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Preface

The aim of this book is to develop the theory of Banach ope-
rator ideals and metric tensor products along categorical
lines: these two classes of mathematical objects are endo-
functors on the category Ban of all Banach spaces in a
natural way and may easily be characterized among them (§4).
Up to now they were investigated with methods of functional
analysis in a sort of ad hoc manner and with an outlook to
special properties; here they are subject to several cate-
gorical and universal constructions:

Kan extensions from the subcategory of finite dimensional
spaces are studied in §2 and applied to tensor products and
operator ideals in §§ 4,5,6 and give rise to the reappearance
of the ®-norms in the sense of Grothendieck and to minimal
and maximal operator ideals in the sense of Pietsch.

Duality for co- and contravariant functors is studied in
§3 (and some new and deep results are derived on it) and is
applied to tensor products and operator ideals in §§ 4,5,6:
duality is the link between the two notions.

Several other constructions of sub- and quotient functors
induced by canonical adjoint relations are used to (co) re-
flect all appearing functors back to tensor products and
operator ideals (§§4,5,6).

In §7 we introduce (as an example) a new class of tensor
products, the projective (p,r,s)-tensor product, which is a
link between the (p,r,s)-absolutely summing, - nuclear and -
integral operator ideals and we use it to derive a lot of
new relations between these operator ideals from existing
ones.

The whole subject - although sometimes technical and compli-
cated - seems to be a succussful and deep application of
category theory to functional analysis.

Y Research was partially done while visiting the University of

Warwick supported by a Royal Society award.
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§ 0 INTRODUCTION

Operator ideals in Hilbert spaces caused mathematical interest
since the first days of functionsl analysis; attention was
focused on the behaviour of tensor products and operator

ideals on Banach spaces thirty years ago and the intimate
connection between them is clear since then. Operator ideals
showed to be more tractable and more work was invested recently
to research them.

Tensor products and operator ideals are in fact special
examples of bifunctors on the category of Banach spaces and it
is maybe worthwhile to look what theoretical setting the category
theory provides for them: they can easily be characterized
among other bifunctors by certain functorial properties using
some elementary adjunctions (§ 4), and the characterization seems
to me to be simpler than the original definition.

The connection between tensor products and operator ideals
turns out to coincide with the notion of duality of functors,
the Banach space analog for the Eckmann-Hilton - duelity, and
it appeared in MITJAGIN-SHVARTS [16] some ten years ago. To
apply 1t we show some deep results on the duality of functors,
in fact, we compute the dual of any functor of type > , and we

glve a short account of an appropriate duality theory for



contravariant functors too (§ 3).

The functorial snalog for the notion of tensor norm of
GROTHENDIECK [8] is explained in § 2. Its importance for the
duality of functors was first pointed out by HERZ-PELLETIER [9],
who called it computability. We give a new approach to computable
functors and derive some new results on them using heavily the
tensor product of functors and the "exponential law" that goes
along with it, due to CIGLER f3]. This gives us at hand a formal
machinery for a nearly purely algebraic handling with functors,
tensor products and spaces of naturael transformatinns.

Computable bifunctors of type 2 correspond exactly to the
tensor norms of GROTHENDIECK [8], and an operator idesl is minimal
in the sense of PIETSCH [19] if it is comvutable whenever the
Banach spaces considered have the metric approximation nroperty;
in the general case a slight factorizationg links the two notions
(§ 5)

The notion dual to computability 1s that of complete functors,
which appeared first in CIGLER [4] in a special cece. The
completion of the identity functors is the bidual functor '' ;
computable bifunctors and maximal operator ideals differ inasmuch
as in the former alweys appears a bidual space: repairing that by

teking a pushout links the two notions (§ 6).



In § 7 we introduce a new class of tensor norms, the
projective (p.r.s) - tensor product, which generalizes the
p-tensor products of SAPHAR l20] and CHEVET [2]. Its dual
functor is the ideal of (p.r.s) - absolutely summing operators,
which we define a little different from PIETSCH [19]; its
assoclated operator ideal is that of (p.r.s) - nuclear
operators, its dual tensor norm give the inductive (p.r.s)- tensor
product, whose dual functor again is the ideal of (p.r.s) integral
operstors. By this theoretical interdependence we sre able to
carry over to all these functors results hitherto known only
for (p.r.s) - absolutely summing operstors.

We limited ourselves to normed operastor ideals, and we take
alrays convex hulls of unit balls whenever guasinorms appear in
§ 7, but surely we lost information by that process. To produce
the right background for the theory of guasinormed operator ideals
as developed in PIETSCH [17], we should provide a theory of
functors from the category of Banach spaces into the category
of complete guasinormed spaces; this would amount to a study
of quasi-tensor-norms.

The second limitation of this work is that we did not
embody the notion of injective or projective tensor-norms or
operstor ldeals as they appesr in GROTHENDIECK (8] and PIETSCH

[17]. The reason is thet we were not able to f£ind an analog of



theorem 3.4 of SAPHAR [20], which would comnect (p.r.s) -
integral and (p.r.s) - factorizable operators.

Berides the facts of the theory of categories of Banach
rpaces, listed in § 1, and some moderate abstract category theory
(chepters I and IV of MACLANE [12] suffice) we presuppose only

knowledge in functionsl analysis.



$1. PRELIMINARIES

Let Ban be the category whose objects are a big enough
class of Banach spaces and whose morphisms are bounded linear
maps; Ban1 we define to consist of the same class of objects,
but we admit only contractive linear maps as morphisms, i.e.
linear maps with norm < 1. Ban is an addive Ban-based category
in terms of relative category theory, but Bem1 has the advantage
that it is complete and co-complete, i.e. contains all limits and
co-limits of small spectral families. Thus most of the time we
will regard Ba;n1 and Ban together, but we understand that
only contractive morphisms are relevant if we speak of limits,
colimists and other universal concepts. By using a equality
sign we understand always that this is an isometric isomorphism,
we will always very strictly distinguish between isomorphisms and
isometric isomorphisms. The ground field I is R or C, we do not
specify, but only of them.

d.1. By H(X,Y) we design the Banach space of all bounded linear
maps X » Y. By a (covariant) functor F: Ban - Ban we mean a map
that assoclates new Banach spaces F(X) to old ones X and associstes
a morphism F{f):F{X) » F(Y) to each morphism £:X - Y in such a way
that the transformation f - F(f) from H(X,Y) into H(F(X),F(Y)) is

contractive and linear and the usual functional properties hold:



F(fog) = F(f) o F(g) and F(‘IX) = 1F(X)' A contravariant functor
F: Ban - Ban then transforms f£: X » Y into F(f): F(Y) » F(X) and
F(fog) = F(g)° F(f); all other properties are the same as those

of a covariant functor.

;égé. The simplest examples of functors are the following:
H(X,.), H(X,f)(g) = f°g, is the covariant partial functor of the
Hom functor of Ban. H(.,X), H(f,X)(g) = gof, is the contravariant
part of it.

For X,Y € Ban let X @ Y be the completion of the algebraic tensor

product X @ Y in the greatest crossnorm.

B

-~ n
lwil =inf 2 [ x|l lly;Il , whereu = 2 X, ® y, runs
1=1 1 1t 1= 1774

through all representations of u in X® Y. £. 1s a co-covariant
bifunctor, its action on morphismsis given by
(£8g) (= x; @ v5) =2 £(x;) ® glyy).
By X8 Y let us denote the closure of the algebralc temsor product
X® Y in H(X!Y) via the embedding X @ Y » H(X',Y), given by
1 t
2 x 0y (x' » 3 <?1, x >y1).

Its norm is given by

”E xi ® yi|l ® = sup |2 <xi’x'> <y1’y'>|
<t 1l <1, 113" ll<?
= sup [PRENED A
I =*ll<1
= sup |12 Xy <Y19Y'>”x-

Iyt i<



Among the first who studied functors on the category of Banach
spaces were MITJAGIN-SVARTS [16]; With respect to tensor products
of Banach spaces we refer the reader to SCHATTEN [24] ana
GROTHENDIECK [8].

é_ A natursl transformation m from the functor F into snother
one F, 1is a femily of morphisms (n}c)X < Ban. here

Ty € H(F(X), F, (X)) such that for any f e H(X,Y) the diagram

F(X) Y, F(X)
F(£) l 1 F, ()
F(Y) Ty E F, (¥) commutes
and furthermore || n || =8;.p Il nxll < oo .holds.

The class of all natural transformations F ->F1 is a Banach space
which we denote by Nat (F,F1) if it is a set. In most cases it is
e set and we pay no attention whether this is so in genersl. See
the general invertigation of this (LINTON 11] ete.),

_1_____._)1;___.__ The projective tensor product X &Y of X and Y has the
following universal property: given any bounded bilinesr map

¢ : XxY > 2 into an arbitrary Banach space Z then there is a

unique linear map

A A T A
¢ : X@Y » 2% with XxY XeY
A A ~
Hell <llell eand ¢ = o°m qxl P

A - A
where I : X x Y ->Xe@Y is z £ )



the canonical bilinesr map I (x,¥) = x®y.
Using this properly we see very easily that
H(X .;Y, Z) = H(X,H(Y,%)) holds natural in X,Y,3, i.e. the
equality sign is an invertiblelsometrical natural transformation
of trifunctors

H(o@ees ove) = H(apH(auyene))e
Another way to express this fact 1s to say that the functor Y 3.
is left adjoint to H(Y, .) and that the adjunction is natural
in Y.
By a general category theoretical result Y & . comutes thus with
colimits in Bansch and H(Y, .) with limits; special cases are

Y ;el =¢1(¥) eana Z:(Y') = (2(8(Y, 1)) =

B(Y,€2) = B (v,01") = B(v,m(¢], 1) =

1l o v, 1) = (el

n

A
1.5. On the other hand the projective tensor product .®. is

uniguely determined by its property to comute with colimits in

Ban1 and hence by its nroperty to be a left adjoint: Every
Banach space X may be canonically represented as a colimit in
Ban1 of a spectral family consisting of finite dimensionsl spaces

of the form ¢ l , where n stands for §1,...,n} (see CIGLER [5§ ],

Page 15). Now let F be a functor which comutes with colimits,



let be
X € Ban, X = }_1% f€1n}) . Then we have

F(X)

F(m {00 = lim R0} = 1w 5gl(R(D))} =

lig SZL ® MI)} = (lim %eL;) ;«F(I) =X n ?(1).

That 1s the essential content of the paper of SEMADENI-WIWEGER [22].
;éé Now let us consider a contravarient functor F: Ban®® - Ban end
a covariant one F: Ban - Ban. We restrict them to some
subcategory C of Ban and define the tensorproduct of F and F
over C 1in the following way:

A dinatursl transformetion o of the bifunctor F(.) QF(..)

into a Banach space 2 is a family (a'X)XEQ of morphisms

Gy ! F (X) ;F(X) + Z such that for each f € H(X,Y) the

following diagram comutes and moreover |lall = s}tép lla.XII <o holds:

FE ) & F(X)

F(£) - F(x)
a\

F(Y) ® F(X) z

? A
(Y) ® F(£) oy
— A
F(Y) o F(Y)
Tt is easy to see that a family (mx) defines a dinatural
transformation if and only if it corresponds to a family (BX)

of morphisms F(X) -+ H(F(X ),Z) under the isomorphism
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L A —-—
H(F(X) @ F(X),z) = H(F(X), H(F(X),Z)), which defines a natural
transformation F - H (F(.), Z).
Now the C- tensorproduct of F and F 1is a Banach space which
- A
we denote by F ®c F together with a dinatural map
— A - -—
mn:F(.)eF(..)»Fe;F

such that each

]
~~~
N
® >
]
~~
.

A
1)

A
e F
dinetural map -

— A
9 : F(.) @ F(..) = Z
into an arbitrary
Banach space Z

A _A A
factors uniquely over T to ¢ : F & F +Z with lell <llell -
By universal reason ing (some people might say: by abstract
nonsense) the C - tensorproduct of F end F is uniquely
determined up to an isometric isomorphism.
_A

If we disregard set-theoretical difficulties then F & F exists
and is given by

_ A z F(X) & F(X)

F eq F = XeC N , where 3 1s the coproduct
in Banach and N 1is the closed linear subspace generated by all

elements of the form

é f(Y)yK ® Rp - % g @ F(?) X s

— A
where 3 yp @ Xp €F (Y) @ F(X) end ¢ € H(X,Y) .
K
The notion of the C - tensor product and this reprerentetion

here is due to CIGLER [3].



- A
1.7. The C - tensor product F ®& F 1s the colimit in Ben,

of the following spectral family: 1let g1 be Cn Bany Then
the index category of the spectral family is the so called twisted
morphism category of _g1 s i.e. indices of the spectral family are
ell isomorphisms in G, , to each f eg1(X,Y) we assign the space

— A by
Rf = F(Y) @ F(X) and to each commutative diagram X — Y

gd To

Ty
X1——- ¥y in ¢
oy A £ £,
we sssign a morphism T (g,h) = F(h) » F(g) : R~ — R* .

Then F g F = iy IRT}, see uICHOR M13].
1.8. Since dinsturel trensformetions F(.) «; F(..) = Z end
netural transformetions F = H (F(.), Z) correspond to each other
uniquely and isometrically, we see immediately that

H(F QC P, 2) =Nat (P, H(F(.) , Z) holds. Since moreover

- A
F ®c F 1is a natural construction, i.e. mnatural transformztions

q;:'ﬁ—»'i*'1 end ¥ : F »F, inducc a map
A - A - A
¢®_¢=F&QF—’F1®9F1

it is straightforward to check that the following general
"exponential law" holds:

Let C and@ D be subcategories of Ban, let M : C°F x D - Ban
be a contra-covariant bifunctor and F : G - Ban, F, 3 D - Ban be

covariant functors. Then
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Nat (M(.,..z% P(.) ,F1(..))

-e -
—

= Nat (F(o) ’ Nat (M(””) ’ F1(")))
(.)eg Y

holds naturally in P , M and F1 .
See CIGLER [5] for a detsiled discussion.
A specisl case is the following:
- '
(F Qn F)

=H(§QQF, T = et (¢, ) .

1.9. Let A be a Banach space. Then we have
A
Nat (Am ., F) = H(A , F(I)) , where
F : Ban = Ban is any functor, is given by

A
>0 » ¥ (a @ x) = F(x)upI where

; € H(I , X) corresponds to x € X by 'J\:(r) =rx.

Thus the functor that assigns A Q . to A 1is left adjoint
to the forgetful functor F —— F(I) .

The counit & of this asdjunction is given by

axF : M(I)g X — F(X) ,

A
e; (2 8, ® x;) = 2TF(xy) &, .
Whenever the image of si‘ is dense in F(X) for all X we
say that the functor F 4is of type X or essentiasl. LEVIN [10]
P

proved that for all functors F the restriction of g to the

algebraic tensorproduct F(I) @ X 1s injective and that “'“F(x)

induces on the subspace X & F(I) a reasonable crossnorm in the

sense of GROTHENDIECK [8].



Since exF is natural in X the closure of the image of ef‘( ,

i.e. the closure of F(I)g X in F(X), defines a subfactor of
F , which we denote by Fe and we call it the essential part
or the partial functor of type 2 of F .
Fe(x) = XQGF(I) is therefore the completion of X@O.F( I) in a
reasonsble crossnorm, i.e. & norm a on XeF(I) which

A
satisfies || .IIA >a > .1 " , end this norm a is functorial
in X : given f : X Y then f @ FI): X3 F(I) — Yo, F(I)

is a map with norm < Nfl.

1.10. The analogous notion exists for contravariant functors

F : Ban - Ban.
A — — —
Nat (A o.' , F) = H(A,F(I)) holds nsturally in A end F,
the counit of this adjunction is given by
Foomoy A =
&y * F(I) @« X' > F (X)
-ﬁ t w ]
e (28, @x;') =2F (x}) 8y .

Again exF | F (I) @ X' is injective and || . "F(x)

induces a reasonable crossnorm a on F(I) ® X' which is
functorial in X ; i.e. given f : X =Y , then

F(I) o £' : F(I) ®, Y' -+ F(I) ®,X' has norm < l1fIll . Whether
o 1is functorisl in X' too, i.e. given any g : X' =+ Y' (even

non weak — % continuous ones) the guestion whether
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F(I) ?, & ¢ F(1) &, X' -+ F(I) », ¥' has norm < Il gll  too

will be one of the topics of this article. Again the closure

of F(I) ® X' in F(X) defines a contravariant subfunctor of

F , which we again design by f"e and we call it again the essential
part or the subfunctor of type X .

_1___._17__1___._ Any natural transformaetion maps essential parts of functors
into essential parts, since the counit eF is naturel in F too,
i.e. Net (F,F,;) =Nat (F,F, ) if F is of type 3 .

1.12. A Banach space X 1is said to have the (metric)

approximation property, if for each compact subset K ¢ X and

€ >0 there is 8 bounded lineser map u : X = X of finite rank
(with || ull € 1) such that || u(x) - x || € & holds for all X € K.
It is easy to see that X has the (metric) aspproximation property,
if and only if the Banach algebra K(X,X) of all compact linear
meps X = X has a left approximate identity (bounded by one)
consisting of maps of finite rank.

Consider the following diagram

A S
XY — L(X',Y)
coims l T ims
s A
1,01 A
L' (X',Y) XeY ,

where L(X',Y) 1s the space of all linear maps whose restriction
to the unit ball O0X' of X' is weak# - || .|| - continuous , s 1is

A
the map x o y » (x' = <x,x'>y), L1(X',Y) =Xe Y/s‘1(o) and



15

A
A
X® Y 1is the closure of the imsge of s.

X has the aspproximation property if snd only if coims is injective
A
for all Banach spaces Y (i.e. X @Y = ! (x',Y)) , if and only
if ims 1is surjective for all Banach spaces Y (i.e.
R
Xe&Y = L(X',Y)).
For further informstion see GROTHENDIECK [71. The first exsmple
of a Banach space without the approximation property is due to
ENFLO [23].

1.13. Special results and examples of tensor products of functors.

(a) H(.,X) SC F = F(X) naturelly in F in X whenever C in
a full subcategory of Ban that contains X. This corresponds
to the Yonedalemma
Net (H(X,.),F) = F(X) . See CIGLER [3] .

(v) F SC H(X,.) = F(X) holds under the same restrictions.

(e) (. gx) ;Ban F = Fe(X) holds whenever X has the metric
spproximation property. The proof relies on the existence
of & bounded left approximate identity in X(X,X) = X' %X .
See CIGLER [3] .

A

— A A -
(8) Fo (X' e®.) =F,(X) holds vhenever X' has the metric
Ban

spproximation property. Here we would require a right
approximete ldentity, so the proof is more complicested.

See MICHOR [15].
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—A —
(e) F 8gp F = F(I) & F(I) for a reasonable crossnorm
@ whenever F or F is of type 3 . See MICHOR [13].

(f) (F(.z.)ggu(..,.))(")zgF(..) =

= F(.)(.)gg (M("")(..)zn F(..))

holds for any contra-covariant bifunctor

M : D x C - Ban, as can be proved by showing that the

o

adjoint of the obvious map is isometric onto using the
exponential law. See CIGLER [5] .
A . A A — A A A
(8) (X @.') @ggy F =X @ F(I) eand F @y, (Xe.) = X & F(I)

hold, see MICHOR [13].



§2. Computable functors

_2__.?1_& Remark: Besides the notion of reasonable crossnorm, that is
essentially due to SCHATTEN [21], GROTHENDI®CK [8 ] introduced the
concept of a so called @-norm, i.e. a bifunctorial crossnorm a that
satisfies the following condition: for u € X@ Y

a(u) = inf holds, wrere E,F run through all finite

lullg o v
dimensional subspaces of X,Y respectively. HERZ-PELLETIER [9]
gaw that this notion is useful for computing the dual functor of a
functor (see next section) and called it computability.
2.2, Let Fin be the full subcategory of all finite dimensional Banach
spaces in Ban. Given a functor F: Fin + Ban and X € Ban, represent X
as colimit in Ban,1 of all its finite dimensional subspaces,
X =1im {E, Ec X, E € Fin}, and consider the Bsnach space
-
LF(X) = 1im {F(E), Ec X, E € Fin}.
-
By the universal property of colimits it is very readily seen that

X ~ LF(X) is the object transformation of a functor LF: Ban - Ban,

that L: Ban'l® o BanP?® is a functor emd tlat L is left asdjoint to

Ba Fin

the restriction functor F o F/Fin from Ban 2 ynto Ban O, i.e.

Nat (F,F1 |Fin) = Nat (LF,F1) holds naturally in F and F, .
Fin Ban

See HERZ-PELLETIER [Q ] for that.

Clearly (LF)|Fin = F holds for any F:Fin - Ban, but the counit

L(F1 |Fin) - F1 of this adjunction is no equivalence.

We say that F: Ban - Ban is a computable functor if L(F|Fin) = F

holds.
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2.3. Proposition: HERZ~-PELLETIER [§ ]
——=x

If F: Ban » Ban is computable then

Nat (F,F,) = Nat (FlFin,F1]Fin) for 211 functors F,: Ban - Ban.
Ban Fin

Muﬁ:Nﬂ(FJQ Mt(Mmehm)
Ban Ban

Nat (FlFin,F1).
Fin

2,4. Proposition: For any F: Fin -» Ban we have

F(.) = H(..,.) 6 F(..) =(.."¢.)8 F(..).
(..)eFin (..)eFin

Thus: F:Ban - Ban is computable if and only if F(X)=(.' éx) ® F
Fin

holds for all X e Ban.

Proof: Define L'F by L'F(X) = (. éX) ¢ P, then L'F is clearly a
Fin

functor and L' is that too by the discussion in 1.8. Using the

exponential law 1.8 we see tlmt L' is left adjoint to the restriction

functor:

Nat (H(..,.) & F(..), F1(.))
(.)eBan (ee)eFin

Nat (¥(..), Nat (H(..,.),F1(.))
(..)€Fin (.)eBan

= Nat (E‘(..),F1(..)) by the Yeneda lemma
(..)eFin

Nat (F,F1|Fin).
Fin

The naturality of this relation follows from the naturality of the

exponentizl law.
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Since any two left adjoints of the same functor are naturally equivalent,
we see that L = L' holds naturally and 1sometrically.

2.5. Proposition: For any functor F: Ban » Ban we have

IR(X) = (' 8X) & F = (.' &X) & F.
Fin Ban

Proof: By a little abuse of notation we wrote LF for L(F|Fin). Clearly

we have a canonical mep (.' éX) & P o (.'3X)® F (restrict the
Fin Ban

canonical dinatural mep m: (.' 3X) & F(..)» (.'3X)® F. to the
Ban

subcategory Fin and vse the universal property 1.6). Its adjoint

is easlly seen to be the following isometrical isomorphism, thus this

map is one too.

((.'3X) @ F)' = Nat (.' &X, F(.)') by 1.8.
Ban Ban

Nat (.' &X,F(.)') by 2.10 and 2.13(b) below
Fin

(. éx)g B)'.  ged.
n

)

2.6. Corollary: ILF is of type2 for sny functor F: Ban - Ban.

Proof: X ® F(I)ig dense in(.' éX)Bé F by 1.13(e).
— _— an

2.7. Examples:

(a) Clearly X%§, is computable since it comutes with any colimits.

(v) B. 18 computable too, as can be checked by routine
computation (HERZ-PELLETIER [9 7).

(¢) Thus LF is computable for any functor F:Ban » Ban, since

we can proceed as follows:
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LIF)(X) = (.'8x)8 ((..'8.)8  F(..)
(.)eBan (+.)eBan
= ((.'3x)8 (.. 2.8 F,by 1.11(g),
(.)eBan (..)eBan
= (.. @X) 8 F, since Y @ is comrutable,
(..)=Ban
= LF(X).

(d) If X is a Bsnachspace without the approximestion proverty, then
the functor L1 (X',.) of 1.11 is not computable, since it agrees
with computsble functor ¥®. en Fin and thus

1 1 A 1 1
L(L' (X',.)) = %®. ¢+ L' (X',.) on Ban.
This last counterexample is typical, as the following proposition
shows.

2.8. Proposition: If F: Ban - Ban is any functor and X has the

metric approximation property, then LF(X) = Fe(X).

Thus the computable functors A - Ban are exactly those of type 3,
where A is the full subcategory of Ban consisting of all Banachspaces
with the metric approximation property.

(.'8x) 8 F oy 2.4

Ban
Fe(X) by 1.13¢).

Proof: LF(X)

1

2.9. Since we will deal later on with operator ideals and these have

contravariant partial functors we will need a notion of computability

for contravariant functors too.
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op
We consider now the category BanBan of contravariant functors

F: Ban - Ban and the restriction functor F - lein from the

op op
category BanBan into Ban]’-‘:ln

.

Proposition: The restriction functor F - FlFin for contravariant

- op op
functors F: Ban®® - Ban has a left adjoint L: BanFjln -+ BemB&n

For F: Fin P > Ban IF is given by LF(X) = F(.) & H(X,.).
Fin

Proof: LF: Ban®® - Ban is clearly a functor and ¥ - IF is a func tor
too by the discussion in 1.8. Now let be F: Fin® - Ban and
F,': Ban - Ban., Then we have

Nat (LF, i“] )
Ban

Nat (F(..)&  H(.,..), F,(.))
(.)eBan (..)eFin

Nat  (F(..), Nat (H,(.,..), F,(.))) by
(..)ePin (.)eBan

an exponential law similar to 1.8.

=Nat (F(..), 51(..)) by the Yoneda lemma
(..)eFin

Nat (i:*‘,§1 |Fin).
Fin

This an adjointness relation, since its naturality (in F and F,') is

implied by the naturality of the exponential law, ged.
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2.,10. A functor F: Ban®® - Ban is said to be computable if

L(F|Fin) = F.

Proposition: ;;'_'IF: Ban® . Ban is comnutable, then

Nat (F,F,) = Nat (F|Fin,F, |Fin)
Ban End

for all functors '1'7'1: Ban®®? ., Ban.

Proof: Nat (F,F,) = Nat (L(F|Fin),F,)
Ban Ban

= Nat (FlF:m,F1 |Fin).
Fin

E:_____'I__‘I__:_ Given XeBan we consider the spectral family

{X/M, M c X, X/M ¢ Fin} in Fin, given by all quotients X/M of X
over closed finite~codimensional subspaces M and canonical guotient
maps X/M - X/M1 for M, > M. As we shall see later on

X £ Eln {X/M, X/M ¢ Fin} since lim {X/M,X/M € Fin} = X" (see 2.13.
below).

Proposition: We have LF(X) = —J;im {F(X/M),X/M € Fin}for all X € Ban
and F: Pin®? - Ban.

Proof: Write L'F(X) = linm {F(X/M), X/M € Pin}, then L'F defines a
contravarisnt functor Ban°® - Ban: using the universsl property of
colimits it is readily seen L' is a functor too and is left adjoint
to the restriction functor f1 - 'F-,I |Fin. Since left adjoints are
uniquely determined up to isometric natural isomorphisms, we have

L' = L,
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2.12, Proposition: For any F: Ban®® - Ban we have

IF(X) = F(.) & (X'k F(.) 8 ' A
( = .2.%EFin ®.) = .2.)23811(}( ®-),

thus LF is always of type 3.

Proof: We wrote LF for L(F|Fin). Similarly as in the proof of 2.5.

- A R - A
we have a canonical map F(.) ® (X'®.)= F(.) ©® (X'@.) whose
(.)erin {.)eBan

adjoint is the following isometric isomorphism, thus this map is

isometric unto too:

i

- Y -
(F(.) 8 (x‘@.})' Nat (X! @., F(.)') by 1.8.
( Bana

)ERan

A -
Nat (X' ®., F(.)') by 2.3. and 2.7(b).
Fin

(F(.)® (x'e.))'.
(.)EFin

The last sentence of the proposition follows like 2.6 out 1.13e) ged.

2.13. Examples:

(a) X &.' is computable:

L(%.')(Y)

1]

(%5.') & (¥'8.) vy 2.12
Ban

[t}

X8 Y' by 1.13g).
A special case of this result (for X = I) is:

Y = L(.*')(Y)

lim §{ (Y/M)', ¥/M € Fin} by 2.11
-

1im {¥°, Y/M € Fin}
-

. o
where M° is the annihilator or the polar of M in Y', since (v/M)' =¥,
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(v) Xé .!' is computable:
If M runs through all finite-codimensional closed subspaces of
Y then M° = (Y/M)' runs through all finite dimensional subspaces of

Y', and the spectral families coincide.

Thus Y' = lim {¥°, Y/M € Fin}
-
= 1im {E, EC Y', E € Fin}
-
A A
X® Y' = X® {1im {E, Ec Y', E € Fin})
-

]

lim ix@ E, Ec Y', E € Fin}] by 2.7(b)
-+

lim {x@ (Y/M)', Y/M € Fin}

A
L(X ®.')(Y) by 2.11.

(¢) H(XY') = (X& Y)' = (Y& X)' = H(Y,X') shows that' : Ban®® - Ban
is adjoint to itself on the right, thus ' transforms colimits into

limits. Using this we conclude thet X" = (X')' = (1im {E,Ec X',E € Fin})'
->

(1im {¥°, X/M € Fin})' vy (b)

U}

lim § (M°)', X/M € Finl

lim {X/M, X/M € Fin} ,
since X/M € Fin is reflexive and M° = (X/M)'. We will put this in

a general framework later on (§4).
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(d) We now give an example of a non-computable contravariant functor
of type 2.

Consider a Banach space X without the approximation property, the
canonical map s: Y' ® X - K(Y,X), given by Y' @ X = (Y' — <y,y'>x)
and its canonical factorisation (compare 1.12):

8

Y'e X % K(X,X)

A
®
coims J, T ims

A
v(r,x) = '8

X, whe re
v (¥,x) = 1 8 x/ 8—1(0) is the space of all nuclear maps Y - X.

1 t A 1 A
Then we know that L(N (.,X)) = .'® X since N (.,X) and .'® X
coincide on Fin and the latter functor is computable, but
v (x,X) £ x° 8 X iff X has not the approximation property.
That this counterexample is again the typical one follows from the
next proposition:
2.14, Proposition: If F: Ban®® . Ban is any functor and X' has the
T

metric approximation property, then IF(X) = f"e(X).

Thus the contravariant computable functars AOP - Ban are agsin execctly

those of type 2.

- - PA
Proof: IF(X) = F(.) & (X' ®.) by 2.12
(.)eBan

ﬁe(x) by 1.17d).
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2.15. How does this fit into abstract category theory? Denote by

V the restriction functor F = F|Fin snd by J the embedding functor
Fii. + Ban, then LF = LanJ.F is the left-hand Ksn extension of F
alonngor F: Fin - Ban. See MACLANE [12], chapter X. The tensor
product of functors1.6 is the coend, see loc. cit. chapter IX.
Similarly most of the results in $4 below can be interpreted as
Kan-extensions, e.g. L.L4 contains a left Kan-extension and L4.6

contains a right one.



§3. Duality of functors

___é__.__’l____._' Remark: The notion of duality of functars was introdmced by
MITJAGIN-SVARTS [16] and further studied by LEVIN [10], NEGREPONTIS [+17],
CIGLER [L], HERZ-PELLETIER [9], and by LINTON [11] and some Russian
authors from & more abstract point of view.

Definition: For a functor F: Ban - Ban the dual functor DF: Ban - Ban

to F is defined by DF(X) = Nat (¥, xé.), the action on morphisms is

Ban
clearly given by DF(f)(y) = (£ @.)°y for f: X - Y.

Ban

Ban op
Remark: D: (Ban )  ~ Ban is & contravarirnt functor and is to

itself adjoint at the right, i.e. the equality Nat (F,DF1) = Nat(F1,DF)
Ban Ban

holds naturally in F and F1.

Thus we have a distinguished natural transformation bF:F - DDF,
corresponding to the 1pp via Nat (DF,DF) = Nat (F,DDF); in fact bF

is the unit of the adjointness relation. F is said to be reflexive,

it LF is isometric onto.

For further information see MITJAGIN SVARTS [416]; we are not interested
here in the abstract properties of D, we want to commute DF for functors
P of type 2 and to derive some results which will be useful in the
theory of operator ideals later on.

We 1list some examples:

D(H(X,.)) = X® . by the Yoneda lemma.

D(X8.) = H(X,.).
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3.2, Theorem: If F: Ban - Ban is a Tunctor of type 3, then for any

X € Ban we have DF(X) = {f € H(F(I),X): i; ° £ € F(X')'} where

1,: X- X" is the canonical embedding and ||f| ‘DF(X) = ||ix°f| IF(X')'.

Proof: We should first loose some words on F(X')': Since F is of
type 3 we have F(Y) = F(I) ®,Y where 0 is a reasomable crossnorm
(1.9). Thus the canonical map F(I) 3 Y = 7(1) ®,Y is contractive
and is epimorphic (has dense image) and the adjoint map
F(Y)' = (F(1) ®,7)' = (F(I)® Y)' = H(F(I),Y') is therefore
injective, i.e. each bounded linear functional on F(I) ®a.Y appears
in H(F(I),Y') and F(Y)' = (F(I) ®,Y)' is the space of all f € H(F(I),Y')
which define a continuous linear functional on F(I) ®,Y by
<1§=11 e Ty - 1;21 SACDE
Now let us prove the theorem.
The map j: DF(X) = Nat(F, X &.) » H(F(I),X), defined by j(n) = .
is clearly contractive aznd injective since F 1s of type 2: let be np = 0.
For z € Z € Ban set 2 € H(1,2), 2(r) = r.z.
The diagram
P(I) ", oxoxb1
F(z) | L1y

"
F(z) — X& z

>

z

thus comutes, for all a € F(I) we have
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nZF(%) a = (‘IX§ z) qI(a) = 0.
Thus 1, (3 F(£,)a,) = O for allZa, @ z, € F(I)® Z, the latter
z (3 FlZg08y 192

space is dense in F(Z), so Ny = 0 and since Z was arbitrary m = O.
Take any n € Nat(F, X&.). Then we sssert that iye My € F(X')":

The diagram

n
(1) T, x

JEAD) L1 =
nxl ~
P(X') =+ X X'

A A
commutes for all x' € X', where x' € H(I,X). By Tr: X® X' = I let
" Ay t 4
us denote the trace functional, corresponding to iy € H(X,Xx")=(X® X")',

Tr(x @ x') = <x,x'>. Then for all a € F(I) »nd x' € X' we have:

(), =7 "

]

Tr(TII(a) ®

e oo (138 X')eyy(2)

A
Tr o My © Px')a;

n
For 2 8;® xi € F(I) ® X' we compute:
h |
n n
(za,@x',1y0n) =3 <xf, ix° no(ay))
i=1 i i=1
n
1
= 3 <ﬂI(ai), xi>
i=1
» -
= ;.5:_1 Tr o Mg, o F(xi)ai

[}

n
me o g o of (5 2y a]),
i=1

where ei.: F(I) ® X' » F(X') is the map of 1.9.
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Thus

Kz a;@xj, igenpl =

n

2 D
|Tr o My :ﬁ’l F(xi) ai)l

N

Hrell Hngrdl 12 PG a ll oo
r X “ ”i=1 F(xi) ai IF(X )’

i.e. ”1X°nI“F(X')' < gl < [Inll .
Let us suppose conversely that we have £ € H(F(I),X) with iy° £ € F(X')"'.
For any Z € Ban we define
(ef)Z: F(I)e 2 - X® 2Z
by (61’)Z (Zai ® zi) =2‘uf(ai) ® z,;.

Il 02),, (§1 a8 21l 34,
i=

n
= ”ii‘[ zi® f(ai)“ %X

n
= sup l<i§='l Zy ®f(a1),h>|
heH(Z,X'), ||n[|<1
n
= sup | = <f(a1), h(zi)>l
neoH(z,x') 11
n
= 8sup l 3 <h(zi)’ i'y: ° f(ai)>l
neOH(zZ,x') 1=1
n
= sup |<Z h(z;) ® a,, i, o £r]
reon(z,r') 1=1 ° S
{ sup ”£1 F(Iiz\i)) ai" F(X')” lgof || F(X')"
heOH(Z,X') =
n A
= sup [ #(n) 2 Flzglagll gyl iger] P(X')"

heOH(Z,X") i=

n A
< 12y Fg) agllpig) 42l piyeye,



31

Thus (ef)z extends to a continuous map F(Z) = X® Z with
1 (8£) 1 < || 14°¢ll p(yryr- By the naturality of the counit ef it
A
is very easily seen that((ﬁf)z) is a natural transformation F > X®.,
clearly we have (ezf')I = £, and sinde the map j: DF - H(F(I),.) above
is easily seen to be natural we are done. qged.

for
Remark: HERZ-PELLETIER [9] had that result computable functars, see

their Corollary 2.9.

As a special case we find that

D(Xg.)(Y) {f: X~ ¥: 1T € (Xg ')

I, (X,Y), the space of integral operators X = Y, see

il

GROTHENDIECK [8].
This result can be found in CIGIER [5], page 151.
3.3. Theorem (HERZ-PELLETIER, [9] theorem 1.9):

If F: Ban - Ban is computable, then

DF(X') = F(X)!
Proof: This proof is much simpler than the original one:
DF(X') = Nat (F,X'® .)
Ban

Nat (H(..,.) & F(..),X' 8.) by 2.4
.) €Ban (..)eFin

—~1l

- Nat (F(..), Nat (H(..,.),X' 8.)) vy .8
(..)EFin (.)EBan

= Nat (r(..),X" %,,) by the Yoneda lemma
(..)eFin

= Nat (F(..),(x
(..)EFin
A A
for E € Fin we have H(E,X)' = (B' 8 X)' =E® X'.

A
® ..')'))since (..) € Pin and
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A

@2

1]

((.." }(t)fé F(..))" by 1.8.

.+ JEFin

F(X)! since F is computable. qed.

3,4, If we define D'F(X) = NAat (%, X®.), then we mave for any

functor F of type 3 that D'F(X') = F(X)' by 2.8 and 3.3, whether
X € A or not. A related result is the following:

Theorem: If F: Ban » Ban is of type 2 and X' has the metric

approximstion property, then DF(X') = F(X)'.

Proof: If X' has the metric approxims tion property, then it is well

known that X has it too. Thus we have

(. )eBan
Then  F(X)' = [(.* 8X) & F(.)]"
(.)eBan

- Nat (F(.), (.' Bx)') by 1.8
Ban

= Nat (F(.), (.'%x)'e) by 1.1
Ban

= Nat (F(.), X' ®.) = DF(X').

Ban

The last equality holds since X' ¢ A by GROTHENDIZCK [7], page 181,
§5, No. 2, Prop. LO, Corr.1. qed
3.5. Since we will need it later we introdice now an analogous

notion of duality for contravariant functors.
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Definition: ILet F: Banop - Ban be a contravariant functor. Define

DF: Ban®®? - Ban by

DF(X) = Nat (F,x' 5 ."),
Ban

DF(£)(n) = (£' @.) o .
Clearly DF is again a contravariant functor, D itself is a functor
and is adjoint to itself at the right, i.e. Nat.(F,DF.,):Nat(E,DF)
holds naturally in F and i",‘ . That can be proved analogously as the
same relation for covariant duality is proved in MITJAGIN-SVARTS [16].
We can introduce even a notion of reflexivity. But we will not need
any of these developments later on. We conclude with the most
elementary examples: D(H(.,A)) = A' 3.', D(A@.') = H(.,A"),
which can be computed fairly easily.

3.6. Theorem: If F: Ban®® - Ban is of type 3, then

Nat (F, X8 .') = {f e HF(1),X): 1y ° £ € F(x)'}

=3 A
with |||l Nat(F,X®."') = iy ° £l 5

x)"
Thus DF(X) = Nat(F, X' 8.')
= {f e H(F(I1),X"): 1p0 © £ & F(X')}
with || £ || T [([igre £]| ).

Proof: By 1.10 F(X) = F(1) @aX', where o is a reasonsble crossnorm.
An argument similar to that im the proof of theorem 3.2. shows that
F(X)' = (F(1) @, X")" c H(F(1),X").

The rest of the proof i1s the same as for the theorem 3.2 with the

obvious changes and we do not repeat it. ged.
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3.7. Proposition: If F: Ben®® » Ban is computable (2.10), then

DF(X') = Nat (F,Xx" &.') = F(x)"'.

Proof: Nat (F,x" &.')

Ban
= Nat (F(..)d H(.y..),X" ®.") by 2.9
(+)eBan (..)€Fin

= Nat (F(..), Nat (H(.,..),X"&.')) by 1.8.
(+.)€PFin (.)eBarn

= Nat (F(..), X" ® ..') by the Yeneda lemma

(..)eFin
= A
= Nat (F(..),(x*® ..)'),since (..)€ Fin
(..)€Fin
A A
and for E € Fin we have X" & ®' = (X'® E)'.
= (F(..) & (X' ®..))' by 1.8
(..)EFin

ﬁ(x)', since F is computable.

A

3.8. Had we considered DF to be defined by DF(X) = Nat':(F,X' ®."),
= A

where A’ is the full sabcategory of those Banach spaces X such that
X' has the metric approximation property, then by 2.14 any functor F
of type 2 is computable on A' and we would have DF(X') = F(X)' for
all functors of type 2. A related result is the following.

3.9. Proposition: l_f_'ﬁ: Ban®? - Ban is of type 2 and X" has the

metric approximation property, then DF(X') = Nat (ﬁ,x”@,') = F(x)'.

Ban
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Proof: X' has the metric approximstion property too, since X" has

-— —-— A
it, thus F(X) = F(.) & (X'@&.) by 1.13d). So we have:

(.)€Ban
= A 4
F(X)' = (F(.) ® xre. )
(.)eBan
i [ A t
= Nat (F(.),(X'®.)') by 1.8
Ban
- A
= Nat (F(.), (X' %.)'e) by 4.11
Ban
= Nat (F(.), X" &.') = DF(X"),
Ban
by the result cited in the proof of theorem 3.4, since X" € A . qed.

_32.__10. We will treat now one of the main situations in which we will
nced duality of functors.

Definition: A contractive morphism f: X - Y is said to be a weak
retract, if there exists h: X' = Y', || h|| € 1, such that £' o h = g1
f is said to be a weak section, if there exists g: X' = Y',|[lg [<1,
such that g o £' = 1Y"
f is a weak retract iff it is isometric snd

0 - f'-1(0) = f(X)O - Y' = X' = 01s a splitting short exact
sequence in Ban1.
f is a weak section iff, it is a quotient map and

0 - Y' = X' = X'pr(yn) = () » o

is a splitting short exact secuence in Ban1. The equality

(iX)' o 1y = 1y, shovs that iy is a meak retract and the ecuation
(130)" o 1yn =((13)" o 151)" = (131)" = 1y shows that iy,: X" = X'

is a weak sectiom.



36

3.11. Lemma: (HERZ-PELIETIER [9], lemma 2.7)

f1 X+ Y, Ifll €< 1 is a weak retract if and only if

28 £: 28 £: 28 X> 28 Y is isometric for all Z € Ban.

Proof: Z® £ is isometric iff (28 f£)' = H(Z,f') is a quotient map,
moreover H(Z,f')(0H(Z,Y')) = OH(Z,X') since H(Z,f') is & (H(Z,Y'),Z® Y)
continuous by a. compactness argument. Choose h to be a preimage of
1){' under H(X',f'): H(X',Y') » H(X',X') withnorm < 4, If f is a
weak retract, then

H(z,f') (ho g) =f"ohog=g, [|hogll<|g|
for g € H(Z,Y') shows that H(Z,f') is a guotient map for all Z. qed.

3,12, Proposition: A covariant computable functor F transforms wesk

retracts into weak retracts and weak sections into weak sections. A

contravariant computable functor F transforms weak retracts into weak

sections and weak sections into weak retrscts.

Proof: Let F: Ban®® » Ban, F: Ban - Ban be functors. Then f'o h = 150

implies F(f)'o DF(h) = DF(f') o DF(h) by 3.3.

DF(f' o h)

DF(1X1) = 1DF(X') = 1F(X)"

DF(h) o F(£)' = DF(h) o DF(£') by 3.7.

DF(f'oh)

DF(1

) =1pFx) = 15x)r.
ho£f' = 1Y implies in turn

DF(h) o F(£)"'

DF(h) DF(f') by 3.3.

[}

DF(h o £') = DF(14,)

1DF(X' ) = 1F(X) re



37

DF(f') o DF(h) by 3.7.

F(r)' , DF(h)

DF(h o £') = DF (4

o)

=1 qed.

DF(X') = 1F‘(x)' .

3.13. Proposition: (HERZ-PRLLETIER [9], 2.8)

If F is of type 2 and f: X » Y is a wesk retract, then the following

diagram is a pullback in Ban1 H
Nat(F,X 8.) 3o H(F(I),X)
DR(f) | l B(E(D),)

Nat(F,Y¥ ®.) i, H(F(1),Y),

where j(n) = n;.

Proof: We give a shorter proof. J is injective since F is of type 2
(see the beginning of the proof of theorem 3.2). H(F(I),f) and DF(f)
are isometries, Since H(F(I),f) is isometric and j is injective,

the pullback of the half-diagram is just 3_1 (5(F(1),£)H(F(I),X))

{n € Nat (P, Y ®.): n{(F(1)) € x

Nat (F,X 8.) since DF(f) too is isometric. qed.

A similar result holds for contravariant functors.

3.14. Corollary: If F is of type 3 then we have for f € H(F(I),X),

using theorem 3.2: £ € DF(X) iff iy o f e DF(X"), and

“f”DF(X) = "1X° f“DF(X") .

This is more general than 2.9 of HERZ-PTLLITIER [9], since theorem 3.2.

is more powerful.
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A
39. this boils down to the well known result of

For the case F = X
GROTHENDIECK [8]. £: X - Y is integral iff iy o f is integral »nd

their integral norms coincide.

3.15 ZExsmple: Let X be without and Y be with approximation property.

Then there is no weak retract X -» Y,
Proof: Suppose f: X = Y is a weak retract.

Consider
A LR X LA
xe x* 18X, v xt
s | ls

L(x',x') BELXY) peyr gy, where both horizontal
maps are isometric and the right hand side s is injective, since Y
has the approximation property (see 41.12). So the left hand side s
should be injective too, thus X should have the approximation property
too (see GROTHENDIECK [7], p. 164), a contradiction. qed.
Thus the canonical embedding X -+ C(0X') into the space of continubus
functions on the dual ball with weak-*-topology is 'in general no weak

retract.



34, Tensor products and operator ideals

_LL____._‘!__; In this chapter we want to give definitions of tensor products

and operator ideals in terms of category theory and we want to reveal
some relationships between them, which are mainly due to GROTHENDIECK
[8]. In this section G is always supposed to be a contra-covariant
bifunctor Ban®® x Ban - Ban and M is a co-covariant one: Ban x Ban - Ban,
vhich are supposed to satisfy G(I,I) = I and M(I,I) = I in the secors

half of this section (from 4.7 onwards).

4.2, Proposition: Nat (H(.,X) ® H(Y,..),6) = G(X,Y)
op
Ban " xBan
Nat (5(X,.) & H(Y,.),M) = M(X,Y)
Ban x Ban

hold naturally in X,Y ¢ Ban and in G,M.

Proof: This is just a special case of the Yoneda lemma, if one considers
multilinear categories. We will however sketch an elementary proof of
the first relation, the second being similar.

Define Nat (...) —¥56(X,Y) by
)

"’(‘D) = oxy (1x® 1Y) e G’(X,Y), @ € Nat (...)

(0g) (fe h) = a(f,h)g, g e G(X,Y) and £ @ h e H(Zy,X) 8 H(Y,7,).
Z,1Z2 172

Routine computation shows that.y,8 are contractive and linear and

that e.g. ¥ is natural and that 6 = \[r—1 holds. ged.
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L4.3. Proposition Nat ('@ A 8..,6) = HA,G(I,T)),

Banon Ban

Nat (.® A8..,M) = H(A,M(I,I))
Ban x Ban

hold naturally in A € Ban and in M,G.

Proof: Again for the first equation only; the result is a biline-r

version of 1.9, 1.10.

v
Define Nat (...)T=——>H(A,G(I,I)) by
8
¥(p) = oyp € H(A,6(I,1I)), ¢ € Fat (...),

(6f)yy (x' ® 2 ® ¥) = &(x', ¥) £(a),

fe HAGI,I)), x'®a®@yeX'dAd Y.
Again it is routine computation to check up that ¥,0 are linear,
contractive, that e.g. ¥ is natural and that 6 = y=T. qed.

L.4., We can interpret L4.3. as an adjunction: the "free" functor

A
A = (.'®AB ..) is left ad joint to the forgetful functor
G+ G(I,I). The unit of this adjunction is trivial, the counit is
G . v A A
the map ey X' @ 6(1,I1)® ¥ - &(X,Y), given by
e} A
eXY(Z‘. xi' ® a; ® yi) =3 G(xi',yi) a;; it is contractive and natural
in X,Y and G.
In order to break down this situation to known results let us denote by

e®(-52) , x1 & a(1,2) » 6(X,2) and
X

A
eG(Z,-) . G(Z,I) ® Y~ G(Z,Y) the counits of the partial functars
Y
of G, introduced in 1.10 and 1.9 respectixely. Then for all X, Y € Ban
the following diagram comutes, since that is clearly true on the

dense subspace X' e® G(I,I)® Y:



G(X,I) &

G’(.,I)/ NX,.

X ®G(I I)®Y a(X,Y)
" G(I\ ﬂ.,ﬁr)
'®G(I,Y)

Theorem: For all X,Y ¢ Ban and for all G the map e}G('Y restricted to

X'® G(I,I)® Y is injective and |]. ) induces s reasonable

”G(X,Y

norm q on X' @ G(I,I)® Y (reasonable means here

II. ”}éG(I,I)@Y sa< .| X'@aG(IsI)é\DY)

The same is true for functors M with the analogous maps.

Proof: All four inclined maps in the diagram above satisfy this by
1.9, 1.10.

The map ey, XBM(I,I) & Y- M(X,Y) 1s given by
M A A
Cxvy = xi ® m ® yi) =3 M(xi,yi) o, . qed

Definition: G respectively M is said to be a bifunctor of type 3,

if for all X, Y € Ban the maps el respectively el}%{ have dense image

XY
in G(X,Y) respectively M(X,Y).

In general we denote by Ge(X,Y) respectively Me(X,Y) the closure of
the image of ef& respecti vely el)wcy in G(X,Y) respectively M(X,Y);
that defines a partial functor which we call the type -Z-part or
essential part of G respectively M.

Thus bifunctors of type 2 are essentlally civen by tensor products.



42

,.5. Proposition: Nat (¢,H(.8.',A)) = H(G(T,I),A),
op
Ban “x Ban
Nat (M,H(.'8.',4)) = H(M(I,I),A)

Ban x Ban

hold naturally in A € Ban, G,M.

Proof for the first relation only:

Define Nat (...) —%—> H(G(I,I),A) by

6

¥ (o) = ?1,1, ® € Nat(o..).

(0f)gy(8) (x@ ¥') = £ o 6(%,5")e,
f e H(6(1,1),A), g€ &(X,Y), x® y' € X& ¥',
It is a routine matter to prove that ¥,0 are contractive, that ¥
is natural and that ¥ = o~ holds.,
L.6. This result too is an adjunction: the functer A - H(. & .',A)
is right adjoint to the forgetful functo» G -+ G(I,I). The counit of
this adjunction is the map

cng : 6(X,Y) » H(X® Y', &(I,I)), given by
(‘P}%Y(g)) (xe y') = 6(X,y") g, g € G(X,Y). fP)G('Y is contractive and
natural in G and X,Y. The counit of the adjunction for M is
oyt M(X,Y) » H(X' & Y', W(I,I)), given by Phy(m) (x' @ y') =
M(x',y')m, m € M(X,Y).
Definition: G,M are seid to be total bifunctors if for all X, Y the
maps ng, ‘ngy are injective. G(M) is total iff maps of the form
6(x,5'), x e X, y' € ¥' (M(x',y'), x' € X",y' € Y') separate points

on G(X,Y) (M(X,Y)) for all X and Y € Ban.
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_—LLZ—-_' From now on to the end of this section we suppose that G and
M satisfy the condition G(I,I) = I and M(I,I).

Definition: A tensor product 1s a co-covariant bifunctor

M: Ban x Ban - Ban with M(I,I) = I of type 2.

This definition is Justified by 4.4, since X ® Y is dense in

M), -l M(X,Y) is a reasonable norm, and the tensor product

is bifunctorial, i.e. the map £ ® g: X® Y = X, ® Y, extenmis to
u(f,g): U(X,Y) » M(X,Y) and |If® gl = [[M(f,g) | < ||£/llg) for all
fe H(X,X,1) and g € H(Y,Y1). We will write X ®, Y sometimes for
M(X,Y).

A tensor product M is said to be computable if all partial functors

M(.,Y),M(X,.) are computable. Equivalent are the conditions

M(X,Y)

i}

H "X & ~\eoy & egee
( %. )2Fin(P( Yz . .%EFinM( )

(H(.,x) &  M(.,..)) 8 H(..,Y),
.)eFin (..)eFin

where we were a little unprecise on the order. We could change
brackets, since the tensor product of functors is associative (1.13f).

Thus we have for a computable tensor product (2.2):

M(X,Y) = lim {1im {M(E,F), Fc ¥, F € Fin}, Ec X, T € Fin}

- -

1im {1im {M(E,F), T C X, Ee Fin}, Fc Y, F e Fin}
- ->

lim {M(E,?), Ec X, FC ¥, B, F € Fin},
-
the chenge of order of the colimits is Aue to the sssociativity of the

tensorproduct of functors. The following theorem is clear from thet.



Theorem: Computsble tensor products correspond exactly to the

®-norms of GROTHENDIECK [8].
_—’i—ﬁ-—: Given a contra-covariant bifunctor G with G(I,I) = I, then the
canonical map q:f’cy: G(X,Y) » H(X & Y',I) (4.6) actuslly t-kes its
image in H(X,Y") and is given by

(e, <P§Y(g)(x)> =c%,y') ge I, g€ a(X,Y). Since 0¥ 1s
natural and contractive, the action of the bifunctor H(.,..")
coincides with that of G if we consider G(X,Y) as a (non-closed)
subspace of H(X,Y") via cpgy; the norm of G(X,Y) is greater than that
of H(X,Y"), we express this fact by saying that G(X,Y) is contractively
contained in H(X,Y"), or that G is a subfunctor of H(.,..") (in contrary
a partial functor ig8 an isometrically contained functor, 1.9, 1.10).
Now via some canonical map we have:

X'® Yc 6(X,Y) © H(X,Y").

To know that all these inclusions are well defined we should check up that

SG
t A XY
' Y — G&(X,Y)
G
XY
H(X,iY)oS commutes
H(X,Y")

where X' 8 Y » H(X,Y") is the canonically given map

AN
x'®y = (x » 1y((x,x",y)). But this is rather trivial.
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Since |. “G(X,Y) induces a reasonable crossnorm on X' ® Y we have

X' ¢ &(X,I) © H(X,I) = X',

Y < 6(I,Y) ¢ H(I,Y") = Y", where the first inclusions are
isometrical., Thus G(X,I) = X' for all X, but the covariant part
does not behave as well:; we should distinguish two cases:

Definition: A total bifunctor G with G(I,I) = I is s=2id to be of

type (I), if G(I,Y) = Y holds for any Y via the above inclusions.

If 6(I,Y) = Y for all Y, then G is said to be of type (II)

Remark: There is a totsl bifunctor G with G(I,I) = I which is neither
of wpe (I) nor of type (II).

Since we can factor CP}CEY as

G¢(X,Y) » H(X,6(I1,Y)) = H(X,Y"), where the first map is given by
g = (x =~ G(X,Y)g) for g € G(X,Y), the canonical mep CP}%[ actually
takes its values in H(X,Y) if G is of type (I), and thus the

exprerseion

<¢§Y(g)(x),y'> = ¢(%,y")g, g € G(X,Y) is weak—*-continuous

and well defined.

4.9. Definition: A bifunctor A of type (I) is called an operator ideal.

To justify this definiticn we will show that it coincides with the
usual notion of a Banach operator idesml (see PIETSCH [18], [419], or

GORDON_IEWIS-RETHERFORD [ 6) for a quick account and examples):
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A class A of bounded linear operators between Banach spaces is a
Banach operator ideal, if its components A(X,Y) = A n H(X,Y) are

linear subspaces of H(X,Y), which are Banach spaces under a norm

. ”A and satisfy the following conditions

(1) %' e X', y € Y implies x' ® y = A(X,Y)

and ||x'e ¥ "A = Izl lyll.

(ii) £ € H(X,,X), g € A(X,Y), he E(Y,Y,) implies
hogotfealX,Y,)and [[ho g of IIA< Inll gy lell-

Thus clearly each Banach operator ideal in the usual sense becomes

a bifunctor of type (I) by putting A(S,h) g = h o g o f.

Conversely each bifunctor A of type (I) is a Bsnach operator ideal,

condition (ii) being subsumed in the functorial property:

g € A(X’Y)’ T e H(X1 ’X)’ h e H(Y’Y1)9 then hogef = H(f’h) ‘P;XLY(S)
A
=®Px v A(f,h)g
17
lho g 1, o= A(f, n <
Ihe g oily = NAGEDaly x vy < el InI Ny gy vy,
where we identified g and e‘g'(Y(g) for short. We could collect all

this in the following

Theorem: The Banach operator idesls in the usual sense are exactly

the bifunctors of type (I) on Ban.

4.10 If G is a bifunctor of type (II), then we heve an assoclated

bifunctor G(I) of type (I), given by
G(I)(X,Y) = {f e H(X,Y): 1y° £ € 6(X,Y) via 0%1.

with the norm |[f || (1) = ||1q, of|| g Or:
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Lemms ¢ G(I)(X,Y) is the pullback of the diagram

H(X,Y)
b OH(X,1y)
0%
G{X,Y) — X H(X,Y") .

Proof: H(X,iY) is isometric, Q}(‘ZY is injective, thus the pullback
of this diagram is

-1
(o)  (H(X,1y) (H(X,Y))) =

{g e a(x,Y): o5 g€ HX,1,) (H(X,Y))}

B (x,v). qed.

Since ‘ng is naturel in X,Y and H(X,iY) is natural in X,Y, and since

G(I)(X,Y) is the pull back of these two maps, G(I) is a bifunctor, a

partial functor of G, all values of 1ts elements under @%Y lie in
(1)

H(X,Y), thus @ is of type (I).

Since <pG is natural in G too, the map G = G(I) is a functor too,

which assigns bifunctors of type (I) to total bifunctors & with

G(I,I) = I. This functor is right adjoint to the embedding of

bifunctors of type (I), i.e. Nat (4,6) = Nat (A,G(I))
Ban®PxBan Ban®PxBsn

holds naturally in L of type (I) and in total G with G(I,I) = I,

by the universal property of the pullback, or by a routine computation.
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L.,11. Troposition: Civen a tensor product M, then

DM i3 an operator ideal, where

DM(X,Y): = DQM(X,.))(Y). (3.1)

Fur thermore we have

o o= (u(.,..t )T,
Proof: DM = (M(.,..")")T) nolds by treorem 3.2.

€
Y' - M(X,Y') is natural and epimorphic, and

>

X
(e}}‘&,)': M(X,Y')' - H(X,Y") is easily checked up to coincide with

4 ]
cpM(}'&“ ) , thus the latter is injective andM(X,Y')' defines thus a

bifunctor of type (II) and DM is therefore one of type (I).

4.12., Corollary: Any operator ideal of the form DM has the following

property: Given f e H(X,Y), then £ € DM(X,Y) iff iy ° £ e pM(x,Y"),

and “f ”DM = ”iY° f“DM 4

Proof: see 3.1L4.

4.13. Corollary: If M is a tensor product and is computable on the

richt hand side (i.e. M(X,.) is computable for all X), then

DM(X,Y') = M(X,Y)! for all X,Y'.

If Mis a tensor product and Y' has the metric approximation property,

then DM(X,Y') = M(X,Y)'

Proof: see 3.3, 3.4.
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L.1L4. Given an operator ideal A, then we can consider the following

norm on X ® Y:

3%, @ vyl @ = sup {12 {yp,e(x, DI, £€a (X)), |2l < 1.

It is a reasonable tensor norm, since if A®(X,Y) denotes the
completion, then we have
AG(X)Y) = (A(.,..')')e(X,Y),

where A(.,..")"', 1s the partial functor of type Z (L.":).

Proposition: If M is a tensor product,

(om)® (X,Y) = M(X,Y) holds if M is comoutable on the right-hand

side, or if Y' has the metric approximation property.

Proof: Both conditions imply that
DM(X,Y') = M(X,Y)'. Then
1M(X,Y): M(X,Y) » M(X,Y)" = (DM(X,Y'))' maps M(X,Y), which is of type 3,
naturelly and isometrically :into the type Z-part of (DM(.,..'))' by =n
analogous result to 1.411, and has clearly dense image. qed.

Remark: When does D(A®) = A hold? We will treat this cuestion below.

4.15. One final result:

Theorem: Let A,2 be operator idesls.

(a) Nat (A(-’X)9 ﬂ(-,Y)) =
Ban®?

{f e H(X,Y): fog € 2(2,Y) for all g €A(Z,X), Z € Ban and

Il fllN L - o LIl fogll gs &8 € 8(2,X), Z & Bom, |igll, < 1} < ).
a

and this defines agaln ean operator ideal.
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(b) Nat (A(X,.), 2 (¥,.))=
Ban

{f e H(X',Y'): fog'is weak*-continuous Z' = Y', iis preadjoint

*
(f og") sotisfies
(fog')<= e 2 (Y,Z) for all ge A(X,7), % € Ban and

*
”f”N . =sup {||f o g") “R’ g € A(X,7),2 € Ben, [gll) < 1} < =}
a

and this defines 2 bifunctor of trpe (II).

Its associzted operstor ideal is given by

ffe HEX,Y): gof € 0(Y,2) for all g € A(X,%2),2 € Ban and

£ lay = sap T goflly ,g € A(X,2), %2 € Ran, lgll; < 1} <~}

Proof: (a): Nat (A(.,I), 2(.,I)) = Nat (H(.,I),H8(.,I))

= H(I,I) = I by Yensda lemma.
The canonical map ¢ into H(X,Y") is given by o(n) = Ngs M € Nat(...),
as checking up the definition shows. One proves injectivity of o
using the following commutation:
For z € Z ¢ Ban 2nd £ e A (%,X) we have

(1,0 (2) = 2(&,Y) ny(e) = np o ACE,X(r)

T]I(foé) = ’nI(f(Z)).

Thus nZ(f‘) =mn; °f, and ng = 0 implies n, = O for all Z.

Thus we have got #n operator ideal.
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The relation nz(f)=nI°f shows that for all neNat(...) the map

nI appears in the described set. Conversely, given f in that set,
define a map A(Z,X) = 2 (2,Y) by g -+ fog and the préperties describing
the set assuT€ now that this map is a natural transformation, a&s a
routine computation shows.

(b) is proven in a like manner; the canonical map ¢ is again given

by n -+ mp end the relevant comvutation for N € Nat(...),

fe A (X,2), z'€Z' is the following

(n,(£))" (")

z' o (n’z(f)) =Q(Y,Z') ° nz(f)

ny © AX,z')(£) = ny(z'er)

Nt o £'(z'),
thus nz(f)' =m oo £'; the rest is again routine matter, following

the lines indicated above. ged.



§ 5. COMPUTABLE BIFUNCTORS AND MINIMAL OPERATOR IDEALS

5.1. Let G be a contra-covariasnt bifunctor with G(I,I) =1I .

Then we define LG to be the bifunctor

16(X,Y) = B(.,¥Y) ®  &..,.) & H(X,..)
(.)e Fin (..)eFin

and we call G computable if LG = G via the canonical mapping
LG -G . Thus G as a bifunctor is computable if all its
partiasl functors G(.,Y), G(X,.) are computable (compare 4.7).
Clearliy L 1is left adjoint to the embedding of computable contra-
covariant bifunctors, since we can check that up componentwise.

By 2.2 and 2.11 we have

16(X,Y) = 1im §G(X/M,E), X/M € Fin, E c Y, E € Fin}

(compare again L.7).
LG is a contra-covariant bifunctor of type 3 (L.L4) by 2.6 and
2.12.

5.2, Before beginning to treat minimal operator ideals we must

deviate & little.

Counterexample 2.7 d) shows that although starting with an
operator ideal A then LA need not be again an operator ideal.
But we can make it into one.

Let G be a contracovsriant bifunctor with G(I,I) = I end let
G

¢ : G ->H(.,..'"") ©De the canonical map (L.6, L.8). Consider

its canonicel decomposition, componentwise:
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G
o(x,y) —E H(X,Y'")
G
coim @xy ) G T i 0§
@ xy

tot G(X,Y)———— @)gi(G(X,Y)).

(compare 1.12, where we used the same technique) where

tot 6(X,¥) = a(X,¥)/(ogy) "1 (0),
coim q}ch is the quotient map,
Q%X(G(X,Y)) is the closure of the image of q}G{Y in H(X,Y").
Since ql%Y is natural in X,Y, tot G(X,Y) defines a contra-
covariant bifunctor; since QG is natural in G the operstion
tot itrelf 1s a functor, which is furthermore left sdjoint to
the embedding of total bifunctors, 1i.e.
Net (G,@,) = Net (tot G, @,) holds naturally in G and total

G, (both satisfy of course G(I,I) = I, G1(I,I) =1I).

.1
¢ is totsl if G = tot ¢ via coim gqC .

5.3. Definition: Let A be an operatorideal.

We define Amin by

AR ot (Ta)

i.e. we restrict A to Fin, extend it by L and make it total.

Amin is then a total bifunctor snd of type 2 since LA 1is of

type X . Thus Amin is an operstor ideal.
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We call A a minimal operstor ideal, if A = Apin via the

canonical maps.
We will justify the name minimal by the next two results.

5.4. Proposition: (a) For all operator ideals we have

Agin - Afnin min , i.e. A'min is minimsl.

(b) tot e L 1is left adjoint to the

restriction of operastor ideals on Fin.

Proof: (a) AR B _ 4ot o L [(tot ° L (A/Fin))|Fin}
= tot © L ( L(4lFin) | Fin )
since on Fin each functor 1s totsal,
= tot ° L(AlFin)
_ gmin
(b) Let A be an operator ideal on Fin and £ be

one on Ban. Then

Nat (A, 9/Fin) =
Fin x Fin

Nat (La, Q) by 5.1

[}

Nat (tot ¢ L(A), 1) by 5.2.

5.5. Theorem: An operator ideal A is minimal if and only

if it is contractively contained in each operator ideal N

with which it coincides on Fin.

The second condition in this theorem is equivalent to the

definition of minimal Banach operator ideals of PIETSCH [19] 9.3.3,
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who, however, allows I to be any complete quasinormed operator
ideal; for A a Banach operator ideal this is equivalent to our
notion, since a quasinormed operator ideal of type 3 (i.e.
operators of finite rank are dense) which is normed on finite-
dimensional spaces is normed.

For the proof of this theorem we need a lemma.

emma: Let A, 2 be operator ideals, let K be a full regular

(i.e. X € X implies X' € K) subcategory of Ban. Then

Nat (A, 1) = I or O.
K™K

It is I if the canonical map <p1 : A= H takes its vslues

in 0 end is bounded as & map A - Q. Then  Nat (4, 0)
K'x K

is exactly the space of all scalar multiples of this canonicsal

map.

Proof of the lemma: let be O £ ¥ ell\zatK (a4, 0) .
x

Since X is regulsr, the map ¢ is defined.
n
We consider ¢ ° ¥ ¢t A+ aQ—-+H.
Take f € A(X,Y), then
I (x), ¥ X v (£)
<@gy © ¥yy (£)(x), ¥' > = a(x, ¥') gy

¥y AT ') (2)

¥rp <@ (£)(x), ¥,

i

Since ¥ # 0 there are X,Y such that W, $ 0, then - o
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since @@ is injective. Thus ¥yp =T €H(I,I) =1 end

@n °o ¥ = I"(pA , T %0, thus ¢ tekes its values in

and is a bounded map thereinto.

Proof of the theorem:

Let N be an operator ideal snd let A be a minimal one with

AlFin = Q|Fin.

€ Nat (AlFin, 0|Fin)

then 8
Fin°f x Fin

Ap|Pin

Nat (toteL(AlFin), 2 ) by 5.4 (b)
Ban®® x Ban

Nat (A, 1) .
Ban®’ x Ban

ApoE

Therefore the lemma implies that the cenonical map ¢
factors through 0 and is en element of Net (4A,1) with

norm = 1 since it hss the same norm as

€ Nat (AlFin, o}Fin) .
Fin x Fin

1\ |Fin
Conversely, let A be an operator ideal that is contractively
contained in each N with Q|Fin = A|Fin. Thus A is

in

contractively conteined in A" , since A|Fin = Amin

|Fin,
via the canonical map q-A , but this mep appears too as counit
of the adjunction in 5.7 (b), it is therefore an isometric iso-

morphism.
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5.6. Exemple: The bifunctor N, introduced in 2.13 d) which
A
is actually an operator ideal, is minimal, since .'® .. is

computable.
A
'® s i.e. the norm closure of the

The operator ideal . .o

maps of finite rank in H is minimal too.

We will give more exsmples later on.



§6. Complete functors and maximal operator ideals

6.1. We consider the category BanBan of all covariant functors

F : Ban - Ban and the restriction functor F - F|Fin onto BaLnFinL .

This restriction functor .|Fin 72ss a left adjoint (see 2.2).

Proposition: The restriction functor .|Fin for covariant functors

has a right adjoint

R : BanF:Ln - BanBan 3 for ¥ : Fin = Ban

RF 1is given by

RF(X) = Nat (H(X, .) , F) .
Fin

Proof: F : Fin - Ban, F1.' Ban + Ban . Then we have

Nat (F_' s RP) =

Ban
=(’f§§ Ban (7, () ,('r.re)mé in (H(.y.) , F(.0)))

=<.1fz§é rin (H(.,..)(.)Gé Ban F,(.) , F(..)) by 1.8

= Nat (Fy(.2) 5 F(..)) by 1.13 a) since Fin ¢ Ban.
(..)€ Fin

= Nat (}5'1 |Fin, F) .
Fin

6.2, Proposition: For X € Ban and F : Fin - Ban we have

1im §F(X/M), X/M € Fin} .
A

Nat (X'®. , F)

Ban

(a) RF(X)

"

(b) RRF(X)

(¢) RF is always total, i.e. maps RF(x') , x' € X'

separate points on RF(X) for all X .
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Proof : (a) similer to 2.11
A A
(b) RF(X) = Nat (X' @ ., F) = Nat (X' ® ., F)
Fin Ban

by 2.3 and 2.7 (b) .

A

(¢) ¢&F: RF(X) = Nat (X'e
Ban

., F) = H(X', ¥(1)),

defined by ¢ (E)(x') = RF(x')(E) is earily

seen to coincide with the map & - & E e RF(X),

which is injective by the first part of the proof

A

of theorem 3.2, since X'g . is of type X ;

compare L.6, 4.8, 5.2 for related discussions.
ééé; Definition: A functor F : Ban - Ban is said to be complete

if F = R(F|Fin) via the unit of the adjunction in 6.1,

A
A

which is the mep Ty : F(X) » Nat (X' ® ., F) ,
Ban
given by ((%)), (£) = F(f) € for & eF(X) and
A
f e X'Q Z .
If 1§ is isometric for all X , but not necessarily onto,

then F 1is called & strong functor (see CIGLER [4]).

6.

=

. Lemma: If X has the metric spproximation property and

II

if F 1is of type 3, then T 1is isometric.
A
A
Proof: By 1.12 XK(X,X) = X'®@ X has e left approximste identity
(uj) bounded by 4 end F(X) is an escential left Banach -

K(X,X) - module. Thus for all E € F(X) we have
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I (@)y(uy) -8 0 =l Fu)) &-2ll0,
thus || 4 (&) I>11g]l 5 since clearly I 71l <4
we nave | & (8) Il = Il &l

Corollary: Let F : Ban - Ban be s functor. We write

RF for R(F|Fin) for short,

(a)
(v)

(e)
(a)
(e)

(a)

(v)

(e)

RF:RFe

R(DF)(X) = Net (F, I, (X', .))
Ban

R(LF) = RF

L(RF) = LF

Nat (LF, F1) = Nat (F, RF1) nsturslly.
Ban Ban

A
Nat (X' ® . , F) by 6.2 (b)
Ban

RF(X)

A

A
Nat (X' ® . , F.) Dby 1.11
Ban e

RFe(X)

X
R(DF)(X) = Net (X' ® . , DF) by 6.2 (6)
Ban

A
Nat (F, D(X'® .)) by 3.1, Remark
Ban

i}

= Nat (F, I1(X',.)) by 3.2, Remark
Ban
after the proof.

A

A
Nat (X' ® .,(LF)|Fin)
Fin

R(LF) (X)

1]

A

A
Nat (X' ® ., F|Fin) = RF(X) .
Fin
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>

(@) L(RF)(X) = (.'®X) & RF(.)

(.)€ Fin
- (.'eX) &  F(.) =IRX) ,
(.)e Fin
since RF|Fin = F|Fin.
Nat ..'A . " ee)s . =
(e) (.?eiBan(( ®-) (..)2 Ban F(..) F1( ))
=(§?§e Ban (F(..)’ (??é Ban((..'ec)’ F1(.))) by 1.8

6.6. Examples:

A

(8) R(X @ .)(Y) =Nat (Y' & ., Xo .) =
Ban

-p(Y' e .) (X)) =T, (X, %),

comnare 6.5, (b)

() R(X®.) (Y) = Nat (¥' @ ., X @.)
Ban
= H(Y', X) .

(e) R(H(X,.))(¥)

R(H(X,.) )(Y) by 6.5 (a)

R(X' @ .) (¥)

H(Y',X') by (v)

H(X,Y") .
(a) R(1,(X,.)) (Y) = R(1,(X ,.)|Fin) (Y)
= R(X'Q .|Fin)(Y) , compare the proof
of 3.3, where we used the same argument.

“R(X' @ .) (Y)

I, (Y',x")= (' e X)'
A

[}

(xey') = I, (X,Y") .
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(e) Aspecialcase of any of the above results is:

R(1d) = ''. By 6.2. (a) this =mounts to

X" = 1im {X/M, X/M € Pin}, which we already showed

in 2.13(e).
Remark: One would not have expected X @. to be complete, but
(¢), (a), (e) show that the completion of covariant functors
behaves really bad; the campletion of an operator ideal is thus
of tyre (II), see L.8.

6.7. Ve repeat the devslopment for contravariant functors.

We consider the restriction functor.|Fin for contravariant functors
F: Ban °? > Ban.

Proposition: The restriction functor . IFin for contravariant functors

has a right adjoint

op op
Fin BanBan

R: Ban > ; for F:Fin°®? - Ban

RF is ven b

RF(X) = Nat (H(.,X),F).
Pin

Proof: 1like 6.1,

o
P Ban we have:

6.8. Proposition: For X € Ban and F: Fin

(2) RF(X) = lim {F(E), Ec X, E € Fin}.

[0}

A -
Nat (. é X, F).
Ban

(v) RF(X)

= — A
(¢) RF is alrays total, l.e. msps RF(x), x € X separ~te noints

on RF(X) for all X.

Proof: 1like 6.2,
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6.9. Definition A functor F: Ban®® -+ Ban is said to be comolete,

if F = R(FIFin) via the unit of the adjunction in 6.5. i.e. the

F. -
map T * F(x) - IBTat (. é X,F), given by
an

(TE(E))Z(f) = F(£) E for £ € F(X), £ € 7' 2 x.

I 'r]l: is isometric only for all X, then we call F a strong
functor. (See CIGIER [L4]).
RF, RF is sometimes called the completion of the functor F, F.

6,10 Corollary: Let be F: Ban°® - Ban.

(a) Rﬁ = Rﬁe
() R(LF) = RF
(¢) L(RF) = IF

(d4) Nat (LF,§1) = Nat (F,RF,) paturally.
Ban Ban

Proof: 1like 6.5.

6. 11 Examples:

1
&
t
~~
29>
=
®
ke

(a) R(X&.")(Y) =

I1 (Y,X) by using 3.6.

() R(X @.')(Y)

A A
Nat (.'® ¥, .'® X)
Ban

H(Y,X)

[}

A
(¢) R(H(.,X)) = R(H(.,X)e) =R(.'® X) = H(.,X).

(@) R(.') = ." vy e.g. (c).
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Remark: So contravariant functors have rather well behaved
completions. Remind that the contravariant part offered no
complication at all in defining operator ideals.

We will add considerably to the examples of covariant and
contravariant complete functors in §7.

6.12 Let G be a bifunctor Fin®®? x Fin - Ban s=2tisfying G(I,I) = I.

We write RG for the functor: Ban®? x Ban - given by

A PAY
RG(X,Y) = Nat (Y' 8., Nat (..' ®X, G(..,.)))

(.)€Fin (..)eFin

A A QA
= Nat ((¥' @) ® (.."® X), G(uuye))
(+)y(..)eFin x Fin

A A
=Nat (..'® X, Nat (Y'® .,G(a0y.))).
(..)eFin ( . JEFin

The little computation we just did shows that
RG(X,Y) = R(') R(")G(..,.) = R(")R(')G(..,.) holds or that we have:

RG(X,Y) = lim {1im {G(E,¥/M), ¥/M € Fin}, EC X, E € Fin}

lim {1im {G(E,Y¥/M), EC X, E € Fin}, Y¥/M € Fin}

1im {G/E,Y/M), Ec X, T € Fin, Y/M € Fin}.

RG is always total by 6.2(c) and 6.6(c).

Proposition: R is right adjoint to the restriction of bifunctors G

with G(I,I) = I to Fin, i.e.

Nat (G¢|PFin, G1) = Nat (G,RG1) holds naturally in
Pin®? x Fin Ban®P x Ban
G and G1 -



Proof: Combine 6.1 and 6.7.

6.13.Definitioh: Let A be an operator ideal. We define AT®X py

ARex (RA)(I) (recall 4.10), i.e. we restrict A to Fin, extend
it again and make it an operator ideal.
Clearly Amex is then an operatar ideal, since RA is total and

RA(I,I): A(I,I) = I, thus (RA)(I) is of type (I).

We crll A a maximal operator ideal, if A = A% yia the cenonical
maps.

The name maximal will be Justified by the next two results.
5.14. Proposition: (a) pTEX mAX _ pMAX 4 .e, ATOX

is maximal for all opersator idesls A,

(b) (R.)(I) is right 2djoint to the restriction of overator ideels

to Fin.

Proof:(a) R(AIFin)(I)lFin = R(A|Fin)Fin, since all functors with
G(I,I) = T are of type (I) an Fin, then R(A|Fin)|Fin = A|Fin, then
Amax max R(R(A|Fin)(I)|F1n)(I) = R(A[Fin) (D) _ amex,

(b) Yet N2 be an operator ideal and A be a bifunctor of type (I) on

Fin. Then

Nat (Q|Fin,A) = Nat (Q,RA) by 6.10
Fin®® x Fin Ban®®xBan
= Ng; (ﬂ,(RA)(I) by L.40. ned

Ban ~xBan
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5415, Theorem: An operator ideal A is maximal if and only if

each operator ideal 2 that coincides with A on Fin is contained

contractively in A,

The second condition of this theorem is ecuivalent to the
definition of PIETSCH [419]9.3.3 for maximal Banach operstor

ideals, as is easily seen, taking convex hulls of unit balls.

max
Proof: If A is maximal, i.e. A = A , =nd if £ is an oper~tor

ideal with 2|Fin = A|Rin, then 1a|pin € Yat (2|Fin,A|Fin):
Pin®PxFin

Nat (Q,A"8%) - Nat (Q,0).
BanonBan BanoPXBan

Thus by the lemma in 5.5 the canonical map cpﬂ : Q> H takes its

[t}

values in A and is bounded by 1as a map i1 A since it has the

same norm as its corresponding element 1A|Fin € Nat (2 |Fin,A|Fin),
Pin®PxFin

but this means @ is contractively contained in A.

Conversely, let us suppose thmt A contains contractively each
operator ideal {1 with A|Fin = Q|Fin. But then AmﬁxlFin = A|Fin,
thus ATEX 3¢ contractively contnined in A; A itself however is

contractively contained in A®?%® via the unit of the adjunction of

6.12 (b), thus A = A™3%, qed



67

6.16. Examples:

(a) His maximi: (&E)‘D) - a(.,..mT - g,

(b) I, is maximal (RI1)(I) = 11(.,..")(1) =1,.

We will produce more examples later on.

6.18. TLemma: Let F: Ban - Ban and F: Ban®® - Ban be functors:

F is computable if and only if F' is complete. F is comoutable

if and only if F' is complete,

Proof: The unit of the adjunction 6.1:

t A A
i F(X)' o Tt ('8 K F) = (('BX) 8 F)
Fin Fin

is easily seen to be the adjoint of the counit of the
adjunction 2.9:
A
(.'8X) & F - F(X).
Fin
Thus the first of these meps is an isometric if ané only if the

second one is it.

The method works for the contravariant case too.

6.18. Corollery: Let M be a tensor vproduct (4.7).

M is computable if and only if the operator ideal DM (lh11) is

maximal
Proof. 6.415 for necessity. If DM is maximal, then DM(.,..') = M'
since DM(.,..")|Fin = ¥'|Fin, Thus M' is complete (check this)

and again by 6.15 M is comnutsble. qed.



$7. The projective (p,rﬁl—terﬁor product

7.1. First of all we introduce some norms for seauences in Bsnach

gspaces: let X be a Banach space and let (xi)°° be a sequence in X
i=1

(finite sequences are thought to be continued by zeros). Then we
will consider the following norms:

‘A
LGy dpp (3 1% D)7, 0cp <o

IF (=) Ilcm sup =gl

i}

1/p
Il (xi)HSP sup (3| <xi,x'> 1P)" 7, 0<p<e
i

=" | <1
Izl g = eup  (sup | CIEDIDE

="l <1
It is immediate to check that || . llem =] . Ilc,oholds.
For 1<p<e we can consider the space eP(X) of all sequences
(xi) <X which satisfy || (xi)" eD <@. This space turns out tobe a
Banach smace ~nd with coordinate wise action we get a functor ep.
Ban_ Ban. It is a routine matter to verify that ¢%(X)= H(@P',x)
holds, where 1/p + 1/p' = 1. Thus clearly gY(f) is isometric
whenever f is and this property holds too in case O<p<1, where it

can be verified by direct computation.
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7.2 Theorem:

Let X, Y be Benech spsces =nd O < p,r,s, <o such thst

1 <1/g=1/0 +1/r + 1/5 <%, For u € X @ Y define
Hluul(p’r,s) = inf J ()| I3 I (x ) g I(F N g8, where

the infimum is tsken over gll repre-entations

u = fxixi‘g’yig-X@Y‘

If g =1, then the expression [l . lil is a bifunctorial

(I),I‘,S)
reaconable crossnorm on X ® Y, which we design by ] |

(Pyr, S).
The completion X Q(P r,s) Y in this norm gives & tensor profuct,
Ll 4

which turns out to be computable.

If 0 <q <1, then the exprersion Il . /il 'y i1c & g-norm on
- (P’rs S')
X oY (i.e. satisfies the condition of 7.3, instead of the

trisngle inequslity). The Minkovski functional [ . |l (p,7,5) of
’ ’

the convex hull of the "unit ball" {u € X @ ¥z Wull (, , o < 1}

however is a bifunctorisl, reasonsble norm on X @ Y; the completion

X a(p r Q) Y in this norm gives a tensor product, which turns out
L B

to be computsble.

We call g(p r,s) the projective (p,r,s)-tensor product.
9 M
7.3. Lemma: For u,,u, € X ® Y we have
I a I I a q
|l u o+, ] (p,r,s)) < ( 'uqll (p,r,s)) + (mugm (p,r,s))

Proof: Let be € > O and let uj = i: 7\13 xij ® yi;}’

j = 1,2, be represcntations such that the following holds



70

(ll(lij)iﬂtp H(xij)iﬂ | (Yij)i" 8% < uy ll s))q+ &, 3=1,2.

’ (p,r,

By shifting scslars we cen suppose that

a/
|I(7~ij)1“€pq < ("'uj"’(p,r,s)q + ) ’

“(xij)i" 8I‘q < (M uj ] (p,7,8) e + e)q/r

o/
"(yij)i” SSq < (m uj 1] (p,r,s)q + e) S.

Bear in mind that O < 0 < 1. Crses p, ¥, s =0 simply mean that
the right-hend side is 1, since we may suppose uy A0, J =1,2.
Then:

2 A
1 i

u+u2=

J

and for p, r <o we have:

ol

™M

15 %13 ® T1y’

o/
Il = G Iy 12 4 3 Iy,

a/p

4 (x“)iuepp 1) B, )

/
+ e+ u2|” (o,r S)C_{ + e)q P,

A

( Ill u1 HI (p,I‘,s)

o/r
12t (§[<xi1’x'>lr " i I<k12’:;>lr)
r

&, )l r

ij )

r r
< (N (x4, )i" Lo+ (=)0 )

< CliE gl (P,P,S)q + e+ liuyll (P,r,s)q + e)q/r’

an¢ the same estimste trivirlly holde for p,r, =00 , Thus we

csn compute:
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L] [N TCN] EN[CN) I

o/p+q/T+qk

N

(m u1 m (P,I‘,s)q + m Usp m (p,r,s)q+28)

Way (e, )% + Mgl (o, x, o) +2e ced

is positive homogen-us and

7.4. Lemma: Y .| (p,T,8)

4
u Wa i for all X .
Tah® < Il(p’r,_r)___o_a__ue ®Y
Proof: The first assertion is immediate.
F.:r the second let u =3 7\1 Xy 8 ¥y be a representation in
i

X @ Y. Then:

fah® = |lx§l‘llz1,lly'll<1 li‘. Ay <xi,x > <yi,y >|
Ly 2/a - 1 (Crysx D =/a 8 Ky oy DI 870,
S ey et NIy 2/e -1 KxyoxT)) p*/e A AO] p /2

by the HBlder inecuality, since o/ + ¢/ + o/s = 1

<l

(2 e M((xi,X'>)Merl-ly§;121 (ICEAEA] 0

since p < p/q, thur | (xi)llep/q <h ()l pP etes
because by multiplying with a scslar we can assume that

2 InIP =1, ten |2 1P <1 for 211 4, l7\ilp/q < I 1P, since
1

1/q » 1, thus i: lxilp/q <1 end | (li)llep/q <1 = TN lp
Now

had® <O KU )l s e therefore

I u llk < Ml ged

(p,r, S)
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7.5. Lemma: I . |l r,s) (as defined in 7.2) is a bifunctorial
b

(Py

rezsonable crossnorm on X ® Y

Proof: First we consider the case g = 1.

(| )=Ul. Ul

s) satisfies the triangle inequality

(P’r’S (Psr’

by 7.3, thus for any representation u = 3 x5 ® ¥s in X® Y we
i
have

@y I (p,0,8)

2
i
LU A

trerefore | u ll < llub’(see 1.2).

(p,r,s)

A
)
If full (p,r,8) = O then l ull® = 0 too by 7.4 and u = 0; so

N

) is a norm and satisfies . 0" < ). | A

,I.‘l (p,r,s (p,r,s) < 'u

i.e. 1t is a reasonable norm (1.9).

Given f € H(X,X,), g € H(Y,Y,) end a representation u =3 A%y @ vy
i

in X® Y, then

Hee gl lip,p,ey =1 22 £x) @ 8lyy)llp 0 g

<10 hp Kex) L0 (vl

< el gl II(li)llap Il(xi)llerll Il(yi)lles by 7.1.

So ”'“(p,r,s) is bifunctorial too.
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Now we treat the crse 0 < g < 1,
ki = € Y < .
rite M = {fue X ® ”Iu"l(p,r,s) 13

A 7
Since ||~ < "l'”l(p,r,s) we have Mc O(X® v) n (X® Y).

A
Thus the absolutely convex hull TM too s-tisfies TM C O(X® Y) n (X @ Y),
since the latter set is convex. It is well known (see e.g.

A
GROTHENDI®CK [7]) that O(X ® ¥) n (X ® Y) is the convex hull
of the set P = {x® y, | xll< 1, llyl <1} in X® Y. Bince
A A

PcMwe have O(X® Y) n (X@ ¥Y) =TPcTIMc 0(X® Y) n (X® V).

Now let | y be the Minkovski functional of I'M, i.e.

'"(Pyr’s
-1
“u”(p,r,s) = inf {r > O, T € ™},
A A
The above chain of inclusion then implies that |.]I” < ||.l|(p’r’s)s 1 s
Il is a norm since I'M is absolutely convex and by the
(p,I‘,S)
above inclusions. Trus ||.|| is a reasonable norm on X ® Y.
(p,r,8)
Now let be < € H(X,X1), g € H(Y,Y,); then
Kee &) ull(p,p,s) < Ielllell Nlull(y r, gy @ € X® ¥, by the
sbove comnutation. That means

(fe g)gy) c ll£l.lell. MX1®Y1’ so
(f® g) (Thygy) =T(£8 g)(lygy) < lifl gl - I‘MX1®Y1,

tee. llge ghully, . gy <ltlllel lluly p o) Forvexe ¥

and so ”"(p,r,s) is bifunctorial too. qed.
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.o is computable.

A
.6, Lemma: The tensor product .®
1.6, Lemma D (p,r,8)

A A
s 8% Y=Y® X it suffices
Proof: Since clearly X ®(p,r,8) (p,8,T)

to show that the functor XG(P r,8)" is computable for all X. We
9~ 9

use 2.2,

A
We consider the spectral family {X ®(p r S)E,E c Y, Ee Fin}
7=

A s
Let {f£y:X ®(p,r,s) 27 % 3CY, B 7in} be 2 mep from this
spectral family into an arbitrary Banach space 7, i.e,

E
A 1 B
lEgll < 1 for 2ll E and £ = fE1 o (X ® 5,0, 8) iz '), where ig"1 1is

the embedding E - E‘l'
We have to find a unicuely determined map f: XQ(P r s)Y =Z with
’ k4
A
£l < 1 ana fp=f o (X ®(p’r’s) 1E) where it E~ Y is the
embedding.

n
Given u € X® Y and any representation u =3 7\1 Xy ®yys take a
i=1

finite-dimensional subspace E € Y such that all vy € E. Then
we should have
flu) = £ (3 LORE yi).
If we define £ in that way we should note first that the definition
is independent of the choice of E ¢ Y: if {yi}c E,{y;} c By,

put E, = E + E,, then

2

°c (Xe(p r,e) iz ) @A x07y)
E,
szo (X ®(p,I’,S) iE_' )(Zj:. 7\.1 xi ® yi)

fg = Ay X e yi) £

2

b

n
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A similar argument shows that fiu) is independent of the
representation of u too, thus £: X® Y+ Z is linear and
uniguely detsrmined and £IX @ E = £y
It remains to show that ||f]] < 1.

We consider first the case q = 1,

Let u = 3 Ay xi ® ¥4 be any representation in X @ Y., Take
i

{yi} C Ec Y. Then:

£ (@)l = heg @, < eyl lull 3

(p,r,8)E

A

1. Il(hi)llcp ”("1)'Lr(x)ll(yi)lLs(m)-
By 7.1. we know that es(iE) is isometric, so

ll(yi)lles = | (yi)lLs<Y) and

(E)

@I € 1Dy I N o G, roras cor

any representation, i.e. Ilf(u)llZ < | |ul] (p,r,8) °F I1el] < 1.
A
Now we consider the general case. We had 0(X ®(p r s)Y) n (Xe Y) =TN,
’t

where M = fu e X® Y: '”ul”(p,r,s) < 1}, ef. 7.5.

lel] = gu)p@ - [£(a)]]
uE0B () »,6)
= sup MESCONN
uel'M
= sup [ |£(u)]] as is easily seen.
ueM
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Let be u € M and & > 0. Taske a representation u = 3 Ki X ® ¥y
such that

0D HED e 1) e s Il e e <1+ e

Take any Ec Y, § ¢ Fin with {y,} © E. By 7.1 we know that
es(iE) is isometric, so

@1 8y = @

Consequently |[(A;)]lyp l!(xi)ller(x) ||(Y1)||83(E) <1 +e,

A
i.e.u =3 lixl ®y, € (1 +¢) Myow € (1 + e)o(x ®(p,r,s)E)
and therefare we have [[f(u)|] = [[£5(u)]] <"fEl| llullxg g S 1+e
(p,7,8)
for any u € M and ¢ > O,s0 ||f!] < 1. ged.

Theorem 7.2. is now completely proved.

)
7.7. Lemma: X g(p,r,s)' is computable for all X.

Proof: Y!

1im §{(Y/M)', Y/M € Fin}

1im {E, Ec Y', E € Fin}] by 2.3 (), (b).
-

A A
X t - " ]
®(p,r,8)¥ X:@(D,r,s) (¥im {8, B¢ ¥', & € Fin)

A
L
lim {x:e(p’r’s) E, Ec Y', E € Fin} by 7.6, 2.2,

Lin {x & y(¥/%), Y/M € Fin}

(p,r,s

A
thus X ®(P ' is computable by 2.11. qed.
’

r,s)°
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7.8. Remarks:
() If 0<p, r, s<wand 1/q =1/p + 1/v + /s < 1,

then we have ”'”(p,r,s) = 0, since for x® y e xX@ Y

we have
n
llx e y”(p,r,s) = ”12;1 1/n .20y Il(p,r,s)
n n n
< |l(1/n)i= Ilep [(x)g_q 11T ”(Y)1=1||ss
= /2128 12| 1yl > 0 for 1 > .
(b) Define
“u"](cp,e",es) = inf Il(hi)llbp Il(xi)llﬂr Il(yi)lles,
[Ha il (€P,e%, ¢%) = inf ll(hi)lép Il(xi)ller Il(yi)lles,

el o g goy= 32 OO TG e 1D g,

where the infimum is always teken over all representations

u =3 )‘i xj_@ yi in X @ ¥. Then we have

“I."I(Lp’er’es) = "l‘"l (1/(_1/p + 1/1\), eo)s ),

i = Il

(ep’er’es) (1/(1,/13 +1/8), v, =),

Wl o po oy = M 12 1/p + /v + 1/s.
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(c) Using (b) ana the fact tiat |11y y=11.11" 1t 1o
90 980

immediately clear that for 1 < D < w, 1/D + 1/p' = 1 the norm

.11 coincides with the norm g, of SAPHAR, [20], &3
(P""”P')

and with the p-norm of CHEVET [2]. The norm ||.|| coincides
(P »D' y‘”)

with the norm dp of SAPHAR and the tP-—norm of CHEVET. ‘n

immediate consequence is:

Theorem: Let (R,, 3,, pny) amd (2,, 3,, p,) be two&-finite mensure

LP(nz)

spaces., Then we have Lp(ﬂ1) 8

Pvp's“)

Lp(n1 x ﬂz’ U'1 x ”'2)

P(a,,1P(2,)) = IP(2,,1P(@,)).

See CHEVET [2].

Proof: of (b): The first assertion and the second one are essentially
the same, we prove the first one.
Suppose p, ' £, u € X @ Y and let u = 3 AMxg e y; be a

i

representation. Then

w=3 (g Nxg ). (17 M=yl .xy) ® 3,5 since €7 = ¢¥ we mve

X
A (-
Mol e v a/my, moer <N Ca Iz ”e(pr)/(mr) "("xl")ut,,u(yi)|| s

A
i &8

(pr)/p+r) / .
<(||<|x1| TN peremnr- | iz (r)/per) ep/(P+r><p )/ (or)

- Il s vy the B¥lder-inequality.

=(Z I)\il(pr)/(mr). I (pr)/(p+r)) (p+r)/pr)
1
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= 10 g® ll(xi)ller ll(yi)lles-

Thus ”lu"l(’l/‘!/p-q-‘l/r),oo,s) < il (0P, ¢F %"

On the other hand we have
r/(p+r) ( o/(p+r) X,
u .—_z (sign 7»1. |>»1| ) |7L1| . "-(-;;) nem) ® (“(xj)“z"‘”yi)

N |||( SR < "(sign hi.lhi|r/(p+r))"

" <|7‘ lP/(P+ r) )
Il(x ERIWAIY

/
=<§I7~1I(Pr)/(P+r)) p.<1zlhil(pr)/(p+r) ”x "“)1/1'

li(x4) I

S 19 [C ] T /9]

. Il(xj)llem- Iz .8
y 1/r.
S(Ei"‘i I(pvc')/(pn:'))‘l. p.(zi;l)\il(pr)/(mr))

S LCOL PO CPR)

Thus |[|u|||( D ot 0% < |||u|||(1/(1/1)“/1_),“’8).

If r = e then there is nothing to prove, the case p =« offers no
difficulties, just choose the representation

_ x
u _2:;l “xi . (hi i )® y; and proceed as above for both

=l

inequalities.
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The third assertion follows from the first two by remarking that

the form of the £°-norm never mattered in the proo-. qed

7.9. Lemma: ZLet be X, YeBanand1 =1/ + 1/vr + 1/s.

For all u € % Y and all e > O there exist sequences
———= (pyr,8) =~ =/ Hielfo exlst Beduenses
(ry) € ®, (x;) € '(X),(3;) € °(¥) such that

n
1im ” u -3 7\'j_ xi ® Yil| 0

o i=1 (p,r,s)

and H(li)llep ll(xi)llsr ll(yi)lless [Hall e

-+
P,P,B)
The proof is routine calculation: take as model e.g. the proof

of Proposition 3.2. in SAPHAR [20].

7.10. Lemma: (X @( Y)' is the space of all f € H(X,Y') for
p,r,S

which there exists a p > O such that for all finite sequences

n n n
()\i)i=1 clI, (xi)1=1 c X, (yi)1=1 < Y we have

Furthermore |[f]] = inf p,
B (p,r,6)7)"

Proof: In the beginning of the proof of thearem 3.2 we gave an

A
argument that shows that (X ® Y)' is a subspace of H(X,Y'),

(Pyr’S)
consisting of all £ € H(X,Y') which induce » continuous linesr

A
i Y
functional an X ®(p,r,s) by ‘;,‘. xi ® yil-—* 23‘: <yi,f(xi)>.

By that the cese g = 1 is settled. For the general crse we should
bear in mind thet the Sup of the absolute value of a linear
functional on a set coincides with the sup on the convex hull of

the set (compare the proof of 7.6). qed.
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7.11. Corollary: If O< p< 1, then (.| . (IA for all r,s.

(P’rys)=

>

Proof: (X Y)' = H(X,Y'), since for £ € H(X,Y') we mve

(p,r,s)

LRI IR EX T =)= n(yiﬂlcw

< £l ll(hi)lltp (((xi)(ler |((yi)|les since p< 1, r, 8 € o

and t - || o Ct’ t = [[(x)l 4 is non increasing (compare
£

7.4, where we proved this).

Thus || || (%o ¥y < l £l end the reversed inequslity holds
(p,7,8)
too. qed.

7.11. Definition: We denote the oper~tor idesl D @

(v,r,8)

(see L4.11) by H( ) and call it tre ideal of the absolutely -
P,y S

(p,r,8)-summing operators, if 1 < 1/q = 1/p + 1/T + 1/58 < o,
0 < p,r,s < ». We have then by L.11, 3.2:

I (%,Y) = D(X & ) (Y)
(Pyrys) (P,rys

1]

ffeHXY):1 ofe (X& )Y
y (P,T,S)

7.12. Corollary: Let be O < p,r,s € =, 1 £ 1/q = 1/p+1/r+1/s < =.

Then the following stctements hold.

(a) Take f € H(X,Y). Then f € n(P » s)(X,Y) if and only if
2+

there is a p > 0 such that for all finite sequences

() eI, (x;) € X, (yy') © Y' the following holds:
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23y G Dl e 10NN L UG 1)

@_d_llflln( )" inf p.
P,Ty8

(v) H(P r,s) 158 maximal operator ideal.
2+

(¢) (x é(P’rss)Y)' = H(P’rvs)(X’Y')

(d) Take f € H (X,Y). Then f €Il (X,Y) if and only if

(p,r, s)
1y,
iy o f e H(p,r,s) (X,Y"); furthermore

I= =i, ozl holds
Tp,r,s) ¥ To,re) ©
® A
I = . .
() Ty, r,s) ® (p,r,s) (888 L.1k).
(f)II(p I"s)=H,§‘p<1 far all 0 < r, 8 € »,
b

Proof: (2) use 7.9, (b) use.6.18,(c) use 3.3, (d) use 3.413 or

3.14,(e) use 4.4, (f) use 7.9. qed.

7.13. Lemma: Let be p > 1, 1/p + 1/p' =1, 1 € 1/a=1/p+1/r+1/8 < w,

(a) Tske £ € H (X,Y). Then f € n(p r s)(X,Y) if and only if there
-9

is a p > O such that for all finite sequences (xi) c X, (yi) c Y

the following holds:

REEDEAPT! gt <o | (=) . S KCADY &
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Furthermore we have |[£]l = inf p.
(p,r,s)

(b) Teke f = H(X,Y). Then £ € II oo)(x,af) if and only if

(P,P"
there is a p > O such that for each finite sequence (xi) cX

we_ have

||(fxi)"ep' <pl (xi)" '

Proof: (a) If f eIl

(o,r,s) (Xs¥), then
I (<f(x1),yi'>)ﬂcp' = sup |§ 7\1<f(xi)’yi'>'
DOy s
Sn?:fmep <1 L PR LD P RLICRUNES L FaR
= =l Tpns) (CRTIY () e

Thus inf p < | f"n .
(p,7y8)

If on the other hand f satisfies the condition, then for finite
sequences (11) c1, (xi) c X, (yi) c Y
we have:

LRYRCERRDN RN IR (KCERRADI R L

< (inf o) . My . ({EIN] o ([CAA] .8

so|lfll < inf. p.
H(p,r,8)
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() Irte n(p ') (X,Y), then we have
b4

"(liﬂkps1

= sup |2 Ay sup |<f(xi),yi’>|
K Mgest 1 "l <t

= £UP sup Iz li <?(xi)’yi‘>|

Tl (21 Uyl

< Il () e
< I Tp,p' U e?

If £ satisfies the condition, then

Iz ay {e(xy)oyy DI R TR CCRUI A

< NODpe - MeEMe - IO,

< (nf p). DN - Nx)N R "(yi')” - qed

7.14. Remark: Let p 21, 1/p + 1/p'=1, 1 < 1/a=1/p + 1/ + 1/8 < .

(a) Then for all X, Y the space 1T (X,Y) coincides
(p,r,s)
isometrically =ith P, _, (X,Y), the operator ideal of
(P !P,S)
"(p',r,s)-absolutely-summing" operators X + Y as defined in
PIRTSCH [19], 14.1.1., whose defining property is exactly the
condition in 7.12(a) if p » 1. The restriction 1/q » 1 corresponds

exactly to the restriction 1/p' < 1/r + 1/s8 in [19].



(b) Lemma 7.12(b) shows that I (X,Y) is the operator ideal
(pyp"s0)
Pp,(X,Y) of "p'-absolutely summing" operators, see e.g.

PIWTSCH [19], 14.3, which is well known.

7.15. Let be 1 < 1/q =1/p + 1/r + 1/5 < » and let X, Y be
Banachspaces. The canonicel map s: X & Y - L(X',Y)
(P,rss)

(see 1.12) is contractive. We consider i1ts cenonics1l factorisstion

X & Yy 2 . L',y
(p,r,8)
coims | T ims
(p,r,s) A
LT X,Y) - X3,

where L(p,r,s) (xX',Y) =X 6 Y/a"'"(o) is the space of all
(P:rvs)
(p,r,s)-nuclear maps which are weak *-norm-continuéus on OX'.

By duality we transform this diagram into

L, 2L g (X,Y")
P’r’s)

3 T

]

I1(X,Y') _i_* (L(P’r’s)(X',Y))'

and this tells us that I1 (X,Y') is contractively contained in
( )(X,Y'). Using property 7.11(d) we conclude that I1(X,Y)
p,r,8

is contractively contained in I (X,Y) for all X,Y¥. 1In fact
(P,r,S)
I,, is contractively contained in any maximal operator idesl A bY

exactly the same proof, using 6.17.
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We have clearly L(p,r,s) (X,Y) = L(P’S’r) (Y',X) vy transposition.

7.16 ‘Ne now consider the canonical faciorisation of

8: X' @ Y -+ K(X,Y) for 1< 1/qa=1/p=1/r =1/5 < .
(p,7,s)
X' @ y 8 o KXY
®(P’r95) *, )
coims l T ims
N XY) 8% L x'@yY
(p,r,s)( ’ ) ] 1,

where N ) (X,Y) = X' g(p,r’s)y/s”(o)

= tot (.' & ..) (X,Y) is the idesl of (p,r,s)-nuclear
(p,r,s)

operators X =+ Y,
For q¢ = 1 we get the (p,r,s)-nuclesar operators of PIRTSCH [419],
13.1, but for q > 1 PIRTSCH considers the guotient - g-norsm of

. . C
I 1| (p,7,8) rather than its convex hull learly N(p,r,s) is
a operator ideal for all p,r,s.

We have trivially N( . S)(X,Y) = L(P'r’s)(y',x') by £ - f£' and
’ t

£f' > ", iy, since these maps correspond exactly to the
transposition x'@ ¥y - y® x'.

7.17. As 2 model for our following considerstion we repe=t 8

well known situstion:



87

The projective tensor product g is computable. D& = EH (ef. L4.14)
is a maximal operator ideal., The tensor product H(.',..)e hapnens
to be computable again; we c=2ll it the inductive tensor product'é.
I)g = I1, the ideal of integral operators, is a maximsl operstor
ideal.

The tensor product I1(.',..)e is not computable in general (in fact
[11(.',..)6](X,.) is computable iff X has the metric approximation
property). Its assoclated computable tensor product

L(I1(.',..)e) = L(I1(.',..)) coincides with & (since

1,(E',F) = B 8 F for E,F € Fin) and we arrived at the beginning
again.

7.18. Now we repeat this discussion for the tensor product

A
1 = < o,
®(p,r,s)? 1S 1V/a=1/p+1/r+1/s<
The projective (p,r,s)-tensor nroduct is comouteble (cf 7.72). The
A
ideal of (p,r,s)-absolutely summing operator D ®(p,r,s) = H(p,r,s)
(ef. 7.11,7.12) is a maximal oper=ator ideal.
1 e'yee is
We do not know whether the tensor product H(p,r,s)( ’ )e
computable again.
Definition: The associated computable tensor product
L(n ety =L L called inductiv
( (p,I‘,S)( » )e) (H(p,I‘,S)( y )) is crll the uctive

A
(p,r,s)-tensor product. e denote it by ®(p,r,s)" its norm by

u.|| (p,r 3). gsince it is exactly the durl tensor norm of
| 2l 4
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[

(p,r,s)

in the sense of GRCTHENDIECK [8].

A
7.19. Definition: The operstor ideal D ® v(efli11) is
Definition (p,r,s)

called the ideal of (p,r,s)-integral operators. We denote it

24 I(P’r’s>

By definition (4.11) we have that I(P’r,s)(X,Y)

={f: X > Y: o T X &
{ jY ® ( ®(Pyr’s)

el , - 1, o ¢l (%

\]
YY)
(pyr,s (p,I‘,S)' )

')} with

Corollary: (a) I(p r,s) is a maximsl operator ideal.
b Bl 4

(03 (R85 2,001 = g, r,a) (57"

(c) Take £ € H(X,Y). Then f € I(o,r,5) (X,Y) if and only if
2y

"y,
iyofe I(p,r,s) (X,¥"); furthermore el 1

in that case.

(a) I(P’rys) ®= é}(P:I”s).

(e) I (I)

I

. A
(py7ys) R(. ®(P;r’s)..)

max
N .
(p,r,s)

(f) The tensor product I

(p,r,s)

"')e is not computable in

(p,r.s)("

=“1Y° f“I

(p,I‘,S)

general. However we have L(I(p,r,s)("”‘)e) = L(I(p,r,s)(""'))

A
=@(5 r.8)? the projective (p,r,s) tensor product.
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(g) T(p,r,s) (X,Y') = 1 (Y,X') by transposition.
’9-9

(P’S’r)
Proof: (a) use 6.16;(b) use 3.3;(c) use 3.13 or 3.14,
(&) use L.14.
A
(e) I(p,r,8) = D &(y,r,s)" by definition
=D(Lﬂ<p,r,s)(.',..)) by 7.18

NI oy 3.2, 414

(z H(P’r9s)(."

(B o gy (etsen D)) D)

(B o gy- ) 1Pam) ) D) oy 7,12

1}

(R(( By 5 oy+-)" 1F10) T by 6.15,

or by using directly the exponential low 1.8.
)(I)

(R(.'S(P,r’s).')

(R, q) 1720

max
h N(P!Pix)

() L(I(P,r’s) (.',..)e)= L(I(p’r’s) (o', ..")|Fin)

L((.‘Q(p)r’sy..')'lFin) by (b)

[t}

L((H(p’r’s)(.,..'))'[Fin) by 7.18

L((.é(p,r’s)..)"lFin) by 7.12

®
(v,r,8)

(g) trivial

ged.



90

7.20. Remerk: (a) If 1/q = 1, then we remarked in 7.16, N(p r,s)
—————— 2Ly
is exactly the space of(p,r, s)-nuclear oper~tors in the sense of
PIRTSCH, [19], 13.1. Thus in the case 1/q = 1 the ideal I(p r,s)
-9

coincides exactly with the ideal J( of (r,s) integral operators

r,s)

in the sense of PIETSCH [19], 15.3 since he defines them by

J(rys) = N(P’rys) = I(p,P,S) by 7.13(e).

(b) The adjoint of the canonicel map

A JA)
he embedding I 'y ¢ H(X,Y').
X® ¥~ X85 1, s) Y is the embedding (p’r’s)(X,Y ) (X,Y")

By duality thus any equality or inequality between different

ideals of absolutely summing operators carries over to an equality
or reversed inequality of tensor products. And since an inequality
means there is a canonical map which is contractive, and an equality
means: there is a canonical isomorphism, we can carry this map
through all of our natural constructions 7.15, 7.16, 7.18, 7.19,
tlms obtaining equalities and inequalities between inductive

tensor products, nuclear operators and integral operators.

PIETSCH [19] collects a lot of results for ideals of absolutely
summing operators in general and for special Banach spaces. We
will carry them over now, combine them with our results and list
all consequences for nuclear operators and integral operators too,
which seem to be new, We use the convention

1<1/q4 =1/py +1/ry +1/8; <o, 1/p + 1/p' = 1 whenever

1< p. Cases p < 1 are always trivial sinceg = g.
(P:r9 5)
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"Contractively contained" for operator ideals will be denoted
by €.

H will always denote a Hilbert space, Lt is any space Lt(ﬂ,z,u)
where (2,2,u) is a measure space, or even =zmy abstract Lt-space
for 1 £ t € =, o is the space of null-sequences, and any result

for s hold for all pre—L1-spaces too.

7.21. If Py > Dpy T > Toy 8, > Sy hold or

1

D, > Dy Ty STy, 8, < 8, 1/a, € 1/4,, then we have by [19],

14.1.6 (or by direct computation):

- <i-

, I gl
(P1 ,1‘1,81) (P2’r2i32) (P1’r1’51) (P2’r2132)

(PssTns8,) (DysT,s8,)
N - W 2272272 cL 1271271

= . ] ’
(p2,1‘2,82) (p1 Tqs 1)

. < . I cI
“ l' (P2’r2’32)' (! (p1,r1,s1)" (pz’rz,sz) = (p1,r1,s1)

7.22. If 0 < r,r, <1, 1< p,0, 1/'p1 + 1/'r1

a1

1/py + 1/7y,

then we have for all s by [19], 14.1.7:

" . " (P1 ,r1,8) = N . “ (P2’r2’s)’ H(p1,r1s) = H(Pz,rz’s)

. - (P1’r1ys) B L(szrst)
(P1sr1,3) - (Pz;rzys) -

u : “ (p1,r1,8)' = u. " (Pzﬁrzis)': I(P“’rﬂys) = I(ngrzs)y

and the ssme statements hold if we interchange rﬂ,r2 snd s.
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723 D=l (o,4,1) = n.n?, Ti,1,1) = H

1
Nopt,1) = 17 L(w,1,1) = F

Kol 1,10 = ot Tw,1,1) = T4 0¥ [19], ko190,

7.24. If 1/q, + 1/ay =1 and v, < r,, 8, < 5,, then

.

vl (py7q084) < (pps7os83)s W(Pq,r/,,sq) gw(pg,rg,sg)

(pz,r2,82) - L(P1 2Ty 98y )

c L
N(P29r2332) = N(P1’1‘1,s1)’ =

o < o Il I c

L (P2,r2’32) I (P19r1’81)’ (P29r2:52) = I(p1,r1,s1))
by [19],14.4.2. I wonder whether 1/q1 > 1/q2, T, STy 8y < 8,
suffices.

7.25. If 1/a = 1, then by [19], 14.4.3 we have

el (p,e,e) < Mol (o,2,2) Tp,r,8) € T (w,2,2)

(00,2,2) (p,r,s)
N(°°2’2) € N(P!r!s)’ L S

“. “ (“”292)' < " ° n (p,I",S)” I(°°52’2) S I(P!r,s)’

end we have equality everywhere whenever 2 < r, s, < o,
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7.26. Each of the following conditions implies, that

el (gyeey = 00"y Bppe) =E

- (pyry8) _ {1
Np,r,s) =Nyp 77770 = L0

N n.uR

(p,I’,S)' = ; I(P’r,s) =

(a) p <€ 1; r,s arbitrary, by 7.10

(b 0o<r<1, 1/p + 1/r > 2, s arbitrary.

Then the equation 1 + 41/x = 1/p + 1/ has a solution C < x < 1
and we can apply 7.22 and (a).

(¢) 0<s<1, 1/p + 1/8 > 2, r arbitrary.

(d) p arbitrary, 0 < r, s € 1, by 7.21 and 7.23.

7.27. If 1/q=1, r, s £ =, then we have by [19], 14.5.1

Hg(P,I‘,B)H =Neo,r,s) (H,H) = L(p’r’s)(H:H) = H@ H = K(H,H),

H(p!r’s)(H’H) = Hg(p,rys)‘H = Hg H= N1(H’H) = I1 (H’H)

I(p,r,s) (H,H) = H(E,H) =BH)
If 1 < p < », then we have
A
H ®(P,P'9=’°)H = H(D’P'ﬁx’) (H’H) = N(Psp"x)(H’H)

= 1@ ) (mm) - HS(p,p" )t B ) (BH)

=1
(Prp'y
=62, the space of Hilbert-Schmidt operators. The ssme equations

hold, if we exchenge (D,,p') for (p,p',o).
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7.28. BE( 5 ) B= N o o)(HH) = 1(0:2:2) (5 1y - WBH = k(8 5),

1]

N A
T(,,2,2) (H,H) H@<m’2’2), H=H® H= N1(H,H).

H(H,H).

I(°°,2’2) (H’H)

If 1 < p < », then we have:

L(P’z’z)(H,H)

A
= H,H
H®(P!2’2)H N(P:2’2) ( ’ )

= L(p,2,2) (H, H) =61>’

A
D(p,2,2) (HH) = H@(, 5 o)1 H =6Pn where@'p i1s the ideal of
all operators in (B(H) whose sequences of s-numbers lie in (P,

The same equations hold if we set (D,»,2) or (p,2,m) for (p,?,?);
See [19] 14.5.2.

7.29 If p>1and i <r< 2, then the case 1/t =1/p + 1/ - 1/2 < 1
implies, that the following holds, by [19], 14.5.3.

Hg(Pyr,x) H= N(p,r,ao)(H’H) = L(p’r’m)(HyH)

= I(p,r,m)(H’H) = 61:'
A
I = H = .
(P,ryw) (H’H) H®(P’rr’°)' 6 t!
The other case 1/p + 1/r = 1/2 > 1 implies that
A
H=0N — (P’r’m)
He(Prr:w) (P:rom)(H’H) =1L (H’H)
A
r,::o)(H’H) =H® H= N1(H1H)’

= (o,

A

A A
H,H) = H(H,H . H=H .
H(P’r’m)( I ) ( » )’ H®'\p,1",°°)‘ ® H
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7.30 If X is any B=nach space, 1 < p < 2, 2 < t < o, then we have

by [19], 16.1.3:

A t t A t!
X L =1L X =N LY X

®(p,p' yo) ®(py=,0') (pyo,p") T 20

(P p' °°) v ot _ A t
= L\PsP »>/(x' 1”) = X®(2,2,ao)L ,
t! _ t ' I X t!

nCmpuwﬂXJ; ) = Hmem'%L’X)" @,%wﬂ'J‘)’
If X has the metric aporoxime tion property, then we have furthermore,

A -t' t' /\ < A .t'
= =X® L
X®(p,p' ) T LY ®(pmm,p) X (2,2,%)

I(p,p',m)(x’Lt ) = I(2’2’m)(X,Lt )

A tt t'
} =1 o' . .
since then we have X®(p’p.,m). L (p,P"w)( ’ )e(X,L )

7.31 The following spaces are independent of p in the intervals

which we will 1list after then, by [19],16.1.4:

|

u' A v
L G(Pvp'y""‘)' L

] ]

v’ u
- L ®(P’°°-P')' L
u' v v' _u
I L =1 L L).
(p,p' ) (& 2D (pyeo,p' )T #T7)
The intervsls are the following ones:
1 <p<o for1<€usx?2, 2< 7 <ox0;
U<p<o, 1 <pP<2fFfor 2<€u<w,2<€v<x

2<p<€wofort1<u<2, 1<vs2

U<p<SCoo for 2 <€ U<, 1 <vs 2,
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In some cases one cen replace 1 <... and ...< = by < with a little
caution.
7.32. By [19], 16.1.5 we have:

1A 2 2 A 1 2 4
= = L ,L
r ®(°°’1’°°) Lm=1 ®(°°’°°,1)L N(°°’°°91)( ’ )

- L(OO"’,OO)(Lao,LQ) - L‘l % L2,
1 .2 2 2 .
i 1,) (o T) =y (D5,07) = B(L5,T7).
N\
%0 A
P @)t B =0 L

Lot ) (E%52%) = 1,(27,18),

7.33. If either 2 = p < t <o, r = 2,

or 1<p<t<2, r=p'([19], 16.1.7)

or 1 <p=t<r'< 2 ([19], 14.1.8), then we have:

A “_ /] t
® (p,00,r)F = N(p ree)@ L")

H(P’r’”) (Lx’Lt') = H(P,wyr)(Lt’(Lm)') = H(Loo’Lt')v

t ot t 1
so Iy o p)(T75L7) = H(L',L') by 7.12(d) and

L 1 _ '3 £ o t' e
L Q(P,ao,r)' L =1L ®L, I(P,SO,I‘)(L oL ) = I1 (I" s L )o
7.3%: Out of 16.1.9 we can deduce:

H(°°!292) (Lso’L‘l) = H(Lm’L1), thus

o A o oA o o w00 o e
L ®(0,2,2)! T =L@ L7, I(m,2’2)(L , (T°)")= 1, (1, (1))
and by 7-19(C): I(x’Q,z)(Loo,L“) = I1 (Lm,L1);

20 A _ 10 A
L ®(°°,2’2) CO =LIe cQ'
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1 11
H(g’z,p)(L !L ) = H(I' ,L ), thus

20 A 1 ::oA 1 DO 00 20 290
L ®(2,2,2)|L =L ® L 9 I(2’2’2) (L ,I: ) = ]_'1(1, ,L )

{

=
®>
o

.

1A
L ®(2,2,2) %0 = 0

T(o,2,2)(E"5L7) = HEI®,L ) , thus
0o A 1 ﬁ
L"®(2,2,2) ®

A 1 A
=L*g L, () ®(9,?’2), ©° = () r°,

1(2’2,2)((L°°)" (LOO)') = 11((1'90)'9 (Lm)'), by 7.19(0)

I(s,2,2) (), L) = 1, ((F°)r,nh).

t .t t .t
D(g,1 ) (ToL7) = H(IT,LY) , 1€t<2, thus

t A t! t At

L ®(2’1,°°)L =L ®L , 1< t=< 2
t' A t t' Rt

L ®(2,1,°°).L =L ® L, 1st<?

I at' oty -1, @',
(2’1:“’) ’ - ’

(1t,1%) = v, 2< t €, tmus
(ty1:°°)
£t At

t A
L'®(g,1,) b =L ®L", 2<t <=,

t' A

% t
L" ®(g,1,0)r ¥ =FL

LY, 2< t < =,
t' ot tr ot <+ <
T(g,p) &7 oL7 ) = 47,07 ), 2t <w

We could write M for (I™)', meaning an abstract M space.
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