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Abstract

Jin proved that whenever A and B are sets of positive upper density in Z, A + B is
piecewise syndetic. Jin’s theorem was subsequently generalized by Jin and Keisler
to a certain family of abelian groups, which in particular contains Zd. Answering a
question of Jin and Keisler, we show that this result can be extended to countable
amenable groups. Moreover we establish that such sumsets (or — depending on the
notation — “productsets”) are piecewise Bohr, a result which for G = Z was proved
by Bergelson, Furstenberg and Weiss. In the case of an abelian group G, we show that
a set is piecewise Bohr if and only if it contains a sumset of two sets of positive upper
Banach density.
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1. Introduction

1.1. Jin’s theorem
For a set A ⊆ Z, the upper Banach density, d∗(A), is defined as

d∗(A) = lim sup
b−a→∞

|A ∩ {a, a + 1, . . . , b}|
b − a + 1

. (1)

It is well known and not hard to show that if d∗(A) > 0 then the set of differences
A − A = {a − a′ : a, a′ ∈ A} is syndetic, i.e. has bounded gaps. To see this, one can, for
example, argue as follows. First, notice that n ∈ A − A if and only if A ∩ (A − n) , ∅.
Second, observe that for any sequence (ni)i∈N ⊂ Z, the set A − A has to contain an
element of the form ni − n j for some i > j. (This follows from the fact that for some
i > j one has to have (A − ni) ∩ (A − n j) , ∅). Now, if A − A is not syndetic, its
complement, Z \ A, is thick, that is, it contains arbitrarily long intervals. It is easy to
see that any thick set in Z contains a set of differences D = {ni − n j, i > j} for some
sequence (ni)i∈N. This implies (A − A) ∩ D = ∅ which gives a contradiction.
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One cannot expect, of course, that the above fact about the syndeticity of A − A
extends to the “sumset” A + B = {a + b : a ∈ A, b ∈ B} of two arbitrary sets of positive
upper Banach density. For example, one can easily construct a thick set C which has
unbounded gaps, and such that for some thick sets A and B, A + B ⊆ C. In this case
d∗(A) = d∗(B) = 1 but A + B is not syndetic. The following surprising result of Jin
shows that, nevertheless, the sumset of any two sets of positive upper Banach density
is always piecewise syndetic, that is, is the intersection of a syndetic set with a thick
set.

Theorem 1 ((Jin02)). Assume that A, B ⊆ Z have positive upper Banach density. Then
there exist a thick set C and a syndetic set S such that S ∩C ⊆ A + B.

It is not hard to see that not every set of positive upper Banach density is piecewise
syndetic. Moreover, one can show that not every set A for which the density, d(A) =

limN→∞
|A∩{−N,...,N}|

2N+1 , exists and is positive, is piecewise syndetic. The following remarks
show that any piecewise syndetic set contains a highly structured infinite set of a special
type.

Note first that any piecewise syndetic set S in Z has the property that the union
of finitely many shifts of S is a thick set. Now, it is easy to verify that any thick set
contains an IP set, that is, a set of the form {xn1 + . . . + xnk : n1 < . . . < nk, k ∈ N},
where (xn)n∈N is a sequence in Z, which contains infinitely many non-zero elements.
Applying Hindman’s finite sums theorem, (Hin74), which states that, for any finite
partition of an IP set, one of the cells contains an IP set, we see that any piecewise
syndetic set contains a shift of an IP set. On the other hand, one can show that there
are sets having density arbitrarily close to 1 which do not have this property. (This fact
was first observed by E. Strauss, see (BBHS06, Theorem 2.20).)

1.2. Amenable groups
It is natural to ask whether Jin’s theorem is valid in a more general setting where the

notion of density can be naturally formulated. In (JK03, Application 2.5) it is proved
that A + B is piecewise syndetic if A and B are sets which have positive upper Banach
density in Zd and recently Jin extended this result to ⊕∞d=1Z (Jin08). Jin and Keisler
(JK03, Question 5.2) ask whether Theorem 1 can be extended to countable amenable
groups. In this paper we answer this Question affirmatively. Before stating our results
we review in this subsection some basic facts about amenable groups. (A very readable
introduction focusing mainly on discrete groups is given in (Wag93, Chapter 10). For
a more comprehensive treatment see (Gre69; Pat88; Pie84).)

A definition of amenability which is convenient for our purposes uses the notion of
Følner sequence. A sequence (Fn)n∈N of finite subsets of a countable group G is a (left)
Følner sequence if

lim
n→∞

|gFn 4 Fn|

|Fn|
= 0 (2)

for every g ∈ G. Equivalently, (Fn)n∈N is a Følner sequence if for every finite set K and
any ε > 0 all but finitely many Fn are (K, ε)-invariant in the sense that |gFn4Fn|/|Fn| <
ε for all g ∈ K.
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A countable group G is amenable if it admits a (left) Følner sequence.3 The basic
example of an amenable group is the group of integers, an example of a Følner sequence
being an arbitrary sequence of intervals {an, . . . , bn}, n ∈ Nwith bn−an → ∞. The class
of amenable groups is quite rich, and, in particular, contains all solvable groups and is
closed under the operations of forming directed unions, subgroups and extensions (see
for instance (Gre69, Section 2.3) or (Wag93, Theorem 10.4)). The basic, but not the
only examples of non-amenable groups are groups containing the free group on two
generators as a subgroup (see for instance the discussion in (Wag93, p 147)).

Given a set A in an amenable group G, denote the relative density of A with respect
to a finite set F by dF(A) := |A∩F|

|F| . The upper density of A with respect to a Følner
sequence (Fn)n∈N is defined by

d(Fn)(A) := lim sup
n→∞

dFn (A), (3)

and we write d(Fn)(A) and call it density with respect to (Fn)n∈N if in formula (3)
lim supn→∞ dFn (A) := limn→∞ dFn (A). The upper Banach density in amenable groups is
defined by

d∗(A) := sup
{
d(Fn)(A) : (Fn)n∈N is a Følner sequence

}
. (4)

Remark 1.1. For G = Z the above definition differs from original definition of upper
Banach density in Subsection 1.1 (see formula (1)) where the supremum was taken only
over intervals instead of arbitrary Følner sets. However the two notions are equivalent.
For example, this follows from the following general fact which is a simple corollary
of Lemma 3.3 below:

Given a subset B of an amenable group G and any Følner sequence (Fn)n∈N there
is a sequence (tn)n∈N such that

d∗(B) = d(Fntn)(B). (5)

Given two sets A, B in a discrete group G we let AB = {ab : a ∈ A, b ∈ B}. A set
S ⊆ G is (left) syndetic if there is a finite set F such that FS = G. A set T ⊆ G is
called (right) thick if for each finite set F there exists some t ∈ G such that Ft ⊆ T 4.
A set C ⊆ G is piecewise syndetic if there exist a thick set T and a syndetic set S
such that C ⊇ S ∩ T . It is not hard to see that C ⊆ G is piecewise syndetic if and
only if there exists a finite set K such that for each finite set F there is some t ∈ G
such that Ft ⊆ KC. Piecewise syndetic sets are partition regular: if C1 ∪ . . . ∪ Cr

is piecewise syndetic, then some Ci, i ∈ {1, . . . , r} is piecewise syndetic. This is not
hard to see combinatorially and follows also from the ultrafilter characterization of
piecewise syndeticity (cf. (HS98, Section 4.4)).

We are now able to state one of the main results of this paper.

3One can show that every amenable group admits also right- and indeed two-sided analogues of left
Følner sequences. Throughout this paper we deal only with left Følner sequences; therefore we will routinely
omit the adjective “left”.

4When dealing with non-commutative structures one has at his disposal a “left/right” choice of notions.
For brevity, we just write “syndetic” resp. “thick” for what should rigorously be called “left syndetic” resp.
“right thick”. The choice of left/right is implicitly present in the definitions of piecewise syndetic and piece-
wise Bohr below.
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Theorem 2. Let G be a countable amenable group and let A, B ⊆ G have positive
upper Banach density. Then AB is piecewise syndetic.

1.3. Bohr sets.
The Bohr compactification bG of a countable discrete group G is defined (up to an

isomorphism) as the largest compact group with the property that there exists a (not
necessarily 1-1) homomorphism ι : G → bG which has dense image. While this object
exists for very general reasons, it is not always possible to give a useful down-to-earth
description of it. Anyway, we will say that a set B ⊆ G is a Bohr set if there exists
a non-empty open set U ⊆ bG such that B ⊇ ι−1[U].5 If, in the addition, U contains
the identity of bG then B will be called Bohr0 set. If G is abelian, we can consider the
embedding

ι : G → TĜ (6)
g 7→ (γ(g))γ∈Ĝ, (7)

where Ĝ is the dual group of G. Endowed with the product topology, TĜ is a compact
group, ι[G] is a compact subgroup and it can be shown that it is a “model” for the
Bohr compactification of G. This implies that B ⊆ G is a Bohr set if and only if there
exist γ1, . . . , γn ∈ Ĝ and an open set U ⊆ Tn such that {g ∈ G : γ1(g), . . . , γn(g) ∈ U} is
non-empty and contained in B. (For more information see for instance (Rud62, Section
1.8) or (HR79, Chapter 6).)

Call a set A ⊆ G piecewise Bohr if it is the intersection of a Bohr set and a thick
set. Since every Bohr set is syndetic, piecewise Bohr sets are piecewise syndetic.

By (BFW06, Theorem 4.3) there exists a syndetic set of integers which is not piece-
wise Bohr. Note that this also implies that there exists a partition of the integers into
finitely many cells none of which is piecewise Bohr.

Given a Bohr set B there exist a Bohr0 set B0 and a Bohr set B1 such that B ⊇ B0B1.
This is a trivial consequence of the fact that the Bohr-topology is a group topology on
G. Also, given a thick set T , it is not difficult to see that there exist thick sets T0 and
T1 such that T ⊇ T0T1 provided that G is abelian. (See Lemma 6.1 below.) It follows
that for every piecewise Bohr set A there exist piecewise Bohr sets A0, A1 such that
A0A1 ⊆ A. In particular every piecewise Bohr set contains the product of two sets of
positive upper Banach density. This puts an upper bound on the amount of structure
which can be expected in the productset of two sets of positive upper Banach density.
Somewhat surprisingly, it is in fact always possible to get this much:

Theorem 3. Let G be a countable amenable group and assume that A, B ⊆ G have
positive upper Banach density. Then AB is piecewise Bohr.

In the case G = Z, Theorem 3 is proved in (BFW06).
Summarizing the above discussion, we have the following characterization of sum-

sets in the abelian case.

5The sets ι−1[U], where U ⊆ bG is open define the Bohr-topology on G. Hence B ⊆ G is Bohr if and
only if it contains a non-empty open set.

4



Theorem 4. Let (G,+) be a countable abelian group and let C ⊆ G. Then C is piece-
wise Bohr if and only if there exist sets A, B of positive upper Banach density such that
A + B ⊆ C.

We will show in Section 6 that Theorem 4 does not extend to the non-commutative
setup.

1.4. Organization of the paper

In Section 2 we provide a simple proof of Jin’s Theorem for G = Z. In Section 3
we explain how this proof can be modified to extend Jin’s result to the amenable setting
(Theorem 2). The results in Section 4 allow us to give yet another proof of Theorem 2
and will also be utilized in Section 5 in the proof of Theorem 3. Finally, in Section 6
we prove Theorem 4 and provide an example which demonstrates that Theorem 4 does
not extend to the non-commutative setup.

Throughout this paper, G will denote a countable discrete amenable group. We call
(X,B, µ) a Borel probability space if (X,B) is a measurable space isomorphic to the unit
interval equipped with the σ-algebra of Borel sets and µ is a Borel probability measure
on (X,B). If (X,B, µ) is a Borel probability space and T : X → X is an invertible
measure preserving transformation, (X,B, µ,T ) will be called a measure preserving
system.

2. Jin’s theorem in the integers

Jin’s original proof of Theorem 1 in (Jin02) utilized non-standard analysis. Jin also
provided a purely combinatorial proof of Theorem 1 ((Jin04)). The purpose of this
“warm-up” section is to give another proof of Theorem 1. While our proof is shorter
than the original one, most of the ideas we use can be found, at least implicitly, in Jin’s
work.

Our proof of Jin’s theorem will be based on the following two lemmas:

Lemma 2.1. Assume that A, B are sets of integers such that d∗(A) + d∗(B) > 1. Then
d∗(A + B) = 1, i.e. A + B is thick.

Lemma 2.2.6 If A is a set of integers then supk≥0 d∗({−k, . . . , k} + A) is either 0 or 1.

Taking Lemmas 2.1 and 2.2 for granted, Theorem 1 is almost trivial: By Lemma
2.2 there is some integer k such that d∗({−k, . . . , k}+ A) + d∗(B) > 1. Hence by Lemma
2.1, {−k, . . . , k} + A + B is thick. Thus A + B is piecewise syndetic.

Recall that for a finite interval I ⊆ Z and a set A ⊆ Z, dI(A) =
|I∩A|
|I| denotes the

relative density of A with respect to I.

6Lemma 2.2 is originally due to Neil Hindman, see (Hin82, Theorem 3.8). The combinatorial proof given
subsequently is based on the same idea as Hindman’s proof.
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P  L 2.1. Note that if J ⊆ Z is any non-empty interval and d∗(B) > β, then
there exists t ∈ Z such that dJ+t(B) > β.

Pick α, β > 0 such that d∗(A) > α, d∗(B) > β, α + β = 1 and fix n ∈ N. We have
to prove that A + B contains a shifted copy of {0, 1, . . . , n}. Loosely speaking, long
enough intervals are almost invariant with respect to shifts by elements of {0, 1, . . . , n}.
In particular there exists an interval I such that dI(−x + A) > α for all x ∈ {0, 1, . . . , n}.

Apply the above observation to the interval J = −I and pick some integer t ∈ Z
such that d(−I)+t(B) = d−I(B − t) > β. Let x ∈ {0, 1, . . . , n}. Since α + β = 1,

d−I(−A + x) + d−I(B − t) > 1 ⇒ (−A + x) ∩ (B − t) , ∅ (8)
⇒ x + t ∈ A + B. (9)

Since x was arbitrary, we have {0, 1, . . . , n} + t ⊆ A + B as required. �

We will give two proofs of Lemma 2.2. The first one is based on an elementary
combinatorial argument, the second one involves more abstract concepts and gives a
rigorous meaning to the intuitive fact expressed by Lemma 2.2 that the system

(Z,P(Z), n 7→ n + 1, d∗) (10)

is “ergodic”.

C   L 2.2. We will show that for any set A ⊆ Z with d∗(A) >
0 one has supn≥0 d∗(A + {−n, . . . , n}) = 1. Assume by way of contradiction that d∗(A) >
0, but supn≥0 d∗(A + {−n, . . . , n}) = γ < 1. Pick ε > 0 such that (γ + ε)2 < γ − ε. For
n large enough, d∗(A + {−n, . . . , n}) > γ − ε. Hence, replacing A by A + {−n, . . . , n} if
necessary, we may assume that d∗(A) > γ − ε.

Fix k ∈ N such that dI(A) < γ + ε for any interval I ⊆ Z of length k. Then pick an
interval J such that the following conditions are satisfied:

i. The length of J is m · k for some positive integer m.
ii. dJ(A + {−k, . . . , k}) < γ + ε.

iii. dJ(A) > γ − ε.

Partition J into intervals I1, I2, . . . , Im of length k. Assume that A intersects more than
m · (γ + ε) of these intervals. Then A + {−k, . . . , k} covers more than m · (γ + ε) of these
intervals, hence dJ(A + {−k, . . . , k}) exceeds m · (γ + ε)/m = γ + ε, contradiction. Thus
A intersects at most m · (γ + ε) of the intervals I j, j ∈ {1, 2, . . . ,m}. Since the relative
density of A in a length k interval is bounded by γ + ε this yields

dJ(A) ≤ (γ + ε) · m · (γ + ε)/m = (γ + ε)2 (11)

which contradicts (γ + ε)2 < γ − ε. �

Our second proof of Lemma 2.2 is based on the following version of Furstenberg’s
correspondence principle.
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Proposition 2.3. Assume that A ⊆ Z has positive upper density. Then there exist an
ergodic measure preserving system (X,B, µ,T ) and a measurable set B ⊆ X such that

d∗(A) = µ(B) and (12)
d∗(A − n1 ∪ . . . ∪ A − nk) ≥ µ(T−n1 B ∪ . . . ∪ T−nk B) (13)

for all n1, . . . , nk ∈ Z.

Proposition 2.3 differs from the more familiar forms of Furstenberg’s correspon-
dence principle (see (Ber87, Theorem 1.1)) in that we use unions instead of intersec-
tions and in that we require that (X,B, µ,T ) to be ergodic. One can easily verify that due
to the algebraic nature of Furstenberg’s correspondence principle, virtually any known
proof (see, in particular, the proofs in (Ber87; BM98)) is equally valid for unions. That
the system can be chosen to be ergodic follows from (Fur81, Proposition 3.9).

“D”   L 2.2. Assume that d∗(A) > 0 and choose (X,B, µ,T ) and
B ⊆ X according to Proposition 2.3. Since T is ergodic,

sup
k≥0

d∗
(
{−k, . . . , k} + A

)
≥ sup

k≥0
µ
(
T−kB ∪ . . . ∪ T kB

)
= µ

(⋃
k∈Z

T−kB
)

= 1.�

Remark 2.4. For the usual (upper) density the statement of Lemma 2.2 is not true. For
example, let B =

⋃
n∈N{n2, n2 + 1, . . . , n2 + n}. Then for A = B ∪ (−B) we have

d(A) = lim
N→∞

|A ∩ [−N, . . . ,N]|
2N + 1

= 1/2 = sup
k≥0

d({−k, . . . , k} + A). (14)

However, it follows from the proof of Lemma 3.2, that if (Fn)n∈N is a Følner se-
quence which satisfies d(Fn)(A) = d∗(A) > 0), then we have

sup
k≥0

d(Fn)({−k, . . . , k} + A) = 1. (15)

3. Jin’s theorem in countable amenable groups

In this section we demonstrate that (with some work) the proof of Jin’s theorem
which was given in the previous section generalizes to the amenable setting. The proof
of the general “amenable” statement is based on the following auxiliary results. (cf.
Lemmas 2.1, 2.2)

Lemma 3.1. Let G be an amenable group and assume that A, B ⊆ G, d∗(A)+d∗(B) > 1.
Then AB is thick.

Lemma 3.2. Let G be a countable amenable group and let A ⊆ G. Then sup{d∗(KA) :
K ⊆ G,K is finite} is either 0 or 1.

Note first, that in complete analogy with the integer setting, Lemma 3.1 and Lemma
3.2 imply that if d∗(A), d∗(B) > 0, then there exists a finite set K such that KAB is thick,
which, in turn, implies that AB is piecewise syndetic.

The following simple fact is needed in the proof of Lemma 3.1 (and will also be
utilized in the next section for the proof of Lemma 4.2.).
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Lemma 3.3. Let B,K ⊆ G, K finite and β < d∗(B). Then there exists some t ∈ G such
that

dKt(B) =
|B ∩ Kt|
|K|

≥ β. (16)

P. Pick a Følner set F such that |B ∩ gF|/|F| ≥ β for each g ∈ K. Then∑
t∈F

|B ∩ Kt| = |{(g, t) ∈ K × F : gt ∈ B}| =
∑
g∈K

|B ∩ gF| ≥ |K| · |F| · β. (17)

Dividing by |K| · |F| we see that (16) holds for some t ∈ F. �

P  L 3.1. To obtain Lemma 3.1, one just has to rewrite the proof of Lemma
2.1 in terms of Følner sequences. The only part which needs justification is that if
d∗(B) > β and F ⊆ G is a finite set, then there is some t ∈ G such that dF−1t(B) > β.
This was proved in Lemma 3.3. �

Lemma 3.2 can be proved in a variety of ways. First, it is possible to prove an ap-
propriate version of Furstenberg’s correspondence principle for amenable groups (for
instance, one can combine the proof of correspondence principle given in (BM98, The-
orem 2.1) or in (Ber00, Theorem 6.4.17) with the amenable analogue of (Fur81, Propo-
sition 3.9)) which then immediately gives the desired result as in the dynamical proof
of Lemma 2.2.

Second, one also can prove Lemma 3.2 via an appropriate generalization of the
combinatorial proof of Lemma 2.2. There we employed the fact that intervals tile the
integers. In general, a set T in a countable group G is a tile if there exists a set S ⊆ G
such that {T s : s ∈ S } is a partition of G. The group G is called monotilable if it admits
a Følner sequence consisting of tiles and in this case the proof of Lemma 2.2 can be
adapted fairly naturally. Having the construction of Følner sequences in the abelian
setting in mind, it is easy to see that every countable abelian group is monotilable and
it is shown in (Wei01) that much more general classes of amenable groups share this
property. While it is not known whether all amenable groups are monotilable, they do
admit so called quasi-tilings (see (OW87)). Those still do allow to push the proof of
Lemma 2.2 to the desired generality, but the details become unpleasantly technical.

Since Lemma 3.2 is crucial for a generalization of Jin’s theorem to the amenable
case, we will give here a self contained proof. While the argument is more involved
than that used in the combinatorial proof of Lemma 2.2, it is still entirely elementary.

P  L 3.2. It is sufficient to consider the case d∗(A) > 0. Pick a Følner
sequence (Fn)n∈N such that d(Fn)(A) = α > 0 and d(Fn)(KA) exists for each finite K ⊆ G.
Let β = sup{d(Fn)(KA) : K ⊆ G,K finite}. We claim that after passing, if necessary, to a
subsequence of (Fn)n∈N, there exists a Følner sequence (Gn)n∈N,Gn ⊆ Fn such that the
following hold true:

i. limn→∞ |Gn|/|Fn| = β.
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ii. d(Gn)(HA) = d(Fn)(HA) 1
β

for any finite set H ⊆ G.

A particular consequence of (ii) is that sup{d(Gn)(KA) : K ⊆ G,K finite} = β/β = 1.
Fix a sequence (Kn)n∈N of finite subsets of G such that KnKn ⊆ Kn+1, Kn ↑ G and

each Kn contains the identity of G. Passing to subsequences, we can assume that

dFm (KnA) ∈ (β − 1/n, β + 1/m) for all m ≥ n, (18)

and that each Fn is
(
Kn, 1/n

)
-invariant. Let G1 be an arbitrary finite non-empty subset

of G and, for n ≥ 2, set Gn := Kn−1A∩Fn. Note that |Gn|/|Fn| ∈ (β−1/(n−1), β+ 1/n).
Let us prove that (Gn)n∈N is a Følner sequence. For n ≥ 2 and t ∈ Kn−1 we obtain

|tGn \Gn| = |(tKn−1A ∩ tFn) \ (Kn−1A ∩ Fn)| (19)
≤ |(KnA ∩ tFn) \ (Kn−1A ∩ Fn)| (20)
≤ |(KnA ∩ Fn) \ (Kn−1A ∩ Fn)| + |Fn|/n (21)

=
(
dFn (KnA) − dFn (Kn−1A) + 1/n

)
· |Fn| ≤

3|Fn|

n − 1
. (22)

Thus for large enough n (so that β − 1
n−1 > 0) and for all t ∈ Kn−1 we have

|tGn 4Gn|

|Gn|
≤ 2

3|Fn|

(n − 1) · |Gn|
≤

6
(n − 1) · (β − 1

n−1 )
. (23)

Since the latter quantity tends to 0 as n goes to infinity, (Gn)n∈N is indeed a Følner
sequence.

Finally observe that

d(Gn)(HA) = lim
n→∞

|HA ∩ (Kn−1A ∩ Fn)|
|Kn−1A ∩ Fn|

(24)

= lim
n→∞

|(HA ∩ Kn−1A) ∩ Fn|

β|Fn|
=

1
β

d(Fn)(HA), (25)

which gives us (ii).

�

4. Finer structure of product sets.

The following proposition (which is the main result of this section) shows that the
product of two sets of positive upper Banach density contains translations of arbitrarily
large pieces of the product of a “large set” with its inverse. (This fact will be utilized
in the proof of Theorem 3 in the next section.)

Proposition 4.1. Let G be a countable amenable group and let A, B ⊆ G be such that
d∗(A), d∗(B) > 0. Then there exists a set D ⊆ G with d∗(D) > 0 such that for each finite
set H ⊆ G, there is some tH such that

(H ∩ DD−1)tH ⊆ AB. (26)
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Using Lindenstrauss’ pointwise ergodic theorem (Lin01) it is possible to show that
for any set D which has positive upper Banach density and for any Følner sequence
(Fn)n∈N to which the pointwise ergodic theorem applies, there exists a set E such that
d(Fn)(E) = d∗(D) and EE−1 ⊆ DD−1. Hence it is possible to give a somewhat stronger
formulation of Proposition 4.1.

Before proving Proposition 4.1 we formulate and prove a few auxiliary results.

Lemma 4.2. Let A0, B ⊆ G, A0 finite and β < d∗(B). There exist C ⊆ A0 and t ∈ G
such that CC−1t ⊆ A0B and |C| ≥ β|A0|.

P. Applying Lemma 3.3 to A−1
0 we find t such that

β|A0| ≤ |A−1
0 t ∩ B| = |A0 ∩ (Bt−1)−1|. (27)

And for all x, y ∈ C := A0 ∩ (Bt−1)−1 we have xy−1 ∈ A0(Bt−1). �

While the formulation of Lemma 4.2 appears to be somewhat technical, it allows
to show that AB contains arbitrary large sets of the form CnC−1

n tn. The remaining
ingredient in the proof of Proposition 4.1 is the following statement.

Lemma 4.3. Let (Fn)n∈N, (Gn)n∈N be Følner sequences, let Cn ⊆ Fn and set γ :=
lim sup dFn (Cn). Then there exists a set D such that the following hold.

i. d(Gn)(D) = γ.
ii. For each finite set D0 ⊆ D there exist c ∈ G and n ∈ N such that D0c ⊆ Cn.

The proof of Lemma 4.3 relies on the following Fubini-type Lemma.

Lemma 4.4. Let (X,A,m) be some space equipped with a finitely additive measure,
assume that (Ag)g∈G is a sequence of sets in A such that m(Ag) ≥ γ for all g ∈ G and
let (Gn)n∈N be a Følner sequence. Then there exists a set D such that d(Gn)(D) ≥ γ and
m(

⋂
t∈D0

At) > 0 for every finite set D0 ⊆ D.

Lemma 4.4 is essentially (Ber06, Lemma 5.10), the only difference being that here we
only require that m is finitely additive. The following argument shows that the case of
finitely additive measures follows from the σ-additive setup. Indeed, set Y := {0, 1}N,
let Bn = {(xk)k∈N ∈ Y : xn = 1} for n ∈ N and put

µ0

(⋂
k∈S

Bk ∩
⋂
n∈T

(Y \ Bn)
)

:= m
(⋂

k∈S

Ak ∩
⋂
n∈T

(Y \ An)
)

(28)

for finite sets S ,T ⊆ N. Then µ0 naturally extends to a σ-additive Borel probabil-
ity measure µ on Y and it is sufficient to prove Lemma 4.4 for the sets B1, B2, . . . in
(Y,B, µ).

P  L 4.3. Passing to a subsequence if necessary, we can assume that γ =

lim dFn (Cn) exists. Consider C :=
⋃

n Cn × {n} ⊆ G × N =: X. Let A be the algebra of
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subsets of X generated by all sets of the form gC :=
⋃

n(gCn) × {n}, g ∈ G. Since A is
countable, we can pick a sequence k1 < k2 < . . . in N such that

m(A) = lim
k→∞

|A ∩ (Fnk × {nk})|
|Fnk |

(29)

exists for all A ∈ A. Note that

m(gC) = lim
k→∞

|gCnk ∩ Fnk |

|Fnk |
= γ (30)

for all g ∈ G. Let D be the “outcome” of applying Lemma 4.4 to the space (X,A,m)
and the sets g−1C, g ∈ G. Given a finite set D0 ⊆ D, m

(⋂
g∈D0

g−1C
)
> 0. Hence for

k large enough,
⋂

g∈D0
g−1Cnk has positive relative density with respect to Fnk , so pick

c ∈
⋂

g∈D0
g−1Cnk . Then D0c ⊆ Cnk as required. �

We are now in the position to prove the main result of this section.

P  P 4.1. Pick a Følner sequence (Fn)n∈N and α > 0 such that dFn (A) ≥
α > 0 for all n ∈ N. Pick β > 0 such that d∗(B) > β. Applying Lemma 4.2 to the sets
An := A ∩ Fn, we find sequences (Cn)n∈N and (tn)n∈N such that

⋃∞
k=1 CkC−1

k tk ⊆ AB and
dFn (Cn) ≥ αβ > 0 for each n ∈ N. Pick a set D guaranteed by Lemma 4.3. Given an
arbitrary finite set H ⊆ G, there is a finite set D0 ⊆ D such that H ∩ DD−1 ⊆ D0D−1

0 .
By Lemma 4.3, there exist c ∈ G and n ∈ N such that D0c ⊆ Cn. Hence

(DD−1 ∩ H)tn ⊆ D0D−1
0 tn = D0c(D0c)−1tn ⊆

∞⋃
k=1

CkC−1
k tk ⊆ AB. (31)

�

In the next section we will use Proposition 4.1 together with Lemma 4.5 to prove
that AB is piecewise Bohr if d∗(A), d∗(B) > 0.

Lemma 4.5. Let A ⊆ G and assume that d∗(A) > 0. Then there exist a Borel probabil-
ity space (X,B, µ), a measure preserving G action (Tg)g∈G on X and a set B ⊆ X, µ(B) =

d∗(A) such that

{g ∈ G : µ(T−1
g B ∩ B) > 0} ⊆ AA−1. (32)

In particular AA−1 is syndetic.

In a certain sense Lemma 4.5 can be reversed. Indeed, using the ergodic theorem
it is not difficult to see that for any set R of return times there exists a set A of positive
upper Banach density such that AA−1 ⊆ R.

We will derive Lemma 4.5 from the following amenable version of Furstenberg’s
correspondence principle (see for instance (BM98, Theorem 2.1), (Ber00, Theorem
6.4.17)).

11



Lemma 4.6. Let G be an amenable group and assume that A ⊆ G. Then there exist a
Borel probability space (X,B, µ), a measure preserving G action (Tg)g∈G on X and set
B ⊆ X, µ(B) = d∗(A) such that

µ(T−1
g1

B ∩ . . . ∩ T−1
gn

B) ≤ d∗(g−1
1 A ∩ . . . ∩ g−1

n A) (33)

for all g1, . . . , gn ∈ G.

P  L 4.5. Let (X,B, µ), (Tg)g∈G and B be as in Proposition 4.6. Then

AA−1 ⊇ {g : d∗(g−1A ∩ A) > 0} ⊇ {g : µ(T−1
g B ∩ B) > 0} =: S . (34)

Set Y :=
⋃

g∈G T−1
g B. Pick a finite set K ⊆ G such that µ(

⋃
g∈K T−1

g B)+µ(B) > µ(Y). Fix
h ∈ G. Then µ(

⋃
g∈K T−1

g B∩T−1
h B) > 0. Hence for some g ∈ K we have µ(T−1

gh B∩B) >
0. Equivalently gh ∈ S = { f ∈ G : µ(T−1

f B ∩ B) > 0}. Since h ∈ G was arbitrary,
G = K−1S , so AA−1 is indeed syndetic. �

We conclude this section with showing how Proposition 4.1 offers yet another way
to establish Theorem 2. If A, B have positive upper Banach density, we may choose a
set D of positive upper Banach density such that AB contains shifts of arbitrary finite
portions of S = DD−1. By Lemma 4.5 the set S is syndetic and hence also piecewise
syndetic. Thus piecewise syndeticity of AB follows from the following natural property
of piecewise syndetic sets.

Lemma 4.7. Let G be a group, S ,T ⊆ G and assume that S ⊆ G is piecewise syndetic
and that for each finite set H ⊆ G there is some tH ∈ G such that

(H ∩ S )tH ⊆ T. (35)

Then T is piecewise syndetic as well.

P. Pick a finite set K ⊆ G such that KS is thick. Given an arbitrary finite set
F ⊆ G, there is some f ∈ G such that F f ⊆ KS . Choose a finite set H such that
F ⊆ K(S ∩ H). Since (S ∩ H) ⊆ Tt−1

H , we have F f ⊆ KTt−1
H . As H was arbitrary, KT

is thick. �

5. Bohr sets and almost periodic functions

Consider the space B(G) of bounded real-valued functions on G. The group G acts7

on B(G) by σt( f )(g) := f (tg), t, g ∈ G, f ∈ B(G). Let AP(G) denote the subspace of
almost periodic functions, namely the set of those f ∈ B(G) for which {σt( f ) : t ∈ G} ⊆
B(G) is pre-compact in the sup-norm ‖.‖∞ on B(G).

The following statement is presumably well known to experts. However we give a
proof to increase the readability of the paper.

7To be more precise, (σg)g∈G is an anti-action.

12



Proposition 5.1. Let (X,B, µ) be a Borel probability space, let (Tg)g∈G be a measure
preserving G-action on X, B ∈ B, µ(B) > 0. Then there exist functions ϕc, ϕwm :
G → R, where is ϕc is almost periodic and non-negative such that µ(B ∩ T−1

g B) =

ϕc(g) + ϕwm(g) and

m := lim
n→∞

1
|Fn|

∑
g∈Fn

ϕc(g) = lim
n→∞

1
|Fn|

∑
g∈Fn

µ(T−1
g B ∩ B) > 0, (36)

lim
n→∞

1
|Fn|

∑
g∈Fn

|ϕwm(g)| = 0 (37)

for any Følner sequence (Fn)n∈N.

P. Set H = L2(X,B, µ). Let Ugh := h ◦ Tg, g ∈ G, h ∈ H be the induced unitary
anti-action of G on H . Pick a Følner sequence (Fn)n∈N. Consider now the following
(Ug)g∈G-invariant subspaces ofH .

Hc =
{
f ∈ H : {Ug f : g ∈ G} is precompact in the norm topology

}
(38)

Hwm =
{
f ∈ H :

1
|Fn|

∑
g∈Fn

|〈Ug f , f ′〉| → 0 for all f ′ ∈ H
}
. (39)

By (BR88, Theorem 1.9)H = Hc ⊕Hwm. SinceHc does not depend on the particular
choice of the Følner sequence (Fn)n∈N, Hwm doesn’t either. Set f := 1B and choose
fc ∈ Hc, fwm ∈ Hwm such that f = fc + fwm. Set

ϕc(g) := 〈Ug fc, fc〉, ϕwm(g) := 〈Ug fwm, fwm〉, (40)

µ(T−1
g B ∩ B) = 〈Ug f , f 〉 = ϕc(g) + ϕwm(g). (41)

It follows directly from the definition ofHwm that limn→∞
1
|Fn |

∑
g∈Fn
|ϕwm(g)| = 0. Note

that for t1, t2 ∈ G

‖σt1 (ϕc) − σt2 (ϕc)‖∞ = sup
g∈G
|ϕc(t1g) − ϕc(t2g)| = (42)

sup
g∈G
|〈Ut1g fc, fc〉 − 〈Ut2g fc, fc〉| = (43)

sup
g∈G
|〈Ug((Ut1 − Ut2 )( fc)), fc〉| ≤ ‖Ut1 fc − Ut2 fc‖2, (44)

hence pre-compactness of {Ut fc : t ∈ G} implies pre-compactness of {σt(ϕc) : t ∈ G},
thus ϕc is almost periodic. By the mean ergodic theorem

lim
n→∞

1
|Fn|

∑
g∈Fn

ϕc(g) = lim
n→∞

1
|Fn|

∑
g∈Fn

∫
G

f Ug f dµ =

∫
f P f dµ, (45)

where P denotes the projection from L2(µ) onto the subspace of the Ug-invariant func-
tions. Since

∫
P f dµ =

∫
f dµ = µ(B), f , 0. Thus

0 <
∫

(P f )2 dµ =

∫
P f P f dµ =

∫
f P2 f dµ =

∫
f P f dµ. (46)

Hence also the right hand side of (45) is positive. �

13



We will need the following alternative characterization of almost periodicity. (See
(BJM89) for a proof that these two properties are equivalent.)

Lemma 5.2. A function ϕ : G → R is almost periodic if and only if there exists a
continuous function f : bG → R such that ϕ = f ◦ ι.

As a consequence of Proposition 5.1 and Lemma 5.2 we obtain Følner’s Theorem
((Føl54a; Føl54b)) for countable amenable groups:

Corollary 5.3. Let G be a countable amenable group and let A ⊆ G such that d∗(A) >
0. Then there exist a Bohr set B and a set N ⊆ G with d∗(N) = 0 such that

B ⊆ AA−1 ∪ N. (47)

P. By Lemma 4.5 there exist a Borel probability space (X,B, µ), B ∈ B, µ(B) > 0
and a measure preserving action (Tg)g∈G on X, such that {g ∈ G : µ(T−1

g B ∩ B) >
0} ⊆ AA−1. Pick m and ϕc, ϕwm according to Proposition 5.1 such that µ(T−1

g B ∩ B) =

ϕc(g)+ϕwm(g) for g ∈ G. Set N = {g : ϕwm < −m/2} and ψ = ϕc−m/2. Then d∗(N) = 0
and for g ∈ G \ N, ψ(g) > 0 implies that µ(T−1

g B ∩ B) > 0. Pick a continuous function
f : bG → R such that ψ = f ◦ ι. Since limn→∞

1
|Fn |

∑
g∈Fn

ψ(g) = m/2, f takes some
positive value, in particular U := {x ∈ bG : f (x) > 0} is a non-empty open set. Putting
things together we have

ι−1U = {g : ψ(g) > 0} ⊆ {g : µ(T−1
g B ∩ B) > 0} ∪ N ⊆ AA−1 ∪ N. (48)

�

Having Corollary 5.3 at hand, Theorem 3 follows from Proposition 4.1 once we
establish the following regularity property of piecewise Bohr sets.

Lemma 5.4. Let S ,T ⊆ G. If S is piecewise Bohr and for each finite set H ⊆ G there
is some tH ∈ G such that (S ∩ H)tH ⊆ T then T is piecewise Bohr as well.

P. There exist a thick set H ⊆ G and an open set U ⊆ bG such that H∩ι−1[U] ⊆ S .
Pick sequences (Hn)n∈N and (sn)n∈N such that Hnsn ↑ G and Hn ⊆ H. Pick for each
n ∈ N some tn such that (ι−1[U] ∩ Hn)tn ⊆ T . Then

T ⊇ (ι−1[U] ∩ Hn)tn = {g ∈ Hn : ι(g) ∈ U}tn = {gtn ∈ Hntn : ι(g) ∈ U} = (49)

{h ∈ Hntn : ι(h)ι(t−1
n ) ∈ U} = {h ∈ Hntn : ι(h) ∈ Uι(tn)} = ι−1[Uι(tn)] ∩ Hntn (50)

Choose an accumulation point x of ι(tn)−1, n = 1, 2, . . . and open sets U1,U2 such that
x ∈ U2 and U1 · U2 ⊆ U. Then U1ι(tn)−1 ⊆ U for infinitely many n ∈ N and for each
such n

ι−1[U1] ∩ Hntn ⊆ T, (51)

hence T is piecewise Bohr. �

P  T 3. Pick the set D in G of positive upper Banach density guaranteed
by Proposition 4.1. Then by Corollary 5.3 the set DD−1 is piecewise Bohr. By Lemma
5.4 the set AB is piecewise Bohr. �
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6. Abelian versus non-abelian

The following Lemma is the only remaining fact needed for the proof of Theorem
4.

Lemma 6.1. Assume that (G,+) is a countable abelian group and T ⊆ G is thick. Then
there exist thick sets T1,T2 ⊆ G such that T1 + T2 ⊆ T.

P. Pick sequences (cn)n∈N, (Kn)n∈N such that all Kn ⊆ G are finite, Kn ↑ G and⋃
n∈N Kn + cn ⊆ T . We will inductively define sequences (an)n∈N, (bn)n∈N such that⋃

l∈N

Kl + al +
⋃
m∈N

Km + bm ⊆ T. (52)

To start the induction, let a1 ∈ G be arbitrary, pick n such that K1 + a1 + K1 ⊆ Kn and
set b1 = cn such that K1 + a1 + K1 + b1 ⊆ Kn + cn ⊆ T .

Next assume that after k steps a1, . . . , ak, b1, . . . bk ∈ G have been chosen such that⋃
l≤k Kl+al+

⋃
m≤k Km+bm ⊆ T . Pick n such that Kk+1+

⋃
l≤k Kl+al+

⋃
m≤k Km+bm ⊆ Kn

and set ak+1 := cn. Choose bk+1 analogously. The induction continues. �

P  T 4. If C ⊆ G is piecewise Bohr then C ⊇ B∩T , where B is a Bohr set
and T is a thick set. As explained in Subsection 1.3 one can find Bohr sets B0, B1 ⊂ G
such that B ⊇ B0 + B1. By Lemma 6.1 we can find thick sets T1,T2 in G such that
T1 + T2 ⊆ T . Then C ⊇ (B0 ∩ T1) + (B1 ∩ T2). On the other hand, if A + B ⊆ C for A, B
of positive upper Banach density then, by Theorem 3, C is piecewise Bohr. �

One may wonder whether given three sets A, B,C of positive upper Banach density
in an abelian group the sum A + B + C has stronger properties than the sumset of two
sets. The following result, which follows from the familiar by now fact that a piecewise
Bohr set contains the sum of two piecewise Bohr sets, shows that there is not much to
look for.

Proposition 6.2. Let G be a countable abelian group and let A, B ⊆ G have positive
upper Banach density. Then for every k ∈ N there exist piecewise Bohr sets C1, . . . ,Ck

such that
C1 + C2 + . . . + Ck ⊆ A + B.

The following Proposition 6.3 demonstrates that in Theorem 4 one cannot drop the
assumption of commutativity of the group G. However, before formulating Proposition
6.3 we want to introduce some convenient terminology. Note first that the definition
of upper Banach density introduced in Subsection 1.2 is based on the notion of left
Følner sequence. One could also introduce a “right” version of upper Banach density
with the help of the notion of right Følner sequences (that is a sequence satisfying
limn→∞

|Fng4Fn |

|Fn |
= 0). Accordingly, we will say that a set A ⊆ G is left large (right

large) if it has positive upper “left” (“right”) Banach density. Finally, let us say that a
set A ⊆ G is large if it is either left large or right large.
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Proposition 6.3. Let G be the Heisenberg group over the integers, i.e. the group of
3 × 3 upper triangular matrices with integer entries and 1’s on the diagonal. There
exists a thick set T ⊆ G which does not contain the product AB of any two large sets
A, B ⊆ G.

P. We will view G as Z3 equipped with the operation given by(
a(x), a(y), a(z)

)
∗
(
b(x), b(y), b(z)

)
:=

(
a(x) + b(x), a(y) + b(y), a(z) + b(z) + a(x)b(y)

)
. (53)

Set Kn = {−n, . . . , n}3 for n ∈ N and T =
⋃

n∈N Kn ∗ (n2, 0, 0). Assume that, contrary
to the claim of our Proposition, there exist large sets A, B ⊆ G such that A ∗ B ⊆ T .
Pick b1 = (b(x)

1 , b(y)
1 , b(z)

1 ), b2 = (b(x)
2 , b(y)

2 , b(z)
2 ) ∈ B such that b(y)

1 , b(y)
2 . Set n0 =

10
(
|b(x)

1 | + |b
(y)
1 | + |b

(z)
1 | + |b

(x)
2 | + |b

(y)
2 | + |b

(z)
2 |

)
. Since A is infinite, Ab1 is not contained

in
⋃

n≤n0
Kn ∗ (n2, 0, 0). Hence there exist a = (a(x), a(y), a(z)) ∈ A and m ≥ n0 such

that a ∗ b1 ∈ Km ∗ (m2, 0, 0). Note that this implies that a(x) ∈ [m2 − 2m,m2 + 2m].
By assumption, a ∗ b2 ∈ T and since the difference

∣∣∣(a(x) + b(x)
1

)
−

(
a(x) + b(x)

2
)∣∣∣ is

small compared to m, we have in fact a ∗ b2 ∈ Km ∗ (m2, 0, 0). This implies that the
z-coordinates of a ∗ b1 and a ∗ b2 differ at most by 2m, hence

2m ≥
∣∣∣∣(a(z) + b(z)

1 + a(x)b(y)
1

)
−

(
a(z) + b(z)

2 + a(x)b(y)
2

)∣∣∣∣ (54)

=
∣∣∣∣b(z)

1 − b(z)
2 + a(x)

(
b(y)

1 − b(y)
2

)∣∣∣∣ (55)

which is not possible since
∣∣∣b(y)

1 − b(y)
2

∣∣∣ ≥ 1 and a(x) is of order m2. �
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