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Frölicher spaces were introduced under the name ‘espaces lisses’ (smooth spaces)
in [4] and [5]; they were called Frölicher spaces in [7, section 23]. They furnish a
very simple vehicle for extending the notion of smooth mappings from manifolds to
singular spaces and they give a cartesian closed category.

Frölicher spaces. A Frölicher space, also called a smooth space or a space with
smooth structure, is a triple (X, CX ,FX) consisting of a set X, a subset CX of the
set of all mappings R → X, and a subset FX of the set of all functions X → R,
with the following two properties:

• A function f : X → R belongs to FX if and only if f ◦ c ∈ C∞(R,R) for all
c ∈ CX .
• A curve c : R → X belongs to CX if and only if f ◦ c ∈ C∞(R,R) for all
f ∈ FX .

Note that a set X together with any subset F of the set of functions X → R
generates a unique Frölicher space (X, CX ,FX), where we put in turn:

CX := {c : R→ X : f ◦ c ∈ C∞(R,R) for all f ∈ F},
FX := {f : X → R : f ◦ c ∈ C∞(R,R) for all c ∈ CX},

so that F ⊆ FX . The set F will be called a generating set of functions for the
Frölicher space.

Likewise, a set X together with any subset C of the set of curves R→ X generates
a unique Frölicher space (X, CX ,FX), where we put in turn:

FX := {f : X → R : f ◦ c ∈ C∞(R,R) for all c ∈ C},
CX := {c : R→ X : f ◦ c ∈ C∞(R,R) for all f ∈ FX},

so that C ⊆ CX . The set C will be called a generating set of curves for the Frölicher
space.

Smooth mappings. A mapping φ : X → Y between two Frölicher spaces is called
smooth if one of the following three equivalent conditions hold:

• For each c ∈ CX the composite φ ◦ c is in CY .
• For each f ∈ FY the composite f ◦ φ is in FX .
• For each c ∈ CX and for each f ∈ FY the composite f ◦φ◦c is in C∞(R,R).

Note that FY can be replaced by any generating set, as well as CX . The set of
all smooth mappings from X to Y will be denoted by C∞(X,Y ). Then we have
C∞(R, X) = CX and C∞(X,R) = FX . Obviously, Frölicher spaces and smooth
mappings form a category.

1



2 THOMAS HOTZ, ANDREAS KRIEGL, PETER W. MICHOR

Theorem. [7, 23.2] The category of Frölicher spaces and smooth mappings has the
following properties:

• Complete, i.e., arbitrary limits exist. The underlying set is formed as in
the category of sets as a certain subset of the cartesian product, and the
smooth structure is generated by the smooth functions on the factors.
• Cocomplete, i.e., arbitrary colimits exist. The underlying set is formed as

in the category of sets as a certain quotient of the disjoint union, and the
smooth functions are exactly those which induce smooth functions on the
cofactors.
• Cartesian closedness, which means: The set C∞(X,Y ) carries a canonical

smooth structure generated by all functions of the form

C∞(X,Y )−C
∞(c,f)→ C∞(R,R)−λ→ R

where c ∈ C∞(R, X) and f ∈ C∞(Y,R), or in a generating sets, and where
λ ∈ C∞(R,R)′. With this structure the exponential law holds:

C∞(X × Y,Z) ∼= C∞(X,C∞(Y, Z)).

Corollary. Canonical mappings are smooth, for Frölicher spaces X,Y, Z:

ev : C∞(X,Y )×X → Y, ev(f, x) = f(x)

ins : X → C∞(Y,X × Y ), ins(x)(y) = (x, y)

( )∧ : C∞(X,C∞(Y, Z))→ C∞(X × Y,Z)

( )∨ : C∞(X × Y, Z)→ C∞(X,C∞(Y,Z))

comp : C∞(Y, Z)× C∞(X,Y )→ C∞(X,Z)

C∞( , ) : C∞(Y, Y1)× C∞(X1, X)→
→ C∞(C∞(X,Y ), C∞(X1, Y1))

(f, g) 7→ (h 7→ f ◦ h ◦ g)

Natural topologies on Frölicher spaces. [3, section 1] On a Frölicher space
(X, CX ,FX) we consider the following two topologies:

• The final topology with respect to all smooth curves in CX ; it is denoted
by τC .
• The inital topology with respect to all smooth functions in FX ; we denote

it by τF

The identity mapping (X, τC)→ (X, τF ) is obviously continuous. A Frölicher space
is called balanced if these two topologies coincide and are Hausdorff.

Related concepts.

• Holomorphic Frölicher spaces. As curves one has to take mappings from
the complex unit disk D, and complex valued functions such that each com-
position is holomorphic D → C. Stein manifolds are holomophic Frölicher
spaces whereas compact complex manifolds are not. See [7, 23.5].
• Sikosrki spaces. Here one specifies an algebra of ‘smooth’ functions with

certain properties. One can also specify sheafs of ‘smooth’ functions.
• Diffeological spaces. Here one specifies mappings from open sets in all Rn’s

with appropriate conditions. These were introduces by Sourieau, see the
recent book [6].
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There are natural functors from the categories of Sikorski spaces and of diffeological
spaces into the category of Frölicher spaces, which are right and left adjoints. See
[9] for a comparison.

Theorem. Tree spaces in the sense of [1] are balanced Frölicher spaces.

This follows from the fact that a tree space T is always a closed subspace of RN ,
where different quadrants always meet at non-trivial angles. As generating set of
functions one can take the restrictions of linear functions on RN . This is called the
standard Frölicher structure.

The following two examples are fundamental to understanding tree spaces, see
e.g. [8].

Example of a treespace: the 3-spider.

A generating set of functions consists of all linear functions
on R2 or on R3. Smooth curves in CX then have to stop in
all derivatives when they change sheets. Functions f ∈ FX
are then smooth on each closed sheet.

The open book as part of tree space.

A generating set of functions consists again of all
linear functions on Rn. Smooth curves in CX can
meet the spine S only tangentially; more precisely,
the first non-vanishing derivative of the normal
component has to be of even order. Functions
f ∈ FX are smooth on each closed sheet.

Example of a non-Hausdorff orbit space: adjoint action of SL(2,R).

The adjoint action of SL(2,R) on its Lie al-
gebra sl(2,R) has as orbits the connected
components of the ‘spheres’ with respect to
the Killing form, which is isomorphic to
Minkowski space R1,2. The orbits are as fol-
lows. The double light cone decomposes in
three orbits: the future light cone, the past
one (these two are not closed orbits), and 0.

The other orbits are: The two parts of each two-sheeted hyperboloid, and the one
sheeted hyperboloids. The orbit space X can be visualized as a vertical line, a
horizontal half-line, and two further points (corresponding to the open light cones)
which cannot be separated in the quotient topology from the intersection point
depicting the equivalence class of 0.

The structure of a Frölicher space on X is generated by the set C of projections
to X of all smooth curves in R1,2. A smooth curve can go from the vertical half-line
through one of the nonclosed orbits to the horizontal half-line, but through 0 it can
only go infinitely flat (in R1,2). The functions f ∈ FX are those such that f ◦ π
is in C∞(R1,2,R). The topology τF is strictly coarser then the quotient topology:
The closure of each non-closed point contains all 3 points. We get curves in CX
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which are not in C, namely, a curve in CX can now also go smoothly with nontrivial
speed through 0 from vertical to horizontal. The final topology τC is finer: the two
non-closed points become closed, too; so τC is T1 but still not T2. The space X is
not balanced.

The geodesic Frölicher structure on tree spaces. Then we can put the fol-
lowing Frölicher structure on X: Let us take as generating set C the union of the
space CX of smooth curves for the standard Frölicher structure on X with the set
of all curves γ : R → X such that s 7→ γ(tan(s)) = γ̃(s) is a geodesic between
the points γ̃(−π/2) and γ̃(π/2) which is parameterized proportional to arclength.
That means, we put:

Fgeo
X = {f : X → R : f ◦ γ ∈ C∞(R,R)∀γ ∈ C},
CgeoX = {c : R→ X : f ◦ c ∈ C∞(R,R)∀f ∈ Fgeo

X }.

Then (X, CgeoX ,Fgeo
X ) is a Frölicher space by the general construction.

We define T ixX as the quotient of {c ∈ CgeoX : c(0) = x} by the equivalence
relation c1 ∼ c2 ⇐⇒ (f ◦ c1)′(0) = (f ◦ c2)′(0) ∀ f ∈ Fgeo

X , and call this the inner
tangent space at x ∈ X. For a tree-space T ixX is the tangent space at x of the
stratum containing x in its interior.

We may define T cxX as the quotient of the set of all geodesics γ : [0, 1]→ X with
γ(0) = x, parameterized proportional to arclength, modulo the equivalence relation
γ1 ∼ γ2 ⇐⇒ γ1 = γ2 near 0. We call T cxX the conical tangent space. It contains
all vectors pointing from x into higher strata which are bounded by the stratum of
x.

Geodesic Frölicher structures on certain metric spaces. Let X be a geodesic
metric space, i.e., between any two points there exists a unique geodesic realizing
the distance (see e.g. [2]).

If we generate a Frölicher structure only by the set C of geodesics, even in Rn
we do not get the usual structure. Besides C∞-function we also get homogeneous
rational functions in FX , and more.

Let us take as generating set F of functions squares of geodesic distances x 7→
d(yi, x)2, where yi runs through a subset of points in X. If X = Rn and yi are
n + 1 generic points, the resulting Frölicher structure is the usual one. If X is a
tree-space, the resulting Frölicher structure seems to be the (CgeoX ,Fgeo

X ) structure.
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[4] A. Frölicher, Categories cartésiennement fermées engendrées par des monoides, Cahier Top.
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