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Preface

This book is the final outgrowth of a sequence of seminars
about functors on categories of Banach spaces (held in the
years 1971 - 1975) and several doctoral dissertations
prepared during this period under the supervision of
J. Cigler. In the summer term of 1974, a lecture course
was given by J. Cigler (CIGLER [11]), the notes of which
were the basis for this book. It has been written for
readers with a general background in functional analysis.
The requirements for category theory are modest and the
necessary concepts are developed in the course of the book
as the need for them arises. Some familiarity with categorical
thinking, however, would be useful. A convenient reference is
MAC TANE [49].

We would like to specify the main authors of each chapter:
I: Cigler, Michor; II: Losert; III: Cigler; IV: Michor;
V: Losert, Michor; VI: Losert, Michor.

The first three chapters are an exposition of more
or less well-known material in categorical setting; the first
chapter is devoted to identify basic categorical notions in
the category Ban of Banach spaces and to translate some
useful information of functional analysis into categorical terms.
The second sectlion contains an exposition of the Waelbroeck-
Buchwalter theory, which describes the dual category of Ban.

The second chapter is devoted to various tensor products

iii
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of Banach spaces and to the approximation property.

The third chapter ireats Banach modules over 2 Banach algebra
with approximate identities in such a way as to exhibit
the analogy with the theory of functors on categories

of Banach spaces. Chapter IV gives first some basic facts
and constructions for functors on categories of Banach
spaces (which in most cases have no direct counterpart

in general category theory) and then a discussion of the
tensor product of functors. The next chapter is devoted

to duality of functors: first all possible duality theories
(satisfying certain axioms) are characterized, then the
duality notion of MITIAGIN-SHVARTS [57] is systematically
treated and finally the conjecture [57] that any dual
functor be reflexive is decided in the negative. In the
sixth chapter various Kan extensions over subcategories

of Ban are treated: this is a generalization of the

theory of GROTHENDIECK [33], and here some intimate
connections with the geometric theory of Banach spaces

are brought to light. There are several loose ends leading
to the theory of operator ideals (as in chapters IV and

V too). A certain attempt to bridge this gap has been made
in MICHOR [551.

We had planned to write a section on the historical
development, but when the manuscript was finished we were
too exhausted to do this. Hence, citations in the text
give convenient references only, but rarely give credit to

the original source.
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Thanks are due to the participants of the forementioned
seminars, to the audience of the lecture course, to
James B. Cooper and M. Grosser who read the whole manuscript
and to Brigitte Mihlegger and Silvia Aschan for the

beautiful typescript.

Vienna, February 1977 J.C.
v.L.
PIM.
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Introduction

Banach modules and functors on categories of Banach spaces
may be interpreted as generalizations of Banach spaces,
where the field of scalars R or C has been replaced
by a Banach algebra or a category of Banach spaces.
This book is an outgrowth of the attempt to carry over
Banach space theory to this more general setting.
In order to motivate our theory let us give a short survey
of the basic ideas without going into exact definitions
and details.
In the last decades,category theory has been developed
into a powerful tool for comparing different theories and
studying their structure. From this point of view the most
useful constructions with Banach spaces are limits and colimits
(including sums, products, quotients and subspaces) together
with the (projective) tensor product X ® Y and the space of
all bounded linear maps H(X,Y). A central role is played
by the remarkable formula

H(X ® Y,2) = H(Y,E(X,2))
which is called the exponential law because it takes the
form (25)Y = ZX ® ¥ if we set H(XY) =YX .
All this may be generalized to the case of Banach modules
([70]) if some care is taken in distinguishing between lefst,

right and bimodules if the Banach algebra A is non-commutative.

Suppose W is a right A-module and V is a left A-module.

ix



INTRODUCTION

Then the tensor product W i V is defined but,

in general, has only a Banach space structure.

In the same way, for two left A-modules V1 and V2

the set of all A-module homomorphisms HA(V1,V2)isjllgeneral.only
a Banach space, in fact, a closed subspace of H(V1,V2).

For right modules w1,w2 we denote the corresponding space

by EA(W, W)

The exponential law can be generalized in the following form:

Let A and B be Banach algebras, X a left B-moduwle, V a left
A-module and Z a left A~ and right B-module, then Z é X is

B
a left A-module, HA(Z,V) a left B-module and

H,(2 % %,V) = Ep(X,H, (Z,V)) .

Let us now adopt the point of view already mentioned of considexring
left A-modules as '"generalized" Banach spaces with the field

of scalars I replaced by the Banach algebra A. Our aim is to extend
important constructions for Banach spaces to this more general
setting. This is rather straightforward and uninteresting if A
has & unit element e. The formulas I & X = X and H(1,X) = X fo:
Banach spaces take the form A % V=V and HA(A,V) =V .

The dual space X' = H(X,I) = H(X,I') generalizes to

H,(V,A') = H,(V,H(4,1)) = H(A ® V,I) = H(7,I) = V' which
coincides with the Banach space dual. For Banach algebras without
unit element (which occur in most of the interesting examples)
things are not so easy.

For simplicity let us assume that A has an approximate

identity, i.e. a net (et) of elements e, € A such that

| . .
letq =1 and 1lim e,a = lim ae, = a for all a € A .
1 1
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Assume further that all modules V are strong, i.e. they
satisfy SUp lavll = vl for all v € V .

Nallz1
Then we have A f VEV E HA(A,V) .
We call V_ =A % V the essential part of Vand V = HA(A,V)
the A-completion of V. It turns out that (Ve)e
(V) =7, ZveS =7, (V)e =V

and if V=V we call it A-complete.

1]

Ve,

e If V = Ve we call V essential
The dual V° = HA(V,A') is an A-complete right A-module and
coincides with Ve'

There is a natural inclusion i:V VOo given by

i(v)(v°) = vO(v)  for all v° € v°

For special cases some aspects of this situation are well known:

For A = o and V a normed ideal in lqithe dual V° reduces to
the Kothe-dual. For A the algebra of compact operators in a
Hilbert space H we get the theory of symmetrically-normed
ideals of Schatten [75] and Gohberg-Krein [29] .

The case of right modules can be reduced to left modules.
Consider the opposite Banach algebra A°? which has the

same elements as A but where multiplication ae° b is defined by
a°*b = ba. Then W is a right A module if and only if W is a
left A°P-module.

For bimodules the situation is somewhat more complicated.

To get a satisfactory theory we must suppose that the bimodule
U satisfies A % U=1T % A and this space again is called the

essential part of the bimodule.

xi
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We define the A-completion U of U as the set of all
(v,9) € BAa,U) x H,(4,0) satisfying a¥(b) = 9(a)b
for all a,b. Then U is a bimodule containing U via the
imbedding u (tu,¢u)where *u(a) = ua and ¢u(a) = au
and we have Tﬁ;T =T, (Tj)e =T, ,
is again defined by U° = H,(U,A")

-

= U, The dual bimodule

il

U

U = ENU,AY) .

° is an A-complete bimodule.

In the case U = A the A-completion of A is well-known in the
literature under the name "double centralizer algebra" A(4A).

The algebra structure in A(A) is defined by

(g11F))(g,T,) = (g1851f,fy). Then 8(A) is a Banach algebra

with unit element (1A’1A)‘ It contains A as twosided ideal

and is the "largest" algebra with this property.

Whereas most results on Banach modules we have mentioned are
well known in the literature - albeit not from this point of view
which makes them appear quite trivial - their analogues for
functors on Banach spaces seem to have escaped attention so far.
What sort of analogy exists between Banach modules and functors?
It is of course a purely formal one: let F be a (covariant)
functor from some full subcategory K of Ban into the category

Ban of all Banach spaces. Then for every v € F(X) and every

a : XY, av defined as F(a)v satisfies

v = Fligv=v , lavll = Ir(a)v!l = allllvll ana b(av) = F(b)(F(a)v) =

v
= Mba)v = (ba)v for b : Y~ 2 .

Now let F, and F2 be two covariant functors from X to Ban
and @ : F1 - F2 a natural transformation. This means that

@Y(F1(a)v) = Fz(a)wx(v) for v € F1(X) and a : X 2 Y. In the
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above notation, i.e. without indices and functor symbol, this reads
as 9(av) = a®(v) which looks like the condition for a generalized
module homomorphism.The underlying idea is to consider the Banach
algebra as an algebra of endomorphisms of some Banach space,

say A itself, and then "split" this space into several components,
thus getting a category.

In the same way contravariant functors correspond to right
modules and co-contra-variant functors to bimodules in the sense
introduced above.

The interesting fact - which shows that this is a good analogy -
is that all we have done for Banach modules can be done also

for functors: For every contravariant functor G : K > Ban and
every covariant functor F: K > Ban a Banach space G % F is
defined which is called their tensor product, for two functors

F,, F, of the same variance the Banach space Nat(F1,F2) of all
natural transformations between them is defined and the
exponential law holds in the following form: Let X and L be
subcategories of Ban, M : L x K~ Ban a contra-covariant
bifunctor, F,: L @ Ban and F,: K ? Ban covariant functors,

then the equation Nat (M & F, , F,) = Nat (F,,Nat(M,F,)) holds.
X L L K

If H denotes the bifunc;or on"g X g which ;ssigns to each
pair of spaces in K +the space H(X,Y) of all bounded linear
maps then we have Nat(H,F) = F and H & F=F as expected.
These equations are well known under the name "Yoneda-lemma" in
category theory. One can define a dual functor by the formula

Nat (F,H') but this reduces to a triviality because

Nat (F,H') = (H® F)' = F'
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The concept of essential functor and complete functor, however,
does not carry over immediately - there are several concepts of
essential functor, the simplest being the functor of type Z,
which is just a generalization of .the reasonable tensor norms oi
Schatten and Grothendieck; but there are other notions connected
with left Kan extensions from certain subcategories of Ban

(in the case of the category of all finite-dimensional Banach
spaces one gets the notion of @-norm of Grothendieck, here
called "computable functor"). Likewise any concept of complete
functor is connected with a right Kan extension from a certain
subcategory.

These two concepts can be beautifully formalized into notions
that look like those in the theory of Banach modules. if one
introduces the notion of a Banach semicategory. It has the

same relation to a category as a general Banach algebra to a
Banach algebra with identity. It is useful to consider such
Banach semicategories with approximate identities. A typical
example is the semicategory whose objects are Hilbert spaces
with morphisms all compact linear operators K(X,Y) between them.
For infinite dimensional spaces K(X,X) does not contain the
identity operator but there exist approximate identities, e.g.

a net of finite dimensional orthoprojections converging

strongly to the identity operator. Here K é F = Fe where the
essential part of the functor F coincides with the type &
subfunctor in the sense of Mityagin-Shvarts, Nat(K,F) is a sort
of completion of F and Nat(F,K') coincides essentially with

the dual functor in the sense of Mityagin-Shvarts because

KX,Y)'=X@Y' .
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For another example let K consist of one object, a Banach algebra
A and choose as morphisms its elements, where composition is
multiplication. A functor on this semicategory is nothing else
than a left A-module.

We see therefore that the concept of semicategory allows -
despite its seeming overgenerality - a useful theory which
unifies Banach modules and functors.

We do not, however, develop the theory of Banach semicategories
in this book in order to keep its size within bounds. A detailed
exposition can be found in Michor [56].

Needless to say that the theory developed here gives some
simplifications of existing theories and contains a number of
concrete corollaries which may perhaps convince those

who do not like such "general nonsense" that our theory belongs

to mathematics and not to metaphysics.



CHAPTER T

The categories Ban and W

§ 1. The categories Ban, and Ban

1.1. Let Ban denote the class of all Banach spaces over the one-—
dimensional space I (which may be R or C). In order to avoid
set-theoretical difficulties with some constructions we
suppose that all Banach spaces are "small", i.e. belong to

some given universe.

There are two important categories connected with Ban. One

is the category Ban whose objects are the spaces in Ban and

®
whose morphisms are the bounded linear maps between Banach
spaces. This is an additive category but it has rather bad
properties with respect to limits and colimits.

The other is the category Ban1 with the same objects but where
the morphisms consist only of all linear contractions (i.e.

bounded linear mapse satisfying llw'l< 1) between Banach spaces.

It is this category we are mainly interested in. It has the

advantage that in it all limits and colimits exist, a fact which

is very important.

1.2. It would be rather tedious to state all results separately

for Ban, and for Ban(D. So we shall use the abbreviation "category

Ban" to mean either Ban1 or Bza.moO if some statement holds for
both categories. The set of all morphisms from X to Y in Ban
coincides with the Banach space H(X,Y) of all bounded linear

maps from X to Y, whereas the set of all morphisms Hom (X,Y)
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in Ban, consists of the unit ball of H(X,Y).

In particular, we have Hom (I,X) = OX, where OX denotes the
unit ball of X.

OQur first task will be the translation of functional-
analytic concepts into the language of category theory

and vice versa. We shall always concentrate on typical

aspects and not strive for maximum generality.

We recall that a morphism u: X-Y is called monomorphism
(in short mono) if the equality ue f=us g for any morphisms
f,g: Z-X is satisfied only if f=g.

Since u. f=us g is equivalent to u. (f_-z_g) =0 where %g is
again a morphism, u is mono if and only if u. £=0 for

any morphism f: Z-X implies £=0.

Proposition: A morphism u: X-Y in Ban is mono if and only if

u is injective.

Proof: Every injective map u is mono since u(f(z)) =0 for all
z € Z implies f£(z) =0 for all z¢ Z.
Now let u be mono and let Z=ker u= {xe X: u(x)=01! and
f: Z-X be the inclusion map. Then u. £ =0 and therefore

f=0 which implies Z=ker u=(0), i.e. u is injective.
A morphism u: X-Y is epi if fou=0 for any f: Y- Z implies
f=0.

Proposition: A morphism u: X-Y in Ban is epi if and only if

u(X) is dense in Y.

Proof: If u has dense image in Y and fo. u=0, then f vanishes

on the dense subset u(X) of Y and, by continuity, f=0.
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Now let u: X» Y be epi, let u{X) be the closure of w(X) in Y
and let f: Y= Y/m be the canonical projeetion. Then fo. u=0
and therefore f=0, which means that u(X) =Y.

1.5. A morphism u: X-» Y is called invertible or an isomorphism if

there exists a morphism v: Y- X such that ve u= 1X and ue. v= 11‘

Proposition: The isomorphismsS in Ban o 2Tre the bounded linear
maps which are bijective and the isomorphisms in Ba.n,| are the

surjective isometries.
Proof: This follows immediately from the open mapping theorem.

Remark: Every isomorphism in Ban is also a bimorphism, i.e. at
the same time mono and epi. It is worth noting, that there
are bimorphisms which are not isomorphisms, e.g. the canonical

imbedding of 1' into c,.

In the following we shall sometimes identify two spaces X
and Y if they are isomorphic, i.e. :‘Ln‘Ban,| if there exists
an isometry between them, and in Banm if they can be mapped

bijectively onto another by a morphism.
1.6. Each morphism u: X-» Y in Ban, has a canonical decomposition
X2 5y
%/ ! (O7j—_) u(X)

Here m=coim u is the gquotient map of X onto X/u_-1 0) and

t=1im u is the isometric embedding of the subspace u(X) into Y.
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Those morphisms u for which 1;. is an isomorphism are called
strict morphisms.
Thus the strict monos are the isometric embeddings and the

strict epis the quotient maps (modulo an isomorphism).

The strict monos and epis in Ban1 can be characterized in

categorical terms:

Definition: A morphism u: X-Y in Ban1 is called an extreme
monomorphism if u=me e with m mono and e epi implies that

e is an isomorphism.

Proposition: A morphism u in Bany is extremely mono if and

only if it is strictly mono.

Proof: Let u: XY be strictly mono, i.e. an isometric
embedding and let u=me. e. Then
2!l = ha(x) ! = ImCe(x) )l < le(x) i< Mx!| for all xeX, i.e. e

is an isometry with dense image and therefore an isomorphism.

On the other hand let u be extremely mono and u=1. {5, m
the canonical decomposition.

Then u= (1o 1;.) o T and therefore ™ is an isometric
isomorphism, i.e. the identity on X. Thus u=1. 1;, which

implies that u is an isomorphism, i.e. that u is strict.

A morphism u: XY in Ban, is called an extreme epimorphism,
if u=me. e with m mono and e epi implies that m is an

isomorphism.

Proposition: A morphism u in Ban,; is extremely epi if and

only if it is strictly epi.
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Proof: Let u: X=*Y be strictly epi, i.e. a quotient map
and let u=meo. e. Let Z=u'1(o).
Then

ing Mx+ 2! = ha(x)l = In(e(x)) s lle(x)] = le(x + 2) Il = llx + 2|
z€

for all z€3Z.

Thus flm(e(x))!l = le(x)!] for al1 X, i.e. m is an isometry
which is surjective since u is surjective.

On the other hand let u be extremely epi and u=te Ue 1
the canonical decomposition.

Then as above t is an isomorphism, i.e. u(X) =Y.
Therefore u=1 o 7, which implies that u is an isomorphism,

which means that u is strict.

1.8. Theorem (Banach-~Schauder): A morphism u: X=Y in Ban, is

strictly epi if and only if u(O X) is dense in O Y.

Proof: Eirst we show that u is surjective if u(0 X) is dense
in 0 Y.

For every n=1,2,... the set u(-—% 0 X) is dense in -—1-5 0Y.
2
Thus for y € O Y there is an X, with ||J:1 *l<1 and

]]y—u(x1)l|<-12-. For y—u(x1) there is an x, with !|x2'|<%—

and ”y—u(x1)-—u(x2)||<-§—2-, etc.

@

Let x= X X- Then T !|xn!|<2 and so ||xf|<2. Furthermore
n=1 1

u(x) =y. Thus.u is surjective.

~ '3 3 2 Ky ~ s
Now let u=ue+ m be the canonical decomposition. Since u is
~
surjective it has an inverse v in ]39.nCD .
Moreover

M= sup IR = sup IF(u(x))= sup lm(x)l=1.
yll=1 Ixll<1 PUES]



6 CIGLER, LOSERT, AND MICHOR

This implies that W is an isomorphism in Ban1 and therefore u

is strictly epi.

1.9. Products: Let (Xs)se g be a family of Banach spaces, where S
is an arbitrary index set. By definition the product of this

family in Ban, - if it exists - is a Banach space 2 XS to-
s€ S

gether with a family ("S)SG S of morphisms Tyt sg 5 XS - Xs’

such that for each Banach space Z and each family (cps) SE S of

morphisms o st Z - Xs , there is a unique morphism

such that the diagram

m4
mH
[m
P4
]

]

8
N----==-=--3W

commutes.

Proposition: For each family (X_) the product 10 X
s’s€ S g€g ®

exists in Ban1 and is (isometrically isomorphic to) the
space of all elements x= (xs)SE g» Xg€ X, such that
= <
Izl = sup lxly < o.
s S
The morphisms n, are the projections 1-rs(x)=xS onto the

s'th coordinate. Each Ty is a quotient map.
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Proof: Let o : Z > X, be a family of morphisms.
If there exists w: Z = II Xs with the stated properties,
we must have m (0(2z)) —-:cns(z), i.e. o(z)= (cos(z)). But
it is clear that if we define o by this formula, then it

satisfies all requirements. Moreover we have

ol = sup llol.
s

For the special case X_=X we get 1 X_=12 (X).
s s S
s€ S

Remark: Ban ® has the undesirable property that infinite pro-
ducts do not exist. For suppose (X’"s)se g» S infinite,
were a product of the family (Xs)SE g Then for each
family of morphisms o4t Z - XS there would exist 9: Z-» X
such that o =m_- © and therefore ||o < lol| ]lTrSH . If the
family @_ contains a sequence w_ such that ||o_ |>n |m_ ||

s sy Sy Sy

this is clearly impossible.

1.10. Coproducts (or sums) are defined dually.

The coproduct in Ba.n1 of a family (Xs)sé S of Banach spaces Xs

is a Banach space ¥ X_ together with a family (1) ¢g of
seg 8 s’s

morphisms L XS —»sg 5 XS, such that for each family (cps)SE S
of morphisms

L Xs - 7 there is a unique morphism

© : Z Xs - 7Z such that the diagram

s€ S
{ ————— % X
‘s €5 °
o It
/’ m
-
z

commutes.
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Proposition: For each family (X_) the coproduct T X
s’s€ S seg ©

exists in Ban1 and is (isometrically isomorphic to) the

space of all elements x= (xs)s€ g Such that

=, = = x|y < oo.
1 s€ S sXS

. e et
The morphisms t  are the injections 1.S(XS)— (és xs)te s

of Xs into X. Bach ty is an isometric embedding.

Proof: Let P Xs-’ Z be a family of morphisms. If there exists

o: I Xs-’ Z with the stated properties then it must
s€ S

satisfy co(«.s(xs)) =ms(xs), i.e. m((xs))z g o cos(xs).
s

On the other hand if we define ® by this formula we have

lo((x =1 T oG ls T ol Txgly = 7 gy =i,

s
and the diagram commutes.

a1
£ X = lS(X).

For the special case X_= X we get
S SES

Remark: If S is finite the products and sums in Bam1 are also

products and sums in Ban __ and are isomorphic in Ban ®° In

®
the category ZBa.n1 they are of course not isomorphic because

they carry different norms.

The same reasoning as above shows that for an infinite index

set S there are no sums in Banco. If one prefers to work in

Ban ® instead of in Ban1 then one can define sums and products

for bounded families of morphisms L i.e. for families
satisfying sup ‘\cos|]< ®. One then gets in fact only a

sS€ S
reformulation of the result for Ban1 .
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1.11. Proposition: Every Banach space X may be written as a quotient
space of a space 1%(1) and as a closed subspace of a space

lg{I) for some index sets S and T.

Proof: Let ixs¥ be a dense subset of the unit ball OX of X
and m: lé(I)-*X be defined by

m(E)) = B ggx, for (£,) €1g(D),

Then £ lg_x_ll< = |g_| = gl and m(0 15(I)) is dense in OX.
The first assertion follows by the theorem of Banach-
Schauder.

For the second assertion let T be a w*-dense subset of OX'

and define

X-’l? (I) vy x= (<x,x'>)x, e

Then

sup !<x,x')
x'eT

-

x| =

Remark 1: It is well known that both assertions may be refined
with some care to show that every separable Banach space
is a quotient of 1

l& and lﬁ)are "large" spaces, whereas l§ is a "small"

& and a subspace of lﬁi This shows that

space, since all quotients and subspaces are again

separable Hilbert spaces.

Remark 2: The first assertion has a very simple interpretation

in terms of category theory:

Consider the "forgetful functor" O: Ban, = Set which associates
to each Banach space X its unit ball 0X (considered as a set)

and to each morphism f: X-Y its restriction Of==f|OX.
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Since llf!l<1 this is well-defined.

This functor has a left adjoint 11: Set-*Ban1, which
associates with each set S the Banach space l; and with each
map ®: ST the morphism

1 1 1
lcp‘ ls"lT

defined by

1
= I .
1o ((E))y= T &

The adjunction

(*) Ban1(1;,x)==8et (s,0X)
is given by $*—+¢ with

= 8% ) and E))= T & ).
o(s) =8 (( S)ieg) an  (( I o(s

It is easy to verify that (*) is natural in S and X. If we
"jdentify" se€S and (6 )tes els, then ® is simply the
restriction of m to S and w is the (uniquely determined)

continuous linear extension of o to l;.

The unit of the adjunction (*) (which corresponds to the
identity 1 4 on the left side) is simply this "identification".
1,
S
The counit (corresponding to the identity 1OX on the right) is

the quotient map

™y lOX-’X given by m ((§ )xrox)" gX gx

1.12. Limits: Let D be a (small) category and X: D-*Ban1 a functor.
We shall call D an index category and the family of
Benach spaces (Xd)dGD together with the family of
morphisms Xaz Xd-*Xd, for #: d»d' a spectral family.
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A Banach space L together with a family (md)dsD of morphisms
e L*Xd is said to be a (projective) limit of the functor X
(or the spectral family (Xd)), if for all 4,4' €D and

6: d-»d' the diagrams
X
cpdv de
commute and if for all Banach spaces Z and all families

('td)dED of morphisms #,: Z~X, such that the corresponaing

diagrams

commute, there is a unique morphism #=1im ‘;yd: Z- 1L, such
«~

that 'bd:codo ¥ for all de€D,.

Of course L is uniquely determined (up to an isometric

isomorphism) and is denoted by L=1lim X4-
«

Proposition: Let D be a small category. Then for every
spectral family (X.) the limit 1lim X, existe in
P ¥ 24’daen P!
Ban1 and coincides with the closed subspace L of 1[I Xd
deD
consisting of all x= (Xd)deD such that X x; =x,, for
all d,d' €D and &: a4—-d"'.
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Proof: L defined as above is a closed subspace because

it may be written in the form

L=1N ker (X,om. ~1m. ).
Q,d" & a a
&

Furthermore the diagrams

4
T
L Xg
™ Xd'

commute by definition.

For a given family @d: Z-*Xd of morphisms satisfying
Xgo Yi= %4, for all &: d=d' we consider the map

de: z-1 Xd. It is clear that its image belongs to L
and so it can be uniquely factored over L with the

stated properties.

1.13. pxample: lLet L be the category 3 consisting of two objects
and two different morphisms between them. A functor
from D to Ban, is a family {f,g} consisting of two
morphisms f,g: X-=Y. The limit L of this spectral family
is a Banach space L together with two maps L-X and

L-Y satisfying the following properties:
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£ g
1) I-Y=L->X->Y=L-X->Y

2) For every Banach space Z and morphisms Z-X, Z-Y with
Z2Y=2-2X2Y=272-X-7Y there exists a unique morphism

2= L such that Z-L-X=2=-2X and Z-2>L~+Y=2~Y,.

Proposition 1.12. says that I is the subspace of the
product XxY consisting of all pairs (x,y) such that

y=f(x)=g(x), i.e. (f-g)(x)=0.

We call L the difference-kernel of f and g, L=ker (f-g).
It may be identified with the subspace of X consisting of

all x satisfying (f -g)(x) =0.

In the special case g=0 we get the kernel ker f of a
morphism f. L=ker £ X is the isometric injection. On the
other hand every isometric embedding of a subspace M of X
into X may be interpreted as the kernel of some map, e.g.
of the map X-X/M.

Thus the strict monos in Ban; are special examples of limits.

1.14. Pullbacks: A pullback is a limit of a spectral family indexed
by the category D= (e=o«.). The universal property of

P=1lim (X2 A«Y) is visualized by the diagram

Z\\\)
S

P—= 7

Ll

X— 54
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By 1.12. P is the subspace of the product XX Y X A consisting
of all (x,y, a=f(x)=g(y)).
It can be identified with the subspace of XX Y consisting

of all (x,y) satisfying f(x) =g(y) via the map
(z,y) » (x,y, £(x)=g(y)).
If g=0, then P=ker f)x Y.

If g is an isometry then P=f" (g(Y)).

If £ and g are isometries then P=Xn Y.

1.15. The following example of a pullback has been given by
F.E.J. LINTON [47].
Let tx‘: X » X" be the canonical embedding of X into its biduwal X".
Let M be a closed subspace of X and j: M- X the corresponding

embedding. Then the diagram

Mm__ 3 .x
‘M 'x

M" ..___..._'-'-.._—_5 Xﬂ

commutes and is a pullback.

Proof: By Hahn-Banach j" is an isometry. Thus M" and X may be
interpreted as subspace of X". Our assertion therefore says
that M=X n M".

Or more explicitly: Let m"€ M" and x€ X such that j"'m"= tyXe
Then there is (a uniquely determined) m€ M such that x=jm

(and then of course szzm" .
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For assume that x ¢ j(M) then there would exist some x' €X'
such that x'|j(M) =0 and {x,x'>+0. But then we would
have 0=¢0,m">=<x"e j,m"d=<{3'x",m">=<x",i"n")> =

= (x',txx)==<x,x'>4=0, a contradiction.

Thus there is me M such that j m=x and j"'n" = 1yX= 1xjm=

= j"tMm, i.e. m“=tMm.

This example gives an interpretation in terms of category
theory of the proof that a closed subspace of a reflexive
Banach space is again reflexive.

Consider the diagram

X ° j"

S
PRy —

M"

Since X is reflexive 1yt X=X" is an isomorphism and
therefore invertible. Since the inner square is a pullback
there is a unique morphism u: M"-M such that Yo u= 1M"'

Thus tu is surjective and so M is reflexive.

Let X be a Banach space and let D be the category whose
objects are the subspaces M ¢ X with finite codimension
and whose morphisms are the canonical injections between

these spaces.

15
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Every injection ty: M~N aefines a canonical quotient map
Tyt X/M-X/N.

Then we have

lim X/M=3X".

Proof: It is well known that for a quotient map
m X->X/M

the adjoint map

me (X/M) X!

is an isometric imbedding whose image coincides with
the w*-closed subspace MY = {x' ¢ X':{m,x'>=0 for all
meM} of X'. Let now M and N be of finite codimension,

MeN, and let
e X- X/M
be the canonical projection. Then the diagram

,
¥ M x/m

X/N
commutes. Therefore for the adjoint maps the aiagram

Nt "MN M-

\ J/ TTM 1]
1
™y X
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commutes. Since X/M is finite-~dimensional we have
' =ty = %7,
Now define @y: X" - X/M by epM(x") = x"om', i.e. by Py = Ty"e

Then the diagram

commutes for all M,N with Ms& N and finite codimension.

Now suppose that there is given a Banach space Z and a family

of morphisms wM: Z = X/M such that the diagrams

X/M

commute.

If there exists ¢: Z =+ X" such that ¢M=cpMo i, then we must
have ¢y = m"e ¥, i.e. <*M(Z)’ x'>=<TrM'(x'),1]1 (z> for
1

et = (B0,

It now suffices to show that 1y is well-defined and ||y||<1.
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That & is well-defined follows from the fact that for Mc N

and x'€ N* we have

<¥ylz),x'>=<myy bylz),x'> =<ty(z), My x> =<y (z),x>.

The norm inequality is trivial since HwMHS 1 for all M.

1.17. Colimits or inductive limits: They are defined dually to 1.12.

If (Xd)de p isa spectral family in Ban, then the universal

property of lim Xd is illustrated by the following diagram
->

X3

Proposition: Let D be a small category. Then lim Xd exists in
-
Ban, and coincides with the quotient space R= & X ,
1 a/
deD N
where N is the closed subspace of I Xd generated by all

elements of the form td(xd)"td'(xf xd) for x; € Xy, 6: d>d'.

Proof: Given (wd): (Xd) » Z there exists T y4: T X; = Z.
Since
Eug) Galxg) =g (X x4)) =vq(xg) -vy, (K x4) =0
the kernel of T wd contains N and we can therefore factorize

2$d over R. All other assertions are clear.
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1.18. Difference-~cokernels:

A difference-cokernel is the colimit of a spectral family
indexed by the category D= (° 3 °).
5
By 1.17. lim (X'é Y) coincides with the space R==(X ® Y)/N
->
where X® Y is the sum of X and Y in Ban1 and N is the subspace
generated by all elements of the form (x, -f(x)) and (x, -g(x)),

i.e.

If g=0, then we have R:=Y/TTTT and call this space the cokernel

of f.

1.19. Pushouts:

A pushout is a colimit of a spectral family indexed by

D= (o 0 20),

It may be visualized by the diagram

Since this diagram is equivalent to the diagram

11°f
—_—

A X8 Y—12

150 8 l

R
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where t1(X)=(X,0) and 1,(y)= (0,¥),
we get by 1.18.

(

X& Y)
R= / G, 2a)): e it

If g: A= ‘A‘/N is a quotient map we have R=X/:fm .

1.20. Proposition: Every Banach space X is the colimit of its
finite-dimensional subspaces: X=1lim M.
->
Proof: Let D be the set of all finite-dimensional subspzces
M of X and 1'MN: M - N for Mc N the canonical inclusion.

Then the diagrams

M
‘u
U X
1
N N

commute, where ty’ M- X is the canonical inclusion.

Suppose now that “'M: M= Z is a family of morphisms such

that the diagrams

M

commute.



THE CATEGORIES BAN AND W 21

If there exists §: X = Z with

M
X

we must have t(tMm) =111M(m), i.e. w(::):q:M(x) for x€ M.

_.__._-.-_.-._)Z

Uy
¥

On the other hand this formula defines a mapping ¥.

For let x€ Ms N, then \hM(x) =¢N(1MNX).

1.21. Proposition: Every Banach space X may be represented as an

inductive limit of spaces l:l.

Proof: Let X be given. We define a category D in the following
way: The objects of D are all pairs d= (l:x’ md) such that

@5t l:l - X is a morphism. In this case
n
md((§1 ,o.s,gn)) = '21 gixi
i=
<
for some x, € X, \\xi\_ 1.
The morphisms of D are those morphisms a: 1:1 - 11111 such that

1
ln o
al\d\x
11/(‘,

m

. 1 1
commutes if d= (ln,cod), d'= (lm,cnd,).
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Let now the spectral family (Xd) be the projection onto

the first coordinate of d, i.e. the family

1

X, =X =1,
a 1 n
(1n,q>d)
We assert that lim X, =1lim 1;1=x.
-> -»

Let now ®4¢ 111'1 - X be given and let xoé X and EOG 11 be such

n

- £
that md(go)-xo and ,O,1=O.

X
. _ _ o
Define d = (I,codo) by cpdo (1) =

3 | | |
Then d_€ D since ‘XO‘S !%O‘\1 .

go
‘\gol‘1

Let a: I » 1 be defined by a(1) =
Then llalj< 1 and the diagram
I
\\\\EgQg
a X
s
11 d
n

commutes.

Let now d;d: X, » Z be a family of morphisms such that all

d
diagrams

commute.
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We have to show that there exists a morphism
t: X = Z such that bg = beooy. If such a § exists it is

uniquely determined and satisfies

¥ (8)) = ¥ (2).
We now want to show that this indeed is a correct definition,
in other words: Let md(ﬁ) = md|(§'). Then it is to show that

d’d(g) = ‘hdv(g')o

Given d,8 and md(ﬁ) we construct d ,»; and o as above.
o

In the same way we construct do', ©g 11 a' for d', €' and
o

®g:(8'). Suppose that Hg‘ﬂfiﬂgn’and let

l\g 1!

h -—-'Trg—ﬂ'l"’ ‘)\l§1'

Then the diagram

I "
a
Xl,//A//? :
Ta
1 [e]

commutes where A : § = )\g.
Therefore

l; e~ I »1 — l;
a hy a'

is a diagram in D, Therefore the following diagram commutes
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This means ¥4 @) =¥y (N)=v¥g4 » M=ty Oar(1))
o] [¢]

or equivalently
() =4y (1) =x 4q 0 (1) =2 ¥y, (mem)
¥g (pET) Ya \ ar ‘I

s u €)= lEln == 4y &) =g ().

g |

This shows that § is well defined.

The linearity follows by noting that given x,y€ X the pairs
(Iy CDO)’ (I, @1)y (Ie I, 032)
with

X 4, X

(1)==2, (1)==L, o, (Lyu)=2 o=
i " e =

° | x|
are elements of D and & 0! %1 with

I —I6Ie—1I with a/ (1)=(1,0) and a,(1)=(0,1)

U.o 0.1

are morphisms.

Therefore y: X = Z is a linear mapping and

el = sup Ny (x)l|s 1
xll1

because for every x€ X there is

o
I

= (I, ;) with o, (1) = =
e ! Il

and therefore

e (=

v Gy Q=) = ey (DI <l
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§ 2. The category W = Ban1°p

2.1. Definition: A Waelbroeck space is a triple (¥,K,r) with the

following properties:

a) ¥ is a vector space, K a circled convex absorbing subset
of £, and v a compact (Hausdorff) topology on K.

at+x

b) The mapping x = —E—-from K to K is continuous for each

a€ K.

c) The origin O of ¥ has a base of r-neighbourhoods in K

consisting of circled convex sets ("discs").

Example: Let X be a Banach space, ¥ =X' its duvual space, X=0X'
the unit ball of X' and * the restriction of the weak star
topology o (X',X) to O0X'.

Then (%£,K,r) is a Waelbroeck space.

The purpose of this chapter is to show that every Waelbroeck
space is isomorphic to a dual space of a Banach space and to

give a concrete representation of the opposite category of

Ban1 in terms of Waelbroeck spaces.

In order to prove this we need some lemmas. Since K is T-compact
it may be equipped with a (uniquely determined) uniform structure.

Our first task is to describe this uniform structure.

2.2. Lemma: A subset A€ KX X is an entourage of the uniform structure
on K if and only if there exists a neighbourhood U of the
origin such that A contains all elements (x,y)€ Kx K such

that x-y€ 2U.
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vg;ggi: It is clear that the family of all such, sets A is a
filter with a symmetric basis and that its intersection
is the diagonal. We will show that it is the filter of
the entourages of some separated uniform structure on K.
In order to do this we have to show that for every
neighbourhood U of the origin there exists a neighbourhood V
such that x-z€ 2U if x,y,z€ K and x-y, y-2€ 2V. The

mapping t = g is continuous on K by b).

Therefore it is a homeomorphism from K onto g. Thus for each
neighbourhood U of O there is a mneighbourhood V such

that 32 v () or U227 n K. The neighbourhood V may be
chosen to be a disc (convex and circled).

Let now %,y,2€ K, x-y€ 2V, y-z€ 2V. Then %52€ K since K

is a disc. On the other hand

£'2'_Z=’_‘;2;¥+Y:2;—%e V+V = 2V.

Therefore

?-‘-526 2V\nK e U, i.e. x~3z€ 2U,

Hence the sets (x+2U)NEK, U a T-neighbourhood of O, form

a basis of neighbourhoods of x in the topology induced by the
above uniform structure. Bach such set is also a r-neighbourhood
of x since it is the inverse image of U by the continuous
mapping y = XEE. Therefore the topology induced by the uniform
structure, which is Hausdorff, is weaker than the compact

topology T and therefore these two topologies coincide.
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2.3.

2.4,

2.5.

Lemma: The mapping (x,y) -'3-;1 from KxK into X is continuous.
More generally the mapping (x,y) = Ax+uy for |A|+ |pl<1

is continuous. The proof is obvious.

Now let TE be the strongest locally convex topology on the

Waelbroeck space ¥ such that the embedding K- X is continuous.

Lemma: A neighbourhood basis of the origin for the topology TE
is formed by all discs W& % such that for all r>0 there

is a T-neighbourhood V of the origin in K satisfying Ve rW.

Proof: Since K- % is continuous, such a V must exist for every
convex circled neighbourhood W €% and each r>0. Choosing
all such W's we clearly get the strongest locally convex

topology such that K- % is continuous.

Now we define the strongest topology ’J.‘c on ¥ such that all
translations and homotheties (i.e. maps of the form x- rx,
reI) of ¥ and the imbedding K- % are continuous. This
topology is a priori neither locally convex nor compatible
with the linear structure on ¥. By definition it is stronger
than ’I.‘-c-. The important fact is that these topologies coincide.

In order to prove this we need a

Lemma: Let F be a T-closed subset of K, G open in K and
x € X such that x ¢ F+ V€ G. Then there exists a compact
disc V which is a T-neighbourhood of the origin such that
x¢ (F+V)NKea.

Proof: There exists a neighbourhood V1 of x such that V1 NF=g.
We know already that V, 2 (x+2V) NK for some closed convex

circled neighbourhood V of 0.
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Then (x+V)NF=0 since V&2V and
(x+V)NFPs ((x+2V)NK)NFeV, NF=4.

Once again, this implies that x ¢ F+V.
Since F is compact V may be chosen such that (y+V)NKe@g

all ye€F.

2.6. Proposition: The topologies Tc and TZ on % coincide and are
Hausdorff.

Proof: It suffices to show that Tc is weaker than T'c’ and that

TE is Hausdorff.

Let U be open in the topology Tc. We shall show that U is

a ’l‘g—neighbourhood of each element x€U. We may suppose x=0
since translations are continuous. It now suffices to
construct a convex circled T-a—neighbourhood W of O such that
WeU and such that W does not contain a previously given
point a4 0. Since homotheties are continuous we may suppose

ac€ck.

We know that for every r>0 the set (rU)NK is T-open in X
since it is the inverse image of the open set rU by the

injection K= %.

There exists a T-closed circled convex neighbourhood V0 of 0
in X such that aéVO:U. Let K =V . The compact disc

I—;Q is contained in the T-open set %ﬂK and does not contain
%. By the preceding lemma there exists a compact convex
circled neighbourhood Vy of O such that

K
=2

wip
Wi

)
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The disc K1==§? + % V1 is compact, contained in K and such
that a€ 3K, € U. In this way we get a sequence (Kn) of compact
discs in X and a sequence (Vn) of O-neighbourhoods, which are
also compact discs, such that for all n= 0:

ag BnKn cU

and
n+1 _ =h. n
3 Kn+1 =3 Kn4-2- 3 Vn+1.
The sequence (BnKn) is strictly increasing and therefore
W =U 3%
n n
"
2.3

is a disc; a¢é¢ W e U. For r > 0 choose n such that < r.

Then we have

G = 3 5y = L) 3 x

n n+1 5. 3n n+1 S TW, qed.

Corollary: The topology TE induces on K the original topology r.

Proof: This follows from the fact that the embedding K - (x,TE)

is continuous and that TE is separated.

2.7. Proposition: (Banach-Dieudonné): A subset F < ¥ is Tz - closed

if and only if for each r > O the set (rF)n X is closed in

X.
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Proof: Let I be the family of all sets F such that for all
r>0, (rFNK) is closed in K.
Then @ and X € % and finite unions and arbitrary intersections
are in Y. Therefore X defines a topology on ¥. This topology
has the property that the inclusion K- % and all translations
and homotheties of ¥ are continuous. Since T3 is the
strongest such topology, it is clear that X defines a
weaker topology than TE‘ On the other hand every
Tg-closed set belongs to 3 and therefore both topologies

coincide.

Corollary (Banach): A linear subspace M of the dual space X'

of a Banach space X is w*-closed if and only if M N OX!

is w*-closed in OX'.

Proof: The dual spaces of (X', o(X',X)) and of (X"TE) both
coincide with X. (The second assertion follows from the
fact that a linear functional on X' is w¥-continuous if
and only if its restriction to OX' is w*-continuous. This

will also follow from Theorem 2.8.).
Therefore a subspace M is o(X',X)~closed if and only if it

is TE-closed. But this means that MN OX' is w*closed.

2.8. We consider now the category W of all Waelbroeck spaces
(£X,7). A morphism o: (%,K,7)~ (¥,K,T) will be a linear map

o: £-7% such that ®(K)¢X and ©'K is T-T - continuous.

Theorem (Waelbroeck): The category W is equivalent to the

opposite category Ban1Op to Ban,.
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Proof: We define two contravariant functors ¥: Bany = VW and

D: W- Ban, such that D=1 and ¥D =1

W

Ban,
For every X € Ban let ® = (X',0X', o(X',X)|0X') and for every
morphism u: XY in Ban, let Pu=u' be the dual map,

u': Y'=X'. It is clear that u' is a morphism in W.

On the other hand define for % € W the Banachspace D% =%* as

the space of all linear functionals f on ¥ such that flK is

continuous with the norm l|f!l = sup lf(x)]. For every morphism

x€eX
®: £-9 define

o*: P* > Ex by o*(g) =g. @ for ge P*.

We show first that ¥D= 1W'
Let ¥€W. Then ¥* = (C i)T where ¢ ¥ is the linear space ¥

with topology TE by 2.7. Since ¢ ¥ is Hausdorff, the functionals
in ¥¥* separate points of ¥ and therefore we have a canonical
embedding ¥- 9D %= (%¥*)', given by x-n/%, where (x*,‘§)= (x,x*)

for all x* e ¥*,

The polar K° coincides with O ¥ by the definition of the norm
in ¥*. Therefore the bipolar K°° coincides with O(%x)'.

Since K is T-compact and the topology o(%,%*) is Hausdorff,
o(%,%*)|0¥ =T and therefore K°°=x by the bipolar theorem
since

o(X,E%) [K=o((%*)',2E*)|K.
We thus get O(%*)' =K and therefore

(2,K,7) = ((%*)', O(F*)',7), i.e. W E=%,
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For a morphism ¢: I-=® we have (x,0%(y*) > =o(x), y*>, or,

igentifying x with &, Cox(y*), x)=Ly*, o(x)), i.e.
(y*, olx))="<Cy*, (e*)'xd.

ihis means (o*)'=9.

It remains 1o show that D¥= 1Ban1 .

Let K € Ban. Then UT X=DX'=(X')*.

Since X ana (X')* have the same dual space X' (because

UX' = ((X')*)* =X'), they are, by the above reasoning,

isometrically isomorphic, qed.

Corollary: HZvery Waelbroeck space can be considered as a

dual space of a Banach space and vice versa.

Proposition: T—E is the topology of uniform convergence on

the compact subsets of Ix,

Proof: X being the unit ball of ¥=(%*)', it is easily seen
that the restriction to K of the topology of compact
convergence coincides with the topology of pointwise
convergence, i.e. with o{%,¥*), But o(%¥,¥*)|K=1 and
@E is therefore sironger than the topology of compact
convergence. Conversely, let U be some convex, circled
and closed rL‘E-nveighl’:o'u::'hocd of the origin and u° =
= fx* e I»| (x*,xd <1 vx €U} be the polar of U. We
have I*=(c X¥)'cC(K) and (x+¢€ U)NEK is a T-neighbourhood
of x for each x¢X and ¢>0. Therefore U° is an
equicontinuous subset of C(K). Since X is T-compact,
there exists a A>0 such that K< AU and so U° is also

bounded .

By the theorem of Ascoli-Arzela U° is a relatively compact
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subset of ¥*. By bipolarity we get U°°= U and so U is a

neighbourhood for the topology of compact convergence.

Now we want to describe some categorical notions in W explicitly.

Let (¥,K,T) be a Waelbroeck space and ® a linear subspace of %.

We call ® a (Waelbroeck) subspace of ¥ if B NK is compact in K.

In this case (B, BNK, T|mf1K) is a Waelbroeck space and the

canonical inclusion ® = % a morphism in W.

Remark: If (%¥,K,T) is given concretely as the dual X' of a
Banach space a linear subspace N € X' is a Waelbroeck subspace
if and only if NN OX' is w¥*-compact, i.e. if and only if N is
w¥-closed (2.7).

In this case N=M" for some closed subspace M of X and
1 Ml - X' is the dual + = ' of the quotient map
m: X = %&. Therefore the Waelbroeck subspaces correspond

via duality precisely to the quotient spaces of Banach spaces.
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Let now ®: ¥->9 be a morphism in W.

Let B.—_cp"1(0). Since BNKX is compact, (B,BNK, T(B®NK)) is
a Waelbroeck subspace of %¥. We call it the kernel of o,

R =ker ®. The same reasoning as in 1.3. shows now that

w: -9 is mono in W if and only if ® is injective, i.e.

ker v=(0).

Remark: We could have obtained the same result by considering
dual Banach spaces: wu': X'=Y' is mono in W if and only if

u: Y- X is epi in Ban1 , 1f and only if u' is injective.

Let B be a Waelbroeck subspace of the Waelbroeck space %.
Consider the canonical projection p: ¥-%/B. This will be
continuous on K if we define on p(XK) the quotient topology,
which is compact. Furthermore ¥/B becomes a Waelbroeck

space. We call it a quotient space.

Remark: We could also give a more concrete definition. The
pair (B,%) corresponds to the pair (M',X') for some
closed subspace Mc X. The canonical projection
p: X'=X'/M* may then be identified with p=t' where
t: M- X is the canonical inclusion of M into X. We
therefore see that quotient spaces in W correspond via

duality to subspaces in Ban, .

Let now ®: ¥- 9 be a morphism in W. We define the cokernel

cok © as the quotient space 9/®(Z) where @(%) is the

closure of ¢(¥) in ¢ 9.

The same reasoning as in 1.4. now gives: A morphism ¢: ¥=9

in W is epi if and only if o(¥) is T;-dense in 9.
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Remark: For a dual map @': X'=Y' this may also be formulated
as: ©' is epi if and only if ©'(X') is w*-dense in Y'. For
the w*-closure and the Tg—closure of linear subspaces

coincide.

2.11, In the same way as in 1.7. we can now define extreme monos
and extreme epis in W.
The same reasoning shows that the extreme monos are those
morphisms which are isometric embeddings (in the norm of
¥=(%*)') and the extreme monos are the quotient maps in W.

We only need a simple

Lemma: Let @©': X'=Y' be a dvual map which is isometric and

has w¥-dense image. Then @' is surjective.

Proof: Since ' (0X') =@'(X')NOY' is compact, ®'(X') is

w¥—closed in Y' and being w*-dense it coincides with Y'.
2.12. Let u: X»Y be a morphism in Ban, and
u
———>Y
m 1

¥/u™ (0) ——> TET

u

its canonical decomposition. The dual diagram looks like
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T >X'

! !

T —————— (X/u"' ()
u'

We know already that t¢' is a quotient map, ' an isometric
imbedding and (1;)' injective with w¥-dense image. Therefore
WX)'=Y"/ker u' and (X/u"1 (0))' =u'(T")" where w denotes

the w*-closure in X'.

We call this the canonical Waelbroeck space decomposition of
u'. We call u' strict if and only if u' is an isomorphism.

Then we have the

Proposition: u': Y'=X' is strict if and only if u'(0Y') =
=u'(Y')NOX.

Proof: If u' is strict then it is the composition of a
quotient map in W and an isometric embedding. Therefore
the equation u'(0Y¥')=u'(Y') N 0X' holds.

If on the other hand u'(0Y')=u'(Y')NO0X'; then u'(Y')
is w*-closed in X! since u'(0Y') is compact. The mapping
1;' is bijective on the unit balls and therefore an

isomorphism.

Since every dual space of a Banach space may also be considered
as a Banach space we have a forgetful functor b: W- Ban, which
assigns to each Waelbroeck space (X',0X',T) the underlying
Banach space X'. One "forgets" that OX' has a compact topology.
We write sometimes Xb‘ instead of X' if we only consider the
Banach space structure on X'. It is clear that b is a functor

since every dual map u' is a fortiori a morphism in Ban, .
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The composite functor be ®: Ban °p Ban, which associates to X
the Banach space Xg is contravariant and self-adjoint on the right,

i.e., it satisfies the equation
Hom (X,Yé) = Hom (Y,Xé).

The isometry is given by f - ft, where the transposed map ft is
defined by

<y, £z =<x,f" ¥, i.e.

ft=:f'|Y, the restriction of the dual map f£f' to the subspace ¥,

or £i=1¢

° tYo
Then || £¥]] = | £|l and the diagram
X ______f__..__._) Y
¢ \
X (£%)
X"
commutes.

This implies furthermore the equality

(*) Ban, (X,¥'y)=¥ (X",Y')

where we write Ban, (X,Y'b) instead of Hom (X,Y'b) in order
to make clear the category in which morphism are taken. This
equality is given by f e (ft)'.

It is "natural" in X and Y'. This means the following:

let u: Z » X be a morphism in Ban1, Then to the element fo u
on the left hand side corresponds the element (ft)'° u" on the

right hand side.
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Similarly, if ®': Y' = W' is a morphism in W, then to
the element ©' e (ft)' on the right side corresponds
the element <p'b. f on the left side.

The proof follows from the commutativity of the diagrams

u £ ' f o
Z....—-%X———-%Y' and X >Y! > W!
. 1 . (ft)'
2 (£%) X o o (£5)
Z“ > X" X"
u"

We can now interpret (*) in the following way: The functor

": Bany " W is left adjoint to the forgetful functor b: ;v!_-’Ban1.

The unit of the adjointness relation (*) (which corresponds
to the identity 1X,,) is the canonical embedding ty: X-X"
and the counit (which corresponds to the identity 1Y' ) is

the map (tY)': PAE D AN
For later uses.we note the following

Proposition: Let f: M= X', Then f is an isometric embedding
if and only if £°(0X) is w¥-dense in OM'.

Proof: Note first that for every X € Ban, OX is w*-dense
in OX". This is a well known consequence of the bipolar
theorem.
Let now f: M=>X' be extremely mono in Ban, then f': "M
is extremely epi in W and therefore a quotient map. Thus
£'(0X") =0M'. Since OX is w*-—dense in OX" and f' is

w*-continuous we get that ft(OX) is w¥-dense in OM'.
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On the other hand, let ft(OX) be w*-dense in OM'. Then
£'(0X") is w*-dense in OM' and compact and therefore
f£'(0X")=0M'. This means that f' is a quotient map in W

and therefore f is an isometric embedding in Ban1 , Qqed.

2.14. Let us now consider the forgetful functor O: W= Comp, where
Comp denotes the category of all compact Hausdorff spaces
and continuous maps. The functor O assigns to a space
X' €W its compact unit ball OX' and to each morphisnm

u': X'=Y' its restriction to 0X'.

In order to show that this functor has a left adjoint we
consider the contravariant functor C: Comp = Ban,, which
assigns to each T € Comp the Banach space of all continuous
functions on T with the sup norm ana to each continuous
map f: T- S the mapping C(f): C(S)=C(T) given by
C(f)(w)=wo £, e C(S). If we combine the contravariant
functor C with the contravariant functor V: Ben, > W we get
a covariant functor W=%C: Comp—->W. It assigns to each

T € Comp the Waelbroeck space B(T)=C(T)' of all Radon
measures on T and to every f: T-3S in Comp the morphism

B(L) =C(£)'.

There is a natural embedding T-(T) which associates with
each t €T the Dirac measure LI defined by bt(f) =f(t) for
all feC(T). It is clear that this is a homeomorphism of T
onto its image in O B(T). The absolutely convex hull of the
?\t's is w*—dense in O W(T). This follows immediately from
proposition 2.13. applied to the isometric embedaing

g: C(T)~ (1}_‘)' =1g°.
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Now we will show that the functor ® is left adjoint to the
forgetful functor O, i.e. that

(%) W (®(?), X')=Comp (T,0X')
holds naturally in T€ Comp and X'€ ¥.
The identification (%) is given by © = o|T for o:
®(T) » X' and by £ = L8 where v, is the unique morphism such
that the diagram

T ——— 0X'

®(7) ——— X'
®f
is commutative. (The uniqueness of ©p follows from the fact

that the linear combinations of the 5t's are w'-dense in 0% (m).

It follows that

<xymp)> = [ <x,£(5)> du(t)
T
must hold for u=1% M 61: and by w*—continuity for all u.
k
If on the other hand we define m, by cof(u)=,’£ £4,, it is

clear that all conditions are fulfilled).

The unit of this adjunction is the identification t - 6’0

and the counit the quotient map e¢: ®(0X') » X' defined by
ew)=J x' du (x'), i.e. <x,ew)>= [ <x,x™> aqu (x')
ox! oxX!'

for all x€ X.
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Coroltary: Bach Waelbroeck space X' is a quotient of a "free
Waelbroeck space" ®(T) for a suitable compact Hausdorff

space [.

It is now easy to describe limits and colimits in W. From
the adjunction W (X",Y') =Ban, (X,Y'b) we get the fact that
b commutes with limits and " with colimits, i.e.
b (1im X;')=1im b X,' and (lim X )" =1im X"
pu a P d > a N a
W Ban, Ban W

From the adjunction
W (®(T),X') =Comp (T,0X")
we derive on the other hand the fact that
0 (lim Xd')=lim 0Xy' and ™ (lim Td)=lim ®(Ty).

W Comp Conmp W

These equations imply e.g. that the product in W, Il Xd‘,

W
coincides as Banach space with the product in Ban, and that
the topology on its unit hall O(I Xd') is the product

topology in Comp, i.e. the Tychonoff-topology on II OXd'.

The mixed bifunctor L:

Let L: W OP>fBan1-*Ban1 be the bifunctor which associates
with a Waelbroeck space X' and a Banach space Y the Banach
space L(X',Y) of all bounded linear maps f: X'-Y such
that £10X' is o(X',X) - !l .| - continuous, with the norm

induced from H(X',Y).
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For a fixed Waelbroeck space X' let Ly, =L(X',*). This is a
covariant functor on Ba.n1 .

Note that LI' =1 and L(X',I) = X.

Bza.n1
There is an equality

(%) L(x',Y) = L(Y',X)

t

which is natural in X and Y and given by ¢ «»op~, defined by

<o x',y> = <oly', x>,

The mapping cut will also be called a transpose of .
First of all, o° is well-defined: let o€ L(X',Y) and y'€ Y'.
Then @'y'=y'e @ is WwX-continuous on 0X', i.e. p'y'€ tX(X).
The mapping o' with codomain restriced to X= 1X(X) c X" is
called cpt and satisfies the above equation.
A1l that remains to be shown is the fact, that o' belongs
to L(Y',X).
et yt‘ be a net in OY' which converges W to y'€ 0y,
Then
Il %, =o'yl = sup |<ox',y '-y>|.
II='|l=1
We know that 9(0X') is compact in O0Y since o€ L(X',Y). For
every €> 0 exists therefore a finite e-net Tq» ...,yné 0Y for

@(0X').
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Thus for each x'€ OX' we can find Yie satisfying

I<ex', y,'-y>IsI<ex' -y, y ' -yl +

H< v, v, -yl <y, ¥, -y

2.17.

Therefore
I<ex', y,'-y>| <2 +sup |<y,, y,'-y™>|<3e
k

for all 12 LR and all x'€ 0X', ged.

The mixed bifunctor 2.

We define 2: Ban °PX W » W to be the bifunctor which
associates with X€ Ban and Y'€ W the space 8(X,Y') of all

bounded linear maps from X to Y'.

We assert that 2(X,Y') can be given the structure of a

Waelbroeck space.

Consider the unit ball 08 (X,Y'). It is clearly an absorbing
disc in 2(X,Y'). Consider on 02 (X,Y') the topology of pointwise
convergence on OX. In other words consider the mapping which
associates with every f€ 08 (X,Y') the element
(£(x)) € 1 (0Y'),.
x€ 0X %€ OX b ¢
The topology on 02 (X,Y') induced in this way from the Tychonoff-

is compact and satisfies b) and c) of

topology on I (OY')x
X

x€ 0
Definition 2.7.
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This implies that 8(X,Y') belongs to W.

The equality 8(X,Y')=2(Y,X') given by o ¢« q}t has already

been considered earlier.

We conclude this chapter with an interesting result due to
Dixmier (1948). [19]
Note first that for a dual space A=B' there exists a projection

y: A" > A in W such that the diagram

A

tAl J

A" —— T A
Y

commutes. This morphism y is uniquely determined (beause OB' is
widense in OB") and coincides with (tB) ', The kernel K=Xker vy
is then W -closed in A",

The interesting fact is that the reverse assertion also holds.

Proposition (Dixmier): Let A be a Banach space such that there

exists a linear contraction y: A" -» A satisfying vy = 1A‘
Then A and vy belong to W if (and only if) ker y is w*—closed

in A".

Proof: Let K=ker ys A". Since X is W -closed there exists a
norm closed subspace B A' such that K=3B.
Let j: B~ A' be the canonical embedding and

j'+A" > B' the corresponding quotient map in W.
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Then we have j'(a") =0 if and only v(a") =0, since
j'a"=0 o <b,j'a">=0 for ¥ beB & {(jb,a">=0

o a" € B =ker v.

Therefore we have j'tA Y= j' since v Y=Y

Now let ®: A-B' be given by ®=j' t1,. Then @ is injective,

A
because

o(a)=0= j'tA(a)=O = v(tA(a))=O = a=0.

Furthermore we have ©(OA) =0B'. For let b' € OB'. Since
j' is a quotient map in W there exists a" € OA" satisfying

j'a"=Db'. But then, in addition

b'=j'a"= (3" v)a"=(3"1,)(va") =o(y(a")) and v(a") € O4.
We have therefore a bijective map ¢: A-B' such that
®(0A) =OB'. If we define on OA the topology co"1(7) induced
by ® from the topology T on OB', then cp"l('r) is compact
and (A,O0A, cp_1('r)) is a Waelbroeck space.

All that remains to be shown is that y belongs to W.

This follows from @ y= j';Ay= j', which implies Ych'1 ¢ j' €W,

Remark: This result is intimately connected with the
following fact: every "“-algebra (in the sense of Eilen-

berg-Moore) is a dual space. Cf. Z. Semadeni [77].
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Exercises and complements

1) a)

b)

i 1.12).
Let (Xd)dGD be 2 spectral family (cf )
Assume that all Xd are monomorphisms and that D is directed
downwards, i.e. for all 4,d'€ D there exist 4"€ D and
morphisms 6: d" - d and 6': 4" - d'. Assume furthermore

that 21l X. are linear subspaces of a fixed space Y and

d
that X& are the corresponding embeddings. Then the projective

limit of (Xd) may be identified with the linear space of

N OXd and the norm is given by the Minkowski functional of
d€Dd

that set.
Dually assume that D is directed upwards.

Then the inductive limit of (Xd) may be identified with

the completion of U X, , the norm being given by the
deDd

Minkowski functional of the convex hull of all sets OXd .

2) For X € Ban there exist two natural embeddings of X" into X(4) ,

namely the maps t}';: and tyn - Show that the intersection of

their images coincides with X.

3) Let f: X » Y be a compact linear map. Then there exists a

dual space Z' and maps g€ H(X,Z2') , h€ L(Z',Y) such that
f=heg.



CHAPTER IT

Tensor products of Banach spaces

. The algebraic and the projective tensor product

. The algebraic tensor product

We assume that the reader is familiar with the algebraic
tensor product of linear spaces. Nevertheless we shall give
here a brief account that can be generalized later on in

the theory of Banach spaces and functors.

Let X. Y be linear spaces over the scalar field I.

The tensor product of X and Y is a linear space X ® Y together
with a bilinear map MW : X x Y - X @ Y which has the
following universal property: Any bilinear map @ : X x Y ~—~ 2

into an arbitrary linear space Z factors uniquely through

™ 4o a linear map ® : X ® Y - 2, i.e.®is such that © = ®e M.

TxY —2 sx @Y

The universal property of the tensor product implies that it

is uniquely determined up to a linear isomorphism (for example,
by an argument analogous to that used for Banach spaces in 1.5

below). The following "concrete" representation is well known:

consider the free linear space M over X X Y (considered as a

set) i.e. the space of all scalar-valued functions on XX Y

47
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which are non-zero at only finitely many points of X X Y. Identify
(x,y) with the function that vanishes everywhere except
on (x,y), where it has the value 1, then X X Y is a Hamel-basis
for M. Consider the subspace N generated by all elements of
the following types:
(x +x, ) - 1x7) - (x,¥)
(z, vy +yq) - (£3) - (x,579)
ox,y) ~ (ax,y)
a(x,y) - (x,ay) where X, x, € X, y, y, € ¥, a € I,
Then X ® Y = M/N is easily seen to be a tensor product of
Xand ¥, T: XX Y = /N being just the restriction of
the canonical projection. ¥We denote the image of (x,y) by
x 2 y.
Since we are dealing here with linear spaces only and not
with modules over a ring, we can give another representation,
which is based on duvality arguments.
Taking Z = I, then the universal property of X @ Y implies
that the algebraic dval (X ® Y)* coincides with B(X,Y) the
space of all bilinear maps from X X Y to I. (The linearity
of the isomorphism is a result of the uniqueness condition).Thus
I®Y, if it exists, is a subspace of B(X,Y)¥. Let us denote
by x @ y the linear functional on B(X,Y) which corresponds
to evaluation at (x,y), i.e. <f, x ® y > = f£(x,y) for
all £ € 8(X,Y). The construction of our embedding implies
that T(x,y) must be equal to x ® y. We now take X ® Ykas
the linear hull of the elements x ® y (x € X, y € Y). (It is

also a consequence of the universal property that the image
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of w must generate X®Y, This gives us another uniqueness
proof). It remains to show that the space we have obtained,
together with the map m(x,y) =x®y, has the desired
properties: The bilinearity of m follows immediately from
the definition. Given a bilinear map ®: XxY-7Z, we must
have o(x,y) =& m(x,y) =c/;\)(x®y). & is therefore uniquely
determined, provided that it exists. Now assume that

r;: A X;®Y;=0 (Xis I, x;€X, yicY). If we had

f=li ¢(xi,yi)4=0, there would exist some z* € Z* such that
Ty ozt o(x,5,)=<(E A olx;,¥;), z* )+ 0. Now

z* o @ € B(X,Y) and from our assumption we get

Tz m(xi,yi) =(z*s 0, T ﬁixi&jyi}:O’ a contradiction.
If we set cll\) (151 lixigyi) =i§1 Ay cp(xi,yi)

()‘i €I, x; €X, vy €Y), it follows that $ is well defined

and linear.

The algebraic tensor product satisfies the following

49

"exponential law": if we write 2(X,Y) for the space of linear

maps from X to Y, then
2(XeY,z) =98(X,Y;2) = (X, 8(Y,2)).

The first equality holds by the universal property, the
A
second one via the correspondence @« ®, given by o(x,y)=

A
©(x)(y). In an analogous way we have B(X,Y;Z) =

e(Y, 9(X,2)) (by the correspondence cp(x,y)=$(y)(:x))
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and therefore 8(X, 2(Y,2)) = 2(Y, 8(X,2)) also holds.
The name exponential law comes from the following notation:

if we write Z% for 8(X,2), the above formwle has the form
Y X
F e K= (2.

. We now state two easy results about the elements of X ® Y:

a) If Zy,...,X are linearly independent in X and Y and at least
one of the elements YyseeeVy € Y is different from zero,

then .21 x; ®y $ 0.

Proof: Assume that 4 4 0. Then there exist x*e¢ X* and

y*€Y* such that <x;, x*>=38 . and <y,,y*>40.
The map (x,y) » <x,x*> <y,y*> clearly defines an
element 9 of B(X,Y) for which we have I cp(xi,yi) =
=L<xx*><y, ,y*>4 0. The result now follows from

the universal property.

b) Every non-zero element u of X ® Y has a representation

n
u =i£1 x; @y, with (xi) and (yi) linear independent in

X and Y respectively.

n
Proof: Take any representation u = i§1xi € y; with minival n

(which exists since u # 0). Suppose e.g.

n-1 n-1 n-1

= .Z =
X, = ;2% o X;. Then we have u 51 x; ®y, + 151 ax. ®y

n-1
= 151 x, ® (yi + O.iyn), which is a contradiction.
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1.4. We suppose now that X and Y are Banach spaces.

1

5.

B(X,Y) shall denote the space of all bounded bilinear maps from

Xx Y to I. For ® € B(X,Y) we take lloll = sup lo(x,y) 1.
x € 0X
y€0Y

In this way B(X,Y) becomes a Banach space.
As before we consider the map ® : X x Y - B(X,Y)' given by
<a, 9o(x,y) > = o(x,y), where a € B(X,Y), x € X, y € Y. It is

evidently bilinear and defines therefore a linear map

-~ ~

®: X®Y - B(X,Y)'. We assert that ® is injective.
In fact, let (xi) and (yi) be linearly independent in X and Y
n

respectively and u = i£1 x;, ®y;. By the Hahn - Banach

theorem we get functionals x' € X' and y' € Y' such that

<xi, x' > = 611 and <yi, y' > = 611, (x,y) -» <x,x' ><y,y' >

defines an element of B(X,Y) and we have

<<, x'><-., 3" > o(u) >=1, which means ®(u) % 0.

The projective tensor product of Banach spaces.

Let X, Y be Banach spaces. A projective tensor product of X
and Y is a Banach space X % Y together with a bounded
bilinear map W : X x Y - X % Y such that for any bounded
bilinear map ® from X x Y into an arbitrary Banach space Z
there exists a unique bounded linear map

-~

®: X ®Y = Z such that ® = ® « T, We also require that
loll = loll.

]T A
IxYy —mX®RY
cpl IR

.7 ®
e

Z
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If a projective tensor product exists it is uniquely determined
up to isometrical isomorphisms:

Taking Z = X é'Y and ® = T one has evidently T = 1y ® ¥

and therefore [T = H%H < 1. Suppose now (V, T') is a second
tensor product of X and Y. Then ™' factgrs over T to

6’: X 8 Y » V and T factors over T' to G. (ﬁ stands for the

factorization with respect to the second tensor product).

XxY — s X®7Y
A -7
m F/’:/ -7
T
Ve
Since M= T, T =T, T o T and the factorization is unique
E A A a
me T = - imi o M=
Wi have 1X ey and similarly ™ 1V' Fro%
Iml = lIml <1 and IImtll = lIml] < 1 we see that V and X ® Y are

isometrically isomorphic.

Both constructions sketched in 1.1. may be generalized to
give a concrete representation of a projective tensor product.
In the first case one can take 1'(OX x OY) and the quotient
with respect to the closure of the subspace considered there.
The second way will be described explicitly below. The
equivalence of both constructions follows from OUX uniqueness
assertion.

Now for Z = I the universal property says that (X é Y)'=B(X,Y)
isometrically. ThusX%Y can be regarded as a closed subspace

of B(X,Y)'. As in 1.1. it follows easily that T(x,y) = x ®y

corresponds to the evaluation functional given by
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<f, x ®y>=f(x,y) (for £ € B(X,¥), x € X, y € Y).

We have already seen that the linear span M generated by these
functionals forms an algebraic tensor product of X and Y,

and we assert that its norm-closure ¥ is a projective

tensor product.

Given a bounded bilinear map ¢ : X x Y - Z, we get a

~ ~

linear map @ from M = X ® Y to Z with ® = ® « T, It remains

to show that ¥ is bounded:

~ n
ﬂw(i§1 x; ®y; =12 okx l,yi)” =
= ! z L v,
= ‘lw”‘lz [y FEog) 2 olxg,y,) |
< o'l sup | <y, 2x, @y, > |
¥ € B(X,Y) R TR
Nyl =1

n

i |
ol 1,E, 5, 5l g
Thus o/l = lloll and ¢ has a unique extension to M. Since

™| =1 holds by definition and ® = ® « T, we have

lell 1T = ol |

A

lleoll
1.6. We have seen that X ® Y is a dense subspace of X é Y and

shall now give a description of the norm induced on X ® Y.

We claim that lx ® y” = lxll Hy” for x ¢ X, y € Y.

By the Hahn Banach theorem we get functionals x' € 0X' and

y' € 0Y' such that < x,x' > = %!l ana < v,y' > =
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Now < - ,x' > < -« y' > € 0B(X,Y) and < < *,x' > <y >, xRy >=
=<zx,x'><y,y' > = llzll llyll, which means that

lx ® yll 2 lxll llyl

.

since [Tl = 1, equality must hold.

n
For u € X ® Y we define v(u) = inf 1151 “xi” ”yill u =
n

It is easy to check that vy is a semi~norm on X ® Y.
We have ”11511 x, ® yi”X ® v = z ||xi ® yi”X ® v = z Hxin ”yi”
and therefore Hu”X éY < y(u), which means that Y is a norm.
As is easily seen, the completion of X ® Y in the norm v
fulfills the universal property of the projective tensor product
and the isomorphism constructed in 1.5 acts as the identity
on X ® Y. Thus "'”X oy = Y and we will denote it by -
from now on.
As a résumé we have the following
Theorem: The projective tensor product X é Y of two Banach
spaces X and Y is the completion of the algebraic tensor
product in the norm ||'HA, given by
al® = sue LE el gyl ow = 3w @yl
The spaces H(X,H(Y,Z)) and H(X ® Y,Z) are isometrically

isomorphic via ®¢> ¥, where ®(x)(y) = &(x ® y).

. As a special case we have (X &3 Y)' = BH(X é Y,I) = H(X,Y'").
Thus H(X,Y') appears as the dual of a Banach space and

has therefore the structure of a Waelbroeck space.

Since the unit ball of H(X,Y') is equicontinuous with respect

to X ® ¥, the restriction of the topology O(H(X,Y'),X ® Y)
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1.8.

coincides with o(H(X,Y'), X ® Y), i.e. the topology of
pointwise convergence (see Schaefer [ 73], III, 4.5). So the
Waelbroeck structure coincides with that introduced in

I, 2.17, i.e. (X, Y') = (X @ )"

Clearly the duality between X ® Y and 2(X,Y') is given by

<x ®y,f>=<y,f(x)>

We now collect some elementary properties of the projective
tensor product.
a) X %‘Y =Y é Xviax®y = (x® y)t =y ®x
By duality we get an isomorphism of 8(Y,X') and €(X,Y')
<t(x®y),f>=<y®x,f>=<x,f(y)>=<y,ft(x)>=

<x® y,ft > i.e. this isomorphism transforms

il

£ € 8(Y,X') into £° € €(X,¥') i.e. the map considered
in I.2.13.
b) I é X=X é I = X the isomorphism being given by
a®x - oxand x 2 1 ® x (where o € I, x € X)
c) (X & Y) é‘Z =X é (Y % 7) via the identification
(x ®y) ® 2z =2 x ® (y ® z). This map is defined by using
the universal property twice (the first time with 2z fixed).
Another proof is obtained from the fact that the duals
of both spaces coincide with the Banach space of all
bounded trilinear maps from X x Y x Z to I and the
w¥- topology on the unit ball is in both cases the
topology of compact convergence (or pointwise convergence).
d) Given f € H(X,X1 ), g € H(Y,Y1), then the linear map
f®g:X®Y ~» X, ®Y defined by (f @g)(in ®yi) =
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=2 f(xi) @g(y ) extends to a bounded linear map

A

f @ g:X®Y » X, ® Y, which satisfies Il ® gl =

If furthermore f1 € H(X1 ’XZ)’ g € H(Y1,Y2) then

(£, 8¢g)+ (£8g) = (2, + £) & (g, + &)
The algebraic part can be checked by using the description
of H'“A given in 1.6 or by the observation that
(x,y) » £(x) ® g(y) is a bilinear map from X x Y to X1 éY1
with norm £l ”g”.
The projective tensor product thus becomes a bifunctor and

it is easily seen that all isometric equalities of 1.7. and

1.8 a), b), ¢) are natural in all variables.

If (Xd)d ¢ p is a spectral family in Ban,, then
(1im Xd) ®Y = lim (Xd ® Y) (see I. 1.17)

The proof is the usual categorical one for the fact that
left adjoint functors commute with colimits and uses
heavily the naturality of the equation H(X QAD Y,2) = H(X,H(Y,Z2)).
We sketch it here:
Let (fwd)d €D Ee a family of morphisms in
(CP : Xd ®Y - Z) and ‘Ild the corresponding elements

of H( d’ H(Y,Z)). Bach commutative diagram:

~ ]
N \ is equivalent to Xg H(Y,Z)
ot /
®

111/
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Thus there is a unique morphism ¥ : lim Xg »> H(Y,2)
—

v
Xy — 9 L H(Y,2)

commutes.
\/

lim Xd

such that

If 9 € H((lim Xd) ® Y, Z) corresponds to ¥, this diagram is in

turn equivalent to ~ $d
Xd ®Y ——— 7

| &

(1im Xd) ®Y

f) As consequences we obtain:
Iff : X -» X/Mis a quotient map, then

f®1y: X @Y - (X/M) ® Y is also a quotient map, whose
kernel coincides with the closure of M ® Y in X ® Y.

(f is the cokernel of the embedding of M into X, see I. 1.18)

1 ~ ~ ~ 1
Ig@Y = (RgIy) ®Y = % (I, ®Y) = 14(Y), where

the equivalence isghmnby(%)s€s®y - (%y%es,am

S
1o . :
g ®1lp =15 ;7 via (Blgeg® (Mplyen = (5570

~

g) For each u € X ® ¥ and ¢ > O there are (x)>_, & OX,

()0 , Sof and (A)P_, € 1" such that

A
= = -
u = 51 ann ®y, and llull ”(Xn)”l1 €
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. . 1 -> ks . 1 .
Proof: Let ﬂX : 10X X, T lOY -» Y be the quotlent
maps of (I.1.11). By £) Ty ® M : 1r 2 or = lox ® Loy
-+ X ®Y ig a quotient map too. The assertion is now

immediate.

h) If £ : X = X, is epi (i.e. it has dense image, see I.1.4)
then f % 1Y : X é'Y d X1 & Y is also epi, since
£' : X; = X' mono implies (f ® 1Y)' = 8(Y,f'):
Q(Y,X{) = 8(Y,X') mono.

i) If (Q,Z,1) is a measure space and LL(Q,X) the space
of all X-valued (Bochner-) integrable functions on Q,
then L)(0,X) = L}() ® X.

Proof: To (f,x) € LL(Q) x X we assign the function w - f(w)x,
In this way, we get a linear, contractive map from

1/(Q) @ X into L}(R,X) with dense image. Let
m

= T a. 1 . .
fi j=1u13 cy € Lu(g) be step fugctlons andnxi € X
(1 =1,...,n). Then L, f, ®x, = j£1 cAj ® (LI cijxi)
and its image has the norm:
.2 I |
131 cAj(i=1 o 4%y) ‘L&(Q,X)

b 1% | <. I
Z RADIE o xll = 2 lc..ljlu(Aj) x =

L.

"

n
i'§1 ”fiHL&(Q) ”xi

This means that our map is an isometry on a dense subspace of

LL(Q) ® X and therefore an isometrical isomorphism.
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In this case, for an isometry £ : X - Y the map
LL(Q) ®f : LL(O) ®X - LL(Q) ® Y is also isometric
This is wrong in general.

1.9. We want to determine those isometries f such that f ® 2

is an isometry for any Banach space Z.

Definition: £ : X » ¥, lIfll =1 is said to be a weak retract

if there exists a map h : X' - Y', with Inll =1 suen
that £f' « h = 1X"

This means geometrically that there exists a contractive
projection p from Y" onto X", i.e. such that p f" = 1X"
If f' o« h = 1X' then clearly h' o f" = 1X" and if

conversely p o f" = 1X" then p o ty e f=pe "o ty =
t

=1.Xand f' o (po lY) =1X',

The canonical embedding tx : X » X" always is g weak retract,

since (tX)' o ty, = 1y, holds.

Proposition: An isometry f : X » Y is a weak retract if
and only if f ® Z : X ® Z » Y ® Z is isometric for all

Banach spaces Z.

Proof: Choose Z = X'

~

fe gy we may extend the functional 1X’ € 8(X',X")

If X ® X' is a subspace of Y @ X' via
= (X' ®X)' toh € 8(X',¥') = (X' ® ¥)' with |nll = 1

(Hahn Banach theorem). This just means that

f'e h = 1X" If conversely f is a weak retract,
£'e n =1y, , Il =1 and 2 ¢ Ban , we consider the

map (£ ® 2)' = 8(z,£') : 2(2,Y') » 8(Z,X').
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Tor g € 9(Z,X') we have 2(Z,f')(h o g) =f' e h o g =g

and |h . gsi = ‘Ig{‘l.

(7 ,f') thus is a quotient map and f ® Z isometric.

Remark: In § 3 we will see that for an isometry f, f ® Z
need not be injective. The above geometric description
of wezk retracts shows that even for finite dimensional
spaces X and Y, T é Z is in general not an isometry.
If one drops the condition }lh” = 1 in the above definition
of a weak retract and assumes mere continuity, one gets
& necessary and sufficient condition for an isometry f
to satisfy the condition that T & Z maps X é Z

onto a closed subspace of Y ® Z, for any Banach space Z.

1.10. The map (x,x') - < x,x' > is evidently bilinear and con-
tractive on X x X'. It extends therefore to a linear _
and contractive map tr : X gb X' = I, called the trace
functional,
For Banach spaces X and Y we associate to each pair
(x',y) € X' x Y the function x » < x,x' > y. It is an easy
consequence of 1.3 b) that the corresponding map of X' ® ¥
into H{X,Y) is injective. Its image consists of all bounded,
finite dimensional, linear maps from X into Y. If X = Y is
finite dimensional then clearly H(X,X) = X' ® X via the
above identification. In this way the trace of g tensor
coincides with the trace of the matrix, which represents the
corresponding map. On the other hand, for a Banach space X

without the approximation property the map from X' 6; X into
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H(X,X) which extends the above embedding, is not injective
and the trace can now be defined only for the tensor and

not for the induced map (see 3.4.).

A short computation shows that the duality action in

(x ® Y)' = 8(X,Y') is given by < u,v > = tr ((v ® 1Y)(u)) =
= tr ((1X é vt)(u)). (u € X % Y, v € H(X,Y'); it suffices to
verify the equation for finite tensors u and then to use

continuity on both sides)

§2. General tensor products of Banach spaces.

2.1. Let X and Y be Banach spaces.
For (x',y') € X' x Y' we define a linear map on X ® Y by
<x®y, x' ®y'>=<gx,x'"><y,y > (use the universal
property).
The assignment is clearly bilinear and we get a map of X' ® ¥

into (X ® Y)*, which is injective by 1.3 b).

Definition: A norm a on X ® Y is said to be reasonable, if
each element (x',y') € X' x Y' defines a continuous

functional on X § Y and if both bilinear maps:

XxY - XQY defined by (x,y) » x®y
X'xY - (X@7Y)' defined by (x',y') -» x' ®y'

have norm =< 1.

Here X @ Y means the completion of X ® Y in the norm a.
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If o is reasonable we have:?

b @ yly g = Il gl ana le @ 37lig g gy = !l el
Proof: ' = ' follows from the definition.
Iz e ylly g v =cp€cs>1(1§§Y)' l<x ®y,0>| =
e B femew ey
(xey)!
Ztlx'ﬁ?ﬁy'llm <xxt > <y >] =l vl
ber 2 7l 2 Y)! ZHX‘;; s1|<x ey, x ®y > = x| llyl

2.2. To (x,y) € X x Y corresponds a bounded bilinear map on
X' x Y by (x',y'") -» <zx,x'><y,y' >. This defines a map

of X ® Y into B(X',Y'), which is injective by 1.3. b)

Definition: The closure of X ® Y in B(X',Y') is called the
R
inductive tensor product and is denoted by X & Y.

It is the completion of X ® ¥ in the norm

.z v Hk |.Z Ve,y

! = < ' < '

iZ1 % ® i Hx§ﬁ€;1 i=1 XX > i’ >| where

ly =1

the right hand expression is independent of the representation
in X @Y,
For f € H(X,X1), g € H(Y,Y1), the map f ® g has clearly a

continuous extension to X ® Y, which is denoted by
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A ES

f ® g and satisfies llf ® gll < llfll llgll, i.e. the inductive
tensor product defines a bifunctor.

Since B(X',Y') = H(X',Y") isometrically and since the
image of X ® Y in H(X',Y") is contained in the closed

subspace L(X',Y) of all linear maps whose restriction to
A
0X' is w*-~ norm - continuous, we may consider X ® Y as

a subspace of L(X',Y). (see I. 2.16.). The embedding
of X ® Y into L(X',Y) is given by x ® y » (x' » < x,x' > y).

By means of this embedding the transposition
% ; .

: X®Y » Y ®X corresponds to the transposition

. n(x',Y) - L(Y',X) defined in I.2.12. Consequently

A

Y=Y ®X.
Since the embedding of X ® Y into L(X',Y) is easily seen
to be natural, we conclude that X ® f is an isometry

whenever f is.

2.3. Proposition: The reasonable crossnorms are exactly those

A
<as<| |

norms a that satisfy

Proof: Let 0 be a reasonable norm on X ® Y,

n
i = .%
For any representation u 12 Xy ® y; we have

% <.t < 3 gl lly.
a(u) = ol yE x; @y,) =% alx; ®y,) =%, lx;ll lyll,
and thus o(u) = lall
On the other hand:

= sup < = X5 ® Yir @ >|
Qe O(XgY)'
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= sup |< z xi ® yi, x' ®y' >|
”x‘ ®y’”(X§Y)v =1
A
> u | T<x,x' > <y, > = |l .
||x'ﬁ,ﬁy'”$1 1
If conversely a norm & on X ® Y satisfies Nl =asi 1,

then a(x ® y) < lx ® y”A = =l ”y| .

n
We have |< 121 x; ®y;, X, ®y! >| =

< |lg! ' Zx. ®y., x' ® '>|
.lx,H Hy°”||x§ﬁ?”y'||51l< X5 yis X y

= Nzl lly: | Iip> x; ® yiHX g v and this means
”x: ® y;”(x ;Y)' = ||x°'|| Hy: . Finally
Iz ® y'”(x g 1) < lx' ® y’H(X ;Y)’ =[xl Hy' .

2.4. Let T, S be locally compact topological spaces and X be
a Banach space. We denote by CO(T,X) the Banach space
of all X- valued, continuous functions on T that vanish at

infinity. We write simply CO(T) for CO(T,I).

Theorem: For locally compact topological spaces T, S and a
Banach space X, we have the equations:
R R
CO(T) ® X = CO(T,X) and CO(T) ® CO(S) = CO(T x S).
) n
Proof: Consider the linear map which assigns to .Z, f. ® x. ¢

0 i=1 i i
€ C,(T) ®X the function (t 2 .Z, £ (t)x,) € ¢ (T,X).
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This map is an isometry for the inductive norm since

Zf ® A= L <gx, '>
H fl xi” ”x'|2§1 ” xl,x fi”CO(T)
= up sup [T <x, ,x'>f (%)]
lxtll<1 tem + *
= z = .
tipg I fi(t)xiHX = || % fi( )xi”Co(T,X)

For the first assertion it remains to show that CO(T) ® X
is dense in CO(T,X). Now fix some element g € CO(T,X)
and € > 0, and consider the sets A = { t € T : Hg(t)“ 2 ¢l

and V, = s em: llgls) - g(t)l < /21, where t ¢ T is

arbitrary. in}t € A is an open cover of the compact

get A in T, hence there are t1,...,tn € A such that
{Vt }?_1 covers A . There exists a partition of
; 1=

unity subordinate to the cover Vt1""’Vt , (T\a)ulw}

of the one point compactification T U iaﬂ of T, i.e.

there are continuous functions PysecesP P 4 OB T such

that 0 =p, 1 (1 =i =n+1), p,(t) =0 1in T\Vt. (1 =i =n),
n+1 *
- . 2 - . . .
pn4-1(t) 0 in A and ,Z, pi(t) ! on T. Since p, vanishes

outside the compact set Vt (1 =41 =n), we have
i
Dyse-esPy € CO(T). Denote g(ti) by x; (1
n
consider 121 p; ®x, € CO(T) ® X. We conclude that

A

i =n), and

p; (8) - llg() =gt )1l = e py(£) (1 =i Sn), since either
pi(t) = 0 or the second factor is smaller than e.

Consequently

n n+1 n |
le(t) ~ Zo (0)x = 1E o, (0)a(t) - 2 v, (8)x, /| =
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< I 0, ()le(s) - gt + 7, () lg(t)] < e

For the second assertion we use the map

f®ge CO(T) ® co(s) » ((%,8) =» f(t)g(s))e CO(T x S).
As above it is shown that the map is an isometry, and the
Stone-Weierstrass theorem tells us that CO(T) ® CO(S) is

dense in CO(T x S).

Corollary:

a) Let S, T be compact topological spaces and X a Banach space.

Then G(T) # X = C(T,X), C(S) ® G(T) = ¢(S x T).

b) Let S be a set (considered as a discrete topological
space) and let S U {w! be its one point compactification.
Then C(S U {w }) is the set of all mets (x,) ", g which
converge unconditionally, i.e. for each € >0 there exists
a finite subset E of S, such that fxs - x|<e for all
s € S \ E, where x is the limit of (xg).
c(s u {o }, X) is the space of all unconditionally
convergent nets in X and we conclude:

¢sulol, ¥ =cs U lo]) & x.

In particular, we get c(X) =c;X, where ¢ is the space of

all convergent sequences.

c) If S is as above, then CO(S) is the space of all nets

which converge unconditionally to O.
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Therefore C(S) % X

0, (5,%).
o (W): o b X=c ().

Ll

A special case is cy
1 2 )
2.5. Theorem: ls ® X is the space of all (unconditionally)
summable families (xs)s esgin X% i.e.those (Xs)sfs for which
s§EXs converges , where E runs through the system of all finite

subsets of 8, directed by inclusion.

First we need 2 simple lemma.
Lemma: If ("SS)S € g is a family of complex numbers such that
for each finite subset E € S we have | ng gsl < ¢, then

. . <
for each finite subset ng |€S\ = 4€ holds.

Proof: lsgﬁ Re §s| = |Re e ésl = | L §S| < e,

similarly Isgi Im §S| < e,

Now Re §S and Im §S are = 0 or < 0 and for the subset F
of E where Re §s Z 0
_ < -
s§F|Re §sl = |s§F Re §s| €. The other cases are similar,
< <
Thus _ZIp |Re §s| S2¢, I | In §sl < 2¢ and

e | = 4e.

consequently s?E <

Proof of the theorem:

X ® 1% is isometrically contained in L(l;', X) = 113X).

_ @®
For S, € S we put eso_ (6SOS)S€S € lS

To ® € L(lgix) we assign the family (xs) defined

se€d
by xg = m(es). By I.2.16 we know that ©' maps X' into
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the subspace lé of (lg))‘ and therefore

ol = el = s%%’ or (x)! = sup oFs |< e 0 (x)>]
x'e X' €

= sup

x'€ OX' sfs

If we order the finite subsets of S by inclusion, it is
easily seen that ng e  converges in the w*~ topology of lg
to the constant function. Consequently ng x, = w(ssE es)
converges in the norm topology.

From the above norm equation it follows that ¢ is uniquely
determined by the (xs).

Now let conversely (xs) be a summable family in X and € > O.
Then there is a finite subset E of S such that for each finite
subset F £ S \ E we have

! |
lst x| < e, i. e.X ?Eg%' !s€

Using the lemma above we conclude that

< xs,x‘ >| < e,

o B l<xe] S e

For s, € S take es.= (588'

. _ 1
of S we assign the element ¥ = sem Xg @ ey € Xe® lS

for s € E and @E(es) =0

)se g € lé. To each finite subset E

S L(1%X). Obviously vpley) = x
elsevhere. By the above argument ®p is a Cauchy-net in
L(lg),X) and converges therefore to ® € X ® 1; c L(lgix).

@(es) = X, which yields the desired conclusion.

Remarks: a) The proof of theorem 2.5. also shows that

1 2 @ .
lg ® X = L(15,X), a fact which also is an easy consequence of
3.5.
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b) It has been shown by Dvoretzky and Rogers [22]
that each infinite-dimensional Banach space X contains
a sequence which is summable but not absolutely
summable, i.e. 1' ® X + 1" & x. Thus i£ || II* ana I| I
are equivalent on 11 ® X then X is finite dimensiocnal.
The construction of such a sequence is based on the

1

observation that x = (0,0,..,0, o 0,...) constitutes

an example of a summable sequence in 12 for which
1 T 1 _
z lxn1 =L L= @
2.7. Let o be a reasonable norm on X ® 7, Since by 2.3.
Il 2 ¢ =!.1", the identity on X ® Y has continuous
~ R

extensions: X ®Y ~? X 2 Y 4 X ®Y, Both maps are
contractive and have dense images. Thus the adjoint maps

(X27)0 » (X®Y)' » (X®Y)' = HEY)
are monomorphic in W , i.e. they are injective.
Proposition: If ¢ is a reasonable norm.on X ® Y , then

(X g Y)' coincides with the space of all f € H(X ,Y')

such that the linear functional I x; &y, = L < yi,f(xi) >

on X ® Y is continuous in the ¢ -norm.
| _ .
We have HfJ(X ?’Y)' = sup ||Z < N f(xi) >|
. <
: o2 x; ® yi) <1}

Moreover (X ® Y)' is always contractively contained

. ® ).
in (X 2 Y)
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Proof: Clear by the preceding argument .

For a reasonable norm ¢ on X ® Y it is easily seen

that (X ® Y)' induces a reasonable norm o' on X' ® Y'.
a

Starting with o = Il I*, the "greatest™ crossnorm, one
gets a' = I “* the "least" crossmorm. On the other hand,
we need not have Q' = 1 for o=l 17, (see 3.9).

We will now treat a special case:

Temma: For a finite dimensional space M and an arbitrary
* -~
Banach space X one has (M ® X)' = M' ® X',

Proof: We use the map of 2.1. Since M is finite
dimensional every bounded linear functional on M ® X

has a representation in M' ® X' and by 2.3 the norm

~
.

induced on M' ® X' is smaller than || |
For M = 1®© one has lwg X =1% (X) and
ln n T n

A 1 1]
120 =1, (X).

Now consider an arbitrary finite dimensional M. Take

u € M ® X' and € > O, Since OM' is compact in the

norm topology, one can find a finite € -mesh

iy;,...,yl’l} therein. Define ® : M » 1% by

¥ 2 (<3y] >ee,<y,y, ). Ify € Mand lyll =1,

there exists an element y' € OM' such that <y,y' > 21 -c¢.
Then lly* - yjl_ﬂ =< ¢ for a certain index i and therefore

l< yvyi >‘ = l<y,y' >| - I< Y,yi-y' >l S {eg=¢ =
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= 1-2e. It follows that llyll2e(y)) 2 (1 -2¢) 'lyl| for al1
yeM. If we assume in addition that e<-12— and take cp(M)=M1,
then @: M-M, is an isomorphism with ||cp'1 1]5-1-—_1—5-5 and
loli<1.

uy = (9~ ®1 £) () is a functional on M, éx and

"u1 I\ --1—'-!_1"—'2‘? Since M, QSX is isometrically contained in

1® ®X, there exists an extension u, of uy with

o A

\
u ® X)' =lx11 (X') is represented by

Hu2||s1—-!;—2JT . Now u, € (l

(xq'ye.. ,xn') and the action has the following form:

(y@x, w)={o(y) ®x, uy>={({y,y;" ),...,(y,y ) ®x,u,) =
= 2 (x,xi > Ly, yi') for all yeM, x¢ X,
i=1
n
This means that ¥ Vi 'exy ' is a representation of u for
j=1 n*
which the equation )2 'ly | ||x "<z 'lx < T——-L- holds.

Consequently 'lull* < Hu”

Corollary 1: ILet X be a Banach space, N a finite dimensional
subspace of X", j: N-X" the inclusion.
Then there exists a net (ut) c OH(N,X) such that

lim w, = j in the w*-topology of 2(N,X").

Proof: H(N,X) =N' '/A;X because N is finite dimensional.

A
Consequently H(N,X)'= (N' .»Qx)v =N&X' and
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H(N,X)" = H(N,X"). It is easily seen that the canonical
inclusion of H(N,X) into H(N,X)" corresponds to the
embedding u -+ iy e U. Now the result follows
immedistely from the fact that

OH(N,X) is w* —dense in OH(N,X)".

Corollery 2: Let X, Y be Banach spaces. Then X eYn OH(X',Y)
is dense in X" 2 ¥ N OH(X', Y) for the topology of

compact convergence.

Proof: The topology of compact convergence on OH(X',Y)
coincides with the topology of pointwise convergence

(compare the proof of 3.8). Take
n

u=,E x} &y €X" &Y 0N OH(X',Y). We use Cor. 1 for

=< ::i‘,...,x]’:‘1 >, u may be viewed as an element of
N = Y. Then (u‘ ® 1Y)(u) € X ®YN OH(X',Y) and
lim(ut S 1Y) (u)

u for the topology of pointwise

convergence, since

(v, #1p)(0) = T, (x]) 8y; and (u, @ 1)(W(x") =

2<ut(x;), x>y, - 2<x',x;>yi for all x' € X',

2.9. ForBanach spaces X, Y let I1(X,Y) be the space of all
maps u € H(X,Y) such that ty e u € (X é ¥')' (compare 2.7),

equipped with the norm ”u{‘l =l u” 2 .
1 (X ® 1)
11(X,Y) thus becomes a Banach space. It follows easily



TENSOR PRODUCTS OF BANACH SPACES 73

from the definitions that for v € H(W,X) and w € H(Y,Z)

we have Wo Uo V € a(%z)mm|N-ueﬂE <
1

< Wl vl HuHI , leed I, is a contra~covariant bi-
1

functor.

Lemma: Let X and Y be Banach spaces, then the following

assertions hold:
a) u € I1(X,Y) implies tyeu € I1(X,Y") and HuHI;=”tY- u”I
b) u € I1(X,Y) implies u' € I1(Y',X') and ”uHI = Hu'”I

1

1
e) I,(T,X') = (Y ® x)°

Proof: a) ty e uE I1(X,Y") follows from the above argument.

A =

We have furthermore: UuHI = HtY. uH A =
1 (x®y)'

2 1 ° ° ~ = ° A =
M1X®1YJ (tgne ty w”0(§Y0‘|hT' woumxéYﬂ'_

Il

Y° u”I1 = ‘lu”I1

¢c) For u € I1(Y,X') it follows that llull 4 = HuHI

(Y ® x)! 1

R A
gince Y ® X is isometrically contained in Y ® X",

n
If v = 121 5 ® xg we construct as in the proof of

2.8, Cor. 2 a ne% (vt) € OH(N,X) such that
1lim vt(xg) = xj in the w*~topology.

For u € (Y & X)' we conclude then:

<v,igeu>= L < u(yi), x§ > = lim 2<:v1(x§),u(yi) > =
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lim < (1y 2 v,)(v), u>. Consequently [<v, tye u >l <

< vl 4 . 'lu” 2 , Which means that
Y ® X" (Y ® X)!
we L (%X) and lull, =lull 4 .
1 (Yy ® X)!

b) follows immediately from the equation I1 (y',x') =
= (Y ®X)'.
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§ 3. The approximation property for Banach spaces.

3.1. Some notations: If X and Y are Banach spaces, let us
denote by XK(X,Y) the Banach space of all compact linear
maps from X into Y and by KO(X,Y) the closure of all finite
dimensional maps therein., Both XK(X,X) and KO(X,X) are
closed two-sided ideals in the Banach algebra H(X,X).

It is easily seen that KO(X,Y) is isometrically isomorphic

R
to X' ® Y for each Y.

Let A be a Banach algebra. A left [right] approximate
identity for A is a net (us)s ¢g » Where S is some

directed system, such that for all a € A 1lim ug a=a

[ lim a ug = a] in the norm topology. The approximate identity
is said to Dbe bounded if ”usH =1 for all s € S. an
approximate identity is two-sided if it is both a

right and left one. A left Banach-A-module is a Banach space
together with a contractive Banach algebra homomorphism

A = H(V,V) (denoted by a - (v = av)). It is called
essential if the linear span of AV is dénse in V.

(see Chapter III for further information and a detailed
account of properties of Banach modules).

For each Y the space K(Y,X) [KO(Y,X)] is a left Banach
module with respect to K(X,X) [ K (X,X) 1.
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Definition: A Banach space X is said to have the
fc-bounded] approximation property, if for each compact
subset K of X there exists a continuous finite dimensional
linear map u : X » X [ with ”u” = ¢ for a fixed
constant ¢ > O], such that for all x € K
T ux) - = = 1.
If X has the bounded approximation property with c = 1,

then we say that X has the metric approximation

property.

3.2. To prove some properties that are equivalent to the
approximation property we need three lemmas, The first
two of them are essentially well known, the third one is

dus to Grothendieck [ 32 ].

Lemma a): ILet X be a Banach space and C a compact subset.
Then there exists anull sequence (xn) such that C is
contained in the closed, absolutely convex hull of
the (xn).

Proof: C is precompact. Let F1 be a finite -15 - mesh in C.
2

Take C, = (C-F1) n 12 OX. Then C, is compact (since F
5 1 1

is finite) and ¢ < 01 + F1. By induction, we construct

a sequence of finite sets F, and compact sets C

k k?
such that Fk is a finite ;%E ~ mesh in Ck—1 and
- 1
Cp = (Ck_1- RN ;TE OX. Then clearly C 1S Cy +F,
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from which it follows that C < Ck + F1 teaot Fk'

We multiply the elements of Fk by 2k and arrange
them into a sequence, which by construction converges
to zero. Each x € C has a representation as a convergent

®
series x = k21 ¥y » where y, € F, . Then

@®
_ 1 k
X = k51 EE 2 Vi is contained in the closed absolutely

® x
convex hull of kg1 2©- T

k -

Lemma b): Let X and Y be Banach spaces. The dual of
H(X,Y) for the topology of pointwise convergence is
(algebraically) isomorphic to X ® Y',

Proof: Each element (x,y') € X x Y' defines a linear
functional on H(X,Y) by u € H(X,Y) =» < u(x),y' >.
The topology of pointwise convergence on H(X,Y) is
induced by the product topology on YX (the space of
all mappings of X into Y). According to the Hahn Banach
theorem each continuous functional on H(X,Y) may be
extended to YX . Let ® be such a functional on YX.
Since the subspace of finite sequences is dense in

X

Y* , there exist elements (yi) C Y' such that

x€X

P((y,)) = E‘X< Yys Y5 > . If countably many y. were
x

different from zero, we could find elements (yx) cy
for which the above series would be divergent. Hence

n
= .5
o((y)) = ;& < yxi, yj >. It follows now from 1.3.Db)
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that the correspondence is bijective.

Lemma c): Let X and Y be Banach spaces. The dual of
H(X,Y) for the topology of compact convergence is

(algebraically) isomorphic to a quotient of X ® Y'.

Proof: The map of X x Y' into H(X,Y)' defined in b) is
continuous and therefore extends to X @ Y'.
As a consequence of 1.8 g) each element v € X ® Y

®

i = _Z !
has a representation v nz1 *n ® Yp 0 where

1 cs
( );‘13.‘1 € CO(X) and (yI'l) € 1 (Y'). By continuity,

Xn
the functional which corresponds to v has the form

®
u € H(X,Y) - n51 < u(xn), ¥, - Since every null-sequence

is compact, this functional is continuous for the
topology of compact convergence. It remains to
show that each functional can be represented in this
vay. To a given map u € H(X,Y) we assign

co(w) € H(e (X), e (¥)) by (x,) » (u(x,)). This
defines an isometric embedding of H(X,Y) into

H(co(X), co(Y)). By Lemma a) the topology of pointwise
convergence on H(co(X), co(Y)) induces the topology of
compact convergence on H(X,Y). If we start with a
functional v on H(X,Y), which is continuous for the
topology of compact convergence, we may extend it to

H(co(X), co(Y)) and get by Lemma b) a representation in
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c (X) @ e (¥)'. Now ¢ (¥)' = 1'(¥') and for

(x,) ® (3)) € e (X) ®1'(Y') and u € H(X,Y) we have
< cp(w), (x)) @ (yp) > = <ec (W(xy)), (y)) >=
=L< u(xy), y) >, i.e. (x) ® (y)) corresponds to

b> x, ® yﬁ € X % Y'. Since this property is inherited

by finite sums, we get the desired representation.

3.3. Theorem: Let X be a Banach space. Then the following
statements are equivalent:

a) X has the approximation property

b) 1X is a clusterpoint of X' ® X in H(X,X) for

the topology of compact convergence.

¢) ¥' ® X is dense in H(Y,X) for the topology of
compact convergence, for all Banach

spaces Y.

d) X' ® Y is dense in H(X,Y) for the topology
of compact convergence, for all Banach

spaces Y.

Proof: The implicationsb)=a), ¢) 2 b) and d) = b) are

obvious.
a) ® b) Since for any compact subset K of X and A > 0,

AK is also compact,we get for every ¢ > 0 a
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finite dimensional linear map u: X - X,
i.e. u € X' ® X, such that lu(z) - xll < ¢
for all x € K.
b) # ¢) Let v be an element of H(Y,X), K compact in
Y and € > 0. v(K) also is compact and consequently
there exists an element u of X' ® X such
that llue v(y) - v(y)” <eg¢ forally €K,
Since uev = (v' ® 1X)(u) €Y' ® X the
conclusion follows.

The proof of b) = d) is similar to that of b) = c).

3.4. Theorem: ILet X be a Banach space. Then the following
statements are equivalent:

a) X has the approximation property.

b) for every u € X' ® X which induces the hull-map
in H(X,X) we have tr u = 0 .

c) the canonical map of X' ® X into H(X,X) is

injective.

d) for every Banach space Y the canonical map of
Y ® X into L(Y',X) is injective.

e) X' ® X is w*-dense in 8(X',X') = 8(X,x").

f) for every Banach space Y it follows that Y ® X

is w*-dense in 8(Y',X').

Proof: a) = d): Assume that u € Y ® X induces the zZero-map.

It is an easy consequence of 1.8 g) that u
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@®

i = I ®
has a representation u nZ1 Yo ® %, where

(yn) € 1'(1) ana (x,) € c (X). Let (u,) X' ®X

be a net converging to 1X in the topology of
compact convergence. Then ut(xn) - X, uniforle
for all n and therefore (1Y ®u)(uw) » uin Y ® X.
Since the map of Y é X into L(Y',X) is easily
seen to be natural and its restriction to

Y ® X is injective, we have (1Y ® ut)(u) =0

and therefore u = O.

The implications d) ® ¢) = b) are obvious.

b)

d)

® a): Assume that 1y is not contained in the
closure of X' ® X for the topology of compact
convergence. Then there exists a functional w
on H(X,X), which is continuous for the topology
of compact convergence, such that < 1X,w >+ 0

and w| = 0. By 3.2 Lemma c) w can be
X' X .

represented by an element u of X ® X'. The
conditions on w imply that tr u + O and that

the canonical image of u in H(X',X') is zero,
from which the conclusion follows immediately.

= f) The canonical map of Y' ® X into L(Y",X) and
hence into 2(Y,X") is injective. By transposition
we get the canonical map of Y e X' into 2(Y',X'),

which consequently has w*-dense image (by I.2.13).
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f) ® e) is obvious
e) ® ¢) If the canonical map of X ® X' into
2(X',X') has w*-dense image, then, by

transposition, the canonical map of X' ® X

into 2(X,X") is injective.

3.5. Theorem: Let X be a Banach space. Then the following
statements are equivalent:
a) X has the approximation property
b) X g Y = L(X',Y) = L(Y',X) for all Banach spaces Y.
e) Y g X = K(Y,X) for all Banach spaces Y.
d) KO(X,X) has a left approximate identity and
L(Y',X) is an essential left KO(X,X)—module for
all Banach spaces Y.

Proof: a) ® b) Assume that v € L(Y',X) and € > O,
Since v is compact, there exists an element u € X' ® X
such that f]u(v(y')) - v(y')” = ¢ for all y' € OY' and
this means llu s v - vl = e. v'(X') is contained in Y
by I.2.16 and consequently u ¢ v = (v' ® 1X)(u)
has a representation in ¥ @ X. We conclude that ¥ ® X
is dense in L(Y',X) and by 2.2 the latter space
induces the inductive norm on Y ® X,
b) # ¢) We show that K(Y,X) = L(Y",X):
If u € L(Y",X) then clearly its restriction to Y
belongs to K(Y,X).

Conversely if v € K(Y,X), then C = ¥v(0Y) is a
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norm-compact subset of X, and therefore also
0(X,X')~compact. Since v" is o(Y",Y') - o(X",X')-
coﬁtinuous and OY is o(Y",Y')-dense in OY", it
follows that v"(0Y") < C. This means that v"
can be written as v" = tY o W, where
w € K(Y",X) is o(Y",Y') - 0(X,X') continuous. Since
the restrictions of the norm topology and the
weak topology to a norm-compact subset coincide,
w € L(Y",X). It is easily seen that both
transformations are linear, contractive and inverse
to each other.

c) ® a) Assume that C is a compact subset of X.
By lemma a) in 3.2, C is contained in the closed,
absolutely convex1 hull of some null-sequence (xn).

- 12 0.
Take y, = Xn/Hxnd (where 5= 0) and D the closed,
absolutely convex hull of the Yo Since Y is also
a null seguence , it follows easily that D is
precompact and comnsequently compact. Let Y be the
®

linear span of D in X, i.e. Y =ng1 nD, and take as

norm the Minkovski-functional of D, i.e. ”qu =
=inf { A>0:y € \D | . Since D is closed in X,
D coincides with the unit ball of Y. Assume that
(Zn) €D is a Cauchy -sequence in Y. Since D is
compact in X, it has a cluster-point z in X. For

€ > 0 there exists an index No(e) such that
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z, -z € €D for all n,m 2 No(e). Consequently
z, -2z €D for all n z No(e) and that means

"zn - ZHY = e¢. We conclude that Y is complete.

The embedding j : Y 2 X is by definition compact.
For ¢ > O there exists by assumption an element

j, € T' ®X such that Iy - ;11!1 < e. j is injective
and so  j' has w*-dense image. Since by 3.2

Lemma ¢) or by I.2.8 Prop., I.2.7 and I.2.6 the
dual of Y' for the topology of compact convergence
coincides with Y, j'(X') is also dense for the
topology of compact convergence (by the Hahn-Banach

theorem). Now according to our construction

1

=, lly = llxn!F , from which it follows that C is
contained in Y and compact therein. Consequently
there exists u € X' ® X such that Hj1(y) -ue j(pllse
for all y € C (since u o J = (3' ® 14)(u)). Take
K = max (1, “xn”), then ll3(y) - j1(y)” < Ke for all y€C.
Combining these facts, we obtain the inequality:
lk—u&ﬂ|<(K+1F:mraD.x€O.Fu’€<1aK+1)we
get the desired result.

a),b) ® d): If X has the approximation property, then
Kb(X,X) has a left approximate identity since
every member of KB(X,X) is compact. If u € ¥ ® X,
then im u is a finite dimensional subspace of X.

Let XyseeesXy be a basis of im u and extend the
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coefficient functionals x;,.o.,xﬂ to the whole
of X, Then v = §n xi ® x, acts as the identity
on im u, i.e. U=V e U
The implication d) = b) is obvious.
Corollary: A dual space X' has the approximation property
if and only if K(X,Y) = X' ® Y holds for all

Banach spaces Y.

Proof: It follows from the argument in b) = ¢) that
K(X,Y) = L(X",Y) = L(Y',X') (see also I.2.16).
A short computation shows that the identification
is compatible with the embedding of X' é Y.
Now the result follows from b).

Remark: In 3.5 d) L(Y',X) may be replaced by X(Y,X)
(since K(Y,X) = L(Y",X)). It seems to be unknown
whether it is sufficient that the assertions of b), c¢), 4),

hold for some particular choice of ¥, e.g. for Y =X .

3.6. Theorem: Let X be a Banach space such that X' has the
approximation property. Then X also has the approximation
property and X ® Y is demse in H(X',Y) for the

topology of compact convergence for all Y.



CIGLER, LOSERT, AND MICHOR

Proof: The following diagram is easily seen to Dbe

commutative:

A
X ®x — H(X,X)
l l where 211 maps are the

canonical ones.

~

X ® X! —> H(X',X')

By 3.4 d) the map of X % X' into H(X',X') is injective.
Consequently X has the approximation property

by 3.4 ¢).

0X is w*-dense in OX" and the restriction of the
w*-topology to OX" coincides with the topology of
compact convergence. It follows that X ® Y is dense in
X" ® Y for the topology of compact convergence

induced by H(X',Y). Now the second statement is a

consequence of 3.3.

Corollary: If X' has the approximation properiy, then
Ka(X,X) has a right approximate identity and K(X,Y)
is an essential right KO(X,X)-module.

Proof: Let (u,) X' ® X be a net such that (u})
converges to 1X' in the topology of compact convergence.
If v € KO(X,X), then v' € KO(X',X') is compact.
Consequently Hu; o v' = v'll » 0 and this implies that
lvew ~vll~o. K(X,Y) = X' ® Y by 3.5, Cor.

If v € X' ®Y then v' € H(Y',X') has finite dimensional
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range. Since on a finite dimensional space the
w*~topology coincides with the norm topology, there
exists an element u € X ® X' such that u o v' = v'

(compare the proof of 3.5). Transposition now gives

the result.

3.7. Remarks: Most of the 'classical' Banach spaces even have the
metrie gpproximation property (compare the examples in 3.12).
It had been conjectured that every Banach space has
this property.In 1972 Enflo ( 23 ] gave the first
example of a Banachspace without the approximation
property. A simplified exposition of Enflo's main ideas
may be found in [ 27 ]. His example may be modified to
construct subspaces of c  and 1P (2 < p < @) without
the approximation property. Other examples, based on
gimilar constructions,were given by Davie [ 15 ] and
Kwapien [ 42 ].

We would like to point out that it seems to be unknown
whether the following spaces have the approximation property:
a) H® (D),the algebra of bounded analytic functions
on the open unit disc with supremum-norm.
b) CB(n)(Il) (1 =n < ), the space of all functions
on the real line that have bounded continuous derivatives
up to order n equipped with

the norm Hfll(n) = sup su% 1 e™ (o]
\)=O,°,,n X €

2

c) H(lz, 17)
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While the metric approximation property and the
approximation property are easily seen to be preserved

by sums, it can be shown that a countable product of
finite dimensional spaces need not have the approximation
property [ 37 ]. This gives also an example of a

Banach space with the metric approximation property, whose

dual does not have any approximation property.

We will now state conditions for the metric approximation

property corresponding to 3.3 - 3.6,

Theorem: Let X be a Banach space. Then the following

statements are equivalent:

a) X has the metric approximation property.

b) 1X is a clusterpoint of X' ® X N OH(X,X) for
the topology of pointwise convergence.

¢) ¥' ® X N OH(Y,X) is dense in OH(Y,X) for
the topology of compact convergence,
for all Banach spaces Y.

d) X' ® Y n OH(X,Y) is demse in OH(X,T) for the
topology of compact convergence, for all

Banach spaces Y.

Proof: We show that the restriction to OH(X,Y) of the
topology of compact convergence coincides with the

topology of pointwise convergence, The rest of the
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proof is analogous to that of 3.3%. If u € OH(X,Y),

C is compact in OX and € > O, take a finite e-mesh

{ x1,...,xn} in C. Assume that v € OH(X,Y) and

”u(xi) - v(xi)” <e fori=1,..0,n. If x € C there
exists an index i such that Hx-—xiH < €. Consequently
la(x) - v(x)ll = ”u(x-—xi)“ + “u(xi) - v(xi)” +

+ Hv(xi-x)” < 3e.

3.9. Theorem: ILet X be a Banach space. Then the following
statements are equivalent:
a) X has the metric approximation property.

A

b) X' ® X is isometrically contained in I1(X,X)

e) X é Y is isometrically contained in 11(X',Y) for
all Banach spaces Y.

d) X' ® X N 08(X,X") is w*-dense in 08(X,X")

e) X' ® Y N 08(X,Y") is w¥~dense in 02(X,Y")

for all Banach spaces Y.

Proof: a) = e) By 3.8. X' ® Y" N OH(X,Y") is dense in
OH(X,Y") for the topology of compact convergence. If

u € X ®7Y', then by 1.8 g) u can be written in the
®
formu = I x ®y ' with (x)) € c (X) and (y) ¢ 1Y(yr). In

particular,(xn) is a compact subset of X. It follows
that the topology of compact convergence is stronger
than the w*-topology with respect to X é Y', Consequently
X' ® Y" N 08(X,Y") is w*-dense too. By 2.8 Cor. 2
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the unit-ball of X' % Y is w*-dense in the unit-ball
of X' ® y" . Therefore X' ® Y N 02(X,Y") is w*-dense
in X' ® Y N 08(X,Y").
e) ® c¢) : Transposing the map of X' ® Y! intg
2(X,Y™ ) one gets the canonical map of X ® Y" into
(x' 2 YY) o= I1(X',Y") (2.9 ¢) ), which is
therefore an isometry by (I.2.13 Prop.).

The following diagram is commutative:

X8y —— I,(X',Y)

(the horizontal
1y 8 1y l I1(X',1 ) maps are the canonical
X8 Y — 5 11 (Xl,Y") ones).

1y é t, is an isometry by 1.9. Since I1(X',tY) is
contractive, the map of X @ Y into 11(X',Y) must also
be an isometry.

¢) = b): The map of I1(X,X) into I1(X',X‘) given by
u = u' is an isometry by 2.9 b).
Now the assertion follows from the commutativity

of the following diagram (the maps are the obvious ones):

X! %X — I,(%,%)
i- |

¥ex ——> I,(X',X")
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b) # d) By the same argument as before X ; X' is
isometrically contained in I1(X',X') = (X' S X))
(2.9 b) By transposition and (I.2.13 Prop.) it
follows that the unit-ball of X' ® X is w*-dense in
08(X,Xx").

d) ® a) Let (ut) C X' ® X be a net converging to
ty € 8(X,X") in the w*-topology. Fixing X, € X this means
in particular that u‘(x1) » x, with respect to
o(X",X'). Since u,(X) ©X it follows that ut(x1) » x,

weakly. Now the weak closure of a convex set

coincides with the norm closure (see [ 73 ] p. 65 ).

Therefore we can find a net (vt) consisting of

convex combinations of the (u,) such that

v, ® ty in the w*-topology and v,(x;) = x; in the

norm topology. Iterating this process we get for

glven x,,...,x € X a net (w,) such that

wt(xi) + x; for i =1,...,n in the norm topology.

The (wt) are still convex combinations of the (ut)

and therefore (wt) C OH(X,X) provided the (u,) also satisfy

this condition. By 3.8 b) X has the metric approximation

property.

3.10. Theorem: Let X be a Banach space. Then the following
statements are equivalent:
a) X has the metric approximation property.

b) KO(X,X) has a bounded left approximate identity
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e) KB(X,X) has a bounded left approximate identity
and L(Y',X) and K(Y,X) are essential left KO(X,X)—
modules for all Banach spaces Y.

Proof: a) ® c¢) is proved as in theorem 3.5 ,

¢) b)) is obvious

b) ® a) Take X,ye+.,%, € X. There exists a finite
dimensional map u € X' ® X such that u(xi) = x; for
i=1,...,n., (Hahn-Banach theorem). To € > O there
exists by assumption an element v € KO(X,X) such that
v o u-ul <e¢ and vl =1, since X' ® X is dense
in KO(X,X) Wwe may assume v € X' ® X, Consequently

Wv(xi) - xiH <e i:?x.juiim for i = 1,..,n. Since

€ is arbitrary, theorem 3.8 b) yields the result.

3.11. Theorem: Let X be a Banach space such that X' has the
metric approximation property. Then X also has the metric
approximation property and X®YN OH(X',Y) is
dense in OH(X',Y) for the topology of compact

convergence, for all Y.

Proof: The map u » u' from I1 (X,X) into I1 (X', X!
isometry by 2.9 b).

) is an
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The following diagram is commutative:

X' ® X —— I,(X,X)

! |

A

X®ex — I1(X',X‘)

By 3.9 ¢) X' % X is isometrically contained in

11(X,X) and consequently X has the metric approximation
property by 3.9 b). The second part of the proof is
similar to that of 3.6 , using 3.8 d) and 2.8 Cor. 2.

Corollary: If X' has the metric approximation property,
then KO(X,X) has bounded right approximate identities
and K(X,Y) is an essential right Kﬁ(X,X)~module.

Proof: As in 3.6.

3.12. Remarks: There exist Banach spaces with the approximation
property which fail to have the metric approximation
property (see [ 26 ] ). on the other hand for the
class of reflexive spaces and of separable dvual spaces
both notions coincide (see [33] p. 181 ). It seems to
be unknown if they coincide for duval spaces in general.
Another open gquestion is whether every space with
the bounded approximation property can be equivalently

renormed to have the metric approximation property.
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A stronger conjecture states that every space with

the bounded approximation property has a basis

(compare 3.13 ). It also seems to be unknown
whether the existence of bounded right approximate
identities for KO(X,X) implies the metric approximation

property for X'.

3.13. Examples:
a) Iet (Q, Z, 4) be a measure space and 1 = p <w®,
For each finite family " = IB,,...,B,} of disjoint
measurable sets with 0 < u(Bi) < @ define the
conditional expectation operator Ey on 1P(Q, T, W) by

n
En(£) = I, (/ £ aw)/u(s,) - cp « It is easily

seen that Ep is linear and ||Eﬂ|| = 1, One defines

a preorder by: T = {B1,..,Bn} =T o= ‘01""9111}

if for each i with 1 =i = m there exists either

an index j with 1 < j < n such that u(ci\Bj) =0

or B(C; N'B,) =0 for all j. In this way (e}
becomes a net of contractions. It follows immediately
that 1im Eqf= f for all integrable step

functions, i.e. finite combinations of characteristic
functions, and by a density argument 1lim Eyq f = f
holds for all f € L%, Consequently each space

1P(Q, I, u) has the metric approximation property.



TENSOR PRODUCTS OF BANACH SPACES 95

b)

c)

Let T be a locally compact space. We consider
families {V1,...,an of open subsets with compact

n+1

closure and an open subset Vn such that U Vi =T
1

+1

There exists a partition of unity §p1,...,pn_+1}
subordinate to V1""Vn’ Vn_F1Uiaﬂ . Wenchoose
t; € V, and consider the map f € C (T) =~ 151 £(t;)p;
which is evidently contractive and linear. If the
families 5V1,...,Vn:+1} are ordered by inclusion,

the same argument as in 2.4 shows that the corre-
sponding maps form an approximate unit, bounded

by 1, i.e. CO(T) has the metric approximation

property.

Another proof could be based on the fact that by
Kakutani's representation theoren GO(T)' = M(T)
may be represented as an L1—space. Theorem 3.11 can

then be used.

A basis for a Banach space X consists of a family

{xn‘gz:1c X such that every element x € X has a

unique representation as a convergent sum
X = ng: an Xy e An application of the closed graph
theorem (see [ 73 Jp. 115) shows that the coefficient
functionals x - o, are continuous. By the Banach-

k
Steinhaus theorem the projections Pk(x) = n§1 ah X,
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are uniformly bounded. Take ¢ = SJI{lp ”Pku, then

the Pk's form an approximate unit bounded by c, i.e.

X has the bounded approximation property and

if ¢ = 1 even the metric approximation property.
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Exercises

A
1) If X,Y are Banach spaces show that - 1" is the

Minkovwsky functional of the convex hull of the set
x ® vy, Izl =1, ly!l =1} 4n X ® Y. (cf. Schaefer
(73 1, 111, 6.3)

2) Projective tensor product of Waelbroeck spaces:

Let ¥, 9 € W. A projective tensor product of
¥, 7 is a Waelbroeck space ¥ ®9 together with a

bilinear bounded map T : £ x 0 - I ® 9 which is continuous

from 0% x 09 into |7 - 0(%¥® ) in the compact

topologies (aso-called bilinear W — map) such that
each bilinear W - map

™
® : £ x P->3 into tx3 > 2 ® D

any W - space 8 factors

uniquely over T to ® ;
P:I®9P-38, 8

i.e. 9 =9 o T,

Show that %¥ ® 9 is given by % ® 9 = L(%,9*)',

mT: ¥x9 > @Y is given by

<f, Mx,y) >=<f(x), y>.

Show that ¥ ® § is dense in c(¥ ® 9) (I, §2) and

that (¥ ® 9) N O0(%X ® 9) is dense in O(X¥ ® 7).
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Show that o(2 3 9)=¢ % ® ¢cD , where ® denotea the
completion of the projective tensorproduct of

locally convex spaces (cf. Grothendieck).

Tensor products of Hilbert spaces:
Let X,Y,Z be Hilbert spaces.

We denote by X* the conjugate space of X, i.e.

scalar multiplication is replaced by (},x) » x.

X* is also a Hilbert space and canonically isomorphic
to the dual of X (Theorem of Riesz-Fischer).

Show that (X ® T™*)' = B*(X,Y) = H(X,Y) , where
B*(X,Y) stands for the space of sesquilinear maps

9 : XxY> Z. Bach element v € K(X,Y) has a

representation as a pointwise convergent sum

v = igo 85 t;_“ ® @, , where (*i) and (Cpi) are
orthonormal systems in X and Y respectively and (s i)
is a uniquely determined, decreasing sequence of
nonnegative real numbers. Show that for v € K(X,Y)
lell® = s, . X* ®Y consists exactly of those
operators v € K(X,Y) for which igo 8; < ® holds

and furthermore llv||* = £ 8; « Show that

I, (X,Y) = x* g‘f . (Hint: Show first that each

v € I,(X,Y) is a Hilbert-Schmidt operator i.e.

®
2
iEO“v(ej_)n < ® for any orthonormal system in X).



CHAPTER III

Banach modules

§ 1 Banach algebras and Banach modules

In this chapter we shall study Banach modules over a
Banach algebra A. Our aim is to generalize some aspects

of Banach space theory to this more general setting.

In order to obtain a reasonable theory which nevertheless contains
the most important examples we shall impose some restrictions

on the Banach algebra A and the Banach modules V.

.1. Many Banach algebras arising in applications do not have
a unit element e. But most of them have a useful substitute,

which is called approximate unit or approximate identity.

Definition: Let A be a Banach algebra. Ah approximate
left (right) unit (u,) in A is a net (u,) of elements
of A satisfying Hulu =1 and l%m wa = a (resp. lim au1==a)
for all a € A.
If (ut) is both a left and a right approximate unit,

it is called a two-sided approximate unit.

Remark: In the literature there appear various useful
modifications of the concept "approximate unit" with
less stringent assumptions (cf. e.g. H.Reiter [69] ).
We do not consider these concepts here, because we
are only interested in typical results.

99
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1.2. Let A = ¢, be the set of all sequences a = (a1,a2,a3,...)

of complex numbers a_ which satisfy 1lim a_ = O.
n n-®

Then A is a Banach algebra with coordinatewise algebraic
operations and the norm “a”cnz sup |an| . It is in fact
a closed subalgebra of the Banach algebra 1% of all
bounded sequences. An approximate (two-sided) unit is

given by the sequence u, = (1,150.4,1,0,0,....).

1.3. Let H be a separable Hilbert space. Let K(H) be the algebra
of all compact operators on H with the operator norm.
Then K(H) is a Banach algebra with a two-sided approximate

uit: let (ek)lcf=1 be an orthonormal base of H and let
n
Pn = k-E1 ek®e§ be the orthoprojection onto the subspace

spanned by the first n elements of the base (ek).
(Here e ® £* denotes the operator defined by (e®f*)(x)=(x'f)e).
Then Pn is an approximate unit: it is clear that

1im an = x for all x € H. Now let A € X(H) be

n-* o

. N _ds A - z 3*
finite-dimensional, A = i=osicpi®wi .

Then

I a-al = I.E s Egl My |
PA-Al =l 20 o, (P@; -9,) @l = 208, UR®, -0, 1Y,

and therefore 1im ”PnA—-AH = 0.
n- o

For an arbitrary B € K(H) and any €>0 there is a
finite-dimensional A such that lla-3Bll <€,
This implies

le 58l = HPn(B—-A)” + e a-all + lla-3l < 2¢ +llp_a-all<3e
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1.4.

1.5.

1.6.

for all sufficiently large n. The fact that Pn is also a right
approximate identity follows from the equation
¥ 3t #|| _ * _ ¥
sz, - 8ll = le¥s* - 3*ll = llp B* - Il

because B* € K(H).

Now let X be an arbitrary Banachspace and let

P(X) = X' ® X € H(X,X) (see I1.2.2 ).

Then F(X) is a closed subalgebra of H(X,X).

If X satisfies the metric approximation condition

then F(X) coincides with the algebra of all compact operators
on X. In this case there exists a left approximate unit
consisting of finite~dimensional operators. This has

already been shown in II. 3.10.

Let G be a locally compact topological group.
Then L1(G) ig a Banach algebra with respect to convolution

which has a two-sided approximate unit (cf.[69] ).

Let A be a Banach algebra. A Banach space V is called a
left (Banach) A-module, if there is a morphism

vV : A 5 V - V, which is of course determined by
V(a®v) = av , such that b(av) = (ba)v holds for all
a,b € A, v € V, Since V is a morphism in Ban1 the map

(a,v) » av is bilinear and satisfies Hav”v.s ”a“A”v“V

Remark: In the same way we define a right A-module W.

In this case there is a morphism VY : W® A - W with
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analogous properties. In this case we write

V(w,a) = wa.

We shall also have to consider bimodules;

let A and B be Banach algebras. A Banach space Z 1s called
an A-B-bimodule, if Z is at the same time an
A-module and a B-module and if furthermore these
module operations commute.

Unless otherwise stated,in the following pages the
statement "Z is an A-B-bimodule" shall mean that Z is
a left A-module and a right B-module. In this case
(2z)b = a(zb) holds for all a € A, b € B, z € 7.

1.7. Let A = Cye A linear space n of sequences x = (xk) of

complex numbers X which is a Banach space under a norm

H'Hn is called a sequence—space (in order to avoid a

cumbersome terminology) if
nz) n is a 1%module (in the sense of 1.2.)
nb) For every i the sequence e, = (5¥)a) €n
i 17k=1
and “e“ =1
i'n

nc) For each v € n the relation 1lim Huka = vl
k- o o n

holds,whereuk; (1,1,...,1,0,0,...).
The sequence space is called symmetric if, moreover, the
following condition holds:
nd) veé€n = (Vn(k)) €n and

H(vn(k))nn = H(vk)un for each permutation T

of the natural numbers.
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Concrete examples are the spaces lp, 1 =p=w®, and Cy

itself. Purther examples may be found in [29].

Proposition: Bach sequence space n satisfies l1 Snc1®
Furthermore ”x”m = Hx”n < ||xl|1 for each x € n,

where ”x”1 = o if x ¢ 11.

Proof: Let x = (xk). Then

'xkl = erk“n = Hek”m ”x”n = Hx”n

and therefore ”x”m = SEP |xk| = “x”n.

On the other hand

A

“ukx“n = ”igkxiei”n = iék !xiH‘ei“ Hx“1 .

A

Now nc) implies “x”n = s;p Hukx“n ”x”1 .

As an easy consequence we get
lim ||(x; -—x1,...,x?-—xk,o,o,...)lln
J?®

]
(o]

if  lim xt = x' , 1 =1,2,...,k.

7o

1.8. Let A = 1L® [0,1] be the Banach algebra of all (equivalence
classes of) bounded, real-valued measurable (with respect
to Lebesgue measure on [0,1]) functions f on [0,1] witn

the norm

£l = ess sup. |£(%)
@ te€lo,1]
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A linear space N of (equivalence classes of) measurable
functions on [0,1] which is a Banach space under a norm H‘HN

will be called a function space if the following

properties hold:
Na) N is an La)—module with the pointwise operations

§) sy e

ana llzll, = lelly = llfl\GD for all f € N,
where L1 denotes the space of all integrable functions
on [0,1] and ”f”m= o if £ ¢ 1%,

Nc) N has the Fatou property: for each increasing sequence fan
which converges pointwise almost everywhere to a

function £ € N we

i gl = Il
have lim iif = Ifll.
nreo BN N

Let A = K(H) for a separable Hilbert space H.

A subspace N & K(H) is called a norm ideal in K(H) if

a) N is a K(H)-bimodule which contains all finite~dimensional
operators

b) For each one-dimensional operator x ® y* the equation
lx ® y*“N = llx @ y*ll = lxlllly!l no1las

¢) For each v € N the equation

kl—f.l:) quv”N = “V”N

holds, where Pk is the sequence of projections

defined in 1.3.

Numerous examples can be found in [29].
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1.10. Let A = L’(G). An important class of examples of
L1(G)-modules are the Segal-algebras studied in [69] .

1.11. Let A be a Banach algebra, X a Banach space, V a left
A-module. Then the Banach space H(V,X) becomes a right
A-module if we define fa by (fa)(v) = f(av) for
f € H(V,X).

As a special case we get that the dual space V' is a right
A-module if V is a left A-module.

If W is a right A-module then H(W,X) becomes a left
A-module by defining (af)(w) = f(wa).

1.12. For a sequence space n and a Banach space X let n(X) be
the set of all sequences x = (x1,x2,x3,...) such that

x; € Xand (g1, lxyll, lxgll, .0y € n.

Then n(X) is a Banach space with norm

lxll = H(Hx1u, nx2n, “x3“,...)”n and a c -module if we

define ax = (akxk) for a = (ak) €c.

Proof: The only nontrivial assertion is that n(X) is a
Banach space: let (x(n)) be a Cauchy sequence in n(X).

For each € > 0 there exists N(€) such that
”x(m)-x(n)” < € for all m,n = N(€).
This implies Hxém)-—xin)“ = ”ek(x(m)-—x(n))“ <e€

for each k. Therefore 1lim xk<n) = X exists for each k.
n- @
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The inequality Hlxl(:m)ll - llx]in)lll < Hx](gm) _xl(:n)u

implies that ((uxﬁn)“k)) is a Cauchy sequence in n,
which converges evidently to (ka“).
Consequently x = (xk) € n(X).

Then “uk(x(n) x)” = 1lim Huk(x(n)-x(m)” <e

m> o

for all k and therefore

(n)-x" = sup “uk(x(n)-x)”

1.13. Let N be a function space and X a Banach space. We denote
by N(X) the set of all (equivalence classes of) Bochner-
integrable X-valued functions G on [0,1] such that
”G(-)NX € N. Then N(X) is a Banach space with respect
to the norm "G“N(X) =1l “G(-)HXHN. Moreover N(X) is an

1% module with pointwise algebraic operations.

Proof: Again the only nontrivial assertion is the
completeness of N(X).
It suffices to show that for each sequence (fn) € N(X)
z < i z
such that an"N(X) ® the series fn(t) converges

almost everywhere to some element f € N(X) and that

furthermore

1im llf - 2 f "

= 0.
n->o N(X)
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@D
Now let g(t) = ¥ an(t)HX.

Then g € N, because the partial sums are Cauchy in N:

Ng ka(t)HN < g kaHN(X) < ¢ for all m,n = N(€).

! we have g € L1 and therefore

2ka(t)“ <® a.e.

Since N &1L

Let £(t)

@
¥ (t) if Eka(t)H <o

= 0 else.
Then

n nfnX S e = e % £ o) =
<

Hf t)HXHN Hf I

k= n +1 k= n+1 N(X)
for all sufficiently large n.

The last inequality follows from N¢) since

”k n+1“fk( )“ = gup “ +1ka
p
<
= e k==§+1“f "N(x) = k= n+1”f llN(x)
1.14. Under the same assumptions as in 1.13 let NO(X) be the

subspace of N(X) spanned by all elements of the form

b
1=1%% 0 %y

€ X, fi € N.
Then NO(X) is an L%module.
Of special imortance is the space Lg)(x), which can also

. @ A
be identified with L @® X.
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1.15. The factorization theorem of Cohen-Hewitt.

Theorem: (Cohen-Hewitt): Let A be a Banach algebra with
approximate left unit (u..) and let V be a left A-module.
Then the following statements about an element x € V
are equivalent:

1) Lin ha,x-xll = 0

2) There exist elements a € A and y € V such that
x = ay. (These elements may be chosen such that

llall < 1 and Hx-—y” < r for any preassigned r > 0).

Proof: 1) = 2): Denote by A, the Banach algebra of all
formal sums of the form a + Xe with ae = ea = a for
all 2 € 4 and lla+rell = llall + [X].

Then V becomes an A1—module if one defines
(a+2re)v = av + Av.
Now let (un)ﬁ0 be a sequence of elements u, € A such

that Hun” = 1. Given such a sequence (un) we define a

sequence (an) with a € A, by setting a =e and

s otmeat2 2. L Baatfn o2,
n+1 - 3 n- 3 °n 3 T3 €T fnsd
. t € 2

with a4+ 1 A for n = 0.

By induction we see that Han” =1 for all n.

We claim that all the an are invertible in A1 and that

Han1 | =3, This is also shown by induction. For n = O

this is trivial. If the result is assumed for n we get
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-1 _r2,  Yn+1 -1 _ 3 _-1 Y 41y~
apy1 = Bler = Da, [T = 5 all(er 25T -
2
.
=%an1(e"un2+1+ 1’212+1 "'+' ’)'
Therefore
o 231 Rl aan 1
laz? LI = 2laZtll 2 = 3037 = 377

2

Furthermore we have the formulas

u, -e
S
qh+1 "8 < 3 8 and
2e + 1,
-1 -1 _ -1 -1 n+1 _
8n+1 T8 T 8141 7 %n+ 3 =
-1
a
_ n+1
= (e—un+1).
. o=
Now define Iy = 8y X
Then
_llea-t .|l =
Hyn_+1 - ynH = n(an_‘_1 - a, xll =
-1
a
< ||t - < =8|y -
< | 3 (e un+1)xl| 30|x w, . qxl.
1
Let € =2n+1 ;I-'ﬁ ,n=0,1,2,....

Now we specify the sequence w, : ve choose W4 q from
the approximate unit such that
[ (] < €
ha, , s - atll <¢
and

Hun +1

X - x“ < Gn, which is possible by assumption.
! - < 20|y <
> .lyn+ 1 yn” 3% Un + 1X“

<3n 1 r r
n 2n+1

W
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and
1
lag ,y - el =3 ta , ja —all=

€
1 11,2yn 2\n ' ' 2yn+1, n
='3'“(3) Y+t~ ('3') €+ Y418~ a’n“ S(3) 3o

This shows that y = lim Yn and a = lim a, = lim aljl

exist and belong to A.

Since y = a;11x » we have x = a y for all n and

therefore x = ay.

Furthermore llall = 1im ||an“ <1 and
lx -yl = Emibo—ygl$lbo-yﬁl+|b1—yg|+...5
ns o
< %1
=Ty n+ =T
2) ®1) : If x = ay, then
"utx-xn = ”u‘ay - ayl = “(uta - a)y” =

= Huta - all “y” - 0.

Remark: Of course an analogous theorem holds also for

right modules W.

The factorization theorem has a partial converse
(M. Altman [1]), but there are also Banach algebras
without approximate units which are factorable

(see e.g. W.L. Paschke [60], M. Leinert [43]).

The factorization theorem has some interesting

applications:
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1.16. Theorem: Let A be a Banach algebra with approximate left
unit (u,) and let V be a left A-module. Then the
following statements are equivalent:

1) The mapping A ® V- V defined by a ® v » av
has dense image.

2) lim uw,v = v for each v € V
1

3) For each v € V there exists a € A and v' € V such that

v =av'.

Proof: 1) ® 2): Let v € V and € > O be given. Then there

exist a1,...,a € A and VyseeesVy € V such that

- Z >
ﬂv K= 1ak k” . Choose 10 such that for t to

€

Na, —u,a I < e
k Yk 3n”v |

y kK =1,2,...,n.

> llv-u v“ = “v-—k§1ak kH-+HE akvk--z utakvkn+

+ ilu, (T akvk)-utv” <e,
2) ® 3) by theorem 1.

3) = 1) trivial.

1.17. Definition: An A-module V satisfying one of the conditions
of theorem 2 is called an essential A-module.
For every A-module V the closure of all elements of

n
the form k£1akvk is a submodule Ve of V which is

called the essential part of V. The above reasoning
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implies that Vé consists of all v € V which are
factorable, i.e. which can be written in the form

v = av' for some elements a € A, v' € V. It is clear
that every submodule of an essential A-module again

is essential.

Remark: If A does not have approximate units the situation

may be quite different. We can define the essential
part of an A-module V as the closure of all elements

of the form k§1akvk in V. But it may happen that a
submodule of an essential module ceases to be essential.
For let A be a factorable Banach algebra (AA = A)

such that there exists a € A satisfying a ¢ Aa . Then

A is an essential A-module. Now let V & A be the

closure of all elements of the form ba + Aa with

b € A. Then V is an A-module satisfying V_ & Aa g V.

1.18. Examples:

- = 1® @® -
1) Let A = c, and V=1 . Then (1 )e =c,.
For x € 1% and a ¢ c, we have ax € c, and on the
other hand each y € <, has the factorization

y = y+e with y € c, and e = (1,1,1,...) € 1%,

2) Let A be a Banach algebra and let V be an essential

A-module. Then co(V) = ix = (v1,v2,...), v,

i €V,

l =0 } is an essential A-module with norm

l.

1im llv.
i-

lxil = sup ”Vi
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Proof: The set of all elements of the gorm
i

(v1,v2,v3,...vh,0,0,...) with v, = v.., €V,

by
351513715 Vig
is dense in co(V) since V is essential. Let

Vi = (0,...,0, vij,O,...) with V35 in the i-th position.
Then Vi3 € cO(V) and (v1,v2,...,vn,0,0,0,...) =
n nj

.

T 5 E
iZ1 321 24§ Vi

§ 2. Banach module homomorphisms.

2.1. For left A-modules V1 and V2 we define an A-module
homomorphism ®: V1 I V2 to be a bounded linear map

such that ¢(av1) = a@(v1) for all a € A and v, € v,

holds. The set of all A-module homomorphisms is denoted

by H, (V,,7,).

It is clear that HA(V1,V2) is a closed subspace of H(V1,V2),
because @ = lim @n implies W(av1) = lim ¢n(av1) =

= lim a@n(v1) = a¢(v1).

For right modules W

W, the Banach space gh (W1 ,W2)

1272
consists of all @ € H(w1,w2) such that @(w1a) = m(w1)a
for all W, € W1 and a € A,

2.2. Let n, and n, be sequence spaces. Then every @ € Hc (n1,n2)
o
is a multiplication operator associated with some element
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Ae1® | ile. 9(x) = Ax.
Proof : Let ¥ € Hco(n1,n2). Then w(ek) = @(ekek) =
= e %(e,) = Xkek with A €1,

- - < <
‘Kkl = “)\kek“n2 = ”Cp(ek)”n2 lloll < @ for a1l k.

Therefore » € 1% ang ”l”m < loll < .

Now let x

(xk) € n, be arbitrary. Then

(¢(X))kek = ¢(X)ek = ek¢(x) = w(ekx) =
= Plegneey) = ey Pley) = Mxe,
= (q’(x))k = }‘kxk. = CP(X) = )‘X.

It follows that Hco(n1,n2) consists of all those
multiplication operators ®(x) = Ax with A € 1®©

such that Ax € n, for all x € n,.

The only thing that remains to be rroved is that
every such operator is bounded. But this follows from

the fact that the graph of ® is closed.

Remarks: Hc (n1,n2) is again a sequence space.
o
Consider the map ® » A for ®(x) = Mx. This identifies
® with a sequence » € 1%, ye define a® for a € 1° apng

P € Hc (n1,n2) by (a®)(v) = P(av) = a®(v).
o

Then to a® corresponds the sequence al and
llaoll =“ IIsug Haw(x)n < HaHa)HmH. Therefore na) is
X =1
n
1
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fulfilled.
The element A = e, € 1%® defines the element
€ - = €
@ Hco(n1,n2) given by @i(x) = x,e; € n,. We have
e, Il =

o, ()l = lx,e ll = Iz, | = 1.
TR N e A
1

llx

This proves nb).
Condition nc) follows from the eguation
lloll = ﬁup ”w(x)”
llxll “=1
B4

- o 2l = lhu, @l
!Ixﬁfﬁ e R ny = %P ie?

= aw Il =
B, llxﬁnfﬂ ny

2.3. Let 1 Sq =p £ ®. Then H_ (17,1%) = 1F with
(o]

. If p < q then H, (1P,1%) =1®.
0

Ql-=
=1 b
Hl-

Proof: Consider first the case p = q.

For x € 1P and » € 1T we have *x € 1% because

r r
IM2x]% € 1. (Note that Ix|% € 19, |A|2 € 19 gng

4.2 - 9),
P r
Now let A € 1® be such that Ax € 1% for all x € 1P,

2
Then | 2|2 € 11 for a11 Ix|% € 19 .

= | A9 gefines a continuous linear functional
T

> A2 e (19)r = lE 2 e 1T,
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Fuarthermore we have

qr q
up Azl = sup JHquH1 = J“Xg“; = Hk”r’
llx 551 4 zilp=1 a
a

i.e. the mapping ® » *» is an isometry of
H, (1P,1%) into 17.
0
Now the case q ® p: we know already that each

® € H (1P,19) has the form ®(x) = *x with llkilms el ,
o]

Now let M € 1%, Then
A = I < Al gl
| xlq il Ha>“x“q 1 la>1x‘p
> lloll < I,
®
We have used the fact that “x”q = wap for q ~ p,
i.e. the fact that for each x with Hx”p = 1 we have

Hx”q = {1, But this is trivial since lek[p =1 and

q > p implies zlxqu =1,

I~

Remark: It would be more appropriate to write (11)p

instead of 1P because 1P is the set of all x
satisfying |x|P € 11.

since H, (17,1%) = {x: Ax € 19 for a11 x € 1P|
[o]
we could write formally
1 1

5, (17,1%) = 1"% : ")? . This formalism would
o]

immediately give the right result for p = q.
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2.4. Let n and m be sequence spaces (1.7) and X,Y € Ban.

Then Hc (n(X),m(Y)) consists of all operators ® of the
o

form @((xn)) = (Xn(xn)) with Xn € H(X,Y) satisfying

A1) € 5, (s e 7, (0(X),a(r) = H, (n,m) (H(X,Y)).

Proof: Let ® be given by ¢((xn)) = (Xk(xk)). Then
¢ )l gy = j%fﬁ)nuj(nxk(xk)uY)ﬂm
lim Huj(kaHkaH)Hm = H(kau)(kaH)Hm

jr®

H(kaH)HHc (n,m) H(kaH)Hn.

o

A

A

If on the other hand ¥ € Hc (n(X),m(Y)) there exist
0
Xk € H(X,Y) such that @((xk)) = (Kk(xk)) by the same

argument as in 2.2. Then

lia Il = e X DI =
( K ) Hco(n,m) ”(§;§Hn$1 (“k k ) m

sup

o, (= X DI =
jEW u<ﬁ‘;§’1|n51 %5 e

It

A ‘.
in%px H(S;S)Hn51 jseuzli\I ”uj(H k(}-lkxk)HY) |m

S“(H;Zﬁ)”ns 1”()\k(xk) )Hm(Y) = “cp“Hco(n(X) ,m(Y) ) . qed.

2.5. Let N, and N, be norm ideals in K(H) and let CPEHK(H)(N1,N2).

Then ® is a muwltiplication operator with an element
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b € B(H) = H(H,H), i.e. ®(v) = vb for all v € N, .

Proof: Let h ® e* be a one-dimensional operator.

Then ®(h ® e*) = ¢((h @ e*)(” el|2 ® e¥*)) =
e

= (h ® 8*)‘19(H e”2 ® ¢*) = h ® £¥ for some f € H which
e

depends on e, We set f = a(e). Then a is linear

and laellllnil = lln & %) = llon ® )l =< lloll'lnlllell =

”ae“ < llellllell = a € B(H) and lall = llell, Now let be
b =a".

Then ®(h ® e*) = (b ® e*)b for all one-dimensional
operators h ® e*,

Now let v € l\I1 be arbitrary. Then for all e,f € H we
have

(e®£")0(v) = ?((egt¥)v) = [(e®f¥)vIb = (e ®£¥)vb

= For all x € H we have (®(v)xlf)e = (vbxlf)e

>®(v) =vb forall v €N,. “

2.6. Let A = X' ® X € H(X,X) for some Banach space X. Then
H,(4,4) = H(X',X') and H (A,4) = H(X,X).

Proofs: Consider first H™ (4,A).
Let x € X, x' € X', V € H‘A‘(A,A). Choose some y' € X'
with < x,y' @ = 1. Then we have
¥(x' @x) =¥((y' ®x)(x' @x)) = ¥(y' ®x))(x' € x) =

=x' ® ¥(y' ® x)(x) = x' ® b(x).
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It is easily shown that b is linear and bounded.

= ¥=1,, ®b with b € H(X,X).

X
In terms of operators: ¥(h) = beh , h € A S H(X,X).
It is clear that, conversely, each such ¥ belongs

to HA (a,4).

Now consider the space HA(A,A) :

Let x € X, x' € X* , 9 € HA(A,A). Choose some y € X
with < y,x' > = 1. Then we have

P(x' ®x) =P((x' ®x)(x' @y)) = (x' ®x)P(x' ®y) =
z' ® x. It is easily shown that z' = a(x') for some

a € H(X',X'). Therefore ¥ = a ® 1, with a € H(X',X').

X

In terms of operators @®(h) = h"o at.

2.7. Let N be a function space and X € Ban.
A linear map V: N » X is called summable (in the sense of
V.L. Levin [44]) if there is a constant K > 0, such that

for all finite subsets ig1,...,gn} S N the inequality
n n
z < py
el = xll E g Il

holds. The infimum over all such K's is denoted by

i *“s(N,x)'

The set of all summable maps from N into X is a Banach

space S(N,X) with ”A“S(N x) @s norm and is an L%module
’

with the module operation

(£9)(g) = ®(fg) for ® € §(N,X) , g€ N, £ € L,
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The only nontrivial assertion is the completeness of

S(N,X). But this follows easily by observing that

vl = ”*“S(N,X) and that EthHS(N’X) <o

H(N,X)

Proposition: HLG)(N, S(1®, 1)) = S(N,X)

for each sequence space N and X € Ban.

Proof: Let V € S(N,X). Then T, defined by T(g) = ¥(g-),
belongs to H _ (N, S(1® X)):
1®

a) Mg) € S(1%, X) for g € N:
This follows from
2llv(ge, )y =
< W5 gy IEleg, il =

< ¥l gy el IZ1g 1

<
Moreover we get lizl ”*HS(N,X)
b) T is an L®module homomorphism:
T(fg) = ¥(fg+) = f¥(g*) = fT(g) for £ € 1%, g € N.
This follows from the definition of the module

operation on S(N,X).

Now let T € H _ (N, S(1® X)).
LCD
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Then T(gy)(£,) = T(g,)(£,) if gy,8, € X,
£,,f, € 1? satisfying g1y = gyfs.

For T(gy)(£;) = T(g)(£y.1) = £,T(g)(1) =
= T(£,8¢) (1) = T(£f,8,) (1) = T(g,)(£,).

i

Now we define V: N- X by V¥(g) = T(g)(1) and
assert that V¥ € S(N,X).

Let Biseses8y € N. Then

(g )y = Zlr(g) (1)l =

I

Bla(ele, 1) ()l =
g

l

A

le
lo(zlg, I llz Xk
lz(Zlg, 1) S 1) 3;%

I,
]

< llzll l1zlg, I,

This means that ¥ € S(N,X) and HﬂfHS(N 0 = lzll

2.8. In order to understand the role of summable maps

we prove

Proposition: For every X € Ban Lg%X)' = S(L®X') holds.

Proof: We define a bijection between the two spaces by
g € Lg‘(x)' — ® € g(1%x") if

<xf,§> =<x,9(f) > for x € X and £ € L%

For given § € Lg%X)' we have
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n n
2 = z< > =
k=1“¢(fk)nx, “xiﬁ§1 ‘k=1 xk,w(fk) |

n
= < >
- e e e

]

sup < Z g ,8> =
llx ﬁ51 kk?

=< |lgl| e < £ |l < lgll 1z 1g (0.
Il e LX) ko
Therefore ® € S(L%,X') and lloll < llell.
S(1®,x")

Now let ® € S(L%,X') be given. Let A, be disjoint measurable

subsets of [0,1]. Then

<= xkcAk,g > = |z < xk,¢(cAk)>| <
< Ekaﬂnm(cAk)H = 2"¢(”kacA o=
< |lell Iz llx, i
? S(1®x') £ K c“k
= lloll lz x ¢, |l

(o] .
S(1®,x) & kA LX)

Since the elements of the form Z xkcA are dense in

LG%X) we get

§ € (LXX))' and lell < el o
S(L,X")
It is clear that the module structure which we have

defined on S(LG1X') is the same as that induced by
LX)
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2.9. Let V be a left A-module. Then the Banach space HA(A,V)
is also a left A-module with (a®)(b) = ¥(ba) for
® € H,(A,V) and a,b € A. If Z is an A-B-bimodule (1.6)
for Banach algebras A and B, then HA(A,Z) is again an
A-B-bimodule via
(a@)(a1) = @(a1a) and (%b)(a) = ®(a)b.

Definition: We will call HA(A,V) the (left) A-completion
of V and denote it by V. The reason will become clear

in 2.13 and 2.14.

2.10. We are now interested in the connections between V and
HA(A,V).
If A has a unit element e with ev = v for all v € V, then
these A-modules coincide. For let ® € HA(A,V) and
P(e)
?(a)

n

v. Then for each a € A we have

P(ae) = aP(e) = av = mv(a).

The map v = ¢v is an isometry from V into HA(A,V) and

an A-module homomorphism.

If A does not have a unit element which acts as an
identity on V then the situation becomes more complicated.
Since we are not interested in situations which, from our
point of view, are pathological we introduce a class of

nice A-modules.

Definition: An A-module V is called strong if ”v”:l‘ﬁgp Hav”
all=1
for all v € V.
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2.11. Proposition: Let A be a Banach algebra. Then the following
assertions hold:

1) V is strong if and only if the canonical mapping v = o
from V into V = HA(A,V), defined by @V(a) = av, is an
isometry from V into V.

2) If V is strong, then V is strong too.

3) If A has an approximate left or right unit, then T is strong.

Proof:
1) We have
= | = .
i llavll i lo_(2)ll = llel

Therefore v = ®, is an isometry, if and only if V is strong.

2) Let v € HA(A,V). Then

la¥ll = = v = v,
“2ﬁ21 avl “:H21 ”ﬁg(a)“ ”ZW21 HV(a)” “ “

because (av)(d) = v(ba) = bv(a) = w;(a)(b)-

3) ||2ﬁ§1 lavll = ”:ﬁ% lliﬁ% | (a¥7) ()} = .
= v b l = v = 7 .
”:ﬁ% "f)hl£1 17 (va)ll Hihl% IF(Hll = li+l

2.12. Let us suppose in the following that A has a two-sided

approximate unit (ut) and that all A- modules V are strong.

Lemma: Each algebraic A-module homomorphism ® from A into V

is continuous.
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Proof: We have to show that a linear mapping ®: A > V
satisfying ®(ab) = a®(b) for all a,b € A is continuous.
It suffices to show that lim a, = 0 implies lim @(an) = 0.
Now (an) € cO(A) and cO(A) is an essential
A-right module, because A has right approximate units.
Therefore (an) = (bn)c with (bn) € cO(A) and c € A.

This implies lim CD(an) = lim w(bnc) = 1lim bn@(c) = 0.

2.13. Definition: The strict topology on V is the topology on V

induced by the strong operator topology on V via the

embedding v - @V.
Lemma: V is complete in the strict topology and V is dense in V.

Proof: Let (%,) be a strict Cauchy-net. Then for each
a € A the net (¥,(a)) is Cauchy in V and therefore
converges to some element ®(a) € V. Since
®,(ab) = a¥®,(b) it follows that P(ab) = a®(b) and
therefore @ € HA(A,V) by lemma 2.12.

Let now @ € HA(A,V) and vy = ®(u,). Then
®(a) = lim ®(au,) = lim a®(u,) = lim av, =

= 1im ®_ (a) for all a € A, i.e. ® = 1lim ¥_ in
Vi Vi

the strict topology on V.

For each strong A-module V we have the isometric

inclusions  V_ c ve v.

From the definition of the essential part it follows

that (ve)e = Ve.
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Observe that for an essential A-module V1 and an
arbitrary A-module V2 we have

For let v € V1. Then v = av, and

P(v) = m(av1) = a¢(v1) € (VZ)e‘

Therefore HA(A,V) = HA(A,(V)e).

In order to compute this space we need.
2.14. Lemma: For each A-module V we have (V)e = Ve.

Proof: We can assume that V is essential since (V) =V
by the foregoing remark.
By the factorization theorem of Cohen-Hewit?t
P € ('\7)e if and only if ® = a®, for some a € A

and @1 € V. But then ®(b) = (a¢1)(b) = ¢1(ba) =

= bw1(a) = mv(b) with v = w1(a).

Corollary: (V) = V.

Proof: V = H,(4,V) = H,(4,(7) )

[l

HA(A,Ve) = H,(4,V) = v.

2.15. Remark: We know that for each ® € V a® belongs to Ve‘
Now (a®)(b) = P(ba) = bP(a) ®¢(a)(b).

Therefore a® = P(a) with the obvious identification.

]

For right modules W we have of course a gimilar theory.

This follows from the fact that a right A-module is



BANACH MODULES

2.16.

just a left AOP-module, where A°P is the opposite

Banach algebra (with reversed multiplication).

Let us now consider the case of bimodules. Let Z be an
A-B-bimodule,where A and B are Banach algebras with
approximate units. We define the essential part of Z to
be the set of all elements of the form azb for z € Z,
a € A, b € B. Then Z, = AL N ZB.

We have only to show that each u € AZ N ZB has a

representation of the form u = azb.

127

Now u € ZB, i.e. u = wb for some w € 2 and b € B. The proof

of the Cohen - Hewitt factorization theorem shows that

u = ay for some a € A and y € Z of the form

1

il

wh.

1

. . -1 . -
y lim Yo = lim a,u= lim a,
Therefore In € ZB and therefore also y € ZB.

This means y = 2b ® u = ay = azb € Ze'

An immediate consequence is: denote by HE(Z,Z') the set
of all A-B-bimodule homomorphisms from Z to Z'. If Z is
essential then Hy(Z,2') = HY(Z,(Z'),).

For each A~B-bimodule Z we define the A-B-completion Z
to be the space
7 = Hii(A x B, Z)
of all bilinear maps *: A x B - Z
such that a -» A(a,b) € HA(A,Z) and

b - Aa,b) € HB(B,27).
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It is clear that B (A x B, Z) is an A-B-bimodule
via (a A b)(a1,b1) = l(a1a, bb1) and that the canonical

mapping z - )\z from Z into Z, defined by *,(a,b) = azb is an

—R_hi s ¢ = =
A-B-bimodule homomorphism: 2, zb1 (a,b) aa, zb1 b
= = A
= lz(aav b1b) = (a1 Zb1)(a,b).
The bimodule Z is called strong if llzll = i llazbll.
“a 1
loll= 1

This is equivalent to the fact that z - )‘z is an isometry.

Proposition: (Z)e = Zg.

Proof: Let A € ('ZT)e > M=ahb with A €T,

> k(a1,b1) = (a>\1b.)(a1 b)) = 11(a1a,bb1) = 31)\1(a,b)b1 =

i}

X)\1 (a,b)(a1 ,b1 ).

> )‘=)‘)\1(a,b) . Now a=a3i ,b=DbDb since
A and B have approximate units.
=

M(a,b) =\ (a3, bB) =3 )\(F b)b € z,.

Corollary: Z = Z.

= B - B -
Proof: Z = IBA(A x B, 2) = IBA(A x B, (Z)e) =

B —
=B,(A x B, 2,) = IBE(A x B, Z) = Z.
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2.18. Definition: The strict topology on Z is the topology on Z
induced by the topology of pointwise convergence

on HBE(A x B, Z) via the embedding z - Az.

Proposgition: Z is complete in the strict topology and Z

is dense in Z.

Proof: Let (Xl) be a strict Cauchy net. Then for each
pair (a,b) € A x B the net *,(a,b) is Cauchy in 2
and therefore converges to some element A(a,b) € 2.
From Xt(a1a2,b2b1) = a1>~1(a2,b2)b1 it follows that
l(a1a2, b2b1) = a1k(a2,b2)b1. This means that
a > Ma,b) € H,(4,2) and b > Ma,b) € H(B,2).
Therefore A is separately continuous on A x B. By the
Banach-Steinhaus theorem * is continuous and therefore
belongs to Bﬁ(A x B, Z).
Let now M € IBi(A x B, 2) and z,, = Mu,,w,)

where (u,) is an approximate unit in A and and (w,) one

in B. Then *(a,b) = 1lim l(aut, w,b) =
T
= lim a*(u,,w,)b = lim az,,b = %im thk(a,b).

’

Remark: The case of left and right modules is included
in the case of bimodules. Consider e.g. a left A-module

V as an A-I-bimodule.
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2.19. We have now the following situation for an A-B-bimodule Z:

Z
V y
H,(4,2) A 13(3,2)
A H ’
Z
Here all arrows are isometric A-B-module homomorphisms.

Z - @Z is defined by mz(a) = az.

We have ®- & (a) = aazb = (a@zb)(a).

z - WZ is defined by Wz(b) = zb. Here we also have
w'é"z"s (b) = EZ:Eb = (EWZ-S)(b).

The inclusion H,(4,2) - 7 is given by

- {(a,b) - ®(a)bl.
Mo

This is an A-B-module homomorphism because

Mg (8,0) = (a%B)(a)b = P(a8)bb = (aAyb)(a,b).

HN$H = Haﬁg% ”Xw(a,b)u = Haﬁgg le(2)pll = lell
foll=1 lhoil= 1

since Z is strong.

In view of the above inclusions we can consider HA(A,Z) and

HB(B,Z) as closed submodules of Z. Therefore

A(z) = Hy(4,2) N B3(B,2)
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is also a closed A-B-submodule of Z.
This module is of special interest. It consists of all
A € 7 which are of the form
Aa,b) = P(a)b = a¥(b) for some (uniquely determined)
® € H,(A,2) and ¥ € H(B,Z).

Tt is clear that Al LT (a,p)l
llpll= 1
= I | = el = I = Nl
i 9(2)bll = leil L av(o)!l = llvi
lpll=1 lbll=<1

On 4(2) we also have a strict topology, i.e. the restriction
of the product topology of HA(A,Z) X HB(B,Z) where in each
factor the strong operator topology is considered.

A net M, € A(Z) converges to * in this strict topology
if and only if for all pairs (a,b) € A x B (¥,(a), ¥,(b))

converges to (®(a), V¥(b)).

Here *,(a,b) = ®,(a)b = a¥,(b) and *a,b) = ®(a)b = a¥(b).

2.20. Of special importance is the case Z = A, a Banach algebra.
In this case 8(A) can be given the structure of a
Banach algebra too.
By the foregoing 24(A) consists of all pairs (f,g),
£ € Hy(A,4), g € B (4,4), such that f(a)b = ag(b) for all
(a,b) € A x A. We define a multiplication in A(4A) by

(f1 981)(f2’82) = (f2f19 g1g2)-



132 CIGLER, LOSERT, AND MICHOR

Then A(A) is a Banach algebra which isometrically contains A

via the embedding a - (fa’ga) given by fa(b) = ba ,

ga(b) = ab.

A(A) has a unit element (1A’1A)‘

For each pair (f1,g1) and (f2,g2) € A(A) we have
f2° 8y = 8&¢° f2. For let (ut) be an approximate identity
in A. Then

]
]

(g, (a))u, = g,(a)gy(u,) = g (ag,(u,)) and

it
"

g (fy(a))uy = g (£,(a)uy) = gy(agy(u,)).

In the 1limit we get the equality f,°g, =g, ° £,

Proposition: A becomes a A(A)-bimodule with the operation
(f19g1)a(f2’g2) = g1(f2(a)) = f2(€1(a))

Proof: Consider e.g. (f1,g1)[(f2,g2)a] = (£,,8¢)8,(a) =g(s,(a))

This is the same element as

[(£,,8,)(£,,8,) 12 = (£,5,, g,85)a = (g,8,)(a).
The special case (fb,gb)a(fc,gc) = gb(fc(a)) = bac
shows that this module operation is a natural extension

of the bimodule operation of A on itself.

A(A) is called the double centralizer algebra of A.
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§ 3. A-module tensor products and related constructions

3.1. For an A-bimodule Z we define the end of Z as the
Banach space of all z € Z such that az = za for all
a € A.
In symbols

end(z) = /2 =z € 2: az = za va € A}.
A

Dually we define the coend of Z as the quotient space

A
coend(z) = Jz = Z/N

where N is the closed subspace of Z spanned by all

elements of the form az - za.

Examples and properties:

3.2. Example: Let V1 and V, be left A-modules. Then H(V1,V2)

2
is an A-bimodule with the module operations

(a®b)(v) = a+* P(bv). In this case the end of the
bimodule H(V1,V2) coincides with the Banach space

HA(V1,V2) of all A-module homomorphisms, since
ﬁg(v1,v2) = {op € H(V,,V,): a® = %al =

= {o e H(V,,V,): a-®(x) = ?(ax)!.

In the same way we see that

ﬁH(w1,w2) = HA(w1,w2)
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for two right A-modules W1,w2.

3.3, Let Z be an A-bimodule. Then
A
/4(z,%) = 5(/Z,X).
A

This equation is to be understood in the following way:

For each ® € H(Z,X) satisfying a® = ®a , i.e.

©(za) = (a®)(z) =A(@a)(z) = P(az) , there exists a uniquely
determined ® € H(/Z,X) such that |® = lI®ll and the diagram

\
_—
)

A

commutes, where T : Z - [7 = %& denotes the canonical

Z
(%) m i
/

Z X

quotient map, and conversely .
The proof is immediate, since a¥® = ®¥a is equivalent

to 9(za-az) =0 , i.e. @IN = 0.
A
The coend /Z could be defined by the property ().

3.4. Let Z be an A-bimodule. Then
JH(x,2) = H(X,/2).
A A

For a® = ¥a © (a®)(x) = (Pa)(x) ©® a-P(x) = P(x)-a

« o€ Hx,/2).
A

3.5, For each Z € Banﬁ (the category of all A-bimodules

and contractive A-bimodule homomorphisms) let



BANACH MODULES
A

135

"z : 2 —> /3 be the canonical quotient map.

Then ("Z) defines a natural transformation from the forgetful

functor ' : Z - Z from Banﬁ into Ban (Xhich forgets the

A-module structures) into the functor /Z.

Proof: Consider the diagram

for an A-bimodule homomorphism ®. Then

ﬂ ® E
22 ® H(Z1, ?22).

Si T o P =T ® =T Y
ince ( Z, Y(az) Zz(a (z)) Z2( (z

Ja) =

= (ﬂz o ®)(za) there exists a unique factorization
2

A A
over lz, givenby T, o ®=[p. T
1 7, z

A A
This defines /® and gives | foll < lleol],

The uniqueness of [ gives immediately
A A A
= /we o Jo and f1Z = 1p

A
fwz o @ :
/7

9

3.6. In the same way the canonical injections

1.

tz : fZ - Z define a naturzl transformation from the functor

A
/g - Banﬁ = Ban into the forgetful functor
A

1] Banﬁ - Ban.
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This follows immediately from the diagram

Al /o A2
A
1 1
K2 2
Z1 —_— Z2
®

We have only to show that az, = z,a implies
a¢(z1) = @(21)a. But this is clear since ® is an A-bimodule

homomorphism. It is also clear that

Jo_ « o =Jo_ o o eoll < lell
a2 1t a2 gt sna B

hold.

3.7. In the following we need a "Fubini - like" theorem:
let Z be an A- and B bi-module, such that the different
bimodule operations commute.

Then
I Tz=11z.
A B B A

Proof: We show that /Z is an A-bimodule.
- B

This follows from b(az) = (ba)z = (ab)z = a(bz) =
= a(zb) = (az)b , since this equation means that

z € /7 implies az € I7.
B B

Now we can prove the assertion: both sides consist of

all z € Z such that both az = za holds for all a € A
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and bz = zb holds for all b € B.

3.8. The projective A-module tensor product.

Let W be a right A-module and V a left A-module.
Then W é V is an A-bimodule, where the module operations

are given by a (Z w; ® v;)b = z w;b ® av, .

Definition: By the projective A-module tensor product

W é V we understand the coend
A
~ A ~
wevs=/wev
A

of the bimodule W ® V.

We want to give a description of W é V in terms of
a universal property analogous to tﬁat used in the
definition of W é V.
To this end we define the Banach space of all A-bilinear
mappings from W x V into a space X by BA(W,V;X) =
= /B(W,V;X).

A
By definition of the end of a bimodule an element
% € B(W,V;X), i.e. a bilinear mapping ® : W x V = X,
belongs to BA(W,V;X) , 1.e. is A-bilinear if and only
if a® = Pa. This means

?(wa,v) = ®(w,av) for all v € V, w € W.
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From the defining equation
H(W ® V,X) = B(W,V;X)

of the projective tensor product we get immediately

B, (W,V;X) = IB(W,V;X) = JH(W ® V,X) =
A A
A ~ )
=H(/we vV, X) =HW®YV, X).
A
This equation means that
for each A-bilinear mapping %: W x V- X

there exists a uniquely determined bounded linear map

Tcp H") é V -» X, such that ”Tw“ = HWH and such that
A
the diagram
w A
A

WxV —— s WevV

commutes. Here WA =T o W 35 A-bilinear.
Wev

(w is the linear map from the definition of W é V and

A A ~
T . :WeV > /WeV in the map of 3.3).
wev
By the above universal property the pair (W ® V, WA) is
A

uniquely determined up to an isomorphism.

D>

V.

e

NWev=(We V)/ » where N is the closed subspace
A N
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of W ® V spanned by all elements of the form

(wa ® v - w ® av).

Q(W%W'=%WMW=HMMW)

This follows immediately from the equation

A
HW ® V,I) = B(/Ww @ V,1) = / H(W & V,I) =
A A
=/ "5, v') = HV,W').
A A

3) Let V, V1 be left A-modules, W, W1 be right A-modules,
and ® € H,(V,v,) , ¥ € B (w,u,).
Then there exists a uniquely determined linear map

Vo ¥ € HWeYV, W, ® V1) such that
A A A

(Ve®)(wev) =V¥(w) ®P(v) for w®v € W ® V and
A A

v @ @l = il lell,
A

Proof: Define Ve® W é Vo, ® v,
by (V@ @) (w®v) = ¥(w) @ P(v).

Then ¥ ® ¥ is an A-bimodule homomorphism.
A

Therefore V f ®=/¥o®e€HW % v, W

®V,)
120

A
and /v & @ll = llv g @l = 1yl

.

4) Let A and B be Banach algebras, Z an A-B-bimodule,

X a left B-module and V a left A-module.
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Then the so-called 'exponential law' holds:
HA(Z g X, V) = HB(X, HA(Z,V)).

This isometry is natural in all variables.

Proof:

H

B
(2 8%, V) = uz &%, V) =
A

B

n

Kz eX, V) =//Hz®X, V) =
B A

/]

AB

[ | ux, 5(z,v)) = / 5, / 8(z2,V)) =
B A B A

H

B(X’ HA(Z’V) ) .

5) Let X be aABanaﬁh spaceand Z be an A-bimodule.
Then X ® /2 = /(X ® 2)

A A
Proof: H(X & [z, ¥) = B(J2, H(X,Y))

[
1]

A
= i H(Z, H(X,Y)) =/ H(xX ® 2, ¥) = H(/(X & 2), Y)
A

A B B A
6) For an A-bimodule Z we have /[ [/ 2z =/ [ 7.

AB B
Proof: H(//z, x) = [H(/z, %) = [/H(2,X) =
. A AB

BA
Ia(z,x) = 5(//z, x).
BA

7) Let W be a right A-module, Z an A-B-bimodule, and V a
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left B-module. Then we have

W (Z®V)=(W®ez) eV .
A B A B

This isomorphism is given by w € (z ® v) @ (w ® z) ® v

and is natural in all variables.

Proof:
W®(zév)=
A B
A ABA AB ~ ~
= fwe(/zev)=//we (zeV) =
AB . B A
=/ftwez)yevs=/,/(wez)svs=
BA ~ ~ ~
=/(/J(wez)) @ V= (W®z) % v

3.10. Theorem: If A has an approximate left identity (ul),

then A f V=y, .
Proof: It suffices to show that (Ve,w) with w(a,v) = av

is a projective A-tensor product of A and V.
Let therefore X € Ban and ¥: A x V » X be A-bilinear.
We have to show that there exists a uniquely determined
linear map Ty : V, » X such that HT@“ = llell
satisfying ®(a,v) = Ty(av) for all a € A, v € V.
To show this observe first that for each v € Ve
the limit l%m P(u,,v) exists. For let v = av' then
?(u,,v) = ®(u,,av') = ®(u,a,v') and this converges to

?(a,v').
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Now we can define Ty by Tw(v) = l%m ®(uy,v).
Then it is clear that Tcp is linear and satisfies
Tw(av) = ?(a,v).

The norm equality follows from

lloll = “aﬁga H¢(a,v)” = Haﬁgﬂ ”Tw(av)“ = ”Tmﬂ
llvll= 1 llvll=1

and

”Twn = Hvﬁg% “l%m ¢(u1,v)“ =< |loll.

Remark: For right modules we have of course a similar
theorem: Let A have a right approximate identity then
W®A= We for each right A-module W.
A
From now on we shall assume A has a two-sided approximate

identity.

3.11. A special case of the above theorem is that A ® A=A
A

and that A(A) @ A=A=4A ® A(A), where A(A) has a
A(a) A(A)

unit element and A is a A(A)-bimodule.

4 A(A)-module is called strict A(A)-module if the module
operation is continuous for the strict topology on A(4).
E.g. we have that A is a strict A(A)-bimodule.

For let (f,,g,) » (£f,8) in the strict topology of A(A).
Then l%m (f,,8,)a = l%m g, (a) = g(a)

and lim a(f,,g,) = lim f,(a) = £(a).
1 1
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Proposition: Any essential left A-module V is a strict
A(A)-module and vice versa.

The same holds for right A-modules and A-bimodules.

Proof: Let V be an essential left A-module.

Then V

A®V = (0(A) ® 4) BV =
A aa) o

=AA) ® (A®V) =A(A) & V
A(A) A A(4)

Therefore V is a A(A)-module. It is strict because A
is strict.
For the converse observe that (fut, gut) - (1A,1A) strict.

Therefore (f

ut,gut)v = u,v = v, which says that V is

an essential A-module.

3.12. Let Z be an essential A-bimodule.

Then /2= [ 2.
A A(A)

Proof: iz € Z: az = za! 2 lz: (f,g)z = z(f,g)! is trivial.

Let now z € Z be such that az = za for all a € A.

Then (f,g)z

]

l%m u, ((f,8)z) = l%m (u,(f,8))z =

= lim f(u,)z = lim zf(u,) = lim zu,(f,g) = z(f,g).
f 1 1

This gives the other inclusion.
This result may hold even for non-essential A-bimodules,
as is shown by:

HA(V1,V2) = HA(A)(V1,V2) if v,,V, are essential.
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Proof: Agein Hy(,)(V,,V,) H,(V,,V,) is trivial. If

P € HA(V1,V2) , then for (f,g) € &4(A) we have:
CP((f’g)v1) = (p(lim ui((fsg)v1)) = CD((]_j_m ui(fyg))v1)

®(lim f(ui)v1) = lim f(ui)@(v1) = (1lim ui(f,g))®(v1)

]

(f’g)w(‘ﬁ ).

3.13. Let Z be an essential A-bimodule.
A &(A)
Then [z = [ 2.

Proof: We have to show that the closed subspace N0 of Z
spanned by all elements of the form (az - za) coincides
with the closed subspace N spanned by all elements of
the form ((f,g)z - z(f,g)).

The inclusion N £ N being trivial, we show that

N & NO : It suffices to show show that each element

of the form (f,g)z - z(f,g) can be approximated by

elements from No. This follows from the inequality

l((t,8)z - z(f,g)) - ((£f,8)u,z - z(f,g)ul)H
hi£,8)(z - utz)n + lz(((£,8) - (£,8)u, Nl

H(f,g)n Hz-—utz“ + ”z(f,g) - z(f,g)utH

A
A

A

A

since Z is essential.

Example: W RV = WA(®) V if both V and W are essential.
A A
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3.14. Example:

Let m and n be sequence spaces. If m g n is a strong
o
co~module, then it is again a sequence space.

Proof: We use the map j: x ® y » xy which is clearly a

co—module homomorphism of m g n into 1%
0

@
Assume that v € m ®n, v * 0. By 11.1.8¢g) v = .Z, X.®Y.,
S, i=1 7i i
z Il < i ®n i
where “XiHm Hyiln @ . Since m @on is strong, there
exists some k @ O such that w v * 0.

® ® ®
= . Z = .2 = z
WV = SRy BV T SV © WeReYs T U @ WX Yy
@®
i51ukxiyi converges in n because of 1.7 Prop. and

a
coincides with uk(i§1xiyi) = w. j(v). Consequently j(v) # 0.
L Sl gl 2 Slle g ey
= = >
If ©x;y; =e; then o lixll ly i) = j24lle;xyil llesys i = 1.

Consequently Hei ® ei” =1.

men
o
Some special cases are worth mentioning:

a) l1 gn = l1 for each sequence space n.
o

b)lpgf‘:lCl if%+1 1
o T
1€st<wm . t

Proof: The same methods as in 2.3.

3.15. Example:

For each sequence space n we have

n(x) = 1‘°(x)l§) n
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Proof: Let w: 1%X) xn - n(X) be the 1% pilinear map
(f,g) -» fg. We have to show that for each Banach space Y
and each 1%bilinear map P: lq%X) x n ~» Y there exists
a unique continuous linear map Twz n(X) » Y such

that ©(f,g) = T,(¥(f,g)) and gl = lell .

Now ®(f,,g,) = ®(f,,8,) implies P(f,gy) = P(f,,8,)

because this means f1g1 = f2g2 and therefore

g4
®(f,, = @(f le. 1 +1g,1) =
(f,,8y) = @(£, e 1+Tg)] gyl + gy
g5 .
= 9(f , e+ lg ) = o(5,,8,).

Bach element w € n(X) is the image of an element of

1%X) x n, e.g. of iw”) Now define Ty by

wa
Tp(fg) = P(f,g). Then T¢ is well defined and linear

because

If.g.
Tcp(zfigi) = T(p(z!; :'L . Zlgk[) =
k

if. g. f.g.
_ 1-1 N _ 171 b _
= 9= , Elg 1) = P , Blg 1) =

lgkl lgkl
= F (1,8, ).
Tp(W(f,g)) = ®(£,g) = lloll = fi,, .
on the other hand
()t = o (2« )l = Ho( 2, )1l =
IwH el

= loll W1l

=l = Yoll.
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Corollary: For n essential we have
n(X) = co(x) go n.

. _ 4@ o 1@ ® - _
Proof: n(X) = 1 (X)lgn =1 (X)lm (c:O gon) =

= (lCD(X)lg co) go u = co(X) @0 n .

3.16. Example: For each function space N we have

N (X) = 1®X) Lé N .

Proof: Let w : Lg’(x) x N > N_(X) be defined by

w(F,g) = Fg for F € Lg)(X) and g € N.

Then the same reasoning as above is applicable.

3.17. Example: lwg 1® is not a sequence space.
o
Proof: Let f, = (0,1,0,1,0,1,...) and f1 = (1,0,1,0,...).
Choose Banach limits F  , F, such that Fo(fo) =1,

F,(f,) = 1, then F_,F, € H_ (1%,1), where c,'I = (0).

o
€ (198 @
Then Fo g ]3‘1 (1 o 1= )
o) o)
Since (FO go F1)(f0 ® f1) =1 % 0 we have
that f ® f, £ 0 in 19e 1%,
o) 1 c
o
If lmg 1® were a sequence space, it would be a

o
strong o module so we would have ”fo ® :f‘1 I = llj.lm Hunfo ®f1 Il = o,

a contradiction.
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3.18. Now we want to introduce a notion which in some ways

resembles the notion of dual space.

Definition: Let V be a left A-module. Then we call the right
A-module V°= HA(V,A') the associate module of V.
For a right module W the associate is the left module
W, = mh(w,a).

The associate modules are easy to compute in terms of
A S = 1

dual spaces: V- = (V,)' and W_ = (W_)'.

We prove the first equation:

v° =/ B(V,H(A,I)) =/ H(A ® V,I) = H(A & V,I) = (V.)'.
A A A e

The correspondence voe—avg is given by

< a,v(v) > = < av,v' >,

In the same way for a right module we have

< a,wo(w) > = < ya,w' >,

It is easy to see that the mappings v 5 v and w° - w'

are A~module homomorphisms.

Proposition: Each associate module is A-complete, i.e.
satisfies V° = v°.
This follows from the equation

vO = [ H(v,a') =/ H(a,v) = BAA, V) =TT
A A
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3.19. Proposition: Let V be a left and W a right A-module.
Then HA(V,WO) = HA(W,VO) where the correspondence is
given by ® «— P with B(w)(v) = (v)(w).

Proof: This follows from the equations

HA(V,WO)

£ H(V, 1{ H(W,A'))

Ux H(V, H(W,A"))

/[ H(wevV, A')
A

£ 1{ H(W, H(V,A"))

[ H(wW, ﬁ H(V,A'))

f

mA (w,v°)

3.20. Proposition: Every strong A-module V is isometrically
contained inﬁVOO‘via the canonical embedding i : V = VoO
given by i(v)(v°) = v° (v). This embedding is an

A-module homomorphism.

Proof: In the equation HA(V,VOO) = HA(VO,VO) the map i
corresponds to the identity on the right side.

We only need to verify that i is an isometry:

i)l = | +° | = < a,v° | =
ol = ggp Iv° = gpe ) e <00 >

= I 3% I sHp1 < av,v' > = s u% Navll = llvll.
alls v' = =

Since (V)° = (Ve)' = (Vv

c 7 c y°
V&EV = Vo .

e)' =v° we have
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3,21, Definition: A left A-module V is called A-reflexive if

the natural embedding i: V ~» V° , is an isomorphism.

Proposition: An A-module V is A-reflexive if and only if
it is A-complete and satisfies CVOO)e== v, .

Proof: Let V = V°

or Then V= V since VeVE Voo.
Therefore V is A-complete. Furthermore V = (Voo)e .
Let now V be A-complete and V_ = (VOO)e .

Then

V=V =H,(4,V) =H(a,V7,) = HA(A,VOO) =7 =7 .

3.22. Examples:

1) Let A = c, and V = n a sequence space.

In this case n° = H_ (n,c') = H (n,l1).
cy o <,

This implies that ° is again a sequence space.
It should be noted that 2.4 implies that
n%(X) = H, (n,l1(X)) for each X € Ban holds,

o

whereas n(X)° =H (n(X),l1) = H, (n,11)(H(X,I))

[o} o
B, (0,1")E(1,x) = B (1,2"(x).
e} (0]

c

A sequence space n is co—reflexive if and only if it is

co—complete: it suffices to show that (ng)e =7, .

) . _

This holds if we can show that Nukane = lukxnno for
)

each k. But this is obvious since n° = (ne)‘

and therefore

ool = sl = lha, xy |l = .
P, llyﬁ‘f’,s1"‘k"y1 slyals:§1‘“k"y" Pl o
e n

0]
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2) Let A = L® and V=N a function space.
In this case N° =H _ (N, (L®)) =
L@

= H o (N S(L5D) = s(n,D)

We conclude this chapter with some observations about

the dual space V' of a left A-module V. Similar results
hold for right A-modules.

3.23. V is essential if and only if V' is strong. Then V' is even

A-complete.

Proof: If V is essential, then V' = EM(A,V') = (A }6{ )=V,

If V is not essential, then there exists some v' € V'
such that v' # O and v'| Ve = 0. For each a € A and
v € V we have then < v, v'a® = <av, v' ® = 0. This

implies v'a = 0 for all a € A, so ﬁgp ”v'a”:()*”v'“
all=

and V' is not strong.

3.24. We assume that V is reflexive as a Banach space. Then

o= (V ) =V, V_" (using the equation from 3.18 Proposition) =

V = V. This means that V is A—reflexrveand\r'=fve is strong,

s0 Vé is essential by 3.23 and Ve is A-complete. Consequently
V, =V is A-reflexive. If V is strong, then V&V = v,
and so V = Ve . Since V' = Ve' is again reflexive and

essential, we may apply the same procedure and arrive at the
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Proposition: Let V be a strong A-module such that Ve is
reflexive as a Banach space. Then V and V' are both

essential, A-complete and A-reflexive.

3.25. Lemma: Let 1 : V'e i Ve‘ be defined by 1(v') = v'lv .
e
Then 1 is an isometric A-module homomorphism, whose image

. . . . . .
coincides with Ve o ¢ 1.€. v e = Ve e Thus

1' Ve"-—>V'e’ = Voo is a quotient map, which coincides
with the natural homomorphism Ve" i Ve“ = VOO .

Proof: For v' € V’e we have

"

“v'“v. Sup Hv'a“v, =

e fall=1

=  SPp up < v,v'a >|
lla ll=1 Noll=t,ver

=  Syp spp  |< av,v' >|
llall=1 lvil=1 ’

= sup < v,v' > = ‘\l(v')“V . .
Hv“51,v€Ve e

If v' € Ve'e then by 1.16 v' = av1' with a € A, vy '€ Ve'.
Let w1' € V' be any extension of v1'. Then w' = aw1'
satisfies w' € V'e and 1(w') = v' .

Next note that VOo = (Vo)e' = (VT)e’ = V' ' .

So only the last assertion remains to be shown. Let

be a € 7° , © ¢ v°o . We write again @ and ® for the

corresponding elements of isomorphic left A-modules.
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For a € A, v € V we have:
o € v = v° =TT
Ve v v
<av, &> =<g, a(v) > =<v, ®a) >

The equations for ® look like this:
€..'_'= ! = O:: 0 '=——'
® Ve (Ve )o Vo (v )e (V')e

<o, 9a)>=<a, W) > = <g,0a)>=<0,0>=< 00>

o€y @€ v a € y° a € y° aeyT
e

By 2.14 (v"—)e =V', , where v' € V'_ is mapped onto
@v,(a) = v'a. The corresponding element of Vé satisfies
the equation < av, @ > =< v,P (a) > =<v,v'a> =
=<av,v' >, i.e. it coincides with 1(v').

The natural homomorphism Vg - VZ is again defined by

v - van ’ van(a) = av".

This means that the corresponding element ® € V'e"
satisfies: < Ga,p > = < a,¢v"(a) > - <oy > =

=< 0g,v" > =<f(%a),v"> i.e. ®=1"'(v").

3.26. Proposition: If V is A-reflexive and V" is strong, then

V is a reflexive Banach space.

Proof: V" is strong, so by 3.23 V' is essential, thus

strong, so V is essential. Then 3.25 implies that
A Ve" = Ve” = Vg =V via the canonical embedding

Voo,



154 CIGLER, LOSERT, AND MICHOR

Corollary 1: Any two of the three properties of 3.26 implies
the third one.

Proof: Combine 3.24 and 3.26.

Corollary 2: If V is A-reflexive, then V'e = Vg -
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Exercises
The following exercises show some connections between Chapter III

and the theory of operator ideals on a separable Hilbert

space X.

1) Let N be a norm ideal in K(X) as defined in 1.9., which is

also an H(X)-bimodule. For an orthonormal base (ek)ﬁ;1 in X

®

put n = {(ak)? | k1 P & Bt € N}

Show that n is a symmetric sequence space which is
contained in C, and does not depend on the special choice
of the orthonormal base.

2) Show conversely that to each symmetric sequence space
necc  there exists a norm ideal N in K(X), which is also
an L(X)-bimodule (use the construction of [29] Ch. III, § 4).
Show that the correspondences defined by 1) and 2) are

inverse to each other and bijective.

3) Show that n is an essential co—module if and only if N
is an essential K(X)-module.



§ 1.

CHAPTER IV

Functors on Categories of Banach Spaces

Functors on Ban

1.1. A covariant functor F : Ban - Ban assigns Banach spaces

F(X) to Banach spaces X and morphisms F(f) : F(X)->F(Y)
to morphisms £ : X » Y in such a way that the following
statements hold:

(a) F(£+ g)
(0) F(1

F(f) *F(g) whenever feo g is defined in Ban.

)}

1F(X) for all Banach spaces X.

x)
(¢) Bach map f » F(f) from H(X,Y) into H(F(X),F(Y)) is

linear and contractive.
A contravariant functor G : Ban®? - Ban assigns Banach
spaces G(X) to Banach spaces X and morphisms G(f) : G(Y) ~» G(X)
to morphisms £ : X » Y in Ban in such a way that the
following statements hold:
(a') G(£- &)
(') &(1y)

G(g) o G(f) whenever f- g is defined in Ban.

for 211 X € Ban.

Te(x)
(¢') Bach map £ » G(f) from H(X,Y) into H(G(Y),G(X)) is

linear and contractive.
Remark: Properties (a), (b) and (a'), (b') are those generally

required to hold for functors. Properties (c) and (c')

state that we consider only strong functors or Ban-functors

156
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in terms of relative category theory (DUBUC [20],
FISCHER ~ PALMQUIST and NEWELL [28].

1.2. Nearly all of the constructions of chapters I and II
can be interpreted as functors. We recall some of them.
Of fundamental importance is, of course, the lifted
Hom~functor H. It is a contra-covariant bifunctor (cf.§ 2)
into Ban and we will often consider its covariant partial
functors HA = H(A,.), the action on morphisms being given
by
H(A,f)g = feg, £ : XY, g € H(A,X),
and the contravariant partial functors HA = H(. , A),
the action on morphisms being given by
H(f,A)g =gef , £ : X 7Y, g € H(Y,A).
In the literature H, is often denoted by QA‘
As important as H is the co-covariant bifunctor .®. defined

"~

by the projective tensor product X é Y in Ban. Its partial
functor X ®. is frequently denoted by EX and its action on
morphisms is given by

(x ® £)(Zx; @ y,) = Ix, ® £(y.), £ : ¥ » Z(cf. II.1.8d)
The equation H(X ® Y,Z) = H(X,H(Y,Z)) holds naturally
(¢f. IT.1.6.) and shows that the functor Y ®. is left
adjoint to the functor HY' Thus Y ®. commutes with colimits
and HYoommutes‘with limits in Ban1 (cf. II, 1.8 e)).
The following equation shows that the covariant functor

HZ is adjoint on the right to itself:

H(X, H(Y,Z)) = H(X @ Y,2) = H(Y,H(X,Z)).
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Thus HZ transforms colimits into limits in Ban '

a special case being (lim Xd)'= 1lim Xd' (cf. I,2.15)

Proposition: The projective tensor product is completely
determined by the property that all its partial functors
commute with colimite. Thus there is essentially only
one pair of adjoint functors on Ban1.

On the other hand H is uniquely determined by the property
that all its contravariant partial functors transform
colimits into limits.

The first assertion is the essential content of

SEMADENI-WIWEGER [78].

Proof: Suppose F : Ban » Ban commutes with colimits in Ban1
and 6 : Ban®P > Ban transforms colimits in limits.
Each X € Ban is colimit of finite dimensional spaces

1) (c£.1,1.21),% = 1im 1, naturally in X. Then we have
n _‘_9n

g
tal

S
]

S B 1y _ g a1
F(lim 1) = lim F(1;) = lim 1 (F(I))

]

lim (1; & T(I)) = (Eig'l;) & F(I) = X ® F(I).

2
b
!

= G(lim 1;) = lim G(1)) = 1im 1% (G(I))

I

Lim H(1y, ®(I)) = K(lin 1], 6(I)) = B(X, 6(1)).

ged.

1.3. Given two functors F and F1 from Ban into Ban a natural

transformation & : F - F, is a family (aX) f

X € Ban °
morphisms GX : F(X) » F1(X) such that for each f : X Y
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the diagram

%

F(X) ——=—— F,(X)

F(£) F1(:t‘)
a
F(Y) ———~X~___9-F1(Y) commutes,
and furthermore Mol : = sup qu“ < ® holds.
X

By Nat (F,F1) we denote the Banach space of all natural
transformations F - F1 with coordinate-wise operations.
The unit ball of Nat(F,F1) is the set of all natural
transformations F - F1, where F and F1 are regarded as
functors B&m,| i Ban1.
1.4. Theorem: (Yoneda lemma): For all functors
F : Ban » Ban (resp. G : Ban®P » Ban) and A € Ban
we have Nat(HA,F) = F(A)
(resp. Nat (HA, G) = G(A)) naturally in A
and F.(resp. G).
This theorem is a variant of the ordinary Yoneda lemma for
strong functors - thus the conclusion is stronger: = means
isometric isomorphism. In order to be complete and

intelligible we sketch the proof.

Proof: One uses the assignments

P~ wA(1A) € F(4), ® € Nat (H,, F) and

£, € F(&) » (£ € B(4,X) » F(£) £,),
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which are linear, contractive, natural and inverse

to each other.

Remark: We can interpret this result in the following manner:
Nat (H,F) = F, and so H behaves like an identity -
compare this with the equation H(I,X) = X in Ban.

As a special case we have Nat (H,, HB) = H(B,A) = W(A}B')
and so we can define .a functorial embedding W = BanBan
if we assign HA to A'. Its inverse (defined on the
image) is given by H, » H(A,I) = A', since we can extract
A (i.e. the weak * - topology on A') out of H, in a
functorial manner by Nat (H,, HI) = H(I, A) = A.

Similar considerations show that A - HA is a functorial

op
embedding of Ban into BanP2l |

1.5. Theorem: (i) For all F : Ban - Ban and A € Ban
Nat (A ® ., F) = H(A,F(I)) holds
naturally in A and F.
(ii) Nat (A ®(.'), 6) = H(A,G(I)) holds

naturally in A € Ban and G : Ban®® - Ban.

Proof: (i) ® € Nat (4 &, F)» ® € H(4,F(I)) and
f € HA,FM(I))» (a ®x F(g)f(a)), where for x € X
we have x € H(I,X) by ;(l) = Ax, are easily seen to be
linear, contractive, natural in A and F and inverse to

each other.
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(ii) ® € Nat (A ® (.'), G) b 9. € H(A,6(I)) and
f € H(A,G(I))» (a ® x' = G(x')f(a)) have the same

properties.

1.6. We can interpret 1.5. (i) in the following way:

A A &. is a functorial embedding from Ban into BanBan
as is seen by Nat (A %., B é.) = H(A,B) and the functor
F » F(I) from Ban®®® into Ban is the right adjoint o this
embedding by 1.5 (i). We call F = F(I) a forgetful functor
and its left adjoint A - A &. the associated free functor.
The unit of this adjunction is the trivial isomorphism
A= A®TI, but it is worthwile to look at the counit
et F(I)®X » F(X). It is given by

C§ (a ® x) = F(g)a and we have HCF“ = 1 whenever F(I) # 0. Also

€§ is natural in P and X, since the adjunction is
natural.

In a similar manner we can interprete 1.5 (ii):

the forgetful functor G -» G(I) has a left adjoint A - A %(.')
from Ban into BanP® © . The counit of this adjunction

is the map e}% : G(I) ® X' - ¢(X), given by ‘%(a®x')=G—(x')a.
It is contractive, le®ll = 1 whenever F(I) # 0 (since the

adjunction is isometric) and it is natural in G and X.

1.7. Lemma: e; | F(I) @ X and cg | (1) ® x°

are always injective.
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n
Proof: ‘Let 151 a; ®x; € F(I) ® X with (ai) linearly

. F o _ 5 » _
independent and €y ( a; ® xi) = F(xi)ai = 0.
Then for all x' € X' we have

[}

0=F(x') L F(;ci)ai = Z P(< x;,x' > 1I)ai

=X<gx,x'>a,;;

since (ai) are linearly independent we conclude that
< xy,x' >=0,1i=1,...,n for all x' € X', Thus
x; =0, 1i=1,...,nand L a; ®x; = 0.

In a similar manner the second assertion can be proved.

1.8. Proposition:
norms & and B on the subspaces F(I) ® X and G(I) ® X'

l'”F(X) and H'“G(X) induce reasonable tensor
of F(X) and G(X) respectively.

Proof: Since lle i“, lle g” 51 we have &, = ",

n
Let i§1 a; ®x; € F(I) ® X, then

1l

oy ol = opp 12 <xmt > o)

I

llxe 2 1 le(x)® 2(xy) 2yllg )

IA

F
ley(Z 2, & x;)lg %)

z ®
of a; xi).
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n
If JZ, b ® x;' € G(I) ® X', then

i

Iz b, @ %, 17 = 2D, « x 'l

“2“21 “ T< X,Xi' > bi“G(I)

it

S le(x) 2 e(xy) vyllgq

A

G .
"‘X (Z bi ® Xi )HG(X)

1.9. Given a functor F : Ban - Ban we consider the canonical

decomposition of €§ (ef I,1.6):

F
R €
F(I)®X —X  §F(X)

coim G}E(‘ N im Gi
n e
F (X) > F_(X) ,

where FA(X) = F(I)%X/(ei)_1(0) and Fe(X) is the closure

of the image of C}EC‘ in F(X). Since Gg is natural in F and X

we conclude that Fe(X) and FA(X) define functors Fe,FA: Ban - Ban
and that the assignations F - Fe and F - FA are functorial

too.

By 1.7 F(I)®X is a dense subspace in Fe(X) and also in F (X)

and, by 1.8, Fe(X) is the completion of F(I)®X in a
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reasonable crossnorm & which is "functorial" in X since

F_ is e functor. The norm induced on F(I)® X by g

lies between H.“A and © and is thus a reasonable crossnorm
and functorial in X.

@iven a functor G : Ban®P » Ban we consider the canonical

decomposition of Cg:

@
N X
G(I)®Xx' 5 G(X)
R G . G
coim GX im GX
~ &
¢ (¥) e > G (X)

where again ¢ (X) = G(I)® X'/(€3)71(0) and 6_(X) is the

closure of the image of €F in G(X). Again by the naturality
of ‘g we conclude that Ge(X) and GA(X) define functors

Ge, GA : Ban®®? » Ban and that the assignations G - Ge, GA
are functorial, Ge(X) and GA(X) are the completion of
G(I)®X' in reasonable crossnorms respectively which are

both functorial in X.

1.10. Definition: Given F and G as above, then Fe and Ge are
called the subfunctors of type & of F and G respectively
or the essential parts. F, G are said to be of type z

or essential functors if F = Fe, G = Ge respectively via
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the isometric natural transformations im €§ y im €§

regpectively.

A

Examples: F , GA always are of type Z,

(Hy), = A ®. , A®.are of type I,

2

Ay 2 (.yea, a& (.') are of type L.

(5%,

If X is finite dimensional then F(X) = Fe(X) holds for

F(X)
IZ]- ~
. . - o '
all F, since we can write 1X =55 X X5 and then

g

i

F(15)8 = TR(xy) (F(x;') 8) =

i

ei(z (F(x;')8) ® x;) for all € € F(X).

1.11. Corollary: For an arbitrary functor F(resp. G) we have
Wp(e)l = el (resp. WNo(e)!l = Nelly for a1l £ € H(X,Y)
if and only if F(I) # (0) (resp. G(I) # (0)).

Proof: If F(I) # O then there are a € F(I) and x € X

such that lall = x|l = 1 ana () 2 Ugll - €. Then
le(e) ef (2 @ )l = e} (a2 & £(x))l
= ”a””f(x)” 2 |lfll - € and ”eg (a & ol =1,

If F(I) = (0), then F(x') = O for all x' € X' = H(X,I).
For G choose y' € Y', Hy'” =1 and ller(y")l = Nell - e

1.12. Lemma: If F: Ban - Ban is of type % and F1 is arbitrary, then
Nat(F,F1) = Nat(F,F1e) and the map
Nat(F,F1) - H(F(I),F1(I)), M- Ny, is injective.
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Proof: Since €§ from 1.6 is natural in F and X we conclude

F

1
that eX

ﬂ:F"’F1; hence any natural transformations maps

° ﬂX = ﬂx ° Bg for any natural transformation

essential parts into essential parts and the first
assertion follows. For all x € X we have

Ny ° F(;) = F1(§) ° My, so if N = O then Ny vanishes
on all elements of the form F(x)a, x € F(I), i.e. on the

whole of F(X) since P is essential. qed.

1.13., Proposition: Let F : Ban - Ban and G : Ban®? 5 Ban be
functors., Then we have:
(i) For all f € X! ; Y = KO(X,Y) < H(X,Y) we have
F(f) F(X) & Fe(Y) and G(£)6(Y) € 6 (X).
(ii) If X has the metric approximation property and (u,) is
a left approximate unit in K(X,X) (cf. II. 3.10), then
for fy € P(X) we have:
£y € F (X) iff IF(u,)fy - £l > 0.
If £y € Fe(X) then for any € > 0 there are f € K(X,X)
with I£ll <1 ana £, € P (X) with gy - £l <e
and F(f)fy' = fy.
(iii) If X' has the metric approximation property and
(v,) is a right approximate unit in K(X,X) (ef II.3.11 Cor),
then for gy € G(X) we have:
gy € G, (X) iff la(v,)ey - &yl - 0.
If gy € Ge(X) then for any € > O there are T € K(X,X)

and gy' € G (%) with llell s 1, ”gx Y<e ang

gX = G(f)gx' .
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n ~ ~
Proof: (i) F(i§1 Vi o® Xi)fX = E F(yi) F(xi)fx =

§ (E F(xi)fx & yi) € Fe(X), and maps of the form

= €
z §i ° x{ are dense in KO(X,Y). The argument for G is
similar.

(ii) F(X) is a left Banach-X(X,X)-module and its essential
submodule is easily seen to coincide with Fe(X). Now

use III.1.15.

(iii) By an analogous argument.

1.14. Proposition: If X has the metric approximation property

1.15.

then for all functors F of type & the (natural) map

®§ : F(X) » L(X',F(I)), defined by CD;(fx)(x') =

= P(x')fy € F(I) is injective, thus F(I) & X SP(X) €

< P(I) % X.

If X' has the metric approximation property then for all
functors G of type 7 the (natural) map wg : G(X) ~» K(X,6(1)),
defined by @g(gx)(x) = G(;c)gX € 3(I) is injective

thus 6(I) & X' & 6(X) & G(I) & 1.

. Foo\ Foo _ ¢
Proof: Tf ®y(fy' = O then ®y(fy!(x') = 0 for all x' € X',

n ~
so F(;&, x; © x/)fy = 0 and F(f)fy = 0 for all f€X(X,X),

S0 fX =0 by 1.13 (ii). The argument for contravariant

functors is similar.

If F : Ban - Ban is a functor of type &, then we have maps

e of A
P(X) F(I) € X.

F(I) & X
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which are natural in X and contractive and whose restriction
to F(I) ® X is the identity: both maps have dense image,

i.e. are epi in Ban. Thus the maps

(F(I) ® X)' — 2 3 P(X)' — ' 5 H(F(I),X')

are mono in W, i.e. they are injective, and the duality

action looks like:
<e (Z a; ®x; ), u>=<Z%L a; ® x4, e'(u) >

=T <xy, e'(u) (a;) .

Thus F(X)' consists of all f € H(F(I),X') which define
a bounded linear functional on F(X) by

z L < >
a; ® x; xi,f(ai) and

“f“F(X =sup ||Z< xi,f(ai) > |z F(x )a I <1},

F(X)
Since the unit ball OF(X)' is equicontinuous on F(X) and

F(I) ® X is dense in F(X) we conclude by SCHAEFER [73], III, 4.5,
that the compact topology on OF(X)' is given by

o(F(X)',F(I) ® X)l OF(X)'; i.e. it ié the topology of

pointwise weak ¥~ convergence in OX'. This follows more

directly from the fact that €'l OF(X)' is injective and
W-continuous, thus a homeomorphism of OF(X)' into

08(¥F(I),X"). (ef. I, 2.12).

We also conclude that F(X)'contains (not isometrically) the
space (F(I) g X)' = I1(F(I),X') of all integral operators

F(I) » X'.(cf. II, 2,9).

Similar considerations show that for a contravariant functor G
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1.16‘

of type T the space G(X)' consists of all f € H(G(I),X")
which define a bounded linear functional on G(X) by

z b, ®x; » L < xi,f(bi) > and
HfHG(X), = sup 1| < x{,£(0) >l 2 I 2 G(xi)binG(X) < 1},

The Waelbroeck-structure on OG(X)' is again given by the

topology of pointwise weak ™ - convergence in OX".

Theorem: (i) Nat (F, H(.',4)) = H(F(I),4A) holds naturally
in F € BanP®® and A € Ban.

(ii) Nat (G,H(.,A)) = H(G(I),4) holds naturally

op
in G € Ban®®®  and A € Ban.

Proof: (i) The maps a ar € H(P(I),A), o € Nat (F,H(.',4)) and
T (Byp (x'e £ F(x')5y)), £ € H(F(I),A),

§X € P(X), x' € X' are easily seen to be linear, contractive,

natural and inverse to each other.
(ii) The same proof works where the second map looks like

£ (Bym (x> o 6(x) &), £ € H(G(I),A),

Sy € 6(X), x € X, x € H(I,X), ¥ {r) = r x.

The last result gives an adjunction: the functor A -» H(.',A)
is right adjoint to the forgetful functor F - F(I).

The unit of this adjunction is the map

w§ : P(X) » H(X',F(I)), given by

fof{‘ (Bp) (x') = F(x') & € P(X), x' € X'.

X’ gX
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The same interpretation is true for the contravariant case:
the unit here has the form:

G

0y G(X) » B(X,6(I)), given by

o (5) (x) = €(x) &, & € G(X), x € X.

Both maps are clearly contractive and natural in X and F, G.

Definition: F, G is said to be a total functor, if for all
X the map @g, respectively mg is injective.
F (resp. @) is total if and only if maps of the form
F(x'), x'* € X (resp. G(Q), x € X) separate points on F(X)
(resp. G(X)).

1.18. Remark: The same theory is of course valid for functors
F: X~ Ban, G ¢ EOP - Ban, where X is a full subcategory
of Ban which contains I. We will use all results in this

(formally) greater generality without hesitation.

1.19. Example: Let n be a sequence space (IIT, 1.7).
Then the construction of III, 1.12, which assigns
the space n(X) to each Banach space X, defines a functor
n(.): Ban - Ban.
n(X) is the space of all sequences x = (x1,x2,....)
in X such that (Hx1H,Ux2H,...) €n, If £ € H(X,Y),
then n(f) : n(X) » n(Y) is given by
n(f) ((xi)) = ((fxi)). It is easily checked that n(.)

becomes a functor in this way. Clearly n(I) = n.
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We had 1% (X) 8y = n(X) for each sequence space
1
(III, 3.15), and it is easily seen that n(f) coincides
with the canonically given mapping
@ 2 , 1 ® - - ® ~ : ;
1% (£) ?mn : 17 (X) ?mn 1Y) ?jwnwhlch is
induced by 1%(f) via this identification. If n is an

essential co-module, then the equation n(X) = cO(X) %c n
o
of III, %.15, Corollary is natural in X also.

We now determine the essential part n(.)e of the functor
n(.), which is in general different from the functor
ne(.), derived from the (co—)essential submodule of n.

The map © n(x') : X ®n - n(X) from 1.6 is easily seen

to be engg)(x ® (ai)) = (aix), so an inspection of the
subspace X ® n in n(X) shows that n(.)e(X) is the closure
of the space of all elements of n(X) which lie as
sequences in a finite dimensional subspace of X.

Since this property is invariant under the action of 1@
on n(X) we conclude that n(.)e(X) is again a 1%module.

If n is an essential co-module, then n(.) is an essential

functor, since X ® n clearly contains elements

i£1xk ® e = (x1,x2,...xk,0,...) € n(X), and these
elements are dense in n(X) since for any (xi) € n(X)
we have “(O,...,O,xk.+1,xk_+2,...)Un(x) =

B TEYRRR T S A P TS I

If n is not essential as c -module, then n(.) is not

of type I. To see that choose X = 1! and 1let u, 1t s !

be the projection onto the first k coordinates. Then
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(w,) is an approximate unit bounded by 1 in x',2h
(11,3.8) and we would have 1lim n uk)(x ) = (x.) for all

k-
(x ) € n(l y if n{.) were of type L by 1.13. Now choose

(2;) €n \ n, and set x; = a;e; € 1", then clearly

(xi) € n(l1), but ”(uk(aiei) - aiei)”n(l1) =

- ~ | ;
= “uk(lai‘) (lail)‘n and this does not converge to O.

1.20. Lemma: Let n be a sequence space and (xi) € n(X). Then
(xi) € n(.)e(X) if and omly if for each & > O there is
a finite dimensional subspace M & X with
”(ﬂM(Xi))Hn(X/M) < b, where My : X - X/M is the canonical

projection.

Proof: If (xi) € n(.)e(X) and ® > O then there is
c ; | - | < b
(yi) € X ®n S n(X) with ‘(Xi) (yi)\n(X) s
i.e. the sequence (yi) lies in a finite dimensional
subspace M of X. Then T x )HX/M \xi - yiH,
! - i <
so A(ﬂM(Xi))“n(X/M) =l M(xi)” dn
< ¢! —_ . it 2 - | < &
ey =9y D, = W) = )l gy <8
Now suppose that the condition of the lemma is fulfilled.
Let © > 0 and let M be the corresponding finite dimensional
subspace of X. We have to construct (yi)€}(®n.§ n(X)
with H(xi) - (yi)Hn(X) < b, Since M is finite dimensional
. . . | _ ’__ }_
for each i there is y, € M with \xi yil = HWM(xi)l =
= inf {”xi - yH : v € Ml (use compactness of BHXiHOM
and continuity of y -~ Hxi -y, y € M). Then
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”yiH = ”xin + ”xi - yin = Hxin + “”M(xi)“, 80
H(yi)nn(x) = H(Hyi”)”n < Ml Il + HnM(xi)H)Hn
= H(Xl)'\n(X) + “(nM(Xl))”n(X/M) = l‘(X:L)“n(X) + 69

S0 (yi) € n(X) and clearly (yi) € X ®n En(X).
Furthermore H(xi) - (yi)nn(x) = H(Hxi - yi”)”n =
= Nclimy G DI = MmN gy < 0 qed.

1.21. Example: Let N be a function space (III, 1.8). Then the
construction of III, 1.13, which assigns the space
N(X) to each Banach space X, defines a functor
N(.) : Ban - Ban.
N(X) is the space of all (equivalence classes of)
Bochner integrable X-valued functions G on the interval
[0,1] such that the function t - ”G(t)”x is an element
of N. If f € H(X,Y) then N(f) : N(X) » N(Y) is defined by
N(£)(6) = £ o G. sinee ll£e a(.)lly = gl Ne()!ly almost
everywhere we conclude that w(e)ll = Ul A11 the other
properties of a functor are trivially wverified.
Clearly N(I) = N.
We now determine the essential part of the functor N(.).

It is clear that the map cNgi): X®N - N(X) looks like

N(. )z . @ >

eX( X5 fi)— fi(.)xieN(x).

So N(.)e(X) is the closure in N(X) of the subspace
consisting of all G € N(X) such that G(t) lies in a finite

dimensional subspace of X for almost all t € f0,1], or the
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n
closure of all elements of the form 121 fi(.)xi,
f; € N, x; € X. Thus N(.)e(X) is exactly the space

NO(X), introduced in III 1.14. By III, 3.11 we have:

N, (X) = L3 (X) ®L°° N, and N (f) = N(.)_(f) is easily seen

to coincide with the canonically given map Lg)(f) éia)N'
1.22. BExample: Let N be a function space as in 1.21. For each

Banach space X we consider the space S{N,X) of all summable

maps N » X of III, 2.7. If f € H(X,Y) and V € S(N,X),

then it is easy to check that £ o ¥V € S(N,Y),

£ o WWS < Ul HWHS, so S(N,.) : Ban - Ban is clearly a

functor.

By III, 2.7 and 2.8 we see that

S(N,I) = Hyo (N,5(1%1)) = Bo (N,(1®)) =

= Hyo (1% N') = N', which can also easily be derived directly

So we see that, as expected, S(N,.)e(X) is the closure

of finite dimensional maps N - X in S(N,X).
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§ 2. Bifunctors on Ban

2.1. Remark: It is possible to derive the theory of bifunctors
from the theory of functors by introducing bilinear
categories or tensor products of categories: a bifunctor
M would look like an ordinary functor M: Ban & Ban - Ban,
where objects in Ban ® Ban would be pairs (X,Y) of
objects and the spaces of morphisms would look like
H(X,X1) ® H(Y,Y1). Then for example the Yoneda lemma
(2.2 below) for bifunctors would be a special case of the
Yoneda lemma for Ban1—based relative category theory.

But we prefer the ordinary approach and we will sketch

proofs of the well known category results in our special
setting too in order to provide a feeling for the theory.
Throughout this section G stands for a contra-covariant
bifunctor: Ban®Px Ban - Ban and M stands for a covariant one:

Ban x Ban - Ban .

2.2. Theorem: (i) For all X,Y € Ban and G we have
Nat (H(.,X) ® H(Y,..),G) = G(X,Y)
Ban®Px Ban
naturally in X,Y and G.

(ii) For all X,Y € Ban and M the relation

Nat  (H(X,.) ® H(Y,..),M) = M(X,Y)
Ban x Ban

holds naturally in all respects.



176

Proof: We use the maps

® € Nat (H(.,X) é H(Y,.),G) »

&xy

CIGLER, LOSERT, AND MICHOR

chY(1X ® 1Y) € 6(X,Y),

€ G(X,Y) » (£ ® b ® G(£,h)ayy),

which are easily seen to be linear, contractive, natural

in X,Y and G and inverse to each other. The second part

can be proved similarly.

2.3. Theorem: (i) Nat
Ban®Px Ban
holds naturally in A and G.

(ii) Nat (. ® A&

Ban x Ban

holds naturally in A and M.

Proof: We use the maps

P @11 € H(A,G(I,I)) and

((.") @ A ®..,6) = H(4,6(I,I))

«o,M) = H(A,M(I,I))

f € H(4,G(I,I))m» (x' ®2a ®y P G(x',&)f(a)), which again are

obViously linear, contractive, natural in A and ¢ and

inverse to each other. The proof of (ii) uses similar

maps.

2.4. We can interpret 2.3 (i) as an adjunction

between the free

A 2 OP
functor A > (.') ® A ® .. from Ban into Bante® X Ban and the

forgetful functor ¢ -» G(I,I). The unit of this ad junction turns

out to be the trivial isomorphism A = I' é A % I and the counit
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et X' ®6(1,1) 8 Y » 6(X,T) is given by

XY(ZX| ® a; ®y, ) =L G(x 8 ) ay

Qlearly it is contractive and natural in X,Y and G.
For all X, Y and G the following diagram commutes, where the

notation is partly from 1.5 ~ 1.7:

G(.,I) e(X,1) & Y G(X,.

.

X' ®6(I,I) @ Y >  &(X,Y)
G(I\ /

If we bear in mind that a reasonable tensor norm on X ® Y

induces a reasonable tensor norm on X1 ® Y for all X1 < X,

then this implies via 1.8, 1.9:
Proposition: (i) For all X, Y € Ban and all G the
map ngl(x' ® G(I,I) ® Y) is injective.
| i a
\ . H &(X,Y) induces a reasonable tensor norm

(tell o g oz, 1)y 55 LI e(1,I1)®Y
"subspace" X' ® G(I,I) @ Y of G(X,Y))

on the

(ii) PFor all X,Y € Ban and all M the map
M s s . T .
GXY]X ® M(I,I) ® Y is injective. L M(X,Y) induces a

reasonable tensor norm © on the subspace X ® M(I,I)®Y of
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M(X,Y).

The proof of the second part is similar to that of the

first part.

G

2.5. For all X, Y we consider the canonical factorization of eXY:
e
X' ®G(I,I) ®Y XY 5 &(X,Y)
coim ‘gY im e%Y
. Res
¢ (X,Y) XY > Ge(X,Y),

where G (X,Y) = X' ® G(I,I) ® /(e3) 7" (0) ana G, (X,Y) is

the closure of the image of ng in G(X,Y). By the naturality
of ng we obtain comtra-covariant bifunctors GA,‘Ge
and the maps G Ge, Gw GA are functorial too. By 2.4 Ge(X,Y)
is the completion of X' ® G(I,I) ® Y in a reasonable cross norm,
which is functorial in X and Y and since the norm of GA(X,Y)
lies between that of Ge(X,Y) and the projective one it is
reasonable too.

We have the corresponding factorization of M

Xy*
M
X ® M(I,I) @Y XY > M(X,Y)
coim €¥Y im €¥Y
M

M (X,Y) Xt > M _(X,Y),
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where again M (X,Y) = X ® M(I,I) ® Y/(€¥Y)'1(O) and M_(X,Y)
is the closure of the image of €y, in M(X,Y). Both ¥ and M,

are again co-covariant bifunctors and Mv MA,Me are functorial
actions.
M_(X,Y) and M (X,Y) are the completions of X ® M(I,I) ® Y

in reasonable cross norms which are functorial in X and Y.

2.6. Definition: Ge,Me are called the partial functors of type b
or the essential parts of G,M respectively. If Ge = G,
_ PSR ¢ SN . .
Me =M via im GXY’ im eXY’ then G, M is called a bifunctor
of type ¥ or an essential bifunctor.
Clearly Ge(X,Y) = G(X,Y) and Me(X,Y) = M(X,Y) holds whenever

X and Y are finite-dimensional by an argument like that

in 1.10 or by the following result.

2.7. Proposition: (i) If &(I,.) or G(.,I) is a functor of type Z,
then Ge(X,Y) = G(.,Y)E(X) or
Ge(X,Y) = G(X,.)e(Y) respectively.

(ii) If we introduce the notation G(.,Y)e(X) = G

Lo (6,1

and G(X,.)e(Y) = Gre(X’Y)’ then

¢ = (G

e le)re = (@

re)le'
(iii) If X' or Y has the metric approximation property, then

6 (X,Y) = G(X,.) _(¥) 0 G(.,7) (X).

Remark: Similar assertions hold for a co-covariant functor M:

in (iii) the hypothesis is: If X or Y has the metric
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approximation property.
It is not clear whether (iii) holds without assumptions

on the metric approximation property.

Proof: (i) and (ii) are immediately clear by looking at the
diagram in 2.4. To prove (iii) we proceed as follows:
If we set
G1(X,Y) = G(X,.)e(Y) n G(.,Y)e(X), then G, is an isometric
subfunctor of G with G1(I,I) = @(I,I), so (G1)e = G, and
Ge(X,Y) c G1(X,Y). To show the converse inclusion take
u € ¢ (X,Y) and €> 0. .
By the construction of G1 there are v =iE1G(X,j})bi and
v1=j§1G(x3,Y)cj in G (X,Y) with Hu-—f G(X,¥; )b, < % and
| § G(x&,Y)cjn < % .
If ¥ has the metric approximation property, there exists
by 1.13% a finite dimensional map w: ¥ - ¥ with 'lwll = 1
and llu - a(X,w)ul < g. Then 'lu ~ G(X,W)V1” =
< g - G(X,w)uu + “G(X,w)u - G(X,w)v1n < € and
G(X,w)v1 € Ge(X,Y). If X' has the metric approximstion

property, take a finite dimensional w,:X = X such that

1
e - G(w1Y)uH < g and consider lu - G(w1,Y)vw .

2.8. Theorem: (i) Nat (&,H(.8..",4)) = H(G(I,I),A)
Ban°px Ban

holds naturally in A and G.
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(ii) Nat (M,H(.'®..",A)) = E(M(I,I),A)
Ban x Ban

holds naturally in A and M.

1
Proof: (i) Define Nat (...) —— H(G(I,I),4)
]

by V(o) = Op,pr @ € Nat (.o.), and 9(f)yy(g) (x®y') =
= f o G(x,y")g, £ € H(G(I,I),4), g € G(X,Y),

x ®@y' € X®Y',

It is a routine matter to verify that U, 9 are linear,

contractive, inverse to each other and natural in X, Y

and G.

(ii) is proved in a similar manner

2.9. This result is an adjunction too: the functor A -» H(. ® ..',A)
is right adjoint to the forgetful functor G -» G(I,I). The

unit of this adjunction is the map
wﬁY: G(X,Y) ~ H(X ® Y', &(I,I)), given by

G ~ JNC .
wXY(g) (x & y') = G(x,y')g, g € G(X,¥). Clearly Py, is

contractive and natural in X, Y and G.
The unit of the adjunction for M is the map

w%Y:M(X,Y) > H(X' ® Y',M(I,I)), given by
c¥>¥Y(rr1)(><' & y') = M(x',y")m, m € M(X,Y).

Definition: G (resp. M) is said to be a total bifunctor if

G M - .
the maps @yy (resp. mXY) are injective for all X,Y.
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G (resp. M) is total if and only if maps of the form
&(x,y'), x € X, y' €Y' (resp. M(x',y), x' € X', y' € ')
separate points on G(X,Y) (resp. M(X,Y)) for all X,Y.

2.10. For the remainder of this section we suppose that G and M

satisfy the condition @(I,I) = I and M(I,I) = I.

Definition: A tensor product on Ban is a co-covariant bifunctor
M: Ban x Ban - Ban of type & with M(I,I)= I.
This definition is justified by 4.4, since X ® Y is dense
in M(x,1), 1| M(X,T) is a reasonable crossnorm on X ® Y
by:2.4 ~ 2.7, and the tensor product is bifunctorial, i.e
the map f ® gt X ® Y » X1 ® Y1 extends to
M(f,g): M(X,Y) » M(X,,Y,) with
I ® gll = lM(e,g)ll s llell ligl for a1l £ € H(X,X,),
g € H(Y,Y,). We will sometimes write X EMY for M(X,Y).

2.11. Given a contra-covariant bifunctor G with G(I,I) = I, then the
canonical map @%Y: G(X,Y) » H(X ® Y',I) actually takes its
values in H(X,Y") and is given by < y',ng(g)(x) > =
= &(x,y')g € I, g € G(X,Y).

Now suppose that G is a total bifunctor.
Since mG is natural and contractive, the action of the
bifunctor H(.,..") coincides with that of G on G(X,Y), if we

consider G(X,Y) (@ now a total functor) to be a (generally non

closed) subspace of H(X,Y") via o i the norm of G(X,Y) is



FUNCTORS ON CATEGORIES OF BANACH SPACES 183

greater than that of H(X,Y"); and we express this fact by
saying that G(X,Y) is contractively contained in H(X,Y"),
or that ¢ is a subfunctor of H{.,..") (in contrast, a
partial functor is always an isometrically contained
functor, 1.9, 1.10). Now via canonical maps we have
X'®Yc@(X,Y) cH(X,Y"). To verify that all these inclusions

are the obvious ones we must check that

X'eyY

3 6(X,Y)

G
Pxy

H(X,Y")
commutes, where X' QY-'H(X,Y") is the canonical map
x'®y= (x- iy(<x,x'>y)). But this is obvious. Since
n. “G(X,Y) induces a reasonable cross norm on X'®Y we
have
X' €G(X,I) CH(X,I)=X'
YeG(I,Y) cH(I,Y")=Y", where the first inclusions are
isometric. Thus G(X,I)=X' for all X. However, the
covariant part does not behave as well; we must distinguish

two cases.

Definition: A total bifunctor G: Ban®P v Ban - Ban with
G(I,I)=1I is said to be of type (I), if G(I,Y) =Y holds

for any Y € Ban via the above inclusions.

If G(I,Y)=7Y" for all Y€ Ban, then G is sald to be of

type (II).



184 CIGLER, LOSERT, AND MICHOR

Remark: There exists a total bifunctor G with G(I,I) = I
which is neither of type (I) nor of type (II) (cf. exercise 3),
Since we can factor ng as
@¢(X,Y) -» H(X,&(I,Y)) » H(X,Y"), where the first map is
given by g (x » G(Q,Y)g), for g € G(X,Y), the canonical
map wgy actually takes its values in H(X,Y), if G is of
type (I), and thus the expression
< ng(g)(x),y' > = G(g,y')g, ghf G(X,Y) is weaks—continuous

and well defined.

2.12. Definition: A bifunctor A of type (I) is called an oyperator
ideal.
To Jjustify this notation we will show that it coincides with
the usual notion of a Banach operator ideal (see PIETSCH
(63], (641, or GORDON-LEWIS-RETHERFORD [30] for a quick
account and examples): A class A of bounded linear maps between
Banach spaces is a Banach operator ideal, if ifs components
A(X,Y) = A 0 H(X,Y) are linear subspace of H(X,Y), which
are Banach spaces with a norm I . ”A and fulfill the

following conditions:

(1) x' € X', y € Y implies x' ® v € A(X,Y)

and lx' ® y“A = lxll |y”.
(ii) £ € H(X1,X), g € A(X,Y), h € H(Y,Y1) implies

he gof € A(X1,Y1) and llno go f”A < lnll ”g“A ell,

Thus each Banach operator ideal in the usual sense clearly
becomes a bifunctor of type (I) by putting A(f,h)g = ho go f.
Conversely each bifunctor A of type (I) is a Banach operator

ideal, condition



FUNCTORS ON CATEGORIES OF BANACH SPACES 185

(ii) being subsumed in the functorial property:
g € MX,Y), £ € H(X1,X), G € H(Y,Y1), then
h o g e f= H(f$h) CPXY(g) = C‘OX1Y1 ° A(fyh)g’

lhegotll,= ”A(f,h)guA(X1,Y1) s gl lnll HgHA(X’Y), where

A
we have identified g and %yy(g) for shors.
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§ 3.
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Tensor products of functors

In this section we develop the very useful theory of tensor
products of functors. There are several possible methods

of introducing it - the most powerful and general one being
certainly the use of ends and coends of bifunctors (compare
our treatment of the A-module tensor product in III, § 3),
Compare MICHOR [56], where this theory is developed for
semicategories. Here we want to use a method based on spaces
of natural transformations and the Yoneda - lemma and
depending heavily on duality theory. The disadvantage is
that it cannot be used for arbitrary bifunctors. The
advantage is +that certain special properties of the tensor

product can be derived very quickly.

Let K be a full subcategory of Ban, let G : KOP - Ban be
a contravariant and F : K -» Ban a covariant functor.

For any Banach space Z we have a covariant functor
H(G(.),Z) : Ban - Ban, and the assignment Z - H(G(.),Z) is
a covariant functor Ban - BanBan.

Now we consider the covariant functor

Z - Nat (F(.),H(6(.),Z2)).
X

We want to investigate whether this functor is representable.

Definition: The Banach space

G & P := Nat (Net (P,H(G,.)), Id, )

£ Ban K Ban
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is called the tensor product of G and F over K.

Natural transformations ® : F = F,, ¥ : G- G, over ¥

clearly induce natural transformations

Nat (®,H(V,.)): Nat (F1,H(G1,.)) - Nat (F,H(G,.))
K X K

and so give rise to morphisms

PEyp v G é_ %5

and the assignation G,F P G éK F is a co-covariant
bifunctor BanEop p:d BanK - BanT

Clearly e & Ml epll 111},

To motivate this definition: If U is a Banach space which
represents Nat (F,H(G,.)) in Ban, , i.e. there is a natural

K
isometric equivalence H(U,.) = Nat(F,H(G,.)), then by
X

1.4 we have gzz (Ngf(F’H(G")>’IdBan) = giﬁ (H(U”)’IdBan) = U.

%.2. Lemma: The map

G & F = Nat (Nat (F,E(6,.)),.) > Nat (F,a"),
= Ban X X

given by Me ﬂj is isometric.

Proof: Given M € G éK F there is an X € Ban such that

inll = sup H’ﬂYH = anl\ + € and there isa ® € Nat(F,H(G,X))
Y € Ban X

with loll = 1 such that an(w)HX < HnXH + €. There is an
x' € x', lx'l =1 such that 1< ng(®),x' >[ = ling (@)l
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Then UnIH < Il = HnXH + e S |<n(P),x' >| + 2e

lnI o Nat (F,H(G,x'))(®)| + 2¢
X

A

anlmx'll\\to!l + 2€ = ‘\nIH + 26, ged.

3.%. Thus G éK F is isometric to a subspace of N;t (F,G')'. We shall

show how G ®K F can be canonically identified as a subspace

of N%t (F,G*)'.
For ;ny X € X there is a contractive bilinear map

GX : (X)) x F(X) » Nat (F,G')' , given by
K

< >.< >,
n, 9 (ggsfy) gy oMy (£5)
This family of maps (C’X)x €% has the following property:

For any f : X Y in K, gy ¢ a(y), € F(X) we have

x
0x(6(£)gy,y) = Op(gy,F(2)fy), since for all 7 ¢ Nlaét (F,G')

A

nycx(G(f)gY,fx) >=x< G(f)gY,nX(fX) >
< &y G(f)! T‘]X(fx) > =< gy,_’f;’[YF(f)fx >

< M,0 (g, P(£)Eg) > .
Now let M denote the closed linear subspace of Nat(F,G')’
K

1

i

generated by the images of all maps OX’ X € K.
We assert that M represents the functor Nat(F,H(G,.)) : Ban » Ban,
K
i.e. there is a natural isometric equivalence of functors
T : H(M,.) - Nat(F,H(G,.)).
K
If Z € Ban and & € H(M,Z), then let
(T,%)x(fg)(8y) = (9%(gx,fy)) € Z for X € K.
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If £ : X> Y inK, then
(H(6(£),2) « (1,85 (£5) Nay) = (1,005 (£5)(6(2)ey)

it

O‘(ox(G(f)gY’fx)) = c‘(OY(gY!F(f)fx))

(7,94 (F(£)2) (gy), and

|z el }s(‘tpg llf;ﬁ§1 “2;{1 ” (o) y (£ (g,
= sup ”;u < ”Z; < nd(dx(gx,fx))nz
< llell.

So T

5 & € Nat(F,H(G,.)) and IITZall < llall,
K

If Z € Ban and ® € Nat(F,H(G,2)), let
K

—

-1 I
(15'9) & g (g 12 ) = F o (g M) © 2.

550 E oy (g 2y ) =
l

i

1571 '< . Xi(in)(gX')'z' "

“z§“£1 ] % [H(G,z') ¢] gX )

= ot 1 1 < B@,z) - @, %:Oxi(gxi’fx ) >

i

A

”zsﬁp la(a,z') e @” 5(F,8) ”% ?Xi(gxi,fxi)nm

K
Hool|

1A

N;t(F,H(G,.)) . "§ dxi(gxi’fxi)nm

-1
Z

and 770l < lloll, so tnat 1;'¢ is defined on the whole of M. T,

This computation shows that T, @ is well definded, linear,

-1

is obviously  the inverse of TZ and it is equally simple to

see that TZ is natural in Z. So we have?
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8 +(F,H(G,.))
Trecrem: G 85 P represents the functor NE (F,H(G, ’
i.e. H(G 5K ?,.) = Hat(F,H(G,.)) as functors Ban - Ban.
= K

5 8 F i3 uniquely determined by this DProperty up to

tsometric isomorphisms and is isometrically isomorphic to the
closed linear hull M of all elements Oy (gy,fy), X € K in

Nat(F,G')'.

Prgof: It only remains to show that G e F =M:

3]
P

o

L}

Nat (Nat(F,H(G,.)), Id, )
B::n(é( Ban

[t}

Hat (H?H,.) Id, ) =Mby 1.4.
Ban ’ Ban

Ir a gimilar manner, by 1.4, we have M = M1 if H(M,.) = H(M1 ve)e

19

«4. let K be small with respect to Ban, so that the coproduct
ng F{X) e P(X) exists in Ban. (ef. I, 1.10). Then we may
conaiier the map

z - cos G(X) & F(X) » Nat(F,c')'.
xbe’y: xég G(X) 7

froresition: O is a strict morphism (I, 1.6) and so has the

following canonieal factorization, where O ig an isometric
. -1 . .
isozorphism and O '(0) is the closed linear subspace

4 XgK 3(X) 2 F(X) generated by all elements of the form

gy 8 F(£)fy - G(flgy ® £y 5 £ : X ¥ in X.



FUNCTORS ON CATEGORIES OF BANACH SPACES 191

LF®X) ®F(X) > Nat(F,G')

coim © N im O
~ o A

x#x®(X) ®F(X)/5-1 ) —> G F .

Remark: Here we have one of the reasons why we call this

space a tengor product. Compare III, § 3.

Proof: If M is the subspace of Nat(F,G')' considered above,
X

then clearly the image of O ig dense in M, and M = ¢ %K F.
So we are done if we know that ¢ igs strict. Let N be the
closed linear subspace generated by elements
gy © F(f)fx - G(f)gY ® fy in XgK ¢(X) ® P(X). It suffices to
show that (¥ G(X) ® F(X)/y)' = Nat(F,G') and that

XK N K

-

(im G) » T is just the canonical embedding into *the bidual.

This is seen as follows:

(X;K G(X) ® P(X)/y)! = Nt € Xg.lé (G(X) ® F(X))'

= XIELK H(F(X),8(X)'), and N* consists exactly of all
families (CPX)XGK of maps ¥y : F(X) » G(X)'

with s;;ip HCPXH <® and <N, > =0, i.e.

< gy ® F(£)fy,® >

< G—(:f‘)gY ® fX,CP > or
< gY,CPYF(f)fX > =< gY,G-(f)'cPX(fX) >, i.e.

f@YeF(f) =G(f)' o ¥, for all £ : X » ¥ in K;

X
thus N* = Nat(F,G').
X
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(im o) o G coincides with the canonical embedding

into the bidual by the construction of (Ux).

3.5. Remark: We have a canonical natural equivalence

Nat(F,H(G,.)) = Nat(G,H(F,.)) which comes from the
X £

componentwise natural equality H(F(X),H(G(X),Z)) =

= H(G(X),H(F(X),2)) (1.2). We could have used this %o
introduce & éK F.

We will use tge formula

H(G @ F,.) = Nat(&,H(F,.))
K X

which is compatible via the above equalities with the

definition of G ‘%K F.

3.6. Theorem: Let K and L be full subcategories of Ban, M:EOPx L - Ban
a contra-covariant bifunctor, G:;L_OP—* Ban contravariant and
F:X - Ban covariant. Then we have GéL(MéKF)= (G &LM) ®KF .
Proof: From 3.1 it follows that M éK F ¢ L » Ban is a functor,
likewise G éL M EOP - Ban. Now we compute using 3.3

and 3.5.

MG%W%J%)ﬂ?WﬂM%EM (by 3.5)

]

Nat(G, Nat(F,H(M,.))) (by 3.3)
L K

i

N;t(F, N%f(G,H(M,.))) (using the pointwise

equality HE(P(X), H(G(Y), EQUX,Y),2))) =
= H(6(Y),HE(F(X),H(M(X,Y), 2)))
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U

N;t(‘F,H(Gé M,.))  (by 3.5)

=

]

H((G &, M) 8 F,.)  (by 3.3)

Remark: Using 3.4 the equality is given by:
UX(gX,UY(m ,fY)) = GY(UX(gX’mXY)’fY)’ or, in s@orter
form, by gy ® (myy ® fy) = (gg @ myy) @ fy.

3.7. Theorem: Let K and L be full subcategories of Ban,

M : L x K- Ban a contra-covariant bifunctor and o L - Ban
and F, : K = Ban be covariant functors.
Then the "exponential law " holds:

N%t(M QL F,,Fy) = NZt(F1,Nzt(M,F2)).

This equality is natural with respect to natural

transformations of all functors. Hence

F1 - M ®L F1 ig left adjoint to F

5 7 N;t(M,Fz).

Proof: By 3.3 we have
xlg HOUC0) 8y, 7y(0) = gl Nat(P HOIC, ), 75 (X))

and the subspace Nat(M éL
K =

corresponds exactly to the space of. families (QDX)X€K

1,F2) of the left hand side

in the left hand side, which are natural in X, i.e. to the
space Nat(F1,Nat(M,F2)).
K

To prove the naturality of the equation is a routine task.

Remark: 1) Using 3.4 and the shorthand of the remark in 3.6

the correspondence is given by P«— D where
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oy (oglugy,2'4)) = (By(2'y))ylngy) or

oy (mpy @ 2'y) = (By(2'y) )glmgy).

2) Of course there are corresponding exponential laws:

at (G@L M,F):N%t (@, Nat (M,F)) where G is contravariant

and P may be co -or -contravariant according to M.

We will use all those without hesitation.

3.8. Proposition: Let H: EOPXK* Ban be the restriction of the
contra-covariant Hom-functor to K. Then for any
F: K= Ban and G: K°P- Ban we have H® , F=F and

G&K H=G naturally in F and G.
- (.)
Proof: H(H(.,..) @KF(.),...)= ¥at (H(.,..), B(F(.),...))
= (.)ek
= H(F(..),...) by 1.4.

Remark: These equations reduce to the trivial relations

18X=X=X®I for K= {I}.

3.9. As a simple application of the theory of tensor products we
can compute all Kan-extensions between full subcategories
of Ban.

If K and L are full subcategories of Ban and if S: K~ 1L
is a functor, then it defines the "restriction via S"
functor: Ban®-BanS by P-FS. The left Kan extension Lang is

a left adjoint to this functor, the right Kan extension is a right
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adjoint (ef. Mac LANE, [49], chapter X for more details).
The restriction functor ¥-=PF3 can be written either as

tensor product or as space of natural transformations:

FS(.)=H(..,5(.)) & 7F(..) by 3.8.
(..)eL
FS(.)= WNat (H(S(.),..),F(..)) Dby 1.4.

(vo)edy

Proposition: Ran ¥, = Nat (H(.,8(..)),F(..)),
54 (..)eK 1

Lan.P, =H(S(..),.) & 7P (..)
ang*y (yex !

for all F1 € Ban-K.

For S: {I| — Ban this reduces to 1.17. and 1.6.

Proof: Let FeBan—I-’, F, ¢ BanX. Then ( )Nat (FS(.),F1(.)):

.)€k

= Nat (H(..,8(.)) &  F(..),F ()=

()€K (..)eL

= Nat  (F(..), Nat (H(..,S(.)),F(.))).

(..)€L (.)ek

Nat (#,(.),Fs(.))= Nat (F,(.), Nat (H(S(.),..),F(..

(.)eE (.)eK (..)€eL

= Nat (H(S(.),..) # F,(.),F(..)).

(..)eL (.)eK

-

5.10. Proposition: Nat (¥,,F.(X#.))=Nat (F,H,,F,) holds
Proposition: 11F5 18y, Fp
Ban Ban

n

naturally in F, ,F2 € BanBa and X € Ban.

195
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Proof: Nat (F1(.),F2(-xé.))= :

Nat (F,(.), Nat (H(X&.,..),Fp(..)))
Nat (H(X&.,..) 87 (.),Fp(..))

Nat (H(.,H(X,..)) 8F(.),Fy(..))
Nat (F1HX,F2)

i

i

i

Remark: This result shows that
A .
Lany p Fy=FHy and RanHXFz-: F,(X®.) hold, which is
true for any pair of adjoint functors. But on Ban, there

is only one such pair (1.2.).

3.11. Proposition: Let K and L be full subcategories of Ban,
5: K-~ L, G: _LOP-'Ban and F: K- Ban be functors.

Then G o SQF=GQL LangF.
K =

If §: LK, then we have G& F.S=LanG® F.

Proof:GuSé\eKF=(G(.) & H(s(),..)) & P(..)=
= (.)eL (..)eK
—6(.) & (u(s(.),..) & F(..))=6FLan.F.
)eL .. )€K L ®

Note that for contravariant G we obviously have
A

Lang G:G(.)( ?L H(..,8(.)), going along the lines
L)€

of 3.9. for contravariant F.and F,.

G&Lmsze(.) & @m(...s(.)) & F..)N
(.)e (..)eK

e

.

= (3(.) & H(..,5(.))) & PF(..)=lan.a®
) . )eK 50K

€L (
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Remark: 1) If K= {I}| and S: {I}->Ban is the embedding, then
F=Xe¢€¢Ban and LanSX=X$ .+ B30 We have

¢ ® (X#.)=6 & lang X=0S ® X=3(1)8x,
Ban Ban {1}

analogously (X% (.)') & F=X8&P7(I).
Ban

2) This result is the dual one to the property by
which we defined Kan extensions (3.9.). We could have used
this property to define them. Note that (LanSF)':zRanSF'
and (LansG)'==RanSG' hold.

3.12. Proposition: Let G be contravariant, F covariant and one of
type £. Then G B F=o(1) & F(I), where ®, denotes the
Ban o i
conpletion of the algebraic tensor product in a reasonable

crossnorm & (IX., 2.1.).

Proof: Suppose that I is essential. Since

op's (@ BsAa F)'=Nat (P,3') = H(F(I),6(I)') = (G(I) # F(I))"
a1
is injective, the mapping oy: G(I) #F(I)~6 £

Ban
has dense image. We have natural transformations

G ¢
GI) & () —5— & —2 H(.,6(1)) (1.6., 1.14., 1.15.).

Both are contractive and induce therefore contractive

maps
G(I)'A?F(I)_—: (¢(1) é(.)-) B P ———0 gBanF —
Ban

—_— H(.,G(I)) & P=TF(3(I)).
Ban
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A
Since F(G(1)) = F(I) @G(I) has dense image (F is of

type £) the proof is finished.

3,13, Proposition: If X has the metric approximation property,

A A
then for any F: Ban- Ban we have (.'&®X) & F=Fe(X).
Ban

If X' has the metric approximation property, then for

A
any G: Ban®? - Ban we have G ) (x'&.) =Ge(X).

Ban
Proof: We prove the first assertion, the second one can be
proved similarly.
By 3.12. (.! %X)_Q F(.) is a completion of X ®F(I), since
(.’ §-X) is esserﬁ)i:al’gl. We have natural inclusions Fe-’l«‘

and .' QA?X-'H(.,X), which induce linear contractions

A
(ohy A ra By 8 F-H(.,X) ® F=r(X).
Ban °© Banﬁ Ban
So we have to show that (.'®X) ® Fe-'F(X) is an

Ban
isometry, i.e. we have to show that the adjoint map

F(X)' »Nat (. éX, Fe(.)') is a guotient map. It is
clearly given by

F(X)'»Nat (H(.,X),F(.)")-»Nat (K(.,X),F(.)") =

= Nat (K(.,X),Fe(.)),where the first map is the Yoneda-map
from!.4. and the second one is restriction. F(X)' *Fe(x)'
is a quotient map, so it suffices to show that the
"Yoneda map" T: Fe(X)'»Nat(K(.,X),Fe(.)') is an
isometric isomorphism: ‘

for z € Fe(X)' let ('rz)Y(f) = Fe(f) 'z, feK(Y,X).

Let (ui) be an approximate unit in K(X,X). Then
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o _
lZ,Fe(X)'—vels?‘ul()x) “V’Z)Sllvﬁiﬂ s‘.izp I<F(ui)v,z>{ (1.13.)
lvllst
S R At
= sup 'l(Tz)X(ui)HFe(X),g I(rz)

< lrzlt< Nzl

So T is an isometry and it remains only to show that it
is onto. Let B¢ Nat (K(.,X),Fe(.)‘). Since F.@X(u.l) is
bounded in F_(X)' it has a weak*-cluster point z € Fe(X) -
But then for any f € K(Y,X) and ve Fe(Y) we have

v, EY(f))=1:im (v, sY(uio f)):l%m {v, BY(K(f,X)uiD:

i

lim (v, F ()" Byglu;)?

1

lim (E‘e(f)v, Bx(ui)>=<Fe(f)v,z)
(v, Fe(f)'z)=<v, ('rz)Y(f)>.

1]

1

So Tz=8 and T is onto.



CHAPTER V

Duality of functors

§ 1. Duality of functors

Several notions of duality of functors have been studied
in the literature until now. We will give a unified
general approach to them in this section, starting with
a very general situation and then specializing to get
more detailed results. We restrict ourselves to
dualities for covariant functors; a similar theory for
contravariant functors can be developed along the same
lines and we will outline the theory at the end of this
section.

K will always denote a full subcategory of Ban. By Bang

we mean the category of all admissible functors

K- Ban (IV., 1.1.).

1.1. Definition: A duality for covariant functors is a
contravariant functor D: (Bzaun-lvlg)op-’Bzann-IS which is
admissible (linear and contractive on Hom~spaces)
and self-adjoint on the right, i.e. Nat (F1,DF2)=
= Nﬁt (FZ,DF1) holds naturally in F, %hd F, via an

1

isometric isomorphism nF1F2 with nF1F2

1.2. Example: This example will later on be seen to be the

| -
Foly

only possible one. We consider co-covariant bifunctors

G: Kx K~ Ban (see IV., 2.1.). Such a bifunctor G is said to

202
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be symmetric, if there is an isometric isomorphism
t

G(X,Y) = G(Y,X) which is natural in X and Y and is an
involution (i.e. tt==IdG). ¥ 18 called transposition.
Examples of symmetric bifunctors abound:

18y, 1' @, v, x8y, x,0), BE I,

K(x',Y"), H(X,Y')', K(X,Y')', K (X',1"),

11(X,Y')' etc. Some of them are aontracovariant in their
natural form. We have made them co-covariant by duality.
All of them fulfill G(I,I)=I. It is easy to construct more
general ones: G(X,Y) @bA or H(A,G(X,Y)), where G is as
above and A is a fixed Banach space.

Given any symmetric bifunctor G: KxEK- Ban we construct a
duality, the so-called G-duality p%: (Banrls)oP-*Bxiun-IS by

DGF(X) = NEt (r,6(X,.)).

It is clear that p¢ is a contravariant functor on Banz.
Since Nat is the Hom-functor of BanK, DG is obviously
admissible, and we show now that the symmetry of G implies
that DG is adjoint to itself on the right:

Nat (F1,DGF2)=12Iat) (F,(..), Igat):(Fz(.), G(..,.)))

= Nat (Fy (L) BE,(.), 6(..,.))

Yat (Fp() &F,(..), 6(.,..)) via

oo g

t

.o

Nat (Fp(.), Nat (Fy(..), 6(.,..))) =Nas (F,,0%,).
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1.3. Given & duality D on BanE we use its self-adjointness
on the right to define the notion of D-reflexive
functors: K- Ban. We have naturally in F (setting F1=DF);
Nat (DF,DF) =Nat (F,DDF), and the morphism in the right-
hand-space that corresponds to the identity in the left-
hand-space is céalled the canonical morphism and denoted
by tF: F~-»DDF. A functor F is said to be D-reflexive,

if tF is an isometry onto.

1.4. Theorem: There is a one-one correspondence between
dualities D on Bang and co-covariant symmetric
bifunctors G on KxX; thus each duality has the form

G

DY of 1.2.

Proof: Given a duality D we define a bifunctor GD by
QD(X,Y)==DHX(Y). It is clearly a functor in Y and since
f: X1-*X defines a natural transformation Hf: Hk --'HX
1

DH, (Y) - DH, (X).
X, ) X2()

2
we can define GD(f,Y)==(DHf)Y:
GD(.,Y) is thus covariant and GD becomes a bifunctor
since for g: Y1-*Y2 we have GD(f’Y2)° GD(X1,g)=

since DHf: DHX1-*DHX2 is a.natural transformation.

Gy is symmetric since we can define v, GD(X,Y)-*GD(Y,X)
by the following equation: GD(X,Y)=DHX(Y)=Nat (Hy,DHX)

by (IV., 1.4.),

Nat (HX’DHY) by self-adjointness of D,

]

DHY(X) by (IV., 1.4.) again

GD(Y,X) naturally in X,Y, and the iterated process

furnishes identity.
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1-5.

(Gy) (Gp)
Now D =D since D F(X) =Nat (F,(}D(X,.)) =

= Nat (F,DHX)=Nat (H ,DF) = DF(X).

On the other hand we have G G =@ for each symmetric
bifunctor @ on KxK since ¢ , (X,Y)=D HX(Y) =

= Nat (HX,G(Y, D) =6(Y,X) = G:?X,Y) .

So it suffices to study the duwalities derived from symmetric

bifunctors G. We are able to write down the form of the

canonical map tF: F=-D DGF of 1.3.:

t§(fX)Y(p) = 13(;.)((1“)()) for fy € F(X), ue p%r(Y) = Nat(F,&(Y,.))
as is easily seen by following up the equation in 1.2.

which we used to prove the self-adjointness of DG.

Furthermore we have the following result:

G
Proposition: DG(tF) o tD F_y Gt DGF-'DGF for all
G, F D°F pp

F: K= Ban. So D7(+") is a quotient map and t is

an isometry for all F.

Prooﬁ': The last assertion follows since both maps are
contractive. Let peDd F(Y), f € F(X). Then
[%(F) o oP FJYm)]X(f ) =

G
G, F
DY (4 )y e D E(“)]X(f}()=
F D
[Nat(+F,69) (7 Fo(0) g (gy) =
D F F _
[1 Y(“) o 1 ]X(fx) =

1]



206 CIGLER, LOSERT, AND MICHOR

G
LF (G e)) =

B ()7 (1)) = TP g (£4)) = iy (£5).

1.6. We recall from IV., 2.9. that G is said to be total, if

G(x',y'), x' €X', y' €Y' geparates point on G(X,Y) for all

X,Y €K.

We have maps (compare IV., 2.9.):
G

o F: dOF-H(.',D%F(1)), and

5F: DPr-H(F(1),6(.,I)), given by

eoDGFX(uxx- ) =D%F(x") (k) = &(x',.) » w € DOR(1)
and jFX(p) =uq for ptDGF(X), x' in X'.
chGF and jF are easily seen to be natural in F and even
in G and contractive.

pCp

Proposition: If G is total on X then both @ and jF are

injective.

G
Proof: O=¢»D Fx(u)(x') =3(x',.) o u for all x' €X'
implies G(x',Y') e py=0 for all y' €Y' K YeK,
thus pY=0 for all YeX, so p=0.

Similarly the commutative diagram

F(Y) My >G(X,Y)
F(y') Jt a(X,y')
P(I) b1 >G(X,I)

shows that by =0 for all Y€K if p =0 for peDYR(X).

I
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1.7. Theorem: Let F be a functor. If G is total, then DGF is

DG-reflexive if and only if

g v
2 FI : DGF(I) - (DG)3F(I) is an epimorphism in Ban.

Proof: The stated condition is clearly necessary. If conversely
G
D FI is epi, then we may suppose that it is an isometric

Q.
isomorphism since JDF is always isometric by 1.5.

Thus its left inverse DG(‘»F)I (see 1.5) is also an isometric

igomorphism and so is a right inverse, i.e. we have
G

S Y
(D7) F(I)G

It suffices to show that 0 ¥ o D¥(1F) =4 ,

@3
(D7)°F
since the converse is always true by 1.5, and for that it

is enough to show that

&\ 3 G G\ 3 G\3
w(D )°F o DF, DG(tF) = w(D )°F , since by 1.6 @(D )°F

is mono . Let © € (DG)3F(X) and x' € X':

G\3 G.
oD)F (DF (p8(F) (a)))(x1)

n

G
(0%)7r(x) (P FL (08 (F)p(@))

D°F
[+ I ° D¥p(x') o DG(tF)x](“) ’

]

G
gince P F . pp o (DG)3F is natural,

= [zDGFI . DG(tF)I o 0%%r(x)1(0) ,

G

Fy . F is natural,

since D¥(* %3 - »
=[1 o (0H3r(x1)](e
PR R L CN D

Gy3
= o0 (o) (x1).
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1.8. Definition: Let A be a Banach space. A subfunctor A(.',A) of
H(.',A) is a functor X -» A(X',A) together with an
injective natural transformation A(.',A) - H(.',A)
such that A(I,A) = H(I,A) = A. We may comsider A(.',A)
to be an algebraic partial functor of H(.',A).

We can derive from this definition the following properties
of subfunctors:
(1) lge grliy = Helli Mgl , £ € AR ,4), & € H(X,T),
because A(.',A) is a functor.
(ii) MX',A) 2 X ® A, the space of all finite-dimensional
weak®- continuous maps X' = A, because
B <xp. > =T () = DA NE
and A = /\(I,4).
(iii) H.HA is a reasonable crossnorm (II,2.1) on X ® A

by IV, 1.8.

By 1.6 we may consider DGF to be a subfunctor of
H(.',D%F(I)) if @ is total.

1.9. If G is a symmetric co~-covariant bifunctor on K x K we may
consider the contractéje natural map @ ;Y s ¢(X,Y) -» BIX % Y,
6¢(1,I)), defined by wn(g)(z xj ®y!) = z &(x},y})e
(compare IV, 2.9 vhere we considered a similar map). Clearly
@(I,I) = H(I ® I, G(I,I)), thus we may consider G as a subfunctor
of H((.') ® (.."), G(I,I)) in the obvious generalization

of the notion of 1.7, if G is total, since then mG is injective.
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If F : £ - Ban is any functor, we consider the natural
contractive map FiF oo H(.',F(I)), given by
@g(fx)(x') = F(x')fX (compare IV, 1.14 ) and consider its

canonical factorization (I, 1.6 )

7
F(X) > H(X',F(I))
coim ¢§ l ~ I im @i
oF
Az, p(1))—2 > OL(F(X))

where AF(X',F(I)) = F(X)/(¥7)7(0) ; it is clear that
AF(.',F(I)) becomes a quotient functor of F (compare IV, 1.9,
where we used a similar construction), which is a subfunctor

of H(.',F(I)), called the subfunctor associated to F.

Lemma: For £y € F(Y) and M € D®F(X) we have CPgY(HY(fY)) =
cog,l o By wf{(fy) in H(X' ® Y', &(I,I)) = H(Y', H(X',&(I,I))).

Proof: Let us denote by S the isomorphism
S, H(X' ® Y',&(I,I))) -~ H(Y',HX',&(I,I))).

Then we have

o (K (£5)) (x' ® ') = G(x',y' Hy(Ey) =

= G(X'.I)G(X:Y')“Y(fy) = G(X'QI)“I(F(y')fy))

lo(xt,1) o by « (PR, N3 =

oG (M (PR (2)) 7)) (x' @ 1)
G ' '
. CORICANIEL

]

I

BchgI “ Moo Cpg(fY)](x' ®yr) .
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1.10. If G is total, then lemma 1.9 implies that any K € DGF(X)
factors through ¥ , i.e. DOF(X) is determined by the
associated quotient functor ﬁ?k.',F(I)) of F. So we have:

Corollary: If G is total then we have for any F:
pF = DF(AF(.',F(I)), and F(I) = (0) implies D°F = (0).

1.11 It remains to compute DG on arbitrary subfunctors

A(.',A) of H(.',A) if G is total.

Theorem: Let G be a total symmetric bifunctor on K x K and
A(.*,A) be any subfunctor of H(.',A). Then DIA(.',A)(X)
consists of all f € H(A,G(X,I)) (via jQ) which fulfill
the following conditions:

a) £+g € G(X,Y) (via ¥%) for all g € A(Y',A), Y € K.
b) life g”g(x,x) Ssp.lliglly for a1l g € A(Y',4), ¥ € K .

We then have “f“DG‘A( K ,A) (X)= inf P .

Proof: If M € DIA(.',A)(X), then by 1.6 ;j;\(u) = My € H(A,6(X,I))
injectively and by lemma 1.9 conditions (a) and (b) are
fulfilled.

If conversely f € H(A,G(X,I)) has the stated properties,
then g » f ¢ g (forgetting (wﬁy)"s @%I) defines a map:
N(Y',A) » G(X,Y) of norm less than P and it acts on
a€ANI,A), a€Abya » £+ a=+f(a). Thus its image under
jé}is just f. This map is natural in Y, since for h : Y 2

we have
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NG',A)g=g*h" b feo geh'=
= H(B',6(X,1))(f « g end (957" of 15 natural. Lemma
1.9 now concludes the proof that the two constructions are

inverse to each other.

Remark: (i) In this theorem we identified DG/\ (.',A)(X) with
its image under the injective map ;]Ax in H(A,&(X,I)) (1.6)
and G(X,Y) with its image under 93, in the space
H(Y',H(X',6(I,I))) = H(X' & Y',6(I,I)) (1.9).

(ii) If X = Ban or the category A of spaces with metric
approximation property or the category Hilb of Hilbert spaces
or the category R of reflexive spaces or similar categories,
then condition (a) implies (b) by the following argument:
If (a) holds but (b) does not, then there are spaces

Y, €K 1 €W, g €AY, with lglly < -213 such that

e o 81“&(x,Yi) Z3 .,

Let Y = § ¥, if K = Ban or 4,

Y = f(Z)Yi = ‘(yi), yg €14 ¢ "(yi)“ = (jl'_! “ying)y‘2 <ol

if X is Hilb or R, and

g = f g * "™ ,vhere T, :Y - Y, is the projection.
Then “g“A <=z "gi“,\ “"i“ S 2 go g € \(Y,A) by completenesas,
but £ o g“G(x’Y) Zllte g ii"G(x,Yi)" £ o gi“G(X,Yi) =
for all i, where ii : Yi -+ Y is the injection, so

£+ g ¥ G(X,Y) , a contradiction to (a).

1.12. We consider now a bifunctor ¢ : X x K - Ban with &(1,I) = I.

Then the following assertions hold:
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The map ng : G(X,Y) - H(X',Y"), defined by
<y, ()(x') > =0a(x',y')g , & € G(X,T) is natural

in X,Y,G and contractive; it is the map mgy of 1.9,

followed by the isomorphism H(X' ® Y',6(I,1)) = H(X',Y").

If G is symmetric, then @G is compatible with the symmetries of
G and H(X',Y") respectively, i.e. ng(tg) = t(Cpgy(g)). If ¢

is total, then ng is injective and we may consider G(X,Y) as
a "subfunctor" of H(X',Y"). The diagram

€
XY -— &(X,Y)

N

H(X',Y") commutes, where

€ ig the embedding of the algebraic tensor product (IV, 1.2.4)

i i z = e Ty, o < >
and T is given by T( x; @ yi) =ty yi Xy .

Proot: < x',*(#(a))(y') > = <y', Wle)(x') >
a(x',y")e = “(6(x',y")e) = c(y',x*)(Yg) =

< x"ng(tg)(y') > , since ¥, G(I,I) =I~-1I is 1

[

I
without loss of generality: if not then it is - 1I and

we may consider -t instead of t . The other assertions are clear.

Definition: In analogy to IV,2,11 a symmetric co-covariant
bifunctor G on K x K is said to be of type A if G(I,I) =1I
and G(X,I) = X, G(I,X) = X via the maps
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n € ®
X=I18X —> G&(I,X) —> H(I,X") = X"
- € ®
X=X®I —> @(X,I) ——> HX',I)=2Xx",

i.e. cP“:‘vx.

We did not suppose G to be total (as in IV 2.11 in the
definition of functors of type (I)), since our main example

X ® Y is not total on Ban.

If G is symmetric of type A, then the map

Pxy ¢ ¢(Xx,Y) - H(X',Y") factors over

é¢(x,Y) - H(X',Y) - H(X',I")

where the first map, again called CP}%Y y 18 given by

< @%Y(g)(x'),y' > = @¢(x',y')g , and this expression is
weak®-continuous in y' on the unit ball OY' of Y' for fixed
x' and g. Furthermore the image of Cng consists of

weak®- weak - continuous mappings X' - Y.

Proof: That im o < H(X',Y) € H(X',Y") is seen by factoring
Cng in the following way:
e(X,Y) - H(X',&(I,Y)) = H(X',Y) S H(X',Y") (compare 1.9).
Now if @}G{'Y(g) € H(X',Y) for g € G(X,Y), then its
adjoint (°P§Y(g))' : Y' » X" maps Y' into X, since it coincides
with the transposed mapping in H(Y',X") : t(CPgY(g)) =
@%X(tg), and is therefore again an element of H(Y',X).
This property is equivalent to the fact that QP)G{'Y(g) is

weak®- weak - continuous as a map X' - Y.
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1.13., From now on let G be a symmetric bifunctor of type A.

Lemma: For all F: K- Ban the map j?: pUR(I) > F(I)' is

isometric.

Proof: Let pe DPF(I)=Nat(F,Id). Then

= n?‘;ﬁg iy o Koy (eg) 2]

T ERer Bt Iy (F(x e | < Mg .

il ! Il = ! = F !

1.14. Lemma: If G is symmetric, of type A and total, then (DG)QF(X)

contains the space
{flim j7, £e G(F(I),X) sH(F(I)',X)]
i s .DYF @2 G
via the injective map jy ": (D) F(X)»H(D'F(I),X) for
all functors F.

G
Proof: j]}% Fis injective by 1.6. For u eDGF(Y) we have

[j¥ . mEGF(u)](y' )= j?(DGF(y' (W) =

J'}j::‘ (G(y', ) e ) =G(y",I) e ug=y" o by = () (3").
So 55+ 90 F(w) = (up)': Yo RD)

If fe G(F(1I),X)sH(F(I)',X), then for all

ge€ Ang"E (Y, DGF(I)), i.e. for all

g:cp?uF(p), usDGF(Y) we have
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G
(flim 3T) o g = £0 37 « O Fu) =

=1 e (“I)' = G(“I,X)(f) € ¢(Y,X) € H(Y',X), since
G(Y,X) is a subfunctor of H(Y',X).

This is condition (a) of 1.11 for £lim jT ;

(b) is fulfilled too, since

Neelim 35)  elly = e,z = I llielly 5ezy 5y S

< lullllell, , so "f”(DG)ZF(X)S llfllG .

1.15. Theorem: Let G be symmetric, of type A and total. If F is a
functor such that F(I) is a reflexive Banach space, then

DGF is DG—reflexive.

Proof: By 1.7 we have only to show that
G
DOF plp1) o (0%)PR(I) is epi . If F(I) is a reflexive
I
Banach épace, then the isometric subspace
B: = DGF(I) S F(I)' (1.13) is reflexive too. Again by 1.13
G-
the space (DG)2F(I) is an isometric subspace of B' via j DIF
and by 1.14 (DG)ZF(I) contains the space
ifIB, £ € 6(F(I),I) = F(I) = F(1)"} = F(I)"/B* = B' ,

% @2
again via j° 7 . Thus (D Y°F(I) = B' . Repeating this
argument we obtain (D¥)F(I) = B" = B .

G @2 pr _
For W € D'F(I), Vv € (D')F(I) we have t'1 (M)(V) =
= S(vi(1)) = V(M) € T, i.e.
G)ZF . tDGF .

(D
J I I B

j¥ , or the diagram
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p%r(1) >BsF(I)"

(0%)°r(1) 5 B"
(p%)?F
I1
commutes, where tpt B-B" is the canonical map. Therefore
the equality (D¥)’F(1)=B"=B=D%F(I) is established by

D

1T and so this map is an isomorphism.

1.16. Example: Let G be symmetric, of type A, and total. Then HA
and G(A,.) are DG-dual to each other and DG—reflexive.

Furthermore DY(4 & .) = H,.

Proof: DF(AR .)(X) =Nat(A& ., G(X,.)) =H(A,G(X,I)) = H(A,X)
naturally in A,X and G by IV, 1.5.
p%(H,)(X) = Nat(H,,6(X,.)) = 6(X,A) naturally in A,X and G
by IV, 1.4.
jg(A") : DGG(A,.)(X)-*H(A,X) is contractive and
injective (see 1.6.). If f e H(A,X), then

G(f,.):G(A,.)~>G(X,.) is a natural transformation,
G(A,.)

Ne(e, )<, and G(f,I)=%, so i is isometric and
onto. To conclude the proof we show that e.g.

H

A (%)

‘1 G\2 G DI 4
H(A,I) = (D7) HA(I)=D G(.,A)(I) ——— D7G(A,.)(I)

.G(a,.

JI(A, ) H,

H(A,I) is the identity, then 1.™ is

I
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G
isometric onto since j % is and we may invoke 1.7.

Let a' € A' = H(A,I) and a € A.
H
< a, [jG](:A’-). DG’("’J)I o ¢ %](av) > o
H H
=My e T2 @)@ = P A(Pan)(a) =< a8t >, using

the last argument of the proof of 1.15.
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§ 2. The dual functor of Mitiagin-Jhvarts

The duality D, studied by Shvarts [79] , Mitiagin & Shvarts [57] ,
Pothoven [67], Wick-Negrepontis [58], Herz & Pelletier [35] ’
Michor [51] is the form of the Eckmann-Hilton duality valid

in the category Ban1. Let K again be a full subcategory of

Ban which contains I.

K

2.1. Definition: D: (Bank)°P - Ban® 1is given by taking X ® Y for

the symmetric bifunctor G. So DF(X) = Nﬁt (F, X ® .).

X % Y is a symmetric bifunctor of type A, but is not total
in general (cf. II, § 3).
There should be no confusion possible between D as used here and

the general duality D in the beginning of § 1 .

2.2. We immediately compute examples:

DH, =A &., D(A®.)=H and both are (D-) reflexive (1.16).
Taking A = 11, then 1' ® x = 1 (x) (11,1.8) and D[1'(.)]= By =1%.1,
Thus the functors 1'(.) and 1.) (IV,1.19) are dual to each |
other and reflexive. We see that D-duality does not resemble
the duality of Banach spaces but looks rather like the
Kothe dual or the associated module of III, 3.18. For that
reason Mitiagin & Shvarts (57] conjectured that any functor
of the form DF was reflexive. This turns out to be true if
K c A, the category of all Banach spaces with the metric
approximation property, and F(I) is reflexive (1.15). In general
this conjecture is wrong: the next section is devoted to a

counterexample.
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2.3, Example: Let n be a sequence space (III, 1.7) and let
n(.) : K - Ban be the functor of IV, 1.19. Then
D(n(.)) = n'(.) , the functor, defined by the sequence
space n' H (n 1! ) (see III, 3.18 and III, 3.22).

We have n (X) = H (n 1 (x)).

Proof: By 2.2 we have 11%®= 11. Then
D(n(.))(X) = Nat(n(.), X & .) =
= Nat (1%}.) ® _n, X & .), using IV, 1.19,
1

H a§n, Nat(1RR.), X ® .), using the "pointwise"
1
equality H(1™Y) & . n, X®Y) =H <1 B(1®(), X ® 1))
1 1

of III, 3.9, 4); we continue then:
=H (n, D1™(.))(X)) =
1

=H 4n, 1'(X)) = 2" (X) vy III, 3.22.
1

2.4. Example: Let N be a function space (III, 1.8) and let
N,(.) : £ - Ban be the functor considered in IV, 1.21.
Then D(N,(.)) = S(N,.), the functor considered in
v, 1.22, via 3% (),

Proof: We first prove this for the function space LGE we

assert that D(Lgk.)) = 9(1%.).

i= J?(go(') : D(LX.))(X) » H(LEBX), 3(M) =g,

is injective, since Lg%.) is of type L (compare the beginning
of the proof of 2.5). Let X = 1)
(£y5eeesty) € L°‘(:L ). Then ® 1((f1,...,f )) =

, let

= (Pr(2)),eesy ©(£))) € X®l1 =1 .
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So Zl\cpI(fJ)ilx = \l(¢1(f1),...,¢l(fn))”A 51l =

< N(e, ..ot = llol| N=le 1.
HcpH])Lg‘{.) Iy ) Lm(l:l) ¥ LX) T ®
@ < |lwll .
So @, € S(L%X) and “cplus(xf",x) lle 2. )

o
Now let conversely g € S(L%X). Then we define

®, :Lg’(z)—»xézby

@Z(z 2, f) = z z), ® g(fk) (compare IV.1.21). Then
Eka\ng(fk)ll =Z ”g(”xknfk)nx =

= HgHs(Lalx)HEkakaHLq) . So ®, may be continuously

extended to the whole of LX) with ll® il = llgll .
o Z ®
3(1%,%)

Clearly the family (mz) defines a natural transformation
®: Lg’(.)-»xé. with ®; = g .
Now we prove the general case.
D(N_(.))(X) = Nat(IR.) ® N, X ® .), using IV, 1.21,
o o 1®
and by the same argument as in 2.3, applying III, 3.9, 4)
pointwise, this equals Hyo (N,Nat(ILX.),X & .)) =
E o (N,DLX.)(X)) = Hyo (N,8(L%X)) = 8(N,X) by III, 2.7.

2.5. Theorem: If F : K » Ban is a functor of type I, then for any

X € X such that X' € K we have DF(X) =
{f € B(F(1),x) : ¢

x° £ € F(X')'} via jﬁ , where

X X » X" is the canonical embedding and ll£'l
o £l

1
DF(X) =

by FX')'"

Proof: We consider F(X')' as a subspace of H(F(I),X") in a

natural way via (€§,)', as in IV, 1.15. So F(X')' consists
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of all h € H(F(I),X") which define a bounded linear
functional on F(X') by T a, ® x{ - L <x{,n(a;) >,
Ta; ®x! €F(I)®X & F(X').

Nat(F,X ® .) » H(F(I),X),

]

The map j = j§ : DF(X)
defined by j(M) = ﬂI s, 1s clearly contractive and injective
gsince F is of type L : let M € DF(X) and N; = 0. For

z € Z € K the diagranm

n

F(I) —% > X®1I=2X
F(;) j/ 1'1}(652
ﬂz ~
MZ) —~—— X ® 72 commutes, so for all

a € F(I) we have T, F(z)a = (14 ® 2) N (a) = 0.

Thus 7, (T F(i;)ai) = 0 for all Ta; ® 2z, € F(I) ® 2, the
latter space is dense in F(Z), ﬂz = 0 and since Z was
arbitrary, M = O.

Now take any N € Nat(F, X ® .). Then we assert that

1. e M. € F(X')'. The diagram

X I
N
MI) —————>X
F(x') L J 1y ® %
n N
F(X') “‘”Ki——f> XX commutes for all

x' € X', Tet tr : X @ X' » I be the trace functional
(I1,1.10 ), corresponding to x € H(X,X") = (X ® X)),
tr (x ® x') = < x,x' > . Then for all a € F(I) and x' € X'

we have: < ﬂI(a),x‘ > = tr (ﬂI(a) ®x') =

= tr o (1Xéxh') ° nI(&) = tr - nx| ° F(£‘)(a)-
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n
For 12131 ®x) € F(I) ® X' we compute:

<Ta @xi, ty* N >=E<xiiyge M(ay) >

BT nplegdix 7= B e Ty 0 Blxi(ay)

tr . nXI ° €§' (

]

Za,01x),

where €, : F(I) ® X' ~ F(X') is the map of IV,1.6.

Thus [<Za; @xf, ty+ N>l = ltre ny, o (T a, ®xy)
“tr”“’ﬂx P> F(x )a, “F(x')'

ie. llig - nI“F(X')' < I, b= limil,

Let us suppose conversely that we have f € H(F(I),X)
with ‘x e f € F(X')'. For any Z € K we define
(8¢), : F(I) ®Z> X ®2Z by
z
(6£) (X ay ®z;) = % f(ay) & z,.
z =
(o), (T a; ® zi)“x oz =IEta) ozl

Z
=h¢8§ 2.1') <t z; ® £(ay),h >|
T < .
“heGH(z,x" )' Blag), g+ 2(ay) >
“he OH(Z,X') 1< Zn(z;) @ay, 1y 2>
< 12 #(aca,))a, or |
“peamtzry o rEED ey Ty flpgy.
= | - R
e IF(n) T F(z;)a; Ipczry | £lo gy
s 2 B(z))a, lpzy g © f”F(x,),.

Thus (ef)Z extends to a continuous map : F(Z) » X ® 2
vith ll(e£), !l = llay o f“F(x')" By the naturality of
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the counit €' it is very easily seen that ((ef)Z) is a
natural transformation 6f: F-»X&’ .. Clearly we have
(8£); = and since j¥: DP-H(F(I),.) is natural, we are

done.

2.6. Proposition: If F: K- Ban is of type ¥ and if X,X' ¢ K and
X' has the metric approximation property, then

DF(X') =F(X)' via jy.

A
Proof: We first remark that X' &® .= (Xg 1Y) 'e since X' has
the metric approximation property. This is seen using
the following commutative diagram

a

X' &Y > I,(X",Y)
J | -
b
11 (X,Y") =——— I, (Y',X')—-———>I1 (x',xm

where a is isometric by II, 3.9. c¢), b and c are
isometries by II, 2.9.
So we may compute

DF(X') = Nat (F,X' &.)
Ban

A
= Nat (F,(X@*.')‘e)
Ban

= Nat (F,(X&.')') since F is of type T by IV, 1.12.
Ban

A A
=((X®.') ® F)'
Ban
=F(X)' by IV, 3.13. since X has the metric

approximation property (II, 3.11.).
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2.7. The next two results belong to duality theory of contravariant
functor which we do not develop; however, they are of
independent interest.

Propogition: Let G 3 EPP - Ban be a contravariant functor of
type E. Then for any X € K such that X' € K we have

¥at (G, X ® .') = {f € H(G(I),X) : 1y« £ € &(X)'}

via jg where ty : X X" is the canonical embedding/and

el gy = Mg * 2loemy -

The proof is the same as that of 2.5 with the obvious changes.

2.8. Proposition: Let G : EOP - Ban be a contravariant functor of
type Z, let X,X' € K and suppose that X" has the metric

approximation property. Then Nat (G, X" ® .') = G(X)'.
K

The proof is the same as that of 2.6 with the obvious changes.

2.9. We recall that a contractive morphism f : X » Y is said to be
a weak retract (II, 1.9), if there exists a map h: X' » Y'
with bl =1 such that £' ¢ h = 14,.

The connection between weak retracts and duwality is described by:

Proposition: If F is of type Zand £ : X Y is a weak retract,
then the following diagram is a pullback in Ban1:
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pP(x) — X H(F(I),X)
m(r)i L H(F(1),2)
Iy

DF(Y) —————= H(F(I),Y)

vwhere j(m) = ng .

Proof: j is injective since F is of type z by IV, 1.12.
H(F(I),f) and DF(f) are isometries, the latter by II, 1.9.
Since H(F(I),f) is isometric and iy is injective, the
pullback of the half-diagram is j; (H(F(I1),£)HE(F(I),X)) =

In € Nat(F,Y ® .) : N(F(1)) < £2(x) ]

Nat (¥, X ® .) since DF(f) is isometric too,

i

by I, 1.14.

Remark: The fact that F is of type £ is only used to derive
injectivity of j. If F is any functor with the property
that j : DF - HF(I) is injective, then the proposition

remains valid.

2.10. Corollary: If F : Ban - Ban is of type £, then we have for
£ € H(F(I),X) :
f € DF(X) iff t+, o £ € DF(X") and

X
ll£ll o £l

DR(X) ~ g DF(X")*

Proof: use 2.11 and the fact that 1X: X » X" is a weak

retract.
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§ 3. Integral and nuclear maps.

As an application of our preceding considerations we now will
study,as a special example, the functor of integral maps and
its dusl functor. This example will also show some close

relations to the theory of operator ideals 64 J.

3.1. Definition: a) A map f € H(X,Y) is called integral, if it
"

defines a bounded functional on X ® Y'. (see 1I1.2.9).
I1(X,Y) denotes the space of integral maps from X into ¥,
nf“11 the norm of the corresponding functional.

b) A map £ € H(X,Y) is called nuclear, if it belongs to the
canonical image of X' & Y. N1(X,Y) denotes the space of
nuclear maps from X into Y, HfHN the quotient norm with
respect to the canonical map 1X' ®Y - N1(X,Y). L1(X',Y)
will denote the space of all maps f € H(X',Y) which belong
to the canonical image of X ® Y and HfHL1 the corresponding

quotient norm.

3,2. Remark: It follows immediately from the definitions that

I1(X,Y),N1(X,Y) and L1(X',Y) are Banach spaces and that
they define bifunctors in X and Y. By 2.5 11(X,.) coincides
with the dual functor of the inductive tensor product

X ; . . L1(X’,Y) is the associated total functor of

X ® Y (IV.2.9). Since I,(X,Y) defines a reasonable norm on
its essential part (IV.1.8), it follows from II.2.3 that
N1(X,Y) is a linear subspace of I1(X,Y) and that

“fHI1 = HfHN . But we have already seen (compare II.3.4 and
1
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II.3.9) that N1(X,Y) need not be isometrically contained
in I1(X,Y).

3.3. Definition: A map f € H(X,Y) is called weakly compact if OX
is mapped onto a relatively weakly compact subset of Y.
Since OX is w*-dense in OX" and f" is o(X",X') - O(Y",Y') -
continuous, it follows that f is weakly compact iff f"
maps X" into Y.

3.4, If £ € N1(X,Y) and € > O there exist by II.1.8 g) sequences
(x)) c 0X' and (y,) < OY and scalars () ) such that
z|)\n| < “f“N1+ € and f(x) = X ln< x,x; > y, holds. We shall now
give a representation for integral maps, which may be

interpreted as a continuous analogon.

Propogition: A map f € H(X,Y) is integral if and only if there
exists a measure M € M(0X' x OY") such that

< f(x),y' = = / < x,x' > <y',y" >du(x',y") holds.
0X'x O

(0X' and OY" carry their w*-topologies). In this cage
Uf“115 llull and 4 may be chosen such that equality holds.
Proof: Let j : X » C(OX') be the canonical embedding
defined by x - (x' = < x,x' >). Analogously k : Y' - C(0I").
J and k are both lsometries and consequently X g Y' is
isometrically contained in C(OX') ; c(oy") = ¢(ox' x oy")
(I1.2.2 and II.2.4). If f € I1(X,Y) it defines a continuous
functional on X g Y by x @ y' » < £(x),y' ® . If we extend
this functional to C(0X'x OY") we get a measure
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B € M(OX'x OY") = C(OX'x OY")' which satisfies the above
equation and has the same norm. Conversely, if f is given
as above, it follows immediately from the definition of
the inductive norm (II.2.2) that f is integral and

satisfies Hf“I1S ull

3.5. Corollary: A map £ € H(X,Y) is integral if and only if there
exists a compact space T, a measure H € M(T),
maps g € H(X,C(T)), k € H(M(T),Y") such that iyf =keheg
where h € H(C(T),M(T)) is defined by ® € C(T) - ®au € M(T).

f 1
X Y ™

gl Tk

c(r) —> M(T)

Y

The maps may be chosen such that “f“I1= Hg””H”HkH .

Proof: If one takes T = OX'x OY", g the embedding X » C(0X')-C(T)
k the adjoint of the corresponding embedding of Y', the
necessity follows from the preceding proposition. Conversely
< ¥,h(®) > = /@(t)*(t)du(t) and this defines a continuous
functional onTC(T) g C(T) = ¢(T x T). By 1I.2.9,Lemma,h is
integral,consequently 'y ¢ f € 11(X,Y") and again by II.2.9
f € I1(X,Y).

3.6. Corollary: Any integral map is weakly compact.

Proof: It suffices to show this for the map h defined above.
Take v = 1. L; is contained isometrically in M(T) via
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3-7.

® > ®dv. It follows that h takes its values actually in L} .
Since the weak topology is inherited by subspaces, it suffices
again to consider the canonical map h, of C(T) into LL . Now
h1(OC(T)) c OLa;:which is c(Lm,L1) compact. Consequently it is
also 9(1%1® and o(1',1%) compact, since o(L',19) is a
Hausdorff topology weaker than c(L“’,L1).

In II.2.9 we have seen that for an integral map f the maps
f' and ‘Y ¢ f are also integral and the converse holds too.
Nuclear maps do not behave as well. If f is nuclear, f' and
tY o f are again nuclear but the converse may fail. In a similar
way, a map f € N,(X',Y), which is O(X!X) - 9(Y,Y') continuous,
need not belong to L1(X',Y). But everything becomes much

easier if we consider spaces with the approximation property.

Proposition: Assume that f € N1(X',Y) is O(X',X) - o(Y,Y'")
continuous and that Y has the approximation property. Then

1
fen(x,y Nell = lell , .
(X',Y) and N, L1

Proof: By II.1.9. X é Y is isometrically contained in X" ® Y.
By II.3.4 the map of X" & Y into H(X',Y) is injective.
Consequently the tensor u € X" ® Y which represents f is
uniquely determined, all we have to show is that it belongs
to X é Y. Assume that g € (X" ® Y)' = H(X",Y') (II.1.7) is
a functional which vanishes on X ® Y. This means that the
corresponding map vanishes on X. By II.1.10
<u,g > = tr((g §1Y)(u)). An easy computation shows that

£" maps X™ into Y end that (g ® 1y)(u) defines & map f, which

1
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satisfies ty o f; = f" © g' . The o(X',X) - o(Y,Y')
continuity of f means that f' maps Y' into X. Consequently

" o g' = (g £')' = 0 and it follows again from II.3.4

that tr((g & 14)(w)) = O.

3,8, Definition: f € H(X',Y) is called a Radon-Nikodym map if

fogt N1(z,Y) for all g € I1(Z,X') and all Banach spaces

Z. RN(X',Y) denotes the space of Radon-Nikodym maps.

RN(X',Y) is a linear subspace of H(X',Y). According to 3.4

it suffices to consider Z = C(T), for T compact. Since M(T)
has the metric approximation property (II.3.13), N1(C(T),Y)
is an isometric subspace of I1(C(T),Y) (II.3.9). Consequently
RN(X',Y) is closed in H(X',Y) and defines a bifunctor.

The name Radon-Nikodym maps comes from the fact that
I1(C(T),X) may be identified with certain X-valued vector
measures on T and nuclear maps correspond to those measures

having Radon-Nikodym derivatives.

3.9. Theorem: Any weakly compact map belongs to RN(X,Y)(X a dual space).

Proof: Assume that £, € I1(Z,X). By 3.4 there exists a

factorization:
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vhere T = 0%Z' x OX", g(s)(z',x") = <s,5' >,
< x',k(v) > = /< x',x" > dv(s',x") and h(®) = ¥dH for a
certain fixed measure M € M(T).

a) We assume first that f has separable range. Replacing Y
by the image of £ we may as well assume that Y itself is
gseparable. Since f is weakly compact, f" maps X" into Y.

We define a function ¥ on T by ¥(g',x") = £"(x"). For y' € Y'
we have y' « ¥(z',x") = < £"(x"),y' > = < £'(y'),x" > .
Oonsequently y' « ¥ is continuous on T with respect to

the weak topology on Y. Since any norm—closed ball in Y

is weakly closed and Y is separable, the function V is
measurable. U1 = || 1s a finite measure on T and ¥ is

a bounded function, consequently ¥ is also (Bochner) integrable.
By II.1.81) L&1(T,Y) - L:,1(T) ® Y. This means that

®
1
V= nE1.n ®y, , where ‘n € Lu1('1'), Yo € T and

by Ihn““yn” <®. For ® € ¢(T), x' € X' we have

< x',k ¢ h(9) > = /< x',x" > @(z',x")d" . Therefore
T
<freken(®),y' > =<£'(y'), ke h(?) > = 4< £ (y'),x" > 9du =
= /<¥(t),y' > o(t)an = [/ E< Tpo¥' > ¥ ($)P(t)ar .

Now define z) € Z' by < 2,2, > = Nn(t) < g,z' > dd(z',x").
Then I|z;1|| <l || and for z € z and y' €Y'
< fo f1(z).y' > = < f"% kohe g(z),y' > =
=3I < Yo ¥' > fﬁn(t)< z,z' > dM
= L < Yp¥' > < 2z,2) > and this means that

T .
zI'1 ® In represents f i‘1 .
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b) We will show now that our previous agsumption was not really
restrictive. We assert that f" e ke h is a compact map.
Assume the contrary. Then f"e ke h(0C(T)) is not precompact.
But since a countable number of elements of C(T) suffices to
obtain this conclusion, there exists a separable subspace Z1
of C(T) such that f"e ke h(0Z1) is not precompact.
je2y- C¢(T) shall denote the isometric embedding. h-e j(Z1)
is again separable. Let I be the O-algebra of Borel sets in
T and wn be a dense subset of Z1. Each @n may be approximated
uniformly on T by a sequence of L -measurable step-functions.
Let (Ai)g;1c L Dpe those sets being used in this proecedure.
We consider the closed subspace V of L&1 which is generated
by the characteristic functions cAi. By Lebesgue's theorem
on dominated convergence 21= fp ez Cy €vl is a O-algebra
and V coincides with L'(T,Z,,H,). Since h(®,) € V, he j
takes its values actually in V. If v € M(T) is a measure
on £ we consider its restriction to 21, take the absolutely-—
continuous part and then the Radon-Nikodym derivative with
respect to M1. In this way we get a projection p:M(T) - V.
The map f" ¢ ke p is again weakly compact and has separable
range, since V is separable. By 3.4 Cor.1 h is integral and
from the first part of the proof it follows that
f"ekepeh is nuclear. Consequently f"e ko he j=f"o ko pehs j
isalso nuclear. On the other hand, a nuclear transformation
maps OX1 into the closed convex hull of a null sequence and
is therefore compact, which contradicts our agsumption.
We thus have shown that f"ekeh is compact and has therefore
separable range. We remarked earlier that h takes its values

in the subspace L&1 of M(T) and since M1 is a Radon measure
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1
the image of C(T) is dense in I.‘11 . As before we get a
projection p: M(T) - L& . f" e ko p has separable range
1
and is weakly compact. By a) f"ekeh = f'e kepoh 1is

nuclear.

3.10. Corollary: If one of the spaces X and Y is reflexive and either
X' or ¥' has the metric approximation property, then
(X é Y)' = X' ® Y' holds isometrically.

Proof: Assume that Y is reflexive. By II.2.9 (X ; ) =1I,(X,Y').
It follows from the metric approximation property and
from II.3.9 that X' ® ¥' = N1(X,Y') is contained
isometrically in 11(X,Y'). Since Y is reflexive OY' is
weakly compact. By the previous theorem the identity map
of Y' belongs to RN(Y',Y') and consequently I1(X,Y') =
= N, (X,Y').

@®
3.11. Definition: a) A series n§1xn is called weakly unconditionally

convergent (w.u.c.) If n§:l< X, %' > < ® for all x' € X'
(we do not require that the limit ng;xn exist).

b) A map £ € H(X,Y) is called unconditionally converging
if it transforms weakly unconditionally convergent into
unconditionally convergent series, i.e. for every w.u.c.

gseries L x, in X the series p f(xn) converges unconditionally.

3.12. Theorem: Any Radon Nikodym map is unconditionally converging.

Proof: Assume that f € RN(X,Y) and that I x, is w.u.c. in X.
a) We will show first that (f(xn)) is a null sequence.
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k
We consider maps 8t co-*X defined by gk((kn)) =nf1 )‘nxn‘
According to the Banach-Steinhaus theorem these maps are
®
uniformly bounded. Consequently g((ln)) = ¥ A_x_ exists
n=1 &2

for (ln) €c, and defines a bounded map &: co-'X. Now we
consider the Rademacher functions r, on [0,1] defined

by rn(t)=sgn sin 2%mt (n=1,2,...). It is easily seen
that they form an orthonormal system in L2( [0,1].

r, € 1% ([o,1 ]) and therefore h(¥) = ((t,rn)) defines a
continuous map from L1([O,1 1) into 1%. Since L?'( [0,1]) is
dense in L1([0,1]) it follows that the image of h is
contained in c, and from now on we will consider h as

a map from 1! into c . Let j: c([o,1])-L1([o,1]) be the
canonical embedding. We assert that hy=he J is integral.
Indeed, if ®; € c([0,1]) and vy = (yin) € .'l.1 (i=1,...,k) then
12¢h, (9,),5,0! = lf Y, /M r o (P)o, (t)atl <

n
") ZE i =12 vy0 o go,17,17) ana

c(fo,1],1 )-c([o 17) 81" vy 11. 2.4.

Cg)nsequently foge h1 is nuclear, i.e. fo go h1 =

151 M; ®Y; Where eM([0,17), y; €Y and T 'Iu 'l"y l<w.
Let m be the ordinary Lebesgue measure on [o,1 1. We use
the Lebesgue decomposition: ui=pi' +ui" where ui' is
singular and ui" absolutely continuous with respect to m.
Furthermore 'Ipi'ﬂ, !lui"!|<. 'lpi'l. For y' €Y' and @€ C([0,1])
we have (f. g.h(®),7'0=F (o,u; Xy, ,y'd=

={p, T ui'<yi,y')+r. " (yi,y'>). On the other hand
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<fegeh (¥),y' >=I<f(x),y > Z r, (£)P(t)at =

=<9, £< f(x,),y' > r, dn > . It follows that

Fwiw' 7+ Fypyt > = F<aln)y n, on
Since I < y;¥' > M is again singular and ¥ < Yy > MY is
absolutely continuous, it follows that jz_< yi,y' > ui =0
for all y' € Y'. Consequently f+ g+ hy = z MY ® y; end we
may agsume without loss of generality that ui = I-lg'_ is

absolutely continuous with respect to m. By the theorem of
Radon Nikodym k, = ¥, dm with ¥, € L'([0,1]). Now the above

equation has the form £ <y,,y' > ¥, = I< (x)yy' > 1y

almost everywhere (y' fixed). It follows that
<f£(x)),y' > = g r (t)n==1 £(x,),y' > ry(t)at =
= Z rn(t)1§1 < yiov! > *i(t)dt and that means

® 1
£(x,) = ;I,y; {r (8)¥;(£)dt. To € > 0 there exists an index

A

N such that ij 1“* l\“yin =y §3+1 flu H”yi” < €. Then Hf(xn)ll

||yi||| } r (t)‘# (t)dt| + € and the flrst term becomes
smaller than € for n large enough, since (ér (t)lﬁ (t)dt)

is a null sequence for i =1,..,N,

@®
b) Assume that E I(x ) does not converge unconditionally. Then

there exists € > 0 and indices 1 = n, < n, < n, < ... such
._1 —1

that || knni 1f(xk)“ > €. Take y, = ‘”1 e (L =1,2,00.).

Then 131yi again is w.u.c. but f(yi) does not converge to zero

contrary to a).
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3.13. Theorem: If X = C(T), then every unconditionally converging
map £ € H(X,Y) is weakly compact.

For the proof we need a technical argument:

Lemma: If (M,) © M(T) is a bounded sequence of measures and F, are
disjoint measurable subsets of T such that lun(Fn)| > & >0 for
all n, there exists a subsequence (v ) of (M ) and disjoint

' > b
open sets G, such that |vn(Gn)| /2 for all n.

Proof of the Lemma: We may assume llunll =1 and Fn compact (since

un is regula.r). By an induction process we shall define
open sets Gr’ measures \Jr (r = 0,1,2,..), sequences of
compact sets Fz(1r) and sequences of measures vr(xr) (r=1,2,...)

such that (1) (\,(r)) is a subsequence of (\2(r 1)

(21‘) F1(1r) n Fn(1r) =% fornim

r
CRNE S AW A

r
(r) ,(r) ol i
(41') |\’n (Fn )'>6r=6'i£1 8/2
(5.) Ivi(e)l >6 >8/2 and 6 Na =0

for i =1,..,r=1

(1) (1) _ _
Westartwi‘th\’n =un,Fn -Fn,Go_ﬁ,vo=o,

Suppose that (V(r)), (F(r)), G._4» V._q have been defined
in such a way that (1 ) - (4 ) and (5 1) are satisfied for

1—r5k.LetN=[k+2/6]+1 andF(k) 0 G . By (2)

and (3) F(k) ﬂF(k) =% fori#%j (i,j =0,1,2,..).
Hence there exist open sets 0' such that Oi - F(k) and
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i 0} = ¢ for i + j (i,j = 0,1,..,N). By the regularity
of the measures V§k), one may find open sets Oi such that

0} 27 ° F(k) for i = 0,1,..,N and |v(k)|(<')'7 \ ng))<l‘>/2k‘“‘2

for 1 = 1,2,..,N. Let us set 4, = = n>w ‘\’ k)|(O ) < 6/2k+2}
Since the O, ;S aremutually disjoint sets, ; 2 |V(k)|(0 ) s

= vak)H =< 1. Hence every index n > N belongs to at least one of
the sets Ai (by the construction of N). Therefo?e there is an
index io such that the set Ai is infinite. Let us put

_ _ L) (15 (k)
Gk = Oio, Vo= Vi and (Vn ) the subsequence of (Vn )

k o
consisting of those elements whose indices belong to Ai .

(o]
Assume that v(k‘“’ ) o vik)

J(n)
Then lvg.‘a)(l-"gl(‘r)l) n o\ g &)l
= 1M a1 - B Ve el 0 )l
=6 - MEER "T) vty
=0 - Ivgl(?l)i(a;) 26 - 02K 28,

Hence there exist compact subsets such that

k
k+1 X
Flg+ )e Fg(z)l) \ U

— (k+1) (k1) \ | > 5
Uy T end I\)I1 (F, )l e+

Consequently (1 ) hold. Finally we have

1) 7 (e
)| = 198005 01 2 M (N1 - 1MEN) @\ x()
> 5 - 8/2K+2 > 8 g and G 0 Gicoioﬂ 0, = @ for 1 <k .
Thus condition (Sk) is satisfied too.

Obviously the sequences (Vk) and (Gk) have the required

properties.
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Proof of the theorem:
f is weakly compact if and only if f' is. Assume that
f'(0Y') is not weakly compact in M(T). By a well known
criterion (Dunford, Schwartz [21] p. 305) there exists
a sequence (vn) cf'(0Y') which satisfies the assumption
of the lemma. Assume that the subsequence has already
beeh chosen, i.e. there exist open, disjoint subsets
G, of T such that lvn(Gn)l >$>0 for all n. By the
regularity of the Vn there exist continuous functions
& € 0C(T) whose support is contained in Gn such that
}(gn,vnﬂ > R.CDSince the sets G are disjoint we have for
any 'y € M(T):ni‘1 [(gn,uﬂs T (Ign' , lul>< <)”.lgn| , W<,
i.e. £ g is w.u.c. Consequently I f(gn) converges in Y,
in particular f(gn) is a null-sequence in Y. v, = f'(yn')

with y '€ 0Y' and it follows that (gn,vn>=<f(gn),yn')-*0,

a contradiction.

3.14. We will now return to the study of duality of functors. First
some remarks on theorem 1.11.: If A(4A,.) is a subfunctor
of H(A,.), the map £>f' defines a subfunctor A'(.',A")
of H(.',A'). This is just the situation of theorem 1.11.
In addition we used the assumption that G is total on
Kx K. An inspection of the proof shows that the description
of D¥A (.1,4)(X) remains valid if ¢ is total on {X}xK
only. If K is a subcategory of L and G is defined on LixkK,
we may also define DGF(X) =Nat (F,G(X,.)) for XeL and
if & is total on {X!xK, theorem 1.11. remains also valid.
In our case 3(X,Y) =X®Y and this bifunctor is defined

on BanxBan. It is total on {X|xK if Xe€4A or if K€A (II.3.4).
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3.15.

In general, the associated total bifunctor coincides with
L1(X',Y). If A(A,.) is a subfunctor of H(A,.), the dual
assumes the form D A(A,.)(X)={feH(A',X):f. g’ €1 (y',x)
Vg€ A(A,Y),Y €X} and the norm is given by ”:t‘”DG=

= sup {If. g'll 1:8¢€0 A(A,Y),YeK} (from now on we will
only consider ]*;he cases K=A or K=3Ban where this supremum
is always finite). In particular, for X=1I, which belongs
to A, we have fo g'=g"(f) and thus D A(4,.)(I)=

= {feA":g"(£) €Y Vg e A(4,Y), YeKl|. Since llgl, < llglly

and equality holds for Y=1I, D A(A,.)(I) is an isometrig
subspace of A" (this has already been shown in 1.13,).

Theorem: For the categories K=A or Ban and an arbitrary
Banach space X, DI1(A,.)(X) is isometrically contained
in H(A',X) and is a subspace of RN(A',X). If Xe€A
then DI, (A,.)(X) =RN(A',X).

Proof: We will first treat the case K=A.
I1(A,.) is a subfunctor of H(A,.) and 11(A,I)=A'.
herefore we may apply 1.11. and 3.14. Taking Y=1 in
the norm description of DI,, one gets 'I:t‘”DI1 < ‘lf!'H' On
the other hand, since Y €A, L1 (Y,x) =Y®X is isometrically
contained in 11(Y‘,X) (II1.3.9.). Consequently
lee gty =lee gy sl gy <ol ey (11.2.9.)
and it follows that 'lf”DI1 = ‘|f|‘H. Now assume that
Z ¢Ban and heI,(Z,A"). We have an isometry j: Z-C(OZ').
By 1I.2.9. 11(Z,A')=(29A)'

and j6~‘1A is an isometry too. Consequently there
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_ A
exists heI,(C(02'),aA')=(C(0Z')#A)" such that
- A =
Lo j=nh. (joﬂA):h. By II. 2.9. g=h
%o I,(4,C(02')") and C(0Z') €A by II. 3.13. If

£ DI, (A,.)(X) it follows that f. g’ e1'(cloz')",x)

t —
=h'oe th belongs

c N,I(C(OZ')",X). g'=1," h" and g' o "C(OZ')"‘_'H’
consequently feh=fohe jeN,(Z,X) and this means that
feRN(A',X). Conversely if Xe A, f € RN(A',X), g€ I, (&,Y)
then &' € 11(Y' JA') (II. 2.9.) and therefore fo. &' €N, (y',x).
By 3.6. g is weakly compact and it follows that (f. g')'=

= g"o f' maps X' into Y. Using 3.7. we see that

fog'e€ L1 (Y',X). Finally, consider the case K = Ban.

If Xe A, we may repeat the above proof. In the general

case we associate to each natural transformation ¢ ¢ Nat

(1, (A,.),XQ .) its restriction ¢ to A. We assert th?;%&

this restriction has the same norm: Asgsume that Z € Ban,
f€I,(X,2). We consider the isometry j: Z' =2z, =c(oz").

ty e fel, (x,2") = (XQZ')' has an extension ge¢ 11(}(,21 ') =

= (X§Z1)', i.e. tyo f=j'e. g. This extension may be chosen
to be of the same norm, i.e. '|g‘|I1 ='|tzo f'|11 =g (1I. 2.9.).

Using the naturality of ¢ and the fact that 1X/6'}’*1 is an

Z
isometry (II.1.9.) we get:
! ‘ = & =
kg (£33 a7 =10 1) 0 @, (0)ly p g0 =loyu (1) 0 D)8,
= | i e "\ = R s ! o
|00 (3" e @)y A pn=1014%5) 0 oy 1 (@) lgpgn <
| — - 2
< IcpZ1 , (g)!lxg 2, < 'lm'!l!glll1 = ’lcn‘l'lf'!11 since 2,' € A.
Remark: If X does not have the metric approximation property

it may happen that DI, (A,.)(X)£RN(A',X).
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3.16. Special cases
a) If A is reflexive and has the metric approximation property,
it follows from 3.10 that I,(4,X) = A' ® X. Therefore
DI, (4,.)(X) = H(A',X).

b) A' = C(T) (e.g. A =1", then A' = 1% = C(BIN) where BN
denotes the Stone—aéch compactification of W ). By 3.13
any member of DI1(A,.)(X) is weakly compact as a map from A'
to X. Now it follows from the description given in 3.14
that DZI1(A,.)(I) = A". It is easily seen that the canonical
transformation of I,(A,.) into DZI1 induces the canonical
embedding of A into A". Consequently 11(A,.) is not reflexive.
By 2.4. I1(A.X) = D(A g .)(X). This gives an example of a
dual functor which is not reflexive. (The equation
I,(a,X) = D(A % .)(X) holds also for the case K = A. This
follows by a slight modification of the proof of 2.5:
Since A g . preserves lsometric embeddings, it suffices to
evaluate the given natural transformation at all finite

dimensional subspaces of X'.)
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Exercises
The following exercises show some properties of the duwality DR
defined by the inductive tensor product.
1) If F is of type Z, then D F = HF(I)'
2) D*F is always isometrically contained in HF(I)'

3) If n is a sequence space, then

A R
D'n(x) =  (n, 11 @1)
1

4) Develop a concept of duality for contravariant functors which

is similar to that of § 1 by using contra-contravariant bifunctors.



§ 1.

1.1.

CHAPTER VI

Kan extensions

General remarks on Kan extensions

First we collect definitions and elementary properties.
Let L, K be full subcategories of Ban, let S : K~ L be

a functor. Then we have by IV, 3.9

FS(.) = H(..,8(.)) @ F(..) = Nat (H(S(.),..),F(..))
(..) €L (..)€L

6s(.) =6¢ ® H(S(.),..) = NatL(H(..,S(-)).G(..))

L L°P
for F € Ban= and G € Ban= .

La.nS and R,s.nS : Ea.nE - Ba_'nL are respectively left and right

adjoint to the functor Ban® : F > F + §; likewise Leng and
Ra.ns : Bangop i Ba.nLop are respectively left and right
adjoint to the functor Bans t GG 8 from

park”” + park™

They are given by
Lang F, = H(8(..),.) & ¥ (..)
S 1 ’ (..)€E 1

Rang F, o NI;.'EK (H(.,5(..)),Fy(..)) , Fy € Ban¥

oo

Lan

g & = G1(..)( %GEH(.,S(..))

3

Rang G, = Nat (H(S(..),.), &,(..)), ¢, € Bark
(-)E 1

Now let K be a full subcategory of Ban and consider the
embedding functor K » Ban. We denote it also by X for short,

80 we write LanK and RanK for the associated Kan-extensions.

243
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Definition: A functor F : Ban ~ Ban is called XK-computable
if F = Lang (FIK) via the counit LanK(FlgI_) > F of the
adjunction (4.1), i.e. the map H & (FIE) ~ F,

f ® &€ 2> F(f)8.( Analogously for cont;avariant functors ).
A functor F is called K - complete , if F = Rang (FIR)
via the unit of the adjunction (4.1), i.e. the ;ap

Ty ¢ F(X) * Nat(H(X,.), (FlK)) ,
T

(Tg8)g (£) = F(£)E , K€ K, £ € H(LK) , § € P(X) .

(Analogously for contravariant functors).

1.3. Propogition: a) If F : Ban ~ Ban is K-computable, then

Nat (F,F,) = Nat (FlK,F, |X) for all functors F, : Ban ~ Ban.
1 =1 = 1

Ban K

If G : Ban®®P » Ban is K-computable, then Nat (G,G1) =

Ban
= Nat (G|E,6,|K) for all functors G, : Ban®® » Ban .
K

b) If F : Ban ? Ban is K-complete, then Nat (F1 ,F) =
Ban
= Nat(F, |K,FIK) for all functors F, : Ban  Ban.
K

If G : Ban®®? ~ Ban is K-complete, then Nat (G1 ,G) =
Ban

= Nat(G, IK,6|K) for all functors Gy @ Ban®P - Ban .
K

Proof: a) Nat (F,F,) = Nat (L (rlg),?,) =
Ban 1 Ban a.ng =

= Nat (FIE, P, lK) by 1.1 .
K

b) Nat (F,,F) = Nat , =
) Nati (F),F) = Nat (F, Rang (FIK))

= Nat (F, g, FIK).
K

—

Likewise for contravariant functors.
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1.4. First we fix some notation: if F: Ban- Ban is a functor,

then we write

FE = Lan, (FIK) : Ban~ Ban,

=Ra.n;(F|§) : Ban~ Ban;

w; call—E‘K the K-computable part of F and FK the K-completion

of F. Via unit and counit (1.1.) we have ca;onical natural

transformations

E‘K—»F-*F (cf 1.2.)

If E_Fln, then we omit the prefix Fin for short: Hence,

by the completion of a functor F, for example, we mean

just the Fin-completion FFin'
We will use the analogous notation for contravariant functors.

1.5. Proposition: Let F: Ban- Ban and G: Ban®P - Ban be functors
and X € Ban. Then we have by (IV, 3.11.) and 1.1.:
FK-(X)—Lan (FIK)(X) =H(.,X) #, (FIK) =

—Lan (B 1K) & r= @ & 7.
Ban

F (X) = Ran (F'K)(X) Nat (HX,FIK)_
K

IN

=Nat (Lany (By[K),F)=Nat ((Hy %, ).
Ban an

& (x) = Lan (¢lK)(X) = (GIK) ® H(X,.) =
x Byl =6 5 (Hy £,
Ban K Ban
K(x) RanK (GIK)(X)_Nat (X ,GlK) =
= Nat (Lany (5X IK) ) =Nas (EHE,6)

Ban

)
>N
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1.6. To justify the notation 1.4 we show:

Lemma : (}E)E = E , (FIC )K =F,y and likewise for contravariant

functors.

Proof: E‘Elg = F|IK since for X € K we have FE(x) =
= H(.,X) &(FIK) =F () by IV, 3.8. So (FE =

= Lang (IE‘E) = Lang (Fl_lg) = I"‘]-g . A1l other arguments

are similar.

1.7. Proposition: Let K be a full subcategory of Ban which contains
the one-dimensional space I.
a) IfF : K~ Ban is of type £ on K , then Lang F is of
type L on Ban. -
b) If F

K ? Ban is total on K (cf IV, 1.17) then
B&nK F is total oxa Ban.

Likewise for contravariant functors.

Proof: a) Leny F(X) = EC.,X) é? = H(I,X) 72 F(I) for a

reasonable crossnorn ¢ by IV, 3.12.
b) Let O £ M € Rany F({) = Nat (Hy,F).
= K
Then there is K ¢ X, { € H(X,K) with nK(f) £0 , so that, by

hypothesis ,there is k' € K' such that F(k')nK(f) L0 in
F(I). But then Rany F'(f*(k'))(n) # 0 since

[

Lrany B(£1 (e)y () (1) = [Nat (B(k= £,.0,E)(m) ] (1)

i

[neH(k's f,.)]I (1
F(k' g (%) to0.

]

I) 1’]I(}I' ° f) = 'ﬂI ° H(Xokl)(f)
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Likewise for contravariant functors.
1.8. Proposition: Let F : Fin ™ Ban and G : Fin°®? » Ban

be functors and X € Ban. Then we have:
Lan, F(X) = lim {F(E), ES X, B € Pinl .
Fin =

Rang,, F(X) = Lin (r(/m) , M x, ¥/n € pin} .
Lanp, @(X) = lin {e(X¥/m), mcx, /M € Finl.

Renp, . ¢(X) = lim {@(B), E€X, B € Fin!} .

The limits are always in Ban, E runs through all finite
dimensional subspaces of X and M through all finite

codimensional subspaces. Compare I, 1.16 and I, 1.20.

Proof: Write IF(X) = lin {F(E), ES X, E € Fin}. Then
by the universal property of the colimit it is
readily seen that X = LF(X) is the object transformation
of a functor LF : Ban ™ Ban, whose action on morphisms

is given by the universal property of the colimit, that

L: BanFin 2 BanBan is a functor too and that L is left

adjoint to the restriction functor F1 - F1|Fin from

BanBan to BanFin . Now LanFi

restriction functor (1.1) and since any two left adjoints

n is left adjoint to that

of the same functor are naturally equivalent, we see
that L = Lang, . The other claims can be proved in a similar

manner. qged.
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1.9. Examples: Let‘A € Ban.

a) A é . is computable, since it commutes with any colimits
in Ban, (II, 1.8c) and since X = lim {E, E € X, E € Finl
by I, 1.20.

b) A ® . is computable: the inductive tensor product commutes

with isometries (II, 2.2), so [E®E, : E < A, E, € X;

1
~
E, E1 € Fin} is a cofinal gubcategory of [E:ESA0® X,

R E]
E € Finl.HenceA ® X = lim {E ® E € Fin!

- 1

lim {1im{E éE1, ECA, E€ Finl : B
D

—_—

lim 1A®E1, E,SX, E

: ES A, By X; E,E,

SX, B € Finl

1

€ Fin} .

1

¢) The functor 1! (4',.) of V, 3.1b) is not computable if A

does not have the approximation property, since it coincides

with the computable functor A ®. on Fin and so :[,1 {A',. )Fin =

=A®. by 1.6.

: 2
d) (HA)Fln = A' ® . since they agree on Fin and the latter

is computable.

e) Let I, (4,.) be the functor of II, 2.9 or V, 3.1 a). Then

. A
I, (A,.)Fln = A' ® . since they agree on Fin.

f) A ® .' is computable since
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~

Fingy S a e Bén(HX)Fin by 1.5

R

(A

(L8 .1) B (X &.) bya)

]

A®X by remark 1) in IV, 3.11.

If A = I, then we may conclude by 1.8:

x' = (.9)FR(x)

liml(X/M)', M € X, X/M € Fin}
———

1]

limiM', M € X, X/M € Fin}.
But this is clear since each finite dimensional subspace

of X' is of the form M*, X/M € Fin.

g) A ® .' is computable:
A®X' =A® (lim {E, E S X', E € Finl)
—_—>

lim |A ® B, ES X', E € Finl by b)

]

lim 1A ® (X/M)', M € X, X/M € Fin! by the

remark in f),

= (a e .)M%x) by 1.8,

h) (A ® ). (X) = Nat ((H)T™®, 4 ®.) by 1.5
Fin Ran XR )
=Nat (X' ® ., A ®.) by 4)
Ban R
= D(X' ® .)(4)
= I, (X',4) by V, 2.5 and II, 2.9
1) (A ® .)p (X) = Nt ()™, 8 ®.) by 1.5
Ban R A
= Nat (X' ® ., A ®.) by d)

Ban
H(X',A).
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i Fin
3 (Hy)psy (X) = Nat (B, ) by 1.5
= Nat (X' ® ., A' ® .) by d) and IV, 1.12
Ban
= H(X',A") = H(4,X").
k) I1(A’°)Fin = (A' ® ')Fin = 11(-'9A') = 11(A,-")

since I, (A,.) 2nd A" ® . coincide on Fin.

1) As special cases we get:

(14) =" ; i.e. X" = 1im IX/M, M S X, X/M € Finl

Fin
by 1.8, i.e. the result we derived in I, 1.20.

~ , _ F- ~ ,
m) (4@ .')py, (X) = Nat ((H’f) moael) by 1.5
=Nat (X ® .', A®.') by &)
Ban

= I1 (X,A) by a contravariant analogon to

£ . N
n) (A® .")p, (X) =Nat (BT, ae.) vy1.5
Ban

"
R

=Nat (X®.', A ®.')
Ban

= H(X,A).

0) H(.,A)pyy (X) = (H(.,4)g)py, (X) by 1.8

= (A; ")Fin (X) = H(X,A) .

1.10. The counterexample in 1.9 c) is the typical one, as is shown

by:
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]
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Fin
Nat ((Hy) —, H,) by 1.5
Ban Hxh A

Net (X' ® ., A' ® .) by d) and IV, 1.12

»

Ban

k) I, (4, )p, = (&'

H(X',A') = H(A,X").

® ')Fin = I1(~'9A') = I1(A1-")

since 11(A,.) and A' ® . coincide on Fin.

1) As special cases we getb:

(Id)Fin =" 3 i.

e. X" = 1im {X/M, M S X, X/M € Finl

by 1.8, i.e. the result we derived in I, 1.20.

m) (A® .")p (X)
v, 2.5.

n) (A8 ., (®

0) H(.,A)p;, (X) =

The counterexample

by:

= Nat ((BX)F1R 2 g .1) by 1.5
Ban .

=Nat (X ® .', A ®.') by g)
Ban

= I1(X,A) by a contravariant analogon to

=Nt ((BEO)FR A8 .') by 1.5
Ban

= Nat (X ® ', A ® ')
Ban

= H(X,A).
(£ gy (X) = H(Z,A) .

in 1.9 ¢) is the typical one, as is shown
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Proposition: a) If F : Ban 2 Ban is any functor of type T

and if X has the metric approximation property, then
F(X) = FFin(X) and the canonical mapping
oF

x ¢ F(X) 2 FFin (X) (ef 1.2, 1.4) is isometric.

b) If G : Ban®® » Ban is any functor of type T and if

X' has the metric approximation property, then

GFin

G(X) = (X) and the canonical mapping

G . S . .
X G(X) GFin (X) is isometric.

Proof: a) FFin(X)

il

(.' ®X) BénF by 1.5 and 1.9 g)

it

Fe(X) by IV, 3.13.
F(X).

A

Ti(i)z(f) = F(£)E, & € F(x), £ € X' ® Z, where
(X) = Nat (X' ® .,F) Dby 1.5 and 1.9 d).

Fo:
Fin Ban

By hypothesis X' ® X = K(X,X) has a left approximate unit
(uj) bounded by 1 (cf II, 3.10) and F(X) = Fe(X) is an

essential left Banach K(X,X)-module. Thus for all

€ € F(X) we have “'T}F{(§)X(uj) -l = HF(uj)g - &l » 0 ana
80 HTi(E)H = llgll .
b) 67(x) = & z@ (X' ®.) by 1.5and 1.9 d)

]

Ge(X) by IV, 3.13.

The proof of the second assertion is similar to that

in a), using II, 3.11, Corollary.
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1.11. We now want to study the connections between dual and

computable functors.

Propogition: If F: Ban- Ban is computable, then
DF(X')=F(X)' for all X € Ban.

Proof: DF(X') =Nat (F,X'®.)
A

Ban

=Nat (F,X'®.) by 1.3. a)
Fin

—Nat (F,(X8.')") vy II, 2.8.
FinA

=((x%.') & )

Pin
=PF(X)'.

1.12. Proposition: If G: Ban®? - Ban is computable, then

A
Nat (G, X"® .') =G(X)' for all X € Ban.
Ban

Proof: Nat (G, X"#.')=Nat (G, X"#.') by 1.3. a)
Ban A Fin
=Nat (G,(X'®.)') by II, 2.8.

Fi
6 s @by e,
Fin

1.13. Proposition: A covariant computable functor F transforms
weak retracts into weak retracts and weak sections into
weak sections. A contravariant computable functor G
transforms weak retracts into weak sections and weak

sections into weak retracts.

Proof: Let f: X=*Y be a weak retract (V, 2.9., II, 1.9.).

Then there is h: X' ~»Y', llnll<1 with £'on=1y,.
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So F(f)' ¢ DF(h) = DF(£') » DF(h) by 1.11

DF(f'° h)

DF(1xe) = pp(xr) = p(x)
i.e. F(f) is a weak retract.

Nat (G, G' ® .')eG(£)' =
Ban

i

Nat (G, h' & .')eNat (G, f" ® .') by 1.12
Ban Ban

Nat (¢, (h'e£") ® .')
Ban

Nat (G, (19,)' ® ') = 1o vy e

]

i.e. G(f) is a weak section.
If on the other hand f is a weak section, i.e. there is

h: Y 2 X" with he £f' =1 , then

Y'
DF(h) ° F(f)' = DF(h) ° DF(f') by 1.11

= DF(he£') = DF(1y,) = 1pp i)
= 1F(Y)" so F(f) is a weak section,
and G(f)' e Nat (G, h' ® .') =
Ban

~

Nat (@, £" @ .')  Nat (G, h' ® .') by 1.12
Ban Ban

]

Nat (@, f"°h')§-‘)=1 N
Nat (6, ( (1)

so G(f) is a weak retract.

[l
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§ 2. Extensions from the categories LP

In this section we use the general set-up of § 1 to carry
over some of Grothendieck's considerations for ®-norms
[33] to arbitrary functors. For a ®-norm o (i.e. a tensor
product, IV, 2.10., which is computable in each variable)
he defines norms /o, \a, etc which turn out to be
;1-and ;a{-computable functors. We treat arbitrary
functors and ;R, LB; l%in Kan extensions over them for

1<p<wm.

. Definition: ;p denotes the full subcategory of Ban,

consisting of all spaces lp, M a set, 1€<p<w.

igin consists of all finite dimensional spaces in ;p.

LP consists of all spaces LP(0,T,u), where (0,T,u)

is a measure space.
1 f
X 1
If X€Ban, we denote by {1,(X) «—"— 1,(X)} the spectral
family, where l}(X)==léX, ™y léX-*X is the canonical
. 1 1
quotient map (ef. I. 1.11.), 12(X)=:10(ker

the composition of the canonical mappings
1
O(ker my)"

£
X=1lim 111 (£) P S 112()()}.

and f, is
ﬂX) X

léX*-ker TTX*-l It follows that
If fe OH(X,Y), we may define 1}(1‘) : 1}()()*1}(!) by
l}(f)(ex)==ef(x) for xe€ 0X, where ey denotes the unit

vector corresponding to x. It is easily seen that ll(f)
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induces a map 1(£) : 13(x) 1;_('1). Thus 1] (X) end 1} (x)

become functors in the usual categorical sense, but the

agsignment for morphisms is not linear. Analogously we

g
detine 11 (x) =X, 12 (0}, where 1P (%) =13, ,

iX s X” lE)DX' denotes the canonical isometry,
® ® ; - ®
12 (X) = 15 soxer 1p)¢ + Teis time X = lin 1P @

5,02 @) .

2.2. Lemma: a) If T: X 2 Y is a quotient map, f € H(l;,x,Y),

€ > 0 , there exists a map fe € H(l;,I,X), such that
izl = llzll (1+€) and the following diagrem commutes:

1y
7
/
Vd
fo .
S £
%
X“T—éy

b) If j :+ X Y is an isometry and f € H(X,lf;?) , there exists

a map £, € H(Y,13 ) , such that ll£,ll = ll£ll and the following

diagram commutes:
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. 1
Proof: a) Let {em}mf'M be the canonical base of lM .

Since T is a quotient map, there exist elements x €X
m = <!
such that (xm) = f(em) and “me lf(em)ﬂ(1-+€) .

Now define fg (am) =3I op Xy -

. . @
b) Let {eiimf M e the coordinate functionals of 1y .

Since j is an isometry, f'(eﬁ) can be extended to a
functional y; € Y' with equal norm. Define f1(y) =

=(<y, y57) -

2.3. Proposition: If F : ;1 - Ban 1is covariant, then
1! 1 1
F (X) = lim [F(13(X) < F,N.
_—

If @& = ;1 = Ban 1is contravariant, then

6 ((X) = lin le(1](X) » a(1y(0)} .
i <«

Proof: We will start with the contravariant case:

By 15 @ (0 = Nat (H(.,0), o(.)) .

1
1 1
If ® € Nat (H(.,X), G(.)), then ® =® , () € 6(1}(x))
.1 °  1,(X)
1 1
and G(fx)wo =®, "x ° X) =0, i.e. wo € ker G(fx).
12(X)

Mwoﬂ < lloll and the assignment @ @, is clearly linear.
Conversely, assume that O € ker G(fy).. My : 1}(X) * X is
a quotient map. If h € H(l1,X), there exists by 2.2 a map

=1

¢ 51} 11(X)) such that b = Ty ¢ E. Now define

8

1(h) = G(K)¢O . This definition is inevitable in order
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to get @
11 (X)

defined and natural. Assume that Iy is another map which

("X) = ® . We will show that ® , is well
1

satisfies h = Ty ° h . Then im (B-h) € ker My Using

the previous lemma again, it follows that E—E = fX ° h0

where h € H(l1 ,1;(1()). Now we need the assumption ® € ker fy

to get G(R)P, = G(ﬁ)coo + G(h,)6(£5)P, = G(Z)wo

and this means that @ 1 is well defined. It follows easily
1

that @ 1 is linear and the norm estimate for h shows that
1

Ilcpl1H < llo_ll. Finally take £ € H(1y,1}) and b € H(1},X),

B € H(1),1) (X)) as before. Then My e B e £=h+ £ and

consequently @ ,(h ¢ f) = G(h o £)® = G(f)G(H)‘:"O =
1

M
= @(£)® 4(h). If g € OH(Y,X), then (& (g)P)(Ty) =
1y 1
1 1
= CPl:(X)(g- my) = CP:L} (X)(ﬂx © 15(8)) = 6(11(8))?, -

Thus the assignment ® ~ @ o defines a natural and isometric
isomorphism.

1
Now the covariant case: Fé'- (x) = H(.,X) ® F(.). We define
1 2!
amap P : F(11(X)) > P (X) by £ € Fl) - @t

The dual map P': Nat (H(.,X),F'(.)) F'(l;‘ (X)) is exactly the
1
1

one sgtudied before (with G(X) = F'(X)). If follows that
P' ig an isometric isomorphism onto the subspace

ker F'(fX) of F'(l} (X)). Consequently P is a quotient map,
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whose kernel coincides with (ker F'(fX))JL = im Fifxi.

2.4. Theorem: F : Ban ~ Ban is ;1—computable if and only if

F transforms cokernels of strict morphisms into cokernels.

G : Ban®®? ~ Ban is ;1—complete if and only if G

transforms cokernels of strict morphisms into kernels.

Proof: The map £y : 1)(X) » 1](X) is a strict morphism (I.1.6).
Consequently, if F commutes with cokernels of strict
morphiszs then FL (X) = 1im tr(u} (x)) « rN!t = F(x)
by 2.3. The same proof w;;zg for G.

Conversely let £ : X 7 Y be a strict morphism and Y = coker f
Y : Y™ Z. Since f is strict, it follows that l:’(Y) :

1? (Y) » 1§’(z) is the cokernel of l:)(f). This means

1

H(ls,Y) = coker H(l;,f) and so the natural transformation

H(.,Y) : H(.,Y) ® H(.,Z) on 1' is the cokernel of the
natural transformation H(.,f) : H(.,X) 2 H(.,Y). By the

adjointness relation H(G ® F,U) = Nat (G,H(F,U)) we see that
1! 1!
l1op
1F : Ban— 2 Ban is left adjoint to H(F,.):

the functor .

- ®:>

1op
Ban Banl . Hence it commutes with cokernels and is

" ~ 1 . 1

H(.,Y) ®1F = coker H(.,f) ® F , i.e. FL (Y) = coker P& (£).
1

1 1

If ¢ is 1'-complete, then G(X) = G ,(X) = Nat (H(.,X),6).
1 1
i 1
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Once again, let Y= coker f in Ban1 , X =N Y Yo 7.
Then H(.,y) = coker H(.,f) on l‘| . H(U,Nat (&, ,3)) =

=

A
=M?W®%&hﬂﬁ(%£Wﬁﬂsttmt
1 l1op-]=
Nat (.,3): Ban= ~Ban is adjoint on the right to
1! 11op
H(.,G): Ban- Ban= , So it transforms colimits into
limits, in particular, cokernels into kernels and we

conclude Na}: (H(.,v),G) =ker Na;c (H(.,),d), i.e.
1

1
) 1(y)=ker G 1(f).
1 1

2.5. Bxample: By 2.4. the functor H(X,.) is 11—computable if
and only if X has the lifting property, i.e. if
feH(X,Y) and v: Z-Y is a quotient map, there exists
ge H(X,z) with 'lgl<I£!l(1 + €) such that f=y. g (compare
2.2.a). It follows from a result of Grothendieck
(see [76 p. 487]) that such spaces are already

isometrically isomorphic to 11\1'1 for some index set M.

2.6. Proposition: If F: ;CO-' Ban is covariant, then

F o =linm {F(1,® (X)) > F(1,® (X))}.
1«

T G: 1%+ Ban is contravariant, then
®

¢t = 1im 16(1,® (X)) « 6(1,® (X)) 1.

I

Proof: By 1.5. F 03(X):Na.‘c (H(X,.),F). If we Nat (H(X,.),F),
® ®

l .
(ix)—e ker F(gX) CF(l1m (X)). Conversely if

then q:o =0

1, % (x)
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®, € ker F(gx), h € H(X,1®) there exists a map h €
H(1§” (X),1® ) such that h = & - iy (2.2), and we define

CPX (h) = F(E)CPO « By the same methods as in 2.3 it follows that
this correspondence CPG%QJO defines a natural isometric

isomorphism between F ® (X) and ker F(gx) - If @ is contravariant,
1

a
H(X,.). Ve define P : 6(1P (X)) > &L (x) 1y

@®

®>

G—]—'(X)=G

I~

€ 7 & ®iy. The dual map P' : Nat (H(X,.),a'(.)) G'(l‘;’ (X))
1@

coincides with the isometric embedding studied before. Therefore

P is a quotient map with kernel im G-lgx5.

2.7. Theorem: F : Ban » Ban is 1% complete if and only if F
transforms kernels of strict morphisms into kernels.
G : Ban®P - Ban is ;w —computable if and only if @

transforms kernels of strict morphisms into cokernels.

Proof: The map 8y : l? (x) » lg) (X) is a strict morphism.
Consequently, if F commutes with kernels of strict morphisms,

then Flm (X) = 1lim {F(1§D (X)) > PY (X))} = F(x) vy 2.6.
—

The same proof works for G.

The converse follows also as in 2.4: Let f be a strict

morphism, k = ker f, 2 L X ~—f—7Y. Since H(X,1%®) =

= H1'X') (1.2.13) and k' = coker £', it follows from the

proof of 2.4 that coker H(%,.) = H(k,.) on 1° . The

equation H(U, Nat (F,,F)) = Nat (U & Fy,F) = Nat (F,,H(U,F))
1@ 1® 1®
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@ op
shows that the functor Nat(.,F) : Bant = Ban has a

left adjoint. Consequently Nat (coker H(f,.),F) = ker
Net (H(f,.),F). For a contravariant functor G we have

H(G émp,n) = Nay (F,H(G,U)) i.e. G ®_ . has a right adjoint
1 1 1

and consequently coker (G &a)H(f,.)) =G éh)H(k,.).
1 1

2.8. Remark: By 2.7 the functor H(.,X)' is 1%%-complete if and
only if X has the (1 + €)-extension property for any € > 0 ,
i.e. for f € H(Y,X) and an isometry j : Y  Z there exists
g € H(z,X) with gl = I£ll(1 +€) such that ge j = £. It
follows from a result of Lindenstrauss [45,p.82] that such
a space already has the isometric extension property
(i.e. 1+€ replaced by 1). If we denote as P, the category
of all spaces with the isometric extension ;;operty, then
2.6 and 2.7 remain valid if the category ;a)is replaced by
P, - (compare this with 2.5).

2.9. Lemma: Let M be a finite dimensional subspace of P (1= p=< o),

€ > 0. Then there exists a finite dimensional subspace

N ® M and an isomorphism j : N ~ lﬁ (n = dim N) such that

M5~ = 14e .

Proof: Let (xi)?_1 be a basis for M. There exist constants

m
| Il <
K> 1L >0 such that L max |\l = 1, Z A %'l < K max [2,]

for all (li) © I. We approximate each x; by some element
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¥y € Lp, which takes only a finite number of values, such

that ‘lxi-yi!\ < min (L/2m, €/(2mK)). Then I Xiyi‘J <

A

< oia k. = vl ! A XKy <
l\z Xixin + Il ii\xi yi| max | i‘(Ki—m 5=) < 2K max |ki,

and analogously |IZ liyi” = % max !ki . By the Hahn-Banach

theorem, there are y. € (ZP) ' such that < yi,yj > = 6ij

and Hyi“ = 2K. Each element y; has a representation of the
2

form 3 aichij , where (Ai

measurable sets, and the qij are distinct scalars. If we

j)ji1 is a finite partition into

take all finite intersections of the Aij (i=1, ..., m,

j= 1,...,ni) we get another partition (Bj ?=1 . The

subspace No = {§ U-jcB : @j € 1l is clearly isometrically
J

isomorphic to li and furthermore ¥ € N0 for i =1,...,n.

m
We have II;Z, y! ® (x;-y;) 1 =m.2K.¢/(2nK) = e.

Consequently if we define f : LP = IP by f£(x)
+ < x,yi > (xi-yi), then (1-¢)xll = o)l = (1 +e)lixll

X +

and f(yi) = X;. Now it is easily seen that the subspace

N = f(Nb) neets our requirements with €' = (1 +€)/(1-€) - 1,

2.10. Proposition: Let F, Py Lp = Ban be covariant and
G, @ : Lp = Ban be contravariant functors (1 S p < w ),

F, G of type Z.

Then Nat (F,F1) = Nat (F,F1) = Nat (F,F1)
P P p
L L lfin

and Nat (G,G1) = Nat (G,G1) = Nat (G,G1) .

b P D
& L lfin
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Proof: We restrict ourselves to the covariant case, the proof
for G is similar. By IV. 1. 12 we may also assume that F1 is
essential, i.e. F(IP) = 1 g X, F, (zF) = 1® g Y for

reasonable norms & and B (IV.1.8). If © € Naz (F,F1) its
restrictions define natural transformationsLon ;P and lgin .
Conversely assume that © € Nat (F,F1) and define

1fin
chp : 1P x> 1P ® Y by CPLP = 1Lp ® 1. It is easily seen

that @ P agrees with the original map on 12
L

fin and is

uniquely determined by this condition. We will show that

p o is continuous on I € X. Take an approximate identity (v,)
L

for (LP)' ® 1P (11.3.10) with v, Il <1, v, € (2F)' ® 1P .
Let M, be the range of v,. To € > O there exist, by the

preceding lemma, finite dimensional subspaces N, = M,

and isomorphisms j, : N, » 12 such that g M7 = 1 we,
1

Denote by v, : I® » N, and k, : lﬁ = 1P the maps that
1

coincide with v, resp. j:1. Assume that u € ILP @ X, then
by Iv.1.13 : 11 ® 2 ) (W)l = 1im (v, ® cpI)(u)‘l =

= lim Mk, » §, = ¥, ®op () = lin N, ®1 )ocpl§ o

1
(3,27, e 1wl = lim Hk,_!ll\colp 5, o Tllllally = (1 +e)lellull,.

Y

)

2.11. Theorem: Let F : Ban = Ban be a covariant functor.

1P\ Fin 1P, Pin 13in
Then (F= ) = (F=) = F
.= =F . 1 = S o).
(2 pin = Fdein =B, - (152 % @)

=fin
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&
Let j ¢ .' ® X H(.,X) be the canonical embedding and let
k: .®X' - H(.,X)' be given by < u,k(y ® x') > =

< u(y),x' > (u € H(Y,X)). Now <y' ® x,j'*k(y ® x') > =
=<y,y'><x,x'>=<y' ®x,y®x'>,i.e. jreok =1.
Consequently k is an isometry. P is given by P(®) = j'« @
and it follows that P is a quotient map.

2.13. Proposition: A (Fin-) computable, covariant functor F : Ban = Ban
is ;1—computable, if and only if it commutes with quotient
maps.

A (Fin-) complete, covariant functor F : Ban ™ Ban is
lqlcomplete, if and only if it commutes with isometries.
In both cases it suffices if the condition holds for finite

dimensional spaces.

Proof: Assume that F commutes with isometries on Fin. Take
M € Fin, € > 0, By the same method as in II.2.8 one finds
spaces M,, 1 € Fin, an isomorphism ® : M > M, such that
lolllo™ < 1 + ¢ ana an isometry j : M, » 1P . Since all
spaces are finite dimensional, we have algebraically

F(M) = M ® F(I), F(M,) = M, ® F(I) and F(j) = j ® F(I).

1
Clearly im F(j) = im j ® F(I). According to 2.7 F__ transforms
1

kernels of strict morphisms into kernels, and so F G§M1) =
1

im j ® F(I). But since F(j) is an isometry, the latter space

coincides with F(M1), i.e. F(M1) =F G§M1) isometrically.
1
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“F(CP)HHF o (CP"1)“ = 1+€ and so the norms on M ® F(I),
1

which are induced by F and F _ differ only by (1+¢)2,

(LI L

Since € was arbitrary, F(M) = F m(M) holds too, i.e.
L

F=F ,on Fin. Since by 2.11 Cor. 2 both functors are
1

computable, they have to agree everywhere. The proof for

1

1l is similar, using dual arguments.



268

1)

2)

3)
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Exercises

Let F be Fin-complete. Then there exists a natural

transformation from F1(.', F(I)) into F.

If F is Fin-complete and X€ A , then DF(X) = (0).
(Use the fact that DF(X) s H(X',DF(I)).

Show that (.'® X) 1= (., X).
1

Dually one gets (. @ X) a)(Y') = K(Y,X) and
1

1 =
I,(.', X)& =K(., X) for X € Ban.

It follows that Prop. 2.12 is not valid for p = 1.

(Take a space X which has the approximation property but

not the metric approximation property and use II.3.9).

Show that (FFin

)o(X) = F(X) for X€A .
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