q p. Hence, W3-optimality of II is equivalent to

I ~ (£2(X), £24(Vp(X)))
for some MC-convex ¢ : Py (H) — (—oo, +00] with dyce(p) # 0 for P-a.e. p. The claim then
follows by Theorem 6.1. |

Proof of Theorem 1.6. The first claim follows from Theorem 1.5. To see the second claim, note
that (P,Q) € PY(H) x PY¥(H) has a unique Ws-optimal coupling and this coupling is concen-
trated on the graph of a bijection if and only if (P, Q) is a strict Monge pair. For each fixed
Q € PN (H), the set {P € PN (H) : (P,Q) is strict Monge} is a dense Gs-set. It follows from
the Kuratovski-Ulam theorem (see e.g. [54, Theorem 8.41]) that the sets

{(P,Q) € PY(H) x PN(H) : (P,Q) is strict Monge},
{(P,Q) € PY(H) x PY(H) : (Q, P) is strict Monge},

are both comeager. Hence, the same is true for their intersection, which yields the claim. ([

8. APPLICATION TO ADAPTED TRANSPORT

8.1. Outline of the framework. The aim of this section is to apply the results obtained above
to H-valued stochastic processes, equipped with the adapted Wasserstein distance.

As noted in the introduction, the set Po(HY) of laws of N-step processes is not complete
w.r.t. AWs. It is shown in [14] that the completion of (P2(H™Y), AW5) consists in the stochastic
processes with filtration. In detail, we use FP5 to denote the class of all 5-tuples

X= (QX7]:X7]P)Xﬂ(ftX)iv:h(Xt)iV:I)v



A BRENIER THEOREM ON (Py(...P2(H)...), Ws) AND ADAPTED TRANSPORT 37

where X is an adapted square integrable process. In analogy to (14), the (squared) adapted
Wasserstein distance of two filtered processes is defined as

AWs(X,Y) :=  inf /|X —Y|*dnr.
w€Cpl,,.(X,Y)

Here 7 is a causal coupling of X,Y if 7 € Cpl(PX,PY) and
QX x B|FX @ FY) = n(QX x B|F¥ @ FY), Be FY,t<N.

Bi-causality of m, that is 7 € Cpl,.(X,Y) means that this holds also when the roles of X,Y are
exchanged.

We say that X, Y are AW-equivalent, in signs X ~ 4y Y if AW5(X,Y) = 0 and write FP5 for
FPa/ ~aw. Using these notations (FPg, AW,) is the completion of (Py(HY), AWs). Moreover,
(FPy, AW5) is a Polish geodesic space. We note that AW5(X,Y) = 0 can be expressed in a
number of equivalent ways: it is tantamount to X, Y having the same probabilistic properties in
the sense of [51], to X, Y having Markov lifts with the same laws (see [23]) and to X,Y having
the same adapted law in the sense defined in (41) below.

Every filtered process X has a representative in

(39) LY q(H) :={X € Ly([0, 1]V, X\; HY) : X; is Fi-measurable}, .

where (F;) denotes the coordinate filtration as above, see e.g. [23]. Moreover we have for X, Y €
Lé\,’ad(H)

_ : Iy
(40) AW (X,Y) = b X - Xl
and the infimum is attained. It is therefore without loss of generality to work with filtered
stochastic processes X € Lé\{ad and we shall do so from now on.

The stochastic interpretation of the framework developed in the previous sections is that we
consider an H-valued random variable X together with a filtration (7)Y ;. We assume that
X is Fy-measurable and interpret (F;)Y; as a model of how information about X is gradually
revealed. (Alternatively we could identify X with its Doob martingale.)

In order to apply our results for P53’ (H) to the adapted Wasserstein setting we need to consider
the relationship of LY (H) and Lé\{ad(H) in some detail.

The aim of this section is to translate these results to the classical setting of H-valued sto-
chastic processes X = (X;)¥; that are adapted to the filtration (F;)Y ;.

Following [14], we define the information process of an adapted process X € Lé\fad(H ) by
backward induction on t as

ip, (X) = (X4, L7 (ip, 1 (X)), t=N-1,...,1
The information process takes values in the following nested space: Set (Zn,dz,) = (H,|-])
and
Zy = HXPa(Z11)  dz, = P+Wsgz,,,

where Ws z, ., is the 2-Wasserstein distance w.r.t. the underlying metric dz,,,. The adapted
distribution of X is then defined as

(41) LX) = L(ipy (X)) € P2(Z1).
Theorem 8.1. The space of filtered processes is isometrically isomorphic to Po(Z1). That is
AW, (X,Y) = Wa(L4(X), L(Y)).

In particular X ~w Y if and only X ~,q Y. Moreover, for every P € Py(Z1), there exists
X e Lé\fad(H) such that £L29(X) = P.
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Proof. The first assertion is due to [14, Theorem 1.3]. The second claim follows analogously as
in Proposition 5.2. (]

8.2. Embedding into Py (HY). In order to apply the results from the previous sections, we
need to embed P2(Z;) into P (HYN). We start to outline this procedure at the level of processes
/ random variables.

Every process X = (X)), € Lé\fad(H) is (by forgetting the adaptedness constraint) in
particular an element of LY (H™), i.e., there is a natural embedding

(42) taa : L3 q(H) — LY (H™).

If it is notionally convenient, we suppress ¢,q and in particular consider Lé\{ .q(H) as a subspace
of LY (HN).

On the other hand we can interpret X € LY (HY) as a process X = (X;)Y, that is not
necessarily adapted. We can naturally assign to it the adapted process (E[X;|F;])Y.;. This
defines the orthogonal projection

(43) Prag s Ly (HY) = Ly ,q(H) : X = (E[X|F])L,.

Next, we outline this procedure at the level of adapted distributions. To that end, we introduce

the auxiliary spaces
E, :=PN -t HNTY t=1,...,N.

Note that Py(E;) = PN (HYN). We recall from Section 5 that the ip of a random variable is given
by ip,(X) = £71(X) and further note that ip,(X:.ny) takes values in Ej.

It is crucial that ip,(X) and ip,(X;.n) contain precisely the same information. In particular,
ip, (X) and ip; (X) contain the same information and hence the difference of £34 and £34 is only
of notational nature. This is made rigorous in the next proposition:

Proposition 8.2. Fort e {1,..., N}, there exist mappings

LtIZt—>Et
jtiEt—>Zt

with the following properties:

(1) ji is continuous and the left-inverse of iy, i.e., j; o 1 = idzg,,

(2) vt is an isometric embedding,

(8) v(ipy(X)) = ip,(Xe.n) for every X € Lé\,,ad:

(4) 3e(ip(Xe:n)) = ipy(prog(X)) for every X € LY (H™N).
Moreover, we have:

(5) JipLr(X) = L2(proq(X)) for every X € Ly (HY),

(6) 114L24(X) = L3(X) for every X € Lé\fad(H).

Proof. We start with the construction of the mappings. To this end, we write § for the map
§: X = Pa(X): x> 0y

which assigns to a point x the Dirac measure at z and we also consider its ¢-fold iteration
8t X — PLX).

Next, we define the mappings ¢; : Z; — B; by backward induction on ¢t. For ¢ = N we set
iy :=1id : H — H and inductively, for t < N,

(44) 1 2y — By, w(z,p) =6 "t® Li+14D-
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The mappings j; are then defined by jn :=id : H — H and by induction for ¢ < N (writing
pry,...,pry for the projections from HN+1=t onto H) defined by

(45) i By — Z, Je(P) = (mean(Prt#(IN_t_l(P)))7jt+1#(73N_t[Pft+1;N](P)))a

where mean(p) := [z pu(dx) for p € Py(H).

Next, we show the claims (1) to (4) simultaneously by induction on ¢. For t = N, they are
trivial as ¢y and jy are both the identity.

Suppose that the claim is true for ¢ + 1. We start with claim (1). As the intensity, mean
and pushforwards with continuous maps, are all continuous operations, j; is continuous. For
(x,p) € 2y = H X Py(Z2441) we have using that ji41 0141 =1idz,,,

Je(e(x,p)) = 5e(67 " © v #p) = (mean(IN 116 1)), fer1gterigp) = (2,p).
Concerning (2), it is easy to check from (44) and from the definition of the Wasserstein distance
that ¢; is an isometry. It is an embedding because j; is its continuous left-inverse.

In order to show (3) observe that

v (ipp (X)) = 0e(Xp, L7 (ipy 41 (X)) = 0%, " @ L7 (141 (P41 (X))
and using the inductive claim this is further equal to
5§t—t ® ﬁ]:t (ile(X)) _ 5)]\(It—t ® L:.FN—l:t(Xt+1:N) — E]:N—l:t(Xt:N),

where the last equality is true because X; is F;-measurable.

Claim (4) follows from (3) and the fact that j; is the left inverse of ¢,. This finishes the
induction.

The claims (5) and (6) follow from (3) and (4) for ¢ = 1. O

Corollary 8.3. We have P2(2;) = {£34(X) : X € LY a(H)}. In particular, Ly ,,(H) is an
adapted-law invariant subspace and the projection pr,, is adapted-law invariant, i.e., if X ~aq
X', then pry (X) ~ad proq(X’).

Proof. The first assertion follows from Proposition 8.2 and the fact that the space of filtered
processes and Po(Z) are isomorphic (see Theorem 8.1). The second assertion follows from
Proposition 8.2 (5). O

We note that it is more generally true that the projection onto an adapted-law invariant
subspace is adadpted-law invariant.

Corollary 8.4. Fort < N, there exists a measurable map g; : Z1.; — P& '(HN) such that
ip(X) = gt(ipy. (X)) for every X € Lé\{ad(H)'

Proof. For every s < t, X, is the first component of ip,(X). Hence, there is a projection
pr : Z14-1 — H'! such that pr(ip;,, (X)) = X1.4-1 for every X € Lé\fad(H). The map
1+ Z¢ = Ey defined in Proposition 8.2 satisfies ¢ (ip; (X)) = ip;(X¢.n) for every X € Lé\{ad(H).
Thus,

gt 2 214 — Pévit(HNL g(z1:4) == oN -t ® ve(zt)

pr(z1:t—1)

satisfies ip,(X) = ¢:(ip;.4(X)) for every X € Lé\fad(H). O

It was central in the previous sections (in particular in the context of MC-subdifferential and
N-Monge couplings) to establish that a random variable Y is of the form Y = £(ip(X)). The
next assertion shows that in the present setting the mapping ¢ translates to an adapted mapping.
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Proposition 8.5. Let X,Y € Lé\{ad(H) and let € : Ay.n — HY be measurable such that Y =

£(ip(X)). Then there is an adapted map € : Z — HY such that Y = £(ip(X)), de., YV; =
& (ipy (X)) for every t < N. Moreover, there is an adapted map S : Z — Z such that ip(Y) =
S(ip(X)).
Proof. Fix t < N. By Proposition 6.6, the map ¢ induces a map T} : Hizl PYS(HN) —
PYH(HN) such that ip,(Y) = Ti(ip;;(X)). The map g; defined in Corollary 8.4 satisfies
ip,(X) = g:(ip1..(X)). We set hy(P) := mean(IN~t=1(PN~t[pr,](P)) where pr, : HY — H is
the projection onto the ¢t-th component. Note that

he(ip,(Y)) = mean(IN "1 (LN 1 () = mean(IV 71 (5 7)) = V.
We then define the desired map & as & := hy o T} o g; and note that

§i(ip, (X)) = he(Ti(9:(iP1.4(X)))) = he(Ti(ip1,4(X))) = he(ip, (V) = Vi

For the second claim, we set Sy = j; o T} o g; and note that
St(ip1.4(X)) = Je(Te(g:(ip1.4(X)))) = Je(Te(ip1.o (X)) = Jie(ip,(Y)) = ipy (V). 0

8.3. Lions lift for filtered processes. From now on, we occasionally write Zt(N) instead of
Z; to make the dependence on the number of time steps explicit when needed. As the space
of filtered processes is isometrically isomorphic to PQ(Z{N)), defining a lift for functions v :
P2(Z1) — (—00,+00] is equivalent to defining a lift for functions on the space of filtered processes
with N time periods.

Definition 8.6. Let ¢ : PQ(ZI(N)) — (—00, +00]. Then its adapted Lions lift is defined as the
function

¥ Lygq(H) = (=00, +00],  P(X) = ¢(£29(X)).
In order to establish a connection to convex analysis and Brenier-type results for the adapted

Wasserstein distance, we consider the adapted maximal covariance

AMC(X,Y) := sup E[X" Y]
X' mona X, Y

This adapted max-covariance functional is connected to the iterated max-covariance on Po (Z{N)).
To define this functional we first set

<x?y>ZN = <ma y>H
<(.13,p), (ya Q)>Zt = <JJ, y>H + <p’ q>2t+1
and then define the max-covariance functional on Py (Z;) as
MOP.Q) = sw ({0 (1.0, dll(w.p.1.0)
MeCpl(P,Q)
Proposition 8.7. For X,Y € L}, (H) we have

(1) AW3(X,Y) = | X|3 +|[Y |3 — 2AMC(X,Y)
(2) W3(£2(X), £24(Y)) = E|X|* + E|Y|? — 2MC(£24(X), £24(Y))
(3) AMC(X,Y) = MC(£24(X), £29(Y))

Proof. The claims (1) and (2) are straightforward by completing squares. (3) follows then from
Theorem 8.1 by invoking (1) and (2). O

Transport theory on P2(Z;) with MC costs then yields the notions of MC-transform and
MC-subgradient in the present setting:
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Definition 8.8. Let ¢ : P3(Z1) — (—o00, +00] be proper. We define its MC-transform as
PMOQ) = sup  MC(P,Q) —(P).

PePy (Zl)

A function 9 : P2(Z1) — (—o00,+00] is called MC-convex if there exists a proper function ¢ :
Po(Z1) — (—o0, +00] such that ¢ = IMC. Moreover, the MC-subdifferential of 1 at P € Py(Z)
is defined as

e (P) ={Q € P2(Z1) : Y(R) > ¥(P) + MC(R, Q) — MC(P, Q) for every R € Py(Z1)},

and we write

Omcy = {(P,Q) : Q € dmcp(P), P € P2(21)}.

Analogous to the theory on P (H), we have the following crucial connection between the
MC-transform and the convex conjugate on L3, ,(H).

Lemma 8.9. Let P,Q € P3(21) and Y € Lé\fad(H) with £34(Y) = Q be given. Then,

MC(P,Q)= sup E[X Y]
XEeLY ,4(H)
£24(x)=pP

Proof. By using that ¢; is an isometry (see Proposition 8.2), the corresponding claim in the setup
of PV(HY) (see Lemma 5.5) and the self-adjointness of pr,,; we find

MC(P,Q) = MC(t1#P,114Q) = sup E[X -Y]= sup E[X- Y]
XeL) (HY) XeLy q(H)
£2(X)=P £24(X)=P

Proposition 8.10. Let ¢ : Py(21) — (—o0, +00] be proper. Then we have

*

(46) PMC =4

In particular, the convex conjugate of an adapted-law invariant function on Lé\{ad(H) s adapted-
law invariant.
Moreover, the following are equivalent:

(1) ¥ is lsc convex,
(2) 1 is MC-convex.

Proof. For Y € L}, (H) we write Q = £24(Y). By Lemma 8.9 we find

* —

¢ (V)= sup  E[X-Y]-9(X)= sup sup E[X-Y]-¢(P)
XeLy ,(H) PeP2(21) X~vaaP
= s MC(P,Q) = %(P) = pM9(Q) = vMO(Y).
PGPQ(Zl)

Next, suppose that 1) is Isc convex. Then by first applying the Fenchel-Moreau theorem and
then (46) twice we find

D=3 = gNT" _ goNT,
Hence, 1) = ypMCMC which shows that ¢ is MC-convex.

Conversely assume that 9 is MC-convex. Then ¢ = ¥MC for some proper function o :
Py(Z1) = (=00, +00]. By (46), we have ¢ = YMC =", which shows that 1 is Isc convex. [
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Remark 8.11. Next, we discuss how to extend adapted-law invariant functions on Lé\fad(H )

to adapted-law invariant functions on LY (H"™). This allows us to also translate results on the
structure of the subdifferentials of MC-convex functions from Section 6 to the present setting.
The are two ways to extend a given adapted-law invariant function v : Lé\fad(H ) = (—00, +00].

(1) We set it +o00 on non-adapted processes, i.e., writing x for convex indicators

PX) = (X) + Xy, ) (X):

(2) We use the projection onto adapted processes, i.e.

P(X) = P(proq(X)).
As LY, 4(H) and pr,, are adapted-law invariant (see Corollary 8.3), this defines indeed adapted-
law invariant functions. Moreover, these two ways are dual to each other via the convex conjugate
on LY (HN), i.e.
— —x
(hopry)” =1 + XLY,  (H)*

Remark 8.12. If we are in the situation that $(X) := ¢ (pr,4(X)), we have (when suppressing
the embedding tqq and considering L}, ,(H) as subspace of Ly’ (H™))

I%(X) = 0y (X).
Here, the subdifferential on the left hand side in meant in LY (H”), whereas the one the right

hand side is meant in the subspace Lé\’]ad(H). In particular, this asserts that 0p(X) C Lé\{ad(H).

Moreover, for X € Lé\jad(H ), P is Gateaux (Frechet) differentiable at X if and only if ¢ is
Gateaux (Frechet) differentiable at X.

Proposition 8.13. Let ) : P2(Z21) — (—00, +00] be proper and let X, Y € Lé\fad(H). If X ~,q P
and Z ~,q QQ we have

Z € OB(X) = Q€ dycv(P) and B[X - Z] = MC(P,Q).
Proof. The proof is line by line as the proof of (19). O

Lemma 8.14. Let ¢ : Py(21) — (—00,00] be MC-convez and P € dom(y). Then the following
are equivalent:

(1) ¢ is MC-differentiable at P.

(2) For all X with X ~,q P we have #0(X) = 1.

Proof. This follows line by line as in the proof of Lemma 6.15. O

Corollary 8.15. Let v : Po(Z1) — (—00, 00| be MC-convex and P € dom(p). Set ¢ := 1poP(i1).
Then the MC-subdifferentials coincide in the sense that

ey P) = {1xQ : Q € Oucy(P)}
In particular, ¥ is MC-differentiable at P if and only if ¢ is MC-differentiable at 114 P.

Proof. Let R € Omcp(tixP). Let X ~aq t14P (and hence X € Lé\fad(H)) and Y ~,q R such
that E[X - Y] = MC(114 P, R). By Proposition 6.11, we have Y € 05(X). By Remark 8.12, we
have Y € 0¢(X). In particular, Y € Ly ,q(H) and hence R = L£24(Y) is of the formn ¢14Q for
some @ € Py(Z1). Then Proposition 8.13 yields Q € dvcy(P).

Conversely, let @ € Oyct(P). Then there are X, Y € Lé\fad(H) such that MC(P,Q) =
E[X -Y]. By Proposition 8.13, we have Y € 9¢(X), by Remark 8.12 we have Y € dp(X). Then,
11#Q € Omcp(t14P) by Proposition 6.11. O
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Proposition 8.16. Let ¢ : P2(Z21) — (—o0, 00| be MC-differentiable at P. Then there ezists an
adapted map € : Z — HY such that for all X ~uq P

oP(X) = {£(ip(X))}-
Proof. We set ¢ := ¢oP(11) and note that (X) = 1 (pr,,(X)) and that ¢ is MC-differentiable at
t1# P by Corollary 8.15. By Proposition 6.16 there exists a measurable function § : A1,y — HN
such that 9p(X) = {{(ip(X))} for all X ~aq P. By Proposition 8.5, there is an adapted map

¢ : Z — HY such that £(ip(X)) = £(ip(X)). Using Remark 8.12 we find
O (X) = 0p(X) = {¢(ip(X))}- O
Proposition 8.17. For P,Q € Py(Z1) the following are equivalent:
(1) MC(-, Q) is MC-differentiable at P.
(2) There is an adapted map & : Z — HY such that for some X ~uq P

{Y ~aa @ E[X Y] = MC(P,Q)} = {£(ip(X))}-

(8) For some X ~,q P, the function MC(-, Q) is Frechet differentiable at X.

Moreover, whenever one (and hence all) of the above conditions holds, statements (2) and (3)
are valid for every X ~,q P.

Proof. We derive this result from Proposition 6.17, that is the corresponding result on Py (H™).
For this note that the extension of MC(+, Q) to a function on P (H?Y) in the way described in
Remark 8.11(2) is precisely MC(+,¢1,,Q) (here MC denotes the max-covariance on P2 (H™)).
Assertion (1) in Proposition 6.17 and assertion (1) in Proposition 8.17 are equivalent by Corol-
lary 8.15. Moreover, the assertion (2) in Proposition 6.17 and assertion (2) in Proposition 8.17
are equivalent due to Proposition 8.5. Finally, assertion (3) in Proposition 6.17 and assertion (3)
in Proposition 8.17 are equivalent by Remark 8.12. O

Proposition 8.18. Let ¢ : Py(Z1) — (—o00,+00] and suppose that cont(y)) # 0. Then ¢ is
MC-differentiable on a dense Gs subset of the closure of dom(2)).

Proof. The proof follows the proof of Corollary 6.21 line by line. O

8.4. Naturally filtered Processes. A process is called natural if its filtration contains no
more information about its future evolution than is provided by its past trajectory. This is made
precise in the following definition.
Definition 8.19. X is called naturally filtered if for every t < N

LX|F)=L(X]|X1.4)-

Naturally filtered processes are already determined by the law of the processes itself and it is
not necessary to consider the adapted law in this case. This is made precise in the next lemma.
Lemma 8.20. Let X,Y € Lé\”ad(H). Then, we have:

(1) X is naturally filtered if and only if there is an adapted map f such that ip(X) = f(X).
(2) If X,Y are naturally filtered, then £24(X) = L£L24(Y) if and only if L(X) = L(Y).
Proof. See e.g. [23, Section 3] and [65, Lemma 2.3]. O

As the law of the random variables determines a natural filtered processes, it is also mean-
ingful to consider the adapted Wasserstein distance between these laws, defined in (14) in the
introduction. The following lemma clarifies that these concepts are consistent.

Lemma 8.21. We have
(1) If X,Y € Lé\jad(H) are naturally filtered, L(X,Y") € Cply(L(X), L(Y)).
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(2) If p,v € Po(HN) and w € Cpl(u,v), there are naturally filtered X,Y € LY 4(H) such
that £(X,Y) = .
(3) If X,Y € L} ,,(H) are naturally filtered, AW2(X,Y) = AWa(L(X), L(Y)).

Proof. For (1) and (2), see e.g. [23, Lemma 5.3|. For (3) see [14, Theorem 1.2]. O

Next, we give an embedding J of the (adapted distributions of) natural filtered processes
(PN (HN), AW3) into set of (adapted distributions of) general processes. For N = 2 periods,
writing du(z1, 2) = dpg (1) pie, (x2), it reads as follows:

J(p) = (z1 = (@1, oy )) 1

For N > 2 it is an iteration of such maps (see [11, 12]) for notational simplicity we define the
map J in processes language as

(47) J:Po(HN) = Po(21) : p— L£24(X) where X naturally filtered with £(X) = pu.
Proposition 8.22. The map J : (P2(HN), AWs5) — (P2(21),Ws) is an isometric embedding
and its range is dense Gs.

Proof. See e.g. [12, Section 5]. O

Corollary 8.23. Let X,Y € Lé\fad(H). If X is naturally filtered and Y = £(ip(X)), then there
is an adapted map T : HN — HY such that Y = T(X).

Proof. This follows immediately from Proposition 8.5 and Lemma 8.20 (1). O

Proposition 8.24. For every v € Po(HY), the set of u € Po(HYN) such that Cplggt(u, v) ={r}
and 7 is induced by an adapted map is comeager in Po(HY).

Proof. Fix v € Po(HY) and write Q = J(v) € P2(Z1), where J is the map defined in (47). By
Proposition 8.18, the set of P € P2(2Z;) such that MC(-, Q) is MC-differentiable in P is dense
G5 in P2(Z;). By Proposition 8.22, also the set

D = {u € Po(HN) : MC(-, Q) is MC-differentiable in .J (1) }

is dense G5 in Po(HN).
Let © € D. By Proposition 8.17 there is an adapted map ¢ : Z — H such that for every
X ~aa J (1)

(48) {Y ~aa Q:E[X - Y] = MC(P,Q)} = {¢(ip(X))}-
By Lemma 8.20, there is an adapted map f : HY — Z such that ip(X) = f(X). We define
T:=¢of:HY - HY.

Note that T is adapted as concatenation of adapted maps. Now, let m € Cpl,.(, V) be any
optimizer. We observe that m = (id, T)p. Indeed, by Lemma 8.21, there are X,Y € Lé\fad(H)
natural such that £(X,Y) = 7. By (48), we have Y = £(ip(X)) = &(f(X)) = T(X). Hence, the
optimal 7 is unique and Monge. O

Proposition 8.25. The set of pairs (u,v) € Po(HN) x Po(HYN) such that Cplggt(,uw) = {n}
and 7 is induced by a bi-adapted map is comeager in Po(HN) x Po(HN).
Proof. We write e : HY x HY : (z,y) — (y,z) and

A={(pv): Cplggt(u,y) = {r} and 7 is Monge},

B={(uv): Cplggt(u,u) = {r} and eym is Monge}.
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By Proposition 8.25, for every v € Pa(HY), the set A = {u € Po(HY) : (p,v) € A} is
comeager. For the same reason, for every p € Po(H™Y), the set B, = {v € Po(HY) : (u,v) € B}
is comeager. It follows from the Kuratovski-Ulam theorem (see e.g. [54, Theorem 8.41]) that A
and B are comeager in Pa(HY) x Po(HY). Hence, AN B is comeager in Po(HN) x Po(HYN). If
(u,v) € AN B, then Cplggt(ﬂ, v) = {r} and both 7 and exn are induced by an adapted map.
Hence, 7 is induced by a bi-adapted map (see e.g. [20, Lemma A.2]). O

8.5. Lift of functions on Z; and proof of Theorem 1.11. For transport of measures P, Q €
Pg(ZfN)), the dual potentials are functions on Z{N) = H x PQ(ZQ(N)) = H X Pg(ZfN_l)). For
this reason, we also need to consider adapted Lions lifts of such functions, that is
(49) ¢ H x Ly (H) = (=00, +00], (w1, Xa:v) = (w1, £24(Xan)).
We write

Vy = H x LY, [ (H)
and note that if X € Lé\fad(H) and uy € [0,1] is fixed, then

X(ul, N ) = ()(1(’(1,1),)(2(’(1,17 '), . ,XN(ul, s )) S VN.

Hence, we can consider X € Lé\f 2q(H) also as V-valued random variable on ([0,1], ) and apply
a function ¢ : H x Lé\f;dl (H) — (—00,+0c0] to it, in this case we write ¥(X (u1,-)).

It is easy to see from the results in Section 8.3 that via this Lions lift defined in (49) the
c-transform for the cost ¢((z, p), (v, q)) = ((z,p), (y,q)) z, coincides with the convex conjugate on
Viv. Writing (-, -)y,, for the scalar product on Viy we also have the analogue of Proposition 8.13,
namely
(Q,91) € Ocp((P,21)) and
<(I17 XQZN)v (yh Y2IN)>VN = C((Ila P)a (y17 Q))

Proof of Theorem 1.11. We write P = £24(X) and Q = £24(Y). Suppose that there is an
adapted-law invariant function @ : Vy — (—o0, +o0] such that Y (uq,...) € 09(X (uq,...)) for
a.e. uy € [0,1]. Writing ¢ for the corresponding function on Z; we have

P(L2(X (ur, ) + o (L2UY (w1, ) = (X (w1, ) + T (Y (u, ) = (X (ur,0), Y () v
By integration over A(duy) we find
/ade+/<pch:]E[X~Y].

On the other hand Theorem 8.1 and the fundamental theorem of optimal transport yield that

AMC(X,Y) = MC(P, Q) = inf/(de—i—/goCdQ.

(50)  (y1,Yan) € 09((21, Xo:n)) {

%)

Hence, (X,Y) is optimal.
Conversely, assume that (X,Y") is optimal. Then on the probability space ([0,1], ) (denoting
the elements of it with u1) the pair of random variables

(L29(X (g, ), £24(Y (us, )

is optimal for the transport problem between P and @ with cost c. By the fundamental theorem
of optimal transport the exists a c-convex function ¢ : Z; — (—00, 00| such that for M-a.e. u;
we have

L29Y (u1,-)) € Bep(L24(X (ur,)))-
Writing @ for the lift of ¢ as in (49), display (50) yields that Y (uq,-) € 0p(X (uq,-)) for almost
every uj.
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This finishes the proof of the first equivalence. The second claim concerning naturally filtered
processes follows immediately as being naturally filtered is a property of the adapted law (i.e., if
X ~aa J(p) and Y ~,q J(v) they are necessarily naturally filtered). O

8.6. Failure of an adapted Brenier theorem for absolutely continuous measures. Fi-
nally we provide an example showing that a naive attempt to extend Brenier’s theorem to the
adapted Wasserstein fails already in the first non-trivial instance of one-dimensional state space
and one time interval:

Example 8.26. There exist absolutely continuous, compactly supported probabilities on R?
such that the adapted transport problem for the quadratic costs admits no Monge type solution:

Let p1 = v1 be the uniform probability measure on [— %, %}, and define i, v on R? by

p(dzy, dws) i= p(dn)qa(e,) (de2)),  v(dyr, dyz) == v(dy1)ap(y,)(dy2))
where we write g, for the uniform distribution on [z, z + 1] and

\/ix—l, x>0,
a(z —{ bly) := 4

(y):
V241, x<0, V2
By the dynamic programming principle the squared adapted Wasserstein distance of u, v is given

by

(51) AW3(p,v) = inf /(wl —y1)? + W5 (Qa(ar)s Do) dm (21, 91) =

m1 €Cpl(p1,v1)

(52) inf /c(xl,yl) dmy(x1,91),

w1 €Cpl(p1,v1)
where c¢(z,y) = (z — y)* + (a(z) — b(y))z. The one dimensional transport problem (52) admits
an elementary solution. Indeed, the optimal transport plan between p; and 14 is of Monge type
and is uniquely given pq-a.e. by the transport map

20—, x>0,
Ti(x) = v
and the dual maximizers are given by

@ =5-2  n) = sye|-& &
It is straightforward to verify this using the complementary slackness conditions.
It follows that the unique optimal bi-adapted transport between p and v is induced by the
map T(z1,22) = (Th(21), 2 + b(T1 (1)) — a(z1)).
Crucially, the map T3 is not invertible on [— %, %} , hence there exists not optimal transport
map from 1 to 1 and hence also no Monge solution for the adapted transport problem from v
to .

APPENDIX A. ON TRANSPORT-REGULARITY AND BAIRE CATEGORY

In this section, we let (X, d) be a Polish metric space and let ¢: X x X — R be a continuous
cost function satisfying the growth condition |c¢(z,y)| < C(1 + d(x,20)? + d(y,yo)?) for some
C>0,p>1,and xo,yo € X. We write Cplg;(u,v) for the set of couplings that are optimal for
the transport problem between p and v with cost ¢, that is, for 7" € Cplg (1, v) we have

/c(x,y) dr'(xz,y) =  inf /c(z,y)ﬂ'(dz,dy).

m€Cpl(p,v)
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A measure p is then called c-transport-regular if for every v € P,(X) there is a unique optimal
transport plan from g to v and this plan is of Monge type. Recall that the c-transform of a Borel
measurable function ¢ : X = RU{—o00}, p # —o0, is given by

c — inf _
¢(y) = inf c(z,y) - o(z),
which is thus an upper semicontinuous function, and ¢ is called c-concave if ¢ # —oo and
r) = inf e(x,y) — ©°(y).
plo) = inf c(z,y) —*(y)
In this case, the c-superdifferential of ¢ is given by

0% ={(z,y) € X x X : p(z) + ¢°(y) = ez, )},
where we also write 0°p(x) = {y € X : (z,y) € 0%} for x € X.

Lemma A.1. Let p € Py(X). The following are equivalent:

(1) w is c-transport reqular;

(2) For every c-concave @, we have u({x € X : #9°%(x) > 1}) = 0;

(3) For every proper ¢ such that there is a compact K C X with p(x) = infycx c(z,y)—¢°(y),
we have pu({x € X : #0°%(x) > 1}) = 0.

Proof. Clearly, (2) implies (3).
Assume that (2) holds and our goal is to show (1). By the fundamental theorem of optimal
transport there is for each v € P,(X) an optimal c-concave potential ¢ such that

m(0%) =1, 7€ Cplg,i(p,v).

Since 9°p(x) contains of at most one point for u-a.e. x, it readily follows that 7 is of Monge
type. Consequently, as Cplf)pt (1, v) is a non-empty convex set, it has to be a singleton.
Now, we want to show that (1) and (3) each imply (2). To this end, note that

{(z,y1,92) € X% 1 y1,y2 € 00 (), y1 # o}

is Borel, whenever ¢ is c-concave. Hence, by the Jankov—von Neumann uniformization theorem
there exists an analytically measurable selection h = (hq,hs) : A — X x X, and observe that
hi(x) # ha(z) for every x € A by construction. With these maps at hand, we define subproba-
bility measures v; := (h;)xu(- N A) for ¢ = 1,2. By inner regularity, there exists a compact set
K C X such that v;(K) > pu(A)/2. Define the potential ¢ := (¢p° — xx )¢, which satisfies

v > ¢ and i () + % (y) = c(z,y) for all (z,y) € % N (X x K),

and, as K is compact, 0°p(x) # 0 for all z € X. Let g be an analytically measurable selector
of 0°pk, and set

R EC)) z e Anhy Y (K)Nhy'(K),
9i(@): {g(w) otherwise.

Then we have that

S %((m (2,01 (2) st + (& = (@, g2(2))) )

has first marginal y, its second marginal v € P,(X) is concentrated on K, and 7n(0°%pf) = 1.
Since v;(K) > u(A)/2, we have u(ANhy H(K)Nhy Y(K)) > p(A) —v1 (K€) —v2(K€) > 0. Hence,
we have constructed an MC-concave function ¢x with ¢ (z) = infyex c(z,y) — ¢5%(y) as well
as a coupling 7 € Cplg (i1, ), which is not Monge. This leads to a contradiction to (1) as well

as (3), and we conclude that (1) and (3) each imply (2). O
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We introduce functionals which quantify how far a pair of measures (u,v) is from admitting
a unique optimal transport map between them. Based on this, we will be able to quantify how
far a measure is from being c-transport-regular. We introduce the quantities

(W, v) == sup /Var(wm),u(dx), and 75(p) = sup 7(p, v),
meCPIS,, (k,v) VW (1,040) <R

where the variance for probabilities in v € P,(X) is defined as

Var 22 "Var((fn)#V),
neN

where (f,)nen is a family of continuous, point-separating functions on X bounded by 1, and

Var(p / |z —2'|? p @ p(dz, dz'),
for p € P2(R).

Lemma A.2. For p,v € Pp(X) we have:
(1) There is a unique © € Cplg (i, v) and 7 is Monge iff 7°(u,v) = 0;
(2) p is c-transport-regular iff 7% (1) =0 for all R > 0.

Proof. To see (1), first note that Var( ) > 0 if and only if v is not a Dirac measure. Indeed, if v
is not a Dirac measure then, as (f,,)ncn is point-separating, there exists n € N, such that (fn)#u
is not a Dirac measure, which yields that

Var( ) > 27"Var((fn)xv) > 0.

Hence, 7¢(p,v) = 0 iff for every m € Cplg, (P, Q) we have that 7, is pu-almost surely a Dirac.
Since Cplg, (1, V) is a convex set, this yields that Cplg,(u, ) contains a single transport plan
and this plan is Monge.

To see (2), note that by the first part we have for every v € P,(X) a unique optimal transport
plan 7 € Cplg (1, V), which means that y is c-transport-regular. O

Lemma A.3. The map Pp(X) x Pp(X) = R: (u,v) = 7%(u,v) is Wy-upper semi-continuous.

Proof. We first show that

Var : P,(X) = R,
is bounded, continuous and concave. Clearly, Var is continuous and concave on P2 (R) as Var(p) =
J 2? p(dz) — ([ = p(dz))?. Since (fn)nen is a point-separating family of continuous functions on
X bounded by 1, we have that Var is the sum of concave and continuous functions on Pp(X)

bounded by 1, from where we infer the claimed properties of Var.
Next, we invoke [13, Proposition 2.8] to find that the map

Pp(X xX) > R:m— /@(Wx)ﬂ(dx),

is upper semi-continuous, concave and bounded.
Finally, consider sequences (™), and (v™),, and measures y>,v> € P,(X) with W, (u™, 1) —
0 and W, (v",v) — 0. Let 7" € Cplg (1", v™) be such that

/Var "(dx) > (", ") — 1/n.
As {pin, : n € NU{o0}} and {v, : n € NU{oo}} are W,-compact, we have that
A= U Cpl(un, Vn)

neNU{+oo}
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is Wy-compact as immediate consequence of Prokhorov’s theorem and the characterization of
W,-convergence, see [75, Definition 6.8]. Therefore, there is 7 € A such that, after possibly
passing to a subsequence, W, (7", ) — 0. By continuity of the map which assigns a couplings its
marginals, we have m € Cpl(u, ). As the coupling 7™ is optimal between its marginals, the same
holds true for the limiting 7, i.e., 7 € Cplg,; (¢, v). This is because optimality is characterized
in terms of c-cyclical monotonicity of the support and the latter is preserved under weak limits
(see e.g. [75, Theorem 5.20]).
All in all, we have

T(u,v) > /\//a\r(ﬂx) w(dx) > limsup/\/fé;r(ﬂ;’) 7" (dx) = limsup 7¢(p", ™). O

n

Lemma A.4. Assume that X has the property that W,-bounded sets in P,(X) are tight. Then,
for R >0, the map Pp(X) = R : pp— 75 (1) is Wy-upper semi-continuous.

Proof. The proof is line by line as for Lemma A.3 subject to replacing UnENU{oo} Cpl(u™,v™)

with
A= U U Cpl(pin, V).
neNU{oco} v: Wy, (1,027)<R

While A is not Wy-compact, it is tight by our assumption, as the marginals form a W,-bounded
set. Furthermore, A is weakly closed since any limit point 7 of a sequence (7"),, in A and p-th
moment of the second marginals bounded by R, has second marginal with p-th moment bounded
by R. This follows directly from weak lower semi-continuity of the p-th moment w.r.t. weak
convergence.

We can proceed the proof as in Lemma A.3 and obtain that 7 is in Cplg (4, -) by [75, Theorem
5.20], and thereby analogously conclude W,-upper semi-continuity of 7. O

Theorem A.5. Assume that X has the property that Wy-bounded sets in Pp(X) are tight. Then
the set of c-transport-regular measures is Gs in Pp(X).

Proof. By Lemma A.2, the set of c-transport-regular measures is precisely given by

M ) {1 € PpX) s i) < 1/k}.

ReNkeN

As 7§ is upper semicontinuous by Lemma A.4, the sets {y € Pp(X) : 75(1) < 1/k} are open.
Therefore, the set of c-transport-regular measures is a Gs-subset of P,(X). (I
APPENDIX B. AUXILIARY RESULTS

In this section U : [0,1] — R defines the identity and U = (U;)Y; : [0,1]Y — RY defines the
coordinate process. We equip [0, 1] and [0, 1]V with the Lebesgue measure \.

Lemma B.1. Let XY be Polish and f : X — Y measurable. Then, there is a Borel map
T:P(X)x(0,1) > X
such that T(u,U) ~ p and, for all p,v € P(X) with fap = fpv, f(T(w,U)) = f(T(v,U)) a.s.

Proof. Using a Borel isomorphism we assume that X = Y = R. By [56, Lemma B.1] there
exists a jointly measurable version of disintegration of measure, i.e., there is a Borel map S :
P(X) x Y — P(X) such that for u € P(X)

p(dz) = /S(my;dx) fun(dy),

Sy [7H{y}) =1 for fppu-ae. y.
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Further, let R = (R, Rz) : (0,1) — (0,1)2 be Borel measurable with R\ = A\2. Writing Q, for
the quantile function of v € P(R), we define
T(pyu) = Qs Ry (w)) (B2 (w)),

for (p,u) € P(X) x (0,1). It follows directly from inverse transform sampling that T'(u, U) ~ pu.
Next, let p, v € P(X) with fup = fgr =: 1, then we have

Sl fH{w}) = 1= S,y f7 ({y})  for n-ae. y.
We deduce that for n-a.e. y

f(Qs(uy(U)) =y = f(Qswy(U)) as.
We conclude that
J(T (1, U)) = Qu(Ra(U)) = f(T(v,U))  as. O

Lemma B.2. Let X,Y be random variables on (Q, F,P, (F)N.|). Then, there exist random
variables X', Y : (0,1)N — H on ((0, )Y, B((0, 1)M), AN, (o(U14))N.,) such that

o fort=1,...,N —1, X' has a (L"V-1t(X"), Uy 1.5)-measurable version,

o (XY") ~aa (X,Y).
Proof. We show the claim by induction. More specifically, we show the following:

There exists a measurable map Sy = (Xy,Yy) : PV(H x H) x [0,1]Y — H x H with
o for P,Q € PN(H x H), u,v € (0,1)N and t =0,...,N —1 with Xy (P, u1.4, Up+1:N) ~ad

XN (Q, v, Upgr:n), then Xn (P, ur, Ups1:n) = XN (Q, v1:4, Urs1:n) ass.,
e for P € PN(H X H), (XN(P, UlzN),YN(P, Ul:N)) ~aq P.

First, let N = 1. Then the claim follows from Lemma B.1 with X = H x H, Y = H and
f(x1,m2) = 1.

Next, assume the claim holds true for N — 1. We invoke Lemma B.1 with X = PN~1(H x H),
Y =P N"Y(H) and f = PV~![pr,] to find a Borel map T : PV (H x H) x (0,1) — PN~1(H x
H) with T(P,U;) ~ P and, for P,Q € PN(H x H) with fuP = fzQ, then f(T(P,U;)) =
f(T(Q,Uy)) a.s. We set

XN(Purn) == Xn_1(T(P,u1),u.n) and Yn (P, u1.n) := Yy_1(T(P, u1), uz.n),
which defines a measurable map Sy = (Xy,Yy) : PV(H x H) x (0,1)Y — H x H. By
construction we have for fixed (P,u;) € PN(H x H) x (0,1)
SN (P,u1,Uzn) = (XN (P,u1, Uz ), YN (P, u1, Ua.\))
= (Xn_1(T(P,u1),Ua:n ), YN 1(T(P,u1),Ua:n)) ~ad T(P,u1).
Hence, Sn(P,Ui.n) ~ad (T'(P,-))xA = P which also yields Xn(P,Ui.n) ~aqa fyP since f =
PN=1[pr,]. Therefore, if X (P,U1.N) ~aa X~ (Q,Ur.n) then fzP = fzQ and thus f(T(P,U)) =
f(T(Q,Uy)) almost surely. Consequently, we get
XN(P,Un)) = Xn_1(T(P,U1),Us.n) = Xn-1(T(Q,U1),Ua.n) = Xn(Q,Ur.n)  ass.
If additionally u,v € (0,1)" are such that Xy (P, u1.t, Us11:8) ~ad XN(Q, V1., Uss1.n), then we
also have that Xn_1(T(P,u1), u:t, Us11.8) ~ad Xn—1(T(Q,v1),v2.¢,Ury1.n). Using the induc-
tive assumption we obtain that a.s.
XN(Pu1, Uppr:n) = Xn-1(T(Pyu1), v, Ury1:n)
= XN 1(T(Q,v1),v2:4, Upy1:n) = XN (Q, v1:4, Urin).

This completes the inductive step.
Finally, we let (X', Y’) := Sy(P,U1.n). We note that fort =1,... N —1

X' =E[X'|£TV-1(X"),Upp1.n]  as.,
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hence, (X', Y’) have the desired properties. O

Proof of Lemma 5.5. First note that
(PP = inf /c(x, ') dIN I (z, ")
MeCpl™N (P,P)
< inf E[e(Y,X")] < inf  E[¢(XoT,X")],
Y ~opa P T:05Q

isomorphism

the equality follows as in Proposition 4.7, the first inequality by Lemma 5.3 and last inequality
follows from Lemma 5.1.
We write U = (U)X, for the coordinate process on [0, 1]V. The distributions

o= E(Ul, ey (]]\]_17 (UN,X)) and v := (Ul, ey UN—la (UN,X/))
have atomless disintegrations, that is, A = L(Uy) = L(Us41|F:) as well as
Poury—y :=L(Un, X|Ui.N—1 = u1:n—1),
Vary—r =L(Un, X'|U.n—1 = ur:n—1),
are AV-almost surely atomless and thus w.l.0.g. atomless. In what follows we view i and v as laws
of the N-time step stochastic processes (Ui, ..., Un_1,(Un, X)) and (Uy,...,Un_1,(Un, X)),
respectively, and use the denseness of biadapted Monge couplings in the set of bicausal couplings

to show the remaining inequality. Therefore we have to relate the adapted optimal transport
problem between y and v with ¢(™) (P, P"). To this end, we define

AUy, = ‘C]:Nil:t (X) = ‘CJ:N?Q:t (luUl:N—l) and V., = ‘CJ:N?H(Y) = EFN72:t(VU1:N71)'

Due to the dynamic programming principle of optimal transport under bicausality constraints

/C(%T//)dﬂ((ul, un—1, (un, @), (U1, . on-1, (v, 2))) = VO,

inf
7eCply (1,v)

see, for example, [2, Theorem 3.2], where Cply (1, ) denotes the set of bicausal couplings, see
[2, Definition 2.4], and V() is inductively given by

VD (g n 1, 00.8-1) = inf /c(z,z’) dr((un,x), (vn,2')),
mECPl(puy, 1 Vo1 n—1)
VO (uyg,v1,) == inf /V;H dr, VO .= inf /Vldw.
7ECPL(A,N) 7ECPL(AN)

By comparing the definition of ¢*) and V) we have for all u,v in a A-full set
V(Nil)(uliN—la vl:N—l) = C(Nil) (ﬂulzN—l ) DUl:N—l)’ V(t) (ultt’ ull:t) = C(t) (laum ) lj'Ul:t)’

and thus V(© = ¢V)(P, P"). By [20], bicausal transport plans given by biadapted Monge maps
are dense in Cply (i, v), since p and v both have atomless successive disintegration as argued
above. Let T = (T*,...,T") be a biadapted Monge map from y to v, that is, Ty = v and

T 0,1 = [0,1], T'(urip—1,)gA = A,
T = (RN’SN) : [07 I}N XX — [07 1]N X X, TN(uliN—l’ ')#uu1:N71 =Vuy.n_1>»
and (T (u1),..., T (u1.)) @ [0,1]% — [0,1]* is bijective, for t = 1,...N — 1. In particular,

R:= (TY,..., 7N~ R") is a biadapted Monge map from \ to itself, and SV =Y o R A\-almost
surely. Consequently, we obtain

(N (p Py = VO > inf / (X (u), X (R(u))) d\(u),
R:[0,1]N —[0,1]",
bi—adapted, Ry A=\
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which provides the missing inequality and shows the first claim. O
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