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Abstract. There are several notions of largeness that make sense in any semigroup,
and others such as the various kinds of density that make sense in sufficiently well
behaved semigroups including (N,+) and (N,-). It is known that sets with positive
multiplicative density must contain arbitrarily large geoarithmetic progressions, that
is, sets of the form {r7(a +id) : i,5 € {0,1,...,k}}. We establish some combined
additive and multiplicative Ramsey Theoretic consequences of known algebraic results
in the semigroups (6N, +) and (BN, -), derive some new algebraic results, and derive
consequences of them involving geoarithmetic progressions. For example, we show that
in any finite partition of N there must be, for each k, sets of the form {b(a—}-id)j 14, €
{0,1,..., k}} together with d, the arithmetic progression {a +1id:1€{0,1,..., k:}},
and the geometric progression {bdj :j€{0,1,..., k}} in one cell of the partition.

1. Introduction

Our starting point is the famous theorem of van der Waerden [19] which says that
whenever the set N of positive integers is divided into finitely many classes, one of these
classes contains arbitrarily long arithmetic progressions. The corresponding statement
about geometric progressions is easily seen to be equivalent via the homomorphisms
b: (N,+) — (N,-)and ¢ : (N\ {1},:) — (N,+) where by b(n) = 2™ and ¢(n) is the
length of the prime factorization of n.

In 1975, Szemerédi [18], showed that any set with positive upper asymptotic den-
sity contains arbitrarily long arithmetic progressions. (An ergodic theoretic proof of
Szemerédi’s Theorem can be found in [5], [6] or [7].) It has recently been shown |[1,

Theorem 1.3] that any set having positive multiplicative upper Banach density — the
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notion dy, of Definition 2.1 below — must contain substantial combined additive and
multiplicative structure; in particular it must contain arbitrarily large geoarithmetic
progressions, that is, sets of the form {rj(a +id) 14,5 € {0,1,..., k}} (The results
in [1] actually require a property weaker than having d¥ positive.) In Corollary 3.8 we
show that one cell of any finite partition of N must satisfy a stronger conclusion than
this.

Another simply stated result from [1] is that any multiplicatively large set contains
geometric progressions in which the common ratios form an arithmetic progression, that
is a set of the form {b(a +id)? 14,5 €{0,1,..., k:}} As a consequence, one cell of any
finite partition of N must satisfy this property. We provide in Corollary 4.6 a new

reasonably simple proof of this consequence.

In Sections 3 and 4 we shall be concerned with the question of what sort of combined

additive and multiplicative structures can be guaranteed to lie in one cell of a finite

00
n=1

and (y,)52; such that FS({(z,)52 ) U FP({y,)22,) is contained in one cell, where

FS(wn)pZi) = {2ner n + F € Pr(N)}, FP((Yn)5l1) = {Ilner vn - F € Pr(N)},
and for any set X, P¢(X) is the set of finite nonempty subsets of X.

partition of N. For example, it was shown in 1975 [10] that there exist sequences (x,)

In Section 3 we present some combined additive and multiplicative results that are
easily obtainable from known algebraic results, but do not seem to have been previously

stated. For example, the following is a special case of Corollary 3.7.

1.1 Theorem. Let m,k € N and let N = [J;*, A;. Then there exist i € {1,2,...,m},
a,d,be A;, andr € A; \ {1} such that

{bre:s€{0,1,....,k}}U{a+td:t€{0,1,...,k}} U{rd}U
{r(a+td):t€{0,1,...,k}}U{bdr®:s€{0,1,...,k}} U
{bré(a+td) :s,t € {0,1,...,k}} C A4;.

In Section 4 we derive several new algebraic results and new combinatorial conse-

quences thereof.

In particular, we have the following consequence of Corollary 4.4.

1.2 Theorem. Let m,k € N and let N = [J;~, A;. Then there exist i € {1,2,...,m}
and a,d,b € A; such that

{bla+id)7 :i,5€{0,1,....k}}u{bd’: j €{0,1,....k}}
U{a+di:ie{0,1,....k}} C A;.

Consider now the following result, which is a consequence of [1, Theorem 3.13].
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1.3 Theorem. Let m,k € N. For each i € {0,1,...,k} let (x;);2; and (yit)i2, be
sequences in N. Let N = |JI_, A;. Then there exist s € {1,2,...,m}, F,G € Ps(N),
and a,b € N such that {b(a + > ier Tit) - (Iieq wie) 4,5 € {0,1,..., k:}} C A,.

Notice that a particular consequence of Theorem 1.3 is that one cell of each finite
partition of N must contain arbitrarily long geoarithmetic progressions. Further, the
common ratio r can be taken from FP((y,)> ) for any prescribed (y,)52; and the
additive increment d can be guaranteed to be a multiple of some member of F'S({x,)5 )
for any prescribed (x,)52,. To see this, for i € {1,2,...,k} and t € N, let z;; = iz,
and y; + = (y¢)*. Given F and G as guaranteed by Theorem 1.3, let d = b- > tep Tt and
r= HteG Yt.

We show in Theorem 4.8 that one may take F' = GG in Theorem 1.3 and in Corollary
4.12 that one may eliminate b (and in particular, that the additive increment for the
geoarithmetic progressions described above can be taken from F'S({x,)52 ;) for any
()22 ;). We show also that one may not simultaneously take F' = G and eliminate
b. The example of Theorem 4.17 shows also that one cannot eliminate the multiplier b
and expect to find configurations if the sort given in Theorem 1.3 in all sets with d,

equal to 1.

The following consequence of Corollary 3.8 (or alternatively of Corollary 4.12(c) or
Corollary 4.23) says that one can always get the additive increment of a geoarithmetic
progression as the initial term of a geometric progression in one cell of a finite partition

of N.

1.4 Theorem. Let m € N and let N = |J* | A;. Then there exist s € {1,2,...,m},
a,d € Ag and r € A, \ {1} such that {ri(a+id):i,j € {0,1,...,k}}u{dri:je{0,1,
.., k}} C A,

In Section 5 we establish some limitations on the algebraic approach and prove
a theorem which, for countable commutative semigroups, is even stronger than the
powerful Central Sets Theorem. (The Central Sets Theorem for the semigroup (N, +)
is [6, Proposition 8.21].) Central subsets of any semigroup are guaranteed substantial
combinatorial structure. See [13, Part ITI] for numerous examples. Several earlier results
in the paper follow immediately from this theorem. However, we prove the earlier results
directly instead of stating them as corollaries, because the direct proofs are reasonably

simple, while the theorem proved in Section 5 might be considered a little daunting.

3



2. Preliminaries

We shall be concerned with several notions of largeness, both additive and multiplicative.
Among these are various notions of density. The notions d and d,, defined below are
referred to as upper asymptotic density and the notions d* and d, are called upper

Banach density.

2.1 Definition. Let A C N, and let (p,,)22; be the sequence of primes in their natural

order.
- A 1,2,...
(a) d(A) =lim sup A4 ’n’ ,n}|
T An{m+1,m+2,...
(b) d*(A) =lim sup | fm+1lm+2...,nj
n—m—00 n—m
= lim sup{|Am(m+{1’2"”’n})| :meNanank:} .
k—o0 n
(c) Forn € N, Fn:{Hﬁzlpiai:foreachiE{l,Q,...,n}, ozZ'E{O,l,...,n}}.
_ ANF,
(d) dp(A) =1lim sup %
e) dr (A) = lim sup M:méNamank.
" k | Fn

The sequence (F},)°%_; defined above is a Fglner sequence in (N, -). The notions d,,
and d, could be defined in terms of any Fglner sequence (with the values depending
on the choice of the Fglner sequence). See [1, Section 2].

Other notions of largeness with which we shall be concerned originated in the
study of topological dynamics and make sense in any semigroup. Four of these, namely
thick, syndetic, piecewise syndetic and IP-set have simple elementary descriptions and
we introduce them now. The fifth, central is most simply described in terms of the
algebraic structure of 35S, which we shall describe shortly. Given a semigroup (S, "), a
subset Aof S, and z € S, welet z71A={ye S:zyec A}

2.2 Definition. Let (.5, -) be a semigroup and let A C S.
(a) A is thick if and only if whenever F' € Pf(S) there exists z € S such that Fz C A.
(b) A is syndetic if and only if there exists G € Py(S) such that S = J,co t ' A.

(c) A is piecewise syndetic if and only if there exists G € P#(S) such that for every
F € P¢(S) there exists « € S such that Fz C J,. t A

(d) A is an IP-set if and only if there exists a sequence (x,)o2; in S such that
FP((zn)321) € A.



Notice that each of thick and syndetic imply piecewise syndetic and thick sets are
IP-sets. It is easy to construct examples in (N, 4) showing that no other implications

among these notions is valid in general.

The following Lemma gives a hint why piecewise syndetic sets will be interesting
for our purposes. A family A of subsets of a set X is partition reqular provided that
whenever X is partitioned into finitely many classes, one of these classes contains a

member of A.

2.3 Lemma. Let (S,:) be a semigroup, let F be a partition regular family of finite
subsets of S, and let A be a piecewise syndetic subset of S. Then there exist t,x € S
and F € F such that tFx C A. If (S,-) is commutative, then there exist t € S and
F € F such that tF C A.

Proof. Pick G € P;(S) such that for every F' € Py(S) there exists € S such that
Fr C Uyeq t71A. For each F € Py(S) choose zp € S such that Fzp C [J,cq t 1A
and linearly order G. Let oo be a point not in G and let K = GU{oo} have the discrete
topology. For each F' € P;(S) define $r € X, c5 K by Pr(s) = min{t € G : tsxp € A}
if s € F and ¥p(s) = oo if s ¢ F. Direct Pf(S) by inclusion and let ¢ be a cluster
point of the net (Pr)pep,(s) in Xes K.

Then S C U, ¥ '[{t}]. Pickt € K and F € F such that F C ¢ 1[{t}]. Let
U={re XysK :foralseF,7(s) =1(s)}. Then U is a neighborhood of v so
pick H € P¢(S) such that FF C H and Yy € U. Then for all s € F, $y(s) =tsot € G
and tFzg C A. 0

Notice that if (S, ) is not commutative, then both multipliers in Lemma 2.3 may
be required. For example, let S be the free semigroup on the letters a and b. Then
F={bF:FeP¢S)} and G ={Fb: F € P¢(S)} are partition regular, aS and Sa are
piecewise syndetic, there do not exist F' € F and x € S with Fz C a5, and there do
not exist F' € G and t € S with tF' C Sa. (In fact, aS is syndetic in S.)

In Section 3 we shall need to deal with the columns condition.

2.4 Definition. Let u,v € N, let C' be a u x v matrix with entries from Q, and let
C1,Ca,...,Cy be the columns of C. Let R = 7Z or R = Q. The matrix C satisfies the
columns condition over R if and only if there exist m € N and Iy, I5, ..., I, such that

(1) {6, Is,...,I} is a partition of {1,2,...,v}.
(2) Eiell C_'Z = 6'



(3) f m>1andt e {23,...,m}, let J, = U§;11 I;. Then there exist (¢ ;)ics, in R
such that » ., ¢ = > ,c; 0ui-Ci.

In [17], Rado proved that a u x v matrix C' is kernel partition regular over (N, +)
(meaning that whenever r € N and N = |J_, A;, there exist i € {1,2,...,r} and
# € A;" such that C# = 0) if and only if C' satisfies the columns condition over Q.

A u x v matrix C' with entries from Q is image partition reqular over (N, +) if and
only if whenever r € N and N = (Ji_, A;, there exist ¢ € {1,2,...,7} and Z € N” such
that all entries of CZ are in A;. We shall use the custom of denoting the entries of a
matrix by the lower case of the same letter whose upper case denotes the matrix, so

that the entry in row ¢ and column j of C' is denoted by c; ;.

2.5 Definition. Let u,v € N and let C be a u x v matrix with entries from Q.

(a) C is a first entries matriz if and only if now row of C' is 0 and for all i,7 € {1,2,
...,u}and all k € {1,2,...,v}, if K = min{t : ¢;; # 0} = min{t : ¢;; # 0}, then
Cik = Cjk > 0.

(b) The number b is a first entry of C' if and only if b is the first nonzero entry in some

row of C.

Each first entries matrix is image partition regular over (N, +) and image parti-
tion regular matrices can be characterized in terms of first entries matrices. (See [13,
Theorem 15.24].)

We now present a brief review of basic facts about (35, ). For additional informa-
tion and any unfamiliar terminology encountered see [13].

Given a discrete semigroup (S, -) we take the points of the Stone-Cech compactifi-
cation 4S5 of S to be the ultrafilters on S, the principal ultrafilters being identified with
the points of S. Given A C S, A= {p € 35 : A c p} and the set {A: A C S} is a basis
for the open sets (and a basis for the closed sets) of 5S. Given p,q € S and A C S,
Acp-qgifandonlyif {re S:a271Acq} €p.

With this operation, (395,-) is a compact Hausdorff right topological semigroup
with S contained in its topological center. That is, for each p € 35, the function
pp : BS — BS defined by p,(¢) = ¢ - p is continuous and for each z € S, the function
Az 1 S — (S defined by A, (q) = x - ¢q is continuous. A subset I of a semigroup 7 is a
left ideal provided T - I C I, a right ideal provided I -T C I, and a two sided ideal (or
simply an ideal) provided it is both a left ideal and a right ideal.

Any compact Hausdorff right topological semigroup 7' has a smallest two sided
ideal K(T') = |J{L : L is a minimal left ideal of T'} = [J{R : R is a minimal right ideal
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of T'}. Given a minimal left ideal L and a minimal right ideal R, LN R is a group, and in
particular contains an idempotent. An idempotent in K (7') is a minimal idempotent. If
p and ¢ are idempotents in T" we write p < ¢ if and only if pg = gp = p. An idempotent
is minimal with respect to this relation if and only if it is member of the smallest ideal.

A subset of S is an IP-set if and only if it is a member of some idempotent in 35.

2.6 Definition. Let S be a semigroup and let A C S. Then A is central if and only if
there is a minimal idempotent p of 55 such that A € p.

A central set is in particular a piecewise syndetic IP-set. Given a minimal idem-
potent p and a finite partition of S, one cell must be a member of p, hence at least one
cell of any finite partition of S must be central. Central sets are fundamental to the
Ramsey Theoretic applications of the algebra of 35S.

We shall need the Hales-Jewett Theorem. Given the free semigroup S over an
alphabet L, a variable word w is a word over L U {v} in which v occurs, where v is a
“variable” not in L. Given a variable word w and a € L, w(a) is the word in S obtained

by replacing each occurrence of v by a.

2.7 Theorem (Hales-Jewett). Let L be a finite alphabet, let S be the free semigroup
over L, let m € N, and let S = \J*| A;. Then there exist i € {1,2,...,m} and a
variable word w such that {w(a) :a € L} C A;.

Proof. [9, Theorem 1], or see [8, Theorem 2.3] or [13, Theorem 14.7]. O

Applications which we will use later are the following theorems. These results are

well known among afficianados.

2.8 Theorem. Let (S,:) be a commutative semigroup, let A be a piecewise syndetic
subset of S, let k € N, and fori € {1,2,...,k} let (yin)i2, be a sequence in S. There
exist F € Pr(N) and b € S such that {b} U {b[[,cpyii:i€{1l,...,k}} C A

Proof. By virtue of Lemma 2.3 it is sufficient to show that the family

{{byU{b-Tlicryic:ic{l,....k}}:be S, FePsyN)}

is partition regular.

Let L ={0,1,...,k} and let T be the free semigroup on the alphabet L. Let by € S
be an arbitrary, fixed element. Given a word w = lils---[, of length n in S, define
fw) = boIlieq12,.. ny.1,20 Vit if there exists some ¢ € {1,2,...,n} such that l; # 0

and f(w) = by otherwise.



Consider a partition {A;, As,..., Ay} of S. Then T' = |JI-, f~1[A;] so pick s €
{1,2,...,m} and a variable word w = lyly---I, (with each [, € L U {v}) such that
{w(i):ie L} C f71A,]

Let F ={te{1,2,...,n}: [y = v}, let G={1,2,...,n} \ F and let b = f(w(0)).
Then b][,cpvie = f(w(@)) for i € {1,2,...,k} and thus {b} U {b]],cpyis : @ €
{1,...,k}} C A,. O

2.9 Corollary. Let (S,:) be a commutative semigroup, let A be a piecewise syndetic
subset of S, let B be an IP-set in S, and let k € N. There exist b € S and r € B such
that {b,br,br?, ... br¥}y C A. If A is central we may in particular take A = B, such
that {r,b,br,br? ... br¥} C A.

Proof. Let (x,,)52, be a sequence in S such that FP({x,)>>,) C B. Fori € {1,2,...,
k} and n € N, let y;,, = (z,)". Pick b and F as guaranteed by Theorem 2.8 and let
r=1ler e

Any central set is a piecewise syndetic IP-set and thus the in particular statement
follows. 0

3. New wine from old wineskins

All of the results about the algebraic structure of SN that are used in this section have
been known for several years.

There is a long list of configurations which are known to be present in any central
subset of (N, +) and a somewhat shorter, but still lengthy, list of structures which can
be found in any central subset of (N,-). Some of these involve special subsets of SN

defined by various notions of density.

3.1 Definition.
(a) A={qefN: (VA€ q)(d(A)>0)}.

(b) A" ={q € ON: (VA € ¢)(d"(A) > 0)}.
(¢) Am ={g € pN: (VA€ q)(dn(A) > 0)}.
(d) A% ={qepN: (VA € ¢)(d],(A) > 0)}.

We summarize some of the structures guaranteed to be present in any multiplica-
tively central set first. See [13, Chapter 14] for a formalization of the notion of tree in

a set as well as the set of successors to a node.
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3.2 Theorem. Let A be a central subset of (N,-).
(a) For any sequence (x,)5%, in N and any k € N, there exist b € N and r €

n=1

FP({x,)%,) such that {b,br,br?, ... brk} C A.

(b) There is a tree T in A such that for any path g through T, FP({g(n))s>,) C A and
for every node f € T, the set By of successors to f satisfies d},(By) > 0.

(¢) If u,v € N and C is a u X v matriz with entries from Z which satisfies the columns
condition over Z, then there exists ¥ € A" such that for all i € {1,2,...,u},
H§=1 zj© = 1.

(d) If u,v € N and C is a u X v first entries matriz with entries from Z and all first
entries equal to 1, then there exists & in NV such that for all i € {1,2,...,u},

HU CL’jCi’j c A.

j=1

Proof. (a) Corollary 2.9.

(b) Pick a minimal idempotent ¢ of (ON, -) such that A € ¢. By [13, Theorems 20.5
and 20.6] A* is an ideal of (AN, ), so ¢ € A and [13, Lemma 14.24] applies.

(c) [13, Theorem 15.16(a)].
(d) [13, Lemma 15.14 and Theorem 15.5]. O

The conditions of Theorem 3.2(c) and (d) are stronger than those required for
kernel and image partition regularity over (N,:). (And necessarily so. The set A =
N\ {22 : z € N} is central in (N,-) [13, Exercise 15.1.2], the matrix (2 -2 1) is
kernel partition regular over (N,-), and the matrix (2) is image partition regular over

22 = 1 and one cannot get € N

(N,-). But one cannot get z,y,z € A with 22y~
with 22 € A.) By contrast, in (N, +), kernel partition regularity of C' corresponds to
solutions to C'Z = 0 in any central set and image partition regularity of C' corresponds

to obtaining all entries of CZ in any central set.

We shall be interested in a property stronger than central for our additive results.
By [13, Theorem 6.79], A is a compact left ideal of (OGN, +) so contains a minimal idem-
potent of (8N, +). Consequently, any finite partition of N will have one cell satisfying
the hypothesis of the following theorem.

3.3 Theorem. Let A C N and assume that there is a minimal idempotent q of (BN, +)

in AN A.

(a) For any sequence (x,)3>; in N and any k € N, there exist a € N and d €
FS({xn)22 ) such that {a,a+d,...,a+ kd} C A.
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(b) There is a tree T in A such that for any path g through T, FS({(g(n))>>,) C A and
for every node f € T, the set By of successors to f satisfies E(Bf) > 0.

(¢) If u,v € N and C is a u X v matriz with entries from Q which is kernel partition
reqular over (N,+) (that is C satisfies the columns condition over Q), then there
exists T € AV such that C% = 0.

(d) If u,v € N and C is a u X v matriz with entries from Q which is image partition
regular over (N, +), (in particular if C' is a first entries matriz), then there exists
Z in NV with all entries of CZ in A.

(e) Let R be a finite set of polynomials which take integer values at integers and have
zero constant term and Let (z;)52, be a sequence in Z. Then there exists F' € Py(N)
such that {a € A:{a+ p(Xicrz;) :p € R} C A} is piecewise syndetic.

(b) [13, Lemma 14.24].
(c) [13, Theorem 15.16(b)]

Proof. (a) Corollary 2.9.
)
(d) [12, Theorem 2.10].

(e) In [3, Theorem C] it was shown that the conclusion follows from the assumption

that A is piecewise syndetic. For an algebraic proof see [11, Corollary 3.7]. ]

3.4 Lemma. Let D = {q € A:q is a minimal idempotent of (SN, +)}. Then ¢fD is
a left ideal of (ON,-).

Proof. We have already observed that D # (). Let r € ¢/D. To see that BN -r C ¢/R
it suffices by the continuity of p, in (AN, ) to show that N-r C ¢/D. So let z € N and
let A€ z-r. Then z7'A € rsopick g€ DNz—1A. Then A € z - q. By [13, Theorem
6.79] z - g € A. By [12, Lemma 2.1] x - ¢ is a minimal idempotent of (8N, +). O]

Plentiful examples of candidates for the sets G and ‘H of Theorem 3.5 are provided
by Theorems 3.2 and 3.3. Notice in particular that H could be any family of subsets of

N such that any additively central set must contain a member of H.

3.5 Theorem. Let D = {q € A : g is a minimal idempotent of (SN, +)}. Let G be a
set of finite subsets of N with the property that any multiplicatively central subset of N
contains a member of G and let H be a set of (finite or infinite) subsets of N with the
property that, whenever A C N and AN D # 0, some member of H is contained in A.
Whenever r € N and N = |J;_, A;, there exists i € {1,2,...,7} such that d(A;) > 0,
dr.(A;) >0, and there ezist B € G and C € H such that BUCUB-C C A,.
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Proof. By Lemma 3.4, D is a left ideal of (SN, ) so pick a minimal idempotent ¢
of (BN,-) in ¢/D. Pick ¢ € {1,2,...,7} such that A; € ¢. Since ¢ € /D C A,
d(A;) > 0. By Theorem 3.2(b), dZ,(A;) > 0. Sinceq=¢q-q, {r € A; : 27 1A; € ¢} € q.
In particular {z € A; : a7 1A4; € ¢} is multiplicatively central, so pick B € G such
that B C {x € A; : 271A; € ¢}. Since B is finite, 4; N MNacn x~1A; € g and thus
(AiNNyep 7 A;) N D # 0. Pick C € H such that C C A; N(,cp 71 4. O

By adding the requirement that the members of H be finite, we obtain an infinitary

extension of Theorem 3.5 along the lines of the Central Sets Theorem.

3.6 Theorem. Let D = {q € A : ¢ is a minimal idempotent of (8N,+)}. For each
n € N, let G, be a set of finite subsets of N with the property that any multiplicatively
central subset of N contains a member of G,, and let H,, be a set of finite subsets of N with
the property that, whenever A C N and AN D # 0, some member of H,, is contained in
A. Wheneverr € N and N = J;_, A;, there exists i € {1,2,...,7} such that d(A;) > 0,
dr,(A) > 0, and there exist sequences (By)o>, and (Cy)>2 such that B, € G, and
C,, € H,, for each n and for any F' € P¢(N) and any f € X ,ep (B, UC, UB, - Cy),

[Ler f(n) € A

Proof. Pick a minimal idempotent ¢ of (AN, ) in ¢/D and pick i € {1,2,...,r} such that
A; € q. Then d(A;) >0 and df,(A) > 0. Forany X € ¢,let X*={zr € X :271X € ¢}.
Then by [13, Lemma 4.14] X* € ¢ and for any € X*, 271 X* € ¢.

Choose B; € Gy such that B; € A;* and choose C; € H; such that C; C A;* N
Neen, AR

Inductively, let n € N and assume we have chosen B; € G; and C; € H; for each
t € {1,2,...,n} with the property that for all nonempty F' C {1,2,...,n} and all
f € Xier (BiUCLUBy - Cy), [Ler f(t) € Ai™. Let

X = A" 0N {(ILer F®) AT 0£FC{1,2,...,n} and
fe Xier (BiUC,UB-Cy)}.

Then X is a finite intersection of members of ¢ so X € q. Pick B,4+1 € G,4+1 such

that B,41 € X*. Then X N ﬂxeBn+1 r7'X € ¢ so pick Cpy1 € Hpq1 such that
Cn—|—1 g XN ﬂ .T_lX. 0

rEBL 1

We shall be concerned in the next section with extensions of the following sort of

configuration.
3.7 Corollary. Let m,k € N and let N = J"| A;. Then there exist i € {1,2,...,m},
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a,d,b € A;, and r € A; \ {1} such that d(A;) > 0, d¥,(A;) > 0, and
{bre:s€{0,1,...,k}}U{a+td:t€{0,1,...,k}} U{rd}U
{r(a+td):t€{0,1,...,k}}U{bdr®:s€{0,1,...,k}} U
{bré(a+td) :s,t € {0,1,...,k}} C A;.
Proof. Let G = {{brszse {O,l,...,k}}u{r}:b,reN} and let
H={{a+td:te{0,1,....,k}} U{d}:a,deN}.

By applying Theorem 2.9 to (N, ) and to (N, +) one concludes that every multiplica-
tively central set contains a member of G and that every additively central set contains
a member of H. Thus we may apply Theorem 3.6. By assigning 1 to its own cell one

may ensure that r # 1. ]

3.8 Corollary. Let m,k € N and let N = J" | A;. Then there exist i € {1,2,...,m},
a,d € Ay, and r € A; \ {1} such that d(A;) > 0, d%,(A;) > 0, and

{r(a+td):s,t€{0,1,....k}} U{dr®:s€{0,1,...,k}} C A4;.

Proof. Let i,a,b,d,r be as in the proof of Corollary 3.7. Put a; = ab and d; = db.
Then {a,} U{di}U{r*(a1 +td1) : 5,t € {0,1,....k}}U{dir® : s € {0,1,...,k}} C A;.
Ul

4. Extensions of geoarithmetic progressions

A geoarithmetic progression is a set of the form {ri(a +id) : 4,5 € {0,1,...,k}} where
a,d,k € Nand r € N\ {1}. We shall be concerned in this section with finding certain
generalizations of geoarithmetic progressions in one cell of a finite partition of N.

Our first result in this direction (Corollary 4.3) replaces r in a geometric progression
by multiples of members of any partition regular family of finite sets. For that result,
one needs to add a multiplier b because one can certainly not expect to find a set of the
form {r,72} for » > 1 in one cell of an arbitrary finite partition of N; one may assign
the members of N\ {22 : z € N\ {1}} to Ay or Ay at will, and then assign 2? to the
cell that x is not in, 2* to the cell 22 is not in, and so on.

To establish Theorem 4.3 we need the following algebraic result which is of interest
in its own right. We let w = NU {0}. The case (S,+4) = (w, +) of Theorem 4.1 follows
from [12, Theorem 2.10]. In any semigroup S, a set C' C S is central* if and only if for
every central subset B of S, C'N B # (). (Equivalently, S\ C' is not central.) Notice in
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particular that always S is central®™ so that if all first entries of a first entries matrix A

are equal to 1, the requirement that 1.5 be central® is automatically satisfied.

4.1 Theorem. Let u,v € N and let A be a u X v first entries matrix with entries from
w. Let (S,+) be a commutative semigroup with identity 0 and let C' be a central subset
of S. If for every first entry ¢ of A, ¢S is central®, then {¥ € SV : A¥ € C"} is central

in S°.

Proof. Pick a minimal idempotent e of 3S such that C' € e. Define ¥ : §¥ — S
by ¢(&) = A% and let ¢ : B(SY) — (BS)" be its continuous extension. Let M =
{p € B(SY) : @(p) = (e,e,...,e)T}. By [13, Corollary 4.22] ¢ is a homomorphism, so to
see that M is a subsemigroup, it suffices to show that M # (.

For each B € e pick by [13, Theorem 15.5] Zp € S” such that ¥(¥p) € B*. Direct
e by reverse inclusion and let ¢ be a limit point in G(S") of the net (¥p)pe.. Then
qe M.

Since M is a compact right topological semigroup, pick a minimal idempotent r
of M. We claim that r is minimal in 5(SV). To see this, let p be an idempotent of
B(SY) such that p < r. Then ?(p) < P(r) = (e,e,...,e)T and (e,e,...,e)T is minimal
in (3S)* by [13, Theorem 2.23] so #(p) = (e, e, ...,e)T. Thus p € M and so p = 7.

Pick X € r such that [ X ] C (B)“. Then X C {# € S : AZ € B"}. O

4.2 Theorem. Let (S,-) be a commutative semigroup with identity and let C be a central
subset of S. If F is a partition regular family of finite subsets of S and k € N, then there
exist b,r € S and F € F such that rF U {b(rz) : x € F and j € {0,1,...,k}} C C.

Proof. Let k£ € N and let

0 1
1 0
A=11 1
1 k

Then A is a first entries matrix with all first entries equal to 1 so by Theorem 4.1
{(b,r) € S? : {b,r,br,...,br*} C C} is central in S? and is in particular piecewise
syndetic. Let G = {{b} xF:beSand F € ]:}. Then G is a partition regular family
of finite subsets of S? so pick by Lemma 2.3 F € F, ¢ € S, and (s,r) € S? such that
(s,7) - ({c} x F) C{(b,7) € 82 : {b,r,br,...,br*} C C}. Let b = sc. 0

Notice that, if in the above proof, the matrix A is replaced by a matrix whose set
of rows is {(0,0,1)} U {(0,1,5) : j € {0,1,...,k}} U {(1,4,5) : 4,5 € {0,1,...,k}},
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then the conclusion of Theorem 4.2 becomes “there exist b,c,r € S and F € F such
that rF U {b(rz)? : € F and j € {0,1,...,k}} U {cbi(rz)? : z € F and i,j € {0, 1,
cee k;}} C C.” Of course additional strengthenings can be obtained using first entries

matrices with all first entries equal to 1 and additional columns.

4.3 Corollary. Let F be a partition regular family of finite subsets of N, let k € N,
and let A be piecewise syndetic in (N,-). Then there exist b,r € N and F € F such that
{b(rz)? :j€{0,1,....k} and x € F} C A.

Proof. Pick by [13, Theorem 4.43] ¢ € N such that 714 is central in (N,-). Pick by
Theorem 4.2 ¢,r € N such that rF" U {c(rm)j cx € Fand j €{0,1,..., kz}} Ct 1A and
let b = tc. ]

We see now that, given any central subset C' of (N,-) we can get sets of the form
{b(a +i4d)? 1 i,5 € {0,1,..., k:}} together with the multiplier, the increment, and the

arithmetic progression in C.

4.4 Corollary. Let C be a central subset of (N,-) and let k € N. There exist a,b,d € N
such that
{bla+td)? :¢,j7€{0,1,....,k}}U{bd’ : j €{0,1,...,k}}
U{a+td:t€{0,1,....k}}u{d} CC.
Proof. Let F = {{d,a,a—i—d, ...,a+kd} :a,d € N}. Pick by Theorem 4.2 b,r € S and
F € F such that rF U {b(rz)? : z € F and j € {0,1,...,k}} C C. Pick ¢, s € N such
that F' = {c,s,s+¢,...,s+ kc}. Let d =rc and a = rs. ]

Again note that if the stronger version of Theorem 4.2 that we mentioned after its
proof is used, the conclusion of Corollary 4.4 becomes “There exist a,b,c,d € N such
that

{cbi(a+td) : t,i,5 €{0,1,....k}}U{cb'd’ :4,j € {0,1,...,k}}
U{bla+td) :t,j€{0,1,....k}}u{bd’:je{0,1,...,k}}
U{a+td:t€{0,1,...,k}}u{d} CC.

We remark also that Corollary 4.4 could also be stated in terms of an arbitrary com-

mutative ring with no change in proof.

The following result is stronger than Corollary 4.4. We state it separately because

its formulation is more involved and the proof requires more theoretical background.

4.5 Corollary. Let S be an infinite set with operations + and - such that (S,+) is a
commutative semigroup with identity 0, (S \ {0},-) is a commutative semigroup with
identity 1, and - distributes over +. Let C be a central subset of (S'\ {0},-), let k € N,
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and let G be a finite subset of S\ {0}. Then there exist a,b,d € C' such that

{ba+di)i:i€ G andje{0,1,....k}}u{bd :j€{0,1,....k}}
U{a+di:ie G} CC.
Proof. We observe first that S\ {0} is central in (S, +). To see this, suppose instead that
0 is a minimal idempotent of (35S, +). Then by [13, Theorem 2.9] S = 0+ 43S = S +0
is a group and in particular (S, +) is cancellative. But then by [13, Theorem 4.36] 55\ S
is an ideal of (35, +) and so 0 € 3S\ S, a contradiction.

Let F = {{a,d} U{a+dj:j € G}:a,de S} We claim that F NP(S\ {0}) is
partition regular in S\ {0}. Solet » € Nand let S\{0} = J,_, D;. Picki € {1,2,...,7r}
such that D; is central in (S, +). Let (d,,)22; be a sequence such that F'S((d,)32 ;) C D;.
Theorem 2.8 applied to the sequences (jd,, )52, for j € G yields that there exist a € D;
and F' € Pg(N) such that a+ ), pjd; € D; forall j € G. If welet d =}, d; we see
that {a,d} U{a+dj:je G} C D;.

Pick by Theorem 4.2 b,r € S\ {0} and F € FNP(S\{0}) such that rFU {b(rz) :
€ Fandje{0,1,...,k}} CC. Pick ¢,s € S such that F = {¢, s} U{s +ic:i € G}.
Let d = rc and a = rs. Since a,d € rF, we have a,d € C. Also b=ba’ so b € C. U

Suppose that the semigroup S satisfies the hypotheses of Corollary 4.5 and that
0-z = 0 for every x € S. Then, by [4, Theorem 4.4] first entry matrices over S whose first
entries are all 1, can be used to prove Corollary 4.5 as well as a sequence of successively
stronger theorems. For example, the theorem stated in the remark following Theorem
4.2 is valid in S if C is any central subset of (S \ {0},-), G is any given finite subset of
Sand F ={flu{d+tf:te Gtu{a+sd+tf:s,te G} for some a, d, and f in
S\ {0}.

The following corollary is also a consequence of [1, Theorem 3.15].

4.6 Corollary. Let k € N, and let A be piecewise syndetic in (N,-). Then there exist
a,b,d € N such that {b(a +id)’ :i,j € {0,1,...,k}} C A.

Proof. Pick ¢ € N such that t~1 A is central and apply Corollary 4.4. ]

Now, as we promised in the introduction, we turn our attention to extensions of

the following result from [1].

4.7 Theorem. Let m,k € N. For each i € {0,1,...,k} let (x;+)72; and (yi+)72, be
sequences in N. Let N = |, As. Then there exist s € {1,2,...,m}, F,G € P¢(N),
and a,b € N such that {b(a + > ier Tit) - (Iieq vie) 4,5 €{0,1,..., k}} C A,.
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Proof. By [1, Theorem 3.13], every set A with d%, (A) > 0 contains such a configuration
and for some s, d (As) > 0. O

We shall show in Theorem 4.8 that one may take F' = G in Theorem 4.7 and in
Corollary 4.12(a) that the multiplier b may be eliminated. We show in Corollary 4.16,

however, that one cannot simultaneously take F' = G and eliminate b.

4.8 Theorem. Let m,k € N. For each i € {0,1,...,k} let (x;+)2; and (yi+)2, be
sequences in N. Let N = J_, As. Then there exist s € {1,2,...,m}, F € P¢(N), and
a,b € N such that

{ba} U {bla+ > ,cp mis):1€{0,1,...,k}} U

{ba - Tlier yje 13 €{0,1,...,k}} U

{b<a + ZteF Tit) - (HteF yj,t) 11,5 €40,1,..., k}} C As.
Proof. Let 441, = 0 and yg41+ = 1 for all £. Let Ag = {0}. Let L = {0,1,...,
k+1} x{0,1,...,k 4+ 1} and let S be the free semigroup on the alphabet L. Given
a word w = lily-- -1, of length n in S, define f(w) = >0 1 Tayqu)t - [y Yma(t) ot
Then S = J", f~*[As] so pick by Theorem 2.7, s € {0,1,...,m} and a variable word
w = lily -1, (with each [, € L U{v}) such that {w(c) : ¢ € L} C A,. Notice that
s # 0.

Let FF = {t € {1,2,....,n} : Iy = v} and let G = {1,2,...,n} \ F. Let a =

Y teq Ty, andlet b = [[,cq Yro@y),e- Thengiveni,j € {0,1,...,k+1}, f(w((z,j)))
=(a+Xier i) b Tliep vie- O

4.9 Corollary. Let k € N. For each i € {0,1,...,k} let (x; )72, and (yi);2, be
sequences in N and let A be piecewise syndetic in (N,-). Then there exist F' € Ps(N)
and a,b € N such that
{ba} U {bla+ > ,cp i) :1€{0,1,...,k}} U
{ball,cr vjs:7€{0,1,...,k}} U
{bla+>cr ®in) ([lier vit) 16,5 €{0,1,...,k}} CA.
Proof. By Theorem 4.8 the collection of sets H of the form
H = {ba}u{bla+Y,cp xiz):i€{0,1,...,k}} U
{ball,cr vjs:7€{0,1,...,k}} U
{b(a + ZteF xi,t) : (HteF ?Jj,t) 11,] € {07 L..., k}}
is partition regular, so by Lemma 2.3 there is some t € N and some such H with tH C A.
Replacing b by tb yields the desired conclusion. Ul

4.10 Lemma. Let (S,-) be a commutative semigroup, let L be a minimal left ideal of
(6S,-), and let k € N. Let F be a family of finite subsets of S such that the family
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{bF : F € F and b € S} is partition regular. Let A C S such that AN L # 0. Then
there exists F € F such that LN (), cpy=tA# 0.

Proof. Pick v € AN L. Pick a minimal right ideal R of (3S,-) such that v € R and
pick an idempotent v € R. Then v =uv so B={z € S: 27 'A € v} € u. In particular
B is central so pick by Lemma 2.3, some b € S and F' € F such that bF C B. So for
each y € F, (by) 1A € v. Equivalently for each y € F, y=*A € bv. Since bv € L, we

are done. ]

We have by Lemma 3.4 that if D = {¢ € A : ¢ is a minimal idempotent of
(BN, 4)} then ¢fD is a left ideal of (8N, ) and consequently ¢/D N K (BN, -) # 0. Given
any p € 45 and any finite partition {Ay, ..., A,,} there is at least one cell A; such that
A; € p. Consequently, the partition versions of Theorem 4.11 and Corollary 4.12 are

also valid.

4.11 Theorem. Let D = {q € A : ¢ is a minimal idempotent of (SN, +)} and let A
be a subset of N such that ANclDNK(BN,-) # 0. Let F be a family of finite subsets of
N such that the family {bF : F' € F and b € N} is partition reqular and let G be a family
of subsets of N such that any set which is central in (N,+) contains a member of G.
Then there exist F' € F and G € G such that E(ﬂyeF y'A) >0, d(Nyerpy tA4) >0
and FG C A.

Proof. Pick a minimal left ideal L of (3N, -) such that ANclDNL # (). Since ¢/D is a left
ideal of (BN, ), L C ¢£D. Pick, by Lemma 4.10, F' € F such that LN, cpy 'A # 0.
Since L C K (BN, ) € A}, by [13, Theorems 20.5 and 20.6] d;, (e y~1A) > 0. Since
L C ¢lD, pick g € A such that ¢ is a minimal idempotent of (6N, +) and ﬂyeF y~ 1A cq.
Then this set is central in (N, +) so pick G € G such that G C [, y~1A. Since q € A,
E(ﬂyeF y~1A) > 0. O

4.12 Corollary. Let D = {q € A : ¢ is a minimal idempotent of (ON,+)}, let A be a

subset of N such that there is a multiplicative idempotent p € AN clD N K(BN,-), and

let k € N.

(a) For each i € {1,2,...,k} let (z;4)2; and (y; )i, be sequences in N. Then
there exist H, K € P;(N) and a € A such that d(AN ﬂ?:l(HtEH yje) tA) >0,
45 (AN iz (e 3.0 714) > 0, and

{a+ S ep wirie {12 k}YU{a Tley vie:d€{1,2,...,k}} U
{(a—i'zteK Tit) [lier Vit 19,7 € {1,2,...,k}} CA.
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(b) There exist a,r,d € A such that r > 1, E(ﬂ?zo(rj)_lA) > 0, d;“n(ﬂizo(rj)_lA) >
0, and {(a+id)rd :i,j € {0,1,...,k}}u{dri:je{0,1,....k}} C A

(c) There exist a,r,d € A such that r > 1, E(ﬂ?zl(jr)_lfl) > 0, d%(ﬂ?zo(jT)_lA) >
0, and {dj" : j € {1,2,...,k}} U {(a+id);" : i € {0,1,...,k} and j € {1,2,...,

k}}u{a+id:ie{0,1,...,k}} C A.

Proof. Since 1 is not an element of any minimal left ideal of (ON, ), by considering
A\ {1} instead of A we may assume that 1 ¢ A. Let

Fi={{}U{lLeyvit:i€{1,2,...,k}} : H e P¢(N)},

G ={{a}U{a+ Y, cx zip:i€{1,2,....k} : K € Ps(N) and a € N},

Fo = {{Ti:ie {0,1,...,k}}:7‘€A},

Go ={{d}U{a+id:i€{0,1,...,k}}:a,d € N},
and put F/ = {bF : b € N and F € F;} for i € {1,2}. By applying Theorem 2.9 and
Corollary 2.10 to the semigroup (N, -) we see that the families 7| and F7, are partition
regular. Similarly by Theorem 2.9 and Corollary 2.10 applied to the semigroup (N, +),
every subset of N that is central in (N, +) contains a member of G; and a member of Gs.
Thus we get (a) by applying Theorem 4.11 to F; and G; and (b) by applying Theorem
4.11 to F5 and Gs.

We will prove (c) by using Theorem 4.11 with F; and Gs, where we define the
sequences (Yin)oeq, ¢ € {1,2,...,k} appropriately. Since A is central in (N, +), choose
a sequence (r,)o2; such that F'S((r,)52 ) C A. Using this put y;,, =i" for i € {1,2,
...,k} and n € N. By Theorem 4.11 we find a,d € A and H € P¢(N) such that
G=A{d}U{a+id:ie{0,1,...,k}} and F = {1} U{[L,cp it : J € {1,2,...,k}}
satisfy the conclusion of Theorem 4.11. Let r = 3, ;¢ € A. Thenfor j € {1,2,...,k},
[Lenvit =Ileni™ =" Thus we see that (c) is valid. O

We now turn our attention to showing that one cannot simultaneously let F' = G
and eliminate the multiplier b in Theorem 4.7.

The following theorem is of interest in its own right. Recall from Corollary 2.9
that when N is finitely colored, one can find arbitrarily long monochrome arithmetic
progressions with increments chosen from any IP-set. This theorem tells us that at least

relatively thin sequences cannot replace IP-sets.

4.13 Theorem. Let (d,)22, be a sequence in N such that for alln € N, 3d,, < dp41.
There exists a partition {Ag, A1, Aa, A3} of N such that there do not exist s € {0,1,2,3}
and a,k € N with {a,a + d} C As.
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Proof. For a € T = R/Z we denote by ||a]| the distance to the nearest integer. We will

not distinguish strictly between equivalance classes and their representatives in [0, 1).
4.14 Lemma. There exists a € T such that ||ad,,|| > 1/4 for each n € N.

Proof. For eachn € Nput R, ={a €T : ||ad,|| > 1/4}. Each R, consists of intervals

1
of length 2 which are separated by gaps of the same length. Since d,, 11 > 3d,, every
interval of RT;L is 3 times longer than an interval or a gap of R, 1. Thus any interval of
R,, contains an interval of R, ;. This shows that for each N € N, 02;1 R, # 0. By

compactness of T there exists o € ()7, Ry. U

Let o € T such that d,a € [1/4,3/4] for each n € N. For i € {0,1,2,3} put
A;={m e N:ma € [i/4,(i+1)/4)}. Then for any a,k € N a(a + dx) = aa + (3 for
some ( € [1/4,3/4] and thus aa and a(a+ dj) must not lie in the same quarter of [0, 1).
Equivalently there exists no s € {0, 1, 2,3} such that {a,a + di} C As. O

We remark that Lemma 4.14 is well known. Under the much weaker assumption,
that the growth rate of the sequence (d,)S2 ; is bounded from below by some ¢ > 1
B. de Mathan [14] and A. Pollington [15] independently proved that there exists some
a € T such that {an : n € N} is not dense in T. In order to give a self contained proof
we have chosen to go with the weaker statement. The loss is that we have to make an
additional step to show that any growth rate ¢ > 1 is sufficient to avoid monochrome

arithmetic progressions with some dj, as increment.

4.15 Corollary. Let ¢ € R with ¢ > 1 and assume that (d,)>2, is a sequence in N
such that for alln € N, qd,, < d,, 1. There exists a finite partition {Ay, As, ..., A} of
N such that there do not exist s € {1,2,...,r} and a,k € N with {a,a+ d} C As.

Proof. Pick m € N such that ¢™ > 3. For t € {0,1,...,m — 1} and n € N, let
Ctyn = dpm—t. Given t € {0,1,...,m} one has that 3¢;,, < ¢t 41 for each n so pick by
Theorem 4.13 some { By o, By,1, Bt 2, Bt 3} of N'such that there do not exist s € {0,1,2, 3}
and a, k € Nwith {a,a+c; r} C By,;. Let r = 4™ and define a partition {4, A, ..., A}

of N with the property that x and y lie in the same cell of the partition if and only if

x € By, < ye€ B, foreacht €{0,1,...,m—1} and each i € {0, 1, 2, 3}. O
4.16 Corollary. There ezist sequences (Ton)peq, (T1n)ney, and (Yn)oe, in N and a

partition {Ag, A1, Az, Ag} of N such that there do not exist s € {0,1,2,3}, F € P¢(N),
and a € N with {(a+ >, cr @in)  [Lnep Yn 1 € {0,1}} C A,.

19



Proof. For eacht € N, let zo; = 1, 1, = 2 and y; ; = 3. For each n € N, let d,, = n3".
Pick Ag, A1, Ag, A3 as guaranteed by Theorem 4.13. Suppose one has F' € P¢(N) and
a € N with {(a 4+ >,cp zit)  [Liep v : @ € {0,1}} € As. Let n = |F|. Then
(@a+>er 1t) Tlier e =dn+(a+>,cp To,t) - [,ep Yi, a contradiction. O

We have just shown that one cannot eliminate the multiplier b from Theorem 4.8.
We show now that this multiplier cannot be eliminated from Corollary 4.9. Recall that

thick sets in any semigroup are also piecewise syndetic, in fact central.

4.17 Theorem. There exists a set A which is thick in (N,-) and a sequence (x,,)2° ; in
N with the property that there do not ezxist a € N and d € FS((x,,)5%,) with {a,a+d} C
A.

Proof. Let A = J,_,{(3n)!,2(3n)!,...,n(3n)!} and for each n, let z, = (3n + 1)!.
Observe that A is thick in (N,-). Let a € A and let d € FS((z,)52,). We shall show
that a+d ¢ A. Pick n € Nand k € {1,2,...,n} such that a = k(3n)!. Pick F' € P¢(N)
such that d =), p 24 and let m = max F'. Then (3m + 1)! < d < (3m +2)L.

If m < n we have k(3n)! < a+d < (k+1)(3n)! so a+d ¢ A. If m > n, then
a<Bm+1!soBm+1)!<a+d< (3m+3)! and thus a +d ¢ A. O

It was shown in [1, Theorem 1.3] that the fact that a subset A of N satisfies d7,(A) >
0 is enough to guarantee that A contains arbitrarily large geoarithmetic progressions.
However, by considering the set A = {z € N : the number of terms in the prime
factorization of x is odd}, one sees that the fact that d,,(A) > 0 is not enough to
guarantee geoarithmetic progressions together with the common ratio r, nor together
with both b and a.

As is well known among afficianados, geoarithmetic progressions are strongly par-
tition regular. That is, for each m,k € N there exists K € N such that whenever
A, B,D e N, Re N\ {1}, and {BRS(A+1€D) D8, t € {O,l,...,K}} = >, C;, there
exist i € {1,2,...,m}, a,b,d € N, and r € N\ {1} such that {br*(a+td) : s,t € {0, 1,
..., k}} € A;. (The easiest way to see this is to use the Griinwald/Gallai Theorem'
[8, Theorem 2.8]. Color the pair (s,t) € {0,1,..., K} x{0,1,..., K} according to the
color of BR*(A+tD).)

We show now that configurations of the sort produced by Corollary 3.7 are not

strongly partition regular.

I This theorem was never published by its author. Its first publication was in [16] where it was
referred to as Griinwald’s Theorem, Griinwald being the original name of the author. During the period
surrounding World War II Griinwald changed his name to Gallai.
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4.18 Theorem. There is a set C C N such that for each k € N there exist b,a,d € N
and r € N\ {1} such that {br"(a + td) : n,t € {0,1,...,k}} U {br" : n € {0,1,
,k;}} U {a +td :t € {0,1,. ,k}} C C and there exist sets Ay and Ao such that
C = A1 U Ay and there do not exist i € {1,2}, ¢,a,d € N, and s € N\ {1} such that
{cs,cs?, cs(a+d),es?(a+d),cs(a+2d)} C A;.

Proof. Let r1 = 5. Inductively choose a prime rj 1 > (r(2k + 1))2. For each k € N,
let By = {r,"z :n € {1,2,...,k+1}andz € {k+ 1,k +2,...,2k + 1}} and let
B =U;Z; B

4.19 Lemma. Ifa,d € N and {a+d,a+2d} C B, then there exist k € N andn € {1,2,
o k+1} such that {a+d,a+2d} C {r,"z:ze{k+1,k+2,...,2k+1}}.

Proof. Pick k e Nyne {1,2,...,k+1},and x € {k+ 1,k +2,...,2k + 1} such that
a+d = ry"z. Then a + 2d < 2(a + d) = 2r;,"z. Also 2ry"x < r,""H(k + 1) and
2rp"x < rpo1(k +2). The first member of B larger than r"(2k + 1) is ri" ™1 (k + 1) (if
n <k)orrgi1(k+2) (if n =k +1). Thus there is some y € {z + 1,2+ 2,...,k+ 1}
such that a + 2d = ri"y. Ul

4.20 Lemma. If ¢ € N, s € N\ {1}, and {cs,cs?>} C B, then there exist k € N,
ne{0,1,... .k}, te{1,2,....k+1—n}, andy e {k+1,k+2,...,2k+ 1} such that

c=rp"y and s = rt.

Proof. Pick k <m, 0 € {1,2,...,k+1},ve{1,2,.... m+1},y € {k+1,k+2,...,2k+
1},and z € {m+1,m+2,...,2m + 1} such that c¢s = ri0y, and es? = Y 2.
rm’ z Tm

>
rily rktl(2k + 1) S0

Now s < 7%y < rft1(2k 4+ 1) and s =

Tm < (rkk+1(2k: + 1))2 < Tei1

and so m < k and thus m = k. Therefore s = r,” °=. Since ry, is a prime which does

Y
not divide y, we must have that y divides z and therefore that y = z. Let t = v — 9.

v=0 = ¢s = 1,0y we have ¢ = r,2Vy. Let n = 26 — v. Since ¢ = r,"y and

s =ri! we have that n > 0and ¢t > 1. Since n+t =9 we have that n +t < k+1. O

Since cry,

To complete the proof of the theorem, let Ay = B, let Ay = {rk” :keNandn e
{1,2,...,k + 1}}, and let C = A; U As. Given k € N, let a = ri(k + 1) and let
d=0b=r=rg. Then for t,n € {0,1,...,k — 1} one has br"™ = r,""t € Ay, a +td =
re(k+t+1) € Ay, and br*(a + td) = ry" 2 (k +t + 1) € A;.
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It is trivial that Ao does not contain {cs(a + d), cs(a + 2d)} as the latter element
is less than twice the former. Suppose we have some ¢,a,d € N and some s € N\ {1}
such that
{es,cs?,cs(a+d), cs?(a+d),cs(a+2d)} C A, .

Pick by Lemma 4.20 some k € N, n € {0,1,...,k}, t € {1,2,....k+1 — n},
and y € {k+ 1,k+2,...,2k + 1} such that ¢ = r;"y and s = r’. Again invoking
Lemma 4.20, pick some &' € N, m € {0,1,...,k'}, ¢/ € {1,2,...,k' +1 — m}, and
ze{kK + 1,k +2,...,2k' + 1} such that c(a +d) = rp™z and s = rert

Since 7t = s = 1! we have k = k' and t = ¢. Pick by Lemma 4.19 £” € N and
ve{l,2,....,k" + 1} such that

{cs(a+d),cs(a+2d)} C {rpPw:we "+ 1,k +2,...,2k" +1}}.

t+my we have k” = k and v = t + m. Since cs = r,!™"y we have

Since cs(a + d) = 1,
a+d= 'r’km_"i. Since rj, is a prime which does not divide y we have that y divides z
so y = z and thz{ls a+d=rym "

Pick w € {k+1,k+2,...,2k + 1} such that cs(a + 2d) = ri'T™w. Then a + 2d =

rkm_”g so w divides y and thus a + 2d = r;™~". Therefore d = 0, a contradiction. [
Y

We now present a general result which is strong enough to establish an extension
of Theorem 1.4.

4.21 Theorem. Let (S,-) be a semigroup, let F be a set of subsets of S with the property
that each central subset of S contains a member of F, let G be a partition reqular family
of finite subsets of S, and let A be a central subset of S. Then there exist F € F, G € G,
and t € S such that FUtGF C A.

Proof. Pick a minimal idempotent p of 3S with A € p. Then by [13, Theorem 4.39]
{s € S:s51A € p} is syndetic so pick H € P¢(S) such that

S=Ujeg t HseS:s7tAep}.
Pick G € G and t € H such that G C ¢t 1{s € S : s 1A € p}. Then for each s € G,
(ts)"'A epso AN(,eq (ts) T A € p. Pick F € F such that F C AN(,c (ts) 1A.0O

4.22 Corollary. Let (S,-) be a semigroup, let F and G be partition regular families of
finite subsets of S. Assume that for all F' € F and all z,t € S, tFx € F and let A be
a piecewise syndetic subset of S. Then there exist FF € F, G € G, and t € S such that
tGF C A. If S is commutative, then there exist F' € F and G € G such that GF C A.
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Proof. Note that by Lemma 2.3 F has the property that every piecewise syndetic
subset of S contains a member of F. In particular every central subset of S contains a
member of F. Pick by [13, Theorem 4.43] some z € S such that 2714 is central. Pick
by Theorem 4.21 some F € F, G € G, and t € S such that F UtGF C = 'A. Then
(xt)GF C A. O

The following corollary extends Theorem 1.4. Recall that any central set is a

piecewise syndetic IP set.

4.23 Corollary. Let A be a piecewise syndetic IP-set in (N,-) with 1 ¢ A and let k € N.
Then there exist a,r,d € A such that

{ri(a+id):i,j€{0,1,....k}}u{dr’:je{0,1,....k}} CA.
Proof. Let}":{{brj :jG{O,l,...,k}}:bENandreA} and let
G={{d}u{a+id:ic{0,1,...,k}} :a,d e N}.

By Corollary 2.9, F and G are partition regular. And trivially if FF € F and t € N,
then tF € F. Pick by Corollary 4.22 some F' € F and G € G such that GF C A. Pick
b € N and r € A such that F = {brj 15 €40,1,. ,k}} and pick a1,d; € N such that
G={d}U {a1 +dy i1 € {0,1,...,k}}. Let a = a1b and d = d;b. O

We see that we can turn the tables somewhat, translating geometric progressions
by arithmetic progressions. (Since addition does not distribute over multiplication, we
end up with the four variables a, d, b, and r, rather than just the three of Corollary
4.23.)

4.24 Corollary. Let A be a piecewise syndetic IP-set in (N,+) and let k € N. Then
there exist d € A, a,b € N, and r € N\ {1} such that

{a+id+brf:i,j€{0,1,....;k}}U{a+id+r:ie{0,1,....k}} CA.
Proof. Let ]-“:{{aJrid:z'e{O,l,...,k}}:aeNanddeA} and let
G={{r}u{br’:j€{0,1,...,k}} :beNandr e N\ {1}}.

Exactly as in the proof of Corollary 4.23, F and G are partition regular and if F' € F
and t € N, then t + F € F. Pick by Corollary 4.22 F € F and G € G such that
G+ F C A PickbeNandr e N\ {1} such that G = {r} U {bri : j € {0,1,...,k}}.
Pick a € N and d € A such that F = {a—l—id:z’e {O,l,...,k}}. O

We do not know whether we can require that any of a, b, or r be in A in Corollary
4.24.
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5. Algebra in (8N, +) and (8N,-)

— extending the Central Sets Theorem

In attempting to derive results about geoarithmetic progressions, the approach that one
might try first after a little experience in deriving Ramsey Theoretic consequences of
the algebra of SN would be to choose an appropriate idempotent ¢ in (ON, -) and show
that if A € ¢, then there is some r, preferably in A, such that ﬂljzo(rs)_lA €q. We

show first that such an approach is doomed to failure.

5.1 Theorem.

(a) For all ¢ € BN, there exists a partition {Ao, A1} of N such that for all i € {0, 1}
and all x € N, (—x + A;) N (—2x + A;) ¢ q. In particular there exists A € q such
that for all x € N, either —x + A ¢ q or -2z + A ¢ q.

(b) There does not exist ¢ € BN such that for each A € q there is some r € N\ {1}
with r~*A € q and (r*)™'A € q.

Proof. (a) Let ¢ € ON. Then ¢ + QN is a right ideal of (8N, +) so there is an additive
idempotent in ¢ + GN. Pick r € SN such that ¢ + r is an idempotent in (6N, 4). Then
q+7r e~ ct(N2") by [13, Lemma 6.6].

Define f : N — w by f(n) = min F where F' € Pg(w) and n = ), p 2. Then f
has a continuous extension f : AN — fw. For i € {0,1} let 4; = {z e N: 2N —i) €
fla+7)}.

Let i € {0,1} and let z € N and suppose that (—z + A;) N (=2 + A;) € q. Pick
j,k € w such that x = 27(2k + 1). Denote addition of z on the left in SN by A, and
addition of z on the right by p,. Then ]?o A is constantly equal to f(x) and fo Aoy 1S
constantly equal to f(z)+1 on N2/72, which is a member of g+7. So f(x—I—q—I—'r’) = f(x)
and f(2z+q+r) = f(x)+1. Therefore forzopy(q) = f(x) and folyzop,(q) = f(x)+1

SO

{yeN:f(w—l—y—i—'r’):f(a;) and f(Zx—l—y—l—r):f(a:)—l—l}Eq

so pick y € (—z + A;) N (—2x + A;) such that f(z +y+7) = f(z) and fz+y+r) =
f(z) + 1.

Since o +y € A;, we have that 2N —i € f(z +y+r) = f() so f(z) +i € 2N.
(Recall that we are identifying points of N with the principle ultrfilters they generate.)

Since 2z +y € A;, we have that 2N —i € f(2e+y+7r) = f(x)+1so f(z)+i+1 € 2N,

a contradiction.
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(b) For x € N\ {1}, let ¢(x) be the number of terms in the prime factorization of x.

Then ¢ is a homomorphism from (N\ {1}, -) onto (N, +) and so its continuous extension

(: (BN\ {1},-) — (BN, +) is also a homomorphism by [13, Corollary 4.22). O

We know that there exist multiplicative idempotents in the closure of the set of
additive idempotents in SN. In fact, there exist minimal multiplicative idempotents in
the closure of the set of minimal additive idempotents in N, and we used one such in
the proof of Theorem 3.6. In particular we know that ¢/K (SN, +) N K (AN, ) # 0. In
the following we shall assume that geometric progressions have integer common ratios,

though the lemma would remain valid with the more liberal definition.

5.2 Lemma. Let D = {q € ON : for all A € ¢, A contains arbitrarily long geometric
progressions}. Then D is a closed two sided ideal of (BN, ). In particular c/K (SN, -) C
D.

Proof. Trivially D is closed. Let ¢ € D, let s € ON, let A € gs, and let B € sq. Let
n € N. We need to show that A and B contain length n geometric progressions. Now
{reN:271A € s} € gsopicka € Nand r € N\ {1} such that {a,ar,ar?, ... ar" 1} C
{r € N: 2714 € s}. Then ?:_Ol(art)_lA € s so pick b € ﬂ?z_ol(art)_lA. Then
{ba, bar,bar?, ... ,bar" '} C A. Also {x e N: 27 !B € ¢} € s so pick € N such that
2 !B € q. Pick c € Nand d € N\ {1} such that {c,cd, cd?, ..., cd" '} C 27 !B. Then
{ze, xed, xed?, ..., xed” 1} C B. O

We see now that there would be interesting Ramsey theoretic consequences of the
existence of an additive idempotent in the set D defined above. (Compare the conclusion
with those of Theorem 3.6.)

5.3 Theorem. Let D = {q € SN : for all A € ¢, A contains arbitrarily long geometric
progressions} and assume that there exists ¢ € D such that ¢ + ¢ = q. Then whenever
r € Nand N =J_, A;, there existi € {1,2,...,7} and a sequence (H,)5>, such that
for each n € N, H,, is a length n geometric progression and for every F' € P¢(N), one
has Y, cp Hn C As.

Proof. Pick ¢ € D such that ¢+ g =g¢q. Given B € ¢, let B* ={x € B: —x + B € ¢}.
Then by [13, Lemma 4.14], whenever x € B* one has —x + B* € q.

Pick i € {1,2,...,7} such that A; € q. Pick x € A;” and let H; = {z}. Let n € N
and assume that (H;)}* ; have been chosen so that for any F with ) # F C {1,2,...,n}
and any f € Xycp He, Y, cp f(t) € A", Let

B=AN{=Y,ep )+ A% FePs({1,2,...,n}) and f € X ep Hy}.
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Then B € q so pick a length n + 1 geometric progression H,; C B. ]

We now turn our attention to deriving an extension, Theorem 5.8, of the Central
Sets Theorem for countable commutative semigroups [13, Theorem 14.11]. The Central
Sets Theorem for (N, +) is due to Furstenberg [6, Proposition 8.21]. See [13, Part III]
for numerous combinatorial applications of the Central Sets Theorem. Theorem 5.8 has
several earlier theorems as immediate corollaries. In particular, it implies a stronger
version of Theorem 4.8. To establish this theorem we shall use the notion of partial

semigroup introduced in [2].

5.4 Definition.

(a) A partial semigroup is a set S together with an operation - that maps a subset of
S x S into S and satisfies the associative law (z-y) -2z =z - (y - 2) in the sense that
if either side is defined, then so is the other and they are equal.

(b) Given a partial semigroup (S,-) and x € S, P(z) ={y € S : x -y is defined}.

(c) Given a partial semigroup (S,-),z € S,and AC S,z 'A={yeP(x):z-y € A}.

(d) A partial semigroup (S, ) is adequate if and only if for each F' € Py (.5),

Neer Pz) # 0.
(e) Given an adequate partial semigroup (S,-), 05 = (), cg clpsP(x).

5.5 Lemma. Let (S,-) be an adequate partial semigroup and for p,q € §S define p-q =
{A CS:{reS:atAecq}e p}. Then, with the relative topology inherited from 35,

(6S, ) is a compact right topological semigroup.

Proof. [2, Proposition 2.6]. O
T

onto

5.6 Lemma. Let (S,:) and (T,*) be adequate partial semigroups and let f : S==
have the property that for all z € S and all y € Ps(z), f(y) € Pr(f(z)) and f(z-y) =
f(x)* f(y). Let f: (S — BT be the continuous extension of f. Then the restriction of
f to 85 is a homomorphism from (6S,-) to (6T, ).

Proof. [2, Proposition 2.8]. O
5.7 Definition. ® = {f: N — N: f(n) <n for all n € N}.

5.8 Theorem. Letk € N. For eachi € {1,2,...,k}, let E; be a countable commutative
semigroup with identity e;. For each i € {1,2,...,k} and j € N, let (2 ;)72 be a
sequence in E;. We assume that, for everyi € {1,2,...,k}, zi1+=e; for everyt € N,

and that (z; 24)52, is a sequence which contains every element of E; infinitely often.
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Let 1 be an arbitrary function mapping E1 X Ey X --- X Ex to a set X and let C; be
a central set in E; for each i € {1,2,...,k}. Then, for any finite coloring of X, there
exist a sequence (Hy )52, in Pr(N), a sequence (¢ n)pey in E; for each i€ {1,2,...,k}
and a monochrome subset A of X such that the following statements hold for every
G € P¢(N), everyi € {1,2,...,k} and all f1, fa,..., fr € ®:

(Z) ¢(HneG Cin - HteHn ZL,f1(n),ts - HneG Ck,n ° HteHn Zk,fk(n),t) € A and
(ii) HneG Cin * HteHn Zi fi(n),t € C;.

Proof. Let L = N”* and let v be a “variable” not in L. A located word over L is a function
w from a nonempty finite subset D,, of N to L. Let Sy be the set of located words over
L and let S; be the set of located variable words over L, that is the set of words over
LU{v} in which v occurs. Let S = SoUS;. Given u,w € S, if max D,, < min D,,, then
define u - w by Dy.., = D, U D,, and for t € D,

u(t) ift e D,
(“'w>(t):{w(t) if t € D, .

With this operation S, Sy, and S; are adequate partial semigroups so by Lemma 5.5
0S, 65y, and 0S7, are compact right topological semigroups. Also 57 is an ideal of
0S. (The verification of this latter statement is an easy exercise and a good chance
for the reader to see whether she has grasped the definition of the operation.) Notice
that for j € {1,2} and p € 85}, one has that p € 5; if and only if for each n € N,
{we S; :minD,, >n} € p.

For each a € L, define 0, : S — Sy as follows. For w € S, let Dy, () = D, and for

te Dy, let

sutw) = { "1 el
That is, 0,(w) is the result of replacing each occurrence of v in w by a. Denote also by
0, its continuous extension taking (4S5 to 43Sy and notice that 6, is the identity on Sy
hence also on (5.

For each i € {1,2,...,k}, define g; : Sg — E; by g;(w) = HteDw Zi mi(w(t)),¢ for
each w € Sy. We shall also use g; to denote the continuous function from £S5y to GFE;
which extends g;.

We claim that, if b; € E; for each i € {1,2,...,k} and if n € N, there exists w € Sy
such that g;(w) = b; for every i € {1,2,...,k} and min(D,,) > n. To see this, observe
that we can choose n1,n2,...,n, in Nsuch that n <n; <no <... <ngpand z;2,, = b;

for every i € {1,2,...,k}. We can then define w by putting D,, = {ni,na,...,nx} and
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w(n;) = (1,1,...,1,2,1,...,1), with 2 occurring as the "M term in this k-tuple, for each
ie€{1,2,...,k}.

In particular each g; : Sy — E; is surjective and so, by Lemma 5.6, The restriction
of g; to 05y is a homomorphism to dF; = BE;.

For each i € {1,2,...,k}, let p; be a minimal idempotent in SE; for which C; € p;.
We shall first show that we can choose a minimal idempotent ¢ € 6.5y and an idempotent
r € 6571 such that ¢ < r, g;(q) = p; for every i € {1,2,...,k}, and 0,(r) = ¢ for every
ac L.

Given (X1, Xo,..., Xk, n) € p1 Xp2 X+ - X pr X N we choose w(X1, Xo, ..., Xp,n) €
So such that min(Dy,(x, x,,..., x,,n)) > 7 and gi(w(Xl,Xg, ) ..,Xk,n)) € X, for each
i€ {1,2,....k}. We give p; X py X -+ X pr X N a directed set ordering by stating
that (X1, Xo,...,Xg,n) < (X1, X5,...,X;,n') if and only if X/ C X; for each ¢ €
{1,2,...,k} and n < n'. If z is any limit point of the net (w(X1, Xs,..., Xk, n)) in 5Sy,
we have x € 65y and g;(x) = p; for every i € {1,2,...,k}. (That z € §S follows from
the fact that min(D,,(x, x,,..., x,,n)) > 7. To see that g;(x) = p;, let A € p; and suppose
gi(r) ¢ A. Pick B € z such that g;/ B]NA=0. Let X; = A and for j #i let X, = E;.
Pick (X{,X5,...,X],n') = (X1, X2,..., Xk, 1) such that w(X{, X3,...,X;,n') € B.
But g; (w(X{, X5, ... ,X,'C,n’)) € X/ C X; = A, a contradiction.)

Let C = {z € 65y : gi(w) = p; for all i € {1,2,...,k}}. We have just seen that C is
nonempty, and so it is a compact subsemigroup of §5y. Let ¢ be a minimal idempotent
in C. Then ¢ is minimal in 0Sg, because if ¢’ is any idempotent of 65y satisfying ¢’ < ¢,
we have ¢;(¢) < gi(q) = p; for every i € {1,2,...,k}. This implies that g;(¢') = p; for
every i € {1,2,...,k}. So ¢’ € C and thus ¢’ = q.

Let r be any idempotent in the intersection of the right ideal ¢d.5; and the left
ideal 651q of 5S1. Then r < q. For any a € L, we have 6,(r) < 0,(¢) = ¢ and hence
0.(r) = q.

We define 7 : Sy — X by V(w) = ¢(g1(w), g2(w), ..., gr(w)). We can choose a
monochrome subset A of X such that 77![A] € ¢. Let Q = 7 '[A] N ﬂle g: ).
Then Q € q. Let Q* = {w € Q : w'Q € q}. Then Q* € g and w™'Q* € ¢ for every
w € Q* by [13, Lemma 4.14].

We shall inductively choose a sequence (w,)$2 ; in S7 such that for each n € N,

(a) if n > 1, then min D,,, > maxD,, _, and

1

(b) for every nonempty F C {1,2,...,n} and every choice of a; € {1,2,...,t}* for
teF, [,cp Oa, (i) € Q.
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We first choose w; € S; such that 6,(w;) € Q*, where a denotes the k-tuple
(1,1,...,1). This is possible because 8, ' [Q*] € r and so 0, '[Q*] # 0. Now let n € N

and assume that wq,ws, ..., w, have been chosen. Let
U:{HteF Oq,(wy) : 0 # F C{1,2,...,n} and for alltGF,atE{l,Q,...,t}k}.

By our assumption (b), U C Q* so [,cy u~tQ* € q. We observe that, for any V € ¢
and any a € L, 0, '[V] € r and that {w € S} : min(D,,) > max(D,, )} € 7. Thus we

can choose w41 such that min(D,,, ) > max(D,,, ), and

Wnt1 € N{0.7[Q N Nyer v 1Q*] ta € {1,2,...,n+1}F} .

We can now conclude the proof. For each n € N and i € {1,2,...,k}, let H,, =
{t € Dy,, : wy(t) = v} and let ¢;,, = HteDwn\Hn Zi mi(wn(t)),t- Lhen, if a € L, we have
9i(0a(wn)) = cim - Tlicn, Zimsa)t -

Suppose now that fi, fa,...,fr € ® and G € Py(N). For each n € N, define
an €{1,2,...,n}* by m;(a,) = fi(n) for each i € {1,2,...,k}. Then for each i € {1, 2,

..., k}, we have

[lhea Cim - Tlien, Zifime =nece Cim - 1lien, %
= Il,eq 9i(0a, (wn))
= 9i(Ilnec Oa. (wn)) -
Since [],cq ba, (wn) € Q, V[Q] € A, and ¢;[Q] C C; for each i € {1,2,...,k} the

conclusions of the theorem hold. ]

We show now how to derive a simple strengthening of Theorem 4.8 from Theorem
5.8.

5.9 Corollary. Let m,k € N. Let C; be central in (N, +) and let Cy be central in (N, -).
For eachi € {0,1,...,k} let (x;+)i21 and (y; )52, be sequences in N. Let N = JI- | As.
Then there exist s € {1,2,...,m}, F € P¢(N), and a,b € N such that

{ba} U{bla+ Y ,cp i) 1€ {0,1,...,k}} U

{ba - Tlep vie:5 €401, K} U

{b<a + EteF Tit) - (HteF yj,t) 11,5 €40,1,..., k}} C As,

{fa}U{a+Y,cp zip:i€{0,1,...,k}} C Cy, and

{o}U{b-Tlep vju 13 €{0,1,...,k}} CCy.
Proof. Let 1 = (w,+) and let Ey = (N,-). Define ¢ : E; x Es — w by ¥(a,b) = ab.
For t € Nlet 211, = 0 and 2901 = 1. For i € {1,2} let (2;2)52; be a sequence
which contains every element of E; infinitely often. For j € {0,1,...,k} and t € N let
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21,48, = i and 22 43+ = Yj¢. (For j > k + 3 we do not care what z; ;; and 23 ;
are.)

Since N is an ideal of (w, +), C4 is central in Ey. Pick (H,)0% 1, (c1n)021, (c2.n)02q,
and A as guaranteed by Theorem 5.8. Pick s € {1,2,...,m} such that A C A,. Let
n =k + 3. (We choose n = k + 3 rather than n = 1 so that there will be functions f;
and fy in ® with the properties required of them below.) Let a = ¢y, let b = ca .,
and let F' = H,. If fi(n) = 1, then c1n + > ey 21,5y = a If fi(n) =7 +3
for some j € {0,1,...,k}, then c1n 4+ ey 215 (n)e = @+ D yep i I fa(n) =1,
then can - [l1eq, #2,fo(n),e = b If fa(n) = j + 3 for some j € {0,1,...,k}, then
C2n - HteHn 22, fa(n),t = 0 HteF Yjt- O

We conclude with a simple variation on the proof of Theorem 5.8 which applies in

case the semigroups are all the same.

5.10 Theorem. Let k € N, let ' be a countable commutative semigroup with identity
e, let R1, Ry, ..., Ry be IP-sets in E, and let C' be a central subset of E. There exist
r; € R; and b; € E for each i € {1,2,...,k} such that whenever f : {1,2,...,k} —
{1,2,...,k}, h : {1,2,...,k} — {0,1,...,k}, and 0 # F C {1,2,...,k}, one has
[Lier i~ (rpa)"™ e C.

Proof. Let L = {1,2,...,k2+k+2}" and let v, So, Si, S, (Dw)wes, and (0)ecr,
be as in the proof of Theorem 5.8. For j € {1,2,...,k} pick a sequence (z;.){2; such
that FP((z;+)i2,) € R;. Form € {0,1,...,k}, j € {1,2,...,k}, and t € N, let
Zoymk4it = ()™ Let 21+ = e for each t and let (22,)72; be a sequence in E which
takes on each member of E infinitely often.

For i € {1,2,...,k}, define g; : So — E by gi(w) = [[,cp, #mi(w(t)),¢- For F' €
Pr({1,2,...,k}), define Vp : So — E by Yp(w) = [[;cr 9i(w) (so Vgip = gs). Denote
also by 7g the continuous extension taking 3Sy to SF.

As in the proof of Theorem 5.8 we see that given any bq,bs,...,br € E there
is some w € Sy such that g;(w) = b; for each i € {1,2,...,k}. In particular each
Y is a surjective homomorphism so by Lemma 5.6 the restriction of 7g to 4S5y is a
homomorphism to SE.

Pick a minimal idempotent p € [E such that C' € p. We claim that for any
B € p and any n € N there exists wp,, € So such that for all F' € P;({1,2,...,k}),
Yr(wp.,) € B. To see this pick by, ba, . . ., b such that FP((b;)¥_,) C B, which one may
do because p is an idempotent. Pick wp, such that g;(wp ) = b; for each i € {1,2,

.k}
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Direct D = {(B,n): B € pand n € N} by (B,n) < (B’,n’) if and only if B’ C B
and n < n'. Let u be a limit point of the net (wp ) (B n)ep in BSy. We see as in the
proof of Theorem 5.8 that u € Sy and Yp(u) = p for all F € P¢({1,2,...,k}). Let J =
{we dSy:Vp(w) =pforall F € P¢({1,2,...,k})}. Then J is a compact subsemigroup
of 05y since each 7 is a continuous homomorphism. Pick a minimal idempotent ¢ of
J. Given any idempotent ¢’ € 0.5y such that ¢’ < ¢, for each F' € Pr({1,2,...,k}),
Yr(qd") <Vr(q) =pso Vr(q) =p. Thus ¢’ € J and so ¢’ = ¢q. That is, ¢ is minimal in
3So.

Now we claim that we may choose w € Sy such that Vp(6,(w)) € C for every
a € Landevery F € Ps({1,2,...,k}). To see this, pick an idempotent r in ¢651MdS1q.
Then r < ¢ so for each a € L, 0,(r) < 0,(q) = q and so 0,(r) = g and thus for each
FePr({1,2,...,k}), Yp(0a(r)) = Vr(q) = p. Pickw e S NN{(Ypob,) t[C]:aeL
and F € Pr({1,2,...,k})}.

Let H={t € Dy : w(t) =v}. Fori e {1,2,...,k}, let b; = HteDw\H 2 (w(t)) ¢
and let r; = [[,cy @i Now let f:{1,2,...,k} — {1,2,...,k}, h: {1,2,...,k} —
{0,1,...,k},and 0 # F C {1,2,...,k}. Let

o= (2+h()k+ f(1), 24 h(2Qk+ F(2),..., 2+ h(k)k + f(E)) .
Then for ¢ € F,
bi(rpi))™ ™ = bi - (e (ai),e)"?)
=b;- HteH Rmi(a),t
= gi(0a(w))
0 [Lier bi(’“f(i)>h(i) =7TF (Qa(w)) eC. 0
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