The purpose of the following exercise is to discuss the concept of coherent risk measures, which was introduced by Artzner, Delbaen, Eber and Heath in 1997 (Thinking Coherently, RISK, 1997).

Definition (Coherent Risk measure). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space, and let L^∞ denote the set of random variables $\Omega \to \mathbb{R}$, which are bounded \mathbb{P}-a.s. A coherent risk measure is a function $\rho : L^\infty \to \mathbb{R}$ such that

1. $X \geq 0 \Rightarrow \rho(X) \leq 0$;
2. $\rho(\lambda X) = \lambda \rho(X)$, $\lambda \geq 0$ (Positive Homogeneity);
3. $\rho(X + k) = \rho(X) - k$, $k \in \mathbb{R}$ (Translation Invariance);
4. $\rho(X + Y) \leq \rho(X) + \rho(Y)$ (Subadditivity).

Exercise 1.

a) Discuss properties 1. to 4. in the above definition.

b) Show that a coherent risk measure is monotone, i.e., for $X \geq Y$, we have $\rho(X) \leq \rho(Y)$.

c) Show that VaR is not a coherent risk measure by constructing an example which shows that VaR is not subadditive.

d) We define the expected shortfall of some investment’s profit and losses, X, with respect to some fixed level of confidence, α, as the expected value of all losses, which exceed the α–quantile of X, $X(\alpha)$, i.e.:

$$
-\frac{1}{\alpha} \mathbb{E}[X | X \leq X(\alpha)].
$$

Show that the expected shortfall is a coherent risk measure.