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Abstract: Groups of diffeomorphisms of a manifold M have many
of the properties of finite dimensional Lie groups, but also differ in
surprising ways. | review some (or all or more) of the following
properties or | do something else:

No complexification. Exponential mappings are defined but are not
locally surjective or injective. Right invariant Riemannian metrics
might have vanishing geodesic distance. Many famous PDE's arise
as geodesic equations on Diffeomorphism groups. There are
topological groups of diffeomorphisms which are smooth manifolds
but only right translations are smooth. There are diffeomorphism
groups which are smooth in a certain sense (Some
Denjoy-ultradifferentiable class) but not better (not real analytic).



Why Banach Lie groups are not enough

One of the important objects is the diffeomorphism group
Diff(M) = {¢ € C®(M, M) : ¢ bijective, o+ € C®(M, M)},

of a compact smooth manifold M. We will see soon that Diff(M)
is a smooth Fréchet-Lie group. What about a Banach manifold
version of the diffeomorphism group? If n > 1, then one can
consider

Diff cn(M) = {p € C"(M, M) : ¢ bijective, o1 € C"(M, M)},

the group of C"-diffeomorphisms. The space Diffcn(M) is a
Banach manifold and a topological group, but not a Lie group.
What went wrong? The group operations are continuous, but not
differentiable.



Fix ¢ € Diffcn(M) and consider left translation
L, : Diffca(M) — Diffca(M), = po1);
its derivative should be
TylLo.h = (Dpop).h,

with T, L, denoting the derivative of the map L, and Dy denotes
the derivative of the diffeomorphism ; the former is a map
between infinite-dimensional manifolds, while the latter maps M to
itself. To see this, consider a one-parameter variation (t, x), such
that ¥(0, x) = ¥(x) and 9¢(t, x)|t=0 = h(x), and compute

Oe(¥(t, x))le=0 = Dp((x))-h(x) -

We see that in general Ty L,.h lies only in C"~1. However, if
composition were to be a differentiable operator, T, L, would have
to map into C"-functions.



There seems to be a trade off involved: we can consider smooth
functions, in which case the diffeomorphism group is a Lie group,
but can be modelled only on a Fréchet space; or we look at
functions with finite regularity, but then composition ceases to be
differentiable. This choice cannot be avoided.

Theorem (Omori, 1978)

If a connected Banach—Lie group G acts effectively, transitively
and smoothly on a compact manifold, then G must be a
finite-dimensional Lie group.



A short introduction to convenient
calculus in infinite dimensions.

Traditional differential calculus works well for finite dimensional
vector spaces and for Banach spaces.

Beyond Banach spaces, the main difficulty is that composition of
linear mappings stops to be jointly continuous at the level of
Banach spaces, for any compatible topology.

For more general locally convex spaces we sketch here the
convenient approach to C* as explained in [Frolicher-Kriegl 1988]
and [Kriegl-M 1997].



The c*>-topology

Let E be a locally convex vector space. A curve c: R — E is
called smooth or C if all derivatives exist and are continuous. Let
C*®(R, E) be the space of smooth curves. It can be shown that
the set C*°(RR, E) does not entirely depend on the locally convex
topology of E, only on its associated bornology (system of
bounded sets). The final topologies with respect to the following
sets of mappings into E coincide:

1. C*(R,E).
2. The set of all Lipschitz curves (so that
{M 1t #s,|t],|s| < C}is bounded in E, for each C).

t—s
3. The set of injections Eg — E where B runs through all
bounded absolutely convex subsets in E, and where Ejg is the
linear span of B equipped with the Minkowski functional
|x|lg :=inf{\A > 0:x € AB}.
4. The set of all Mackey-convergent sequences x, — x (there
exists a sequence 0 < A, /* 0o with A,(x, — x) bounded).



The c™>-topology. Il

This topology is called the c>-topology on E and we write c*E
for the resulting topological space.

In general (on the space D of test functions for example) it is finer
than the given locally convex topology, it is not a vector space
topology, since addition is no longer jointly continuous. Namely,
even ¢ (D x D) # c¢*D x c*D.

The finest among all locally convex topologies on E which are
coarser than ¢ E is the bornologification of the given locally
convex topology. If E is a Fréchet space, then ¢ E = E.



Convenient vector spaces

A locally convex vector space E is said to be a convenient vector
space if one of the following holds (called c®>°-completeness):

1. For any ¢ € C*®(R, E) the (Riemann-) integral fol c(t)dt
exists in E.

2. Any Lipschitz curve in E is locally Riemann integrable.

3. Acurve c: R — E is C*° if and only if Ao cis C* for all
A € E*, where E* is the dual of all cont. lin. funct. on E.

» Equiv., for all A € E’, the dual of all bounded lin. functionals.
» Equiv., for all A € V, where V is a subset of E’ which
recognizes bounded subsets in E.

We call this scalarwise C*°.

4. Any Mackey-Cauchy-sequence (i. e. tpm(xn — xm) — 0 for
some tpm — oo in R) converges in E. This is visibly a mild
completeness requirement.



Convenient vector spaces. |l

5. If B is bounded closed absolutely convex, then Eg is a Banach
space.

6. If f: R — E is scalarwise Lip¥, then f is LipX, for k > 1.

7. If f:R — E is scalarwise C* then f is differentiable at 0.

Here a mapping f : R — E is called Lip” if all derivatives up to
order k exist and are Lipschitz, locally on R. That f is scalarwise
C*> means Ao f is C* for all continuous (equiv., bounded) linear
functionals on E.



Smooth mappings

Let E, and F be convenient vector spaces, and let U C E be
c™®-open. A mapping f : U — F is called smooth or C*°, if
foce C®(R,F) for all c € C*(R, V).

If E is a Fréchet space, then this notion coincides with all other
reasonable notions of C°°-mappings. Beyond Fréchet mappings, as
a rule, there are more smooth mappings in the convenient setting
than in other settings, e.g., C°.



Main properties of smooth calculus

1.

For maps on Fréchet spaces this coincides with all other
reasonable definitions. On R? this is non-trivial [Boman,1967].

2. Multilinear mappings are smooth iff they are bounded.

3.fEDU —£—> F is smooth then the derivative

df : U x E — F is smooth, and also df : U — L(E,F) is
smooth where L(E, F) denotes the space of all bounded linear
mappings with the topology of uniform convergence on
bounded subsets.

The chain rule holds.

The space C*°(U, F) is again a convenient vector space where
the structure is given by the obvious injection

c(U, F) <D, TT €®®,R), fs (Cofoc)s,
ceC®(R,V),LeF*

where C*°(RR, R) carries the topology of compact convergence
in each derivative separately.



Main properties of smooth calculus, Il

6. The exponential law holds: For c*-open V C F,
C®(U,C*™(V,G)) = C™(U x V,G)

is a linear diffeomorphism of convenient vector spaces.
Note that this is the main assumption of variational calculus.
Here it is a theorem.

7. A linear mapping f : E — C*°(V, G) is smooth (by (2)
equivalent to bounded) if and only if
E- C>®(V,G) —=— G is smooth for each v € V.

(Smooth uniform boundedness theorem,
see [Kriegl M 1997], theorem 5.26).



Main properties of smooth calculus, IlI

8. The following canonical mappings are smooth.

ev: CP(E,F)x E— F, ev(f,x)="f(x)
ins: E— C®(F,E xF), ins(x)(y)=(x,y)
( )":C®(E,C®(F,G))— C>®(E x F,G)
()Y :C®(ExF,G)— C®(E,C>®(F,G))
comp : C*°(F,G) x C*(E,F) — C*(E, G)
C*( , ):C>®(F,F)xC>®(E,E)—
— C®(C*(E,F), C™(E1, F1))
(f,g)—~ (h—fohog)

I1:TI¢ceE.F)— c=(]E.I]F)



This ends our review of standard results of C°° convenient calculus.
Convenient calculus (having properties 6 and 7) exists also for:

>

Real analytic mappings [Kriegl,M,1990]. Mappings are
smooth along smooth curves and C* along C%-curves.
Holomorphic mappings [Kriegl,Nel,1985] (notion of
[Fantappié, 1930-33]). Mappings are holomorphic along affine
complex lines.

Many classes of Denjoy Carleman ultradifferentible functions,
both of Beurling type and of Roumieu-type

[Kriegl,M,Rainer, 2009, 2011, 2013]. We will come back to
this later, since it has surprising consequences for
diffeomorphism groups.

With some adaptations, Lip* [Frélicher-Kriegl, 1988].

With more adaptations, even CK® (k-th derivative
Holder-contin. with index «) [Faure,Frdlicher 1989], [Faure,
These Geneve, 1991].



Manifolds of mappings and diffeomorphism groups as
convenient manifolds.

We do this for C*°. It works for each real convenient calculus &
(not for holomorphic). See later for DC ultradifferentiable calculus.
Let M be a compact (for simplicity’s sake) fin. dim. manifold and
N a manifold. We use an auxiliary Riemann metric g on N. Then

zero seim)n/ %N /\\p/\%al

N (7 ,exp?) NxN
TN <72V = Vg NN

C>®(M, N), the space of smooth mappings M — N, has the
following manifold structure. Chart, centered at f € C*°(M, N), is:

C®(M,N) D Ur ={g: (f,g)(M) c VNNV 2 J; c T(F*TN)

ur(g) = (mn,exp8) "t o (. 8), ur(g)(x) = (expf,y) " (8(x))
(ur)7H(s) = expfos,  (ur) H(s)(x) = expf(s(x))



Manifolds of mappings Il

Lemma: C®(R,I(M;f*TN)) =T(R x M;pra* f*TN)

By Cartesian Closedness (after trivializing the bundle f*TN).
Lemma: Chart changes are smooth (C*) )

U, 3 s (nn, exp8) o s — (mn, expB) L o (f, expf, os)

since they map smooth curves to smooth curves.

Lemma: C®(R, C®(M, N)) = C*(R x M, N).

By the first lemma.

Lemma: Composition C*(P, M) x C>*(M,N) — C>(P, N),
(f,g) — gof,is smooth, since it maps smooth curves to smooth
curves

Corollary (of the chart structure):

TC®(M, N) = C(M, TN) ——M™)  coomp, ).

TN

TrC®(M,N) =4 b /lﬂ ~ [(FTN)

M—f N



Regular Lie groups

We consider a smooth Lie group G with Lie algebra g = T.G
modelled on convenient vector spaces. The notion of a regular Lie
group is originally due to Omori et al. for Fréchet Lie groups, was
weakened and made more transparent by Milnor, and then carried
over to convenient Lie groups; see [Kriegl, M 1997], 38.4.

A Lie group G is called regular if the following holds:

» For each smooth curve X € C*°(R, g) there exists a curve
g € C>®(R, G) whose right logarithmic derivative is X, i.e.,

{g(O) =e
Oeg(t) = Te(uEW)X(t) = X(t).5(t)

The curve g is uniquely determined by its initial value g(0), if
it exists.

» Put evoli(X) = g(1) where g is the unique solution required
above. Then evol; : C°(R, g) — G is required to be C*
also. We have EvolYX := g(t) = evolg(tX).



Diffeomorphism group of compact M

Theorem: For each compact manifold M, the diffeomorphism
group is a regular Lie group.
open

Proof: Diff(M) —— C°>°(M, M). Composition is smooth by
restriction. Inversion is smooth: If t — f(t, ) is a smooth curve
in Diff(M), then f(t, )~! satisfies the implicit equation

f(t,f(t, )~Y(x)) = x, so by the finite dimensional implicit
function theorem, (t,x) + f(t, )~!(x) is smooth. So inversion
maps smooth curves to smooth curves, and is smooth.

Let X(t,x) be a time dependent vector field on M (in

C(R, X(M))). Then FIZ*X(¢t,x) = (t 4 s, EvolX(t, x)) satisfies
the ODE  0: Evol(t, x) = X(t, Evol(t, x)). If

X(s,t,x) € C®(R? X(M)) is a smooth curve of smooth curves in
X(M), then obviously the solution of the ODE depends smoothly
also on the further variable s, thus evol maps smooth curves of
time dependant vector fields to smooth curves of

diffeomorphism. O



Exponential mapping of Diff( M)

The exponential mapping Exp : X.(M) — Diff.(M) satisfies

To Exp = Id, but it is not locally surjective near Idp,: This is due
to [Freifeld67] and [Koppell70]. The strongest result in this
direction is [Grabowski88], where it is shown, that Diff.(M)
contains a smooth curve through Idy; whose points (sauf Idy) are
free generators of an arcwise connected free subgroup which meets
the image of Exp only at the identity.

The same is true for groups real-analytic diffemorphisms, and
groups of Denjoy-Carleman ultradifferentiable diffeomorphisms (see
below).



Proof

of a weak version of this result for M = S1. For large n € N we
consider the diffeomorphism

B(0) = 0+ 2 + sin’(Y) mod 2m,
the diffeomorphism f, has just one periodic orbit and this is of
period n, namely {% :k=0,...,n—1}. For even n the
diffeomorphism f,, cannot be written as g o g for a diffeomorphism
g (so f, is not contained in a flow), by the following argument: If
g has a periodic orbit of odd period, then this is also a periodic
orbit of the same period of g o g, whereas a periodic orbit of g of
period 2n splits into two disjoint orbits of period n each, of go g.
Clearly, a periodic orbit of g o g is a subset of a periodic orbit of g.
So if g o g has only finitely many periodic orbits of some even
order, there must be an even number of them.



More on Diffeomorphism groups

» Let f € Diff(S') be fixed point free and in the image of Exp.
Then f is conjugate to some translation Ry.

» A formula for the tangent mapping of the exponential of a Lie
group in the case G = Diff(M) looks as follows:

1
TxExp.Y = / (FIX,)*Y dt o FI
0

» For each finite dimensional manifold M of dimension m > 1
and for M = S! the mapping Tx Exp is not injective for some
X arbitrarily near to 0.

» The mapping

Ad o Exp : Xo(M) — Diff(M) — L(Xc(M), Xc(M))

is not real analytic since

Ad(Exp(sX))Y(x) = (FIX)*Y(x) = TR(FIX)(Y(FI*,(x))) is
not real analytic in s in general: choose Y constant in a chart
and X not real analytic.



» The group Diff(M) of real analytic diffeomorphisms is a real
analytic regular Lie group in the convenient sense (see below).

» But is is not real analytic in the sense of extendability to
complexifications [Dahmen-Schmeding,2015]. Thus it has no
complexification.

Lie subalgebras do not correspond to Lie subgroups

Let g C X(R?) be the closed Lie subalgebra of all vector fields
with compact support on R? of the form

X(x,y) = f(x,y)x + g(x,y)y where g vanishes on the strip
0<x<1.

Claim. There is no Lie subgroup G of Diff(R?) corresponding to g.
If G exists there is a smooth curve t — f, € G C Diff(R?). Then
X¢ = (tf;) o f7 1 is a smooth curve in g, and we may assume that
Xo = fx where f =1 on a large ball. But then

AdC(f;) = f* : § /4 g, a contradiction.



Denjoy-Carleman ultradifferentiable functions

Fix a sequence M = (M) of positive reals. A C*°-mapping f on
an open set U C R is said to be of class C{M} if for each compact
set K there dp > 0 such that the set

k
{m xeK ke N} is bounded.
In this way we get the so-called Denjoy—Carleman classes of
Roumieu type C{M},

If we replace dp > 0 by a Vp > 0 we obtain the Denjoy—Carleman
classes of Beurling type C(M),

We will denote by CIM] either of them, and write [J for 3 or V.



Properties of M

Properties of CIM

M increasing

Cv(U) € c™(U) € C¢=(V)

M logarithmically convex
i.e., Mf S Mk—l Mk+1 Y k.
Then: (%g)l/k increasing,
My M < Mo My V1, k,
M{(Mk > ,ijal"'Mocjv
o € Nsg,a1 4+ +aj =k

CIM(U) is a ring.

C™™! closed under compos.

CM! closed under appl.
inverse function thm.

CMl is closed under
solving ODEs.

M weakly log-convex
i.e., (k! M) log-convex

(always assumed below)

sUPyen. o (Mk/Ni)/* < o0

ciMu) c ciM(v)

SUPken. o (Mi)!/* < o0

ce(U) = ciMy(v)

lim g o0 (Mi )Yk = 00

cv(V) ¢ ct™(V)

SUPgen. o (Mig1/ M)t < oo

S A B

CIM! closed under derivat.




ZOO Mk _
k=0 (k+1)Mjy1
or, equivalently,

Ziozﬂﬁwk)l/k =0

CM1'is quasianalytic, i.e.,
T,: CIM(U) = FM is inject.
not surj.if C(U) ¢ CIM(U)

o0 Mk
2o k=0 )My < °°

CM! is non-quasianalytic.
= CIM part. of unity exist.

lim 00 (Mi)Y* = 00 and

o Mk j
Zk:f (k+1)M41 < CMjil
for all j € N and some C

cw(U) ¢ cM(U) and
T,: CIM(U) = FM is surj.:
CM! strongly non-quasianal.

M has moderate growth,

Mjtk \1/(j+k
SUpj,keN>o(MjJMk) I0+k) < 00

necessary for
cartesian closedness

In [Kriegl,M,Rainer, 2009, 2011, 2013] the class C!™ was extended
to mappings between admissible convenient locally convex spaces.
It was proved that C!M! gives rise to a convenient calculus in the
following sense, then forms a cartesian closed category, provided
that M = (M,) is log-convex and has moderate growth.




A differentiabilty class S is a convenient calculus if:

(1) For c™-open sets in convenient vector spaces U C E, V C F
we can define S-mappings, and S(U, F) is again a convenient
space in a suitable lcs structure. c®°-open subsets in convenient
vector spaces and S-mappings form a category. Any S-mapping is
continuous for the c*>-topologies. If E, F are of dim < oo (or even
Banach spaces) then S(U, F) is the classically defined space (this
is usually hard!).

(2) We have a linear S-diffeomorphism (G a convenient vs)
S(UxV,G)=8(U,S(V,G)). (Cartesian Closedness)
(3)Amapf:U— FisSiff AofisS for all bounded linear
functionals X in a set C E’ which describes the bornology. (S is a
bornological concept). Linear S-mappings are exactly the bounded
ones, and L(E, F) (with the lc-topology of bounded convergence)
is bornologically embedded in S(E, F).

(4) A linear map ¢ : E — S(V, G) is S (< bounded) iff

evyol: E — G is S for each x € F. (S-uniform boundedness
theorem).



Thm. Let S be a real differentiability class as above which admits
convenient calculus. Let A and B be finite dimensional S
manifolds with A compact. Then the space S(A, B) of all
S-mappings A — B is a S-manifold modelled on convenient vector
spaces 's(f*TB) of S sections of pullback bundles along

f:A— B. Moreover, a curve c : R — S(A, B) is S if and only if
" :Rx A— B isS. Similarly for Banach-plots.

Corollary. Let A1, A> and B be finite dimensional S manifolds
with A1 and A> compact. Then composition

S(AQ,B) XS(Al,Ag)%S(Al,B), (f,g)»—>fog

is S. This is best possible. For example, if S = CM! for a weight
sequence M which is logarithmically convex and of moderate
growth, and if N = (Ny) is another with (Ni/M)Y* \, 0, then
composition is not CN.

Proof. Composition maps S-curves to S-curves, so it is S. For

S = C@ (i.e,, @ is quasianalytic) we need Banach-plots.



Theorem. Let S be as above. Let A be a compact (= finite
dimensional) S manifold. Then the group Diff®(A) of all
S-diffeomorphisms of A is an open subset of the S manifold

S(A, A). Moreover, it is a S-regular S Lie group: Inversion and
composition are S. Its Lie algebra consists of all S-vector fields on
A, with the negative of the usual bracket as Lie bracket. The
exponential mapping is S. It is not surjective onto any
neighborhood of Id 4.

This is best possible, similarly as in the composition theorem.



A Zoo of diffeomorphism groups on R”

Theorem. The following groups of diffeomorphisms on R" are
C*-regular Lie groups:

» Diffg(R"), the group of all diffeomorphisms which differ from
the identity by a function which is bounded together with all
derivatives separately.

» Diff yoo (R"), the group of all diffeomorphisms which differ
from the identity by a function in the intersection H* of all
Sobolev spaces H* for k € Nx.

» Diffs(R"), the group of all diffeomorphisms which fall rapidly
to the identity.

» Diff(R") of all diffeomorphisms which differ from the identity
only on a compact subset. (well known since 1980)

[M, Mumford,2013], partly [B.Walter,2012]; for Denjoy-Carleman
ultradifferentiable diffeomorphisms [Kriegl, M, Rainer 2014].

In particular, Diff yoo (R") is essential if one wants to prove that the
geodesic equation of a right Riemannian invariant metric is
well-posed with the use of Sobolov space techniques.



An exotic zoo of diffeomorphisms on R”

Various sets of CIMl_diffeomorphisms of R" form CIMl_regular Lie
groups. We denote by Diff A the set of all mappings

Id+f : R" — R", where inf,crn det(,+df(x)) > 0 and f € A, for
any of the following classes A of test functions:

Global Denjoy—Carleman classes

O*F|| Loo (mr
BM(R") = {f € Co(R") : Op > 0 sup 10T Ie=(@) oo}.
aeNn p|0‘| |O(|| M\a|
Sobolev—Denjoy—Carleman classes

O%f || o (wn
W[M],P(Rn) _ {f c Coo(Rn) :Op > 0 sup H ”L (R™)

—_ 1 < oo} 1< p<oo.
a€eNn p\a| ‘O‘|| M|a\ ’

Gelfand-=Shilov classes

1+ |X\)p8°‘f\|1_m(Rn)

SM Ry = [F e @™ Tp> 0 sup <

') = { (R0) 00 = 0 00 ool plall LM, *}
aeN"

Denjoy—Carleman functions with compact support
DIM(R") = cIM(R") N (R") = BIM(R™) N D(R").



Note that DIMI(R") is trivial unless M = (M) is
non-quasianalytic.

For the sequence L = (Ly) we just assume Ly > 1 for all k. Note
that DIMI C S[[l\]/’], and hence S[[Z\]/’] is certainly non-trivial if

M = (M) is non-quasianalytic.

Theorem

Let M = (M) be log-convex and have moderate growth; in the
Beurling case we also assume CtM) D C. Assume that L = (Ly)
satisfies L, > 1 for all k. Let 1 < p < q < o0o. Then DiffBIMI,

Diff WIMlp, DifFS[[z\]”], and DiffDIMI are -regular Lie groups. We

have the following CIM! injective group homomorphisms
i —Di —Di P, Di ’ —Di .
Diff DM Diff Sl Diff WM#—Diff WIM-9(R")—Diff BIM

Each group in this diagram is normal in the groups on its right.



Surprising behavior of right invariant weak
Riemannian metrics.
Groups related to Diff(R)

The reflexive nuclear (LF) space C°(R) of smooth functions with
compact support leads to the well-known regular Lie group
Diff(R).

Define C25(R) = {f : f' € C°(R)} to be the space of
antiderivatives of smooth functions with compact support. It is a
reflexive nuclear (LF) space. We also define the space

S(R) = {f € C3(R) @ f(—o0) = O} of antiderivatives of the
form x fX g dy with g € C°(R).
Diffc 2(R) = { = Id+f : f € CZ%(R), f' > —1} is the
correspondmg group.
Define the two functionals Shifty, Shift, : Diff. 2(R) — R by

Shifty(p) = ev_oo(f) = Xli)rpoo f(x), Shift,(¢) =eveo(f) = lim f(x)

X—00

for p(x) = x + f(x).



Then the short exact sequence of smooth homomorphisms of Lie
groups

(Shifty,Shift, )

Diff ((R) = Diffc2(R) (R?,+4)
describes a semidirect product, where a smooth homomorphic
section s : R? — Diff. »(R) is given by the composition of flows
s(a, b) = FlfZ o Flff' for the vectorfields X, = £,0x, X, = .05 with
[X¢, Xr] = 0 where f;, f, € C*°(RR, [0, 1]) satisfy

fg(x):{l for x < —1 ﬁ(x):{o for x <0 (1)

0 forx>0, 1 forx>1.

The normal subgroup

Diff¢ 1(R) = ker(Shift;) = {¢ = Id+f : f € CZ9(R), f’ > —1} of
diffeomorphisms which have no shift at —oco will play an important
role later on.



Some diffeomorphism groups on R

We have the following smooth injective group homomorphisms:

Diff (R) —> Diffg(R) ——= Diff yyc (R)

| | |

Diff¢,1(R) — Diffs, (R) — Diff , 001 (R)

1

] |

Diff¢ 2(R) — Diffs,(R) —— Diff | 00,1 (R) —— Diff5(R)

2
Each group is a normal subgroup in any other in which it is
contained, in particular in Diffg(R).
For S and W®®! this works the same as for C°. For H® = W2
it is surprisingly more subtle.



Solving the Hunter-Saxton equation: The setting

We will denote by A(R) any of the spaces C2°(R), S(R) or
W>L(R) and by Diff 4(R) the corresponding groups Diff.(R),
Diffs(R) or Diffyee,1 (R).

Similarly A1 (R) will denote any of the spaces C29(R), S1(R) or
W1°°1( ) and Diff 4, (R) the corresponding groups Diffc 1(R),
Diffs, (R) or Dn‘FWoo 1(R).

The H'-metric. For Diff 4(R) and Diff 4, (R) the homogeneous
H'-metric is given by

Go(Xop, Yop)=Gy(X,Y)= /RX’(X)Y'(X) dx ,

where X, Y are elements of the Lie algebra A(R) or A;(R). We
shall also use the notation



Theorem

On Diff 4,(R) the geodesic equation is the Hunter-Saxton equation

1 X
(pr)op ™t =u  ur=—uu+ 2/ (ux(2))? dz,

and the induced geodesic distance is positive.

On the other hand the geodesic equation does not exist on the
subgroups Diff 4(R), since the adjoint ad(X)*Gg(X) does not lie
in Gig(A(R)) for all X € A(R).

One obtains the classical form of the Hunter-Saxton equation by
differentiating:

Lo
Utx = —UlUxx — §Ux y
Note that Diff 4(R) is a natural example of a non-robust
Riemannian manifold.



Proof

Note that Gig : A1(R) — A1 (R)* is given by Gig(X) = —X" if we
use the L2-pairing X — (Y + [ XYdx) to embed functions into
the space of distributions. We now compute the adjoint of ad(X):
{ad(X)*Ga(Y), Z) = Gia(Y,ad(X)Z) = Ga(Y, —[X, Z])
_ / Y'(x) (X' (x)Z(x) — X(x)Z'(x))’ dx
R
_ / Z() (X" () Y'(x) — (X(x)Y'(x))") dx .
R
Therefore the adjoint as an element of Aj is given by

ad(X)*Gg(Y) = X"Y' — (XY')".



For X = Y we can rewrite this as

((X/2) X2 /// _ / X (X2) )
1 / 2y/

=56 Xy )2 dy + (X?) )

If X € A1(R) then the function —% [*_ X'(y)?dy + 3(X?) is

again an element of A;(R). This foIIows |mmed|ately from the
definition of A;(R). Therefore the geodesic equation exists on
Diff 4,(R) and is as given.

However if X € A(R), a neccessary condition for

(X' (¥))?dy € A(R) would be [*°_ X'(y)*dy = 0, which would
imply X’ = 0. Thus the geodesic equation does not exist on A(R).
The positivity of geodesic distance will follow from the explicit
formula for geodesic distance below. QED.

1

V.

ad(X)*G|d(X) =

N~



Theorem.

[BBM2014] [A version for Diff(S!) is by J.Lenells 2007,08,11]
We define the R-map by:

. Diff 4,(R) = A(R,R>_2) C A(R,R)
' =2 ((¢)?-1).
The R-map is invertible with inverse
A(R,R>_) — Diff 4, (R)

Ril . 1 x 2
'y»—>x+4/ Y-+ 4y dx.
The pull-back of the flat L?-metric via R is the H -metric on
Diff 4(R), i.e.,

R*<.’ >L2 prg <.’ >H1 .
Thus the space (DifFAl(R), Hl) is a flat space in the sense of
Riemannian geometry.

Here (-,-);2 denotes the L?-inner product on A(R) with constant
volume dx.



Proof

To compute the pullback of the L2-metric via the R-map we first
need to calculate its tangent mapping. For this let

h= Xo¢ € T,Diff 4, (R) and let t — ¢(t) be a smooth curve in
Diff 4, (R) with 1(0) = Id and J¢|oy(t) = X. We have:

TR.h = OrloR((t) o ) = Dilo2 ((((t) 0 9)) 2~ 1)

= 0:lo2((1(t)x 0 ) px) />

= 2 20hlo(((1)) 2 0 ) = (sox)l/%m o)
= () 2(X 0 9) = (¢ (X 0 ).

Using this formula we have for h = Xj o p, k = X5 o ¢:

R*(h, k)2 = (T R.h, T,R.K) 2 = / X{(x)X5(x) dx = (h, k) ;n QED
R



Corollary

Given ¢, p1 € Diff 4,(R) the geodesic p(t, x) connecting them is
given by

#t,x) = R7((1 = DR(¢0) + tR(1) ) (x)

and their geodesic distance is

d(po, ¢1)* = 4/R ((P)M? = (¢)?)? dx .

But this construction shows much more: For S1, (7°, and even for
many kinds of Denjoy-Carleman ultradifferentiable model spaces as
explained above. This shows that Sobolev space methods for
treating nonlinear PDEs is not the only method.



Corollary: The metric space (Diff 4,(R), H') is path-connected
and geodesically convex but not geodesically complete. In
particular, for every pqo € Diff 4,(R) and h € Ty, Diff 4,(R), h # 0
there exists a time T € R such that ¢(t,-) is a geodesic for

|t| < |T| starting at po with p(0) = h, but px(T,x) = 0 for some
x € R.

Theorem: The square root representation on the diffeomorphism
group Diff 4(R) is a bijective mapping, given by:

R Diff 4(R) — (Im(R), [ - [I2) € (A(R,Rs2),[| - [I12)
. 2 ((gpl)l/z—l) .
The pull-back of the restriction of the flat L?-metric to Im(R) via R

is again the homogeneous Sobolev metric of order one. The image
of the R-map is the splitting submanifold of A(R,R~_») given by:

Im(R) = {7 € AR, R=. ) : F(3) = /

R7(7+4) dx:O} .



On the space Diff 4(R) the geodesic equation does not exist. Still:
Corollary: The geodesic distance d* on Diff 4(R) coincides with
the restriction of d1 to Diff 4(R), i.e., for g, p1 € Diff 4(R) we
have

d4 (o, 1) = d** (o, p1) -



Continuing Geodesics Beyond the Group, or How Solutions
of the Hunter—Saxton Equation Blow Up

Consider a straight line y(t) = 70 + ty1 in A(R,R). Then
~(t) € A(R,R~_5) precisely for t in an open interval (ty, t1) which
is finite at least on one side, say, at t; < co. Note that

A6 = RGO = x+7 [ 20)(0) + 41(6)(w) o

makes sense for all t, that ¢(t) : R — R is smooth and that
©(t)'(x) > 0 for all x and t; thus, ©(t) is monotone
non-decreasing. Moreover, ¢(t) is proper and surjective since 7(t)
vanishes at —oo and oco. Let

|\/|On.,41 = {ld +f:fe Al(R R f, —].}

be the monoid (under composition) of all such functions.



For v € A(R,R) let x(y) := min{x € RU {o0} : v(x) = —2}.
Then for the line y(t) from above we see that x(y(t)) < oo for all
t > t1. Thus, if the ‘geodesic’ ¢(t) leaves the diffeomorphism
group at ti, it never comes back but stays inside

Mon 4, (R) \ Diff 4, (R) for the rest of its life. In this sense,
Mon 4, (R) is a geodesic completion of Diff 4,(R), and

Mon 4, (R) \ Diff 4, (R) is the boundary.

What happens to the corresponding solution

u(t,x) = p:(t, p(t)71(x)) of the HS equation? In certain points it
has infinite derivative, it may be multivalued, or its graph can
contain whole vertical intervals. If we replace an element

¢ € Mon 4, (R) by its graph {(x, ¢(x)) : x € R} C R we get a
smooth ‘monotone’ submanifold, a smooth monotone relation.
The inverse ¢~ 1 is then also a smooth monotone relation. Then
t— {(x,u(t,x)) : x € R} is a (smooth) curve of relations.
Checking that it satisfies the HS equation is an exercise left for the
interested reader. What we have described here is the flow
completion of the HS equation in the spirit of [Khesin M 2004].



Soliton-Like Solutions of the Hunter Saxton equation

For a right-invariant metric G on a diffeomorphism group one can
ask whether (generalized) solutions u(t) = p:(t) o ()1 exist
such that the momenta G(u(t)) =: p(t) are distributions with
finite support. Here the geodesic (t) may exist only in some
suitable Sobolev completion of the diffeomorphism group. By the
general theory, the momentum Ad(¢(t))*p(t) = ¢(t)*p(t) = p(0)
is constant. In other words,

i.e., the momentum is carried forward by the flow and remains in
the space of distributions with finite support. The infinitesimal
version (take 0 of the last expression) is

pe(t) = —Lynyp(t) = —adyr) ™ p(t).



The space of N-solitons of order 0 consists of momenta of the
form p, , = Z,N:l a0y, with (v, a) € R?N. Consider an initial
soliton pg = G(uo) = —uf = N a6, with y1 <y» < --- < yn.
Let H be the Heaviside function

0, x<0,
H(X): %7 XZOa
1, x>0,

and D(x) =0 for x <0 and D(x) = x for x > 0. We will see later
why the choice H(0) = 3 is the most natural one; note that the
behavior is called the Gibbs phenomenon. With these functions we
can write

N
() = =3 @ity (x)
/E1
up(x) = — Z aiH(x — ;)

N
up(x) = — Za,-D(x — ¥i)-



We will assume henceforth that Z,N:1 a;j = 0. Then up(x) is
constant for x > yy and thus up € H(R); with a slight abuse of
notation we assume that Hj (R) is defined similarly to H{°(R).
Defining S; = Z}:l a; we can write

N

uh(x) = = 3 S (HOx = i) = Hix — yiga))

i=1

This formula will be useful because

supp(H(. — yi) = H(. = yi1)) = i yial-

The evolution of the geodesic u(t) with initial value u(0) = ug can
be described by a system of ordinary differential equations (ODEs)
for the variables (y, a).

Theorem The map (y,a) — SV, a;d,, is a Poisson map between
the canonical symplectic structure on R?N and the Lie—Poisson
structure on the dual T, Diff 4(R) of the Lie algebra.



In particular, this means that the ODEs for (y, a) are Hamilton's
equations for the pullback Hamiltonian

E(yva) 7G|d(uya)7 ya))7

with v, 5y = G YN a6,) = —3N aiD(. - yi). We can
obtain the more explicit expression

1
E(Yaa): Q/R(u(y,a)( )) dx = - / (ZSH[%}/H]) dx
1 N
= 525,'2()%1 — Yi)-
i=1

Hamilton's equations y; = 8E/83,~, a; = —0E/0Oy; are in this case
ZSI }’l+1 t) ( ))7

5i(t) = % (Si(6)? = Sra(1)%).



Using the R-map we can find explicit solutions for these equations
as follows. Let us write a;(0) = a; and y;(0) = y;. The geodesic
with initial velocity ug is given by

1 X
plex) =x+ 4 [ Eh)? +4tub(y) dy

_1 t @_l(tvx) / 2
ult) = (e e+ 5 [ ) dy,

First note that

o (t,x) = (1 + ;uf,(x)>2

ey Yo (et 2))
U (t,z) = 1+ Luh (p71(t, 2))




Using the identity H(¢~(t, z) — y,-) = H(z — o(t, y;)) we obtain
uh (9~ Z aiH (z — ¢(t,)) ,

N

(o (71t 2))) = =D aib(ey)(2)-

i=1

and thus

Combining these we obtain

1 N
u'(t,z) = 2 (— Z ai5<p(t,y,-)(z)>

(1+ 2u) (¢ 1(t, 2)))

N
) ~(2).
Z ( ))2 w(t ,y:)( )

i=1
From here we can read ofF the solution of Hamilton's equations

y,'(t) = (P(t7Yi)
ai(t) = —a; (1+ %U(/J()’i)r2



When trying to evaluate uj(y;),
up(yi) = aiH(0) - S;,

we see that uj is discontinuous at y; and it is here that we seem to
have the freedom to choose the value H(0). However, it turns out
that we observe the Gibbs phenomenon, i.e., only the choice

H(0) = 3 leads to solutions of Hamilton's equations. Also, the
regularized theory of multiplications of distributions (Colombeau,
Kunzinger et.al.) leads to this choice. Thus we obtain

i—1 2
t
yilt)=yi+Y_ <45j2 - f51> (Y1 = ¥))
=1
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It can be checked by direct computation that these functions
indeed solve Hamilton's equations.



