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Abstract. Previous research extending over a few decades has established that multi-
plicatively large sets (in any of several interpretations) must have substantial additive
structure. We investigate here the question of how much multiplicative structure can
be found in additively large sets. For example, we show that any translate of a set
of finite sums from an infinite sequence must contain all of the initial products from
another infinite sequence. And, as a corollary of a result of Renling Jin, we show that
if A and B have positive upper Banach density, then A + B contains all of the initial
products from an infinite sequence. We also show that if a set has a complement which
is not additively piecewise syndetic, then any translate of that set is both additively
and multiplicatively large in several senses.

We investigate whether a subset of N with bounded gaps – a syndetic set – must
contain arbitrarily long geometric progressions. We believe that we establish that this
is a significant open question.

1. Introduction

It has been known since 1979 [18, Theorem 2.6] that whenever the set N of positive

integers is partitioned into finitely many parts, one of those parts must contain a se-

quence with all of its finite sums (without repetition) and another sequence with all of

its finite products. And it was shown in 1990 [5, Corollary 5.5] that one cell of any finite

partition of N must be both additively and multiplicatively central (a notion defined in

Definition 1.4 below). In particular, in addition to the finite sums and products men-

tioned above, it must contain arbitrarily long arithmetic progressions and arbitrarily

long geometric progressions. (See [20, Part III] for much more information about the

kinds of combinatorial structures guaranteed to any central set.)

There is a long history in Ramsey Theory of asking, when one knows that some

cell of any finite partition of N must contain certain structures, whether being large
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in any of several senses is good enough to guarantee the presence of those structures.

For example, van der Waerden’s Theorem [25] says that whenever N is partitioned into

finitely many cells, one of these must contain arbitrarily long arithmetic progressions;

Szemerédi’s Theorem [24], says that any subset of N with positive upper density must

contain arbitrarily long arithmetic progressions.

Sets which are large in any of several multiplicative senses must have substantial

additive structure. For example, it is not hard to show that any set which is piecewise

syndetic in (N, ·) (a notion defined in Definition 1.2 below) must contain arbitrarily long

arithmetic progressions. (We shall present a short proof of this fact after Definition

1.2.) More recently, several results have been obtained about additional structure that

must be present in any multiplicatively large set. For example [3, Theorem 1.5] says

that any multiplicatively large set (in a sense that we will not define here but which

is implied by piecewise syndeticity in (N, ·) ) must contain a configuration of the form
{

b(a+ id)j : i, j ∈ {0, 1, . . . , k}
}

for each k ∈ N. Additional results in this direction can

be found in [3].

We are concerned in this paper with the reverse question: how much multiplicative

structure can be guaranteed in any additively large set? With one possible exception

where we do not know, the answer is “not much”. This undoubtedly is related to

the fact that multiplication distributes over addition, and not the other way around.

(For example, if an arithmetic progression is multiplied by a constant, the result is an

arithmetic progression.)

We shall be concerned with several notions of largeness. Among these are various

notions of density which we define next. The notions d and d are referred to as upper

asymptotic density and lower asymptotic density respectively, d∗ is referred to as upper

Banach density and `d and `d are referred to as upper logarithmic density and lower

logarithmic density respectively. If the limits involved in Definition 1.1(c) and (g) exist,

then d and `d are referred to as asymptotic density and logarithmic density respectively.

1.1 Definition. Let A ⊆ N.

(a) d(A) = lim sup
n→∞

|A ∩ {1, 2, . . . , n}|
n

.

(b) d(A) = lim inf
n→∞

|A ∩ {1, 2, . . . , n}|
n

.

(c) If lim
n→∞

|A ∩ {1, 2, . . . , n}|
n

exists, then d(A) = lim
n→∞

|A ∩ {1, 2, . . . , n}|
n

.

(d) d∗(A) = sup{α : for each m ∈ N there exist k, n ∈ N such that n > m and
|A ∩ {k + 1, k + 2, . . . , k + n}|

n
≥ α}.
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(e) `d(A) = lim sup
n→∞

∑{ 1
a

: a ∈ A ∩ {1, 2, . . . , n}}
log n

.

(f) `d(A) = lim inf
n→∞

∑{ 1
a

: a ∈ A ∩ {1, 2, . . . , n}}
log n

.

(g) If lim
n→∞

∑{ 1
a

: a ∈ A ∩ {1, 2, . . . , n}}
logn

exists, then

`d(A) = lim
n→∞

∑{ 1
a

: a ∈ A ∩ {1, 2, . . . , n}}
logn

.

Relations among the notions defined above are displayed in Lemma 2.1 below.

Other notions of largeness with which we shall be concerned originated in the study

of topological dynamics and make sense in any semigroup. Five of these have simple

elementary descriptions and we introduce them now. The sixth, central , is most simply

defined in terms of the algebraic structure of βS, the Stone-Čech compactification of

the discrete semigroup S, which we shall describe shortly. Given a (not necessarily

commutative) semigroup (S,+), a subset A of S, and x ∈ S, we let −x+ A = {y ∈ S :

x + y ∈ A}. Given a sequence 〈xn〉∞n=1 in S, FS(〈xn〉∞n=1) = {∑n∈F xn : F ∈ Pf (N)}
where Pf (N) is the set of finite nonempty subsets of N and the sums are taken in

increasing order of indices. If the operation is denoted by ·, we write FP (〈xn〉∞n=1) =

{∏n∈F xn : F ∈ Pf (N)} and let x−1A = {y ∈ S : x · y ∈ A}. If m ∈ N, then

FP (〈xn〉mn=1) =
{
∏

n∈F xn : ∅ 6= F ⊆ {1, 2, . . . ,m}
}

.

1.2 Definition. Let (S,+) be a semigroup and let A ⊆ S.

(a) A is thick if and only if whenever F ∈ Pf (S) there exists x ∈ S such that F+x ⊆ A.

(b) A is syndetic if and only if there exists G ∈ Pf (S) such that S =
⋃

t∈G −t+ A.

(c) A is piecewise syndetic if and only if there exists G ∈ Pf (S) such that
⋃

t∈G −t+A
is thick.

(d) A is an IP-set if and only if there exists a sequence 〈xn〉∞n=1 in S such that

FS(〈xn〉∞n=1) ⊆ A.

(e) A is a ∆-set if and only if there is a sequence 〈sn〉∞n=1 in S such that whenever

n < m one has sm ∈ sn + A.

If S can be embedded in a group, then a subset A of S is a ∆-set if and only if

there is a sequence 〈sn〉∞n=1 in S such that {−sn +sm : n < m} ⊆ A, so A is a difference

set .

Notice that each of the notions thick and syndetic imply piecewise syndetic and

that any thick set is an IP-set. (To verify the latter assertion, having chosen 〈xt〉nt=1,
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pick a ∈ S and pick y ∈ S such that
(

{a} ∪ (FS(〈sn〉∞n=1) + a)
)

+ y ⊆ A and let

xn+1 = a + y.) Also, any IP-set is a ∆-set. (Given FS(〈xn〉∞n=1) ⊆ A, let for each

n, sn =
∑n

t=1 xt.) It is easy to construct examples in (N,+) showing that no other

implications among these notions is valid in general.

In any semigroup, the properties “piecewise syndetic”, “IP-set”, and “∆-set” are

partition regular in the sense that whenever any set with one of those properties is

divided into finitely many classes, one of these classes must also have that property.

(See [6, Section 2].) Also the properties “d(A) > 0” and “`d(A) > 0” are partition

regular.

In (N,+) thick sets are those that contain arbitrarily long intervals, syndetic sets

are those with bounded gaps, and piecewise syndetic sets are those with a fixed bound

b and arbitrarily long intervals within which the gaps are bounded by b.

As we promised, we now present a simple proof of the existence of additive structure

in multiplicatively large sets.

1.3 Theorem. Let A be piecewise syndetic in (N, ·). Then A contains arbitrarily long

arithmetic progressions.

Proof. Pick G ∈ Pf (N) such that
⋃

t∈G t−1A is thick in (N, ·) and let r = |G|. Let

l ∈ N and pick by van der Waerden’s Theorem some n ∈ N such that whenever {1, 2,
. . . , n} is r-colored, there is a monochrome length l arithmetic progression. Pick x ∈
N such that {1, 2, . . . , n} · x ⊆ ⋃

t∈G t−1A. Then {1, 2, . . . , n} ⊆ ⋃

t∈G (tx)−1A so

pick t ∈ G and a, d ∈ N such that {a, a + d, . . . , a + (l − 1)d} ⊆ (tx)−1A. Then

{txa, txa+ txd, . . . , txa+ (l− 1)txd} ⊆ A.

We now present a brief review of basic facts about (βS,+). For additional infor-

mation and any unfamiliar terminology encountered see [20].

Given a discrete semigroup (S,+) we take the points of the Stone-Čech compact-

ification βS of S to be the ultrafilters on S, the principal ultrafilters being identified

with the points of S. Given A ⊆ S, A = {p ∈ βS : A ∈ p} and the set {A : A ⊆ S} is

a basis for the open sets (and a basis for the closed sets) of βS. Given p, q ∈ βS and

A ⊆ S, A ∈ p + q if and only if {x ∈ S : −x + A ∈ q} ∈ p. Be cautioned that even if

(S,+) is commutative, (βS,+) is not likely to be commutative.

With this operation, (βS,+) is a compact Hausdorff right topological semigroup

with S contained in its topological center. That is, for each p ∈ βS, the function

ρp : βS → βS defined by ρp(q) = q + p is continuous and for each x ∈ S, the function

λx : βS → βS defined by λx(q) = x + q is continuous. A subset I of a semigroup T is
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a left ideal provided T + I ⊆ I, a right ideal provided I + T ⊆ I, and a two sided ideal

(or simply an ideal) provided it is both a left ideal and a right ideal.

Any compact Hausdorff right topological semigroup T has a smallest two sided

ideal K(T ) =
⋃{L : L is a minimal left ideal of T} =

⋃{R : R is a minimal right ideal

of T}. Given a minimal left ideal L and a minimal right ideal R, L∩R is a group, and in

particular contains an idempotent. An idempotent in K(T ) is a minimal idempotent. If

p and q are idempotents in T we write p ≤ q if and only if pq = qp = p. An idempotent

is minimal with respect to this relation if and only if it is member of the smallest ideal.

A subset of S is an IP-set if and only if it is a member of some idempotent in βS.

(See, for example, [20, Theorem 5.12].)

The notion of central subsets of (N,+) was introduced by H. Furstenberg in [14]

using notions from topological dynamics. His definition was shown in [5] (with the

assistance of B. Weiss) to be equivalent to the following definition when restricted to

(N,+).

1.4 Definition. Let S be a semigroup and let A ⊆ S. Then A is central if and only if

there is a minimal idempotent p of βS such that A ∈ p.

A central set is in particular a piecewise syndetic IP-set. Given a minimal idem-

potent p and a finite partition of S, one cell must be a member of p, hence at least one

cell of any finite partition of S must be central. Central sets are fundamental to the

Ramsey Theoretic applications of the algebra of βS.

In 1936 Davenport and Erdős [10] showed that any set with positive upper log-

arithmic density (in particular any set with positive asymptotic density) contains all

products of initial segments of some sequence 〈yn〉∞n=1 in N \ {1}. (We present a simpli-

fied version of their proof as Theorem 2.8.) It is a result of Besicovitch [8] that positive

upper asymptotic density is not enough for this result. We present as Theorem 2.13 an

extension of Besicovitch’s result showing that there exist sets with upper asymptotic

density arbitrarily close to 1 that do not contain all products of initial segments of some

sequence 〈yn〉∞n=1 in N \ {1}.
In Section 2 we show that any translate of an additive IP-set contains all products

of initial segments of some sequence 〈yn〉∞n=1 but that translates of additive ∆ sets

need not. We show also that neither the Davenport-Erdős result nor the translate of

IP-set result is stronger than the other. We present in this section two corrolaries of

earlier results. As a corollary of a result of Ahlswede, Khachatrian, and Sárközy (and of

Szemerédi’s Theorem) we show that if `d(A) > 0, then there exists a sequence 〈xn〉∞n=1
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in N\{1} such that for all m ∈ N, there exist arbitrarily long arithmetic progressions in

A such that if a is any term in such a progression, then a · FP (〈xn〉mn=1) ⊆ A. And as

a corollary to a result of Jin, we show that whenever d∗(A) > 0 and d∗(B) > 0, A+ B

contains all products of initial segments of some sequence. More quantitative issues and

other related concepts are treated in [13].

In 1996 Brown and Gordon [9] showed that given k, any set with sufficiently large

upper asymptotic density contains a length k geometric progression, but that this den-

sity must be quite large. In Section 3 we improve slightly on these results and show

that thick sets with quite large upper asymptotic density need not contain length 3

geometric progressions. We have not been able to determine whether any additively

syndetic set must contain arbirarily long geometric progressions or even length 3 geo-

metric progressions.

In a surprising result we show that sets of the kind considered by Brown and

Gordon (obtained by restricting the powers of certain primes occuring in the prime

factorizations) cannot be additively piecewise syndetic. For example, it is a consequence

of Theorem 3.9 that the set of x ∈ N such that the prime factorization of x contains

no term of the form p100 is not additively piecewise syndetic. (Terms of the form pk

with k > 100 would be allowed.) As a consequence of the final result mentioned in the

abstract, this says that if B is the set of numbers whose prime factorization does include

some p100, then for any t ∈ Z, t+ B is both additively and multiplicatively central.

In Section 4 we address (but do not answer) the question of whether any additively

syndetic set must contain arbitrarily long geometric progressions. We present there

some very strong consequences of an affirmative answer to this question.

2. Initial products in certain additively large sets

By the initial products of a sequence 〈yn〉∞n=1 in N \ {1}, we mean {∏n
i=1 yi : n ∈ N}.

We begin by displaying some simple facts about upper and lower asymptotic density

and logarithmic density and the relations among them.

2.1 Lemma. Let A and B be subsets of N.

(a) d(A) + d(B) ≥ d(A ∪ B)

(b) `d(A) + `d(B) ≥ `d(A ∪B)

(c) d(A) = 1 − d(N \A)

(d) `d(A) = 1 − `d(N \A)

(e) d(A) ≤ `d(A)
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(f) d(A) ≥ `d(A)

(g) d∗(A) ≥ d(A)

(h) If d(A) exists, so does `d(A) and `d(A) = d(A).

Proof. Conclusions (a) through (d) and (g) can be routinely checked.

To verify (e) let α = `d(A) and suppose that d(A) > α. Pick δ such that d(A) >

δ > α. Pick k ∈ N such that whenever x ∈ N and x ≥ k one has |A∩{1, 2, . . . , x}| > δx.

Enumerate A in order as 〈an〉∞n=1. Then if n ≥ δk one has an ≤ n
δ
. Let m = dδke. For

any n ∈ N,
∑
{

1
a

: a ∈ A ∩ {1, 2, . . . , bn
δ
c}
}

≥∑n
t=m

1
at

≥∑n
t=m

δ
t

> δ · (log(n+ 1) − logm)

so
∑
{

1
a

: a ∈ A ∩ {1, 2, . . . , bn
δ
c}
}

logbn
δ
c >

δ · (log(n+ 1) − logm)

logn− log δ
→ δ

so `d(A) ≥ δ, a contradiction.

Conclusion (f) follows from conclusions (c), (d), and (e), and conclusion (h) follows

from conclusions (e) and (f).

We now set out to establish a result of Davenport and Erdős, namely that any

set with positive upper logarithmic density contains the initial products from some

sequence. We do this as a favor to the reader. Their original proof [10, Theorem 2] used

a theorem of Hardy and Littlewood to obtain a lemma which they used in the proof

of the theorem. They subsequently in [11] provided an elementary proof of the same

lemma. We present here as Lemma 2.7 only as much of that lemma as is needed to

complete the proof. Each of the following five lemmas is well known by many people,

and there are probably a few people who know them all well.

2.2 Lemma. Let P be any property which may be possessed by subsets of N. Assume

that when A has property P , there is some c ∈ A\{1} such that (A∩Nc)\{c} has property

P . Then any A with property P contains the initial products from some sequence in

N \ {1}.

Proof. Choose y1 ∈ A \ {1} such that (A ∩ Ny1) \ {y1} has property P . Inductively

assume that we have chosen 〈yi〉mi=1 such that for each n ∈ {1, 2, . . . ,m}, ∏n
i=1 yi ∈ A

and (A ∩ N
∏n

i=1 yi) \ {
∏n

i=1 yi} has property P . Let B = (A ∩ N
∏n

i=1 yi) \ {
∏n

i=1 yi}
and pick c ∈ B such that (B ∩ Nc) \ {c} has property P . Let ym+1 =

c
∏m

i=1 yi

.
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We write ω for N ∪ {0}, the set of nonnegative integers.

2.3 Definition. Let 〈pn〉∞n=1 enumerate the primes in order. For l, k ∈ N with l ≤ k,

Nl,k = {∏k
i=l p

αi

i : for each i ∈ {l, l+ 1, . . . , k} , αi ∈ ω} and Nk = N1,k.

2.4 Lemma. Let l, k ∈ N with l ≤ k. Then
∑

n∈Nl,k

1
n

=
∏k

i=l
pi

pi−1
.

Proof. We proceed by induction on k. If k = l, then
∑

n∈Nl,l

1
n

=
∑∞

t=0

(

1
pl

)t

=

pl

pl−1
. Now let k ≥ l and assume that

∑

n∈Nl,k

1
n

=
∏k

i=l
pi

pi−1
. Then

∑

n∈Nl,k+1

1
n

=
∑∞

t=0

(

1
pk+1

)t

·
(

∑

n∈Nl,k

1
n

)

=
∑∞

t=0

(

1
pk+1

)t

·∏k
i=l

pi

pi−1
=
∏k+1

i=l
pi

pi−1
.

2.5 Lemma. Let k ∈ N. Then lim
L→∞

`d(
⋃{Nm : m ∈ Nk and m ≥ L}) = 0.

Proof. By Lemma 2.1(f) it suffices to show that

lim
L→∞

d(
⋃{Nm : m ∈ Nk and m ≥ L}) = 0 .

To see this, let L, x ∈ N. Then for each m ∈ Nk with m ≥ L, |Nm ∩ {1, 2, . . . , x}| ≤ x
m

so

|⋃{Nm : m ∈ Nk and m ≥ L} ∩ {1, 2, . . . , x}|
x

≤∑{ 1
m

: m ∈ Nk and m ≥ L} .

By Lemma 2.4,
∑

m∈Nk

1
m

converges, so lim
L→∞

∑{ 1
m

: m ∈ Nk and m ≥ L} = 0 as

required.

In [11], Davenport and Erdős say that the following lemma is well known. We

thank Mate Wierdl for supplying us with the proof.

2.6 Lemma. There is a positive C ∈ R such that for all k ∈ N,
∑

n∈Nk

1
n
≤ C log pk.

Proof. By [17, Theorem 427] there exists B ∈ R such that for all k ∈ N,
∑k

i=1
1
pi
<

log log pk + B. Also, given pi, log
(

pi

pi−1

)

= log
(

1 + 1
pi−1

)

< 1
pi−1 = 1

pi
+ 1

pi(pi−1) so
∑k

i=1 log
(

pi

pi−1

)

<
∑k

i=1
1
pi

+
∑k

i=1
1

pi(pi−1) <
∑k

i=1
1
pi

+ 1. Thus

∑

n∈Nk

1
n

=
∏k

i=1

(

pi

pi−1

)

= exp
(

∑k
i=1 log

(

pi

pi−1

))

< exp
(

∑k
i=1

1
pi

+ 1
)

< exp(log log pk + B + 1)

= eB+1 log pk

8



2.7 Lemma. Let A be an infinite set and let 〈an〉∞n=1 enumerate A in increasing order.

Let B =
⋃

a∈A Na. Then lim
M→∞

`d(B \⋃M
n=1 Nan) = 0.

Proof. For each k ∈ N, let Dk =

∑

n∈B∩Nk

1
n

∑

n∈Nk

1
n

and let Ek = B \ ⋃a∈A∩Nk
Na. We

show first that if k < m and pk ≤ x < pm+1, then

(∗) ∑
{

1
n

: n ∈ Ek ∩ {1, 2, . . . , x}
}

≤∑n∈Nm

1
n
(Dm −Dk) .

To this end we first observe that

Ek ∩ {1, 2, . . . , x} ⊆ (B ∩Nm) \ {bn : b ∈ B ∩Nk and n ∈ Nk+1,m}

and {bn : b ∈ B ∩ Nk and n ∈ Nk+1,m} ⊆ B ∩ Nm. Observe also by Lemma 2.4 that

(
∑

n∈Nk

1
n
) · (∑n∈Nk+1,m

1
n
) =

∑

n∈Nm

1
n
. Consequently

∑
{

1
b

: b ∈ Ek ∩ {1, 2, . . . , x}
}

≤∑b∈B∩Nm

1
b
−∑{ 1

bn
: b ∈ B ∩Nk and n ∈ Nk+1,m}

=
∑

b∈B∩Nm

1
b
−∑b∈B∩Nk

1
b
·
(

∑

n∈Nk+1,m

1
n

)

=
∑

n∈Nm

1
n
·
(

∑

n∈B∩Nm

1
n

∑

n∈Nm

1
n

−
∑

n∈B∩Nk

1
n

∑

n∈Nk

1
n

)

=
∑

n∈Nm

1
n
· (Dm −Dk) ,

as required. In particular note that if k < m, then Dk ≤ Dm ≤ 1. Let D = lim
k→∞

Dk.

Let C be as guaranteed by Lemma 2.6. It now suffices to show that

(∗∗) for every k ∈ N , lim sup
M→∞

`d(B \⋃M
n=1 Nan) ≤ C(D −Dk) .

To this end, let k ∈ N and ε > 0 be given. We show that there is some N ∈ N such that

for all M ≥ N , `d(B \⋃M
n=1 Nan) < C(D −Dk) + ε. Pick by Lemma 2.5 some L ∈ N

such that `d(
⋃{Nm : m ∈ Nk and m ≥ L}) < ε and pick N ∈ N such that aN ≥ L. Let

M ≥ N . Then B \⋃M
m=1 Nam ⊆ B \⋃N

m=1 Nam ⊆ Ek ∪⋃{Nm : m ∈ Nk and m ≥ L}.
By Lemma 2.1(b) it suffices to show that `d(Ek) ≤ C(D−Dk). To this end, let x > pk+1

and pick m ∈ N such that pm ≤ x < pm+1. Then by (∗)
∑
{

1
n

: n ∈ Ek ∩ {1, 2, . . . , x}
}

log x
≤
∑

n∈Nm

1
n

log pm

(Dm −Dk) ≤ C(D −Dk) ,

the last inequality holding by Lemma 2.6 and the fact that Dm ≤ D.

It is natural to ask whether Lemma 2.7 holds with `d replaced by d. It is a conse-

quence of Theorem 2.13 and the proof of Theorem 2.8 that it does not.
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2.8 Theorem (Davenport and Erdős). Let A ⊆ N and assume that `d(A) > 0.

Then there is a sequence 〈yn〉∞n=1 in N \ {1} such that for each n ∈ N,
∏n

i=1 yi ∈ A.

Proof. We may assume that 1 /∈ A. By Lemma 2.2 it suffices to show that there is

some c ∈ A such that `d(A ∩ Nc) > 0. Let B and 〈an〉∞n=1 be as in the statment of

Lemma 2.7 and pick by Lemma 2.7 some M ∈ N such that `d(B \⋃M
m=1 Nam) < `d(A).

Then by Lemma 2.1(b),

`d(A) ≤∑M
m=1 `d(A ∩ Nam) + `d(A \⋃M

m=1 Nam)

≤∑M
m=1 `d(A ∩ Nam) + `d(B \⋃M

m=1 Nam)

<
∑M

m=1 `d(A ∩ Nam) + `d(A)

so there is some m such that `d(A ∩ Nam) > 0.

Notice that one cannot ask that FP (〈yn〉∞n=1) ⊆ A. In fact one cannot ask that

any yn be in A except y1. To see this consider A = 3N + 2.

Notice that when one establishes in the proof above that there is some c ∈ A with

`d(A ∩ Nc) > 0, one also establishes that there is some x ∈ N \ {1} with A ∩ x−1A 6= ∅.
(If xc ∈ A, then c ∈ A ∩ x−1A.) In fact the following much stronger result holds.

2.9 Theorem (Ahlswede, Khachatrian, and Sárközy). Let A ⊆ N and assume

that `d(A) > 0. Then there exists x ∈ N \ {1} such that `d(A ∩ x−1A) > 0.

Proof. [1, Theorem 3].

This result in turn has strong consequences.

2.10 Corollary. Let A ⊆ N and assume that `d(A) > 0. Then there exists a sequence

〈xn〉∞n=1 in N \ {1} such that for all m ∈ N, there exist a ∈ A and d ∈ N such that for

all t ∈ {0, 1, . . . ,m}, (a+ td) · FP (〈xn〉mn=1) ⊆ A.

Proof. Let A1 = A, pick x1 ∈ N \ {1} such that `d(A1 ∩ x1
−1A1) > 0, and let

A2 = A1 ∩ x1
−1A1. Inductively, given An with `d(An) > 0, pick xn ∈ N \ {1} such that

`d(An ∩ xn
−1An) > 0 and let An+1 = An ∩ xn

−1An.

One then easily establishes by induction that for each m ∈ N,

Am+1 = A ∩⋂{y−1A : y ∈ FP (〈xn〉mn=1)} .

Given m, pick by Szemerédi’s Theorem [24] a, d ∈ N such that {a, a+ d, . . . , a+md} ⊆
A ∩ ⋂{y−1A : y ∈ FP (〈xn〉mn=1)}, using the fact from Lemma 2.1 that d(B) ≥ `d(B)

for any set B.
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It is natural to ask whether positive upper asymptotic density of a set A is enough

to guarantee the existence of an infinite sequence in N \ {1} with initial products in A.

This question was answered by A. Besicovitch [8] in 1934. He showed that there exist

sets with upper density arbitrarily close to 1
2 that do not contain distinct elements one

of which divides the other. We present here as Theorem 2.13 a minor modification of

Besicovitch’s proof showing that there exist sets with upper density arbitrarily close to

1 that do not contain initial products from any infinite sequence in N\{1}. (If d(A) = 1,

then A is thick, so by Corollary 2.17 below, will contain initial products of some infinite

sequence.) Necessarily any such example must have d(A) = 0, because by Lemma 2.1,

`d(A) ≥ `d(A) ≥ d(A).

2.11 Theorem (Erdős). lim
T→∞

d (
⋃{Nm : m ∈ N and T < m ≤ 2T}) = 0.

Proof. This is in [12] and is presented as [16, Theorem 10, p. 256].

2.12 Lemma. Let k ∈ N. Then lim
T→∞

d
(
⋃{Nm : m ∈ N and T < m ≤ 2kT}

)

= 0.

Proof. This is an immediate consequence of Theorem 2.11 and Lemma 2.1(a).

2.13 Theorem. Let k ∈ N and let ε > 0. Then there exists A ⊆ N such that d(A) ≥
1− 1

2k − ε and there do not exist y1, y2, . . . yk+1 in N\{1} with y1 ∈ A and
∏k+1

i=1 yi ∈ A.

Proof. Choose T1 ∈ N such that d
(
⋃{Nm : m ∈ N and T1 < m ≤ 2kT1}

)

<
ε

2
and

pick M1 ∈ N such that for all l > M1

|{1, 2, . . . , l} ∩⋃{Nm : m ∈ N and T1 < m ≤ 2kT1}| <
ε

2
· l .

Inductively, having chosen Tt−1 and Mt−1, pick Tt > Mt−1 such that

d
(
⋃{Nm : m ∈ N and Tt < m ≤ 2kTt}

)

<
ε

2t

and pick Mt > Mt−1 such that for all l > Mt

|{1, 2, . . . , l} ∩⋃{Nm : m ∈ N and Tt < m ≤ 2kTt}| <
ε

2t
· l .

Let

A = {m ∈ N : T1 < m ≤ 2kT1}

∪⋃∞
t=2

(

{m ∈ N : Tt < m ≤ 2kTt} \
⋃t−1

s=1

⋃{Nm : m ∈ N and Ts < m ≤ 2kTs}
)

.
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Given t ∈ N \ {1}, we have that

|A ∩ {1, 2, . . . , 2kTt}| > (2k − 1) · Tt −
∑t−1

s=1 |{1, 2, . . . , 2kTt} ∩
⋃{Nm : m ∈ N and Ts < m ≤ 2kTs}|

> (2k − 1) · Tt −
∑t−1

s=1

ε

2s
· 2k · Tt

> (2k − 1) · Tt − ε · 2k · Tt

= (1 − 1

2k
− ε) · 2k · Tt

and so d(A) ≥ 1 − 1
2k − ε.

Now suppose we have y1, y2, . . . yk+1 in N \ {1} with y1 ∈ A and
∏k+1

i=1 yi ∈ A. Pick

r such that Tr < y1 ≤ 2kTr. Then
∏k+1

i=1 yi > 2kTr so pick t > r such that

∏k+1
i=1 yi ∈ {m ∈ N : Tt < m ≤ 2kTt} \

⋃t−1
s=1

⋃{Nm : m ∈ N and Ts < m ≤ 2kTs} .

But Tr < y1 ≤ 2kTr and
∏k

i=1 yi ∈ Ny1, a contradiction.

We now show, using a modification of the proof of [16, Theorem 1, p. 244], that

the result of Theorem 2.13 is sharp.

2.14 Theorem. If k ∈ N, A ⊆ N, and d(A) > 1 − 1
2k , then there exist y1, y2, . . . yk+1

in N \ {1} with
∏l

i=1 yi ∈ A for each l ∈ {1, 2, . . . , k + 1}.

Proof. Assume that d(A) > 1− 1
2k and suppose that A does not satisfy the conclusion

of the theorem. We show that for all n ∈ N, |A ∩ {1, 2, . . . , n}| ≤ n(1 − 1
2k ) + k2

2
+ 1.

Let Bk = {t ∈ N : 2k−1(2t− 1) ≤ n} and note that |Bk| ≤ n
2k + 1

2 . For t ∈ Bk, let

Ck,t = {2i(2t − 1) : i ∈ ω and 2i(2t − 1) ≤ n}. Then |A ∩ Ck,1| ≤ k + 1 and for each

t ∈ Bk \ {1}, |A∩Ck,t| ≤ k. (The reason for the distinction is that no yi = 1.) If k = 1,

then A ∩ {1, 2, . . . , n} ⊆ ⋃t∈Bk
(A ∩ Ck,t) so |A ∩ {1, 2, . . . , n}| ≤ n

2 + 3
2 as required.

Assume that k > 1. For l ∈ {1, 2, . . . , k − 1}, let Bl = {t ∈ N : 2l−1(2t − 1) ≤
n < 2l(2t − 1)} and note that |Bl| < n

2l+1 + 1. For t ∈ Bl let Cl,t = {2t − 1, 2(2t −
1), . . . , 2l−1(2t− 1)}. Then |A ∩Cl,t| ≤ |Cl,t| = l. Now, {1, 2, . . . , n} =

⋃k
l=1

⋃

t∈Bl
Cl,t,

so using the easily checked fact that
∑k−1

l=1
l

2l+1 = 1 − k+1
2k , we have

|A ∩ {1, 2, . . . , n} ≤ k · |Bk| + 1 +
∑k−1

l=1 l · |Bl|
< k · ( n

2k + 1
2 ) + 1 +

∑k−1
l=1 l · ( n

2l+1 + 1)

= n k
2k + k

2
+ 1 + n(1 − k+1

2k ) + k(k−1)
2

= n(1 − 1
2k ) + k2

2 + 1 .

12



The only question left open by Theorems 2.13 and 2.14 is what happens when

d(A) = 1 − 1
2k . According to a footnote on page 244 of [16], Erdős has shown that if

d(A) = 1
2 , then there exist y1, y2 ∈ N \ {1} such that y1, y1y2 ∈ A. The second author

has no doubt that the corresponding result holds for all k.

Now we turn our attention to showing that translates of sets of finite sums contain

initial products of some infinite sequence in N \ {1}. In the following lemma we use the

fact that for any sequence 〈xn〉∞n=1 in N and any n ∈ N, FS(〈xn〉∞n=1) ∩ Nn 6= ∅. (To

see this, pick F ⊆ N such that |F | = n and for all t, k ∈ F , xt ≡ xk (mod n). Then n

divides
∑

t∈F xt.)

2.15 Lemma. Let 〈xn〉∞n=1 be a sequence in N, let a ∈ Z, and let

B =
(

a+ FS(〈xn〉∞n=1)
)

∩ N .

Then for all s ∈ B there exists t ∈ N such that t > s and t ≡ 1 (mod s) and st ∈ B.

Proof. Let s ∈ B. Pick F ∈ Pf (N) such that s = a+
∑

n∈F xn, and let k = maxF +1.

Pick w ∈ FS(〈xn〉∞n=k) ∩ Ns2. Let u = w
s

and note that s divides u. Let t = 1 + u.

Then st = s+ w = a+
∑

n∈F xn + w ∈ B.

2.16 Theorem. Let 〈xn〉∞n=1 be a sequence in N, let a ∈ Z, and let

B =
(

a+ FS(〈xn〉∞n=1)
)

∩ N .

Then there exists a sequence 〈yn〉∞n=1 in N \ {1} such that for each n ∈ N,
∏n

i=1 yi ∈ B

and yn+1 ≡ 1 (mod
∏n

i=1 yi). In particular the terms of 〈yn〉∞n=1 are pairwise relatively

prime.

Proof. Trivially B \ {1} 6= ∅ so pick y1 ∈ B \ {1}. Inductively, given 〈yi〉ni=1 with
∏n

i=1 yi ∈ B, let s =
∏n

i=1 yi and pick t as guaranteed by Lemma 2.15. Let yn+1 = t.

2.17 Corollary. If A is a piecewise syndetic subset of (N,+), then there exists a

sequence 〈yn〉∞n=1 in N \ {1} such that for each n ∈ N,
∏n

i=1 yi ∈ A and yn+1 ≡
1 (mod

∏n
i=1 yi).

Proof. Pick G ∈ Pf (N) such that
⋃

k∈G −k+A is additively thick, and therefore is an

additive IP-set. Whenever an IP-set is partitioned into finitely many parts, one of these

parts is an IP-set. (See [14, Proposition 8.13] or [20, Corollary 5.15].) Consequently,

there is some k ∈ G such that −k + A is an additive IP-set.

A recent result of Renling Jin provides a powerful application of Corollary 2.17.
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2.18 Theorem (Jin). If A and B are subsets of N, d∗(A) > 0, and d∗(B) > 0, then

A+B is piecewise syndetic.

Proof. [21, Corollary 3].

2.19 Corollary. If A and B are subsets of N, d∗(A) > 0, and d∗(B) > 0, then there

exists a sequence 〈yn〉∞n=1 in N \ {1} such that for each n ∈ N,
∏n

i=1 yi ∈ A + B and

yn+1 ≡ 1 (mod
∏n

i=1 yi).

Proof. Theorem 2.18 and Corollary 2.17.

Notice that the set A+B of Corollary 2.19 need not have positive upper logarithmic

density – in fact it need not have positive upper asymptotic density. To see this, consider

A = B =
{

2n + t : n ∈ N and t ∈ {1, 2, . . . , n}
}

.

One could prove Theorem 2.16 using Lemma 2.2, as was done in the proof of

Theorem 2.8. But then one would lose the conclusion that the terms of the sequence

are pairwise relatively prime. Note that Alexander [2, Theorem 3.10] has proved that

if `d(A) > 0 and 〈kn〉∞n=1 is any sequence in N, then there exists a sequence 〈yn〉∞n=1 in

N \ {1} such that for each n ∈ N,
∏n

i=1 yi ∈ A and yn+1 is composed entirely of primes

greater than (
∏n

i=1 yi)
kn .

We note that neither of Theorems 2.8 or 2.16 is stronger than the other, even if

the conclusion about the terms of the sequence 〈yn〉∞n=1 is deleted from Theorem 2.16.

On the one hand, it is not hard to show that `d
(

FS(〈4n〉∞n=1)
)

= 0, so Theorem 2.8

does not imply the weak form of Theorem 2.16. On the other hand, it is a result of

Ernst Strauss that there exist sets with asymptotic density arbitrarily close to 1 which

do not contain t + FS(〈xn〉∞n=1) for any t ∈ Z. A version of this result was presented

in [19, Theorem 11.6]. Unfortunately, this theorem assumed that t ∈ N. Perhaps more

unfortunately, the proof of [19, Theorem 11.6] was unnecessarily complicated because

the author of [19] (who had the excuse of being relatively young at the time) did not

understand the proof as Ernst had explained it to him, and converted it to a far too

difficult proof. We present here what we believe to be roughly the original proof.

2.20 Theorem (Ernst Strauss). Let ε > 0. There exists A ⊆ N such that d(A) > 1−ε
and there do not exist t ∈ Z such that (t+ A) ∩ Nn 6= ∅ for every n ∈ N. In particular,

there do not exist a sequence 〈xn〉∞n=1 in N and t ∈ Z such that t+ FS(〈xn〉∞n=1) ⊆ A.

Proof. Choose a sequence 〈qt〉∞t=0 of primes such that 1
q0

+
∑∞

t=1
2
qt
< ε.
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For each n ∈ N let Bn =
⋃n

t=0

(

(t+ ωqt) ∪ (−t + ωqt)
)

, let mn =
∏n

t=0 qt, and let

bn = |Bn ∩ {1, 2, . . . ,mn}|. Then bn ≤ mn ·
(

1
q0

+
∑n

t=1
2
qt

)

and for each k ∈ N,

Bn ∩ {1, 2, . . . , kmn} =
{

x+ (s− 1)mn : x ∈ Bn ∩ {1, 2, . . . ,mn} and s ∈ {1, 2, . . . , k}
}

∪
{

lmn + t : l ∈ {1, 2, . . . , k − 1} and t ∈ {1, 2, . . . , n}
}

so kbn ≤ |Bn ∩ {1, 2, . . . , kmn}| ≤ kbn + (k − 1)n.

Let B =
⋃∞

n=1Bn and let A = N\B. Notice that for each n, bn+1 ≥ |Bn∩{1, 2, . . . ,
mn+1}| ≥ qn+1bn and thus

bn+1

mn+1
=

bn+1

qn+1mn

≥ bn
mn

. Thus 〈 bn

mn
〉∞n=1 is a nondecreasing

sequence bounded above by 1
q0

+
∑∞

t=1
2
qt

. Let α = lim
n→∞

bn
mn

. Then α < ε. We claim

that d(A) = 1 − α.

On the one hand, given k, n ∈ N,

|A ∩ {1, 2, . . . , kmn}| ≤ kmn − |Bn ∩ {1, 2, . . . , kmn}| ≤ kmn − kbn

and thus lim sup
r→∞

A ∩ {1, 2, . . . , r}
r

≤ 1 − α. On the other hand, given k, n ∈ N,

|A ∩ {1, 2, . . . , kmn}| ≥ kmn − kbn − (k − 1)n− |(B \Bn) ∩ {1, 2, . . . , kmn}|
≥ kmn − kbn − (k − 1)n−

(

∑∞
t=n+1

2
qt
kmn

)

and thus lim inf
r→∞

A ∩ {1, 2, . . . , r}
r

≥ 1 − α.

Now suppose one has t ∈ Z such that (t + A) ∩ Nn 6= ∅ for every n ∈ N. Pick

a ∈ (−t+A) ∩ Nq|t|. Then t+ a ∈ B|t|, a contradiction.

Notice that the set produced in the proof of Theorem 2.20 is not piecewise syndetic

because, as shown in the proof of Corollary 2.17, any piecewise syndetic set contains a

translate of an IP-set.

By Lemma 2.1(h), Theorem 2.20 provides examples of sets with logarithmic density

arbitrarily close to 1 that do not contain any translate of any IP-set. It is easy to see

that if d(A) = 1, then A is thick. We observe now that the corresponding conclusion

applies also to `d(A), so that Theorem 2.20 provides the strongest possible conclusion

about logarithmic density.

2.21 Theorem. Let A ⊆ N. If `d(A) = 1, then A is thick in (N,+).

Proof. Suppose instead that we have some b ∈ N such that A has no blocks of length

b. Enumerate N \ A in increasing order as 〈ct〉∞t=1. Then for all t ∈ N, ct ≤ tb, so for
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each n,
∑

({ 1
a

: a ∈ A} ∩ {1, 2, . . . , nb})
log(nb)

≤
∑nb

t=1
1
t
− 1

b

∑n
t=1

1
t

log(nb)

≤ 1 + log(nb) − 1
b

log(n+ 1)

log(nb)
−→ 1 − 1

b

so `d(A) ≤ 1 − 1
b
, a contradiction.

A crucial part of the proof of Theorem 2.16 is the fact that additive IP-sets meet

Nn for every n. This property is also shared by additive ∆-sets. (Given a sequence

〈st〉∞t=1 with {sm − st : t < m} ⊆ A and given n ∈ N, choose t < m such that

st ≡ sm (mod n).) Consequently, each ∆-set does contain initial products from some

sequence. The question then naturally arises as to whether translates of ∆-sets must

contain initial products of some sequence. We show in Corollary 2.24 that they need

not.

2.22 Theorem. There is a sequence 〈an〉∞n=1 in N such that for all l,m, u, v ∈ N and

all t ∈ Z if l ≤ m, u ≤ v, 0 < |t| ≤ m, (l,m) 6= (u, v), and t +
∑v

i=u ai > 0, then

t+
∑m

i=l ai 6 | t+
∑v

i=u ai.

Proof. Let a1 = 7. Then |{a1 +1, a1 +2, . . . , 2a1 − 2}| = 5 and |
{

l(t+ a1) : t ∈ {−1, 1}
and l ∈ {1, 2}

}

| ≤ 4 so pick

b2 ∈ {a1 + 1, a1 + 2, . . . , 2a1 − 2} \
{

l(t+ a1) : t ∈ {−1, 1} and l ∈ {1, 2}
}

.

Let c2 = −1 + a1
2 and pick a2 > 49c2 + a1 + 11 such that a2 ≡ b2 mod c2.

Let n ∈ N \ {1} and assume that we have chosen 〈ak〉nk=1, 〈ck〉nk=2, and 〈ck〉nk=2 in

N such that for each w ∈ {2, 3, . . . , n}
(1) if m, v ∈ {1, 2, . . . , w}, t ∈ {−m,−m + 1, . . . ,m − 1,m} \ {0}, u ∈ {1, 2, . . . , v},

l ∈ {1, 2, . . . ,m}, (l,m) 6= (u, v), and t+
∑v

i=u ai > 0, then t+
∑m

i=l ai 6 | t+
∑v

i=u ai;

(2) cw =
∏w−1

l=1

∏w−1
m=l

∏w−1
t=1 (−t2 + (

∑m
i=l ai)

2); and

(3) aw −∑w−1
i=1 ai > (6w3 + 1)cw + 5w + 1.

For n = 2 hypotheses (2) and (3) hold directly. To verify hypothesis (1) we need

to show that

(a) if t ∈ {−1, 1}, then t+ a1 6 | t+ a1 + a2;

(b) if t ∈ {−1, 1}, then t+ a1 6 | t+ a2;

(c) if t ∈ {−2,−1, 1, 2}, then t+ a2 6 | t+ a1 + a2; and

(d) if t ∈ {−2,−1, 1, 2}, then t+a2 6 | t+a1, t+a1+a2 6 | t+a2, and t+a1+a2 6 | t+a1.
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For (d) simply note that 0 < t+ a1 < t+ a2 < t+ a1 + a2.

For (c) a2 > a1 + 2 ≥ a1 − t so t+ a2 < t+ a1 + a2 < 2(t+ a2).

For (b) suppose t+a1 | t+a2. Then t+a2 ≡ t+b2 mod c2 so t+a2 ≡ t+b2 mod(t+a1)

so t+ a1 | t+ b. But t+ a1 < t+ b2 ≤ t+ 2a1 − 2 ≤ 2(t+ a1), a contradiction.

For (a) suppose t + a1 | t + a1 + a2. Now t + a1 + a2 ≡ t + a1 + b2 mod c2

so t + a1 + a2 ≡ t + a1 + b2 mod(t + a1) so t + a1 | t + a1 + b. Pick d ∈ N such that

d(t+a1) = t+a1+b2. Then t+a1 < t+a1+b2 ≤ t+a1+2a1−2 = t+19 ≤ 20 < 4(t+a1)

so d = 2 or d = 3. Let l = d− 1. Then b2 = l(t+ a1) which was specifically excluded, a

contradiction.

The hypotheses having been verified at n = 2, we proceed to define an+1, bn+1,

and cn+1. First we let cn+1 =
∏n

l=1

∏n
m=l

∏n
t=1(−t2 + (

∑m
i=l ai)

2), as required by (2).

Next, for each t ∈ {−n,−n + 1, . . . , n − 1, n} \ {0} and each j ∈ {1, 2, . . . , n}, let

yt,j = t +
∑n

i=j ai. Now |{∑n
i=1 ai + 2n + 1,

∑n
i=1 ai + 2n + 2, . . . , 2an − 3n − 1}| =

an −∑n−1
i=1 ai − 5n− 1 > (6n3 + 1)cn so

|Ncn ∩ {∑n
i=1 ai + 2n+ 1,

∑n
i=1 ai + 2n+ 2, . . . , 2an − 3n− 1}| ≥ (6n3 + 1) .

Also,
∣

∣

{

lyt,j − yt,m :l ∈ {1, 2, 3} , j,m ∈ {1, 2, . . . , n}, and

t ∈ {−n,−n+ 1, . . . , n− 1, n} \ {0}
}
∣

∣ ≤ 6n3

so pick

bn+1 ∈ Ncn ∩ {∑n
i=1 ai + 2n+ 1,

∑n
i=1 ai + 2n+ 2, . . . , 2an − 3n− 1}\

{

lyt,j − yt,m : l ∈ {1, 2, 3} , j,m ∈ {1, 2, . . . , n}, and

t ∈ {−n,−n+ 1, . . . , n− 1, n} \ {0}
}

.

Let z = cn
∏n

t=1

∏n
j=1(yt,jy−t,j). Pick an+1 >

∑n
i=1 ai+(6(n+1)3+1)cn+1+5n+6

such that an+1 ≡ bn+1 mod z.

Again hypotheses (2) and (3) are satisfied directly. To verify (1), let m, v ∈ {1, 2,
. . . , n+ 1}, u ∈ {1, 2, . . . , v}, l ∈ {1, 2, . . . ,m}, t ∈ {−m,−m + 1, . . . ,m− 1,m} \ {0},
and assume that (l,m) 6= (u, v) and t +

∑v
i=u ai > 0. If m ≤ n and v ≤ n we have by

induction hypothesis (1) that t+
∑m

i=l ai 6 | t+
∑v

i=u ai.

Also, if v ≤ n and m = n+ 1 we have that 0 < t+
∑v

i=u ai < t +
∑m

i=l ai so that

t+
∑m

i=l ai 6 | t+
∑v

i=u ai.

Thus we may assume that v = n+ 1. Suppose that t+
∑m

i=l ai | t+
∑v

i=u ai.

Case 1. m < n. Then t +
∑m

i=l ai | cn and cn | bn+1 and an+1 ≡ bn+1 mod z so

an+1 ≡ bn+1 mod cn so t +
∑m

i=l ai | an+1 and thus t +
∑m

i=l ai | t +
∑n+1

i=u ai − an+1.
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Since clearly t+
∑m

i=l ai 6 | t we have that u ≤ n and t+
∑m

i=l ai | t+
∑n

i=u ai. But this

violates induction hypothesis (1).

Case 2. m = n. Then t +
∑m

i=l ai = yt,l. Assume first that u = n + 1. Then

yt,l | t + an+1 and t + an+1 ≡ t + bn+1 mod z so t + an+1 ≡ t + bn+1 mod yt,l so

yt,l | t+ bn+1. But yt,l ≤ yn,1 = n+
∑n

i=1 ai < t+ bn+1 < 2an − 2n = 2y−n,n ≤ 2yt,l, a

contradiction.

So u ≤ n. Then yt,l | yt,u + an+1 so, as above yt,l | yt,u + bn+1. Pick d ∈ N

such that dyt,l = yt,u + bn+1. Then dy−n,n ≤ dyt,l = yt,u + bn+1 ≤ yn,1 + bn+1 =

n +
∑n

i=1 ai + bn+1 < n +
∑n

i=1 ai + 2an − 3n < 4y−n,n so d ∈ {1, 2, 3}. But the

possibility that bn+1 = dyt,l − yt,n for d ∈ {1, 2, 3} was specifically excluded.

Case 3. m = n+ 1. Pick d ∈ N such that d(t+
∑n+1

i=l ai) = t+
∑n+1

i=u ai. We cannot

have d = 1 because if
∑n+1

i=l ai =
∑n+1

i=u ai, one would have l = u and thus (l,m) = (u, v).

Therefore d(t +
∑n+1

i=l ai) ≥ 2(−n − 1 + an+1) > n + 1 +
∑n+1

i=u ai ≥ t +
∑n+1

i=u ai, a

contradiction.

2.23 Corollary. There is an additive ∆-set A with the property that for each t ∈ Z\{0},
there does not exist a sequence 〈yn〉∞n=1 in N\{1} such that for all n ∈ N,

∏n
i=1 yi ∈ t+A.

Proof. Let 〈an〉∞n=1 be as guaranteed by Theorem 2.22 and let A = {∑n
i=m ai : m,n ∈

N and m ≤ n}. Suppose one has a sequence 〈yn〉∞n=1 in N \ {1} such that for all n ∈ N,
∏n

i=1 yi ∈ t + A. Pick n such that
∏n

i=1 yi > t+
∑|t|

i=1 ai. Pick l ≤ m and u ≤ v such

that
∏n

i=1 yi = t+
∑m

i=l ai and
∏n+1

i=1 yi = t+
∑v

i=u ai. This is a contradiction.

2.24 Corollary. For each k ∈ N, there is an additive ∆-set A with the property that

for each t ∈ {−k,−k + 1, . . . , k − 1, k} \ {0}, there do not exist y ∈ t + A and z ∈ N

such that yz ∈ t+ A.

Proof. Let 〈an〉∞n=1 be as guaranteed by Theorem 2.22 and let A = {∑n
i=m ai : m,n ∈

N and k ≤ m ≤ n}.

3. Geometric progressions in additively large sets

In a paper primarily concerned with arithmetic progressions [22], Rankin showed that

if a set A contains no k-term arithmetic progression, then the set G(A) defined below

contains no k-term geometric progression, even if one allows the common ratio to be a

non integer rational.

3.1 Definition.
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(a) For k ∈ N \ {1} and n ∈ N, ek(n) ∈ ω is the largest power of k that divides n.

(b) Let A ⊆ N. Then G(A) =
{

n ∈ N : for every prime p, ep(n) ∈ A ∪ {0}
}

.

Rankin also showed that for any A, G(A) has density and he showed how to compute

it.

Brown and Gordon [9] noted that if A is the set constructed by the greedy algorithm

to not contain any length k arithmetic progression (i.e., one puts into A at each stage

the first number that does not complete a k-term arithmetic progression), then G(A)

is the set constructed by the greedy algorithm to not contain any length k geometric

progression. They also showed [9, Theorem 3] that the greedy algorithm produces

the largest density of any set of the form G(A) that contains no k-term geometric

progression. In the case k = 3, the density of this G(A) is roughly .7197.

It is interesting to note that if one restricts oneself to preventing 3-term geometric

progressions with integer common ratio, the greedy algorithm produces exactly the same

set as when the ratio is allowed to be a non-integer. However, we see one can do better

with respect to upper density when one restricts to integer common ratios.

3.2 Theorem. There is a thick subset A of (N,+) such that d(A) = 3
4

and there do

not exist c ∈ N and r ∈ N \ {1} with {c, cr, cr2} ⊆ A.

Proof. Let a1 = 1. Given n ∈ N, let bn = 4an − 1 and let an+1 = bn
3. Let A =

⋃∞
n=1{x ∈ N : an ≤ x ≤ bn}. It is routine to show that d(A) = 3

4
.

Suppose that one has c ∈ N and r ∈ N \ {1} with {c, cr, cr2} ⊆ A. Pick n ≤ m

such that an ≤ c ≤ bn and am ≤ cr ≤ bm. Now r ≥ 2 so cr2 ≥ 4c ≥ 4an > bn so

cr2 ≥ an+1 = bn
3.

Assume first that n = m. Then anr ≤ cr ≤ bn < 4an so r ≤ 3. But bn
3 ≤ cr2 =

r(cr) ≤ 3bn, so bn
2 ≤ 3, a contradiction.

Therefore n < m. Now cr ≥ am ≥ bn
3 and c ≤ bn, so r ≥ bn

2 > 4 and thus

cr2 > 4am > bm, so cr2 ≥ am+1 = bm
3. But cr2 ≤ (cr)2 ≤ bm

2, a contradiction.

The set produced in the proof of Theorem 3.2 certainly contains geometric pro-

gressions with non integer common ratios. We set out to show next that there exist

additively thick sets that do not. In the process we show that their multiplicative struc-

ture can be quite limited. While additively thick sets by definition contain translates of

any finite set, and by Theorem 2.16 they must contain the initial products from some

infinite sequence, we shall show that they need not contain a translate of the pairwise

products of any infinite sequence.
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3.3 Lemma. Let n ∈ N and let A = {n, n+ 1, n+ 2, . . . , n+ d√n e − 1}. There do not

exist a ∈ A and r ∈ Q \ {1} such that ar ∈ A and ar2 ∈ A.

Proof. Suppose we have such a and r. Then {ar2, ar2 1
r
, ar2( 1

r
)2} ⊆ A so we may

presume that r > 1.

Let b = a − n, c = ar − n, and d = ar2 − n. Then 0 ≤ b < c < d <
√
n. Also

r =
n+ c

n+ b
so d+ n =

(n+ c)2

n+ b
and thus

(∗) n2 + nb+ nd+ bd = n2 + 2nc+ c2

so that bd ≡ c2 (mod n).

Now 0 ≤ bd < n and 0 < c2 < n so |bd − c2| < n and thus bd = c2. From (∗) we

conclude that nb+nd = 2nc and thus b2 +2bd+d2 = 4c2 = 4bd. Therefore, (b−d)2 = 0,

so that b = d, a contradiction.

Observe the contrast between the following lemma and Theorem 2.16.

3.4 Lemma. There is a thick subset A of (N,+) such that d(A) = 1
2 and for any t ∈ Z

and any a, b, d ∈ N satisfying d > 4b > 64a and ad > 2|t|, ad and bd cannot both be in

t+ A.

Proof. For r > 1 in Q, let g(r) = max{k ∈ ω : 2k ≤ r}. Let A = {n ∈ N : g(n) = 2m

for some m ∈ ω}. Clearly A is a thick subset of (N,+) and d(A) = 1
2 .

Suppose that t ∈ Z and a, b, d ∈ N satisfy d > 4b > 64a, ad > |t|, and ad, bd ∈ t+A.

We observe that, for any x, y ∈ N, g(xy) ∈ {g(x) + g(y), g(x)+ g(y) + 1}. Further-

more, for any v ∈ N, there is a unique u ∈ N such that u ≤ v and u + v is a power of

2.

Now 2g(ad)−1 ≤ ad
2

≤ −t+ ad ≤ 3ad
2
< 2g(ad)+2 and so

g(−t+ ad) − (g(a) + g(d)) ∈ {−1, 0, 1, 2} .

Similarly, g(−t + bd) − (g(b) + g(d)) ∈ {−1, 0, 1, 2}. Let i, j ∈ {−1, 0, 1, 2} satisfy

i + g(a) + g(d) = g(−t+ ad) and j + g(b) + g(d) = g(−t + bd). Since g(−t + ad) and

g(−t+ bd) are powers of 2 and i+ g(a) < g(d) and j + g(b) ≤ g(d), i+ g(a) = j + g(b)

and so g(b) ≤ g(a) + 3. Thus b < 2 · 2g(b) ≤ 16 · 2g(a) ≤ 16a, a contradiction.

3.5 Theorem. There is a thick subset A of (N,+) such that there do not exist c ∈ N

and r ∈ Q \ {1} with {c, cr, cr2} ⊆ A. This set also has the property that there do not

exist t ∈ Z and integers a, b, d in N, with d > 4b > 64a and a2 > 2|t|, such that ad
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and bd are both in A. (In particular there do not exist t ∈ Z and an injective sequence

〈yn〉∞n=1 such that t+ yiyj ∈ A whenever i and j are distinct elements of N.)

Proof. Let g be defined as in Lemma 3.4. Let

A =
{

n ∈ N : g(n) = 2m for some m ≥ 2 in N and n− 2g(n) <
⌈√

2g(n)
⌉}

.

By Lemma 3.4, it is sufficient to show that there do not exist c ∈ N and r ∈ Q such that

{c, cr, cr2} ⊆ A. Suppose, on the contrary, that c and r do exist with these properties.

Assume that g(c) = 2k, g(cr) = 2m, and g(cr2) = 2n. Then k ≤ m ≤ n and by Lemma

3.3, k < n. We have g(c) + g(r) ∈ {2m, 2m − 1} and g(c) + 2g(r) ∈ {2n, 2n − 1, 2n − 2}.
So 2g(r) = 2n − 2k or 2g(r) = 2n − 2k − 2.

Assume first that 2g(r) = 2n − 2k, Then g(r) = 2n−1 − 2k−1 and so g(r) is even,

because k ≥ 2. And hence g(r) = 2m − 2k. So 2k−1 + 2m = 2k + 2n−1. This is a

contradiction, because The left hand side is the sum of two distinct powers of 2 and

therefore so is the right hand side and {k − 1,m} = {k, n− 1}.
Now assume that 2g(r) = 2n − 2k − 2. Then g(r) = 2n−1 − 2k−1 − 1 and so g(r) is

odd. Consequently g(r) = 2m − 2k − 1. Again we conclude that 2k−1 +2m = 2k +2n−1.

Theorems 3.2 and 3.5 raise the question of whether there is an additively thick set

with positive upper density which contains no length three geometric progression where

non integer common ratios are allowed. We cannot answer this question. However, we

do note that if one takes the union of the set produced in the proof of Theorem 3.5

and the set produced by the greedy algorithm, the resulting set has positive density

(equal to that of the set produced by the greedy algorithm) and contains no 9-term

geometric progression. (Suppose one has {c, cr, cr2, cr3, cr4, cr5, cr6, cr7, cr8} contained

in that set. Color t ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8} according to which part crt lies in. Since

whenever {0, 1, 2, 3, 4, 5, 6, 7, 8} is partitioned into 2 classes, one must contain a length

3 arithmetic progression, this is a contradiction.)

In [9, Theorem 5], Brown and Gordon show that if k ≥ 3 and a subset A of N

contains no length k geometric progression then d(A) ≤ 1 − 1

2k
− 1

2 · 5k−1
+

1

2 · 6k−1
.

We can produce a slightly smaller bound, and guarantee that any larger set has a length

k geometric progression with common ratio 2. (The proof of [9, Theorem 5] shows that

any set with density exceeding their bound has a length k geometric progression with

common ratio either 2 or 5
3 .)

3.6 Theorem. Let k ∈ N, let A ⊆ N, and assume that A contains no k-term geometric
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progression with common ratio 2. Then d(A) ≤ 1 − 1

2k − 1
.

Proof. The result is valid, but boring, if k = 1, so we shall assume that k ≥ 2. As in the

proofs of Lemma 3.4 and Theorem 3.5 let for each n ∈ N, g(n) = max{t ∈ ω : 2t ≤ n}
and let Bn = {k − 1, k, k + 1, . . . , g(n)} ∩ (kN − 1). For m ∈ Bn, let Cn,m = {t ∈ N :

2t− 1 ≤ n
2m } and note that |Cn,m| ≥ 1

2

⌊

n
2m

⌋

.

For m ∈ Bn and t ∈ Cn,m, let

Dn,m,t = {(2t− 1)2m−k+1, (2t− 1)2m−k+2, . . . , (2t− 1)2m} .

If (m, t) 6= (m′, t′), then Dn,m,t ∩ Dn,m′,t′ = ∅, each Dn,m,t ⊆ {1, 2, . . . , n}, and each

Dn,m,t \A 6= ∅. So

|{1, 2, . . . , n} \A| ≥∑m∈Bn

1

2

⌊ n

2m

⌋

>
∑

m∈Bn

1

2

( n

2m
− 1
)

=
∑

m∈Bn

n

2m+1
− 1

2
|Bn| >

∑

m∈Bn

n

2m+1
− g(n) + 1

2

so
|A ∩ {1, 2, . . . , n}|

n
< 1 −∑m∈Bn

1

2m+1
+
g(n) + 1

2n
.

As n→ ∞,
∑

m∈Bn

1

2m+1
→∑∞

t=1

1

2kt
=

1

2k − 1
and

g(n) + 1

2n
→ 0.

Notice that the result of Theorem 3.6 is sharp with respect to common ratio 2 be-

cause the set A = N\
(
⋃∞

t=0 2kt+k−1(2N−1)
)

contains no length k geometric progression

with common ratio 2 and d(A) = 1 − 1
2k−1

.

We have seen that there are thick subsets of (N,+) that contain no length 3 geo-

metric progressions, and thick sets are piecewise syndetic. We do not know (and would

very much like to know) whether additively syndetic sets must contain long geometric

progressions. We shall see in Theorem 3.9 that, not only is the set produced by the

greedy algorithm not syndetic, any set of the form G(A) for any proper subset A of N

is not syndetic.

3.7 Theorem. Let Y ⊆ N \ {1} and for each k ∈ Y , let Xk ⊆ N. Let B =
{

n ∈ N : for

each k ∈ Y , ek(n) ∈ Xk ∪{0}
}

. If B is piecewise syndetic in (N,+), then B is syndetic.

Proof. Assume B is piecewise syndetic and pick G ∈ Pf (N) such that
⋃

t∈G (−t + B)

is thick. We shall show that N =
⋃

t∈G (−t + B). So let n ∈ N. For each m ∈ N,
⋃

t∈G (−t+B) contains a block of length m! + n so we may choose sm ∈ N and tm ∈ G

such that m! · sm +n ∈ −tm +B. Pick t ∈ F such that {m ∈ N : tm = t} is infinite. We
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claim that n ∈ −t + B. To see this, let k ∈ Y be given and pick m > kek(n+t)+1 such

that m! · sm + n+ t ∈ B. Then ek(n+ t) = ek(m! · sm + n+ t) ∈ {0} ∪Xk.

3.8 Lemma. Let n ∈ N, let p1, p2, . . . , pn be distinct primes, let t1, t2, . . . , tn be ar-

bitrary elements in Z and let m1,m2, . . . ,mn be arbitrary elements in N. There ex-

ist x, r1, r2, . . . , rn in N such that, for every i ∈ {1, 2, . . . , n}, x + ti = ripi
mi and

ri ≡ 1 (mod pi).

Proof. By the Chinese Remainder Theorem, there exists y, s1, s2, . . . , sn in N such

that, for every i ∈ {1, 2, . . . , n}, y + ti = sip
mi

i .

Let w =
∏n

i=1 pi
mi and for each i ∈ {1, 2, . . . , n}, let qi =

w

pi
mi

. We can choose

ui ∈ N satisfying qiui ≡ 1 (mod pi). Again using the Chinese Remainder Theorem,

we can choose z ∈ N such that, for every i ∈ {1, 2, . . . , n}, siui + z ≡ ui (mod pi). So

si + zqi ≡ 1 (mod pi).

Our claim holds with x = y + zw and ri = si + zqi.

We find the following theorem surprising. The set P can be as thin among the

primes as we please, and each Xp need delete only one member of N.

3.9 Theorem. Let P be an infinite set of primes and for each p ∈ P let Xp be a proper

subset of N. If B =
{

n ∈ N : for each p ∈ P , ep(n) ∈ Xp∪{0}
}

, then B is not piecewise

syndetic.

Proof. By Theorem 3.7 it suffices to show that B is not syndetic. So suppose one

has G ∈ Pf (N) such that N =
⋃

t∈G (−t+ B). Enumerate G as t1, t2, . . . , tn. For each

i ∈ {1, 2, . . . , n} pick pi ∈ P so that pi 6= pj when i 6= j and pick mi ∈ N \Xpi
.

Pick by Lemma 3.8 x, r1, r2, . . . , rn in N such that, for every i ∈ {1, 2, . . . , n},
x + ti = ripi

mi and ri ≡ 1 (mod pi). Pick i ∈ {1, 2, . . . , n} such that x + ti ∈ B. But

x+ ti = ripi
mi and pi 6 | ri so epi

(x+ ti) = mi, a contradiction.

3.10 Corollary. Let A be the set produced by the greedy algorithm to avoid any three

term geometric progressions. Then A is not piecewise syndetic.

Proof. By [9, Theorem 2] A = G(B) where B is the set produced by the greedy

algorithm to avoid any three term arithmetic progressions. So Theorem 3.9 applies.

We see now that sets whose complement is not piecewise syndetic have the property

that all of their translates are both additively and mutiplicatively central. In particular

they are additive and multiplicative IP-sets and contain arbitrarily long geometric and

arithmetic progressions.
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3.11 Theorem. Let A ⊆ N and assume that N \A is not piecewise syndetic in (N,+).

Then for all t ∈ Z, c`K(βN,+) ⊆ (t+A) ∩ N and in particular (t + A) ∩ N is central

in (N,+) and in (N, ·).

Proof. By [20, Theorem 4.40], K(βN,+) ⊆ A. Let t ∈ Z. To see that c`K(βN,+) ⊆
(t+A) ∩ N it suffices to show that K(βN,+) ⊆ (t+ A) ∩ N. So let q ∈ K(βN,+). By

[20, Exercise 4.3.5], βN ∩ K(βZ,+) 6= ∅ and so by [20, Theorem 1.65], K(βN,+) =

βN ∩ K(βZ,+). In particular q ∈ K(βZ,+) and so −t + q ∈ K(βZ,+) and thus,

again using [20, Exercise 4.3.5], −t + q ∈ βN ∩ K(βZ,+) = K(βN,+) ⊆ A. Thus

q ∈ (t+A) ∩ N as required.

We thus have that every minimal idempotent in (βN,+) is a member of (t+ A) ∩ N

and so (t + A) ∩ N is central in (N,+) and, by [20, Corollary 16.26] is also central in

(N, ·).

3.12 Corollary. Let n ∈ N and for each i ∈ {1, 2, . . . , n} let Qi be an infinite set of

primes, let fi : Qi → N, and let mi ∈ Z. For each i ∈ {1, 2, . . . , n}, let Bi = {x ∈ N :

for some q ∈ Qi, eq(x) = fi(q)}. Then
⋂n

i=1

(

(mi +Bi)∩N
)

is central in (N,+) and in

(N, ·).

Proof. By Theorem 3.9 we have for each i ∈ {1, 2, . . . , n} that N \ Bi is not piecewise

syndetic, so by Theorem 3.11 c`K(βN,+) ⊆ ⋂n
i=1 (mi + Bi) ∩ N. Consequently as in

the last paragraph of the proof of Theorem 3.11 we see that
⋂n

i=1

(

(mi + Bi) ∩ N
)

is

central in (N,+) and in (N, ·).

4. Additively syndetic sets

In this section we address the question of whether sets which are syndetic in (N,+)

must contain arbitrarily long geometric progressions, or even whether they must contain

length 3 geometric progressions. We are, unfortunately, not able to answer either of

these questions, but we show that an affirmative answer to the first of these questions

has very strong consequences.

4.1 Definition. (a) G = {A ⊆ N : A contains arbitrarily long geometric progressions}.
(b) E = {p ∈ βN : p ⊆ G}.
(c) Let ψ be a function with domain N, let k ∈ ω, and let l ∈ N. Then B(k, l, ψ) =

{

n ∈ N : (∀t ∈ {−k,−k + 1, . . . , k − 1, k})(∃s ∈ N \ {1})(∀j ∈ {0, 1, . . . , l})
(

ψ(t+ (n− t)sj−l) = ψ(n)
)}

.
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(d) Let ψ be a function with domain N, let k ∈ ω, and let l ∈ N. Then C(k, l, ψ) =
{

n ∈ N : (∀t ∈ {−k,−k + 1, . . . , k − 1, k})(∃s ∈ N \ {1})(∀j ∈ {0, 1, . . . , l})
(

ψ(t+ (n− t)sj) = ψ(n)
)}

.

Recall that it is an easy consequence of van der Waerden’s Theorem that if the

union of finitely many sets is a member of G, then one of those sets is in G.

We show in the following theorem that the assertion that every additively syndetic

set contains arbitrarily long geometric progressions has strong consequences both in

terms of the structure of βN and the kind of configurations that can be guaranteed in

one cell of a partition of N.

The next lemma is well known, but we cannot find an explicit statement of it.

4.2 Lemma. If L is a minimal left ideal of (βN,+), then L is a left ideal of (βZ,+).

Proof. Pick an idempotent p ∈ L. Then L = L + p so for all q ∈ L, q = q + p. Also,

since βN \ N is an ideal of (βN,+), L ⊆ βN \ N. To see that L is a left ideal of (βZ,+)

it suffices to let q ∈ L and show that Z + q ⊆ L. So let t ∈ Z. Then t+ q = (t+ q) + p

and by [20, Exercise 4.3.5], t+ q ∈ βN so t+ q ∈ βN + p = L.

4.3 Theorem. The following statements are equivalent.

(a) Whenever A is syndetic in (N,+), A ∈ G.

(b) There is a left ideal L of (βN,+) such that L ⊆ E. In particular there is a minimal

idempotent p of (βN,+) with p ∈ E.

(c)
⋂

t∈Z
(t+E) 6= ∅.

(d) For every k ∈ N,
⋂k

t=−k(t+ E) 6= ∅.
(e) For every k ∈ N,

⋂k
t=0(t+ E) 6= ∅.

(f) For every k ∈ N,
⋂k

t=0(−t+ E) 6= ∅.
(g) Whenever r ∈ N and ψ : N → {1, 2, . . . , r}, there is a left ideal L of (βN,+) such

that L ⊆ E ∩⋂∞
k=0

⋂∞
l=1

(

B(k, l, ψ)∩ C(k, l, ψ)
)

.

(h) Whenever r, l ∈ N, k ∈ ω, and ψ : N → {1, 2, . . . , r}, B(k, l, ψ) is thick.

(i) Whenever l ∈ N and ψ : N → {1, 2}, B(0, l, ψ) is thick.

(j) Whenever r, l ∈ N, k ∈ ω, and ψ : N → {1, 2, . . . , r}, C(k, l, ψ) is thick.

(k) Whenever l ∈ N and ψ : N → {1, 2}, C(0, l, ψ) is thick.

(l) Whenever r ∈ N and N =
⋃r

i=1Ai, there is some i ∈ {1, 2, . . . , r} such that for all

t ∈ Z, N ∩ (t+ Ai) ∈ G.

(m) Whenever r ∈ N and N =
⋃r

i=1Ai, there is some i ∈ {1, 2, . . . , r} such that for all

t ∈ N, t+ Ai ∈ G.
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Proof. We show first that statements (b) through (f) are equivalent.

To see that (b) implies (c), pick a minimal left ideal L of (βN,+) which is contained

in E. By Lemma 4.2 L is a left ideal of (βZ,+). Therefore, given t ∈ Z, −t+p ∈ L ⊆ E

so p ∈ t+ E.

It is trivial that (c) implies (d) and (d) implies (e). To see that (e) implies (f), let

k ∈ N and pick p ∈ ⋂k
t=0(t+E). Then −k + p ∈ ⋂k

t=0(−t+ E).

To see that (f) implies (b), for each k ∈ N let Hk =
⋂k

t=0(−t + E). Given t ∈ N,

the function λ−t : βZ → βZ is continuous and so −t + E is closed. Thus {Hk : k ∈ N}
is a set of closed subsets of βN with the finite intersection property and so we may pick

p ∈ ⋂∞
k=1Hk. Then N + p ⊆ E so βN + p = c`(N + p) ⊆ E.

To see that (a) implies (f), let k ∈ N and suppose that
⋂k

t=0(−t+E) = ∅. For each

p ∈ βN, pick tp ∈ {0, 1, . . . , k} such that tp + p /∈ E and pick Bp ∈ (tp + p) \ G with

Bp ⊆ N and let Ap = N ∩ (−tp + Bp). Then {Ap : p ∈ βN} is an open cover of βN so

pick a finite set F ⊆ βN such that βN =
⋃

p∈F Ap and in particular N =
⋃

p∈F Ap. Let

C =
⋃

p∈F Bp. Then N ⊆ ⋃p∈F (−tp + C) so C is syndetic in (N,+) and thus C ∈ G.

But then some Bp ∈ G, a contradiction.

We show now that (b) implies (g). Pick a minimal left ideal L of (βN,+) such that

L ⊆ E. By Lemma 4.2 L is a left ideal of (βZ,+). Let k ∈ ω and l ∈ N and suppose we

have some p in L\
(

B(k, l, ψ)∩C(k, l, ψ)
)

. Pick i ∈ {1, 2, . . . , r} such that ψ−1[{i}] ∈ p.

For t ∈ {−k,−k+1, . . . , k−1, k}, let Xt = {n ∈ ψ−1[{i}]\
(

B(k, l, ψ)∩C(k, l, ψ)
)

:

(∃s ∈ N \ {1})(∀j ∈ {0, 1, . . . , l})(ψ(t+ (n− t)sj−l) = ψ(t+ (n− t)sj) = i)}. We claim

that each Xt ∈ p so suppose instead that we have some t ∈ {−k,−k + 1, . . . , k − 1, k}
such that Xt /∈ p. Let D = ψ−1[{i}] \

(

Xt ∪ B(k, l, ψ) ∪ C(k, l, ψ)
)

. Then D ∈ p so

−t + D ∈ −t + p and therefore −t + p ∈ E so pick m ∈ N and s ∈ N \ {1} such that
{

msj : j ∈ {0, 1, . . . , 2l}
}

⊆ −t+D. Let n = t+msl. Then n ∈ D so ψ(n) = i. Also,

m = (n− t)s−l. Given j ∈ {0, 1, . . . , l}, we have that t+ (n− t)sj−l = t+msj ∈ D so

that ψ(t+(n− t)sj−l) = i and t+(n− t)sj = t+msj+l ∈ D so that ψ(t+(n− t)sj) = i.

Thus n ∈ Xt, a contradiction.

Now pick n ∈ ⋂k
t=−k Xt. We claim that n ∈ B(k, l, ψ) ∩ C(k, l, ψ) which will be a

contradiction. So let t ∈ {−k,−k+ 1, . . . , k− 1, k}. Since n ∈ Xt, pick s ∈ N \ {1} such

that for all j ∈ {0, 1, . . . , l}, ψ(t+ (n− t)sj−l) = ψ(t+ (n− t)sj) = i. This establishes

that n ∈ B(k, l, ψ)∩ C(k, l, ψ) as required.

That (g) implies each of (h) and (j) follows from the fact in [7, Theorem 2.9(c)]

that a subset A of N is thick in (N,+) if and only if there is some left ideal L of (βN,+)

such that L ⊆ A.
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Trivially (h) implies (i) and (j) implies (k).

To see that (i) implies (a) and (k) implies (a), let A be syndetic in (N,+) and define

ψ : N → {1, 2} by ψ(n) = 1 if n ∈ A and ψ(n) = 2 if n /∈ A. Since A is syndetic, it

has nonempty intersection with any thick set, so for any l ∈ N, A ∩ B(0, l, ψ) 6= ∅ and

A∩C(0, l, ψ) 6= ∅. Given any n in either of those intersections, ψ(n) = 1, so there must

be a length l + 1 geometric progression contained in A.

To see that (c) implies (l), pick p ∈ ⋂t∈Z
(t+ E), let r ∈ N, and let N =

⋃r
i=1Ai.

Pick i ∈ {1, 2, . . . , r} such that Ai ∈ p. Then for each t ∈ Z, N ∩ (t+ Ai) ∈ p.

It is trivial that (l) implies (m). To complete the proof, we show that (m) implies

(a). So let A be syndetic in (N,+) and pick F ∈ Pf (N) such that N ⊆ ⋃k∈F (−k +A).

Pick k ∈ F such that for all t ∈ N, t+ (−k +A) ∈ G. In particular k+ (−k +A) ∈ G.

It is easy to see that the set E is a two-sided ideal of (βN, ·) and so c`K(βN, ·) ⊆ E.

Theorem 4.3 tells us in particular that if every additively syndetic subset of N contains

arbitrarily long geometric progressions, then K(βN,+) ∩ E 6= ∅. In fact under that

assumption, given any minimal right ideal R of (βN,+), R∩E 6= ∅. On the other hand

it has recently been shown [23] that K(βN,+) ∩ c`K(βN, ·) = ∅.
Notice that statement (j) of Theorem 4.3 has translated geometric progressions with

a common starting point among all of the progressions (because t+ (n− t) · ϕ(t)0 = n)

and statement (h) has translated geometric progressions with a common ending point

among all of the progressions.

There is a significant contrast between these two conclusions. On the one hand,

if r ∈ N, k, l ∈ N, and ψ : N → {1, 2, . . . , r} is a random coloring of N then for

each i ∈ {1, 2, . . . , r} and each n ∈ ψ−1[{i}] the probability is 1 that for each t ∈
{−k,−k + 1, . . . , k − 1, k} there is some s ∈ N \ {1} with

{

t+ (n− t)sj : j ∈ {0, 1, . . . ,
l}
}

⊆ ψ−1[{i}]. On the other hand, if n ∈ B(0, l, ψ), there must be some s ∈ N \ {1}
such that sl divides n and for each i ∈ {1, 2, . . . , r} there is no n ∈ ψ−1[{i}] such that

the probability that there is some s ∈ N \ {1} with
{

nsj : j ∈ {0, 1, . . . , l}
}

⊆ ψ−1[{i}]
is 1.

We have some experimental evidence that the following very weak form of statement

(j) may be false:

(*) Whenever N = A1∪A2 there exists i ∈ {1, 2} such that Ai and 1+Ai both contain

length three geometric progressions.

Specifically consider the following version of a greedy algorithm.

(1) Put 1 ∈ A1.
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(2) Find the first unassigned n and assign it to A1.

(3) If there exist a ∈ N and r ∈ N \ {1} such that all of a, ar, and ar2 are in A1,

announce failure and stop.

(4) If there exist a ∈ N and r ∈ N \ {1} such that some two of a, ar, and ar2 are

in A1, assign the third to A2.

(5) If there exist a ∈ N and r ∈ N\{1} such that all of a, ar+r−1, and ar2+r2−1

are in A2, announce failure and stop.

(6) If there exist a ∈ N and r ∈ N \ {1} such that some two of a, ar + r − 1, and

ar2 + r2 − 1 are in A2, assign the third to A1.

(7) If any assignment was made in steps (4) or (6) go to step (3). Otherwise go to

step (2).

We have implemented this algorithm for the numbers 1 through 30000 (restricting

steps (3) and (4) to ar2 ≤ 30000 and steps (5) and (6) to ar2 + r2 − 1 ≤ 30000) and

it did not terminate until all numbers had been assigned. That is, it produced A1

and A2 whose union is {1, 2, . . . , 30000} such that A1 contains no three term geometric

progression and 1 + A2 contains no three term geometric progression. (If {b, br, br2} ⊆
1 + A2, let a = b− 1. Then {a, ar+ r − 1, ar2 + r2 − 1} ⊆ A2.)
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