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Abstract:
Some first order Sobolev metrics on spaces of curves admit
soliton-like geodesics, i.e., geodesics whose momenta are sums of
delta distributions. It turns out that these geodesics can be found
within the submanifold of piecewise linear curves, which is totally
geodesic for these metrics. Consequently, the geodesic equation
reduces to a finite-dimensional ordinary differential equation for a
dense set of initial conditions.



What are solitons?

From Wikipedia: Solitons
In mathematics and physics, a soliton is a self-reinforcing solitary
wave packet that maintains its shape while it propagates at a
constant velocity. Solitons are caused by a cancellation of
nonlinear and dispersive effects in the medium. (The term
”dispersive effects” refers to a property of certain systems where
the speed of the waves varies according to frequency.) Solitons are
the solutions of a widespread class of weakly nonlinear dispersive
partial differential equations describing physical systems.

A single, consensus definition of a soliton is difficult to find. Drazin
& Johnson (1989, p. 15) ascribe three properties to solitons:
• They are of permanent form;
• They are localized within a region;
• They can interact with other solitons, and emerge from the

collision unchanged, except for a phase shift.

More formal definitions exist, but they require substantial
mathematics.



Soliton solutions considered here

• Hamiltonian systems on (infinite dimensional) function spaces:

qt = ∂pH(q, p), pt = −∂qH(q, p)

• Solitons are solutions whose momenta p are sums of delta
distributions.

This is unprecise on many levels, but it captures the spirit.

Motivation

• Theoretical understanding

• Numerics



Soliton geodesics on diffeomorphism groups

Right-invariant Riemannian metric on Diffc (M) generated by an
inner product on Xc (M):

GId(h, k)〉 =

∫

Rn

〈Lh, k〉dx , L : Xc(M)→ Xc (M)′ .

Geodesic equation (EPDiff) in terms of the momentum:

p(t) := Gϕ(ϕt , ·) = ϕ∗p(0).

One can ask whether (generalized) solutions u(t) = ϕt(t) ◦ ϕ(t)−1

exist such that the momenta Ǧ (u(t)) =: p(t) are distributions with
finite support. The geodesic ϕ(t) may exist only in some suitable
Sobolev completion. Momentum
Ad(ϕ(t))∗p(t) = ϕ(t)∗p(t) = p(0) is constant, i.e.,
p(t) = (ϕ(t)−1)∗p(0) = ϕ(t)∗p(0). i.e., the momentum is carried
by the flow and stays a distributions with finite support. The
infinitesimal version (take ∂t of the last expression) is

pt(t) = −Lu(t)p(t) = − adu(t)
∗ p(t).



Solitons for the Hunter-Saxton equation on Diffc(R) oR
Let C∞1 (R) := {f ∈ C∞(R) : f ′ ∈ C∞c , f (−∞) = 0} and
Diffc,1(R) = {ϕ = Id +f : f ∈ C∞1 (R) : f ′ > −1} the
corresponding regular Lie group. We use the right invariant metric

G Ḣ1

Id (X ,Y ) =

∫

R
X ′.Y ′. dx =

∫
(−X ′′).Y . dx

Theorem. The geodesic equation is the Hunter-Saxton equation

(ϕt) ◦ ϕ−1 = u ut = −uux +
1

2

∫ x

−∞
(ux (z))2 dz ,

and the induced geodesic distance is positive. The geodesic
equation is locally well-posed.
One obtains the classical form of the Hunter-Saxton equation by
differentiating: utx = −uuxx − 1

2u
2
x .

M.Bauer, M.Bruveris, P.Harms, P.W.Michor: Soliton solutions for the elastic metric on spaces of curves. Discrete
and Continuous Dynamical Systems 38, 3 (March 2018)

On Diff (S1)/S1 see: J. Lenells: The Hunter-Saxton equation describes the geodesic flow on a sphere. J. Geometry
and Physics, 57(10):2049-2064, 2007.
J. Lenells. The Hunter-Saxton equation: a geometric approach. SIAM J. Math. Anal., 40(1):266-277, 2008.



We define the R-map by:

R :

{
Diffc,1(R)→ C∞c

(
R,R>−2

)
⊂ C∞c (R,R)

ϕ 7→ 2
(
(ϕ′)1/2 − 1

)
.

The R-map is invertible with inverse

R−1 :





C∞c
(
R,R>−2

)
→ Diffc,1(R)

γ 7→ x +
1

4

∫ x

−∞
γ2 + 4γ dx .

Theorem. The pull-back of the flat L2-metric via R is the
Ḣ1-metric on Diffc,1(R), i.e., R∗〈·, ·〉L2 = G Ḣ1

.

Thus the space
(

Diffc,1(R),G Ḣ1)
is a flat space in the sense of

Riemannian geometry. It gives explicit formulas for geodesics.



Soliton-Like Solutions of the Hunter Saxton equation

The space of N-solitons of order 0 consists of momenta of the
form py ,a =

∑N
i=1 aiδyi with (y , a) ∈ R2N . Consider an initial

soliton p0 = Ǧ (u0) = −u′′0 =
∑N

i=1 ai δyi with y1 < y2 < · · · < yN .
Let H be the Heaviside function (with H(0) = 1/2) and D(x) = 0
for x ≤ 0 and D(x) = x for x > 0. Then u′′0 (x) = −∑N

i=1 aiδyi (x),

u′0(x) = −∑N
i=1 aiH(x − yi ), and u0(x) = −∑N

i=1 aiD(x − yi ).
The geodesic with initial velocity u0 is given by

ϕ(t, x) = x +
1

4

∫ x

−∞
t2(u′0(y))2 + 4tu′0(y) dy

u(t, x) = u0(ϕ−1(t, x)) +
t

2

∫ ϕ−1(t,x)

−∞
u′0(y)2 dy .



Solitons on Diff(S1)/PSL(2,R)

The metric is the Weil–Petersson metric (Sobolev H3/2) on
universal Teichmueller space, visualized as shapes using conformal
welding. The solitons are called Teichons (as suggested by D.
Holm).

6 THE GEOMETRY AND CURVATURE OF SHAPE SPACES
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Figure 6. A geodesic from the unit circle to a duck like shape
using an 8-Teichon. The figure is due to S. Kushnarev [10].

This metric is the closest to the standard metric on Rn because (a) it is invariant
under the transitive action of a group, here Diff(S1) and (b) it is quite flat in high
frequency dimensions because the Ricci curvatures (which are the sum of sectional
curvatures R(a ∧ bi) where {bi} are an orthonormal basis of a⊥ for variable a) are
known to be finite. It is also a complete complex Kähler-Hilbert manifold and has
unique geodesics between any two points [7, 8]. The metric can also be defined
using potential theory which embeds the curve in field lines and thus endows its
interior and exterior with a rich additional structure. The geodesic equation is
an integro-differential variant of Burger’s equation involving the (periodic) Hilbert
transform. Among geodesics on this space, there is a special class of soliton-like
geodesics, which Daryll Holm named ‘teichons’. They are the geodesics generated
by vector fields v dual in the WP norm to sums of delta functions, i.e.

⟨v, u⟩WP =
∑

i

piu(θi), for all u

for some pi, θi. An example of a teichon is shown in figure 6.

§4. The final example is much more general and deals with the full diffeomorphism
group of Rn. Arnold’s curvature formula for volume preserving diffeomorphisms
was significantly more complicated than anything in the above examples. In his
case, there are both positively and negatively curved sections and this also seems
to happen for Riemannian manifolds constructed from any higher order Sobolev
type metrics on diffeomorphism groups. I would not be surprised if at some point
understanding these more complex curvature formulas gives new insight into the
unsolved problems of fluid flows.

The situation that my group has studied most intensively is the metric induced on
‘landmark space’, that is simply the space Ln,N of distinct N -tuples of points in
Rn. Fixing a base N -tuple, we get a submersive map from Diff(Rn) to Ln,N . We

David Mumford, Eitan Sharon: 2D-Shape Analysis using Conformal Mapping, Int. J. of Computer Vision, 70, 2006,
pp.55-75; preliminary version in Proc. IEEE Conf. Comp. Vision and Patt. Rec., 2004.
Kushnarev; Narayan: Approximating the Weil-Petersson metric geodesics on the universal Teichmller space by
singular solutions. SIAM J. Imaging Sci. 7 (2014), no. 2, 900923.
Kushnarev: Teichons: solitonlike geodesics on universal Teichmller space. Experiment. Math. 18 (2009), no. 3,
325336.



Approximating Incompressible flow on DiffH∞(Rn)

The metric is (for ε→ 0 and later η → 0)
G ε

Id(v , v) =
∫
〈v , v〉+ 1

ε2 div(v). div(v)dx =
∫
〈Lεv , v〉dx , where

Lε = Id − 1
ε2 grad div, regularized as

Lε,η = (I − η2

p 4)p ◦ (I − 1
ε2 grad div). The corresponding soliton

solutions were called vortons.
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The momentum moves uniformly
in a straight line.

Momentum is transformed to
vortex-like velocity field by kernel.

D.Mumford, P.W.Michor: On Euler’s equation and ‘EPDiff’. Journal of Geometric Mechanics 5, 3 (2013), 319-344.



Solitons for the Camassa-Holm equation and Landmark
space as space of solitons

The Camassa-Holm equation is the geodesic equation on the group
(Diffc (R),GH1

) for the dispersionfree version and on the Virasoro
group Diffc (R) oR for the version with dispersion. Both versions
admit solitons, which are called peakons.

Landmark space with the Riemannian metric induced by LDDMM
are solitons for the group Diffc(Rn) with the LDDMM-metric,
given by a kernel.

KdV-solitons have a different origin. They do not correspond
directly to momenta with finite support. Maybe the situation is
similar as for the vortons mentioned above.
Holm, Darryl D.; Marsden, Jerrold E. Momentum: maps and measure-valued solutions (peakons, filaments, and
sheets) for the EPDiff equation. In the book: The breadth of symplectic and Poisson geometry, 203235, Progr.
Math., 232, Birkhäuser Boston, Boston, MA, 2005.

Mario Micheli, Peter W. Michor, David Mumford: Sectional curvature in terms of the cometric, with applications
to the Riemannian manifolds of landmarks. SIAM J. Imaging Sci. 5, 1 (2012), 394-433.



Soliton geodesics in spaces of curves

Note to self: check time!

• Reparametrization-invariant Riemannian metric on
Imm(S1,R2):

Gc (h, k) =

∫

S1

〈Lch, k〉 ds,

where ds is integration with respect to arc length.

• Geodesic equation in terms of the momentum:

p = 〈Lcct , ·〉ds,

pt =
1

2

(
Adj(∇L)(ct , ct)⊥ − 2Tc .〈Lcct ,∇ct〉] − 〈Lcct , ct〉Hcnc

)
ds.

• Geodesics with sums of delta distributions as initial momenta
are solitons only for specific choices of L and c0.



Main result

Theorem

1 Piecewise linear curves are a totally geodesic submanifold of
the space of Lipschitz curves with the Ḣ1 metric.

2 Geodesics in this submanifold are solitons in the sense that
their momenta are sums of delta distributions.

M.Bauer, M.Bruveris, P.Harms, P.W.Michor: Soliton solutions for the elastic metric on spaces of curves. Discrete
and Continuous Dynamical Systems 38, 3 (March 2018). Preprint arxiv.org/abs/1702.04344.
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A first order metric on Lipschitz curves

Setting

• Lipschitz curves W 1,∞ = W 1,∞(S1,Rd )

• Lipschitz immersions I1,∞ = I1,∞(S1,Rd )

• Translations Tra ∼= Rd

Agenda

• Scale- and reparametrization-invariant metric on I1,∞/Tra.

• Well-posedness of the geodesic equation.

• Piecewise linear curves are totally geodesic.



Lemma (Ḣ1 metric)

1 The spaces I1,∞ and I1,∞/Tra are Banach manifolds.

2 The following is a smooth weak Riemannian metric on
I1,∞/Tra:

Gc (h, k) =
1

`c

∫

S1

〈Dsh,Dsk〉 ds ,=
∫

S1

1

|cθ|
〈hθ, kθ〉 dθ

/∫

S1

|cθ| dθ .

Proof.

1 There are explicit charts.

2 I1,∞ 3 c 7→ |cθ| ∈ L∞ is smooth:
• Quick proof: non-linear uniform boundedness thm. of convenient

calculus.
• Slow proof: definition of Fréchet derivatives.



Setting

• W 1,∞
0 =

{
h ∈W 1,∞ :

∫
h dθ = 0

}
and similarly for I1,∞

0 .

• W 0,∞
0 =

{
h ∈W 0,∞ :

∫
h ds = 0

}
; this depends on c.

Lemma (Arc-length derivative and its inverse)

For each c ∈ I1,∞
0 the following diagram is commutative,

W 1,∞ π1 // //

Ds

��

W 1,∞
0
� � ι1 //

Ds

��

W 1,∞

Ds

��
W 0,∞ π0 // //W 0,∞

0
� � ι0 //

D−1
s

OO

W 0,∞,

where π0 is the L2(ds)-orthogonal projection, π1 is the
L2(dθ)-orthogonal projection, and ι0 and ι1 are inclusions.



Theorem (Well-posedness of the geodesic equation)

1 The geodesic equation on I1,∞/Tra ∼= I1,∞
0 exists and is

given by

ctt = Gc (c , ct)ct −
1

2
Gc (ct , ct)c

+ D−1
s π0

(
〈Dsc,Dsct〉Dsct −

1

2
|Dsct |2Dsc

)
.

2 The geodesic equation is locally well-posed, and the
exponential map is a local diffeomorphism.

Remark. Previously known only for Ik,2, k > 5/2.

Proof.

1 Variational calculus; exponential law of convenient calculus.

2 The geodesic spray is a smooth vector field on TI1,∞
0 .



Solitons on the submanifold of piecewise linear
curves

Setting

• Grid 0 = θ1 < . . . < θn+1 = 2π on S1 ∼= R/(2πZ)

• Piecewise linear curves PW 1,∞ and immersions PI1,∞

• Piecewise constant left-continuous curves PL∞.

Agenda

• Piecewise linear curves are totally geodesic.

• Comparison to landmark spaces.



Theorem

1 PI1,∞/Tra is a totally geodesic submanifold of I1,∞/Tra.

2 Geodesics in this submanifold are solitons.

Proof.

1 If c and ct are piecewise linear, then ctt is piecewise linear as
well:

ctt = Gc (c , ct)ct −
1

2
Gc (ct , ct)c

+ D−1
s π0

(
〈Dsc,Dsct〉Dsct −

1

2
|Dsct |2Dsc

)
.

2 The velocity ct is piecewise linear iff the momentum Gc (ct , ·)
is a sum of delta distributions.



Interactions between adjacent solitons under the Ḣ1 metric:

Interactions between all solitons under the LDDMM metric:
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