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Abstract. We develop Brenier theorems on iterated Wasserstein spaces. For a separa-
ble Hilbert space H and N ≥ 1, we construct a full-support probability Λ on PN

2 (H) =

P2(. . .P2(H) . . .) that is transport regular: for every Q with finite second moment, transport-
ing Λ to Q with cost W2

2 admits a unique optimizer, and this optimizer is of Monge type.
The analysis rests on a characterization of optimal couplings on P2(H) and, more generally,
on P N

2 (H) via convex potentials on the Lions lift; in the latter case we employ a new adapted
version of the lift tailored to the N -step structure. A key idea is a new identification between
optimal-transport c-conjugation (with c given by maximal covariance) and classical convex
conjugation on the lift.

A primary motivation comes from the adapted Wasserstein distance AW2: our results yield
a first Brenier theorem for AW2 and characterize AW2

2-optimal couplings through convex
functionals on the space of L2-processes.

keywords: optimal transport for random measures, Brenier’s theorem, Lions lift, convex con-
jugate, Monge problem, adapted optimal transport.

1. Introduction

Let (X , d) be a Polish metric space and write P2(X ) for the probabilities with finite second
moments. For µ, ν ∈ P2(X ) we write Cpl(µ, ν) for the set of couplings or transport plans and

W2
2 (µ, ν) = inf

π∈Cpl(µ,ν)

∫
d2 dπ = inf

X,Y :(Ω,P)→X ,X∼µ,Y∼ν
E[d(X,Y )2](1)

for the squared Wasserstein-2 distance. Brenier’s theorem [26], see also [55, 72], asserts that if
X is the Euclidean space and µ ≪ λ, the minimization problem (1) admits a unique optimizer
π∗ and that π∗ is of Monge type, i.e., concentrated on the graph of a function. Moreover, the
optimal Monge-transport is the gradient a convex function. This result stands at the beginning
of the breathtaking development of optimal transport over the last decades and has inspired
a number of powerful generalizations and refinements, see [46, 61, 43, 62, 9, 4, 34, 39] among
others.

We extend it to iterated Wasserstein spaces, i.e., we consider (X , d) = (P2(H),W2) and more
generally (P2(. . .P2(H) . . .),W2) = (PN

2 (H),W2) where H denotes a separable Hilbert space.

Theorem 1.1 (Monge solutions). There exists a full support probability Λ on PN
2 (H) which is

transport regular. That is, for every probability Q on PN
2 (H) with finite second moment

inf
Π∈Cpl(Λ,Q)

∫
W2

2 (µ, ν) dΠ(µ, ν) = inf
X,Y :(Ω,P)→PN

2 (H), X∼Λ, Y∼Q
E[W 2

2 (X,Y )](2)

admits a unique minimizer Π∗ ∼ (X,Y ) and Π∗ is of Monge type.

In fact we obtain here transport regularity of all orders, i.e., Λ is concentrated on probabilities
µ which are again transport regular, etc. Since every P ≪ Λ is also transport regular, we have
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Corollary 1.2. The set of W2-transport regular measures on PN
2 (H) is dense.

Most closely related to our work are the concurrently written article of Savare–Pinzi [71] (see
Section 1.4 below) and the work of Emami–Pass [39] which is concerned with P2(M), where M is
a smooth Riemannian manifold. As pointed out in [39] in the settingX = P2(M), the choice of an
appropriate reference measure is non-trivial. Recent deep work of Dello Schiavo [37] establishes a
version of Rademacher’s theorem on Wasserstein spaces for a class of reference measures satisfying
certain assumptions which allows Emami–Pass to conclude transport regularity. It can be shown
that probabilities satisfying these assumptions exist in the case where M is the 1-dimensional
torus but it seems difficult to extend the approach to higher dimensions and in particular the
case PN

2 (M), for N ≥ 2. Rather the approach put forward here and in [71] exploits a connection
to the Lions lift which allows to use tools from convex analysis.

We also note that while our main interest lies in results for PN
2 (Rd) and their applications to

the adapted Wasserstein distance, we will work with a separable Hilbert space H throughout.
The reason is that the proofs for both cases are identical, in fact our argument for the existence
of transport regular measures on P2

2 (Rd) already requires the construction of a transport regular
measure on P2(H) for infinite dimensional H.

Next we describe the construction of the measure Λ and the characterization of optimizers in
terms convex functions on the Lions’ lift.

1.1. Characterization of optimal transport maps via convex Lions lifts. To set the stage
we recall the formulation of Brenier’s theorem for measures on H in terms of couplings of random
variables. We use Λ to denote Lebesgue measure in the classical case H = Rd (see [26]) or a
regular Gaussian measure in the case of infinite-dimensional H (see [8]). If X : (Ω,F ,P) → H
is a random variable with LPX ≪ Λ and φ : H → (−∞,∞] is convex with ∂φ(X) ̸= ∅ a.s., then
∂φ(X) consists of exactly one element which we denote by ∇φ(X).

Theorem 1.3 (Brenier’s Theorem [26, 8]). Let π ∈ Cpl(µ, ν) where µ, ν are probability measures
on H with finite second moment, µ ≪ Λ, and let X : (Ω,F ,P) → H be a random variable with
X ∼ µ. Then π is an optimal coupling for squared-distance cost if and only if

π ∼ (X,∇φ(X))(3)

for some convex lsc φ : H → (−∞,∞] with ∂φ(X) ̸= ∅ a.s.
Moreover we have uniqueness, i.e., there is exactly one such coupling.

Following classical transport theory, optimal plans are characterized in terms of dual poten-
tials. A key finding (see Theorem 1.8 below) is that for optimal transport of measures on P2(H),
optimal dual potentials φ : P2(H) → (−∞,∞] are best understood through their Lions lift given
by

φ : L2([0, 1];H) → (−∞,∞], φ(X) := φ(Lλ(X)).

Here we use L2([0, 1];H) to denote the L2-space of H-valued square-integrable functions on
([0, 1], λ), where λ is the Lebesgue measure on [0, 1]. Evidently a functional φ on L2([0, 1];H)
appears as the Lions lift of some function φ on P2(H) if and only if it is law invariant, i.e.,
φ(X) = φ(Y ) provided that Lλ(X) = Lλ(Y ).

In the case H = Rd we take Λ to be the occupation measure of d-dimensional Brownian motion
B = (Bt)t∈[0,1]. Recall that for a path b : [0, 1] → Rd of Brownian motion, the occupation measure
of b is given by Lλb = b#(λ) ∈ P2(Rd) and the occupation measure of B has law

Λ := (ω 7→ Lλ(B(ω))#(P) = LP(LλB) ∈ P2(P2(Rd)).(4)

In the case where H has infinite dimension, we take Λ to be the law of the occupation measure
of a standard Wiener process, see Section 3.2 below.
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The desired Brenier theorem for measures on P2(H) is then obtained from Theorem 1.3 by
replacing H with L2([0, 1];H) in the domain of the convex potential and the state space of
random variables, resp.

Theorem 1.4 (Brenier theorem on P2(H)). Let Π ∈ Cpl(P,Q), where P and Q are probability
measures on P2(H) with finite second moments, P ≪ Λ, and let X : (Ω,F ,P) → L2([0, 1];H) be
a random variable such that X ∼ P . Then Π is a W2

2 -optimal coupling if and only if

Π ∼ (LλX,Lλ∇φ(X))(5)

for a convex, lsc, law-invariant φ : L2([0, 1];H) → (−∞,∞] with ∂φ(X) ̸= ∅ a.s.
Moreover we have uniqueness, i.e., there is exactly one such coupling.

To tackle the case of general PN
2 (H), N ≥ 1, we introduce an adapted version of the Lions’

lift. We consider the filtered probability space ([0, 1]N , (Ft)
N
t=1, λ), where λ denotes the uniform

distribution on [0, 1]N and (Ft)
N
t=1 the filtration generated by the coordinate projections. For

X,Y ∈ L2([0, 1]
N ;H) we define the adapted law

Lad(X) := L(L(. . .L(X|FN−1) . . . |F1)) ∈ PN
2 (H)

and write X ∼ad Y if Lad(X) = Lad(Y ). A basic but crucial fact which renders this representa-
tion useful is that

W2(P,Q) = min
X∼adP, Y∼adQ

∥X − Y ∥2,(6)

see Proposition 5.7 below.1 The adapted Lions lift of φ : PN
2 (H) → (−∞,∞] is

φ : L2([0, 1]
N ;H) → (−∞,∞], φ(X) := φ(LadX).

Evidently φ is of this form if and only if it is adapted-law invariant in the sense that φ(X) = φ(Y )
for X, Y with X ∼ad Y .

Here Λ is from an H-valued Wiener sheet which is the N parameter version of the standard
Wiener process, see Section 7 below. Using these notions we obtain:

Theorem 1.5 (N -iterated Brenier). Let Π ∈ Cpl(P,Q), where P and Q are probability measures
on PN

2 (H) with finite second moments, P ≪ Λ, and let X : (Ω,F ,P) → L2([0, 1]
N ;H) be a

random variable such that Lad(X) ∼ P . Then Π is a W2
2 -optimal coupling if and only if

(Lad(X),Lad(∇φ̄(X))) ∼ Π,(7)

for some convex, lsc, adapted-law invariant φ̄ : L2([0, 1]
N ;H) → (−∞,∞] with ∂φ(X) ̸= ∅ a.s.

Moreover we have uniqueness, i.e., there is exactly one such coupling.

A first ingredient to Theorems 1.4 and 1.5 is the fundamental theorem of optimal transport
together with a new connection between c-conjugates in the sense of optimal transport and
convex analysis on the Lions lift; we describe this in Section 1.2 below.

A further important role is played by the ability to switch back and forth between a stochastic
process viewpoint and the Wasserstein on Wasserstein viewpoint. Specifically the map Lad turns
out to be an isometry between martingales equipped with the adapted Wasserstein distance
and (PN

2 ,W2). We discuss this connection as well as Brenier type theorems for the adapted
Wasserstein distance in Section 1.3.

The construction of the transport regular measure Λ uses that convex functions on Hilbert
spaces are almost surely differentiable with respect to Gaussian measures as well as path prop-
erties of Wiener processes. E.g. already for the case N = 1 and H = Rd we use the fact the for a

1By Lisini’s work [59], any P0, P1 ∈ PN
2 (H) are joined by a geodesic. We note that (6) yields this explicitly:

Pick X0 ∼ad P0, X1 ∼ad P1 with W2(P0, P1) = ∥X0 −X1∥ and set Pt := Lad((1− t)X0 + tX1), t ∈ [0, 1].
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typical Brownian path b : [0, 1] → Rd, the occupation measure Lλb is a transport regular prob-
ability on Rd. This appears to be somewhat remarkable since the support of Lλb has Hausdorff
dimension 2 for every d ≥ 2.

We conclude this section with a result that does not appeal to a particular reference measure.
It provides a characterization of primal optimizers in terms convex potentials on L2([0, 1]

N ;H)
and asserts that typically (in the Baire category sense) couplings are of Monge type.

Theorem 1.6. Let Π ∈ Cpl(P,Q) where P,Q are probability measures on PN
2 (H) with finite

second moment. Then Π is a W2
2 -optimal coupling if and only if for some X,Y : (Ω,F ,P) →

L2([0, 1]
N ;H) and φ : L2([0, 1]

N ;H) → (−∞,∞] convex lsc adapted-law invariant

Π ∼ (LadX,LadY ), Y ∈ ∂φ(X) a.s.(8)

Moreover, the set of (P,Q) for which there exists a unique W2
2 -optimal coupling π∗ and π∗ is

concentrated on the graph of a bijection, is comeager in PN+1
2 (H)× PN+1

2 (H).

1.2. Fundamental theorem of optimal transport, MC-convexity and L-convexity. As
we are interested in the connection to convex analysis on L2([0, 1];H), it is convenient to switch
from the minimization of the squared-distance cost to the equivalent problem of finding the
‘maximal covariance’

MC(µ, ν) = sup
π∈Cpl(µ,ν)

∫
x · y dπ(x, y) = sup

X∼µ,Y∼ν
E[X · Y ](9)

of probabilities µ, ν on H with finite second moment. Likewise, for probabilities P,Q on P2(H)
with finite second moment we replace (1) by

MC(P,Q) = sup
π∈Cpl(P,Q)

∫
MC(µ, ν) dπ(µ, ν).(10)

For P,Q ∈ PN
2 (H), N > 2 we define MC(P,Q) through the natural iteration of (10).

Optimal transport plans can be characterized in terms of dual potentials. This is made precise
in the ‘fundamental theorem of optimal transport’ (see e.g. [8] or [75]) which we recall in a form
convenient for MC costs. For continuous symmetric c : X × X → R the c-convex conjugate of
φ : X → [−∞,+∞] is

φc(y) := sup
x∈X

c(x, y)− φ(x).

Here, φ is called c-convex if φcc = φ and each such φ is lsc. We also note that φccc = φc. The
subdifferential of a c-convex φ is

∂cφ := {(x, y) : φc(x)+φ(y) = c(x, y)} = {(x, y) : c(x, y)−φ(x) ≥ c(z, y)−φ(z) for all z ∈ X},
and ∂cφ(x) = {y : (x, y) ∈ ∂cφ}. The primal and dual transport problem w.r.t. c are given by

OTprimal := sup
π∈Cpl(µ,ν)

∫
c dπ, OTdual := inf

φ∈L1(µ),φ lsc

∫
φdµ+

∫
φc dν.(11)

Theorem 1.7 (Fundamental theorem of optimal transport). Assume that c : X × X → R is
symmetric, continuous and satisfies |c| ≤ a ⊕ b, a ∈ L1(µ), b ∈ L1(ν). The primal problem is
attained and the dual problem is attained by a c-convex function φ. Moreover for any such φ we
have that π ∈ Cpl(µ, ν) is optimal for the primal problem if and only if supp(π) ⊆ ∂cφ.

In the setting of Brenier’s theorem, c(x, y) = x · y, c-convexity is just ordinary convexity and
Theorem 1.7 yields that transport plans are optimal if and only if they are concentrated on the
subgradient of a convex function.

In the case X = P2(H) and c(µ, ν) = MC(µ, ν), Theorem 1.7 asserts that transport plans are
optimal if and only if they are concentrated on the MC-subgradients of MC-convex functions.
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The link to convex law invariant functions as in Theorem 1.4 is given in the following result
which also appears to be of independent interest:

Theorem 1.8. Let φ : PN
2 (H) → (−∞,+∞], N ≥ 1 be proper. Then

φ ∗ = φMC.

In particular, the convex conjugate of an adapted-law invariant function is adapted-law invariant.

Theorem 1.8 provides a bridge between the abstract conjugates on PN
2 (H) and classical convex

analysis on the Hilbert space L2([0, 1]
N ;H). In particular, convex functions on L2([0, 1]

N ;H)
are significantly more tractable and amenable to the standard tools of convex analysis, making
this identification conceptually and technically valuable.

In the case N = 1, convexity of the lift φ is tantamount to convexity of φ along all curves of
the form

(µt)t∈[0,1], µt := ((1− t) pr0 + t pr1)#(π), π ∈ Cpl(µ, ν).(12)

Functionals with this property are called totally convex [32] or acceleration-free convex [66] or
simply convex (in the context of risk measures). Total convexity is equivalent to displacement
convexity if φ : P2(H) → R is continuous [32], but not in general ([66]). By Theorem 1.8 we
have

Corollary 1.9. For a lsc functional φ : P2(H) → (−∞,∞], the following are equivalent:
(1) φ is totally convex.
(2) φ is convex.
(3) φ is MC-convex.

1.3. Stochastic processes and Brenier theorems for the adapted Wasserstein distance.
Authors from several fields have independently refined the weak topology on the laws of stochastic
processes in order to take the temporal flow of information into account, see [5, 48, 49, 24, 67,
68, 64] among others. In finite discrete time, all these approaches define the same adapted weak
topology on P2(H

N ) which is metrized by the adapted Wasserstein distance AW2, see [11, 65, 19].
The Monge-formulation of the (squared) adapted Wasserstein distance of µ, ν ∈ P2(H) is

AW2
2,Monge(µ, ν) = inf

T :HN→HN ,T#(µ)=ν,T bi-triangular

∫
|T (x)− x|2 dµ(x).(13)

Here T : HN → HN is called triangular (or adapted) if each Tk does depend on (x1, . . . , xn)
only through the first k coordinates. It is bi-triangular if it is invertible and T, T−1 are both
triangular. Restricting to triangular / adapted mappings in the definition ensures that the
adapted Wasserstein distance adequately respects the information structure inherent in stochastic
processes.

The Kantorovich type relaxation is given by allowing for bi-causal couplings, i.e.,

AW2
2(µ, ν) = inf

π∈Cplbc(µ,ν)

∫
|x− y|2 dπ(x, y).(14)

A coupling π is called causal if for t ≤ N and Borel B ⊆ H

π(Yt ∈ B|X1, . . . , XN ) = π(Yt ∈ B|X1, . . . , Xt),(15)

where we use (X1, . . . , XN ), (Y1, . . . , YN ) to denote the projections onto the first and second
(respectively) coordinate of H × H. The coupling π is called bi-causal, if this also holds when
switching the roles of X and Y .

Already in the first non-trivial instance H = R, N = 2 it is easy to find absolutely continuous
probability measures which are not transport regular, see Example 8.26 below. The deeper reason
for this is that via a specific isometry, adapted transport for processes with N time intervals can
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be seen as a W2-transport problem on PN
2 (HN ) and the corresponding push-forward of the

Lebesgue measure to PN
2 (HN ) plays no particular role.

However based on our results for optimal transport on PN
2 (HN ) we are able to show that

typically optimizers of (14) are unique and bi-triangular Monge.

Theorem 1.10 (Baire–Brenier theorem for AW2). The set of (µ, ν) for which AW2(µ, ν) admits
a unique optimal coupling π∗ and π∗ is given by a bi-triangular map T : HN → HN is comeager
in P2(H

N )× P2(H
N ).

As mentioned above, AW2 is considered as a natural metric for the adapted weak topology
on P2(H

N ) but (like other compatible metrics) it is not complete. It is shown in [14] that
the completion of (P2(H

N ),AW2) consists precisely in the space of stochastic processes with
filtration, where two stochastic processes are identified, in signs X ∼ad Y if they have the
same probabilistic properties. This can be made precise, e.g. by asserting that X and Y have
Markovian lifts with the same laws, see [23].

To present the completion in terms of L2([0, 1]
N ;H), we recall that (Ft)

N
t=1 denotes the coor-

dinate filtration on ([0, 1]N , λ) and set

LN
2,ad(H) := {X = (Xt)

N
t=1 ∈ L2([0, 1]

N ;HN ) : Xt is Ft-measurable},
AW2(X,Y ) := inf{∥X ′ − Y ′∥2 : X ′ ∼ad X,Y

′ ∼ad Y }.

Elements of P2(H
N ) correspond to (equivalence classes of) naturally filtered processes X ∈

LN
2,ad(H). X is naturally filtered if E[f(X)|Ft] = E[f(X)|X1, . . . , Xt] for all t ≤ N and f : HN →

R continuous bounded. Intuitively this means that the coordinate filtration (Ft)t contains no
extra information on the process beyond what can be inferred from the past of the process. Using
this embedding, the completion2 of (P2(H

N ),AW2) is given by

(LN
2,ad(H)/ ∼ad,AW2) =: (filtered processes,AW2).

Our main result for the adapted Wasserstein distance is the following characterization of
optimal couplings in terms of convex functions on the set of adapted processes. Notice that the
case N = 1, H = Rd corresponds once more to the classical Brenier theorem.

Theorem 1.11 (Brenier Theorem for AW2). Let X,Y ∈ LN
2,ad(H). Then (X,Y ) is an optimal

coupling (i.e., ∥X − Y ∥2 = AW2(X,Y )) if and only if

Y (u1, . . .) ∈ ∂φ(X(u1, . . .)), u1 ∈ [0, 1](16)

for some convex adapted-law invariant φ : H × LN−1
2,ad (H) → (−∞,∞].

Moreover, a coupling π ∈ Cplbc(µ, ν), µ, ν ∈ P2(H
N ) is optimal if and only if π ∼ L(X,Y )

for some naturally filtered processes X,Y satisfying (16).

Importantly (P2(H
N ),AW2) is a dense Gδ subset of its completion (filtered processes,AW2),

see [38, 12]. This is crucial to deduce Theorem 1.10 from Theorem 1.11 and ultimately goes back
to the fact that Monge couplings are a Gδ subset of the set of couplings with fixed first marginal,
see [63] and [36, IV, 43].

2The space of filtered processes equipped with AW2 admits a number of convenient properties. It is a Polish
geodesic space, the set of martingales is closed and geodesically convex, there is a Prohorov-type compactness
criterion, finite state Markov chains are dense and Doob decomposition, optimal stopping, Snell-envelope, pricing,
hedging, utility maximization, etc. are Lipschitz continuous w.r.t. AW2, cf. [14] and the references therein.



A BRENIER THEOREM ON (P2(. . .P2(H) . . .),W2) AND ADAPTED TRANSPORT 7

1.4. Related literature. Starting from the classical Monge and Kantorovich formulations, the
modern theory of optimal transport originated around Brenier’s discovery that, for quadratic
costs on Euclidean space, optimal plans are gradients of convex potentials [26], see also [55, 72].
In particular it paved the way for McCann’s displacement convexity [60] and the interpreta-
tion of many PDEs as gradient flows on the Wasserstein space. These developments were sys-
tematized in the metric-measure framework and gradient-flow theory of Ambrosio–Gigli–Savaré
[8, 7] and in Villani’s monographs [74, 75], with more recent expositions by Santambrogio [73]
and Figalli–Glaudo [42]. Beyond the Euclidean Brenier setting, there is a rich line of extensions
and refinements — covering structure/uniqueness of optimal maps, displacement convexity and
convex-order tools, and regularity/duality on general spaces – see, among others [43] (general
convex costs), [61] (Brenier/polar factorization on manifolds), [44, 4] (multi-marginal transport
and barycenters), [40] (Monge transport on abstract Wiener spaces via Cameron-Martin con-
vexity, existence/uniqueness of maps) and [41] (infinite-dimensional Monge-Ampère on Wiener
space, regularity/structure of the transport) [9] (Monge maps for strictly convex costs), [8] (Bre-
nier theorem for Gaussian on Hilbert spaces), [33, 34] (existence of Monge optimizers under low
regularity), [46] (convex potential beyond smooth Euclidean settings), [17] (Skorokhod embed-
ding), [18, 50, 45] (martingale transport), [29] (connection to Knothe–Rosenblatt coupling), [47]
(weak optimal transport).

In optimal transport and mean field games, the “Lions’ lift” refers to the idea of studying
maps defined on the Wasserstein space of probability measures by lifting them to functions on a
Hilbert space of square-integrable random variables. This was introduced by Lions in his Collège
de France lectures [58] and became widely known through Cardaliaguet’s lecture notes [27] and
Carmona–Delarue’s monographs [30, 31] which employ the Lions derivative as an essential tool
in the theory of mean field games.

Emami and Pass [39] were the first to establish existence and uniqueness of Monge solutions for
measures on P2(M) and W2

2 -costs. Emami and Pass consider a smooth Riemannian manifold M
and use structural assumptions on a reference measure on P2(M). A central ingredient in their
analysis is Dello Schiavo’s Rademacher theorem on Wasserstein spaces [37], that allows a classical
optimal-map strategy to be carried out on the space of measures. Notably it is challenging to
construct measures satisfying Dello Schiavo’s hypothesis together with the absolute continuity
hypothesis necessary for the main Monge result of [39] and examples are only known in the case
where M is the one dimensional torus.

Independently and in parallel with an earlier version of this manuscript, Pinzi–Savaré [71],
see also [70, 69], analyzed the case N = 1 of measures on P2(H) for separable Hilbert spaces
H, developing a Brenier-type theory via totally convex functionals and their Lagrangian/Lions
lift, and identifying natural classes of full-support, transport-regular laws for which the Monge
formulation is uniquely solved. Our initial preprint [21], posted the same day their preprint
appeared, likewise treated N = 1 but focused on Rd; the restriction to Rd was due to the
then-open problem of constructing a transport-regular reference measure on infinite-dimensional
Hilbert spaces, while all other arguments were dimension-agnostic. The present version advances
in two directions: it covers arbitrary N and it works on general separable Hilbert spaces. The
extension relies on an adapted Lions lift tailored to the N -step structure. In particular, we
construct a transport-regular measure Λ on P2(H) and, by induction, on PN

2 (H); here it is
essential to include the case of infinite dimensional H even to establish the N -level result in Rd

for N > 1, since the induction from lower levels requires the Hilbert-space setting. We note that
the construction of Λ as the occupation measure of a Wiener process (resp. based on the Wiener
sheet for N > 1) is original to this paper to the best of our knowledge.

A main motivation for this article was to establish a Brenier theorem for the adapted Wasser-
stein distance, which requires to understand the W2-optimizers on P N

2 (H) for general N . As
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noted above, the adapted variant of Wasserstein distance is useful when measuring the distance
between stochastic processes since it accounts for the inherent information structure of the pro-
cesses. It has applications from stochastic optimization, stochastic control, and mathematical
finance to the theory of geometric inequalities and machine learning; see [68, 57, 77, 14, 1, 35,
52, 15, 3] and the references therein.

1.5. Organization of the paper. Section 2 recalls the Lions lift and basic continuity properties.
We identify c-conjugation for c = MC with classical convex conjugation on the lift (Theorem 2.2)
and relate total/Lions convexity, MC-convexity, and subdifferentials.

Section 3 treats the case of optimal transport between measures on P2(H) (N = 1). We char-
acterize W2

2 -optimizers on P2(H) via convex, law-invariant potentials on the lift (Theorem 3.1)
and construct transport-regular reference laws: on Rd using Brownian sheets and on separable
Hilbert spaces using Q-Wiener processes (Theorem 3.5).

Appendix A develops a Baire-category viewpoint: we quantify non-regularity via τ c, prove
upper semicontinuity, and deduce that c-transport-regular laws form a Gδ subset of Pp(X ) (The-
orem A.5).

Section 4 introduces the iterated max-covariance MC on PN
2 (H) and the characterization of

MC-optimal couplings in terms of MC-convex potentials. We also derive a DPP which will be
necessary to establish the characterization of MC-convex potentials in terms of convex conjuga-
tion in Section 6.

In Section 5 we provide a Hilbert-space representation of laws on PN
2 (H), an adapted transfer

principle, and a Skorokhod-type representation (Proposition 5.2, Corollary 5.6, Proposition 5.7).
Section 6 identifies MC-conjugation with the convex conjugate of the adapted lift (Theo-

rem 6.1), establishes the MC-order which is used to establish the existence of the Lions derivative
in the adapted setting, and links MC-subdifferentials with subdifferentials on the lift.

Section 7 constructs full-support, transport-regular measures on PN
2 (H); this yields the N -

level Brenier theorems stated in the introduction (Theorems 1.4, 1.1 and 1.5 and Corollary 1.2).
Section 8 applies the theory to the adapted Wasserstein distance AW2: via the adapted law

isometry we obtain a Brenier theorem for AW2 and a Baire-Brenier uniqueness/Monge statement
(Theorem 1.11, Theorem 1.10).

Technical measurability, selection, and auxiliary results are collected in the appendix.

Contents

1. Introduction 1
1.1. Characterization of optimal transport maps via convex Lions lifts 2
1.2. Fundamental theorem of optimal transport, MC-convexity and L-convexity 4
1.3. Stochastic processes and Brenier theorems for the adapted Wasserstein distance 5
1.4. Related literature 7
1.5. Organization of the paper 8
2. Lions lift and convexity of law invariant functions 9
2.1. From MC-convexity to convexity on H 9
2.2. Subdifferentials 10
2.3. Examples and basic MC-convex functions 13
3. Brenier’s theorem for measures on P2(H) 15
3.1. Characterization of MC-optimal couplings and criterion for transport regularity 15
3.2. Regularization on H by Brownian motion/standard Wiener process 16
4. Optimal transport on PN

2 (H) 20
5. Probabilistic representation of iterated probability measures 23
6. The adapted Lions lift 26



A BRENIER THEOREM ON (P2(. . .P2(H) . . .),W2) AND ADAPTED TRANSPORT 9

6.1. Connection between MC-transform and convex conjugate of the lift 26
6.2. MC-order 27
6.3. N -Monge Couplings 27
6.4. MC-subdifferentials 29
6.5. Characterization of strict Monge pairs by differentiability of MC 31
7. Construction of transport-regular measures in PN

2 (H) 34
7.1. Criterion for transport regularity 34
7.2. Existence of transport-regular measures 35
7.3. Proofs of Section 1.1 36
8. Application to adapted transport 36
8.1. Outline of the framework 36
8.2. Embedding into PN

2 (HN ) 38
8.3. Lions lift for filtered processes 40
8.4. Naturally filtered Processes 43
8.5. Lift of functions on Z1 and proof of Theorem 1.11 45
8.6. Failure of an adapted Brenier theorem for absolutely continuous measures 46
Appendix A. On transport-regularity and Baire category 46
Appendix B. Auxiliary results 49
References 52

2. Lions lift and convexity of law invariant functions

Notation 1.1 (Ω,F ,P) denotes a standard probability space. We use µ, ν for elements
of P2(H) and X,Y for their representatives in L2(H) = L2(Ω,F ,P;H), i.e., random
variables satisfying X ∼ µ, Y ∼ ν. Given a function φ : P2(H) → (−∞,+∞], the
function φ : L2(H) → (−∞,+∞] always denotes its Lions lift φ(X) = φ(L(X)).

In this section we develop the connection of MC-convexity and MC-subdifferentials with their
Hilbert space counterparts. We start by giving the representations of W2(µ, ν) on L2(H) in
Lemma 2.1. The important Theorem 2.2 asserts that lifts of MC-conjugates are precisely convex
conjugates of lifts. Likewise, Theorem 2.4 links lifts of MC-subdifferentials to classical Hilbertian
subdifferentials of lifts. We call φ MC-differentiable at µ ∈ P2(H) if the MC-subdifferential
is a singleton. Equivalently, the subdifferential of φ̄ is a singleton at every random variable
X ∼ µ. In this case there is a unique ξ : H → H such that ∂MCφ(µ) = {ξ#µ}, or equivalently
∂φ(X) = {ξ(X)} for every X ∼ µ. That is, depending on the context, ξ is either the Brenier
map or the Lions derivative at µ, see Theorem 2.7. The proof of this differs somewhat from the
usual arguments, since we need to work with a weaker notion of derivative in view of our main
results on the existence of transport-regular measures.

2.1. From MC-convexity to convexity on H. A technical but relevant detail is that not all
representations X ∈ L2(H) of µ are ‘regular’ in the following sense: We say that X allows for
independent randomization if it satisfies any of the following equivalent conditions:

(1) there exists a uniformly distributed U ∈ L2(R) which is independent of X;
(2) the disintegration (Px)x∈H of P w.r.t. X satisfies that Px is continuous µ-a.s;
(3) for any π ∈ P2(H×H) with first marginal µ there exists Y ∈ L2(H) such that (X,Y ) ∼ π.

The last characterization underlines the significance of independent randomization in our context.
The following lemma can be interpreted as an instance of the (L2-)Skorokhod representation

theorem. The non-standard bit is that the representation X of µ can be taken to be fixed.
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Lemma 2.1 (Skorokhod representation). Let µ, ν ∈ P2(H) and X ∼ µ. Then

MC(µ, ν) = sup
Y∼ν

E[X · Y ], W2(µ, ν) = inf
Y∼ν

∥X − Y ∥2 .(17)

If X allows independent randomization or µ is transport regular, then an optimal Y exists.

Proof. If X allows independent randomization or µ is transport regular, the result is clear. In
the general case, pick X ′ ∼ µ which allows for independent randomization. By [30, Lemma 5.23],
there exists for each n ∈ N a measure preserving bijection Tn : Ω → Ω such that ∥X ′−X ◦Tn∥2 <
1/n. Pick Y ′ ∼ ν such that E[X ′ · Y ′] = MC(µ, ν). Then Yn := Y ′ ◦ T−1

n satisfies Yn ∼ ν and
E[X · Yn] = E[X ◦ Tn · Y ′] → E[X ′ · Y ′] = MC(µ, ν). □

Note that Lemma 2.1 implies that W2 is the quotient metric of ∥ · ∥2 w.r.t. the law map. In
particular, the lift φ of a function φ is continuous / lsc if and only if φ has this property.

Recall from Section 1.2 that φMC denotes the c-transform of φ with cost c = MC, i.e. φMC(ν) =
supµ∈P2(H)

(
MC(µ, ν)− φ(µ)

)
. The following result plays a fundamental role for this paper.

Theorem 2.2 (Correspondence of conjugacy). Let φ : P2(H) → (−∞,+∞] be proper. Then

φ ∗ = φMC.

In particular, the convex conjugate of a law-invariant function is law-invariant.

Proof. For Y ∈ L2(H) we have by Lemma 2.1

φ ∗(Y ) = sup
X∈L2(H)

E[X · Y ]− φ(X) = sup
µ∈P2(H)

sup
X∼µ

E[X · Y ]− φ(µ)

= sup
µ∈P2(H)

MC(µ,L(Y ))− φ(µ) = φMC(L(Y )) = φMC(Y ). □

Recall from Section 1.2 that a proper function φ : P2(H) → (−∞,+∞] is MC-convex if there
exists a proper function ψ : P2(H) → (−∞,+∞] such that φ = ψMC. It follows immediately
that a proper function φ is MC-convex if and only if it is of the form supi∈I MC(., νi) + ci for
some νi ∈ P2(H), ci ∈ R, i ∈ I.

Further recall from (12) that φ : P2(H) → (−∞,∞] is totally convex if it is convex on all
curves (µt)t∈[0,1], µt := ((1− t) pr0 + t pr1)#π, π ∈ Cpl(µ, ν). Theorem 2.2 has the immediate

Corollary 2.3. For proper, lsc φ : P2(H) → (−∞,+∞], the following are equivalent:
(1) φ is totally convex,
(2) φ is convex,
(3) φ is MC-convex.

Proof. It is straightforward that (1) ⇔ (2). Further, (2) ⇔ (3) follows from Theorem 2.2. □

In particular, a function φ : P2(H) → (−∞,+∞] is MC-convex if and only if it is proper, lsc,
and totally convex.

A further application of Corollary 2.3 arises by considering functions of the form φν = MC(·, ν)
for ν ∈ P2(H). Since φν(X) = supY∼ν E[X · Y ] is convex, the function φν is MC-convex.
Expressing this observation in terms of W 2

2 (·, ν) recovers [8, Theorem 7.3.2].

2.2. Subdifferentials. Recall that the MC-subdifferential of φ : P2(H) → (−∞,+∞] is

∂MCφ(µ) = {ν ∈ P2(H) : φ(ρ) ≥ φ(µ) + MC(ρ, ν)− MC(µ, ν) for every ρ ∈ P2(H)}.(18)

The following result shows how to express the subdifferential of the lift in terms of the MC-
subdifferential and vice versa. A noteworthy caveat is that the subdifferential may be ‘too small’
if X does not admit independent randomization and L(X) is not transport-regular.
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Theorem 2.4. Let φ : P2(H) → (−∞,+∞] be MC-convex, µ ∈ P2(H), X ∼ µ. Then we have

∂φ(X) = {Y : L(Y ) ∈ ∂MCφ(µ), (X,Y ) is optimal },(19)
{L(Y ) : Y ∈ ∂φ(X)} ⊆ ∂MCφ(µ).(20)

If X allows independent randomization or µ is transport regular, then we have equality in (20).

Proof. We first prove ‘⊆’ in (19). Let Y ∈ ∂φ(X) and ν = L(Y ). By definition we have

φ(Z) ≥ φ(X) + E[(Z −X) · Y ],(21)

for every Z ∈ L2(H). If Z ∼ µ, we have φ(X) = φ(Z) and (21) yields E[X · Y ] ≥ E[Z · Y ].
Hence, E[X ·Y ] = MC(µ, ν) by Lemma 2.1. Therefore L(X,Y ) is an optimal coupling. Next, fix
ρ ∈ P2(H) and ε > 0. By Lemma 2.1 there is Z ∼ ρ such that E[Z ·Y ] ≥ MC(ρ, ν)−ε. Applying
(21) then yields φ(ρ) ≥ φ(µ) + MC(ρ, ν)− MC(µ, ν)− ε. Thus ν ∈ ∂MCφ(µ).

Conversely, to show ‘⊇’ in (19), assume that ν ∈ ∂MCφ(µ) and that Y ∼ ν satisfies E[X ·Y ] =
MC(µ, ν). Then, for every Z ∈ L2(H), we have writing ρ = L(Z)

φ(Z) = φ(ρ) ≥ φ(µ) + MC(ρ, ν)− MC(µ, ν) ≥ φ(X) + E[Z · Y ]− E[X · Y ].

Hence, Y ∈ ∂φ(X).

Evidently, (19) implies (20). Finally, assume that X allows independent randomization or
that µ is transport regular. Pick any ν ∈ ∂MCφ(µ). By Lemma 2.1 there is Y ∼ ν such that
(X,Y ) is optimal. By (19), Y ∈ ∂φ(X). Thus we obtain equality in (20). □

Note that (19) implies that the subdifferential of a law-invariant convex function φ consists
of optimal couplings, i.e., if (X,Y ) ∈ ∂φ then L(X,Y ) is optimal between its marginals. In this
sense the Lions lift contains more information than the MC-subdifferential of φ which carries
only information on the marginals L(X) and L(Y ).

The inclusion in (20) may be strict, see Example 2.17 below. In our definition of differentia-
bility we exclude this:

Definition 2.5. Let φ : P2(H) → (−∞,∞] be MC-convex and µ ∈ dom(φ). We say that φ is
MC-differentiable at µ if ∂MCφ(µ) is a singleton.

Lemma 2.6. Let φ : P2(H) → (−∞,∞] be MC-convex and µ ∈ dom(φ). Then the following
are equivalent:

(1) φ is MC-differentiable in µ,
(2) for all X with X ∼ µ, ∂φ(X) is a singleton,
(3) for some X ∼ µ admitting independent randomization, ∂φ(X) is a singleton.

Proof. (1) ⇒ (2): Suppose that there are Z1 ̸= Z2 ∈ ∂φ(X) for some X ∼ µ. By Theorem 2.4,
we have L(Z1),L(Z2) ∈ ∂MCφ(µ). Hence, if L(Z1) ̸= L(Z2), we conclude that ∂MCφ(µ) is not
a singleton. Otherwise, observe that Z := 1

2 (Z1 + Z2) ∈ ∂φ(X) and hence L(Z) ∈ ∂MCφ(µ). If
f : H → R is any strictly convex function of quadratic growth, we have E[f(Z)] < 1

2 (E[f(Z1)] +
E[f(Z2)]) = E[f(Z1)]. Hence, L(Z) ̸= L(Z1) showing that ∂MCφ(µ) is no singleton.

(2) ⇒ (3) is trivial.
(3) ⇒ (1): Suppose there are distinct ν1, ν2 ∈ ∂MCφ(µ). Since X ∼ µ allows independent

randomization, there are Z1, Z2 ∈ ∂φ(X) with Z1 ∼ ν1, Z2 ∼ ν2. In particular, Z1 ̸= Z2. □

Next we establish the existence of the Lions derivative in the case of MC-differentiable, MC-
convex functions.

Theorem 2.7. Let φ : P2(H) → (−∞,∞] be MC-convex and MC-differentiable at µ. Then
there exists a measurable function ξ : H → H such that ∂φ(X) = {ξ(X)} for all X ∼ µ.
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We need some preparations for the proof. Recall that φν = MC(·, ν), ν ∈ P2(H) is MC-convex.
The convex order, denoted by ≼c, is the partial order on P2(H) defined by µ ≼c ν whenever∫
f dµ ≤

∫
f dν for all convex functions f : H → (−∞,+∞]. The following characterization of

the convex order is due to Carlier [28] (see also Wiesel–Zhang [76] and Proposition 6.3 below for
the case that H is infinite dimensional).

Proposition 2.8. For µ, ν ∈ P2(H), the following are equivalent:
(1) µ ≼c ν;
(2) φρ(µ) ≤ φρ(ν) for every ρ ∈ P2(H).

Note that Proposition 2.8 implies in particular that the functions φν are increasing in the
convex order. As every MC-convex function is the supremum of functions φνi plus constants and
monotonicity is preserved under suprema, we obtain

Lemma 2.9. Any MC-convex φ : P2(H) → (−∞,+∞] is increasing in the convex order.

As a consequence we have

Lemma 2.10. Let φ : L2(H) → (−∞,+∞] be law invariant convex. If Z ∈ ∂φ(X), then
E[Z|X] ∈ ∂φ(X).

Proof. Using that φ is monotone in the convex order (see Lemma 2.9) we find for every Y ∈ L2(H)

φ(Y ) ≥ φ(E[Y |X]) ≥ φ(X) + E[(E[Y |X]−X) · Z] = φ(X) + E[(Y −X) · E[Z|X]]. □

Proof of Theorem 2.7. Let X ∼ µ and Z ∈ ∂φ(X). By Lemma 2.10 we have E[Z|X] ∈ ∂φ(X).
As ∂φ(X) is a singleton, we have Z = E[Z|X], hence there exists a measurable ξ such that
Z = ξ(X). Next, we need to argue that the function ξ does not depend on the choice of the
random variable X ∼ µ. To that end, let X1, X2 ∼ µ with ∂φ(Xi) = {ξi(Xi)} for i ∈ {1, 2}. Pick
X ∼ µ that allows for independent randomization. We then have ξi(X) ∈ ∂φ(X) for i ∈ {1, 2}
by Theorem 2.4. As ∂φ(X) is a singleton, we have ξ1 = ξ2 µ-a.s. □

Corollary 2.11. Let φ : P2(H) → (−∞,+∞] be MC-convex and µ ∈ P2(H). If φ is MC-
differentiable at µ with derivative ν, then the optimal coupling of µ, ν is unique and of Monge
type.

Proof. Let X ∼ µ allow for randomization. By Theorem 2.4, we have Cplopt(µ, ν) = {L(X,Y ) :
Y ∈ ∂φ(X)}. By Lemma 2.6 this set is a singleton and by Theorem 2.7 it consists of a Monge
coupling. □

Remark 2.12. There are different possible notions of differentiability for MC-convex functions
φ : P2(H) → (−∞,+∞] at µ ∈ dom(φ):

(1) φ is Frechet differentiable at someX ∼ µ. This is the common notion of L-differentiability,
see [30, Definition 5.22]. By [30, Proposition 5.24] this is equivalent to φ being Frechet
differentiable at any X ∼ µ.

(2) φ is MC-differentiable according to Definition 2.5, i.e., ∂MCφ(µ) is a singleton. This is
the notion adopted in the present article and it is equivalent to ∂φ(X) being a singleton
at any X ∼ µ (see Lemma 2.6). Provided that φ is continuous at µ, this equivalent to φ
being Gateaux differentiable at any X ∼ µ.3

(3) ∂φ(X) is a singleton at some X ∼ µ.

3Indeed, φ is continuous at any X ∼ µ by Lemma 2.1. Moreover, a convex function is Gateaux differentiable
at a point if it is continuous there and its subdifferential is a singleton; see, e.g., [16, Proposition 17.26].
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It is clear that (1) is stronger than (2) which is again stronger than (3). We will see in Exam-
ple 2.16 and Example 2.17 below that the converse implications are in general not true, even if
H is finite dimensional.

For the purposes of this article (2) is the correction notation as it allows to characterize and
obtain existence of transport regular measures on P2(H). This is because this weaker notion,
compared to the classical L-differentiability outlined in (1), yields almost sure differentiability
results for the dual potentials.

2.3. Examples and basic MC-convex functions. The results of this section elucidate the
previous results but will not be required for our main theorems.

In usual convex analysis, linear functions serve as fundamental building blocks. In the present
setting of MC-convexity, the role of linear functions is played by

φν = MC(·, ν), ν ∈ P2(H).

We summarize some important properties:

Proposition 2.13. Let ν ∈ P2(H) and set Cν = conv{Y ∈ L2(H) : Y ∼ ν }. Then:
(1) φν is the support function of Cν , i.e., φν(X) = supY∼ν E[X · Y ] = supY ∈Cν

E[X · Y ];

(2) The MC-conjugates satisfy χMC
{ν} = φν and φMC

ν = χ{µ: µ≤cν};

(3) {L(Y ) : Y ∈ Cν} = {µ ∈ P2(H) : µ ≤c ν}.

Proof. (1) For X ∈ L2(H), Lemma 2.1 gives φν(X) = supY∼ν E[X · Y ]. The right-hand side
is unchanged if we take the supremum over the closed convex hull of {Y : Y ∼ ν}, hence
φν(X) = supY ∈Cν

E[X · Y ].

(2) It is immediate from the definition of the MC-transform that χMC
{ν} = φν . To see the second

claim note that
φMC
ν (ρ) = sup

µ∈P2(H)

(
MC(µ, ρ)− MC(µ, ν)

)
.

First consider the case ρ ≤c ν. By monotonicity of MC in the convex order we have MC(µ, ρ)−
MC(µ, ν) ≤ 0 and choosing µ = ν yields φMC

ν (ρ) = 0. Now, let ρ ̸≤c ν. Then Proposition 2.8
provides some µ with MC(µ, ρ) > MC(µ, ν); scaling µ shows the supremum is +∞.

(3) By (2) we have χMCMC
{ν} = χ{µ: µ≤cν}. On the other hand, by Theorem 2.2, the Lions lift of

χMCMC
{ν} is the lsc convex hull of in convex indicator of {Y ∈ L2(H) : Y ∼ ν }, which is precisely

the convex indicator of Cν . □

Call B ⊆ P2(H) MC-convex if it is a sublevel set of a MC-convex function or equivalently if
it contains all curves (µt)t∈[0,1], µt := ((1− t) pr0 + t pr1)#π, π ∈ Cpl(µ0, µ1) where µ0, µ1 ∈ B.

Example 2.14. By Proposition 2.13, the closed MC-convex hull of {ν} is given by {ρ ∈ P2(H) :
ρ ≼c ν}. In particular, singletons are MC-convex sets if and only if they consist of a Dirac
measure.

Below we will see that MC-subdifferentials of MC-convex functions are singletons in most
points (cf. Example 2.14) and is usually not MC-convex by Example 2.14. However, it is convex
along generalized geodesics with base point µ, as a consequence of Theorem 2.4.

It is an easy consequence of Theorem 2.4 that the subdifferential of a law invariant convex
function φ : L2(H) → (−∞,+∞] can be decomposed into subdifferentials of basis functions, i.e.
for X ∼ µ we have

∂φ(X) =
⋃

{Y ∈ ∂φν(X) : ν ∈ ∂MCφ(µ)}.
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This highlights the importance of understanding the subdifferential of these basis functions,
which is addressed in the following proposition. This proposition can also be seen as an analog
of the results of Alfonsi–Jourdain [6] in the language of MC-differentiability.

Proposition 2.15. The following are equivalent for µ, ν ∈ P2(H)

(1) φµ is strictly ≼c-increasing from below at ν, i.e., η ≼c ν, η ̸= ν ⇒ φµ(η) < φµ(ν);
(2) For µ ∈ P2(H), the map φν is MC-differentiable at µ;
(3) The optimal coupling of µ, ν is unique and of Monge type.

In this case, ∂MCφν(µ) = {ν}, and the Lions derivative is given by the optimal map from µ to ν.

Proof. (1) ⇔ (2): Recall that η ∈ ∂MCφν(µ) if and only if φν(µ) + φMC
ν (η) = MC(µ, η). By

Proposition 2.13 (2) this is equivalent to MC(µ, ν) = MC(µ, η) and η ≼c ν.
(2) ⇒ (3) follows from Corollary 2.11.
(3) ⇒ (2): η ∈ ∂MCφν(µ). By the argument above, η ≼c ν. Hence, there exist random vari-

ables (X,Y ′, Y ) with (X,Y ′) is optimal and E[Y |Y ′, X] = Y ′ a.s. Then, MC(µ, ν) = MC(µ, η) =
E[X ·Y ′] = E[X ·Y ] and thus (X,Y ) is optimal. By our hypothesis, Y = T (X) for some map T .
Hence, Y = E[Y |Y ′, X] = Y ′ a.s. and η = ν. □

We conclude this section with two examples that show that the notions of differentiability
discussed in Remark 2.12 are indeed different.

Example 2.16. For every P ∈ P2(P2(Rd)) there exists a continuous MC-convex function φ :
P2(Rd) → R such that for P -a.e. µ the Lions lift φ is not Frechet differentiable at anyX ∼ µ. This
function φ can be constructed using a modification of the construction in [25, Example 4.6.10]:
As P is a Borel measure, there exists an increasing sequence (K ′

n)n of compact subsets of P2(Rd)
such that P (K ′

n) → 1. We write Kn for the MC-convex hull of K ′
n and note that Kn is still

compact 4. We set φn(µ) = distW2
(µ,Kn) and φ :=

∑
n 2

−nφn.
We write Cn := {X : L(X) ∈ Kn} and note that as Cn is law-invariant by Lemma 2.1

φn(Y ) = distW2
(L(Y ),Kn) = inf

X∈Cn

∥X − Y ∥2 = dist∥·∥2
(Y,Cn).

This shows in particular that φn and hence φ is MC-convex. Moreover, it is shown in [25,
Exercise 4.2.6] that if Cn is a closed convex set with empty interior, then dist∥·∥2

(·, Cn) is in
every X ∈ Cn not Frechet differentiable. Hence, φ =

∑
n 2

−nφn is not Frechet differentiable in
every point of

⋃
n Cn.

Below we will show that for certain P ∈ P2(P2(Rd)) every MC-convex φ : P2(Rd) → (−∞,∞]
is P -a.s. MC-differentiable. In particular that φ is MC-differentiable in µ does not imply that φ
is Frechet differentiable in some X ∼ µ.

Example 2.17. There exist a MC-convex φ : P2(Rd) → R and X,X ′ with X ∼ X ′ such
that |∂φ(X)| = 1, |∂φ(X ′)| > 1. Specifically let d = 2, assume wlog that (Ω,F ,P) is the
unit square [0, 1]2 equipped with two dimensional Lebesgue measure λ(2). We set µ := λ ⊗ δ0,
ν := λ⊗ δ−1+δ+1

2 (where λ denotes one dimensional Lebesgue measure), φ = φν = MC(., ν), take
X to be an isomorphism of ([0, 1]2,B, λ(2)) and (R2,B, µ) and set X ′(u1, u2) := (u1, 0).

Then X ∼ µ ∼ X ′ and it is straightforward to see that #∂φ(X) = 1, while #∂φ(X ′) > 1. In
particular φ is Gateaux differentiable in X but not in X ′.

4Recall that A ⊆ P2(Rd) is W2-relatively compact if and only if there is a convex increasing φ : [0,+∞) →
[0,+∞) with limr→∞ φ(r)/r2 = +∞ such that supµ∈A

∫
φ(|x|) dµ(x) < ∞. As µ 7→

∫
φ(|x|) dµ(x) is MC-convex,

the closed MC-convex hull of a compact set is compact.
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3. Brenier’s theorem for measures on P2(H)

This section is concerned with proving Theorem 1.4 announced in the introduction. To es-
tablish this theorem, we will work with random variables X,Y taking values in L2(H). To
avoid ambiguity regarding the involved probability spaces, we reserve from here on (Ω,F ,P)
for an abstract probability space, and choose L2(H) = L2([0, 1]

k, λ;H) where λ denotes here
the k-dimensional Lebesgue measure on [0, 1]k. This choice is solely for notational clarity, and
analogous results hold when ([0, 1]k, λ) is replaced by any standard probability space. In partic-
ular, we write Lλ(X) for the P2(H)-valued random measure obtained by applying pointwise the
pushforward of λ by X(ω) ∈ L2(H).

3.1. Characterization of MC-optimal couplings and criterion for transport regularity.

Theorem 3.1. Let P,Q ∈ P2(P2(H)) and Π ∈ Cpl(P,Q). Then, the following are equivalent:
(1) Π is optimal;
(2) there exists an MC-convex φ : P2(H) → (−∞,+∞] with Π(∂MCφ) = 1;
(3) there exist proper, lsc, convex, and law-invariant φ : L2(H) → (−∞,+∞] and random

variables X,Y : Ω → L2(H) such that

(Lλ(X),Lλ(Y )) ∼ Π and (X,Y ) ∈ ∂φ almost surely.

Proof. The equivalence of (1) and (2) is due to Theorem 1.7.
As MC-convex functions are proper and lsc, we find by Corollary 2.3 that φ is MC-convex if

and only if φ is proper, lsc, convex and law-invariant. Hence, (2) and (3) are equivalent. □

Proposition 3.2. Let P ∈ P2(P2(H)). Then, the following are equivalent:
(1) P is transport-regular;
(2) For every MC-convex φ : P2(H) → (−∞,+∞], we have

(22) P ({µ : #∂MCφ(µ) > 1}) = 0;

(3) For every Lipschitz MC-convex φ : P2(H) → R, we have (22).
In particular, for every Q ∈ P2(P2(H)) the optimal coupling Π ∈ Cpl(P,Q) is induced by a
Monge map T : P2(H) → P2(H) and, in addition, for P -almost all µ, Cplopt(µ, T (µ)) consists
of a single element which is again of Monge type.

Proof. The characterization of transport-regularity of P simply follows from applying Lemma A.1
to the current setting. Specifically, we let (X , d) = (P2(P2(H)),W2) and c = −MC, and note that
for every bounded set K ⊆ P2(H) we have that φK := (φMC + χK)MC is Lipschitz continuous.
Indeed, for µ, µ′ ∈ P2(H) we have

φK(µ)− φK(µ′) ≤ sup
ν∈K

MC(µ, ν)− MC(µ′, ν) ≤ W2(µ, µ
′) sup

ν∈K

(∫
|y|2 dν

) 1
2

.

To see the remaining claim, we recall that by Corollary 2.11

∂MCφ(µ) = {ν} =⇒ ∃!π ∈ Cplopt(µ, ν) and π is Monge.

We conclude that Π has the claimed properties. □

Theorem 3.3. Let P ∈ P2(P2(H)) and X with Lλ(X) ∼ P . Assume that

almost surely Lλ(X) ∈ P2(H) is transport regular,(23)
L(X) ∈ P2(L2(H)) is transport regular.(24)

Then, P is transport regular.
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Proof. By Proposition 3.2, we have to show that for every MC-convex φ : P2(H) → (−∞,+∞],
we have #∂MCφ(µ) ≤ 1 for P -almost every µ. Recall that the lift φ : L2(H) → (−∞,+∞] is
proper, convex lsc and law-invariant by Theorem 2.2. Hence, we have by (24) that

#∂φ(X) ≤ 1 almost surely.

Because of (23), we can use Theorem 2.4 to obtain

{Lλ(Y ) : Y ∈ ∂φ(X)} = ∂MCφ(Lλ(X)) almost surely.

We deduce that #∂MCφ(µ) ≤ 1 for P -almost every µ. □

Example 3.4 (Regularization on Rd by Brownian sheet). We construct transport-regular mea-
sures based on Brownian sheet. To this end, we consider the law of a (d, d)-Brownian sheet (d-
parameters and d-dimensions), denoted by W and viewed as a probability measure on L2(Rd) =
L2([0, 1]

d, λ;Rd). That is, W is the centered, non-degenerate Gaussian measure on L2(Rd) in-
duced by the (d, d)-Brownian sheet. Naturally, W induces a measure P ∈ P2(P2(Rd)) via

P (A) = W({X ∈ L2(Rd) : Lλ(X) ∈ A}) = (Lλ)#W(A),

for measurable A ⊆ P2(Rd).
To see that P is transport-regular, we check the assumptions of Theorem 3.3. Since W

is a non-degenerate Gaussian measure on L2(Rd), we have by [8, Theorem 6.2.10] that W is
transport-regular. Furthermore, by [10, Theorem 3.1 and the preceding discussion] the Brownian
sheet admits almost surely a local time. Thus, Lλ(X) is absolutely continuous w.r.t. Lebesgue
measure on Rd, for W-a.e. X. Hence, the assumptions of Theorem 3.3 are satisfied which shows
that P is transport regular.

Clearly, measures that are absolutely continuous w.r.t. a transport-regular measure are also
transport-regular. Since W is non-degenerate, P has full support P2(Rd), and it follows imme-
diately that transport-regular measures are dense in P2(P2(Rd)).

3.2. Regularization on H by Brownian motion/standard Wiener process. Throughout
this section, let B = (Bt)t∈[0,1] be a one-dimensional Brownian motion and let W = (Wt)t∈[0,1]

be a Q-Wiener process, where Q : H → H is a symmetric, positive semi-definite linear operator
with finite trace. Recall that a Q-Wiener process (Wt)t∈[0,1] on H is an H-valued stochastic
process such that each Wt is a centered Gaussian random variable with covariance operator tQ,
the trajectories are continuous, W0 = 0, and for t > s, the increment Wt −Ws is independent of
the past and Gaussian with covariance (t− s)Q.

The main result of this section establishes the transport regularity of the law of the occupation
measure associated with a Q-Wiener process, where the covariance operator Q is non-degenerate.
In particular, it applies to the law of the occupation measure of Brownian motion when H = Rd.

Theorem 3.5. Let Q be a positive-definite, symmetric linear operator on H with finite trace.
Let W be a Q-Wiener process. Then, Lλ(W ) is almost surely transport-regular.

Since L(W ) is a non-degenerate Gaussian measure on L2(H), we have that it is transport-
regular by [8, Theorem 6.2.10]. Therefore, using Theorem 3.5, we deduce by Theorem 3.3 the
following

Corollary 3.6. Let Q be a positive-definite, symmetric linear operator on H with finite trace.
Let W be a Q-Wiener process. Then, L(Lλ(W )) is a transport-regular measure on P2(H).

To establish Theorem 3.5, following the classical approach, it suffices to show that continuous,
convex functions on H are almost surely Gateaux differentiable. By Zajíček [78], the set of non-
differentiability points of a continuous convex function on a separable Hilbert space is contained
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in a countable union of (c−c)-hypersurfaces. Here, a (c−c)-hypersurface S is a subset of H such
that there are v ∈ H and Lipschitz, convex f, g : {v}⊥ → span(v) with

S = {x+ f(x)− g(x) : x ∈ H with ⟨x, v⟩ = 0}

Consequently, it suffices to prove that, almost surely, the occupation measure of a Q-Wiener
process does not charge any (c−c)-hypersurface in H.

In fact, we will even show that, almost surely, Lipschitz hypersurfaces are not charged. To
prove this, the crucial observation is that the occupation measure b#λ associated with a path
b : [0, 1] → H charges no Lipschitz hypersurface if for all unit vectors v ∈ H we have

∀A ⊆ [0, 1], λ(A) > 0 : sup
s,t∈A

|⟨b(s)− b(t), v⟩|
∥b⊥(s)− b⊥(t)∥

= ∞,

where b = ⟨b, v⟩v + b⊥ and using the convention that 0
0 = 0.

Lemma 3.7. Let B be a 1-dimensional Brownian motion and let W be an independent Q-Wiener
process. Assume that

(25) P
(
∃A ⊆ [0, 1], λ(A) > 0, sup

s,t∈A

|Bs −Bt|
∥Ws −Wt∥

<∞
)
> 0.

Then there exists L > 0 such that for all ε ∈ (0, 1)

P
(
∃A ⊆ [0, 1], λ(A) ≥ 1− ε, sup

s,t∈A

|Bs −Bt|
∥Ws −Wt∥

≤ L
)
> 0.

Proof. Suppose that (25) holds. Then there exist δ ∈ (0, 1) and L > 0 such that the event
E(δ, L, 0, 1), defined for 0 ≤ a ≤ b ≤ 1 by

E(δ, L, a, b) :=
{
∃A ⊆ [a, b], λ(A) ≥ (b− a)δ, sup

s,t∈A

|Bs −Bt|
∥Ws −Wt∥

≤ L
}
,

has positive probability.
Fix ε ∈ (0, 1). Let A ⊆ [0, 1] be a measurable set with λ(A) > 0. By the Lebesgue density

theorem, there exists t ∈ (0, 1) and r > 0 such that for all ε′ ∈ (0, r),

λ(A ∩ (t− ε′, t+ ε′))

2ε′
≥ 1− ε/2.

Let (qk)k∈N be a sequence of rational numbers converging to t. Then for sufficiently large n, we
have

lim
k→∞

λ(A ∩ (qk − 1/n, qk + 1/n))

2/n
=
λ(A ∩ (t− 1/n, t+ 1/n))

2/n
≥ 1− ε/2.

Hence, there exists (q, n) ∈ Q× N such that

λ(A ∩ [q, q + 1/n])

1/n
≥ 1− ε.

Since A ⊆ [0, 1] with λ(A) > 0 was arbitrary, we deduce

E(δ, L, 0, 1) ⊆
⋃

(q,n)∈Q×N

E(1− ε, L, q, q + 1/n).

Therefore, there exists some (q, n) ∈ Q× N such that P(E(1− ε, L, q, q + 1/n)) > 0.
Since (B,W ) is a Wiener process, we may assume w.l.o.g. that q = 0. Then

E(1− ε, L, 0, 1/n) =
{
∃A ⊆ [0, 1/n], λ(A) ≥ 1− ε

n
: sup
s,t∈A

|Bs/n −Bt/n|
∥Ws/n −Wt/n∥

≤ L
}
.
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Note that by the scaling property
√
n
(
(Bt/n,Wt/n))t∈[0,1] ∼ (B,W ).

Hence,
0 < P(E(1− ε, L, 0, 1/n)) = P(E(1− ε, L, 0, 1)),

which proves the claim. □

Theorem 3.8. Let B be a 1-dimension Brownian motion and let W be an independent Q-Wiener
process. Then, we have

(26) P
(
∃A ⊆ [0, 1], λ(A) > 0, sup

s,t∈A

|Bs −Bt|
∥Ws −Wt∥

<∞
)
= 0.

Proof. Suppose, for contradiction, that the probability in (26) is positive. Then, by Lemma 3.7,
there exists L > 0 such that for all ε ∈ (0, 1),

P
(
∃A ⊆ [0, 1], λ(A) ≥ 1− ε, sup

s,t∈A

|Bs−Bt|
∥Ws−Wt∥ ≤ L

)
> 0.

Consider the event

E :=
{

sup
s,t∈[0,1]

∥Ws −Wt∥ ≤ 1, inf
s∈[0,1/3], t∈[2/3,1]

|Bs −Bt| ≥ 2L
}
,

and set p := P(E) > 0. Fix ε > 0 with 4ε < p. Let

A := {A ⊆ [0, 1] : λ(A) ≥ 1− ε}.
For n ∈ N and k = 0, . . . , 2n − 1, define hn := 2−n, tn,k := khn, tn,2n := 1 and

E(n, k) :=
{

sup
s,t∈[tn,k,tn,k+1]

∥Ws −Wt∥ ≤
√
hn,

inf
s∈[tn,k,tn,k+hn/3], t∈[tn,k+1−hn/3, tn,k+1]

|Bs −Bt| ≥ 2L
√
hn

}
.

Observe that {E(n, k) : k = 0, . . . , 2n − 1} are independent. By scale invariance of Brownian
motion and the Wiener process,

P(E(n, k)) = P(E(n, 0)) = P(E) = p > 0.

For each n ∈ N, define

Sn :=
{
ω ∈ Ω : hn#{k : ω ∈ E(n, k)} ≥ 4ε

}
, S :=

⋃
n∈N

Sn.

Thus, for ω ∈ S, there exist n ∈ N and pairwise distinct indices k1, . . . , kJ with 4ε 2n ≤ J ∈ N
such that ω ∈

⋂J
j=1E(n, kj).

Now, fix A ∈ A and ω ∈ Sn. We claim that there exists at least on j0 ∈ {1, . . . , J} such that

[tn,kj
, tn,kj

+ hn/3] ∩A ̸= ∅ and [tn,kj+1 − hn/3, tn,kj+1] ∩A ̸= ∅.

To see this, write B :=
⋃J

j=1[tn,kj , tn,kj+1]. Since λ(A) ≥ 1− ε and λ(B) = Jhn ≥ 4ε, we have
λ(A ∩B) ≥ 3ε and λ(AC ∩B) ≤ ε. Therefore,

λ(A|B) =
1

1 + λ(AC∩B)
λ(A∩B)

≥ 1

1 + ε
3ε

=
3

4
.

If λ(A ∩ [tn,kj , tn,kj+1]) ≤ 2/3hn for all j ∈ {1, . . . , J}. Then,

λ(A|B) =

J∑
j=1

λ(A ∩ [tn,kj
, tn,kj+1])

λ(B)
≤ 2

3
,
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which is a contradiction. Hence, we have shown the claim
As consequence of the claim, we find for every ω ∈ S and every A ∈ A that

sup
s,t∈A

|Bs(ω)−Bt(ω)|
∥Ws(ω)−Wt(ω)∥

≥ 2L.

Finally, write Xn,k := 1E(n,k+1) and Yn := hn
∑2n

k=1Xn,k, and note that (Xn,k)
2n

k=1 are iid
and Bernoulli-distributed with parameter p. We have Yn has mean p and variance hn(1 − p)p.
Since p > 4ε we conclude that limn→∞ P (Yn > 4ε) = 1, and therefore limn→∞ P(Sn) = 1.
Consequently, {

∃A ∈ A, sup
s,t∈A

|Bs−Bt|
∥Ws−Wt∥ ≤ L

}
⊆ SC ⊆ SC

n ,

and therefore
P
(
∃A ∈ A, sup

s,t∈A

|Bs−Bt|
∥Ws−Wt∥ ≤ L

)
= 0,

contradicting our assumption. This proves the theorem. □

When v is some vector in H and f : {v}⊥ → span(v), we write

Γ(f) := {x+ f(x) : x ∈ {v}⊥}.

Lemma 3.9. Let v, w ∈ H with ∥v∥ = ∥w∥ = 1, and let f : {v}⊥ → span(v) be L-Lipschitz. If

⟨v, w⟩ > 1

2

(
1− L√

1 + L2

)2

,

then there exists a Lipschitz function g : {w}⊥ → R such that Γ(g) ⊇ Γ(f).

Proof. We call Γ ⊆ H L-Lipschitz in direction v if

∀x, y ∈ Γ, |⟨x− y, v⟩| ≤ L∥pr{v}⊥(x− y)∥.

By the Pythagorean theorem this is equivalent to

∀x, y ∈ Γ, |⟨x− y, v⟩|2 ≤ L2

1 + L2
∥x− y∥2.

We apply this observation to Γ(f) and find by Cauchy–Schwarz, for x, y ∈ Γ(f),

|⟨x− y, w⟩|2 ≤
(
|⟨x− y, w − v⟩|+ |⟨x− y, v⟩|

)2

≤ ∥x− y∥2
(
∥v − w∥+ L√

1 + L2

)2

.

Hence, to have that Γ(f) is Lipschitz in direction w we want ∥v−w∥+ L√
1+L2

< 1. We compute

∥v − w∥2 −
(
1− L√

1 + L2

)2

= 1− 2⟨v, w⟩+ 2
L√

1 + L2
− L2

1 + L2

=
(
1− L√

1 + L2

)2

− 2⟨v, w⟩ < 0,

which yields ∥v − w∥+ L√
1+L2

< 1.
We have shown that Γ(f) is also Lipschitz in direction w, and {(pr{w}⊥x, ⟨x,w⟩) : x ∈ Γ(f)}

defines the graph of a (real-valued) Lipschitz function. By extending this function, we get
Lipschitz g̃ : {w}⊥ → R such that g : {w}⊥ → span(w) given by g(x) = x + g̃(x)w is Lipschitz
with Γ(g) ⊇ Γ(f). □
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Proof of Theorem 3.5. Fix v ∈ H, v ̸= 0. We decompose W into a one-dimensional process Bv

along span(v) and an orthogonal component Bv,⊥ in {v}⊥:

Bv
t := ⟨Wt, v⟩v, Bv,⊥

t :=Wt −Bv
t , t ∈ [0, 1].

For w,w′ ∈ {v}⊥, we compute

Cov(Bv
t , B

v
s ) = E[⟨Wt, v⟩⟨Ws, v⟩] = min(t, s) ⟨Qv, v⟩,

E[⟨Bv,⊥
t , w⟩ ⟨Bv,⊥

s , w′⟩] = min(t, s) ⟨Qw,w′⟩.

Since Q is non-degenerate and non-negative, we have ⟨Qv, v⟩ > 0, and Bv,⊥ is a centered Q|{v}⊥ -
Wiener process. Thus, by Theorem 3.8,

(27) P
(
∃A ⊆ [0, 1], λ(A) > 0 : sup

s,t∈A

∥Bv
s −Bv

t ∥
∥Bv,⊥

s −Bv,⊥
t ∥

<∞
)
= 0.

Let Lip(v) denote the set of Lipschitz functions f : {v}⊥ → span(v). As a direct consequence of
(27),

P
(
∀f ∈ Lip(v) : λ

(
{t ∈ [0, 1] :Wt ∈ Γ(f)}

)
= 0

)
= 1.

Denote by Ωv the corresponding full-probability event.
Since H is separable, there exists a countable dense family of unit vectors (vn)n∈N in the unit

ball of H. Define
Ω̃ :=

⋂
n∈N

Ωvn .

By Lemma 3.9, for every v ∈ H and f ∈ Lip(v) there exist n ∈ N and g ∈ Lip(vn) such that
Γ(f) = Γ(g). Consequently, for every ω ∈ Ω̃,

∀v ∈ H, ∀f ∈ Lip(v) : λ
(
{t ∈ [0, 1] :Wt(ω) ∈ Γ(f)}

)
= 0.

Hence, on Ω̃, the occupation measure (t 7→Wt(ω))#λ does not charge Lipschitz hypersurfaces of
H. By Zajíček [78, Theorem 2], this implies

P
(
∀φ : H → R continuous, convex, λ

(
{t ∈ [0, 1], #∂φ(Wt) > 1}

)
= 0

)
= 1.

Therefore, Lλ(W ) is almost surely transport-regular by Lemma A.1. □

4. Optimal transport on PN
2 (H)

The aim of the section is apply the fundamental theorem of optimal transport to transport
on PN

2 (H) to establish a duality in terms of MC-convex functions. Properties of MC-convex
functions, in particular, the connection to convex analysis via an appropriate version of the
Lions lift will be the subject of the subsequent section.

Starting with the max-covariance of two probabilities µ, ν ∈ P2(H), which is given by

MC(µ, ν) = sup
π∈Cpl(µ,ν)

∫
⟨x, y⟩ dπ(x, y),

we now define its iterated counterpart for probabilities in PN
2 (H).

Definition 4.1. Let N > 1 and P,Q ∈ PN
2 (H). We inductively define

MC(P,Q) := sup
Π∈Cpl(P,Q)

∫
MC(p, q) dΠ(p, q),

where MC(p, q) is the max-covariance of p, q ∈ PN−1
2 (H).
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Note that we always use the same symbol MC for all max-covariance functionals MC :
PN
2 (H) × PN

2 (H) → R, N ≥ 1 and trust that this causes no confusion as we always specify
the level of iterations we work with. In particular, for fixed N , we denote with capital letters
probabilities P,Q ∈ PN

2 (H) and with lower case letters probabilities p, q ∈ PN−1
2 (H) on the

underlying space.
We briefly state the connection between the iterated MC-functional and the iterated Wasser-

stein distance. Note that the iterated Wasserstein distance on PN
2 (H), N > 1, is inductively

defined as
W2(P,Q) := inf

Π∈Cpl(P,Q)

∫
W2(p, q) dΠ(p, q).

Given a Polish space X , we write I for the intensity operator I : P2
2 (X ) = P2(P2(X )) → P2(X )

satisfying the characteristic property, for all measurable bounded f : X → R,∫
X
f dIP :=

∫
P2(X )

∫
X
f(x) dp(x) dP (p).

As this operator is well-defined on any Polish space X , it is in particular possible if X is itself a
space of measures. This enables us to define the iterated intensity operator

IN−1 : PN
2 (H) → P2(H).

The next lemma is then a straightforward consequence of the definition of W2,MC, and IN−1.

Lemma 4.2. Let P,Q ∈ P2(H). We then have
(1) W2

2 (P,Q) = MC(P, P ) + MC(Q,Q)− 2MC(P,Q),
(2) MC(P, P ) =

∫
|x|2 (IN−1P )(dx),

(3) Π ∈ Cpl(P,Q) is W2-optimal iff it is MC-optimal.

This simple observation motivates the study of the max-covariance functional on iterated
spaces of probability measures. In order to obtain a characterization of its optimizers, we follow
in the footsteps of classical transport theory and specialize the corresponding definition of c-
transform and c-subdifferential to the case of c = MC.

Definition 4.3. Let φ : PN
2 (H) → (−∞,+∞] be proper. We define its MC-transform as

φMC(Q) = sup
P∈PN

2 (H)

MC(P,Q)− φ(P ).

A function ψ : PN
2 (H) → (−∞,+∞] is called MC-convex if there exists a proper function

φ : PN
2 (H) → (−∞,+∞] such that ψ = φMC. Moreover, the MC-subdifferential of φ at

P ∈ PN
2 (H) is defined as

∂MCφ(P ) = {Q ∈ PN
2 (H) : φ(R) ≥ φ(P ) + MC(R,Q)− MC(P,Q) for every R ∈ PN

2 (H)},
and we write

∂MCφ := {(P,Q) : Q ∈ ∂MCφ(P ), P ∈ PN
2 (H)}.

We remark that for an MC-convex function φ, the MC-subdifferential ∂MCφ consists precisely
of those (P,Q) ∈ PN

2 (H) × PN
2 (H) with φ(P ) + φMC(Q) = MC(P,Q), see also [75, Definition

5.2]. Applying the fundamental theorem of optimal transport to this setting yields

Theorem 4.4. Let P,Q ∈ PN
2 (H). Then we have the duality relation

MC(P,Q) = inf
φ:PN−1

2 (H)→(−∞,+∞]
MC-convex

∫
φdP +

∫
φMC dQ,

and there exist both a primal optimizer Π ∈ Cpl(P,Q) and a dual optimizer φ : PN−1
2 (H) →

(−∞,+∞].
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Moreover, the following complementary slackness condition holds: Candidates Π and φ are
optimal for primal and dual problem, respectively, if and only

Π(∂MCφ) = 1,

that is, Π is concentrated on the MC-subdifferential of φ.

Remark 4.5. Any MC-convex function φ : PN−1
2 (H) → (−∞,+∞] is integrable with respect

to every measure P ∈ PN
2 (H). In particular, the integrals

∫
φdP and

∫
φMC dQ in the dual

formulation are always well defined (possibly taking the value +∞).
Indeed, since φ is MC-convex, its MC-transform is proper. Hence, there is q ∈ PN−1

2 (H) such
that φMC(q) ∈ R. Recalling that W2

2 (p, q) = MC(p, p)−2MC(p, q)+MC(q, q) by Lemma 4.2 and
using the inequality φ(p) ≥ MC(p, q) − φMC(q), we conclude that 2φ is dominated from below
by the P -integrable function p 7→ MC(p, p) + MC(q, q)−W2

2 (p, q)− 2φMC(q).

Above we discussed how to solve the optimal transport problem on the outer most layer.
However, this procedure can be iterated according to the dynamic programming principle. More
specifically, if P,Q ∈ PN

2 (H) and Π ∈ Cplopt(P,Q), then one can again solve the optimal
transport problems between Π-almost every pair (p, q) ∈ PN−1

2 (H) × PN−1
2 (H) and gets a

selection of optimizers πp,q ∈ Cplopt(p, q). By gluing Π and the kernel (πp,q)p,q, one arrives
at a measure that contains the information of the optimal transport on the first two layers.
Continuing this procedure leads to the following concept of N -couplings.

To give the definition of N -couplings, we need to introduce a notation for iterated pushfor-
wards. Let X and Y be Polish spaces and f : X → Y be Borel. We write P[f ] for the pushforward
map

P[f ] : P(X ) → P(Y) : µ 7→ f#µ

and inductively
PN [f ] : PN (X ) → PN (Y) : P 7→ (PN−1[f ])#P.

Definition 4.6. For P,Q ∈ PN
2 (H), we set

CplN (P,Q) = {Π ∈ PN
2 (H ×H) : PN [pr1](Π) = P,PN [pr2](Π) = Q},

and call elements of CplN (P,Q) N -couplings of P and Q.

The following results make precise that elements of CplN (P,Q) encode the full information of
the transport across all layers.

Proposition 4.7. For P,Q ∈ PN
2 (H) we have

(28) MC(P,Q) = max
Π∈CplN (P,Q)

∫
x · y dIN−1Π(x, y).

Proof. For N = 1, the assertion follows directly from the definition of MC.
Next, assume that the statement holds for N − 1. By definition we have

MC(P,Q) = max
π∈Cpl(P,Q)

∫
MC(p, q) dΠ(p, q).

Fix an optimizer π ∈ Cpl(P,Q) ⊆ P2(PN−1
2 (H)× PN−1

2 (H)). By the induction hypothesis,

(29) MC(p, q) = inf
Πp,q∈CplN−1(p,q)

∫
x · y dIN−2Πp,q(x, y),

for p, q ∈ PN−1
2 (H). By a standard measurable selection argument (e.g. the Jankov–von Neu-

mann uniformization theorem [54, Theorem 18.1]), there is a universally measurable optimal
selector

Φ : PN−1
2 (H)× PN−1

2 (H) → PN−1
2 (H ×H) : (p, q) 7→ Πp,q
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for the right-hand side of (29). Define Π := Φ#π ∈ PN
2 (H ×H).

The marginal constraint Πp,q ∈ CplN−1(p, q) amounts to PN−1[pri] ◦ Φ = pri for i ∈ {1, 2}.
Therefore, we obtain that

PN [pr1](Π) = PN [pr1](P[Φ](π)) = P[PN−1[pr1] ◦ Φ](π) = P[pr1](π) = P,

and with the same argument PN [pr2](Π) = Q, that is, Π ∈ CplN (P,Q). Note that
∫
Πp,q π(dp, dq) =

I(Φ#π) = IΠ. Hence, by optimality of π,

MC(P,Q) =

∫
MC(p, q)π(dp, dq)

=

∫∫
x · y IN−2Πp,q(dx, dy)π(dp, dq)

=

∫
x · y IN−1Π(dx, dy).

This completes the induction step and proves (28). □

5. Probabilistic representation of iterated probability measures

The adapted Lions lift is designed to provide a Hilbert space representation of functionals
on PN

2 (H) and will play a central role in analyzing the structure of W2
2 -optimal couplings of

measures on PN
2 (H). In this section, we introduce the necessary notation and establish basic

properties of the representation of iterated probability measures in terms of filtrations. These
results form the foundation for the study of the adapted Lions lift in the subsequent Section 6.

Recall from Section 1.1 that (Ft)
N
t=1 denotes the coordinate filtration5 on ([0, 1]N , λ) and that

Lad(X) = L(L(. . .L(X|FN−1) . . . |F1)) ∈ PN
2 (H), X ∼ad Y if Lad(X) = Lad(Y )(30)

for X,Y ∈ L2([0, 1]
N ;H). In this section we show that every P ∈ PN

2 (H) can be represented in
this way, establish an adapted transfer principle and derive a Skorokhod representation theorem
that links convergence on L2([0, 1]

N ;H) and PN
2 (HN ).

To this end, it will be necessary to disentangle towers of measures / iterated conditional laws
which will require considerable notation which we now start to set up. In this section X will
always denote a Polish metric space. We will use the notation (30) also for X instead of the
separable Hilbert space H and we employ the shorthand

LN
2 (X ) := L2([0, 1]

N ;X ).

For t ∈ {1, . . . , N} we write LFt(X) = L(X|Ft). Writing multiple σ-algebras in the super-
script indicates iterated conditional expectations, e.g. LF2:1(X) = LF2,F1(X) = L(L(X|F2)|F1).
Moreover, we use the abbreviations

ipt(X) = LF(N−1):t(X) t = 1, . . . , N − 1

ipN (X) = X.
(31)

Note that ipt(X) takes values in the space At := PN−t
2 (H), where we use the convention P0

2 (H) =
H. We write

ip1:t(X) = (ip1(X), . . . , ipt(X)), ip(X) = ip1:N (X), A1:t = A1 × · · · ×At

and note that Lad(X) = L(ip1(X)).
We also recall from the introduction that T : [0, 1]N → [0, 1]N being bi-adapted means that

T is a bijection for which T, T−1 are (Ft-Ft)-measurable for every t ≤ N .

5Note that instead of ([0, 1]N , λ, (Ft)Nt=1) we could also work with an abstract filtered space (Ω,G,P, (Gt)Nt=1)
where (Ω,G,P) is standard Borel and for each t < N there exists a continuous Gt+1-measurable random variable
which is independent of Gt.
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Lemma 5.1. Let T : [0, 1]N → [0, 1]N be bi-adapted with T#λ = λ. Then for s ≤ t,X ∈ LN
2 (H)

LFt,...,Fs(X ◦ T−1) = LFt,...,Fs(X) ◦ T−1.

In particular, ipt(X ◦ T−1) = ipt(X) ◦ T−1 and Lad(X ◦ T−1) = Lad(X).

Proof. We first show that for every random variable X ∈ LN
2 (X ) and every t, we have L(X ◦

T−1|Ft) = L(X|Ft) ◦ T−1. To that end, let f : X → R be bounded and Borel, and write

Y := E[f(X ◦ T−1)|Ft] ◦ T

and note that Y is Ft-measurable. Moreover, we find for every bounded Ft-measurable random
variable Z using that Z ◦ T−1 is Ft-measurable

E[Y Z] = E[E[f(X ◦ T−1)|Ft]Z ◦ T−1] = E[f(X ◦ T−1)Z ◦ T−1] = E[f(X)Z].

Hence, Y = E[f(X)|Ft]. As this is true for every bounded Borel f : X → R, we conclude
L(X ◦ T−1|Ft) = L(X|Ft) ◦ T−1.

Since this claim is proven for random variables with values in an Polish space, we can iteratively
apply it and obtain

LFt,...,Fs(X ◦ T−1) = LFt,...,Fs+1(LFs(X) ◦ T−1) = · · · = LFt,...,Fs(X) ◦ T−1. □

Proposition 5.2. Let P ∈ PN
2 (X ). Then there is X ∈ LN

2 (X ) such that Lad(X) = P .

Proof. We assume w.l.o.g. that X is uncountable and we denote with (Ut)
N
t=1 the coordinate

process on [0, 1]N . We show by induction on N that there is a Borel map

ΦN : PN
2 (X )× [0, 1]N → X

such that Lad(ΦN (P,U1:N )) = P for every P ∈ PN
2 (Rd).

To show the claim for N = 1, let Ψ : R → X be a Borel isomorphism. If µ ∈ P2(R), we write
Qµ for its quantile function. We set

Φ1(P,U1) = Ψ(QΨ−1
# P (U1))

and observe that
L(Φ1(P,U1)) = Ψ#L((QΨ−1

# P (U1)) = Ψ#Ψ
−1
# P = P.

Now suppose that the claim is true for N − 1. By the claim for N = 1 applied with the metric
space PN−1

2 (X ) there is
Φ1 : PN

2 (X )× [0, 1] → PN−1
2 (X )

such that L(Φ1(P,U1)) = P . By the claim for N − 1 there is

ΦN−1 : PN−1
2 (X )× [0, 1]N−1 → X

such that L(LFN−1:2(ΦN−1(p, U2:N ))) = p for every p ∈ PN−1
2 (X ). We then set

ΦN (P,U1:N ) := ΦN−1(Φ1(P,U1), U2:N ).

As F1 = σ(U1) is independent of U2:N and Φ1(P,U1) is F1-measurable, LFN−1:1(ΦN (P,U1:N )) =
Φ1(P,U1). Hence, Lad(ΦN (P,U1:N )) = L(Φ1(P,U1)) = P . □

Note that Cpl(Lad(X),Lad(Y )) does not capture the entire information of the joint adapted
distribution of X and Y . For this reason we introduce the following notion.

Lemma 5.3. For P,Q ∈ PN
2 (H) we have

CplN (P,Q) =
{
Lad(X,Y ) : X ∼ad P, Y ∼ad Q

}
.
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Proof. If Π ∈ CplN (P,Q), then by Proposition 5.2 there is an H × H-valued random variable
(X,Y ) with Lad(X,Y ) = Π. We then have Lad(X) = Lad(pr1(X,Y )) = PN [pr1](Π) = P
and with the same argument Lad(Y ) = Q. Conversely, if X ∼ad P and Y ∼ad Q, then
PN [pr1](Lad(X,Y )) = Lad(X) = P and PN [pr2](Lad(X,Y )) = Lad(Y ) = Q. □

Corollary 5.4. For P,Q ∈ PN
2 (H) we have

MC(P,Q) = max
X∼adP,Y∼adQ

E[X · Y ].

Proof. By Proposition 4.7, there is Π ∈ CplN (P,Q) ⊆ PN
2 (H × H) optimal for MC(P,Q). By

Proposition 5.2, there exists an H×H-valued random variable (X,Y ) such that Lad(X,Y ) = Π.
In particular, we have Lad(X) = Lad(pr1(X,Y )) = PN [pr1](Lad(X,Y )) = PN [pr1](Π) = P and
with the same argument Lad(Y ) = Q. □

Lemma 5.5. Let P, P ′ ∈ PN (X ) and X,X ′ be random variables with X ∼ad P , X ′ ∼ad P
′.

Let c(0) := c : X × X → R be continuous and |c(x, x′)| ≤ f(x) + g(x′) for f(X), g(X ′) ∈ L1(P).
Define recursively for t = 1, . . . , N

c(t) : Pt(X )× Pt(X ) → R,

(Q,Q′) 7→ inf
π∈Cpl(Q,Q′)

∫
c(t−1)(q, q′) dπ(q, q′).

Then, for X ∼ad P

c(N)(P, P ′) = inf
T :[0,1]N→[0,1]N

bi-adapted, T#λ=λ

E[c(X ◦ T,X ′)].

The proof of Lemma 5.5 is postponed to Appendix B.

Corollary 5.6. Let X,X ′ ∈ LN
2 (X ) with Lad(X) = Lad(X ′). Then, for every ε > 0, there exists

a measure-preserving bi-adapted bijection T : [0, 1]N → [0, 1]N such that λ(|X ′−X ◦T | ≥ ε) < ε.

Proof. Using that Lad(X) = Lad(X ′), the claim follows directly from Lemma 5.5 applied with
X := (0, 1)×H and c(x, x′) := min(d(x, x′), 1). □

Proposition 5.7. For P,Q ∈ PN
2 (H) we have

W2(P,Q) = min
X∼adP, Y∼adQ

∥X − Y ∥2.

Let P, P1, P2, . . . ∈ PN
2 (H) and X ∼ad P . Then the following are equivalent:

(1) W2(Pn, P ) → 0,
(2) there are Xn ∼ad Pn such that ∥Xn −X∥2 → 0.

In particular, the map Lad : (LN
2 (H), ∥ · ∥2) → (PN

2 (H),W2) is continuous.

Proof. First note that Corollary 5.4 and Lemma 4.2 imply that for P,Q ∈ PN
2 (H) we have

W2(P,Q) = min
X∼adP, Y∼adQ

∥X − Y ∥2.

To see that (1) implies (2) first observe that applying this fact to P and Pn yields Yn, Zn ∈ LN
2 (H)

with Yn ∼ad P and Zn ∼ad Pn such that W2(Pn, P ) = ∥Yn − Zn∥2. By Corollary 5.6 there are
isomorphisms Tn such that ∥Yn ◦ Tn − X∥L2

→ 0. We set Xn := Zn ◦ Tn and not that by
Lemma 5.1, we have Lad(Xn) = Lad(Zn) = Pn. Moreover, we have

∥Xn −X∥2 = ∥Zn ◦ Tn − Yn ◦ Tn + Yn ◦ Tn −X∥2 ≤ ∥Zn − Yn∥2 + ∥Yn ◦ Tn −X∥2 → 0.
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Next, we show that (2) implies (1). To that end, we show by backward induction on t that
ipt(Xn) → ipt(X) in LN

2 (PN−t
2 (H)). For t = N this trivial. Suppose it is true for t+ 1. Then,

W2
2 (ipt(Xn), ipt(X)) = W2

2 (LFt(ipt+1(Xn)),LFt(ipt+1(X)))

≤ E[W2
2 (ipt+1(Xn), ipt+1(X))|Ft] a.s.,

where the inequality follows from the observation that LFt(ipt+1(Xn), ipt+1(X)) is a.s. a coupling
in Cpl(ipt(Xn), ipt(X)). Hence,

E[W2
2 (ipt(Xn), ipt(X))] ≤ E[W2

2 (ipt+1(Xn), ipt+1(X))] → 0.

This finishes the induction and in particular we have ip1(Xn) → ip1(X) in LN
2 (PN−1

2 (H)).
Hence, Lad(Xn) = L(ip1(Xn)) → L(ip1(X)) = Lad(X). □

6. The adapted Lions lift

In this section we develop the basic theory of adapted Lions lift and its applications to MC-
convex functions.

In the following we write LN
2 (H) := L2([0, 1]

N ;H) and for φ : PN
2 (H) → (−∞,+∞],

the function φ : LN
2 (H) → (−∞,+∞] always denotes the adapted Lions lift φ(X) =

φ(Lad(X)) of φ.

We will first establish the crucial result Theorem 6.1 on the identification of MC-conjugacy
and convex conjugacy on LN

2 (H). In particular this allows us to prove Theorem 1.3 on the char-
acterization of optimizers in terms of adapted-law invariant convex functions. We also introduce
the notion of MC-differentiability of MC-functions which yields a characterization of transport
regularity.

6.1. Connection between MC-transform and convex conjugate of the lift. Note that
for φ : PN

2 (H) → (−∞,+∞], we have dom(φ) = {X ∈ LN
2 (H) : Lad(X) ∈ dom(φ)} and we will

see in Lemma 6.10 below that the corresponding statement holds also for the continuity points.

Theorem 6.1. Let φ : PN
2 (H) → (−∞,+∞] be proper. Then

φ∗ = φMC.(32)

In particular, the convex conjugate of an adapted-law invariant function is adapted-law invariant.
Moreover, the following are equivalent:
(1) φ is lsc convex;
(2) φ is MC-convex.

Proof. For Y ∈ LN
2 (H) we write Q = Lad(Y ). By Lemma 5.5 we find

φ ∗(Y ) = sup
X∈LN

2 (H)

E[X · Y ]− φ(X) = sup
P∈PN

2 (H)

sup
X∼adP

E[X · Y ]− φ(P )

= sup
P∈PN

2 (H)

MC(P,Q)− φ(P ) = φMC(Q) = φMC(Y ).

Next, we prove the equivalence of (1) and (2).
Suppose that φ is lsc convex. By first applying the Fenchel–Moreau theorem and then (32)

twice we find
φ = φ∗∗ = φMC∗

= φMCMC.

Hence, φ = φMCMC, which shows that φ is MC-convex.
Conversely assume that φ is MC-convex. Then φ = ψMC for some proper function ψ :

PN
2 (H) → (−∞,+∞]. By (32), we have φ = ψMC = ψ

∗
, which shows that φ is lsc convex. □
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6.2. MC-order. In this section we introduce an order on PN
2 (H) which will subsequently be

used to establish the existence of the Lions derivative in the adapted setting.

Definition 6.2. Let P,Q ∈ PN
2 (H). We say that P is smaller than Q in the MC-order, written

as P ≼MC Q if
∫
φdP ≤

∫
φdQ for every MC-convex function φ : PN−1

2 (H) → (−∞,+∞].

We recall the convention P0
2 (H) = H and note that the MC-order extends the classical convex

order on P2(H). The main result of this subsection is the following characterization of the MC-
order, which is an analogue of Proposition 2.8.

Proposition 6.3. Let P,Q ∈ PN
2 (H). Then the following are equivalent:

(1) P ≼MC Q,
(2) MC(P,R) ≤ MC(Q,R) for every R ∈ PN

2 (H).

We note that implies Proposition 6.3 that for every R ∈ PN
2 (H) the function MC(·, R) is

increasing in the ≼MC-order.

Proof. We first show that (1) implies (2). To that end, let P ≼MC Q ∈ PN
2 (H) and fix R ∈

PN
2 (H). Let φ be a dual optimizer for MC(Q,R). We then have

MC(P,R) ≤
∫
φdP +

∫
φMC dR ≤

∫
φdQ+

∫
φMC dR = MC(Q,R).

To establish the reverse implication suppose that (1) is not satisfied and assume first that
N ≥ 2. Then there exists a MC-convex φ : PN−1

2 (H) → (−∞,+∞] such that
∫
φdP >

∫
φdQ.

By approximating φ with MC-convex functions of the form (φMC + χA)
MC for bounded A ⊆

PN−1
2 (H), we can additionally assume that φ is Lipschitz and, in particular, finitely valued. Let

fε : PN−1
2 (H) → PN−1

2 (H) be an ε-selection of φMCMC, i.e.,

φ(p) + φMC(fε(p)) ≤ MC(p, fε(p)) + ε, p ∈ PN−1
2 (H).

Let 2ε =
∫
φdP −

∫
φdQ. Define the measure

Rε := (fε)#P.

Then, we have

MC(P,Rε) ≥ P (φ) +Rε(φ
MC)− ε > Q(φ) +Rε(φ

MC) ≥ MC(Q,Rε),

which yields a contradiction.
In the case N = 1, the same argument applies, replacing PN−1

2 (H) by H, MC-conjugation
with convex conjugation, and MC by the inner product on H. □

Proposition 6.4. Let φ : PN
2 (H) → (−∞,∞] be MC-convex. Then φ is increasing in the

≼MC-order.

Proof. This follows because MC(·, R) is increasing in the ≼MC-order (see Proposition 6.3) and
every MC-convex function is by definition supremum of such functionals (plus constants). □

6.3. N-Monge Couplings. In this section we use X ,Y to denote Polish metric spaces.
Recall from (31) that ipt = LF(N−1):t(X) ∈ At = PN−t

2 (H).

Definition 6.5. Let P,Q ∈ PN
2 (X ). We say that Π ∈ CplN (P,Q) is N -Monge if there exists a

map ξ : A1:N → X such that, whenever (X,Y ) ∼ad Π, we have Y = ξ(ip(X)).

Crucially, being N -Monge is equivalent to the fact that ip(Y ) = T (ip(X)) as it is possible to
‘unfold’ ξ : A1:N → X to a map T : A1:N → A1:N that satisfies ip(Y ) = T (ip(X)).
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Proposition 6.6. Let P ∈ PN
2 (X ) and let ξ :

∏N
t=1 PN−t(X ) → Y be measurable. Write Y =

ξ(ip(X)) and Q := Lad(Y ) and inductively define mappings TN := ξ and, for t = N − 1, . . . , 1,

Tt : A1:t → PN−t
2 (X ), Tt(p

1, . . . , pt) := Tt+1(p
1, . . . , pt, ·)#pt.

Then, for every t = 1, . . . , N , we have ipt(Y ) = Tt(ip1:t(X)) almost surely.

Proof. We show the claim by backward induction. For t = N , we trivially have

ipN (Y ) = Y = ξ(ip(X)) = TN (ip1:N (X)).

Next, suppose the claim is true for t+ 1. We have almost surely that

ipt(Y ) = L(ipt+1(Y )|Ft) = L(Tt+1(ip1:t+1(X))|Ft)

= (Tt+1(ip1:t(X), ·))#L(ipt+1(X)|Ft)

= (Tt+1(ip1:t(X), ·))#ipt(X) = Tt(ip1:t(X)),

where the first, fourth and fifth equality hold by definition, the second by inductive assumption
and the third by Ft-measurability of ip1:t(X). This yields the claim. □

Corollary 6.7. Let P,Q ∈ PN
2 (H). Let Π1,Π2 ∈ CplN (P,Q) be N -Monge. Then,

(Π1 +Π2)/2 is N -Monge ⇐⇒ Π1 = Π2.

Proof. Note that the ⇐=-implication is trivial.
To see the =⇒-implication, apply Proposition 6.6 with X = H, Y = H ×H and ξ(ip(X)) =

(X, ξi(ip(X))), where ξi is the corresponding map associated with the N -Monge coupling Πi,
i = 1, 2. Using the assertion of Proposition 6.6 with t = 1, we obtain Borel maps T i with
T i
#P = Πi. As (Π1 + Π2)/2 is assumed to be N -Monge, we deduce (by analogous reasoning as

above) that (Π1 + Π2)/2 is given by pushforward of some measurable map. This enforces that
T 1 = T 2 P -almost surely, and hence Π1 = Π2. □

Definition 6.8. We call (µ, ν) ∈ P2(H) × P2(H) a strict Monge pair if the optimal coupling
between µ and ν is unique and of Monge type.

For N ≥ 2, we call (P,Q) ∈ PN
2 (H)× PN

2 (H) a strict Monge pair if
• the optimal coupling between P and Q is unique and of Monge type, i.e., Cplopt(P,Q) =

{(id, T )#P} for some T : PN−1
2 (H) → PN−1

2 (H);
• For P -almost every p, the pair (p, T (p)) is a strict Monge pair.

Proposition 6.9. Let P,Q ∈ PN
2 (H). Then, (P,Q) is a strict Monge pair if and only if

CplNopt(P,Q) = {Π} and Π is N -Monge.

Proof. First, suppose that (P,Q) is a strict Monge pair. We need to show that there exists a
unique optimizer Π ∈ CplN (P,Q) and that it is N -Monge. To this end, we show that there is
ξ : A1:N → H such that for every optimizer Π ∈ CplN (P,Q) and random variables X,Y with
(X,Y ) ∼ad Π it holds Y = ξ(ip(X)) almost surely.

We show the claim by induction on N . For N = 1 it is clear. Suppose that the claim
holds for N − 1. That is, if (p, q) ∈ PN−1

2 (H) × PN−1
2 (H) is a strict Monge pair then there is

ξp,q : A2:N → H such that for all X ′, Y ′ ∈ LN−1
2 (H) with ip1(X

′, Y ′) ∈ CplN−1
opt (p, q) we have

Y ′ = ξp,q(ip(X ′)) almost surely.
Fix an optimizer Π ∈ CplNopt(P,Q) and random variables (X,Y ) ∼ad Π. We then have a.s.

PN−1[pr1](ip1(X,Y )) = ip1(X) ∼ P and PN−1[pr2](ip1(X,Y )) = ip1(Y ) ∼ Q.



A BRENIER THEOREM ON (P2(. . .P2(H) . . .),W2) AND ADAPTED TRANSPORT 29

Therefore, we get

MC(P,Q) =

∫
x · y dIN−1Π(x, y) = E

[ ∫
x · y IN−2ip1(X,Y )(dx, dy)

]
≤ E

[
MC(ip1(X), ip1(Y ))

]
≤ MC(P,Q).

Thus, all inequalities are equalities. In particular, L(ip1(X), ip1(Y )) ∈ Cplopt(P,Q) and almost
surely ip1(X,Y ) ∈ CplN−1

opt (ip1(X), ip1(Y )). As (P,Q) is a strict Monge pair, this yields ip1(Y ) =

T (ip1(X)) for some map T : PN−1
2 (H) → PN−1

2 (H) and there is λ-full set Ω′ ∈ F1 such that for
every ω ∈ Ω′ we have that

(ip1(X)(ω), ip1(Y )(ω)) ∈ PN−1
2 (H)× PN−1

2 (H) is a strict Monge pair,

ip1(X,Y )(ω) ∈ CplN−1
opt (ip1(X)(ω), T (ip1(X)(ω))).

By the induction hypothesis, we obtain that for all ω ∈ Ω′

Y (ω1, ·) = ξip1(X)(ω),ip1(Y )(ω)(ip2:N (X)(ω1, ·)).

Using this we can define (on a L(ip(X))-full set) the desired map ξ : A1:N → H via

ξ(ip(X)) := ξip1(X),T (ip1(X))(ip2:N (X)),

which satisfies ξ(ip(X)) = Y almost surely.
Conversely, we need to show that if CplNopt(P,Q) = {Π} and Π is N -Monge that then (P,Q)

is a strict Monge pair. Again, the claim is trivially satisfied when N = 1. Assume that the claim
holds for N − 1. That is, if (p, q) ∈ PN−1

2 (H) × PN−1
2 (H) satisfies CplN−1

opt (p, q) = {Πp,q} and
Πp,q is (N−1)-Monge, then (p, q) is strict Monge. If there are π1, π2 ∈ Cplopt(P,Q) with π1 ̸= π2

and Π̃p,q ∈ CplN−1
opt (p, q) is a measurable selection, then Πi := ((p, q) 7→ Π̃p,q)#πi ∈ CplNopt(P,Q).

Thus, Π = Π1 = Π2 which can only be the case if π1 = π2. Since Π is N -Monge there is
a measurable map ξ : A1:N → X such that (X, ξ(ip(X))) ∼ad Π for X ∼ad P . As in the
first part, we have that L(ip1(X), ip1(ξ(ip(X)))) ∈ Cplopt(P,Q), from where it follows that
π1 = L(ip1(X), ip1(ξ(ip(X)))) is also of Monge type. By the inductive assumption, we have that
for almost surely (ip1(X), ip1(Y )) is a strict Monge pair. This completes the induction step and
concludes the proof. □

6.4. MC-subdifferentials. Before considering subdifferentials, we briefly compare continuity
on PN

2 (H) and LN
2 (H).

Lemma 6.10. Let φ : PN
2 (H) → (−∞,+∞] and P ∈ PN

2 (H). Then the following are equivalent:
(1) φ is continuous at P .
(2) For all X ∼ad P , φ is continuous at X.
(3) There exists X ∼ad P such that φ is continuous at X.

In particular,
cont(φ) = {X ∈ LN

2 (H) : Lad(X) ∈ cont(φ)},
and hence cont(φ) is adapted-law invariant.

With the same arguments as in the proof of Lemma 6.10 it follows that a function φ :
PN
2 (H) → (−∞,+∞] is lsc if and only if its adapted Lions lift φ is lsc.

Proof of Lemma 6.10. To see that (1) implies (2) let X ∼ad P and ∥Xn − X∥2 → 0. Then,
W2(Lad(Xn),Lad(X)) → 0 and hence φ(Xn) = φ(Lad(Xn) → φ(Lad(X)) = φ(X).

The implication from (2) to (3) is trivial.
Suppose that (3) holds true. Let Pn → P in W2. By Proposition 5.7 there are Xn ∼ad Pn

such that ∥Xn −X∥2 → 0. Hence, φ(Pn) = φ(Xn) → φ(X) = φ(P ). □
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We recall the notion of MC-subdifferntials from Definition 4.3. For a function φ : PN
2 (H) →

(−∞,∞] and P ∈ PN
2 (H) its MC-subdifferential at P is defined as

∂MCφ(P ) = {Q ∈ PN
2 (H) : φ(R) ≥ φ(P ) + MC(R,Q)− MC(P,Q) for every R ∈ PN

2 (H)}.

Proposition 6.11. Let φ : PN
2 (H) → (−∞,+∞] be proper and let X,Y ∈ LN

2 (H). If X ∼ad P
and Z ∼ad Q we have

Z ∈ ∂φ(X) ⇐⇒ Q ∈ ∂MCφ(P ) and E[X · Z] = MC(P,Q)

Proof. The proof is line by line as the proof of (19). □

A crucial observation about subdifferentials of law invariant convex functions is that if Z ∈
∂φ(X), then E[Z|X] ∈ ∂φ(X). This allowed us to conclude that if φ is MC-differentiable at
L(X) then ∂φ(X) = {ξ(X)}. Our next goal is to establish an analogue of this for adapted-law
invariant functionals. Specifically, we show that if Z ∈ ∂φ(X) then E[Z|ip(X)] ∈ ∂φ(X) and
therefore conclude that MC-differentiability of φ at Lad(X) implies that ∂φ(X) = {ξ(ip(X))}.
To this end, we need some auxilary results.

Lemma 6.12. Let X,Y ∈ LN
2 (H) such that E[Y |ip(X)] = 0. Then, we have

Lad(X + Y ) ≽MC Lad(X).

Proof. By Lemma B.2 we can assume w.l.o.g. that X has a σ(Zt, Ut+1:N )-measurable version,
where Zt := LFN−1:t(X), for all t = 1, . . . , N − 1. Consider the family of random variables

Y0 := Y, Yt := E[Y |Z1:t, Ut+1:N ], YN := E[Y |X,Z1:N−1] = 0.

We claim that Lad(X + Yt) ≽MC Lad(X + Yt+1) for t = 0, . . . , N − 1, which we proceed to show
by induction.

Let φ be an MC-convex function, then we have as φ is convex and lsc

E[φ(X + Y0)|Z1, U2:N ] ≥ φ(E[X + Y |Z1, U2:N ]) = φ(X + E[Y |Z1, U2:N ] = φ(X + Y1).

By taking the expectation on both sides, the resulting inequality shows the claim for t = 0.
Next, assume that the claim holds true for t < N . Again, let φ be MC-convex, then

E[φ(X + Yt)|Z1:t, Ut+1:N ] ≥ φ(E[X + Yt|Z1:t, Ut+1:N ])

= φ(X + E[Yt|Z1:t, Ut+1:N ]) = φ(X + Yt+1).

As above we conclude that Lad(X + Yt) ≽MC Lad(X + Yt+1) and the assertion follows by tran-
sitivity of ≼MC and noting that X + Y1 = X + Y as well as X = X + YN . □

Proposition 6.13. Let φ : LN
2 (H) → (−∞,+∞] be adapted-law invariant and convex. If

Z ∈ ∂φ(X), then
E[Z|ip(X)] ∈ ∂φ(X).

Proof. Let Z ∈ ∂φ(X). For every Y ∈ LN
2 (H), we have E[Y −E[Y |ip(X)]|ip(X)] = 0. Hence, by

Lemma 6.12 we find

φ(Y ) ≥ φ(E[Y |ip(X)])

≥ φ(X) + E[(E[Y |ip(X)]−X) · Z]
= φ(X) + E[E[Y −X|ip(X)] · Z]
= φ(X) + E[(Y −X) · E[Z|ip(X)]].

Hence, E[Z|ip(X)] ∈ ∂φ(X). □

Definition 6.14. Let φ : PN
2 (H) → (−∞,∞] be MC-convex and P ∈ dom(φ). We say that φ

is MC-differentiable at P if |∂MCφ(P )| = 1.
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Lemma 6.15. Let φ : PN
2 (H) → (−∞,∞] be MC-convex and P ∈ dom(φ). Then the following

are equivalent:
(1) φ is MC-differentiable in P .
(2) For all X with X ∼ad P we have #∂φ(X) = 1.

Proof. (1) implies (2): Suppose that there are Z1 ̸= Z2 ∈ ∂φ(X) for some X ∼ad P . By
Proposition 6.11, we have Lad(Z1),Lad(Z2) ∈ ∂MCφ(P ). Hence, if not Z1 ∼ad Z2, we conclude
that ∂MCφ(P ) is no singleton. Otherwise, observe that Z := 1

2 (Z1 + Z2) ∈ ∂φ(X) and hence
L(Z) ∈ ∂MCφ(P ). As ∥ · ∥22 is strictly convex, ∥Z∥22 < 1

2 (∥Z1∥22 + ∥Z2∥22) = ∥Z1∥22. Hence,
L(Z) ̸= L(Z1) and in particular the adapted laws are different. This shows that ∂MCφ(P ) is no
singleton.

(2) implies (1): LetQ1, Q2 ∈ ∂MCφ(P ). By Proposition 5.2 and Corollary 5.4 there are random
variables Xi, Yi ∈ LN

2 (H) with Xi ∼ad P and Yi ∼ad Qi such that MC(P,Qi) = E[Xi · Yi], for
i = 1, 2. By Proposition 6.11 we have that {Yi} = ∂φ(Xi) and due to Proposition 6.13 there
exist measurable functions such that ξi(ip(Xi)) = Yi. Since

MC(P,Q1) = E[X1 · Y1] = E[X1 · ξ1(ip(X1))] = E[X2 · ξ1(ip(X2))]

Hence, ξ1(ip(X2)) ∈ ∂φ(X2). By assumption #∂φ(X2) = 1 and it follows that ξ1(ip(X2)) = Y2.
Thus Q1 = Lad(Y1) = Lad(Y2) = Q2. Hence φ is MC-differentiable at P . □

Proposition 6.16. Let φ : PN
2 (H) → (−∞,∞] be MC-differentiable in P . Then there exists a

measurable function ξ : A1:N → H such that for all X ∼ad P

∂φ(X) = {ξ(ip(X))}.

Proof. Let X ∼ad P . Then Proposition 6.13 implies that ∂φ(X) = {ξ(ip(X))}. It remains to
show that ξ does not depend on the choice of X ∼ad P . To that end, let X ′ ∼ad P and ξ′

such that ∂φ(X ′) = {ξ′(ip(X ′))}. By Proposition 6.11, we have Lad(ξ′(ip(X ′))) ∈ ∂MCφ(P )
and E[X ′ · ξ′(ip(X ′))] = MC(P,Q). As E[X · ξ′(ip(X))] = E[X ′ · ξ′(ip(X ′))] = MC(P,Q) and
Lad(ξ′(ip(X))) = Lad(ξ′(ip(X ′))) ∈ ∂MCφ(P ), Proposition 6.11 implies that ξ′(ip(X)) ∈ ∂φ(X).
As ∂φ(X) is a singleton, we have ξ = ξ′ almost surely. □

6.5. Characterization of strict Monge pairs by differentiability of MC. In the following
we generalize the result of Alfonsi–Jourdain [6] that characterizes the existence of a unique
optimal transport that is induced by a map in terms of Lions differentiability of the Wasserstein
distance to the case of iterated probability measures.

Proposition 6.17. For P,Q ∈ PN
2 (H) the following are equivalent:

(1) MC(·, Q) is MC-differentiable at P .
(2) There is ξ : A1:N → H such that for some X ∼ad P{

Y ∼ad Q : E[X · Y ] = MC(P,Q)
}
= {ξ(ip(X))} = ∂MC(·, Q)(X).

(3) For some X ∼ad P , the function MC(·, Q) is Frechet differentiable at X.
(4) The pair (P,Q) is a strict Monge pair.

Moreover, whenever one (and hence all) of the above conditions holds, statements (2) and (3)
are valid for every X ∼ad P , and ∂MCMC(·, Q)(P ) = {Q}.

Proof. We start with proving the equivalence of (1), (2), (3), and (4).
(4) =⇒ (2): Assume that (4) holds and let X ∼ad P . By Proposition 6.9 there is ξ : A1:N → H

such that CplNopt(P,Q) = {Lad(X, ξ(ip(X)))}. In particular, if Y ∼ad Q with E[X · Y ]

E[X · ξ(ip(X))] = MC(P,Q). Next, we show that MC(·, Q) is Frechet differentiable at X with
derivative ξ(ip(X)). To this end, let Xn → X in L2. We then have

(33) MC(Lad(Xn), Q) ≥ E[Xn · ξ(ip(X))] = MC(P,Q) + E[(Xn −X) · ξ(ip(X))].
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Next, let Yn ∼ad Q with E[Xn · Yn] ≥ MC(Lad(Xn), Q)− ∥Xn −X∥2/n. We then find

MC(P,Q) ≥ E[X · Yn] = E[Xn · Yn] + E[(X −Xn) · Yn]
≥ MC(Lad(Xn), Q) + E[(X −Xn) · Yn]− ∥Xn −X∥/n
= MC(Lad(Xn), Q) + E[(X −Xn) · ξ(ip(X))] + E[(X −Xn) · (Yn − ξ(ip(X)))]

(34)

Rearranging the inequalities (33) and (34) yields

|MC(Lad(Xn), Q)− MC(P,Q)− E[(Xn −X) · ξ(ip(X))]|
≤ |E[(X −Xn) · (Yn − ξ(ip(X)))]| ≤ ∥Xn −X∥2∥Yn − ξ(ip(X))∥2.

Since limn→∞ ∥Yn − ξ(ip(X))∥2 = 0 by Lemma 6.18, we find that MC(·, Q) is Frechet differen-
tiable at X with derivative ξ(ip(X)).

(3) =⇒ (1): This implication is clear because Frechet differentiability of the Lions lift at some
X implies, by Theorem 6.19, its Frechet differentiability at allX ′ ∼ad P . Hence, |{∂MC(·, Q)(X ′)| =
1 for all X ′ ∼ad P . Thus, it follows from Lemma 6.15 that MC(·, Q) is MC-differentiability at
P .

(1) =⇒ (4): Assume that ∂MCMC(·, Q)(P ) = {Q}. For any Π ∈ CplNopt(P,Q) and (X,Y ) ∼ad

Π, we have that MC(P,Q) = E[X ·Y ] and, by Proposition 6.11 we have also Y ∈ ∂MC(·, Q)(X).
Consequently, by Proposition 6.13 we obtain that E[Y |ip(X)] ∈ ∂MC(·, Q)(X) and, again
by Proposition 6.11, Lad(E[Y |ip(X)]) ∈ ∂MCMC(·, Q)(P ). Hence, Q = Lad(E[Y |ip(X)]) and
E[|Y |2] = E[|E[Y |ip(X)]|2], from where we deduce from the equality case of Jensen’s inequality
that Y = E[Y |ip(X)] almost surely, i.e., Y is ip(X)-measurable. We have shown that every
Π ∈ CplNopt(P,Q) is N -Monge, which, by Corollary 6.7, yields that CplNopt(P,Q) contains a single
element. We conclude that (P,Q) is a strict Monge pair by Proposition 6.9. □

Lemma 6.18. Let P,Q, P1, Q1, P2, Q2, · · · ∈ PN
2 (H) and let X,Y,X1, Y1, X2, Y2 . . . be random

variables with X ∼ad P , Y ∼ad Q, Xn ∼ad Pn, Yn ∼ad Qn such that

E[Xn · Yn] ≥ MC(Pn, Qn)− εn, Qn → Q in W2, and εn → 0.

If (P,Q) is a strict Monge pair and Xn → X in L2, then

Yn → ξ(ip(X)) in L2,

where ξ is the unique map with L(ip(X), ξ(ip(X))) ∈ CplNopt(P,Q).

Proof. Note that since (P,Q) is a strict Monge pair, there exists a unique map ξ : PN−1
2 (H)×· · ·×

H → H with Y := ξ(ip(X)) ∼ad Q and Lad(X,Y ) =: Π̂ is the unique element in CplNopt(P,Q).
By W2-relative compactness, up to extracting a subsequence, we can assume that

lim
n→∞

Π̂n := Lad(Xn, Yn) = Π̃ in W2.

Write c(x, y) = x · y, by W2-continuity of c(N) we get∫
x · y dIN−1Π̂(x, y) = MC(P,Q) = lim

n→∞
MC(Pn, Qn)

= lim
n→∞

∫
x · y dIN−1Π̂n(x, y) =

∫
x · y dIN−1Π̃(x, y).

Hence, Π̃ ∈ CplNopt(P,Q) and by uniqueness Π̃ = Π̂. We have shown that

(Xn, Yn) → (X,Y ) = (X, ξ(ip(X))) in adapted distribution.
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In particular, we have (ip(Xn), ip(Yn)) → (ip(X), ip(Y )) in distribution and as ipN (Yn) = Yn
and ipN (Y ) = Y , (ip(Xn), Yn) → (ip(X), Y ) = (ip(X), ξ(ip(X))). Additionally, (U, ip(Xn)) →
(U, ip(X)) in probability and therefore in distribution. We can invoke [22, Lemma 6.4] to obtain

(35) (U, ip(Xn), Yn) → (U, ip(X), Y ) in distribution,

and thus (U, Yn) → (U, Y ) in distribution. As Y = ξ(ip(X)) and Yn are functions of U , (35)
entails by [53, Lemma 3.14] that Yn → Y in probability. Note that E[|Yn|2] =

∫
|y|2 dIN (Qn) →∫

|y|2 dIN (Q) = E[|Y |2] and therefore Yn → Y in L2, which was the claim. □

The Ekeland–Lebourg theorem (see e.g. [16, Theorem 18.3]) guarantees that a convex func-
tion on an infinite dimensonal Hilbert space that is continuous in at least one point is Frechet
differentiable on a dense Gδ subset of the closure of its domain. For our purposes, we need a
version of this result that is tailored to adapted-law invariant functions.

Theorem 6.19. Let φ : LN
2 (H) → (−∞,+∞] be adapted-law invariant, convex and continuous

at some µ ∈ dom(φ). Then the set of Frechet-differentiability points of φ is dense in the closure
of dom(φ) and it is the intersection of countable many open adapted-law invariant sets.

Sketch of the proof of Theorem 6.19. We write A ⊆ LN
2 (H) for the set of Frechet differentiability

points of φ. The Ekeland–Lebourg theorem [16, Theorem 18.3] asserts that A is a dense Gδ subset
of the closure of dom(φ). It remains to observe that the dense open set On such that A =

⋂
nOn

can chosen to be adapted-law invariant.
By [16, Proposition 18.1] we have that A =

⋂
n∈NOn with

On =
⋃
η>0

{
X ∈ cont(φ) : sup

∥Y ∥2=1

φ(X + ηY ) + φ(X − ηY )− 2φ(X) <
η

n

}
.

Note that cont(φ) is adapted-law invariant by Lemma 6.10. Hence, it is clear that On is adapted-
law invariant provided that φ was. □

Remark 6.20. Lemma 6.10 implies that a map f : PN
2 (H) → R is continuous if and only if

f◦Lad : LN
2 (H) → R is continuous. This is precisely the universal property of quotient topologies,

i.e., PN
2 (H) = LN

2 (H)/ ∼ad. Clearly, adapted-law invariant sets are precisely the saturated sets
w.r.t. ∼ad and there is a one-to-one correspondence between open sets in PN

2 (H) and open
adapted-law invariant sets in LN

2 (H). Hence, dense sets in PN
2 (H) correspond to adapted-law

invariant dense sets in LN
2 (H) and Gδ sets in PN

2 (H) correspond to subsets of LN
2 (H) that are

a countable intersection of open adapted-law invariant sets.

Corollary 6.21. Let φ : PN
2 (H) → (−∞,+∞] and suppose that cont(φ) ̸= ∅. Then φ is

MC-differentiable on a dense Gδ subset of the closure of dom(φ).

Proof. We write A ⊆ LN
2 (H) for the set of Frechet differentiability points of φ. By Theorem 6.19,

the set A =
⋂

nOn with On adapted-law invariant, open and dense in the closure of dom(φ).
By Remark 6.20, Un := {Lad(X) : X ∈ On} is open and dense in the closure of dom(φ). As
Frechet-differentiability implies that the subdifferential is a singleton, Lemma 6.15 yields that φ
is MC-differentiable on

⋂
n Un. □

Theorem 6.22. Let Q ∈ PN
2 (H). Then the set of P ∈ PN

2 (H) such that (P,Q) is a strict
Monge pair is a dense Gδ set.

Proof. This follows from Proposition 6.17 and Corollary 6.21. □
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7. Construction of transport-regular measures in PN
2 (H)

7.1. Criterion for transport regularity. The aim of this section is to provide a more accessi-
ble criterion for transport regularity of measures on iterated spaces of probability measures. To
this end, we leverage the adapted Lion’s lift which permits us to formulate the following criterion:

Theorem 7.1. Let P ∈ PN
2 (H) and X ∈ LN

2 (H) with Lad(X) = P . Assume that

(36) for almost every u, (ũt 7→ X(u1:t−1, ũt, ·))#λ ∈ P2(L
N−t
2 (H)) is transport regular,

for all t = 1, . . . , N . Then, P is transport regular.

An important role in the proof of Theorem 7.1 plays the following

Proposition 7.2. Let φ : PN
2 (H) → (−∞,+∞] be MC-convex and let P ∈ PN

2 (H). Then, for
all X ∈ LN

2 (H) with X ∼ad P we have

{Lad(Y ) : Y ∈ ∂φ(X)} ⊆ ∂MCφ(P ).

Assume further that P is transport regular, then we have

{Lad(Y ) : Y ∈ ∂φ(X)} = ∂MCφ(P ).

Proof. The first inclusion follows immediately from Proposition 6.11.
For the second part, since P is transport regular, we have by Proposition 6.9 that for every

Q ∈ ∂MCφ(P ), CplNopt(P,Q) = {L(ip(X), ξ(ip(X)))} for some measurable map ξ. This readily
yields the desired equality. □

Corollary 7.3. Let P ∈ PN
2 (H) and X ∈ LN

2 (H) with Lad(X) = P . Assume that
(1) (u1 7→ X(u1, ·))#λ is a transport regular measure in P2(L

N−1
2 (H)),

(2) for λ-almost every u1, Lad(X(u1, ·)) is a transport regular measure in PN−1
2 (H).

Then, P is transport regular.

Proof. By Lemma A.1, we have to show that for every MC-convex φ : PN−1
2 (H) → (−∞,+∞],

we have #∂MCφ(p) ≤ 1 for P -almost every p. Using assumption (1), we get

#∂φ(X(u1, ·)) ≤ 1 for λ-a.e. u1.

Next, assumption (2) allows us to invoke Proposition 7.2 and we obtain

{Lad(Y ) : Y ∈ ∂φ(X(u1, ·))} = ∂MCφ(Lad(X(u1, ·))) for λ-a.e. u1.

Hence, #∂MCφ(Lad(X(u1, ·))) ≤ 1 for λ-a.e. u1 or equivalently #∂MCφ(p) ≤ 1 for P -a.e. p. As
φ is an arbitrary MC-convex function, this shows transport regularity of P . □

Proof of Theorem 7.1. We prove the claim by backward induction over t. More precisely, we
show for t = N, . . . , 1 that

for almost every u, Lad(X(u1:t−1, ·)
)
∈ PN+1−t

2 (H) is transport regular.

Base case (t = N): Using the assumption (36) with t = N , we find that for almost every u1:N−1

Lad(X(u1:N−1, ·)) = (uN 7→ X(u1:N−1, uN ))#λ ∈ P2(H) is transport regular.

Inductive step: Assume the claim holds for t+ 1. Using (36) with t, we have

for a.e. u, Pu1:t−1 := (ut 7→ X(u1:t−1, ut, ·)
)
#
λ ∈ P2(L

N−t
2 (H)) is transport regular.

Further, we derive from the induction hypothesis that, for a.e. u and Pu1:t−1 -a.e. Y , Lad(Y ) ∈
PN−t
2 (H) is transport regular. Thus, we can invoke Corollary 7.3 and conclude that, for almost

every u, Lad(X(u1:t−1, ·)) is transport regular.
Taking t = 1, we yields that Lad(X) is a transport regular measure in PN

2 (H). □
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7.2. Existence of transport-regular measures. The criterion in Theorem 7.1 permits us to
build transport-regular measures on PN

2 (H) using non-degenerate Gaussian random fields. More
precisely, we will consider the H-valued analogue to a Brownian sheet.

Recall that an H-valued N -parameter Brownian sheet W with covariance operator Q is an
H-valued, continuous, centered Gaussian process indexed by [0, 1]N such that

(37) E
[
⟨W (u), x⟩⟨W (v), y⟩

]
=

N∏
t=1

min(ut, vt) ⟨Qx, y⟩,

for u, v ∈ [0, 1]N and x, y ∈ H. Here, Q : H → H is a non-negative, symmetric linear operator
with finite trace.

Theorem 7.4. Let Q ∈ L(H) be a positive-definite, symmetric linear operator with finite trace.
Let W be an H-valued N -parameter Brownian sheet. Then LP(Lad(W )) is a transport-regular
measure on PN

2 (Rd) with full support.

Proof. For t = 1, . . . , N , we write Ht := LN−t
2 (H) using the convention that L0

2(H) = H. For
fixed u1:t, v1:t ∈ [0, 1]t we have

E
[
⟨W (u1:t, ·), f⟩Ht

⟨W (v1:t, ·), g⟩Ht

]
=

∫
[0,1]N−t×[0,1]N−t

N∏
s=1

min(us, vs)⟨Qf(ut+1:N ), g(vt+1:N )⟩ d(ut+1:N , vt+1:N ).

Therefore, we can interpret W as an Ht-valued, t-parameter Brownian sheet whose covariance
operator Qt is given by

(Qtf)(ut+1:N ) =

∫
[0,1]N−t

N∏
s=t+1

min(us, vs)Qf(vt+1:N ) dvt+1:N ,

where ut+1:N ∈ [0, 1]N−t and f ∈ Ht. Since Ht can be identified with LN−t
2 (R) ⊗ H, Qt can

be identified with the tensor product of the positive-definite, symmetric trace class operators Q̃
and Q on the separable Hilbert spaces LN−t

2 (R) and H, respectively. Therefore, Qt is a positive-
definite, symmetric trace class operator on Ht. Indeed, Qt is symmetric, positivity follows from

⟨Qtf, f⟩Ht
=

∫
[0,1]N−t

〈
Q

∫
[w,1]

f(ut+1,N ) dut+1,N ,

∫
[w,1]

f(ut+1,N ) dut+1,N

〉
dw,

where [w, 1] := [wN−t, 1]× · · · × [wN , 1], for all f ∈ Ht, and it is trace class since

tr(Qt) =
∑

n,m∈N
⟨Qten ⊗ fm, en ⊗ fm⟩Ht

=
(∑

n∈N

∫
[0,1]N−t×[0,1]N−t

N∏
s=t+1

min(us, vs)en(ut+1:N )en(vt+1:N ) d(ut+1:N , vt+1:N )
)

·
( ∑

m∈N
⟨Qfm, fm⟩

)
= tr(Q̃) tr(Q) <∞,

for orthonormal bases (en)n∈N of LN−t
2 (R) and (fm)m∈N of H.

For fixed u1:t−1 ∈ (0, 1]t−1 we have that

ut 7→ E[⟨W (u1:t, ·), f⟩Ht
⟨W (u1:t, ·), g⟩Ht

] =

t∏
s=1

us⟨Qtf, g⟩Ht
,
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and thus ut 7→W (u1:t−1, ut, ·) is a Wiener process with positive-definite covariance operator. By
Theorem 3.5, we deduce that

(38) a.s. (ut 7→W (u1:t, ·))#λ is a transport-regular measure on Ht = LN−t
2 (H).

By Theorem 7.1, Lad(W ) is almost surely transport regular in PN
2 (H). Since L(W ) is a non-

degenerate Gaussian measure on LN
2 (H) it is transport regular, see e.g. [8, Theorem 6.2.10].

Another application of Proposition 7.2 yields that LP(Lad(W )) ∈ PN+1
2 (H) is transport regular,

as claimed.
Finally, we show that the support of P is the whole space. Since L(W ) as Gaussian measure

on LN
2 (H) is non-degenerate, we have that the support of L(W ) is the whole space. As Lad :

LN
2 (H) → PN

2 (H) is continuous by Proposition 5.7 and surjective by Proposition 5.2, we conclude
that the support of LP(Lad(B)) coincides with PN

2 (H). □

7.3. Proofs of Section 1.1.

Proof of Theorem 1.1. Theorem 7.4 provides a transport-regular measure Λ on PN
2 (H) with full

support, and yields the claim. □

Proof of Corollary 1.2. By Theorem 1.1 there exists a transport-regular measure Λ on PN
2 (H)

with full support. Therefore, {Q ∈ PN
2 (H) : Q ≪ P} is dense and consists of transport-regular

measures as consequence of Lemma A.1. □

Proof of Theorem 1.5. First, let φ be any MC-convex function. Since P ≪ Λ and the latter is
transport regular, we have by Lemma A.1 that #∂MCφ(p) ≤ 1 for P -a.e. p ∈ PN

2 (H). Because
of Proposition 6.11 and Lemma 6.15 the adapted Lions lift satisfies #∂φ(X) ≤ 1 a.s.

Next, recall that by Lemma 4.2 and Theorem 4.4, Π ∈ Cpl(P,Q) is W2
2 -optimal if and only

if there exists an MC-convex φ with Π(∂MCφ) = 1. By the first part we find that, for P -a.e. p,
∂MCφ(p) = {Lad(∇φ(Y ))} with Y ∼ad p. Hence, W2

2 -optimality of Π is equivalent to

Π ∼ (Lad(X),Lad(∇φ(X)))

for some MC-convex φ : PN
2 (H) → (−∞,+∞] with ∂MCφ(p) ̸= ∅ for P -a.e. p. The claim then

follows by Theorem 6.1. □

Proof of Theorem 1.6. The first claim follows from Theorem 1.5. To see the second claim, note
that (P,Q) ∈ PN

2 (H) × PN
2 (H) has a unique W2-optimal coupling and this coupling is concen-

trated on the graph of a bijection if and only if (P,Q) is a strict Monge pair. For each fixed
Q ∈ PN

2 (H), the set {P ∈ PN
2 (H) : (P,Q) is strict Monge} is a dense Gδ-set. It follows from

the Kuratovski–Ulam theorem (see e.g. [54, Theorem 8.41]) that the sets

{(P,Q) ∈ PN
2 (H)× PN

2 (H) : (P,Q) is strict Monge},
{(P,Q) ∈ PN

2 (H)× PN
2 (H) : (Q,P ) is strict Monge},

are both comeager. Hence, the same is true for their intersection, which yields the claim. □

8. Application to adapted transport

8.1. Outline of the framework. The aim of this section is to apply the results obtained above
to H-valued stochastic processes, equipped with the adapted Wasserstein distance.

As noted in the introduction, the set P2(H
N ) of laws of N -step processes is not complete

w.r.t. AW2. It is shown in [14] that the completion of (P2(H
N ),AW2) consists in the stochastic

processes with filtration. In detail, we use FP2 to denote the class of all 5-tuples

X = (ΩX ,FX ,PX , (FX
t )Nt=1, (Xt)

N
t=1),
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where X is an adapted square integrable process. In analogy to (14), the (squared) adapted
Wasserstein distance of two filtered processes is defined as

AW2(X,Y) := inf
π∈Cplbc(X,Y)

∫
|X − Y |2 dπ.

Here π is a causal coupling of X,Y if π ∈ Cpl(PX ,PY ) and

π(ΩX ×B|FX
t ⊗FY

N ) = π(ΩX ×B|F̄X
N ⊗FY

N ), B ∈ FY , t ≤ N.

Bi-causality of π, that is π ∈ Cplbc(X,Y) means that this holds also when the roles of X,Y are
exchanged.

We say that X,Y are AW-equivalent, in signs X ∼AW Y if AW2(X,Y) = 0 and write FP2 for
FP2/ ∼AW . Using these notations (FP2,AW2) is the completion of (P2(H

N ),AW2). Moreover,
(FP2,AW2) is a Polish geodesic space. We note that AW2(X,Y) = 0 can be expressed in a
number of equivalent ways: it is tantamount to X,Y having the same probabilistic properties in
the sense of [51], to X,Y having Markov lifts with the same laws (see [23]) and to X,Y having
the same adapted law in the sense defined in (41) below.

Every filtered process X has a representative in

LN
2,ad(H) := {X ∈ L2([0, 1]

N , λ;HN ) : Xt is Ft-measurable}, .(39)

where (Ft) denotes the coordinate filtration as above, see e.g. [23]. Moreover we have for X,Y ∈
LN
2,ad(H)

AW2(X,Y ) = inf
X∼AWX′,Y∼AWY ′

∥X ′
1 −X ′

2∥2(40)

and the infimum is attained. It is therefore without loss of generality to work with filtered
stochastic processes X ∈ LN

2,ad and we shall do so from now on.
The stochastic interpretation of the framework developed in the previous sections is that we

consider an H-valued random variable X together with a filtration (Ft)
N
t=1. We assume that

X is FN -measurable and interpret (Ft)
N
t=1 as a model of how information about X is gradually

revealed. (Alternatively we could identify X with its Doob martingale.)
In order to apply our results for PN

2 (H) to the adapted Wasserstein setting we need to consider
the relationship of LN

2 (H) and LN
2,ad(H) in some detail.

The aim of this section is to translate these results to the classical setting of H-valued sto-
chastic processes X = (Xt)

N
t=1 that are adapted to the filtration (Ft)

N
t=1.

Following [14], we define the information process of an adapted process X ∈ LN
2,ad(H) by

backward induction on t as

ipN (X) = XN ,

ipt (X) = (Xt,LFt(ipt+1(X))), t = N − 1, . . . , 1.

The information process takes values in the following nested space: Set (ZN , dZN
) := (H, | · |)

and
Zt := H × P2(Zt+1) d2Zt

:= | · |2 +W 2
2,Zt+1

,

where W2,Zt+1
is the 2-Wasserstein distance w.r.t. the underlying metric dZt+1

. The adapted
distribution of X is then defined as

Lad(X) := L(ip1(X)) ∈ P2(Z1).(41)

Theorem 8.1. The space of filtered processes is isometrically isomorphic to P2(Z1). That is

AW2(X,Y ) = W2(Lad(X),Lad(Y )).

In particular X ∼AW Y if and only X ∼ad Y . Moreover, for every P ∈ P2(Z1), there exists
X ∈ LN

2,ad(H) such that Lad(X) = P .
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Proof. The first assertion is due to [14, Theorem 1.3]. The second claim follows analogously as
in Proposition 5.2. □

8.2. Embedding into PN
2 (HN ). In order to apply the results from the previous sections, we

need to embed P2(Z1) into PN
2 (HN ). We start to outline this procedure at the level of processes

/ random variables.
Every process X = (Xt)

N
t=1 ∈ LN

2,ad(H) is (by forgetting the adaptedness constraint) in
particular an element of LN

2 (HN ), i.e., there is a natural embedding

ιad : LN
2,ad(H) → LN

2 (HN ).(42)

If it is notionally convenient, we suppress ιad and in particular consider LN
2,ad(H) as a subspace

of LN
2 (HN ).

On the other hand we can interpret X ∈ LN
2 (HN ) as a process X = (Xt)

N
t=1 that is not

necessarily adapted. We can naturally assign to it the adapted process (E[Xt|Ft])
N
t=1. This

defines the orthogonal projection

prad : LN
2 (HN ) → LN

2,ad(H) : X 7→ (E[Xt|Ft])
N
t=1.(43)

Next, we outline this procedure at the level of adapted distributions. To that end, we introduce
the auxiliary spaces

Et := PN−t
2 (HN+1−t) t = 1, . . . , N.

Note that P2(E1) = PN
2 (HN ). We recall from Section 5 that the ip of a random variable is given

by ipt(X) = LFt:1(X) and further note that ipt(Xt:N ) takes values in Et.
It is crucial that ipt(X) and ipt(Xt:N ) contain precisely the same information. In particular,

ip1(X) and ip1(X) contain the same information and hence the difference of Lad and Lad is only
of notational nature. This is made rigorous in the next proposition:

Proposition 8.2. For t ∈ {1, . . . , N}, there exist mappings

ιt : Zt → Et

jt : Et → Zt

with the following properties:
(1) jt is continuous and the left-inverse of ιt, i.e., jt ◦ ιt = idZt

,
(2) ιt is an isometric embedding,
(3) ιt(ipt(X)) = ipt(Xt:N ) for every X ∈ LN

2,ad,
(4) jt(ip(Xt:N )) = ipt(prad(X)) for every X ∈ LN

2 (HN ).
Moreover, we have:

(5) j1#Lad(X) = Lad(prad(X)) for every X ∈ LN
2 (HN ),

(6) ι1#Lad(X) = Lad(X) for every X ∈ LN
2,ad(H).

Proof. We start with the construction of the mappings. To this end, we write δ for the map

δ : X → P2(X ) : x 7→ δx

which assigns to a point x the Dirac measure at x and we also consider its t-fold iteration
δt : X → Pt

2(X ).
Next, we define the mappings ιt : Zt → Bt by backward induction on t. For t = N we set

ιN := id : H → H and inductively, for t < N ,

ιt : Zt → Et, ιt(x, p) := δN−t
x ⊗ ιt+1#p.(44)
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The mappings jt are then defined by jN := id : H → H and by induction for t < N (writing
prt, . . . ,prN for the projections from HN+1−t onto H) defined by

jt : Et → Zt, jt(P ) = (mean(prt#(I
N−t−1(P ))), jt+1#(PN−t[prt+1:N ](P ))),(45)

where mean(µ) :=
∫
xµ(dx) for µ ∈ P2(H).

Next, we show the claims (1) to (4) simultaneously by induction on t. For t = N , they are
trivial as ιN and jN are both the identity.

Suppose that the claim is true for t + 1. We start with claim (1). As the intensity, mean
and pushforwards with continuous maps, are all continuous operations, jt is continuous. For
(x, p) ∈ Zt = H × P2(Zt+1) we have using that jt+1 ◦ ιt+1 = idZt+1

jt(ιt(x, p)) = jt(δ
N−t
x ⊗ ιt+1#p) = (mean(IN−t−1(δN−t

x )), jt+1#ιt+1#p) = (x, p).

Concerning (2), it is easy to check from (44) and from the definition of the Wasserstein distance
that ιt is an isometry. It is an embedding because jt is its continuous left-inverse.

In order to show (3) observe that

ιt(ipt(X)) = ιt(Xt,LFt(ipt+1(X))) = δN−t
Xt

⊗ LFt(ιt+1(ipt+1(X)))

and using the inductive claim this is further equal to

δN−t
Xt

⊗ LFt(ipt+1(X)) = δN−t
Xt

⊗ LFN−1:t(Xt+1:N ) = LFN−1:t(Xt:N ),

where the last equality is true because Xt is Ft-measurable.
Claim (4) follows from (3) and the fact that jt is the left inverse of ιt. This finishes the

induction.
The claims (5) and (6) follow from (3) and (4) for t = 1. □

Corollary 8.3. We have P2(Z1) = {Lad(X) : X ∈ LN
2,ad(H)}. In particular, LN

2,ad(H) is an
adapted-law invariant subspace and the projection prad is adapted-law invariant, i.e., if X ∼ad

X ′, then prad(X) ∼ad prad(X ′).

Proof. The first assertion follows from Proposition 8.2 and the fact that the space of filtered
processes and P2(Z1) are isomorphic (see Theorem 8.1). The second assertion follows from
Proposition 8.2 (5). □

We note that it is more generally true that the projection onto an adapted-law invariant
subspace is adadpted-law invariant.

Corollary 8.4. For t ≤ N , there exists a measurable map gt : Z1:t → PN−t
2 (HN ) such that

ipt(X) = gt(ip1:t(X)) for every X ∈ LN
2,ad(H).

Proof. For every s ≤ t, Xs is the first component of ips(X). Hence, there is a projection
pr : Z1:t−1 → Ht−1 such that pr(ip1:t−1(X)) = X1:t−1 for every X ∈ LN

2,ad(H). The map
ιt : Zt → Et defined in Proposition 8.2 satisfies ιt(ipt(X)) = ipt(Xt:N ) for every X ∈ LN

2,ad(H).
Thus,

gt : Z1:t → PN−t
2 (HN ), g(z1:t) := δN−t

pr(z1:t−1)
⊗ ιt(zt)

satisfies ipt(X) = gt(ip1:t(X)) for every X ∈ LN
2,ad(H). □

It was central in the previous sections (in particular in the context of MC-subdifferential and
N -Monge couplings) to establish that a random variable Y is of the form Y = ξ(ip(X)). The
next assertion shows that in the present setting the mapping ξ translates to an adapted mapping.
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Proposition 8.5. Let X,Y ∈ LN
2,ad(H) and let ξ̃ : A1:N → HN be measurable such that Y =

ξ̃(ip(X)). Then there is an adapted map ξ : Z → HN such that Y = ξ(ip(X)), i.e., Yt =
ξt(ipt(X)) for every t ≤ N . Moreover, there is an adapted map S : Z → Z such that ip(Y ) =
S(ip(X)).

Proof. Fix t ≤ N . By Proposition 6.6, the map ξ̃ induces a map Tt :
∏t

s=1 P
N−s
2 (HN ) →

PN−t
2 (HN ) such that ipt(Y ) = Tt(ip1:t(X)). The map gt defined in Corollary 8.4 satisfies

ipt(X) = gt(ip1:t(X)). We set ht(P ) := mean(IN−t−1(PN−t[prt](P )) where prt : HN → H is
the projection onto the t-th component. Note that

ht(ipt(Y )) = mean(IN−t−1(LFN−1:t(Yt)) = mean(IN−t−1(δN−t
Yt

)) = Yt.

We then define the desired map ξt as ξt := ht ◦ Tt ◦ gt and note that

ξt(ipt(X)) = ht(Tt(gt(ip1:t(X)))) = ht(Tt(ip1:t(X))) = ht(ipt(Y )) = Yt.

For the second claim, we set St = jt ◦ Tt ◦ gt and note that

St(ip1:t(X)) = jt(Tt(gt(ip1:t(X)))) = jt(Tt(ip1:t(X)) = jt(ipt(Y )) = ipt(Y ). □

8.3. Lions lift for filtered processes. From now on, we occasionally write Z(N)
t instead of

Zt to make the dependence on the number of time steps explicit when needed. As the space
of filtered processes is isometrically isomorphic to P2(Z(N)

1 ), defining a lift for functions ψ :
P2(Z1) → (−∞,+∞] is equivalent to defining a lift for functions on the space of filtered processes
with N time periods.

Definition 8.6. Let ψ : P2(Z(N)
1 ) → (−∞,+∞]. Then its adapted Lions lift is defined as the

function
ψ : LN

2,ad(H) → (−∞,+∞], ψ(X) = ψ(Lad(X)).

In order to establish a connection to convex analysis and Brenier-type results for the adapted
Wasserstein distance, we consider the adapted maximal covariance

AMC(X,Y ) := sup
X′∼adX,Y ′∼adY

E[X ′ · Y ′].

This adapted max-covariance functional is connected to the iterated max-covariance on P2(Z(N)
1 ).

To define this functional we first set

⟨x, y⟩ZN
:= ⟨x, y⟩H

⟨(x, p), (y, q)⟩Zt
:= ⟨x, y⟩H + ⟨p, q⟩Zt+1

and then define the max-covariance functional on P2(Z1) as

MC(P,Q) = sup
Π∈Cpl(P,Q)

∫
⟨(x, p), (y, q)⟩Z1

dΠ(x, p, y, q).

Proposition 8.7. For X,Y ∈ LN
2,ad(H) we have

(1) AW2
2(X,Y ) = ∥X∥22 + ∥Y ∥22 − 2AMC(X,Y )

(2) W2
2 (Lad(X),Lad(Y )) = E|X|2 + E|Y |2 − 2MC(Lad(X),Lad(Y ))

(3) AMC(X,Y ) = MC(Lad(X),Lad(Y ))

Proof. The claims (1) and (2) are straightforward by completing squares. (3) follows then from
Theorem 8.1 by invoking (1) and (2). □

Transport theory on P2(Z1) with MC costs then yields the notions of MC-transform and
MC-subgradient in the present setting:
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Definition 8.8. Let ψ : P2(Z1) → (−∞,+∞] be proper. We define its MC-transform as

ψMC(Q) = sup
P∈P2(Z1)

MC(P,Q)− ψ(P ).

A function ψ : P2(Z1) → (−∞,+∞] is called MC-convex if there exists a proper function ϑ :
P2(Z1) → (−∞,+∞] such that ψ = ϑMC. Moreover, the MC-subdifferential of ψ at P ∈ P2(Z)
is defined as

∂MCψ(P ) = {Q ∈ P2(Z1) : ψ(R) ≥ ψ(P ) + MC(R,Q)− MC(P,Q) for every R ∈ P2(Z1)},

and we write
∂MCφ := {(P,Q) : Q ∈ ∂MCφ(P ), P ∈ P2(Z1)}.

Analogous to the theory on PN
2 (H), we have the following crucial connection between the

MC-transform and the convex conjugate on LN
2,ad(H).

Lemma 8.9. Let P,Q ∈ P2(Z1) and Y ∈ LN
2,ad(H) with Lad(Y ) = Q be given. Then,

MC(P,Q) = sup
X∈LN

2,ad(H)

Lad(X)=P

E[X · Y ].

Proof. By using that ι1 is an isometry (see Proposition 8.2), the corresponding claim in the setup
of PN

2 (HN ) (see Lemma 5.5) and the self-adjointness of prad we find

MC(P,Q) = MC(ι1#P, ι1#Q) = sup
X∈LN

2 (HN )

Lad(X)=P

E[X · Y ] = sup
X∈LN

2,ad(H)

Lad(X)=P

E[X · Y ].

□

Proposition 8.10. Let ψ : P2(Z1) → (−∞,+∞] be proper. Then we have

ψMC = ψ
∗
.(46)

In particular, the convex conjugate of an adapted-law invariant function on LN
2,ad(H) is adapted-

law invariant.
Moreover, the following are equivalent:
(1) ψ is lsc convex,
(2) ψ is MC-convex.

Proof. For Y ∈ LN
2,ad(H) we write Q = Lad(Y ). By Lemma 8.9 we find

ψ
∗
(Y ) = sup

X∈LN
2,ad(H)

E[X · Y ]− ψ(X) = sup
P∈P2(Z1)

sup
X∼adP

E[X · Y ]− ψ(P )

= sup
P∈P2(Z1)

MC(P,Q)− ψ(P ) = ψMC(Q) = ψMC(Y ).

Next, suppose that ψ is lsc convex. Then by first applying the Fenchel–Moreau theorem and
then (46) twice we find

ψ = ψ
∗∗

= ψMC∗
= ψMCMC.

Hence, ψ = ψMCMC, which shows that ψ is MC-convex.
Conversely assume that ψ is MC-convex. Then ψ = ψMC for some proper function ϑ :

P2(Z1) → (−∞,+∞]. By (46), we have ψ = ϑMC = ϑ
∗
, which shows that ψ is lsc convex. □
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Remark 8.11. Next, we discuss how to extend adapted-law invariant functions on LN
2,ad(H)

to adapted-law invariant functions on LN
2 (HN ). This allows us to also translate results on the

structure of the subdifferentials of MC-convex functions from Section 6 to the present setting.
The are two ways to extend a given adapted-law invariant function ψ : LN

2,ad(H) → (−∞,+∞].
(1) We set it +∞ on non-adapted processes, i.e., writing χ for convex indicators

φ(X) = ψ(X) + χLN
2,ad(H)(X).

(2) We use the projection onto adapted processes, i.e.

φ(X) := ψ(prad(X)).

As LN
2,ad(H) and prad are adapted-law invariant (see Corollary 8.3), this defines indeed adapted-

law invariant functions. Moreover, these two ways are dual to each other via the convex conjugate
on LN

2 (HN ), i.e.
(ψ ◦ prad)

∗ = ψ
∗
+ χLN

2,ad(H).

Remark 8.12. If we are in the situation that φ(X) := ψ(prad(X)), we have (when suppressing
the embedding ιad and considering LN

2,ad(H) as subspace of LN
2 (HN ))

∂φ(X) = ∂ψ(X).

Here, the subdifferential on the left hand side in meant in LN
2 (HN ), whereas the one the right

hand side is meant in the subspace LN
2,ad(H). In particular, this asserts that ∂φ(X) ⊆ LN

2,ad(H).
Moreover, for X ∈ LN

2,ad(H), φ is Gateaux (Frechet) differentiable at X if and only if ψ is
Gateaux (Frechet) differentiable at X.

Proposition 8.13. Let ψ : P2(Z1) → (−∞,+∞] be proper and let X,Y ∈ LN
2,ad(H). If X ∼ad P

and Z ∼ad Q we have

Z ∈ ∂ψ(X) ⇐⇒ Q ∈ ∂MCψ(P ) and E[X · Z] = MC(P,Q).

Proof. The proof is line by line as the proof of (19). □

Lemma 8.14. Let ψ : P2(Z1) → (−∞,∞] be MC-convex and P ∈ dom(ψ). Then the following
are equivalent:

(1) ψ is MC-differentiable at P .
(2) For all X with X ∼ad P we have #∂ψ(X) = 1.

Proof. This follows line by line as in the proof of Lemma 6.15. □

Corollary 8.15. Let ψ : P2(Z1) → (−∞,∞] be MC-convex and P ∈ dom(φ). Set φ := ψ◦P(ι1).
Then the MC-subdifferentials coincide in the sense that

∂MCφ(ι1#P ) = {ι1#Q : Q ∈ ∂MCψ(P )}.

In particular, ψ is MC-differentiable at P if and only if φ is MC-differentiable at ι1#P .

Proof. Let R ∈ ∂MCφ(ι1#P ). Let X ∼ad ι1#P (and hence X ∈ LN
2,ad(H)) and Y ∼ad R such

that E[X · Y ] = MC(ι1#P,R). By Proposition 6.11, we have Y ∈ ∂φ(X). By Remark 8.12, we
have Y ∈ ∂ψ(X). In particular, Y ∈ LN

2,ad(H) and hence R = Lad(Y ) is of the formn ι1#Q for
some Q ∈ P2(Z1). Then Proposition 8.13 yields Q ∈ ∂MCψ(P ).

Conversely, let Q ∈ ∂MCψ(P ). Then there are X,Y ∈ LN
2,ad(H) such that MC(P,Q) =

E[X ·Y ]. By Proposition 8.13, we have Y ∈ ∂ψ(X), by Remark 8.12 we have Y ∈ ∂φ(X). Then,
ι1#Q ∈ ∂MCφ(ι1#P ) by Proposition 6.11. □
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Proposition 8.16. Let ψ : P2(Z1) → (−∞,∞] be MC-differentiable at P . Then there exists an
adapted map ξ : Z → HN such that for all X ∼ad P

∂ψ(X) = {ξ(ip(X))}.

Proof. We set φ := ψ◦P(ι1) and note that φ(X) = ψ(prad(X)) and that φ is MC-differentiable at
ι1#P by Corollary 8.15. By Proposition 6.16 there exists a measurable function ξ̃ : A1:N → HN

such that ∂φ(X) = {ξ̃(ip(X))} for all X ∼ad P . By Proposition 8.5, there is an adapted map
ξ : Z → HN such that ξ̃(ip(X)) = ξ(ip(X)). Using Remark 8.12 we find

∂ψ(X) = ∂φ(X) = {ξ(ip(X))}. □

Proposition 8.17. For P,Q ∈ P2(Z1) the following are equivalent:
(1) MC(·, Q) is MC-differentiable at P .
(2) There is an adapted map ξ : Z → HN such that for some X ∼ad P{

Y ∼ad Q : E[X · Y ] = MC(P,Q)
}
= {ξ(ip(X))}.

(3) For some X ∼ad P , the function MC(·, Q) is Frechet differentiable at X.
Moreover, whenever one (and hence all) of the above conditions holds, statements (2) and (3)
are valid for every X ∼ad P .

Proof. We derive this result from Proposition 6.17, that is the corresponding result on PN
2 (HN ).

For this note that the extension of MC(·, Q) to a function on PN
2 (HN ) in the way described in

Remark 8.11(2) is precisely MC(·, ι1#Q) (here MC denotes the max-covariance on PN
2 (HN )).

Assertion (1) in Proposition 6.17 and assertion (1) in Proposition 8.17 are equivalent by Corol-
lary 8.15. Moreover, the assertion (2) in Proposition 6.17 and assertion (2) in Proposition 8.17
are equivalent due to Proposition 8.5. Finally, assertion (3) in Proposition 6.17 and assertion (3)
in Proposition 8.17 are equivalent by Remark 8.12. □

Proposition 8.18. Let ψ : P2(Z1) → (−∞,+∞] and suppose that cont(ψ) ̸= ∅. Then ψ is
MC-differentiable on a dense Gδ subset of the closure of dom(ψ).

Proof. The proof follows the proof of Corollary 6.21 line by line. □

8.4. Naturally filtered Processes. A process is called natural if its filtration contains no
more information about its future evolution than is provided by its past trajectory. This is made
precise in the following definition.

Definition 8.19. X is called naturally filtered if for every t ≤ N

L(X | Ft) = L(X |X1:t).

Naturally filtered processes are already determined by the law of the processes itself and it is
not necessary to consider the adapted law in this case. This is made precise in the next lemma.

Lemma 8.20. Let X,Y ∈ LN
2,ad(H). Then, we have:

(1) X is naturally filtered if and only if there is an adapted map f such that ip(X) = f(X).
(2) If X,Y are naturally filtered, then Lad(X) = Lad(Y ) if and only if L(X) = L(Y ).

Proof. See e.g. [23, Section 3] and [65, Lemma 2.3]. □

As the law of the random variables determines a natural filtered processes, it is also mean-
ingful to consider the adapted Wasserstein distance between these laws, defined in (14) in the
introduction. The following lemma clarifies that these concepts are consistent.

Lemma 8.21. We have
(1) If X,Y ∈ LN

2,ad(H) are naturally filtered, L(X,Y ) ∈ Cplbc(L(X),L(Y )).
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(2) If µ, ν ∈ P2(H
N ) and π ∈ Cpl(µ, ν), there are naturally filtered X,Y ∈ LN

2,ad(H) such
that L(X,Y ) = π.

(3) If X,Y ∈ LN
2,ad(H) are naturally filtered, AW2(X,Y ) = AW2(L(X),L(Y )).

Proof. For (1) and (2), see e.g. [23, Lemma 5.3]. For (3) see [14, Theorem 1.2]. □

Next, we give an embedding J of the (adapted distributions of) natural filtered processes
(PN

2 (HN ),AW2) into set of (adapted distributions of) general processes. For N = 2 periods,
writing dµ(x1, x2) = dµ1(x1)µx1

(x2), it reads as follows:

J(µ) = (x1 7→ (x1, µx1))#µ1.

For N > 2 it is an iteration of such maps (see [11, 12]) for notational simplicity we define the
map J in processes language as

J : P2(H
N ) → P2(Z1) : µ 7→ Lad(X) where X naturally filtered with L(X) = µ.(47)

Proposition 8.22. The map J : (P2(H
N ),AW2) → (P2(Z1),W2) is an isometric embedding

and its range is dense Gδ.

Proof. See e.g. [12, Section 5]. □

Corollary 8.23. Let X,Y ∈ LN
2,ad(H). If X is naturally filtered and Y = ξ(ip(X)), then there

is an adapted map T : HN → HN such that Y = T(X).

Proof. This follows immediately from Proposition 8.5 and Lemma 8.20 (1). □

Proposition 8.24. For every ν ∈ P2(H
N ), the set of µ ∈ P2(H

N ) such that Cplbcopt(µ, ν) = {π}
and π is induced by an adapted map is comeager in P2(H

N ).

Proof. Fix ν ∈ P2(H
N ) and write Q = J(ν) ∈ P2(Z1), where J is the map defined in (47). By

Proposition 8.18, the set of P ∈ P2(Z1) such that MC(·, Q) is MC-differentiable in P is dense
Gδ in P2(Z1). By Proposition 8.22, also the set

D := {µ ∈ P2(H
N ) : MC(·, Q) is MC-differentiable in J(µ) }

is dense Gδ in P2(H
N ).

Let µ ∈ D. By Proposition 8.17 there is an adapted map ξ : Z → HN such that for every
X ∼ad J(µ) {

Y ∼ad Q : E[X · Y ] = MC(P,Q)
}
= {ξ(ip(X))}.(48)

By Lemma 8.20, there is an adapted map f : HN → Z such that ip(X) = f(X). We define

T := ξ ◦ f : HN → HN .

Note that T is adapted as concatenation of adapted maps. Now, let π ∈ Cplbc(µ, ν) be any
optimizer. We observe that π = (id,T)#µ. Indeed, by Lemma 8.21, there are X,Y ∈ LN

2,ad(H)

natural such that L(X,Y ) = π. By (48), we have Y = ξ(ip(X)) = ξ(f(X)) = T(X). Hence, the
optimal π is unique and Monge. □

Proposition 8.25. The set of pairs (µ, ν) ∈ P2(H
N ) × P2(H

N ) such that Cplbcopt(µ, ν) = {π}
and π is induced by a bi-adapted map is comeager in P2(H

N )× P2(H
N ).

Proof. We write e : HN ×HN : (x, y) 7→ (y, x) and

A =
{
(µ, ν) : Cplbcopt(µ, ν) = {π} and π is Monge

}
,

B =
{
(µ, ν) : Cplbcopt(µ, ν) = {π} and e#π is Monge

}
.
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By Proposition 8.25, for every ν ∈ P2(H
N ), the set Aν := {µ ∈ P2(H

N ) : (µ, ν) ∈ A} is
comeager. For the same reason, for every µ ∈ P2(H

N ), the set Bµ = {ν ∈ P2(H
N ) : (µ, ν) ∈ B}

is comeager. It follows from the Kuratovski–Ulam theorem (see e.g. [54, Theorem 8.41]) that A
and B are comeager in P2(H

N )×P2(H
N ). Hence, A ∩B is comeager in P2(H

N )×P2(H
N ). If

(µ, ν) ∈ A ∩ B, then Cplbcopt(µ, ν) = {π} and both π and e#π are induced by an adapted map.
Hence, π is induced by a bi-adapted map (see e.g. [20, Lemma A.2]). □

8.5. Lift of functions on Z1 and proof of Theorem 1.11. For transport of measures P,Q ∈
P2(Z(N)

1 ), the dual potentials are functions on Z(N)
1 = H × P2(Z(N)

2 ) = H × P2(Z(N−1)
1 ). For

this reason, we also need to consider adapted Lions lifts of such functions, that is

ψ : H × LN−1
2,ad (H) → (−∞,+∞], ψ(x1, X2:N ) = ψ(x1,Lad(X2:N )).(49)

We write
VN := H × LN−1

2,ad (H)

and note that if X ∈ LN
2,ad(H) and u1 ∈ [0, 1] is fixed, then

X(u1, · · · ) = (X1(u1), X2(u1, ·), . . . , XN (u1, · · · )) ∈ VN .

Hence, we can consider X ∈ LN
2,ad(H) also as VN -valued random variable on ([0, 1], λ) and apply

a function ψ : H × LN−1
2,ad (H) → (−∞,+∞] to it, in this case we write ψ(X(u1, ·)).

It is easy to see from the results in Section 8.3 that via this Lions lift defined in (49) the
c-transform for the cost c((x, p), (y, q)) = ⟨(x, p), (y, q)⟩Z1

coincides with the convex conjugate on
VN . Writing ⟨·, ·⟩VN

for the scalar product on VN we also have the analogue of Proposition 8.13,
namely

(y1, Y2:N ) ∈ ∂φ((x1, X2:N )) ⇐⇒

{
(Q, y1) ∈ ∂cφ((P, x1)) and
⟨(x1, X2:N ), (y1, Y2:N )⟩VN

= c((x1, P ), (y1, Q)).
(50)

Proof of Theorem 1.11. We write P = Lad(X) and Q = Lad(Y ). Suppose that there is an
adapted-law invariant function φ : VN → (−∞,+∞] such that Y (u1, . . .) ∈ ∂φ(X(u1, . . .)) for
a.e. u1 ∈ [0, 1]. Writing φ for the corresponding function on Z1 we have

φ(Lad(X(u1, ·))) + φc(Lad(Y (u1, ·))) = φ(X(u1, ·)) + φ∗(Y (u1, ·)) = ⟨X(u1, ·), Y (u1, ·)⟩VN
.

By integration over λ(du1) we find∫
φdP +

∫
φc dQ = E[X · Y ].

On the other hand Theorem 8.1 and the fundamental theorem of optimal transport yield that

AMC(X,Y ) = MC(P,Q) = inf
φ

∫
φdP +

∫
φc dQ.

Hence, (X,Y ) is optimal.
Conversely, assume that (X,Y ) is optimal. Then on the probability space ([0, 1], λ) (denoting

the elements of it with u1) the pair of random variables

(Lad(X(u1, ·)),Lad(Y (u1, ·)))
is optimal for the transport problem between P and Q with cost c. By the fundamental theorem
of optimal transport the exists a c-convex function φ : Z1 → (−∞,+∞] such that for λ-a.e. u1
we have

Lad(Y (u1, ·)) ∈ ∂cφ(Lad(X(u1, ·))).
Writing φ for the lift of φ as in (49), display (50) yields that Y (u1, ·) ∈ ∂φ(X(u1, ·)) for almost
every u1.
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This finishes the proof of the first equivalence. The second claim concerning naturally filtered
processes follows immediately as being naturally filtered is a property of the adapted law (i.e., if
X ∼ad J(µ) and Y ∼ad J(ν) they are necessarily naturally filtered). □

8.6. Failure of an adapted Brenier theorem for absolutely continuous measures. Fi-
nally we provide an example showing that a naive attempt to extend Brenier’s theorem to the
adapted Wasserstein fails already in the first non-trivial instance of one-dimensional state space
and one time interval:

Example 8.26. There exist absolutely continuous, compactly supported probabilities on R2

such that the adapted transport problem for the quadratic costs admits no Monge type solution:

Let µ1 = ν1 be the uniform probability measure on
[
− 1√

2
, 1√

2

]
, and define µ, ν on R2 by

µ(dx1, dx2) := µ(dx1)qa(x1)(dx2)), ν(dy1, dy2) := ν(dy1)qb(y1)(dy2))

where we write qx for the uniform distribution on [x, x+ 1] and

a(x) :=

{√
2x− 1, x ≥ 0,

√
2x+ 1, x < 0,

b(y) := y√
2
.

By the dynamic programming principle the squared adapted Wasserstein distance of µ, ν is given
by

AW2
2(µ, ν) = inf

π1∈Cpl(µ1,ν1)

∫
(x1 − y1)

2 +W2
2 (qa(x1), qb(y1)) dπ1(x1, y1) =(51)

= inf
π1∈Cpl(µ1,ν1)

∫
c(x1, y1) dπ1(x1, y1),(52)

where c(x, y) = (x − y)2 +
(
a(x) − b(y)

)2. The one dimensional transport problem (52) admits
an elementary solution. Indeed, the optimal transport plan between µ1 and ν1 is of Monge type
and is uniquely given µ1-a.e. by the transport map

T1(x) =

2x− 1√
2
, x ≥ 0,

2x+ 1√
2
, x < 0.

and the dual maximizers are given by

φ1(x) =
1
2 − x2, ψ1(y) =

1
2y

2, x, y ∈
[
− 1√

2
, 1√

2

]
.

It is straightforward to verify this using the complementary slackness conditions.
It follows that the unique optimal bi-adapted transport between µ and ν is induced by the

map T (x1, x2) = (T1(x1), x2 + b(T1(x1))− a(x1)).
Crucially, the map T1 is not invertible on

[
− 1√

2
, 1√

2

]
, hence there exists not optimal transport

map from ν1 to µ1 and hence also no Monge solution for the adapted transport problem from ν
to µ.

Appendix A. On transport-regularity and Baire category

In this section, we let (X , d) be a Polish metric space and let c : X ×X → R be a continuous
cost function satisfying the growth condition |c(x, y)| ≤ C(1 + d(x, x0)

p + d(y, y0)
p) for some

C > 0, p ≥ 1, and x0, y0 ∈ X . We write Cplcopt(µ, ν) for the set of couplings that are optimal for
the transport problem between µ and ν with cost c, that is, for π′ ∈ Cplcopt(µ, ν) we have∫

c(x, y) dπ′(x, y) = inf
π∈Cpl(µ,ν)

∫
c(x, y)π(dx, dy).
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A measure µ is then called c-transport-regular if for every ν ∈ Pp(X ) there is a unique optimal
transport plan from µ to ν and this plan is of Monge type. Recall that the c-transform of a Borel
measurable function φ : X → R ∪ {−∞}, φ ̸= −∞, is given by

φc(y) = inf
x∈X

c(x, y)− φ(x),

which is thus an upper semicontinuous function, and φ is called c-concave if φ ̸= −∞ and

φ(x) = inf
y∈X

c(x, y)− φc(y).

In this case, the c-superdifferential of φ is given by

∂cφ = {(x, y) ∈ X × X : φ(x) + φc(y) = c(x, y)},

where we also write ∂cφ(x) = {y ∈ X : (x, y) ∈ ∂cφ} for x ∈ X .

Lemma A.1. Let µ ∈ Pp(X ). The following are equivalent:
(1) µ is c-transport regular;
(2) For every c-concave φ, we have µ({x ∈ X : #∂cφ(x) > 1}) = 0;
(3) For every proper φ such that there is a compact K ⊆ X with φ(x) = infy∈K c(x, y)−φc(y),

we have µ({x ∈ X : #∂cφ(x) > 1}) = 0.

Proof. Clearly, (2) implies (3).
Assume that (2) holds and our goal is to show (1). By the fundamental theorem of optimal

transport there is for each ν ∈ Pp(X ) an optimal c-concave potential φ such that

π(∂cφ) = 1, π ∈ Cplcopt(µ, ν).

Since ∂cφ(x) contains of at most one point for µ-a.e. x, it readily follows that π is of Monge
type. Consequently, as Cplcopt(µ, ν) is a non-empty convex set, it has to be a singleton.

Now, we want to show that (1) and (3) each imply (2). To this end, note that

{(x, y1, y2) ∈ X 3 : y1, y2 ∈ ∂cφ(x), y1 ̸= y2}

is Borel, whenever φ is c-concave. Hence, by the Jankov–von Neumann uniformization theorem
there exists an analytically measurable selection h = (h1, h2) : A → X × X , and observe that
h1(x) ̸= h2(x) for every x ∈ A by construction. With these maps at hand, we define subproba-
bility measures νi := (hi)#µ(· ∩ A) for i = 1, 2. By inner regularity, there exists a compact set
K ⊆ X such that νi(K) > µ(A)/2. Define the potential φK := (φc − χK)c, which satisfies

φK ≥ φ and φK(x) + φc
K(y) = c(x, y) for all (x, y) ∈ ∂cφ ∩ (X ×K),

and, as K is compact, ∂cφK(x) ̸= ∅ for all x ∈ X . Let g be an analytically measurable selector
of ∂cφK , and set

gi(x) :=

{
hi(x) x ∈ A ∩ h−1

1 (K) ∩ h−1
2 (K),

g(x) otherwise.

Then we have that

π :=
1

2

(
(x 7→ (x, g1(x)))#µ+ (x 7→ (x, g2(x)))#µ

)
has first marginal µ, its second marginal ν ∈ Pp(X ) is concentrated on K, and π(∂cφK) = 1.
Since νi(K) > µ(A)/2, we have µ(A∩h−1

1 (K)∩h−1
2 (K)) ≥ µ(A)−ν1(KC)−ν2(KC) > 0. Hence,

we have constructed an MC-concave function φK with φK(x) = infx∈X c(x, y) − φc
K(y) as well

as a coupling π ∈ Cplcopt(µ, ν), which is not Monge. This leads to a contradiction to (1) as well
as (3), and we conclude that (1) and (3) each imply (2). □
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We introduce functionals which quantify how far a pair of measures (µ, ν) is from admitting
a unique optimal transport map between them. Based on this, we will be able to quantify how
far a measure is from being c-transport-regular. We introduce the quantities

τ c(µ, ν) := sup
π∈Cplcopt(µ,ν)

∫
Var(πx)µ(dx), and τ cR(µ) := sup

ν:Wp(ν,δx0
)≤R

τ(µ, ν),

where the variance for probabilities in ν ∈ Pp(X ) is defined as

V̂ar(ν) :=
∑
n∈N

2−nVar((fn)#ν),

where (fn)n∈N is a family of continuous, point-separating functions on X bounded by 1, and

Var(ρ) =

∫
|x− x′|2 ρ⊗ ρ(dx, dx′),

for ρ ∈ P2(R).

Lemma A.2. For µ, ν ∈ Pp(X ) we have:
(1) There is a unique π ∈ Cplcopt(µ, ν) and π is Monge iff τ c(µ, ν) = 0;
(2) µ is c-transport-regular iff τ cR(µ) = 0 for all R > 0.

Proof. To see (1), first note that V̂ar(ν) > 0 if and only if ν is not a Dirac measure. Indeed, if ν
is not a Dirac measure then, as (fn)n∈N is point-separating, there exists n ∈ N, such that (fn)#ν
is not a Dirac measure, which yields that

V̂ar(ν) ≥ 2−nVar((fn)#ν) > 0.

Hence, τ c(µ, ν) = 0 iff for every π ∈ Cplcopt(P,Q) we have that πx is µ-almost surely a Dirac.
Since Cplcopt(µ, ν) is a convex set, this yields that Cplcopt(µ, ν) contains a single transport plan
and this plan is Monge.

To see (2), note that by the first part we have for every ν ∈ Pp(X ) a unique optimal transport
plan π ∈ Cplcopt(µ, ν), which means that µ is c-transport-regular. □

Lemma A.3. The map Pp(X )× Pp(X ) → R : (µ, ν) 7→ τ c(µ, ν) is Wp-upper semi-continuous.

Proof. We first show that
V̂ar : Pp(X ) → R,

is bounded, continuous and concave. Clearly, Var is continuous and concave on P2(R) as Var(ρ) =∫
x2 ρ(dx)− (

∫
x ρ(dx))2. Since (fn)n∈N is a point-separating family of continuous functions on

X bounded by 1, we have that V̂ar is the sum of concave and continuous functions on Pp(X )

bounded by 1, from where we infer the claimed properties of V̂ar.
Next, we invoke [13, Proposition 2.8] to find that the map

Pp(X × X ) → R : π 7→
∫

V̂ar(πx)π(dx),

is upper semi-continuous, concave and bounded.
Finally, consider sequences (µn)n and (νn)n and measures µ∞, ν∞ ∈ Pp(X ) with Wp(µ

n, µ) →
0 and Wp(ν

n, ν) → 0. Let πn ∈ Cplcopt(µn, νn) be such that∫
Var(πn

x )π
n(dx) ≥ τ(µn, νn)− 1/n.

As {µn : n ∈ N ∪ {∞}} and {νn : n ∈ N ∪ {∞}} are Wp-compact, we have that

A :=
⋃

n∈N∪{+∞}

Cpl(µn, νn)
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is Wp-compact as immediate consequence of Prokhorov’s theorem and the characterization of
Wp-convergence, see [75, Definition 6.8]. Therefore, there is π ∈ A such that, after possibly
passing to a subsequence, Wp(π

n, π) → 0. By continuity of the map which assigns a couplings its
marginals, we have π ∈ Cpl(µ, ν). As the coupling πn is optimal between its marginals, the same
holds true for the limiting π, i.e., π ∈ Cplcopt(µ, ν). This is because optimality is characterized
in terms of c-cyclical monotonicity of the support and the latter is preserved under weak limits
(see e.g. [75, Theorem 5.20]).

All in all, we have

τ c(µ, ν) ≥
∫

V̂ar(πx)π(dx) ≥ lim sup
n

∫
V̂ar(πn

x )π
n(dx) = lim sup

n
τ c(µn, νn). □

Lemma A.4. Assume that X has the property that Wp-bounded sets in Pp(X ) are tight. Then,
for R ≥ 0, the map Pp(X ) → R : µ 7→ τ cR(µ) is Wp-upper semi-continuous.

Proof. The proof is line by line as for Lemma A.3 subject to replacing
⋃

n∈N∪{∞} Cpl(µn, νn)

with
A :=

⋃
n∈N∪{∞}

⋃
ν:Wp(ν,δx0

)≤R

Cpl(µn, ν).

While A is not Wp-compact, it is tight by our assumption, as the marginals form a Wp-bounded
set. Furthermore, A is weakly closed since any limit point π of a sequence (πn)n in A and p-th
moment of the second marginals bounded by R, has second marginal with p-th moment bounded
by R. This follows directly from weak lower semi-continuity of the p-th moment w.r.t. weak
convergence.

We can proceed the proof as in Lemma A.3 and obtain that π is in Cplcopt(µ, ·) by [75, Theorem
5.20], and thereby analogously conclude Wp-upper semi-continuity of τ cR. □

Theorem A.5. Assume that X has the property that Wp-bounded sets in Pp(X ) are tight. Then
the set of c-transport-regular measures is Gδ in Pp(X ).

Proof. By Lemma A.2, the set of c-transport-regular measures is precisely given by⋂
R∈N

⋂
k∈N

{
µ ∈ Pp(X ) : τ cR(µ) < 1/k

}
.

As τ cR is upper semicontinuous by Lemma A.4, the sets {µ ∈ Pp(X ) : τ cR(µ) < 1/k} are open.
Therefore, the set of c-transport-regular measures is a Gδ-subset of Pp(X ). □

Appendix B. Auxiliary results

In this section U : [0, 1] → R defines the identity and U = (Ut)
N
t=1 : [0, 1]N → RN defines the

coordinate process. We equip [0, 1] and [0, 1]N with the Lebesgue measure λ.

Lemma B.1. Let X ,Y be Polish and f : X → Y measurable. Then, there is a Borel map

T : P(X )× (0, 1) → X
such that T (µ,U) ∼ µ and, for all µ, ν ∈ P(X ) with f#µ = f#ν, f(T (µ,U)) = f(T (ν, U)) a.s.

Proof. Using a Borel isomorphism we assume that X = Y = R. By [56, Lemma B.1] there
exists a jointly measurable version of disintegration of measure, i.e., there is a Borel map S :
P(X )× Y → P(X ) such that for µ ∈ P(X )

µ(dx) =

∫
S(µ, y; dx) f#µ(dy),

S(µ, y; f−1({y})) = 1 for f#µ-a.e. y.
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Further, let R = (R1, R2) : (0, 1) → (0, 1)2 be Borel measurable with R#λ = λ2. Writing Qν for
the quantile function of ν ∈ P(R), we define

T (µ, u) := QS(µ,Qf#µ(R1(u)))(R2(u)),

for (µ, u) ∈ P(X )× (0, 1). It follows directly from inverse transform sampling that T (µ,U) ∼ µ.
Next, let µ, ν ∈ P(X ) with f#µ = f#ν =: η, then we have

S(µ, y; f−1({y})) = 1 = S(ν, y; f−1({y})) for η-a.e. y.

We deduce that for η-a.e. y

f(QS(µ,y)(U)) = y = f(QS(ν,y)(U)) a.s.

We conclude that
f(T (µ,U)) = Qη(R1(U)) = f(T (ν, U)) a.s. □

Lemma B.2. Let X,Y be random variables on (Ω,F ,P, (Ft)
N
t=1). Then, there exist random

variables X ′, Y ′ : (0, 1)N → H on ((0, 1)N ,B((0, 1)N ), λN , (σ(U1:t))
N
t=1) such that

• for t = 1, . . . , N − 1, X ′ has a (LFN−1:t(X ′), Ut+1:N )-measurable version,
• (X ′, Y ′) ∼ad (X,Y ).

Proof. We show the claim by induction. More specifically, we show the following:
There exists a measurable map SN = (XN , YN ) : PN (H ×H)× [0, 1]N → H ×H with

• for P,Q ∈ PN (H ×H), u, v ∈ (0, 1)N and t = 0, . . . , N − 1 with XN (P, u1:t, Ut+1:N ) ∼ad

XN (Q, v1:t, Ut+1:N ), then XN (P, u1:t, Ut+1:N ) = XN (Q, v1:t, Ut+1:N ) a.s.,
• for P ∈ PN (H ×H), (XN (P,U1:N ), YN (P,U1:N )) ∼ad P .

First, let N = 1. Then the claim follows from Lemma B.1 with X = H × H, Y = H and
f(x1, x2) = x1.

Next, assume the claim holds true for N −1. We invoke Lemma B.1 with X = PN−1(H×H),
Y = PN−1(H) and f = PN−1[pr1] to find a Borel map T : PN (H ×H) × (0, 1) → PN−1(H ×
H) with T (P,U1) ∼ P and, for P,Q ∈ PN (H × H) with f#P = f#Q, then f(T (P,U1)) =
f(T (Q,U1)) a.s. We set

XN (P, u1:N ) := XN−1(T (P, u1), u2:N ) and YN (P, u1:N ) := YN−1(T (P, u1), u2:N ),

which defines a measurable map SN = (XN , YN ) : PN (H × H) × (0, 1)N → H × H. By
construction we have for fixed (P, u1) ∈ PN (H ×H)× (0, 1)

SN (P, u1, U2:N ) = (XN (P, u1, U2:N ), YN (P, u1, U2:N ))

= (XN−1(T (P, u1), U2:N ), YN−1(T (P, u1), U2:N )) ∼ad T (P, u1).

Hence, SN (P,U1:N ) ∼ad (T (P, ·))#λ = P which also yields XN (P,U1:N ) ∼ad f#P since f =
PN−1[pr1]. Therefore, ifXN (P,U1:N ) ∼ad XN (Q,U1:N ) then f#P = f#Q and thus f(T (P,U1)) =
f(T (Q,U1)) almost surely. Consequently, we get

XN (P,U1:N )) = XN−1(T (P,U1), U2:N ) = XN−1(T (Q,U1), U2:N ) = XN (Q,U1:N ) a.s.

If additionally u, v ∈ (0, 1)N are such that XN (P, u1:t, Ut+1:N ) ∼ad XN (Q, v1:t, Ut+1:N ), then we
also have that XN−1(T (P, u1), u2:t, Ut+1:N ) ∼ad XN−1(T (Q, v1), v2:t, Ut+1:N ). Using the induc-
tive assumption we obtain that a.s.

XN (P, u1:t, Ut+1:N ) = XN−1(T (P, u1), u2:t, Ut+1:N )

= XN−1(T (Q, v1), v2:t, Ut+1:N ) = XN (Q, v1:t, U1:N ).

This completes the inductive step.
Finally, we let (X ′, Y ′) := SN (P,U1:N ). We note that for t = 1, . . . , N − 1

X ′ = E[X ′|LFN−1:t(X ′), Ut+1:N ] a.s.,



A BRENIER THEOREM ON (P2(. . .P2(H) . . .),W2) AND ADAPTED TRANSPORT 51

hence, (X ′, Y ′) have the desired properties. □

Proof of Lemma 5.5. First note that

c(N)(P, P ′) = inf
Π∈CplN (P,P ′)

∫
c(x, x′) dIN−1Π(x, x′)

≤ inf
Y∼adP

E[c(Y,X ′)] ≤ inf
T :Ω→Ω

isomorphism

E[c(X ◦ T,X ′)],

the equality follows as in Proposition 4.7, the first inequality by Lemma 5.3 and last inequality
follows from Lemma 5.1.

We write U = (Ut)
N
t=1 for the coordinate process on [0, 1]N . The distributions

µ := L(U1, . . . , UN−1, (UN , X)) and ν := (U1, . . . , UN−1, (UN , X
′))

have atomless disintegrations, that is, λ = L(U1) = L(Ut+1|Ft) as well as

µu1:N−1
:=L(UN , X|U1:N−1 = u1:N−1),

νu1:N−1
:=L(UN , X

′|U1:N−1 = u1:N−1),

are λN -almost surely atomless and thus w.l.o.g. atomless. In what follows we view µ and ν as laws
of the N -time step stochastic processes (U1, . . . , UN−1, (UN , X)) and (U1, . . . , UN−1, (UN , X

′)),
respectively, and use the denseness of biadapted Monge couplings in the set of bicausal couplings
to show the remaining inequality. Therefore we have to relate the adapted optimal transport
problem between µ and ν with c(N)(P, P ′). To this end, we define

µ̄U1:t := LFN−1:t(X) = LFN−2:t(µU1:N−1
) and ν̄U1:t := LFN−1:t(Y ) = LFN−2:t(νU1:N−1

).

Due to the dynamic programming principle of optimal transport under bicausality constraints

inf
π∈Cplbc(µ,ν)

∫
c(x, x′) dπ((u1, . . . , uN−1, (uN , x)), (v1, . . . , vN−1, (vN , x

′))) = V (0),

see, for example, [2, Theorem 3.2], where Cplbc(µ, ν) denotes the set of bicausal couplings, see
[2, Definition 2.4], and V (0) is inductively given by

V (N−1)(u1:N−1, v1:N−1) := inf
π∈Cpl(µu1:N−1

,νv1:N−1
)

∫
c(x, x′) dπ((uN , x), (vN , x

′)),

V (t)(u1:t, v1:t) := inf
π∈Cpl(λ,λ)

∫
Vt+1 dπ, V (0) := inf

π∈Cpl(λ,λ)

∫
V1 dπ.

By comparing the definition of c(t) and V (t), we have for all u, v in a λ-full set

V (N−1)(u1:N−1, v1:N−1) = c(N−1)(µ̄u1:N−1
, ν̄v1:N−1

), V (t)(u1:t, u
′
1:t) = c(t)(µ̄u1:t

, ν̄v1:t),

and thus V (0) = c(N)(P, P ′). By [20], bicausal transport plans given by biadapted Monge maps
are dense in Cplbc(µ, ν), since µ and ν both have atomless successive disintegration as argued
above. Let T = (T 1, . . . , TN ) be a biadapted Monge map from µ to ν, that is, T#µ = ν and

T t : [0, 1]t → [0, 1], T t(u1:t−1, ·)#λ = λ,

TN = (RN , SN ) : [0, 1]N ×X → [0, 1]N ×X , TN (u1:N−1, ·)#µu1:N−1
= νu1:N−1

,

and (T 1(u1), . . . , T
t(u1:t)) : [0, 1]t → [0, 1]t is bijective, for t = 1, . . . N − 1. In particular,

R := (T 1, . . . , TN−1, RN ) is a biadapted Monge map from λ to itself, and SN = Y ◦R λ-almost
surely. Consequently, we obtain

c(N)(P, P ′) = V (0) ≥ inf
R:[0,1]N→[0,1]N ,

bi−adapted,R#λ=λ

∫
c(X(u), X ′(R(u))) dλ(u),
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which provides the missing inequality and shows the first claim. □
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