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INTRODUCTION

For compact connected Lie graupe the real cohomology coincides with the cohomology

of the Lie algebra (with real coefficients), which in' turn is the exteriour alge~

bra over the graded vector space of primitive elements in the dual cf the Lie alge-

bra. This uses invariant integration. For noncompact Lie groups one can reduce to

the compact case by Iwasawa decomposition. This is no longer true für diffeomor-

phism groups. The orientation preserving diffeomorphisms on the 2-sphere contain

50(3,R) as a strang deformation retract (5male 1959), so H*(Diff+(52» = H*(Rp3),

but the continuous cohomology (also called Gelfand-Fuks cohomology)of the Lie al-

gebra X (52) of vecta:fields on 52 hag 10 independent end free generators.
c

A similar statement is true für 53 (Hatcher 1983).

In this paper I will show that für a large class of connected Lie groups inclu~

ding all diffeomorp~ism groups the singular cohomology with real coefficients

equals the continuous cohomology of the Lie algebra with coefficients in the re-

presentatiorl space of all smooth functions on the gr()up. This class consists of

all graupe G, which are manifolds modelIed on certain locally convex

spaces, paracompact with smoothpartitions of unity, such that multiplication and

inversion are smooth. For an explanation of these spaces end the not ion of

differentiability we use see section 1.

This paper is in final form and no version of it will be submitted für publi-

cation elsewhere.

1

Abstract: The real singular cohomology of the connected component of the identity

of the group of diffeomorphisms with compact support of a smooth manifold M is

shown to coincide with Gelfand-Fuks cohomology of the Lie algebra * (M) of smooth
.c

vector fields with compact support on M, with coefficients in the pepresentation

space of all smooth functions on the group Diffn(M):
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The alqebraic topological properties of the diffeomorphism group have been

attacked by D. Burghelea, W. Thurston, J. t-1ather, Dusa McDuff. The continuous

cohomologyof (M) has been treated by I. M. Gelfand, D. B. fuks, G. Segal,
c .

V. Guillemin, A. Haefliger, T. Tuujishita and others, mainly using spectral sequen-
.Q)'

ces and the theory of minimal models. HGf( c(M); C (Diffo(M)) has not yet been

treated in the literature. There are same obvious spectral sequences one can set

up but I was not able to compute the first step of one of them or to decide whether

one of them converges or not.

The method presented here also opens a new approach for computing the cohomology

für finite dimensional Lie groups.

The plan of the paper is as follows: in the first section we collect background

material on calculus on locally convex vector spaces, on manifolds of mappings and

the diffeomorphism group and set up the conventions. The second section is devoted

to Analysis on Lie groups. The third section studies vector fields and differen-

tial forms on Lie groups. These two sections can be read independently of the rest

of the paper if one imagines each Lie group appearing to be finite dimensional. .

In the fourth section the formalism obtained so rar is interpreted in such a wa~

as to give the main result.

BACKGROUND MATERIAL ON DIFFEOMORPHISM GROUPS

1.1. Let E, F be locally convex vector spaces. A mapping f: E + F is called Cl ,
.c

if df(x)v = limt+O (f(x+tv)-f(x)/t exists for all x, v in E ~nd the mapping

df: E xE + r is continUOIJs. By iteration one gets the nation of differentiability

r:r for all natural rand cQ). Clearly df(x) is linear and higher derivatives are
c c

symmetric, also the chain rule holds. See (Keller 1974) for exhausting information

on this concept. Here we just note that it is not cartesian closed: the equation
Q) Q) Q)

r: (E, C (F, G)) = C (E xF, G) does not hold in general.
c c c

1.2. The best' remedy for this fact is the calculus of Frölicher-Kriegl on

conventent vector spaces.(Frölicher 1982, Kriegl 1982, 1983). Let us gay that a
~ Q)

mapping f: E + F is smooth (ar C ) if f c is C for any' smooth curve c: R + E.

Here E and F may be arbitrary locally convex spaces. It follows then that

df: Ex E -+- F exists, is again smooth and is linear in the second variable. The
~

chain rule is of course true. A linear mapping is C if and only if it is bounded.

,The ~rn(Jottllless structure depends only on the set of smooth curves into E (and F),

not on the topalogy; it turns out that it depends only on the bornology. But, alas,

in general there are smooth maps wh ich are not continuous, even on bornological

locally convex vector spaces. On the space n of test functions on the real line

there arequadratic smooth functions with real va lues which are not continuous.

This follows directly from the property of cartesian closedness which holds for

the nation of differentiability expiained here. The equation
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C"'(E, CIX>(F, G) = CIX>(Ex F, G) holds for all spaces for a suitable topology on
'" f

C (F, G). All smooth mappings are continuous with respect to the final topology

induced by all smooth curves -call the outcome cooE. The finest locally convex
'"

topology coarser than c E is the bornologicalisation of E. If E is a Frechet space

or sequentially determined then c"'E = E. So on Frechet spaces the not ions CIX> and
'"

Cc coincide, so also on finite dimensional spaces (this wasproved first by

Boman ).

A locally convex vector space is called convenient, if for any smooth curve

c: fl -+- E there is an antiderivative f: fl + E with f' = c. This is the case if and

only if E is bornologically complete (so it bornologicalisation is an inductive

limit of Banach spaces). CIX>(E,F) is convenient if and only F is it. One may regard

convenient spaces with their bornological locally convex topology, \~ith the clX>E

topology explained above, or just with the given tepology; in any case the category

of convenient spaces and smooth mappings is .cartesian closed end complete, but it

is badly behaved with respect to quotients. As an offspring we also get that the

category of convenient spaces and bounded linear mappings is monoidally closed

with a certain completed tensor product ~ : L(E,L(F,G)) = L(E0F,G) holds in full

generality. For more information see the papers of Frölicher, Kriegl, the forth-

coming bock by Kriegl, or also chapter 1 in (Michor 1984). The not ion of differen-

tiability described hefe is the weakest of all notions admitting a chain rule, by

its very definition.

1.3. Let X, V be smooth finite dimensional second countable manifolds. Consider

the space C"'(X,V) of smooth mappings from X to V, equipped with the Whitney CIX>-

topology. This space is not locally contractible. In fact any continuous curve

c: [0,1] -+- C"'(X,V) haB image in the set of all f which equal c(O) off same compact
IX>

set in X. Refining the Whitney C -topology in such a way that all these sets be-

come open one gets the (F8)-topology on CIX>(X,v). With this topology, CIX>(X,V) is

locally contractible and even a manifold, modelied on spaces r (f*TV) of smooth
c

sections with compact support of pullbacks to X of the tangent bundle of V, equip-

ped with the usual inductive limit topology over all compact subsets of X. The

carts are constructed with the help of an exponential mapping on V. See (Michor
IX>

1980) for all this. The chart changes are Cc are stronger. Composition
IX> '" IX> IX> 00 .

C (X,V)xC (Z,X) -+- C (Z,V) is C , where C denotes the subset of all proper
prop 1 c prop

mappings f (so f- (compact) is compact).
IX>

1.4. Diff(X), the group of all diffeomorphisms of X, is open in C (X,X),
prop'"

cor~osition and inversion are Cc' TldDiff(X), the ta~gent space at the identity,

turns out to be the space r (TX) = J (X) of all smooth vector fields with compact
c c

support on X, equipped with the usual inductive limit topology. But the usual Lie-

bracket on} (X) corresponds to the Lie bracket of right invariant vector fields
c

on Diff(X). This fact cannot be avoided by changing convention. So for us)( (X)
c

will bear the negative of the usual Lie bracket when regarded as Lie-algebra of
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Dj.ff(X). The exponentiaI mapping Exp: Jf.c(X) ...Diff(X) is given by integrating

vector fields with compact support: Exp is a smooth mapping, but is ~ analytic

in any sense. Exp is not locally surjective, but its image generates Diff (X) as a
0

group, where Diff (X) is the connected component of Diff(X), consisting of all
0

diffeomorphisms with compact support which are diffeotopic (within a ~ompact sub-

set) to the .identity. This is due to the fact, that Diff (X) is a perfect group
0

(Epstein 1970). All this is true if X is a smooth finite dimensional manifold with

corners. See (Michor 1980, 1983) for it.

1.5. If X is compact and ~ is a smooth positive measure of total mass 1 on X

(a density), then Diff(X) splits topologically and smoothly as Diff(X) =

= Diff (X) x'JQ(X) where Diff (X) is the subgroup of ~-preserving diffeomorphisms
~ ~

and 1n(X) is the set of all smooth positive measures of total mass 1, an open

convex sub set in an affine hyperplane in the Frechet space of all densities.

So Diff(X) is homotopy equivalent to Diff~(X). See (Michor 1985) für this.

1.6. The theorem of De Rham: In (Michor 1980, 1983) it is shown that Diff(X),with

the (F)-topology described above, is paracompact (a slight, easily correctable

mistake there). It is also shown, that Diff(X) admits C:-partitions of unity.

This is then used in (Michor 1983) to show that the theorem of De Rham holds

for Diff(X), in fact für any Coo-manifold, which is paracompact and modelIed on
c

(NlF)-spaces (nuclear lF spaces): The cohomology of Coo-differential forms equals
c

00
the singular cohomology. The not ion of C -differential form is a little complicated

c

there due to the lack of cartesian closedness. Here we pre~er to work with

(Frölicher-Kriegl-) smooth differential forms. An üSpection of the proof shows

that this does not change the result. The uses fine sheafs. So we have:

1.7. Theorem: Let M be a paracompact topological space and a smooth manifold

(in the sense of Frölicher Kriegl) which admits smooth partitions

of unity. Then the singular cohomology of M (and many others) with

real coefficients equals the De Rham cohomology of smooth differen-

.tial forms.

Remark: If M is paracompact and modelIed on (NlF)-spaces, then it admits automati~

cally smooth partitions of unity. This is shown in (Michor 1983); mistaken1y it is

not assumed there, that M is paracompact.

1.8. So in the following pages we assume that G is a paracompact topological space,

a (Frölicher-Kriegl-) smooth manifold modelIed on convenient locally convex vector

spaces, which admits smooth partitions of unity. Furthermore G is group, multip1i-

cation and inversion are smooth. The Lie Algebra of G is denoted by ~ ' it is a

convenient space and the bracket is (bilinear-) bounded. In parts of section 2 we

also need that G has a smooth exponential mapping exp: ~ ...G with the usua1

pfoperties with re.spect to smooth one parameter groups; local surjectivity is not

assumed. Note that the regular Frechet Lie groups of Omori et. al. (see Kobayashi

et ale 1985) satisfy all these requirements. For a smooth finite dimensional
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paracompact manifold (possibly with corners) the diffeomorphism group Diff(X)
,-

vlill be equipped with the (F~)-topology described in 1.3. It is a Coo-manifold then
c

modelled on (NLF)-spaces, paracompact and admits Cc-partitions of unity. This is

stronger than the requirements above. But we will use the Frölicher-Kriegl.calculus

on Diff(X), so be aware that smooth functions, vector fields and differential forms

are .~ continuous on Di ff(X). \~e could take the COO ~topology on Diff(X),. as descri-

bed in 1.2, but it is possible that we loose paracompactness then and cannot apply
Q)

the theorem. If we stick to C -calculus on Diff(X) then we are forced to work with
c

rather awkward constructions of spaces of smooth multilinear mapping since we have

to circumvent the lack of cartesian closedness.

2 ANALYSIS ON LIE GROUPS

2.1. 

Let G be a Lie group as described in 1:8 above with Lie algebra.

So the bracket on , comes from the left invariant vector fields on G.

We will denote elements of G by x, y, z and elements of 1 by X, Y, Z end so on.

The mappings A , p : G + G will denote left and right translation by x.
x x

Let ]J : G x G + G denote the group multiplication and let \) : G + G be the inversion

Then as usual we have the following formulas für their tangent mappings:

T ( ) j.I (~ , Tl ) = T (A ) Tl + T (p ) ~ für ~ f T G and Tl t T G.

x,y x y y x y x y x x x y y

.'"
TX-1(Ax) Te(Px-1) = Ad(x) : ~ -., , Ad .f C (G, L(1"))'

(T Ad.X)(Y) = [X,V] .T v = -T (A -1) T (p -1).
e x ex xx

'" 1
2.2. Now let V be a convenient vector space. For f f C (G, V) we have df f n (G;V)

a I-form on G with values in V. We define of : G + L(~,V) by of(x).X = df T (A )
, e x

Then f f C"'(G, L(1,V»).

2.3. Lemma.: For f f C"'(G,R) and g f C"'(G,V) we have o(f.g) = f.og + of09 ,

where'*~V --L(1,V). This is true für any bounded bilinear operation,

o(f.g)(x) X = d(f.g) (T (A ) X) = df((T (A ) X).g(x) + f(x).dg (T (A ) X)
ex ex ex

= (ofCS g + f .og) (x) X. 0

2.4. ~: For fE C"'(G,V) we have oof(x)(X,Y) -oof(x)(V,X) = of(x) [X,V].Proo(: 

Let LX be th~ left invariant vector field associated with X f", so

'-X(x) = Te(Ax) X. Then of(x) X = df {LX(x» = (LX f)(x). So we have

oof(x)(X)(Y) = (o(of)(x) X) Y = o(of(.) V)(x) X , since evaluation is bounded

linear L("v) + V. Then we continue:

oof(x)(X)(Y) = o(LV f)(x) X = LX LV f (x).

oof(x)(X)(Y) -oof(x)(Y)(X) = (LX LV -Ly LX) f (x). 0

2.5. Fundamental theorem of calculus on Lie graupe: If G admits an exponential

mapping, then für f f C"'(.G,V) , X f' , X f G we have

f(x.exp(X)) -f(x) = (1~ of(x.exp(tX) dt)(X).

x.

Proof:
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If f is analytic then we can write für small X the following formula:

f(x.expX) = P f (1 + X + ~I X2 + ...) :f (P f)(eX) = L(eX) f ,

where eX is i~ a suitable iocally convex c:mpletion of U, (rapidly decreasing

with degree, gay). l(eX) is then a left invariant differential operator of infinite

order, with kernel a hyperfunction.

3. 

VECTOR FIELDS AND DIFFERENTIAL FORMS

3.1. Let f e C»(G,,). Then f defines a smooth vector field Lf f ~(G) on G by

L f (X) = T (A ) f(x). Clearly any vector field on G is of this form. If 9 E C»(G,v)
e x

then Lf 9 (x) = Lf(x) 9 = dg (Lf(x)) = dg (Te(Ax) f(x)) = og(x) f(x). We will write

Lf 9 = og.f to express this formula.
aI

3.2. Lemma: rar f,g f C (G,4) we have [L f ' L ] = L(K(f,g)), where., 9 -
K(f,g)(x) = [f(x), g(x)], + og(~) f(x) -of(x) g(x), or shorter

K(f,g) = [f,g], + og.f -of.g .

Proof: Let h E C"'(G,fl). Then L h (x) = oh(x) g(x). So we have (IJsing 2.3)
.9

(Lf L h)(x) = o(oh(.).g(.))(x) f(x) = o(oh(.) g(x))(x) f(x) + oh(x)(og(x) f(x))
9 2

= 0 h(x)(f(x),g{x)) + oh(x) og(x) f(x).

Lf L h = o2h.(f,g) + oh.og.f. Now we will use 2.4.
9 2 2

[Lf' Lg] h = Lf Lg h -Lg Lf h = 0 h.(f,g) + oh.og.f -0 h.(g,f) -oh.of.g

= oh..([f,g] + og.f -öf.g) = l([f,g] + og.f -of.g)k

Remark: 1. So L: C'"'(G,,) + X(G) is a linear isomorphism and a Lie algebra homo-

morphism, where C'"'(G,,) is equipped with the bracket K.

2. rar (NLr)-manifolds the CaI-vectorfields are the continuous derivations of the
c

aI

algebra C (M), see (Michor 1983). In general one may see first that [~,n] exists
c

as a derivation on local smooth functions, and then one can check in local

coordinates that it is given by a smooth vector field.
aI aI3. 

Note that for f, 9 in C (G,,) and h in C (G,fl) we have K(h.f,g) = h.K(f,g) -

-(6h.g).f and K(f,h.g) = h.K(f,g) + (öh.f).g.3.3. 

Let L~lt(') denote the convenient vector space of all bounded alternating

p-linear mappings ,x...x1+~' (Attention: AP,* is in general smaller).

rar 9 in caI(G, LPlt (' )) we define a differential form L in .\7.p(G) for ~. E T G bya .9 J. x
(Lg)x(~l""'~p)'= g(X)(TX(AX-l) ~l"'" TX(AX-l) ~p)' or (Lg)x =

= LPlt (T (A -I)) g(x). Clearly any p-form ~ in QP(G) can be written in the form
a x x

~ = L for a unique 9 in CaI(G, LPlt ('))' rar f. in CaI(G,,) we have9 a J.
L (L f ,..., Lf )(x) = g(x) (T (A ) L(f l )(x), ...) = g(x) (f l (x),...,f(x)) =

9 1 P x x- P
= g.(fl,...,fp) (x).

3.4. Ext~our derivative. rar 9 in C~(G, L~lt(')) .it suffices to test the exte-

riour derivative d L on leftinvariant vector fields L(X.), X. in G :
9 J. J. -,

(d L ) (L(X.),...,L(X')) = L.P L(X.) (L (L(Xo)"'" L(X J..)"'" L(X p »)) +
g 0 ..p J.=O J.9
+ L. ..(-l)J.+J L ([L(X.),L(X.)],L(X ),...,L(X.),...,L(X J.),.\.,L(X p ») = J. < I Q J. .1 0 J.
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-p ( )i ( ) ( '" i+j '" '" -Ei=o -1 Og,Xi Xo"",Xi""'X
p ) + Li.

J .(-1) g([X.,X.],X ,..,X.,..,X.,

, P p+I ' 1 J 0 1 JNow let d : Lalt(') ~ Lalt(') be.t~e exteriour derivative of the Lie algebra,

so (d'W)(Xo '...'X) = L.<. (_I)I+J ([X.,X.],X ,...,X.,...,X.,...,X).
pIJ '" 1 J 0 1 J P

Furthermore we define the map~ing 0 : ~(G, LPlt(O)) ~ COO(G, LP+
l l(11)) by '" P 1 a", tat.

(0 g)(X o '...'X ) = L. (-1) (oq.X.)(X ,...,X.,...,X ).
p 1=0 1 20 1 P

Lemma: dL .=L«o"'+d.) g ) end -(0"') =d'o"'+o"'d'.-9
m.Qf: The first formula has been checked above end the second follows from

2 , 2d = 0 and (d) = O.

3.5. lie derivativ~. For f in COO(G,,), 9 in COO(G, L~It(V)) end Xi in ~ we have

for the Lie derivative 0(L f )(L ) of the p-form L slang the vector field L :
9 9 f

0(L f )(L )(L(X l ),...,L(X ») = Lf (L (L(X I ),...,L(X )) +9 p g .p '"
+ Li~O (-1)1 L

g ([Lf,L(Xi)],L(XI),...,L(Xi)'...)1 '"= (og.f)(X I '...'X ) + L(-I) g.(K(f,X. ),X
I '...'X.,...,X ).p 1 J. P

Now K(f,X) = [f,X] + 0 -of.X, end so we get:

.'" 0(L f )(L ) (L(X I ),...,L(X ) = (og.f)(X1,...,X ) ~ E(-I)1 g.(of.X. ,X
l 'X. ,...X 9 i P -+ p 1 J. P

+ E(-I) g. ([f,X']'X I ". .X. ,...X ).J. J. P
Now consider the Lie deriva~ion cf, : '"

('0X W)(X I '...'X ) = E(-I)J. W([X,X.],X I '...'X"...X). For f in COO(G,, ) we will p .l 1 P
apply this pointwise.

w~ also consider 0O : C~(G,,) x COO(G, L~It(') ~ COO(G, L~lt('))' defined by

( 0f g)(x)(Xl'...'X ) = (og(x) f(x»)(Xl'...'X ) -
P 1 P '"

-L (-1) g(x)(of(x)X.,X
I '...'X.,...,X).0 1. 1 P

~: 0(Lf)(Lg) = L«('0f + 0f)g). 00

For shortness sake we a~so write 0f: COO(G,L~It('» ~ C (G,L~It('» for the mapping

defined by 0f ='0f + 0f or equivalently 0(Lf)(Lg) = L(0f g).

3.6. ~llection of definitions:For the convenience of the reader we collect he re

all definitions given so rar end same more. Let f,fi in COO(G,,),

g,gi in COO(G,L~lt(')) end Xi in,.

1. K(fl,f2) =-[fl,f2], + of2.fI -:- ~fl.f2 is a Lie bra~ket on",coo(G,,).

2. (d9g)(X ,...,X j = E. .(-1)1+J 9 ([X.,X.],X ,...,X.,...,X.,...,X )
0 P J.<J .1 J", 0 1 J P

(o"'g)(X ,...,X ) = E (-1)1 (og.X.)(X ,...,X.,...,X ).0 P 1 0 1 P
We have d = d1 + 0'" if we put dL = L(dg).

93. ~ef g)(Xl"..'Xp) = -L 9 (Xl,...,[f,Xi]~'.'.'Xp)

(ef g)(Xl"..'X§) = (09:f)~Xl'...'Xp) + L g(Xl,...,of.Xi'...'Xp).

Then ef = 'ef + 0f satlsfles 0(Lf)(Lg) = L(0fg).

4. COO(G, L:lt('»)' with the pointwise exteriour product, is a graded commutative

algebra. We will write glA92 for this product. .5. 

We have the insertion operator if: COO(G, L~lt(~»~ COO(G,L~i:('», given by

(ifg)(x)(Xl,...,.Xp-l) = 9(X)(f(x),XI,...,Xp-l). We have L(ifg) = i(Lf)(Lg).
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7. 

Theorem: Let f,fi in C~(G,,), let 9;gi in C~(G,L:lt('))' u,v in C~(
1. if(gl"'g2) = ifglA g2 + (-l)deg 9 glA ifg2 and i(fl) i(f2)

2. i(K(fl,f2)) = 0(fl)i(f2) -i(f2X3(fl) = [E)(fl),i(f2)].

ef(glA g2) = (0fgl) A g2 + glA (Gfg2).

G(K(fl,f2)) =e(fl)e(f2) -e(f2)e(fl) = [e(fl)' EJ(f2)] .
0uf = u.ef + 6UA if .

3. ef = if d + d if and d 0f = 0f d.

4. i([fl,f2]') ="e(fl) i(f2) -i(f2)'e(fl) = ['0(fl)' i(f2)] .

1ef is a derivation of degree 0 for the exteriour product.

'0([fl,fZ]1) ='e(fl)1e(fZ) -.e(f2)1e(fl) = [fe(fl)' te(fZ)] .
'e (u. f) = u .1e f .

5. 'e f = i f 'd + 1d i f ' (1d) Z = 0 , '2d 1e f = 'e f 4'Jd .

6. i(öf2.fl -öfl.fZ) = 6e(fl) i(fZ) -i(fZ) 6e(fl) = [öe(fl)' i(f2)]

6ef is a derivation of degree 0 for lhe exteriour product.

6e(u.f) = u.Öef + ÖUA if.

7. F~r F in C~(G,L(,,~)) define er: C~(G,L~lt(')) ~ C~(G,L~lt(')) by

(eFg)(x)(Xl'...'X ) = -E g(x)(Xl,...,F(x)(Xi)'...'X ) .
p ~ ~ p

Furthermore define A: C (G,'I)xC (G,,) ~ C (G,L(",)) by

A(fl,fZ) = [6fZ' ad fl] -[6fl' ad f2]. Then we have
G Ö Ö -

[0(fl)' e(fZ)] = e(K(fl,fZ») -e(A(fl,fZ)). -

eF is aderivation for the exteriour product, [ir' er] = i(F(f)),

and [8(F 1)' 0(FZ)] = 0([F 1,FZ]) = e(F IFZ -FzFi).

8. 6ef = if öA + öA if. öA is a derivation of degree 1 (like d).

-(6,,)2 ~ ISA ~+ d' 6".

9.

G,:fl 

).

i(fl).
= -i(fZ

'" i+j '" '"
(0 Jb (X ,...,X ) = -L. .(-1) (ög.[X. ,X.])(X ,...,X. ,...,X. ,...,X ).

ö 0 P J.<J ..J. J 0 J. J P
[~, 0f ]g (X ,...,X ) = L. .(-l)J.+Jg(öf.[X.,X.] -[<Sf.X.,X.] -[X.,öf.X.],X O'0 P J.<J J.,. J '" J. J J. J

...,X.,...,X.,...,X ).J. ",J P
[ö"',10 f ]g (X ,...,X ) = L(-l)J.(og.[f,X.])(X ,...,X.,...,X ) +

0 ..p J: 0 J" P ,.
+ L. .(-l)J.+J g([öf.X.,X.] + [X.,öf.X.], X ,...,X.,...,X.,...,X )

J.<J J. J. J. J 0 J. J P
[ö"',Ö0f ]g (X ,...,X ) = -L(-l)J.(ög.[f,X.])(X ,...,X.,...,X )

0 ..p k 0 ,. J. P
-L. .(-l)J.+J g(öf.[X. ,X.],X ,... ,X. ,... ,X.,...,X ).J.<J J. J 0 J. J P

The proof of all these forlnJlas does not offer diffjculties. Same of them are valid

on the Lie algebra" others are known from calculus on manifolds. For the others

just plug in the definitions end compute, usinq the previously checked formulas.

Only the proof of 9 is a little langer.
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4. COHO~ULOGY OF LIE GROUPS

4.1. Let G be a Lie group in the sense of 1.8. with Lie algebra ~ ' but we do not

need the existence of an exponential mapping here. ßy theorem 1.7 we know that the

singular cohomalogy of G coincides with the De Rham cohomology of smooth differen-

tial forms (!:lll with real coefficients). 8y the results of section 3 we see that

the space of smooth differential forms is isomorphic to COO(G,L:lt('))' with the

differential d. Thanks to cartesian closedness of the category of convenientvector

spaces and smooth mappings Rnd its relation to the cartesian closed category of the

same spaces and the bounded linear mappings we see that C~(G,L~lt(,))~is isomorphic

to the space L~lt(~; C~(G,~)) of bounded p-linear alternating mappings from p in

~(G,R). We will use the same symbols as in section 3 for all mappings treated

there. In particular we have several actions of the Lie algebra ~ on

L~lt("C'"'(G,~ )), namely 0x, "0X' °0x, 8ad X .We use 0X as the main action.

If G = Diff(X) as in section 1, then the complex LPlt (~ (X),COO(Diff (X))0 a c 0
is exactly the differential complex for the Gelfand Funks cohomology of ~ (X) with

c
coeffi~ients in the representation space COO(Diff (X),~) ,up to differences which

0
come from the non-continuity of smooth and bounded multilinear mappings. Thus we

get the following result:

Theorem: Let X be a finite dimensional smooth paracompact manifold with corners.

Then the singular cohomology with real coefficients of Diff (X), the group
0

of diffeomorphisms with compact support diffeotopic tö the identity through

diffeomorphisms with compact support, equals the cohomology of the differ-

rential complex LPlt (~ (X), COO(Diff (X),~)) with differential d.
a c 0

4.2. For the rest of this paper let LPlt ("COO(G,~)) =: KP, let the differential
a " 2 2 2

ue d = d~ + d", where d' = d and d" = <5 .Then d = 0, d' = 0, but d" .i O.

Define the following filtration of K: K := {g e K: d""g = O}. This filtration
n

is graded and increasing. Let i: KP... KP 1 be the embedding. Then d = d' + id".
q q+

For the spectfal sequence associated with the filtration we have the following

results:

Lemma: Let a. E Kq-~ and b. ( Kq ..Then d(I: ina ) = I:i~ if and only if for
-1 p-l J P-J n m

suitable c. E Kq .we have:
J P-J

d'a = ic l + b , c. + d"a. 1 + d'a. = ic. 1 + b. (l<j<k), Ck 1 + d"a k = O.
0 0 J J- J J+ J --+

~: For the first term Ei,q = Hd,(Kp/Kp-l) of the spectral sequence we have:

Ei'O = ~. If, = [",] then E~'O = 0 (true if G = Diffo(X)).

4.3. Same other observation. Of course one may consider first the d'-cohomology

of K. IJrlfortunately d" does not induce a mapping in the d'-cohomology, b(!jt (d")2

does and (d")2 is even chain homotopic to 0 in the d'-chain complex. So

H(d,,)2(Hdl(K») = H.(O")2(COO(G,H*(~))) makes sense, but the relation to the

d-cohomology is not clear.
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