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GEOMETRY OF SAMPLE SPACES

PHILIPP HARMS, PETER W. MICHOR, XAVIER PENNEC, AND STEFAN SOMMER

Abstract. In statistics, independent, identically distributed random samples

do not carry a natural ordering, and their statistics are typically invariant with

respect to permutations of their order. Thus, an n-sample in a space M can be
considered as an element of the quotient space of Mn modulo the permutation

group. The present paper takes this definition of sample space and the related

concept of orbit types as a starting point for developing a geometric perspective
on statistics. We aim at deriving a general mathematical setting for studying

the behavior of empirical and population means in spaces ranging from smooth

Riemannian manifolds to general stratified spaces.
We fully describe the orbifold and path-metric structure of the sample

space when M is a manifold or path-metric space, respectively. These results
are non-trivial even when M is Euclidean. We show that the infinite sample

space exists in a Gromov–Hausdorff type sense and coincides with the Wasser-

stein space of probability distributions on M . We exhibit Fréchet means and
k-means as metric projections onto 1-skeleta or k-skeleta in Wasserstein space,

and we define a new and more general notion of polymeans. This geometric

characterization via metric projections applies equally to sample and popu-
lation means, and we use it to establish asymptotic properties of polymeans

such as consistency and asymptotic normality.

1. Introduction

Following the pioneering developments of directional statistics [33] and shape
statistics [35, 36, 19], there is a growing need in many application domains for the
statistical analysis of populations of objects in complicated non-Euclidean spaces.
One can cite for instance tree-spaces in biology [8], Riemannian manifolds and Lie
groups, including diffeomorphism groups, in medical image analysis and computer
vision [45, 47, 49], or more generally stratified spaces [42]. With the choice of a
relevant distance, a natural generalization of the central values of a population of
objects in these spaces is the Fréchet p-mean, that is the set of minima of the mean
distance to the power p [25]. While the choice of p = 2 is often used because it
corresponds to the usual arithmetic, lower values of p up to p = 1 defining the
median (“valeur equiprobable” in Fréchet’s words) are also often useful for robust
statistics.

This paper develops a general mathematical setting to study the behavior of em-
pirical and population Fréchet p-means in spaces ranging from smooth Riemannian
manifolds to general stratified spaces. We start from the key observation that in-
dependent, identically distributed (i.i.d.) random samples do not carry a natural
ordering, and their statistics are typically invariant with respect to permutations
of their order. Thus, an n-sample in a space M can naturally be considered as an
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element of the quotient space Mn/Sn of n-tuples modulo the permutation group
Sn. This space shall accordingly be called sample space. The paper takes this
definition as a starting point for developing a geometric perspective on statistics,
guided by the notion of orbit type. This way, we provide a theoretical basis for
further investigations on unordered samples in non-Euclidean spaces.

1.1. Background. For non-positively curved spaces in the sense of Alexandrov,
the 2-mean is always unique when it exists [48]. For positively curved Riemannian
manifolds, an important effort has been spent in determining the convexity condi-
tions on the distribution that ensure uniqueness [34, 11, 1]. However, many very
useful distributions such as wrapped or truncated Gaussian distributions on the
tangent spaces do not fulfill these conditions even if they have a unique Fréchet
mean.

Asymptotic properties of the sample mean for distributions on Riemannian man-
ifolds with a unique population Fréchet mean were studied by Bhattacharya and
Patrangenaru [5, 6, 7]. In particular, they showed the consistency of the sam-
ple Fréchet mean x̄n of n i.i.d. samples of a random variable x for large sample
sizes (law of large numbers), building on a strong consistency result of [55]. Under
the Karcher and Kendall convexity conditions for the uniqueness of the popula-
tion mean x̄, the Bhattacharya-Patrangenaru central limit theorem (CLT) further
states that the random variables un =

√
n logx̄(x̄n) converge in distribution to the

Gaussian N (0, H̄−1Cov(x)H̄−1) in the tangent space at x̄ whenever the expected
Hessian H̄ of half the Riemannian squared distance at the population mean x̄ is
invertible. This type of CLT based on the delta method was further generalised in
[37] to non-i.i.d. variables and in [29] to summary statistics other than the mean,
such as principal geodesics.

In non-manifold stratified spaces of negative curvature, an intriguing phenom-
enon was discovered 10 years ago: the Fréchet mean may be sticky on singular
strata [28]. A regular random variable (that is a not fully concentrated on singular
strata) whose Fréchet mean is located on a singular stratum is said to have a sticky
mean if a sufficiently small variation of that random variable continues to have its
Fréchet mean on the singular stratum. In other words, the singular strata are at-
tractive. It is surprising that a CLT can still be derived under these conditions [28].
This suggests that some regularity can be used for deriving CLTs in more general
settings. Stickiness does not seem to happen in positive curvature. For instance,
Kendall shape spaces in three or higher dimensions are stratified, but the Fréchet
mean of regular random variables was shown to belong to the top regular stratum
(manifold-stability) [30]. In other words, singular strata of that kind are repulsive.

More recently, an apparently opposite unusual behavior of the CLT was dis-
covered with smeary means, where the empirical Fréchet means converge at an
asymptotic rate lower than

√
n; see [21] e.g. Other results show that intermediate

repulsive or attractive behaviours can happen on Riemannian manifolds, controlled
either by the curvature [46, 20] or by the topology [31]. Thus, classical tests based
on asymptotic results for Euclidean spaces might be biased, which is a critical
problem for many applications. This highlights the need for a new mathematical
framework to study the distribution of the empirical Fréchet mean, either in the
small sample regime or asymptotically.

While considering n-samples disregarding ordering is not new, the literature is
sparse in linking geometric properties of the quotient space to sample statistics. In
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the Euclidean case, de Finetti’s theorem [23, 16] and the theory of Hewitt and Sav-
age [27] on exchangeability and presentability characterized distributions invariant
to finite permutations leading to central limit theorems based on exchangeability in-
stead of independence [13, 9, 38]. We here develop a similar theory using additional
geometric structures.

1.2. Overview and results. The convenient level of generality that we adopt is
that of path-metric spaces [26, 10], see A.1, where the distance is given by the
infimum of the length of curves joining the two points; for complete path-metric
spaces the infimum is a minimum, see A.2.

We first describe in Section 2 the orbifold (resp. path-metric) structure of the
sample space Mn/Sn when M is a manifold (resp. a path-metric space). These re-
sults are non-trivial even whenM is Euclidean but well known in the realm of reflec-
tion groups and Weyl chambers. The sample space Mn/Sn can be stratified by the
number of pairwise distinct points. The regular part (Mn/Sn)reg contains the un-
ordered configurations where the n points are distinct. The lower dimensional strata
are called the q-skeleta, see 2.2, and comprise unordered configurations with exactly
q < n distinct points. A finer stratification classifying orbit types is based on the
partition (k) := (k1 ≥ · · · ≥ kq) of n describing the number of identical points; see
2.5 and 2.6. Sub-partitioning (distinguishing some of the points that were previously
identified) gives a half-ordering on partitions which are thus organized in a geomet-
ric lattice structure. The orbit-type stratum (Mn/Sn)(n) with the smallest partition
(n) is the diagonal {x : x1 = · · · = xn} ≃ M where all points coincide. This is the
1-skeleton, which can be identified with the base manifold M . At the other end of
the lattice, the regular orbit stratum (Mn/Sn)reg = (Mn/Sn)(1≥1≥···≥1) is the open,
dense, connected, and locally connected subset of all unordered configurations with
n distinct points. The closure of (Mn/Sn)(k) in M

n/Sn is the disjoint union of all
(Mn/Sn)(k′) with (k′) ≤ (k); see 2.10. The q-skeleton of Mn/Sn is the the union
of all orbit strata (Mn/Sn)(k) corresponding to all partitions (k) = (k1 ≥ · · · ≥ kp)
with length p ≤ q ≤ n. The projection to q-skeleta and orbit strata will be used in
Section 5 to characterize the Fréchet p-mean and to define a generalization called
polymeans.

Section 3 investigates the metric properties of the sample spaces when we assume

thatM is a complete path-metric space. The Lp metric dp(x, y) =
(
1
n

∑n
i=1 d(xi, yi)

p
)1/p

with p ∈ [1,∞) on Mn induces a canonical quotient metric on the sample space
(Mn/Sn, d̄p), which is then a complete path-metric space; see 3.2. Moreover, orbit-
type strata have convex closures, and a minimizing geodesic in the sample space
(Mn/Sn, d̄p) is the projection of a minimizing geodesic in the configuration space
(Mn, dp). WhenM is Riemannian and p = 2, one can show that geodesics are more
regular at interior points than at their end-points, 3.7. However, this assertion is
generally wrong for non-Riemannian complete path-metric spaces, like for instance
for the 3-spider, 3.8. This lack of regularity could be linked to stickiness.

In order to investigate sub-samples (bootstrap) and infinite samples together
in the same space, we show in 4.7 that the sample space (Mn/Sn, d̄p) is isomet-
ric to the space of mixtures of n-atomic measures (the empirical law of the sam-
ples) endowed with the p-Wasserstein metric. Moreover, the infinite sample space
limn→∞Mn/Sn exists in a weakened Gromov–Hausdorff type sense and coincides
with the p-Wasserstein space (Pp(M), d̄p) of p-integrable probability distributions
on M ; see 4.8. The extension of skeleta and orbit-type strata to infinite sample
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spaces can then be done easily: the q-skeleton in the infinite-sample space Pp(M) is
the subset P(M)q of all probability distributions with at most q support points; see
4.11. Similarly, for any partition (k) := (w1 ≥ · · · ≥ wq) consisting of non-negative
weights wi summing up to 1, the (k)-stratum in the infinite-sample space Pp(M)
is the subset of mixtures P =

∑q
i=1 wiδxi

∈ P(M)q with q distinct points xi. It
is interesting to note that such a mixture of q Diracs is realized in a finite sample
space for some n if the weights are all rational, but irrational weights can only be
achieved in the infinite-sample limit.

With this setting, we are in position to exhibit in Section 5 empirical and pop-
ulation Fréchet means as metric projections onto the 1-skeletum in sample space
or Wasserstein space, and we define a new and more general notion of empirical
and population polymeans by the projection on the q-skeleta (Mn/Sn)q or on the
(k)-strata (Mn/Sn)(k). These polymeans can be interpreted as the clusters of the
well known k-means clustering algorithm: the k distinct points are the cluster cen-
troids (we also call them the unweighted polymeans) and the weights wi are the
relative masses of the clusters. As everything is defined for p-integrable distribu-
tions (p ≥ 1), our definitions are actually valid for general Fréchet p-means and
p-power k-means. Since q-skeleta and (k)-strata are closed in all sample spaces, as
well as in the p-Wasserstein space, the existence of empirical and population poly-
means is ensured. The uniqueness is a much harder problem. In the Riemannian
case with p = 2, recent results on the regularity of the singular set of the distance
to a sufficiently regular set show that empirical polymeans of i.i.d. samples with
an absolutely continuous law are almost surely unique. This partly extends the
previous result of [4] on the uniqueness of the empirical Fréchet p-mean.

We turn in Section 6 to probability distributions on sample spaces. It turns out
that the correct space of infinite samples is not the quotient spaceMN/S(N) but the
space P(M) of probability distributions on M . Indeed, using this definition one
obtains as in the theory of Hewitt and Savage [27] that probability distributions
on infinite sample spaces correspond exactly to symmetric probability distributions
on configuration spaces, which in turn correspond exactly to mixtures of product
distributions. This definition is also in line with the infinite-sample limit 4.8. The
analogous statement for random variables instead of probability distributions is
that random samples correspond exactly (possibly after passing to an extended
probability space) to conditionally i.i.d. random configurations; see 6.6.

This setting allows us to establish in Section 7 asymptotic properties of poly-
means. We first show that the empirical q-means are strongly consistent estimators
for the population q-means, in the sense that any accumulation point of the sets
of empirical q-means is a population q-mean. Thus, when the population q-mean
is unique, any measurable selection of empirical q-means converges in probability
to the population q-mean, and we may inquire about the rate of convergence. We
derive in 7.4 an upper bound on the convergence rate of empirical q-means to the
population q-mean. The bound depends first on the convergence rate in Wasser-
stein space of empirical distributions—a well studied subject—and second on the
subspace geometry of the q-skeleton within Wasserstein space—a purely geomet-
ric question. It remains an open problem if the bound is sharp and if q-means
are asymptotically normal after a suitable normalization. However, when M is a
Riemannian manifold, we establish in 7.6 the asymptotic normality of unweighted
q-means for any p ≥ 1 under mild conditions (null measure of the union of the cut
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loci of the centroids and of their “medial axis” and non-degenerate expected Hes-
sian of the power p distance to the closest centroid). We further refine this central
limit theorem in 7.7 from i.i.d. to exchangeable sequences under some additional
conditional independence assumptions.

In the appendix we collect some tools from path-metric geometry.

1.3. Open problems and future work. Our framework opens the door to many
further investigations by linking two traditionally distinct strands of literature,
namely, statistics on manifolds and orbifold or path-metric geometry. Tools from
these fields can be fruitfully combined. The setup is fully general and applies to
curved spaces and more general stratified spaces, as needed in the previously cited
applications. It also encompasses Fréchet p-means and not only the classical 2-
mean, which opens the way to many useful asymptotic results for robust statistics.

Our results also suggest that the non-standard convergence rates in the CLT
are not only due to the geometry of M but also the subspace geometry of the k-
skeleta within the sample spaces. For instance, considering the Fréchet mean as a
projection on the 1-skeleton casts a new geometric light on the uniqueness problem:
in a Riemannian manifold, it is unique whenever there is no mass on the singular
set of the distance function to the 1-skeleton. Thus, one can conjecture that the
geometry of the “medial axis” of the q-skeleton in p-Wasserstein space controls the
uniqueness of the polymeans and that advances on the sub-space geometry of this
set within Wasserstein space would extend this uniqueness theorem to more general
settings.

Likewise, the rate of convergence of the empirical 2-mean towards the population
2-mean is controlled by the eigenvalues of the expected Hessian of the squared dis-
tance (Corollary 7.7). The convergence rate towards the limiting distribution in the
direction of an eigenvector falls below

√
n whenever the corresponding eigenvalue

vanishes. Conversely, stickiness could be induced by eigenvalues going to infinity.
This last behavior cannot happen in smooth Riemannian manifolds, but it can be
approached by concentrating the curvature at singular points. This could be a way
to study stickiness on smoothable manifolds. For i.i.d. samples with distribution
P , we conjecture that these condition could be linked to the convexity or concav-
ity of the geodesic distance in Wasserstein space from P to the polymean in the
k-skeleton, and thus that it can be controlled by some kind of Ma–Trudinger–Wang
(MTW) condition [22].

2. Orbit type stratification of sample spaces

Let M be a topological space. For any natural number n ∈ N>0, the permuta-
tion group Sn of n symbols acts on the n-fold product Mn by permutation of the
components. In symbols, we shall write xσ := x ◦ σ for the action of σ ∈ Sn on
x ∈Mn.

Definition 2.1 (Configurations and samples). An n-point configuration or ordered
n-sample is an element of Mn, and this space is called (ordered) configuration
space. An n-sample is an element of the quotient space Mn/Sn, and this space is
called sample space or unordered configuration space. The projection is denoted by
π : Mn →Mn/Sn.

Note that this definition of configuration spaces differs from the one commonly
used in topology, where the points are required to be pairwise distinct. The set of
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pairwise distinct points is an open subset of Mn, and its fundamental group in the
case M = R2 is the braid group. In contrast, we also consider the case where only
q < n points are mutually distinct:

Definition 2.2 (Skeleta). A configuration (x1, . . . , xn) is said to belong to the q-
skeleton if it consists of at most q ∈ N distinct points xi. As the number of distinct
points is Sn-invariant, there is a corresponding notion of q-skeleta of samples.

The name skeleton is taken from the theory of simplicial complexes and cell
complexes. The filtration of sample space into skeleta is rather coarse, and finer
stratifications are needed to fully describe the local geometry of sample space. This
is done next.

Definition 2.3 (Orbifolds [52]). A Hausdorff topological space O is an orbifold, if
the following data are given:

• An open cover (Ui) of O which is closed under forming finite intersections.
• For each i there is an open subset Vi ⊂ RN which is invariant under a
faithful linear action of a finite group Gi on RN and a Gi-invariant quotient
map πi : Vi → Vi/Gi

∼= Ui.
• If Ui ⊂ Uj then there is an injective group homomorphism φij : Gi → Gj

and a gluing map ψij from Vi to an open subset of Vj which isGi-equivariant
in the sense that ψi,j(g.x) = φij(g).ψij(x) for all x ∈ Vi and such that
πj ◦ ψij = πi.

In this situation (Vi, πi, Gi) is then called an orbifold chart.

Lemma 2.4 (Orbifold structure of sample space). If M is a manifold, then the
sample space Mn/Sn is an orbifold.

Proof. For any x ∈ Mn, choose a chart (Ui, ui : Ui → Rm) such that whenever
xi = xj we have (Ui, ui) = (Uj , uj). Then u1(U1)×· · ·×un(Un) ⊆ (Rm)n is invariant

under the isotropy group (Sn)x and π ◦ (u−1
1 ×· · ·×u−1

n ) : u1(U1)×· · ·×un(Un) →
π(U1 × · · · × Un) ⊂Mn/Sn is the required orbifold chart. □

The proof of 2.4 shows more generally that the quotient space of a smooth
manifold with respect to a properly discontinuous action of a group is an orbifold;
in this case it is sometimes called a developable or (by Thurston) a good orbifold. To
understand the orbifold structure of sample space, one has to describe the different
orbit types.

Definition 2.5 (Orbit types). The orbit type of an ordered sample x ∈Mn is defined
as the conjugacy class of its isotropy group (Sn)x := {σ ∈ Sn : xσ = x}. As the
orbit type is Sn-invariant, there is a corresponding notion of orbit types of samples
in Mn/Sn.

The following theorem classifies the orbit types of sample space. It turns out
that there are many different orbit types, one for each partition of the integer n.
This highlights the complicated geometry of sample space.

Theorem 2.6 (Classification of orbit types). The orbit types in the configuration
space Mn are exactly given by the integer partitions of n of the form

n = k1 + k2 + · · ·+ kq, k1 ≥ k2 ≥ · · · ≥ kq ≥ 1.

We write (k) := (k1 ≥ · · · ≥ kq) for such a partition.
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Proof. This follows from the fact that a point x ∈Mn is fixed by a permutation

σ = (σ1σ2 . . . σk1
)(σk1+1 . . . σk1+k2

) . . . (σk1+...kq−1+1 . . . σk1+···+kp
) ∈ Sn

if and only if

xσ1
= xσ2

= · · · = xσk1
, xσk1+1

= · · · = xσk1+k2
, . . .

. . . xσk1+...kq−1+1
= · · · = xσk1+···+kq

,

and all other xi being distinct. Here (k1 ≥ k2 ≥ · · · ≥ kp) with k1 + · · · + kp ≤ n
is the cycle type of the permutation σ. For our purpose we enlarge the cycle type
to (k1 ≥ · · · ≥ kp ≥ · · · ≥ kq) := (k1 ≥ · · · ≥ kp ≥ 1 · · · ≥ 1) until it becomes a
partition of n, denoted by

(k) = (k1 ≥ · · · ≥ kq) with k1 + · · ·+ kq = n .

The conjugate by τ ∈ Sn of the k1-cycle σ
′ = (σ1 σ2 . . . σk1) is the k1-cycle τσ

′τ−1 =
(τ(σ1) τ(σ2) . . . τ(σk1

)), and similarly for the other cycles in σ. Thus, the isotropy
group of any x as above is conjugated to the subgroup Sk1

× Sk2
× . . . × Skp

. Its
conjugacy class is described by the cycle type (k1, . . . , kp) with k1, . . . , kq ∈ N>0,
and equivalently by its enlargement to a partition of n. □

The configuration spaceMn and the sample spaceMn/Sn are stratified by orbit
type.

Definition 2.7 (Orbit-type strata). Let (H) denote the conjugacy class of any sub-
group H of Sn corresponding to a partition (k). We write (Mn)(H) and (Mn)(k) for
the stratum of all points in Mn of orbit type (H) and (k), respectively. Similarly,
we write (Mn/Sn)(H) and (Mn/Sn)(k) for the corresponding stratum in Mn/Sn.

Lemma 2.8 (Orbit-type strata). The stratum (Mn)(k) of orbit type

(k) := (k1 ≥ · · · ≥ kq)

consists of all x = (x1, . . . , xn) such that k1 of the the xi are equal to y1 ∈ M , k2
of the remaining xi are equal to y2 ̸= y1 in M , and so on, until the remaining kq
of the xi are equal to yq ∈M , and all yi are distinct. Thus, (Mn)(k) is the disjoint
union of its connected components, which are all homeomorphic to the open subset
of pairwise distinct points in Mq.

Proof. This follows from the description of orbit types in the proof of 2.6. □

Definition 2.9 (Half-ordering of orbit types). For two conjugacy classes (H) and
(H ′) of subgroups H and H ′ in Sn, we write (H) ≤ (H ′) if H is conjugated in Sn

to a subgroup of H ′. Correspondingly, for two partitions (k) = (k1 ≥ · · · ≥ kq) and
(k′) = (k′1 ≥ · · · ≥ k′q′), we write (k) ≥ (k′) if (k) sub-partitions (k′).

Note that the half-order between partitions is the inverse of the half-order be-
tween the corresponding conjugacy classes. The diagonal {x : x1 = · · · = xn}
is the stratum with the largest conjugacy class (Sn) and the smallest partition
(n). The projection onto the corresponding stratum in Mn/Sn is a homeomor-
phism. The regular stratum is the open and dense subset of all configurations x
with mutually distinct components xi. It has as orbit type the smallest conjugacy
class ({Id}) and the largest partition (1 ≥ · · · ≥ 1). The regular orbit stratum
Mn

({Id}) =Mn
(1≥1≥···≥1) inM

n/Sn is open, dense, connected, and locally connected;

it will also be denoted by Mn
reg. Likewise for (Mn/Sn)reg = (Mn/Sn)(1≥1≥···≥1).
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Note that for q ≤ n, the q-skeleton of Mn/Sn is the the union of all orbit strata
(Mn/Sn)(k) corresponding to all partitions (k) = (k1 ≥ · · · ≥ kp) with length p ≤ q.

Lemma 2.10 (Closure of orbit-type strata). The stratum (Mn)(k′) is contained
in the closure of the stratum (Mn)(k) if and only if (k′) ≤ (k) if and only if
(Sk1

× . . .× Skq
) ≤ (Sk′

1
× . . .× Sk′

q′
). Moreover, the closure of (Mn)(k) in Mn is

the disjoint union of all (Mn)(k′) with (k′) ≤ (k). A similar statement holds with
Mn replaced by Mn/Sn.

Proof. This follows from the description of the orbit-type strata given in 2.8, since
at the boundary some distinct xi might become equal. □

Lemma 2.11 (Bundle structure of orbit-type strata). Let (k) := (k1 ≥ · · · ≥ kq)
be a partition describing the orbit type (H) with H := Sk1 × . . . × Skq . Then the
projection (Mn)(k) → Sn/NSn

(H) defines a topological fiber bundle, where NSn
(H)

is the normalizer of H in Sn, and where for any σ ∈ Sn, the fiber over σ.NSn(H)

is the fixed-point set (Mn)σ
−1Hσ ∩ (Mn)(k).

Proof. The proof in [43, 29.22], although given for smooth manifolds, is purely
topological and applies here without change. □

3. Path metrics on sample spaces

The category of path-metric spaces is ideally suited for the description of sample
spaces because it is well-behaved under quotients. We refer to the appendix for the
definition of path metrics and some of their properties, and to the book of Gromov
[26] and also [10] or [3] for further details. Throughout this section, d is a complete
path metric on the separable topological space M , n ∈ N>0, and p ∈ [1,∞).

There are many choices of metrics on the configuration space Mn which are
consistent with the product topology. The following lemma describes some of them.

Lemma 3.1 (Path metrics on configuration spaces). The following is a complete
path metric on the configuration space Mn:

dp(x, y) :=
( 1
n

n∑
i=1

d(xi, yi)
p
)1/p

, x, y ∈Mn.

The identity on Mn is Lipschitz continuous between any of the metrics dp, p ∈
[1,∞).

Note that dp(x, y) = ∥d(x, y)∥Lp , where ∥ · ∥Lp denotes the Lp norm of functions
on the space {1, . . . , n} with the uniform probability distribution. The choice of
normalizing constant 1

n is motivated by this probabilistic interpretation, as well as
the large-sample limits in 4.3 and 4.8.

Proof. Completeness of (Mn, dp) follows from completeness of (M,d). As M is a
path-metric space, there exists by A.3 for any r > 1/2 and any a, b ∈ M a point
c = c(a, b) ∈M such that

max{d(a, c), d(c, b)} ≤ rd(a, b).

Then obtains for the configuration z := c(x, y) by applying the Lp norm that

max{dp(x, z), dp(z, y)} ≤ rdp(x, y).
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This implies by A.3 that dp is a path metric on Mn. The identity Mn → Mn is
Lipschitz continuous under any of the metrics dp because

n−1/p max
i
d(xi, yi) ≤ dp(x, y) ≤ max

i
d(xi, yi), x, y ∈Mn. □

The complete path metric dp on the ordered sample spaceMn induces a canonical
quotient metric on the sample space Mn/Sn. As the permutation group Sn acts
isometrically on (Mn, dp), this quotient metric is again complete and admits a
particularly simple description, as shown next.

Lemma 3.2 (Quotient metrics on sample spaces). The following quotient metric
is a complete path metric on the sample space Mn/Sn:

d̄p(x̄, ȳ) = min
π(x)=x̄,π(y)=ȳ

dp(x, y) = min
σ∈Sn

dp(x, yσ),

where x̄, ȳ ∈Mn/Sn and x, y ∈Mn with π(x) = x̄, π(y) = ȳ.

Proof. The fibers of the projection are the orbits of the permutation group Sn,
which acts isometrically on (Mn, dp). Therefore, the metric d̄p is a path metric
[10, Lemma 3.3.6]. Moreover, this metric is complete: Given a Cauchy sequence in
Mn/Sn, take a subsequence such that the distances between subsequent points are
summable. Lift the sequence to Mn such that distances between subsequent points
are preserved. Then the lift is a Cauchy sequence, which converges thanks to the
completeness of Mn. □

Recall that a subset of a metric space is called convex if the restriction of the
metric to this subset is a finite complete path metric [10, Definition 3.6.5]. If the
surrounding space carries a complete path metric, then this is equivalent to the
subset being totally geodesic, i.e., any two points in the subset can be connected by
a minimizing geodesic in the subset.

Lemma 3.3 (Convexity of orbit-type strata). Connected components of orbit-type
strata in the configuration space (Mn, dp) have convex closures. Moreover, orbit-
type strata in the sample space (Mn/Sn, d̄p) have convex closures.

Proof. If (k) := (k1 ≥ · · · ≥ kq) is a partition of n, then by 2.8 each connected
componentK of (Mn)(k) is homeomorphic to the open subset of all pairwise distinct
points in Mq. This homeomorphism is even an isometry (up to a normalizing
constant) under the dp metrics onMn andMq, respectively. Thus, the closure K̄ is
homeomorphic toMq. As (Mq, dp) is a complete path-metric space by 3.1, it follows
that K̄ is a convex subset of (Mn, dp). The projection π : Mn → Mn/Sn restricts
to an isometry π : K → (Mn/Sn)(k). It follows that d̄p restricts to a complete path
metric on the closure of the stratum (Mn/Sn)(k). Therefore, by definition, the

closure of the stratum (Mn/Sn)(k) is a convex subset of (Mn/Sn, d̄p). □

Example 3.4 (Lack of strict convexity). The closure of a connected component of
an orbit stratum in Mn need not be strictly convex in the sense that each minimal
geodesic connecting two points in this stratum lies also in the stratum.

Proof. Let c1 and c2 be two distinct meridian geodesics in the 2-sphere M = S2,
which connect the north pole N to the south pole S. Then c = (c1, c2) is a mini-
mizing geodesic between the points (N,N) and (S, S) in M2. These points belong
to the closed and connected orbit stratum (M2)(2), but the geodesic c does not lie

in (M2)(2). □
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Theorem 3.5 (Geodesics between configurations). A continuous curve c : [0, 1] →
Mn is a constant-speed minimizing geodesic in (Mn, dp) with p ∈ (1,∞) if and only
if its component curves c1, . . . , cn : [0, 1] →M are constant-speed minimal geodesics
in (M,d). For p = 1 a similar statement holds without the requirement of constant
speed.

Proof. For p > 1, we associate Lagrangian energy–action pair (E,A) and (Ep, Ap)
to (M,d) and (Mn, dp), respectively, as in A.5:

Es,t(xi, yi) :=
d(xi, yi)

p

|s− t|p−1
, As,t(ci) := sup

n∈N
s=u0≤···≤un=t

n−1∑
m=0

d(ci(um), ci(um+1))
p

|um − um+1|p−1
,

Es,t
p (x, y) :=

dp(x, y)
p

|s− t|p−1
, As,t

p (c) := sup
n∈N

s=u0≤···≤un=t

n−1∑
m=0

dp(c(um), c(um+1))
p

|um − um+1|p−1
,

for any i ∈ {1, . . . , n}, 0 ≤ s ≤ t ≤ 1, x, y ∈ Mn, and continuous curve c : [0, 1] →
Mn. By A.5, the given curve c is a length-minimizing constant-speed geodesic in
(Mn, dp) if and only if it satisfies for all u ≤ v ≤ w in [0, 1] that

Eu,v
p (c(u), c(v)) + Ev,w

p (c(v), c(w)− Eu,w
p (c(u), c(w)) = 0.

Equivalently, by the definitions of E and Ep,

1

n

n∑
i=1

(
Eu,v

(
ci(u), ci(v)

)
+ Ev,w

(
ci(v), ci(w)

)
− Eu,w

(
ci(u), ci(w)

))
= 0.

As all summands are non-negative by the triangle inequality, they vanish. Equiva-
lently, by Lemma A.5, all components ci : [0, 1] →M are constant-speed minimizing
geodesics.

For p = 1, one uses a similar argument for the energy-action pairs (d, ℓ) and
(d1, ℓ1), where ℓ is the length functional in (M,d), and ℓ1 is the length functional
in (Mn, d1). However, in this case, a curve is minimizing for these energy-action
pairs if and only if it is a geodesic, regardless of whether it has constant speed or
not. □

Theorem 3.6 (Geodesics between samples). Let M be a connected complete locally
compact path-metric space. Then any minimizing geodesic in the sample space
(Mn/Sn, d̄p) is the projection of a minimizing geodesic in the configuration space
(Mn, dp), which we call its horizontal lift.

Proof. Let c̄ ∈ C([0, 1],Mn/Sn) be a constant-speed minimizing geodesic, and let
x ∈ π−1(c̄(0)). For each m ∈ N we construct a curve cm ∈ C([0, 1],Mn) as
follows: Set cm(0) := x, and then inductively, for each k ∈ {0, . . . ,m − 1}, choose
cm|[(k/m, (k + 1)/m] as a constant-speed minimizing geodesic from cm(k/m) to the
orbit π−1(c̄((k + 1)/m)), until cm reaches the orbit π−1(c̄(1)). The family {cm :
m ∈ N} is equicontinuous because the curves cm have constant speed. Moreover,
all curves cm take values in the compact ball of radius d̄p(c̄(0), c̄(1)) around x,
which is compact by the Hopf–Rinov theorem A.2. Thus, by the Arzelà–Ascoli
theorem [53, Theorem 43.15], the set {cm : m ∈ N} is pre-compact in the topology
of uniform convergence and therefore has a cluster point c ∈ C([0, 1],Mn). The
cluster point satisfies π ◦ c = c̄ because the curves cm satisfy π(cm(k/m)) = c̄(k/m)
for all 0 ≤ k ≤ m. By construction, c is a minimizing geodesic. □
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We next consider the special case where M is a finite-dimensional manifold with
Riemannian metric g and complete geodesic distance d. Then 1

n (g ⊕ · · · ⊕ g) is an
Sn-invariant Riemannian metric on Mn, whose geodesic distance is the metric d2
on Mn. The quotient space Mn/Sn carries a rich differential-geometric structure,
which is described in detail in [43, Sections 29 and 30]. In particular, one obtains by
differential-geometric arguments that a minimal geodesic segment is more regular at
interior points than at the end points. This is formalized in the following theorem.

Theorem 3.7 (Interior regularity of Riemannian geodesics [2, 3.5 and 3.4]). Let
M be a finite-dimensional manifold with complete Riemannian metric g, and let
Mn be the product manifold with the product Riemannian metric 1

n (g ⊕ · · · ⊕ g).
Then, for any lift c : [0, 1] → Mn of a minimal geodesic segment in Mn/Sn, the
isotropy group (Sn)c(t) of an interior point of c is contained in the isotropy groups
(Sn)c(0), (Sn)c(1) of the end points.

Thus, for any subgroup H ≤ Sn, the set (Mn/Sn)≤(H) of orbits with orbit type
smaller or equal to (H) is a strictly convex subset of Mn/Sn. This means that
any minimal geodesic segment between two points in (Mn/Sn)≤(H) lies entirely in
(Mn/Sn)≤(H). In particular, the regular orbit-type stratum in Mn/Sn is a strictly
convex open dense subset. Recall for comparison that (Mn/Sn)≥(H) is convex by
3.3 but may not be strictly convex by 3.4.

Example 3.8 (Lack of interior regularity). The assertion of 3.7 is wrong for non-
Riemannian complete path-metric spaces.

Proof. Let (M,d) be an open book space, for example the 3-spider, one of the
simplest tree spaces [8].

0

x

y

z

We choose 3 points x, y, z on the 3 lines with the same
distance from the center 0. Let c : [0, 2] → M2 be the
minimal geodesic from c(0) = (x, y) via c(1) = (0, 0) to
c(2) = (z, z). Then the isotropy group S2 of c(1) and c(2)
is not contained in the trivial isotropy group of c(0) =
(x, y).

See the related discussion in [51, Chapter 8]. Note that the ‘curvature’ of the spider
at 0 is −∞. □

4. Infinite configuration and sample spaces

This section exhibits configuration spaces as spaces of random variables and sam-
ple spaces as spaces of probability distributions. Moreover, it identifies large-sample
limits of these spaces. Throughout this section, (M,d) is a separable connected
complete path-metric space, and p ∈ [1,∞).

Definition 4.1 (Random variables). For any complete probability space (Ω,F ,P),
we write Lp(Ω,M) for the space of all measurable functions x : Ω → M which
satisfy for one (or equivalently, all) o ∈M that ∥d(x, o)∥Lp(Ω) <∞. We endow the
space Lp(Ω,M) with the metric

dp(x, y) := ∥d(x, y)∥Lp(Ω), x, y ∈ Lp(Ω,M).

Lemma 4.2 (Configurations as random variables). For any n ∈ N, the configu-
ration space (Mn, dp) is isometric to (Lp({1, . . . , n},M), dp), where {1, . . . , n} is
seen as a probability space with the uniform distribution.
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Proof. A configuration x ∈Mn is precisely a function x : {1, . . . , n} →M , and the
metrics dp defined on Mn and Lp({1, . . . , n},M) coincide. □

The description of configurations as random variables allows one to pass to a
large-sample limit. Similar results are shown in [39]. In the following lemma, (0, 1)
denotes the unit interval with the Lebesgue measure and could, for all purposes, be
replaced by any standard probability space.

Lemma 4.3 (Infinite configurations). The configuration spaces (Mn, dp) are iso-
metrically embedded in the complete path-metric space (Lp((0, 1),M), dp) and con-
verge to it in the following sense: for any compact K ⊂ Lp((0, 1),M),

lim
n→∞

sup
x∈K

inf
y∈Mn

dp(x, y) = 0.

The lemma would imply pointed Gromov–Hausdorff convergence of (Mn, dp) to
the space Lp((0, 1),M) if the uniform convergence on compacts could be strength-
ened to uniform convergence on bounded sets. However, this is not the case, as one
easily verifies by considering functions x of the form n1/p1[0,1/n] for large n.

Proof. The isometric immersion of (Mn, dp) ∼= Lp({1, . . . , n},M) into Lp((0, 1),M)
is given by the identification of n-tuples with piece-wise constant functions on (0, 1).
It remains to prove the convergence. Let ϵ > 0. By the compactness of K, there are
m ∈ N and x1, . . . , xm ∈ Lp((0, 1),M) such that the open dp-balls Bϵ/3(xi) cover
K. Let o ∈ M . By the dominated convergence theorem, there is r > 0 such that
the configurations yi ∈ Lp((0, 1),M) defined by

yi :=

{
xi, d(xi, o) ≤ r,

o, d(xi, o) > r,

satisfy dp(xi, yi) ≤ ϵ/3 for all i ∈ {1, . . . ,m}. Let F be the Banach space of
continuous bounded functions on Br(o) with the uniform norm. Then (Br(o), d)
embeds isometrically into F via the map Br(o) ∋ a 7→ d(a, ·) ∈ F . Thus, Br(o)
may be seen as a subset of F . Moreover, F is separable because Br(o) is separable.
For any n ∈ N, let En : L

p((0, 1), F ) → Lp((0, 1), F ) be the conditional expectation

with respect to the sigma-algebra generated by the intervals [ j−1
n , j

n ), j ∈ {1, . . . , n}.
Then, for sufficiently large n, the configurations zi := En(yi) satisfy dp(yi, zi) ≤ ϵ/3
for all i ∈ {1, . . . ,m}. Let A : F → M be the metric projection from f ∈ F to the
nearest point A(f) ∈ M , and let A∗ : L

p((0, 1), F ) → Lp((0, 1),M) be the push-
forward along A. Then the configurations wi := A∗zi satisfy for all i ∈ {1, . . . ,m}
that

dp(zi, wi) = dp(zi, A∗zi) ≤ dp(zi, yi) ≤ ϵ/3.

It follows that every x ∈ K is ϵ-close to some wi ∈ Lp({1, . . . , n},M). □

Recall that any continuous curve c : [0, 1] → Lp((0, 1),M) has a jointly measur-
able version c : [0, 1] × (0, 1) → M ; see e.g. [15, Proposition 3.2]. Then the sample
paths of c are the measurable functions c(·, ω) : [0, 1] →M , ω ∈ (0, 1).

Lemma 4.4 (Geodesics between infinite configurations). (Lp((0, 1),M), dp) is a
complete path-metric space. For p > 1, a continuous curve c : [0, 1] → Lp((0, 1),M)
is a constant-speed minimizing geodesic in (Lp((0, 1),M), dp) if and only if almost
all of its sample paths are constant-speed minimizing geodesics in M .
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Proof. To show that Lp(Ω,M) is a complete path-metric space, we proceed as in the
proof of 3.1, noting that the point c = c(a, b) can be chosen as a measurable function
of a, b. Indeed, this follows from a measurable selection theorem [17] because the
set

Γ :=
{
(a, c, b) ∈M3 : max{d(a, c), d(c, b)} ≤ αd(a, b)

}
is Polish, the projection Γ ∋ (a, c, b) → (a, b) ∈ M2 is continuous, and the inverse
image of any (a, b) ∈M2 under this projection is compact. To prove the statement
about geodesics, we proceed as in the proof of 3.5 and associate Lagrangian energy–
action pairs (E,A) and (Ep, Ap) to (M,d) and (Lp((0, 1),M), dp), respectively. By
A.3 a continuous curve c : [0, 1] → Lp((0, 1),M) is a length-minimizing constant-
speed geodesic if and only if it satisfies for all u ≤ v ≤ w in [0, 1] that

Eu,v
p (c(u), c(v)) + Ev,w

p (c(v), c(w)− Eu,w
p (c(u), c(w)) = 0.

Equivalently, by the definitions of E and Ep,

E
[
Eu,v(c(u), c(v)) + Ev,w(c(v), c(w)− Eu,w(c(u), c(w))

]
= 0,

where E is the expectation with respect to the Lebesgue measure on (0, 1). Equiva-
lently, the following property holds almost surely: for all rational numbers u ≤ v ≤
w in [0, 1],

Eu,v(c(u), c(v)) + Ev,w(c(v), c(w)− Eu,w(c(u), c(w)) = 0.

By A.3 this implies for almost every ω ∈ (0, 1) that the sample path

[0, 1] ∩Q ∋ u 7→ c(u, ω)

is parameterized by constant speed. In particular, any such sample path can be
extended continuously to all real numbers in [0, 1]. Thus, we have established that
c has a version whose sample paths are almost surely constant-speed minimizing
geodesics. Moreover, this property is equivalent to the previous ones. □

On finite probability spaces, the statement about geodesics in 4.4 extends to
p = 1 if the constant-speed condition is omitted, as shown in 3.5. However, this is
not the case on infinite probability spaces, as the following example shows.

Example 4.5 (Discontinuity of sample paths). Constant-speed minimizing geodesics
in L1((0, 1),M) may have discontinuous sample paths.

Proof. Let M = R. The curve

c : [0, 1]× (0, 1) →M, c(t, ω) := 1[t,1](ω)

is a constant-speed minimizing geodesic in L1((0, 1),M), but none of its sample
paths are continuous. □

Definition 4.6 (probability distributions). Let Pp(M) denote the space of all prob-
ability distributions P on M which satisfy for one (equivalently, all) o ∈ M that
∥d(o, ·)∥Lp(P ) <∞. We endow Pp(M) with the Wasserstein metric,

d̄p(P,Q) = inf
R

∥d(·, ·)∥Lp(R), P,Q ∈ Pp(M),

where the infimum is over all probability distributions R onM ×M with marginals
P,Q. Moreover, we write Pn(M) for the subset of all atomic probability distributions
of the form 1

n

∑n
i=1 δxi

, where δxi
is the Dirac measure centered at xi ∈M .
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As an aside, the set Pn(M) of atomic distributions can equivalently be charac-
terized as the set of {0, 1/n, . . . , 1}-valued probability measures. This equivalence
uses the separability of M and is shown in A.6. The following lemma identifies
samples with probability distributions, namely, with their empirical laws.

Lemma 4.7 (Samples as probability distributions). For any n ∈ N, the sample
space (Mn/Sn, d̄p) is isometric to the space (Pn(M), d̄p) of atomic probability dis-
tributions.

Proof. Samples x̄ = π(x) ∈Mn/Sn are naturally identified with atomic probability
distributions P = 1

n

∑n
i=1 δxi

∈ Pn(M). If ȳ = π(y) ∈ Mn/Sn is another sample

with corresponding probability distribution Q = 1
n

∑n
i=1 δyi ∈ Pn(M), then

d̄p(x̄, ȳ) = min
π(x)=x̄,π(y)=ȳ

dp(x, y) = min
π(x)=x̄,π(y)=ȳ

∥d(x, y)∥Lp({1,...,n})

= min
R

∥d(·, ·)∥Lp(R),

where the last minimum is over all atomic probability distributions R ∈ Pn(M×M)
with marginal laws P and Q. By Birkhoff’s theorem, one may equivalently take the
minimum over the larger set of all (not necessarily atomic) probability distributions
R on M ×M with marginal laws P and Q [44, Proposition 1.3.1]. This shows that
the right-hand side equals d̄p(P,Q). Therefore, the identification of samples with
probability distributions is an isometry. □

Lemma 4.8 (Infinite samples). The sample spaces (Mn/Sn, d̄p) are isometrically
embedded in the complete path-metric space (Pp(M), d̄p). For M locally compact,
they converge to (Pp(M), d̄p) in the following sense: for any compact K ⊂ Pp(M),

lim
n→∞

sup
P∈K

inf
Q∈Mn/Sn

d̄p(P,Q) = 0.

Here Mn/Sn is identified with the subset Pn(M) of Pp(M) using 4.7.

Proof. The sample space (Mn/Sn, d̄p) is isometrically embedded in (Pp(M), d̄p) as
a consequence of 4.7. It is well-known that the Wasserstein metric d̄p on Pp(M) is
a complete path metric [51, Theorem 6.18 and Corollary 7.22]. It remains to prove
the convergence. Let ϵ > 0. As K is compact, there are m ∈ N and P1, . . . , Pm ∈
K such that the open d̄p-balls Bϵ/2(Pi) cover K. For each i ∈ {1, . . . ,m}, the

empirical distributions of Pi converge to Pi in the Wasserstein distance d̄p [44,
Proposition 2.2.6]. Therefore, there are distributions Q1, . . . , Qm ∈ Pn(M) for
some n ∈ N such that d̄p(Pi, Qi) ≤ ϵ/2 for all i ∈ {1, . . . ,m}. It follows that every
P ∈ K is ϵ-close to some distribution in Pn(M). □

Recall from 3.2 that the sample space (Mn/Sn, d̄p) is the path-metric quotient of
the configuration space (Mn, dp) with respect to the action of permutation group of
{1, . . . , n}. A similar statement applies to infinite sample and configuration spaces,
as shown in the following lemma. In analogy to 3.2, let π : Lp((0, 1),M) → Pp(M)
be the map from random variables to their law or, in more analytic terms, the push-
forward of the Lebesgue measure along the given measurable function. Moreover,
let Aut((0, 1)) be the automorphism group of the probability space (0, 1), i.e., the
group of bi-measurable measure-preserving functions from (0, 1) to itself.
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Lemma 4.9 (Quotient structure). The Wasserstein metric d̄p on Pp(M) is a
quotient metric:

d̄p(P,Q) = inf
π(x)=P,π(y)=Q

dp(x, y) = inf
σ∈Aut((0,1))

dp(x, y ◦ σ),

where P,Q ∈ Pp(M) and x, y ∈ Lp((0, 1),M) with π(x) = P , π(y) = Q.

Proof. The first equality holds because any coupling R in the definition 4.6 of the
Wasserstein metric is the joint law of some random variables x, y ∈ Lp((0, 1),M).
The second equality holds because the action of Aut((0, 1)) is nearly transitive on
the fibers of π in the following sense [12, Lemma 6.4]: for all x, y ∈ Lp((0, 1),M)
with π(x) = π(y) and all ϵ > 0, there exists σ ∈ Aut((0, 1)) such that dp(x, y ◦σ) ≤
ϵ. □

The following lemma generalizes 3.6 from finite to infinite configurations and
samples, respectively.

Theorem 4.10 (Geodesics between infinite samples). Let M be a connected com-
plete locally compact path-metric space. Then any minimizing geodesic in the in-
finite sample space (Pp(M), d̄p) is the projection of a minimizing geodesic in the
configuration space (Lp(Ω,M), dp), which we call its horizontal lift.

Proof. This is proven in [51, Corollary 7.22] along the same lines as 3.6, i.e., using
Lagrangian energy-action pairs. The horizontal lift is called displacement interpo-
lation there. □

Skeleta and orbit-type strata of finite sample spaces Mn/Sn were defined in
2.1 and 2.7, respectively. Via the isometry 4.7 to atomic probability distributions
and the isometric embedding 4.8 into p-integrable probability distributions, one ob-
tains straight-forward extensions to skeleta and orbit-type strata of infinite sample
spaces, as defined next.

Definition 4.11 (Infinite skeleta and orbit-type strata). For any q ∈ N, the q-
skeleton in the infinite-sample space Pp(M) is the subset P(M)q of all probability
distributions whose support is a set of at most q points. Similarly, for any partition
(w) := (w1 ≥ · · · ≥ wq) of 1 consisting of non-negative real numbers wi summing
up to 1, the (w)-stratum in the infinite-sample space Pp(M) is the subset of all
P =

∑q
i=1 wiδxi ∈ P(M)q with distinct points xi. The measure P is called regular

if the points xi are distinct and the weights wi are strictly positive.

5. Means and polymeans

In this section, we generalize Fréchet means [25] and k-means [40] to polymeans
using the path-metric structure of sample space. Background and further references
on Fréchet means can be found in the textbook [47]. Throughout this section,
we consider the configuration space (Mn, dp) and sample space (Mn/Sn, d̄p) of
a connected complete path-metric space (M,d) for some n ∈ N and p ∈ [1,∞).
The following definition introduces polymeans as metric projections onto certain
subsets of sample space Mn/Sn, namely q-skeleta (Mn/Sn)q (see 2.2) or (k)-strata
(Mn/Sn)(k) (see 2.8).

Definition 5.1 (Polymeans). For any q ∈ N, a q-mean of a sample is a d̄p-nearest
point in the q-skeleton of sample space. Similarly, for any partition (k) of n, a
(k)-mean of a sample is a d̄p-nearest point in the closure of the (k)-stratum.
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Recall that the q-skeleton is closed, and the closure of the (k)-stratum is the
union of all (k′)-strata with (k′) ≤ (k). This ensures the existence of q-means and
(k)-means, as shown next. One should be aware that a q-mean might consist of less
than q distinct points, and similarly a (k)-mean might have orbit type (k′) with
(k′) ≤ (k).

Lemma 5.2 (Existence of polymeans). If M is a complete locally compact path-
metric space, then every sample x̄ ∈ Mn/Sn has a q-mean and a (k)-mean, for
each q ∈ N>0 and orbit type (k) := (k1 ≥ · · · ≥ kq).

Proof. For sufficiently large r > 0, the closed ball Br(x̄) has non-empty intersection
with the q-skeleton. By the Hopf–Rinow theorem A.2, this intersection is compact
and therefore contains a point of minimal d̄p-distance to x̄. The argument for the
(k)-stratum is similar. □

Generic configurations have unique polymeans, as shown next. Here generic is
understood in a measure-theoretic sense, i.e., up to null sets with respect to a given
Riemannian volume form.

Lemma 5.3 (Uniqueness of polymeans). Let M be a complete finite-dimensional
Riemannian manifold, and assume that p = 2. Then the configurations x ∈ Mn

such that π(x) has more than one q-mean or more than one (k)-mean are a null
set with respect to the Riemannian volume form.

Proof. We consider Mn as a complete Riemannian manifold with Riemannian dis-
tance d2. Let K be the q-skeleton or the (k)-stratum inMn, and let C be the set of
all points in Mn whose distance to K is realized by more than one geodesic (some-
times called the medial axis). At any point in C, the squared distance function to
K is non-differentiable [41, Remark 3.6]. These points of non-differentiability con-
stitute a C2-rectifiable set [41, Proposition 3.7]. Thus, its subset C has vanishing
measure. □

We next show that the definition of polymeans extends the definition of Fréchet
p-means.

Example 5.4 (Fréchet means). Fréchet means correspond exactly to 1-means or,
equivalently, (n)-means, where (n) denotes the trivial partition.

Proof. Recall that the 1-skeleton in sample spaceMn/Sn consists of all ȳ = π(y, . . . , y)
with y ∈ M and coincides with the orbit-type stratum (Mn/Sn)(n), where (n) de-
notes the partition of n of length 1. Thus, 1-means coincide with (n)-means and
minimize, for a given x̄ = π(x) in Mn/Sn, the functional

d̄p(x̄, ȳ) =

(
1

n

n∑
i=1

d(xi, y)
p

)1/p

over all ȳ = π(y, . . . , y) in the 1-skeleton of Mn/Sn. Minimizers of the right-hand
side, seen as a function of y ∈M , are exactly Fréchet means. Thus, a point y ∈M is
a Fréchet mean of a configuration x ∈Mn if and only if the sample π((y, . . . , y)) ∈
Mn/Sn is a 1-mean, or equivalently an (n)-mean, of π(x) ∈Mn/Sn. □

k-mean clustering remains a very popular method in cluster analysis, more than
60 years after [40, 32]. Like the Fréchet p-mean, it can be generalized with the
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power p of the distance [54]. We show below that this corresponds to our geometric
definition of polymeans.

Example 5.5 (k-means). q-means correspond exactly to k-means clustering for
k = q ∈ N.

Proof. Let x̄, ȳ ∈ Mn/Sn with ȳ belonging to the q-skeleton. Then there are lifts
x, y ∈Mn such that π(x) = x̄, π(y) = ȳ, and dp(x, y) = d̄p(x̄, ȳ). The set {1, . . . , n}
can be partitioned into non-empty subsets A1, . . . , Aq such that yi = yj for any
i, j ∈ Sk and k ∈ {1, . . . , q}. Then

nd̄p(x̄, ȳ)
p =

q∑
i=1

∑
j∈Ai

d(xj , yi)
p.

The left-hand side is minimized by q-means ȳ, and the right-hand side is minimized
by partitions A1, . . . , Ak and k-means (y1, . . . , yk) with k = q. Therefore, the
q-mean and k-mean problems are equivalent. As an aside, the q-mean vector ȳ
does not encode the optimal correspondence between points xi and yi, and the
k-mean vector (y1, . . . , yk) does not encode the multiplicities #Ai. However, this
information can be retrieved easily by matching each point xj to the nearest point
yi. □

Definition 5.6 (Clusters). A clustering of a sample x̄ ∈Mn/Sn is a representation
x̄ = x̄1⊔· · ·⊔ x̄q := π((x1, . . . , xq)), where x̄i = π(xi) ∈Mki/Ski

for some partition
k1+ · · ·+kq = n with ki ∈ N>0 and q ∈ N>0. In this situation, x̄i are called clusters
or sub-samples of sizes ki.

Lemma 5.7 (Polymeans as clusters). If ȳ is a q-mean of x̄, then there are clus-
terings x̄ = x̄1 ⊔ · · · ⊔ x̄q and ȳ = ȳ1 ⊔ · · · ⊔ ȳq such that each ȳi is a 1-mean of x̄i.
Moreover, if ȳ is a (k)-mean of x̄ with (k) := (k1 ≥ · · · ≥ kq), then the partition
can be chosen such that each cluster x̄i has size ki.

Proof. Let A1, . . . , Aq be a partition of {1, . . . , n} as in the proof of 5.6. Then the
clusterings x̄i = π((xj)j∈Ai

) and ȳi = π((yj)j∈Ai
) have the desired property. □

Lemma 5.7 exhibits polymeans as weighted means, where the weights correspond
to the cluster sizes, normalized by the total number of samples. The same inter-
pretation is obtained by identifying polymeans with atomic measures via 4.7. In
some situations it may be advantageous to consider unweighted polymeans, which
encode only the locations but not the weights of the clusters. The following defi-
nition describes q such clusters located at mutually distinct points y1, . . . , yq ∈M .
Recall that the ensemble of such mutually distinct point configurations modulo
permutations is the regular stratum (Mq/Sq)reg.

Definition 5.8 (Unweighted q-means). For any q ∈ N, an unweighted q-mean of a
sample x̄ = π(x) ∈ Mn/Sn is a regular q-sample z̄ ∈ (Mq/Sq)reg which minimizes
the functional

(Mq/Sq)reg ∋ z̄ = π(z) 7→
n∑

i=1

min
j∈{1,...,q}

d(xi, zj)
p.

Unweighted q-means may fail to exist for a given q ∈ N>0 because the regular
stratum (Mq/Sq)reg is not closed. It is, however, open and dense. Thus, for any
given q ∈ N>0, there always exists an unweighted q′-mean with q′ ≤ q. The
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definitions of weighted and unweighted polymeans are consistent with each other
in the following sense.

Lemma 5.9 (Relation between weighted and unweighted q-means). Let x̄ ∈Mn/Sn,
and let z1, . . . , zq be distinct points in M . Then π(z1, . . . , zq) ∈ (Mq/Sq)reg is an
unweighted q-mean of x̄ if and only if

π((z1, . . . , z1︸ ︷︷ ︸
k1 times

, . . . , zq, . . . , zq︸ ︷︷ ︸
kq times

)) ∈Mn/Sn

is a q-mean of x̄ for some integer weights ki summing up to n.

Proof. This easily follows from the definitions. □

Skeleta and orbit-type strata in infinite sample space Pp(M) were defined in
4.10. This yields the following straight-forward extensions to polymeans of infinite
samples.

Definition 5.10 (Population polymeans). A population q-mean of an infinite sample
P ∈ Pp(M) is a d̄p-nearest point in the q-skeleton of Pp(M). Similarly, for any
partition (k) := (k1 ≥ · · · ≥ kq) consisting of non-negative real numbers ki summing
up to 1, a population (k)-mean of P ∈ Pp(M) is a d̄p-closest point in the (k)-
stratum of Pp(M). Moreover, an unweighted population q-mean of P ∈ Pp(M) is
a d̄p-closest point in the regular stratum of Pq(M).

6. Random samples

Throughout this section, we consider the configuration space (Mn, dp) and sam-
ple space (Mn/Sn, d̄p) of a separable complete path-metric space (M,d) for some
n ∈ N and p ∈ [1,∞). We use the letter P to designate probability distributions.
Thus, P(Mn/Sn) is the set of probability distributions on sample space, and P(Mn)
is the set of all probability distributions on configuration space. Moreover, we write
P(Mn)Sn

for the subset of symmetric probability distributions, where symmetry
means Sn-invariance.

Lemma 6.1 (Distributions of samples). Probability distributions on sample space
Mn/Sn correspond exactly to symmetric probability distributions on configuration
space Mn.

Proof. We claim that the projection from configuration onto sample space induces
a bijection

P(Mn)Sn
∋ P 7→ π∗P ∈ P(Mn/Sn).

To prove the claim, we will construct an inverse of this map by randomization over
the Sn-orbit using the probability kernel

K : Mn ∋ x 7→ 1

n!

∑
σ∈Sn

δxσ ∈ P(Mn)Sn .

This kernel is Sn-invariant and consequently descends to a probability kernel

(1) K̄ : Mn/Sn ∋ x̄ = π(x) 7→ 1

n!

∑
σ∈Sn

δxσ ∈ P(Mn)Sn ,

which maps samples x̄ to uniform distributions on their fibers π−1(x) in config-
uration space. The two kernels are related by K = K̄ ◦ π. For any probability
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distribution P̄ on Mn/Sn, we write
∫
K̄(x̄)P̄ (dx̄) for the composition of the kernel

K̄ with the probability distribution P̄ . Formally, this is a measure-valued Pettis
integral. Then the map

(2) P(Mn/Sn) ∋ P̄ 7→
∫
K̄(x̄)P̄ (dx̄) ∈ P(Mn)Sn

is an inverse to the map π∗ because

π∗

∫
K̄(x̄)P̄ (dx̄) =

∫
π∗
(
K̄(x̄)

)
P̄ (dx̄) =

∫
δx̄P̄ (dx̄) = P̄ ,∫

K̄(x̄)(π∗P )(dx̄) =

∫
K̄
(
π(x)

)
P (dx) =

∫
K(x)P (dx)

=
1

n!

∑
σ∈Sn

∫
δxσP (dx) =

1

n!

∑
σ∈Sn

(rσ)∗P = P,

where rσ : M
n ∋ x 7→ xσ ∈ Mn is the action of the permutation σ on the configu-

ration space, and where the last equality follows from the symmetry of P . □

Hewitt and Savage [27, Section 12] characterized the set of extremal points within
the convex set of symmetric probability distributions on Mn, for short, extremal
distributions. Moreover, they proved that every symmetric probability distribution
is a mixture of extremal distributions and called such mixtures presentable. As a
corollary to Lemma 6.1, one obtains an elementary proof of these facts. The more
widely studied case of infinite configurations is discussed in 6.3 and 6.4.

Corollary 6.2 (Finite Hewitt–Savage theorem). The extremal points in the convex
set P(Mn)Sn

of symmetric distributions are exactly of the form 1
n!

∑
σ∈Sn

δxσ
, x ∈

Mn. Moreover, all symmetric probability distributions on Mn are presentable.

Proof. The map (6.1.2) is a linear bijection and therefore maps extremal points
in its domain to extremal points in its range. The extremal points in the domain
are easily identified as the Dirac measures. The image of a Dirac measure δx̄ with
x̄ = π(x) ∈Mn/Sn is the distribution 1

n!

∑
σ∈Sn

δxσ . The range of the map (6.1.2)
consists of mixtures of such distributions, i.e., presentable distributions. Moreover,
as (6.1.2) is surjective, all symmetric distributions are presentable. □

The following lemma characterizes distributions of infinite samples, thereby gen-
eralizing the corresponding result 6.1 for finite samples. The full permutation group
SN of the natural numbers is too large for our purpose. Instead, we consider the infi-
nite permutation group S(N) :=

⋃
n∈N Sn, which acts upon the infinite configuration

space MN :=
∏

n∈NM . A probability distribution on MN is called symmetric if it

is S(N)-invariant, and the set of symmetric distributions is denoted by P(MN)S(N) .
The correct space of infinite samples, which leads to a generalization of 6.1, is
not the quotient space MN/S(N), but the space P(M). This is demonstrated in
Example 6.5 and is in line with the limiting result 4.8.

Lemma 6.3 (Distributions of infinite samples). Probability distributions on the in-
finite sample space P(M) correspond exactly to symmetric probability distributions
on the configuration space MN.



20 P. HARMS, P. MICHOR, X. PENNEC, AND S. SOMMER

Proof. For some fixed point o ∈ M , define a projection from infinite configuration
space to infinite sample space as follows:

π : MN → P(M), π(x) :=

 lim
n→∞

1

n

n∑
i=1

δxi
, if the weak limit exists,

δo, otherwise,

The push-forward along this projection restricts to the following map from sym-
metric distributions to probability distributions on infinite sample space P(M):

π∗ : P(MN)S(N) → P(P(M)).

We claim that the map π∗ is an inverse of the map

P(P(M)) ∋ Q 7→
∫
P(M)

PN Q(dP ) ∈ P(MN)S(N) ,

where PN :=
⊗

n∈N P denotes the product distribution on MN, and where the
integral is a measure-valued Pettis integral. Note that the distributions on the right-
hand side are laws of conditionally i.i.d. sequences of M -valued random variables.
To prove the claim, we appeal to the infinite-sample version 6.4 of the Hewitt–
Savage theorem, which states that symmetric distributions coincide exactly with
presentable distributions, i.e., with Pettis integrals as above. For any P ∈ P(M),
the weak law of large numbers implies π(x) = P for PN-almost every x ∈MN. This
implies π∗(P

N) = δP . Consequently, every Q ∈ P(P(M)) satisfies

π∗

(∫
P(M)

PN Q(dP )

)
=

∫
P(M)

π∗(P
N) Q(dP ) =

∫
P(M)

δP Q(dP ) = Q.

This proves the claim and establishes the desired one-to-one correspondence. □

The above proof uses the well-known Hewitt–Savage theorem [27], which is a
generalization of Corollary 6.2 to infinite sample spaces. As before, presentable
distributions are defined as mixtures of extremal distributions, i.e., of extremal
points in the convex set of symmetric distributions.

Theorem 6.4 (Infinite Hewitt–Savage theorem [27]). The extremal points in the
convex set P(MN)S(N) of symmetric distributions are exactly the product distribu-

tions PN :=
⊗

n∈N P with P ∈ P(M). Moreover, all symmetric distributions on

MN are presentable.

This result is asymptotically consistent with its finite-sample counterpart 6.2.
Indeed, by the Diaconis–Freedman theorem [18] symmetric distributions on Mn

are close to mixtures of product distributions for large n. More precisely, the
total variation distance from k-dimensional marginal distributions of elements of
P(Mn)Sn

to mixtures of product distributions is at most k(k − 1)/n.
The following example shows that the correspondence 6.3 between probability

distributions on sample space and symmetric probability distributions on configu-
ration space fails if the sample space is defined as MN/S(N) instead of P(M).

Example 6.5 (Infinite sample space). There is a probability distribution onMN/S(N)
which does not correspond to any symmetric probability distribution on MN.



21

Proof. In analogy to 6.3 we say that a probability distribution Q on MN/S(N)
corresponds to a symmetric probability distribution P on MN if Q = π∗P , where
π : MN → MN/S(N) is the canonical projection. For any such P , the weak limit

limn→∞
1
n

∑n
i=1 δxi

exists for P -almost every x ∈ MN, as shown in the proof of

6.3. Moreover, this limit is invariant under the action of S(N) on M
N because every

permutation in S(N) affects only finitely many indices. Thus, if Q corresponds to

some P , then the limit limn→∞
1
n

∑n
i=1 δx̄i is well-defined and exists for Q-almost

every x̄ ∈MN/S(N). However, it is easy to construct a distribution Q on MN/S(N)
which does not have this property. Indeed, assuming that M contains at least
two points, one may construct a sequence of points xi ∈ M such that 1

n

∑n
i=1 δxi

does not converge weakly as n → ∞. Then Q := δx̄ with x̄ := π(x) is the desired
counter-example. □

We next investigate random samples and random configurations. For this pur-
pose, we fix a probability space (Ω,F ,P) on which all random variables are defined.
A random configuration is a random variable inMn orMN, depending on the finite
versus infinite case. Similarly, a random sample is a random variable in Mn/Sn

or P(M), respectively. A random configuration is called exchangeable if its law
is symmetric, i.e., invariant under permutations in Sn or S(N), respectively. The
following characterization is analogous to 6.1–6.4.

Corollary 6.6 (Random configurations and samples). Random samples correspond
exactly (possibly after passing to an extended probability space) to exchangeable
configurations, which in turn correspond exactly to conditionally i.i.d. M -valued
random variables. This statement applies to finite and infinite configurations and
samples, respectively.

Proof. This can be shown in analogy to 6.1–6.4, working with random variables
instead of their laws. The extension of the probability space is necessary, unless the
given probability space is already sufficiently rich, for implementing the random
ordering in the proof of 6.1 and the i.i.d. sampling in the proof of 6.3. □

7. Asymptotic properties of polymeans

Polymeans, similar to Fréchet means [29], satisfy a law of large numbers and a
central limit theorem under suitable conditions, as shown next. We refer to 5.1,
5.8, and 5.10 for their definition. Throughout this section, (M,d) is a separable
complete connected path-metric space, p ∈ [1,∞), and q ∈ N>0. The space M , as
well topological products and quotients thereof, are endowed with the corresponding
Borel sigma algebras. For some probability distribution P ∈ Pp(M), we consider
a sequence of independent P -distributed random variables (xi)i∈N defined on a
complete probability space (Ω,F ,P). The corresponding n-samples are denoted
by x̄n := π(x1, . . . , xn) ∈ Mn/Sn. We write µn ⊂ (Mn/Sn)q for the set of q-
means of x̄n, ȳn ∈ (Mn/Sn)q for a measurable selection of q-means of x̄n, and
z̄n ∈ (Mq/Sq)reg for a measurable selection of unweighted q-means of x̄n. It will be
convenient to identify the samples x̄n, ȳn, z̄n with their empirical laws Pn, Qn, Rn,
respectively, using the isometry 4.7 between Mn/Sn and Pn(M). The population
counterparts of the above empirical objects are denoted by µ0, ȳ0, z̄0, Q0, and R0,
respectively. Note that all of these objects belong to one and the same path-metric
space Pp(M) thanks to the isometric embedding 4.8 of finite into infinite sample
spaces.
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Definition 7.1 (Strong consistency [55]). The empirical q-means µn are called strongly
consistent estimators for the set µ0 of population q-means if

P

[ ∞⋂
n=1

∞⋃
k=n

µk ⊆ µ0

]
= 1.

Note that strong consistency is equivalent to the following statement: with prob-
ability 1, any accumulation point of the sets µn belongs to µ0.

Lemma 7.2 (Strong consistency). The empirical q-means µn are strongly consis-
tent estimators for the population q-means µ0.

This statement is a consequence of the Gamma-convergence of the functionals
which are minimized by µn and µ0, respectively, as shown in the following proof.
A similar argument is used in [55] and [29, Theorem A.3]. These proofs are longer
because implications of Gamma-convergence are re-proven there.

Proof. The empirical q-means µn are the minimizers of the functional

Fn : Pp(M)q → R+, Fn(Q) =

{
d̄p(Pn, Q), Q ∈ (Mn/Sn)q,

∞, Q /∈ (Mn/Sn)q.

Similarly, the population q-means µ are the minimizers of the functional

F : Pp(M)q → R+, F (Q) = d̄p(P,Q).

The empirical laws Pn converge to the population law P in the Wasserstein metric d̄p
by [44, Proposition 2.2.6]. We claim that this implies Gamma-convergence Fn → F .
To prove the claim, note that for any converging sequence Qn → Q in Pp(M)q,

F (Q) = d̄p(P,Q) = lim
n→∞

d̄p(Pn, Qn) ≤ lim inf
n→∞

Fn(Qn).

Moreover, any Q ∈ Pp(M)q can be approximated in the d̄p-distance by a sequence
Qn ∈ (Mn/Sn)q. Indeed, Q is of the form Q =

∑q
i=1 wiδxi

for some xi ∈ M and
wi ∈ [0, 1], and the approximations Qn may be defined by rounding the weights to
the nearest multiples of 1/n. For any such approximating sequence Qn → Q one
has

F (Q) = d̄p(P,Q) = lim
n→∞

d̄p(Pn, Qn) = lim
n→∞

Fn(Qn).

This proves that Fn Gamma-converges to F . Thus, the accumulation points of
Fn-minimizers are F -minimizers, which is exactly strong consistency. □

If the empirical q-means are strongly consistent and the population q-mean is
unique, then any measurable selection Qn of empirical q-means converges in prob-
ability to the population q-mean Q0. In this situation one may inquire about the
rate of convergence Qn → Q0. As an auxiliary first step, the following lemma
shows that Qn possesses the same best-approximation property as Q0, up to some
error terms. Controlling these error terms leads to the convergence rate established
subsequently in 7.4.

Lemma 7.3 (Error bound). Assume that P ∈ P2p(M), let Q0 ∈ P(M)q be a q-
mean of P , assume that Q0 is distinct from P , and for each n ∈ N, let Qn ∈ Pn(M)q
be a q-mean of the empirical law Pn. Then

d̄p(P,Qn)− d̄p(P,Q0) ≤ d̄p(Pn, P ) +OP(n
−1/2).
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Proof. Let K : M → P(M) be an optimal transport map from P to Q0, i.e.,

Q0 =

∫
M

K(x)P (dx), d̄p(P,Q0) =

(∫
M

∫
M

d(x, y)pK(x,dy)P (dx)

)1/p

.

Such a transport map can be obtained from an optimal coupling between P and
Q0 via disintegration. Then K is also a transport map between Pn and Q̃n, where

Q̃n :=

∫
M

K(x)Pn(dx) ∈ Pn(M)q.

By the triangle inequality and the best-approximation property of the polymeans,

d̄p(P,Qn) ≤ d̄p(Pn, Qn) + d̄p(Pn, P ) ≤ d̄p(Pn, Q̃n) + d̄p(Pn, P )

≤
(∫

M

∫
M

d(x, y)pK(x, dy)Pn(dx)

)1/p

+ d̄p(Pn, P ).

Rewriting the right-hand side using the defining properties of K leads to the esti-
mate

d̄p(P,Qn) ≤
(
d̄p(P,Q0)

p +

∫
M

∫
M

d(x, y)pK(x, dy)(Pn − P )(dx)

)1/p

+ d̄p(Pn, P ).

By the central limit theorem, the random variables

n1/2
∫
M

∫
M

d(x, y)pK(x, dy)(Pn − P )(dx)

converge in distribution to a normal random variable. As dp(P,Q0) > 0, this
establishes the lemma. The central limit theorem may be applied thanks to the
square-integrability condition∫

M

(∫
M

d(x, y)pK(x, dy)

)2

P (dx) ≤
∫
M

∫
M

d(x, y)2pK(x,dy)P (dx)

≤
∑

y∈supp(Q0)

∫
M

d(x, y)2pP (dx) <∞. □

The bound in 7.3 involves the Wasserstein distance d̄p(Pn, P ) between a distri-
bution P and the empirical distribution Pn of an n-sample, which is itself a random
variable. On M = Rd it has been shown for distributions P with sufficiently many
moments that ∥d̄p(Pn, P )∥Lp(Ω) is of the order n−1/max{d,2p}, with an additional
logarithmic factor if d = 2p [24, Theorem 1]. This paper also gives references for
improved rates under more stringent conditions on P . The case of non-flat M is
largely open.

Using Lemma 7.3, the following theorem bounds the rate at which the empirical
q-means Qn converge to the population q-mean Q0. Besides the distance d̄p(Pn, P ),
it also involves a real number α, which quantifies the coercivity of the Wasserstein
distance d̄p(P, ·) near a minimizer Q0 in the q-skeleton and depends on the subspace
geometry of the q-skeleton within Wasserstein space.

Theorem 7.4 (Convergence rate). Let P ∈ P2p(M), let Qn ∈ Pn(M)q be a se-
quence of q-means of Pn converging in probability to a population q-mean Q0 ∈
P(M)q, and assume for some α > 0 and c > 0 that

d̄p(P,Q)− d̄p(P,Q0) ≥ cd̄p(Q,Q0)
α
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for all Q ∈ (Mn/Sn)q near Q0. Then

d̄p(Qn, Q0) = OP(d̄p(Pn, P )
1/α) +OP(n

−1/(2αp)).

Proof. The error bound 7.3 together with the assumption on the distance function
imply that

cd̄p(Qn, Q0)
α ≤ d̄p(P,Qn)− d̄p(P,Q0) ≤ d̄p(Pn, P ) +OP(n

−1/(2p)).

Taking the α-th root establishes the theorem. □

It remains open if weighted q-means are asymptotically normal after a suitable
rescaling. However, we will answer this question affirmatively for unweighted q-
means, defined in 5.8. Note that these are strongly consistent thanks to the strong
consistency 7.2 of weighted q-means.

Definition 7.5 (Asymptotic normality). Assume that M , and consequently also
the regular stratum (Mq/Sq)reg = Pq(M)reg, is a manifold. Fix a regular sample
R0 ∈ Pq(M)reg and a symmetric bilinear form Σ on the tangent space at R0.
Then a sequence R1, R2, . . . of random elements in Pq(M) is called asymptotically
normal with mean R0 and covariance Σ if for some (equivalently, every) coordinate
chart (U, u) around R0, the sequence

√
n1U (Rn)u(Rn) converges in law to a normal

distribution N (0, u∗(Σ)).

The chart independence in this definition is a consequence of the delta method
[50, Theorem 3.1]. We then get the following asymptotic result.

Theorem 7.6 (Asymptotic normality). Let M be a manifold with Riemannian
path metric d and assume that conditions (1)–(2) in the proof below hold true. Then
any sequence R1, R2, . . . of unweighted q-means of P1, P2, . . . , which converges in
probability to a unique unweighted population q-mean R0, is asymptotically normal.

Proof. As before, we use 4.7 to identify the unweighted q-means R0, R1, R2, . . . ∈
Pq(M)reg with the corresponding q-samples z̄0, z̄1, z̄2, . . . ∈ (Mq/Sq)reg. In the
notation of [21] and [29], and in line with Definition 5.8 of unweighted q-means, we
define the Fréchet functional

ρ̄ : M × (Mq/Sq)reg ∋ (x, z̄) = (x, π(z)) 7→ min
i∈{1,...,q}

d(x, zi)
p.

Then the unweighted q-means z̄n minimize the functional

Pnρ̄ : (M
q/Sq)reg ∋ z̄ 7→

∫
M

ρ̄(x, z̄)Pn(dx),

and the unweighted population q-mean z̄0 minimizes the functional

P ρ̄ : (Mq/Sq)reg ∋ z̄ 7→
∫
M

ρ̄(x, z̄)P (dx).

To verify the conditions of [21] we make the following assumptions:

(1) The following sets have zero probability under P :

{z̄0,1, . . . , z̄0,q}, Cut(z̄0,1) ∪ · · · ∪ Cut(z̄0,q),

{x ∈M : ∃i ̸= j ∈ {1, . . . , q} : d(x, z̄0,i) = d(x, z̄0,j) = ρ(x, z̄0)}.

(2) The function P ρ̄ defined above has a non-degenerate Hessian at z̄0.
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Note that the first assumption guarantees for P -almost every x ∈M the existence
of the Riemannian gradient of the function ρ̄(x, ·) at z̄0. Indeed, the only points x
where the gradient may fail to exist are the points z̄0,i, their cut loci Cut(z̄0,i), and
the locations which are closest to more than one z̄0,i. A further condition of [21]
to be verified for all x ∈ M is that the function ρ̄(x, ·) is uniformly continuous on
bounded domains with respect to the metric d̄p on Mq/Sq. This follows from the
estimate

|ρ̄(x, π(z′))− ρ̄(x, π(z))| ≤ max
i∈{1,...,q}

min
j∈{1,...,q}

d(zi, z
′
j)

p ≤ qd̄p(π(z), π(z
′))p.

Thus, we have verified the conditions of [21, Theorem 11], and it follows that the
sequence z̄n or equivalently Rn is asymptotically normal. □

The asymptotic normality of unweighted q-means generalizes from independent
to exchangeable observations x1, x2, . . . under certain conditions. Equivalently, as
shown in 6.6, the observations can be seen as random elements in an infinite sample
space.

Corollary 7.7 (Asymptotic normality, exchangeable observations). Theorem 7.6
extends to exchangeable sequences of (not necessarily independent) observations
x1, x2, . . . , provided that condition (1) in the proof below is satisfied.

Proof. By the infinite Hewitt–Savage theorem 6.4 and its Corollary 6.6, the ex-
changeable sequence x1, x2, . . . is i.i.d. conditionally on some sigma algebra G. It
follows from 7.6 that conditionally on G, the sequence R1, R2, . . . is asymptotically
normal with mean R0 and covariance Σ, for some G-measurable symmetric bilin-
ear form Σ on the tangent space of (Mq/Sq)reg at R0. The covariance Σ can be
computed explicitly as follows. Let ρ̄ be defined as in the proof of 7.6, and recall
that the gradient of the function ρ̄(x, ·) evaluated at R0 exists for P -almost every
x ∈M . Therefore, for any i ∈ N>0, one may define the random variable Xi as the
gradient of the random function ρ̄(xi, ·) evaluated at R0. Accordingly, Xi is a ran-
dom variable with values in the tangent space of (Mq/Sq)reg at R0. Let H̄ denote
the Hessian of the function P ρ̄ at R0. Thanks to the non-degeneracy assumption
in 7.6, H̄ is an automorphism on the tangent space of (Mq/Sq)reg at R0, and we
denote its inverse by H̄−1. Then the covariance Σ is given by [21, Theorem 11]

Σ =
1

4
Cov[H̄−1(X1)⊗ H̄−1(X1)|G].

To ensure that Σ is deterministic, we make the following assumption:

(1) E[X1] = 0, Cov(X1, X2) = 0, Cov(X1 ⊗X1, X2 ⊗X2) = 0.

Define B = E[X1 ⊗X1] and C = Cov[X1 ⊗X1]. Then the relations

0 = E[X1 ⊗X2] = E[E[X1 ⊗X2|G]] = E[E[X1|G]⊗2],

C = E[(X1 ⊗X1 −B)⊗ (X2 ⊗X2 −B)] = E[E[X1 ⊗X1 −B|G]⊗2],

show that (1) is equivalent to

E[X1|G] = 0, E[X1 ⊗X1|G] = B.

Therefore, Σ = (H̄−1 ⊗ H̄−1)(B) is deterministic, as claimed. As R0 and Σ are
deterministic, the sequence R1, R2, . . . is not only conditionally but also uncondi-
tionally asymptotically normal. See [14, Theorem 9.2.1] for further details in the
Euclidean case. □
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Appendix A.

Definition A.1 (Path metrics [26, 10]). In any metric space (M,d), for any real
numbers s ≤ t, the length of a continuous curve c : [s, t] →M is defined as

ℓ(c) = sup
n∈N

s=u0≤···≤un=t

n−1∑
i=0

d
(
c(ui), c(ui+1)

)
∈ [0,∞].

The curve is said to have constant speed v ∈ R≥0 if ℓ(c|[u1,v1]) = v|u1 − u2| for all
s ≤ u1 < u2 ≤ t. The metric space is called a path-metric space if the distance
between any pair of points equals the infimum of the lengths of continuous curves
joining the points. A minimizing geodesic in a metric space (M,d) is a continuous
curve whose length equals the distance between its end points. A geodesic is a curve
whose restriction to any sufficiently small subinterval is a minimizing geodesic.

Theorem A.2 (Hopf–Rinov theorem [26, 1.9]). If (M,d) is a connected complete
locally compact path-metric space then:

(1) Closed balls are compact, or, equivalently, each bounded closed subset of M
is compact.

(2) Any two points can be joined by a minimizing geodesic.

Theorem A.3 (Characterization of path metrics [26, Theorem 1.8]). The following
properties of a metric space (M,d) are equivalent:

(1) For any points x, y ∈M and r > 1/2 there exists a point z ∈M such that

max{d(x, z), d(z, y)} ≤ rd(x, y).

(2) For all x, y ∈M and r1, r2 > 0 with r1 + r2 ≤ d(x, y) we have

d(B(x, r1), B(y, r2)) := inf{d(x′, y′) : d(x′, x) ≤ r1, d(y
′, y) ≤ r2}

≤ d(x, y)− r1 − r2.

Every path-metric space has these properties. Conversely, a complete metric space
with property (1) or (2) is a path-metric space.

Definition A.4 (Lagrangian actions). Following [51, Definition 7.11], a Lagrangian
energy–action pair (E,A) on a topological spaceM is a family of energy functionals
Es,t : M ×M → R and action functionals As,t : C([s, t],M) → R, indexed by real
numbers s ≤ t, which satisfies the following three properties:

(1) for all r ≤ s ≤ t, Ar,s +As,t = Ar,t,
(2) for all s ≤ t and x, y ∈M ,

Es,t(x, y) = inf
c∈C([s,t],M)
c(s)=x,c(t)=y

As,t(c).

(3) for all s ≤ t and c ∈ C([s, t],M),

As,t(c) = sup
n∈N

s=u0≤···≤un=t

n−1∑
i=0

Eui,ui+1(c(ui), c(ui+1)).

Curves which assume the minimum in (2) are calledminimizing curves for (E,A).

Examples of Lagrangian energy–action pairs on path-metric spaces (M,d) are
(d, ℓ) as well as the functionals described in the following lemma, which are related
to the Riemannian or Finsler energy.
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Lemma A.5 (Lagrangian actions). For any path-metric space (M,d) and p ∈
(1,∞), the following defines a Lagrangian energy–action pair (E,A):

Es,t(x, y) =
d(x, y)p

|s− t|p−1
, As,t(c) = sup

n∈N
s=u0≤···≤un=t

n−1∑
i=0

d(c(ui), c(ui+1))
p

|ui − ui+1|p−1
.

Minimizing curves for (E,A) are exactly constant-speed minimizing geodesics.

Proof. Properties (1) and (3) of Lagrangian actions hold by definition. Property
(2) can be verified as follows: as (M,d) is a path-metric space, the definition of the
energy implies for any real numbers s ≤ t and points x, y ∈M that

Es,t(x, y) = inf
c∈C([s,t],M)
c(s)=x,c(t)=y

sup
n∈N

s=u0≤···≤un=t

(∑n−1
i=0 d(c(ui), c(ui+1))

)p
|s− t|p−1

.

Estimating the right-hand side using Hölder’s inequality yields

Es,t(x, y) ≤ inf
c∈C([s,t],M)
c(s)=x,c(t)=y

sup
n∈N

s=u0≤···≤un=t

n−1∑
i=0

d(c(ui), c(ui+1))
p

|s− t|p−1
= inf

c∈C([s,t],M)
c(s)=x,c(t)=y

As,t(c).

For constant-speed curves, Hölder’s inequality is an equality. Moreover, any con-
tinuous curve can be reparameterized to constant speed. Therefore, the preceding
inequality is actually an equality. This shows (2).

The statement about minimizing curves hinges on the following Hölder inequal-
ity: for all u ≤ v ≤ w in the domain of a continuous curve c : [s, t] →M ,

d(c(u), c(v)) + d(c(v), c(w)

=
d(c(u), c(v))

|u− v|(p−1)/p
|u− v|(p−1)/p +

d(c(v), c(w)

|v − w|(p−1)/p
|v − w|(p−1)/p

≤
(
Eu,v(c(u), c(v)) + Ev,w(c(v), c(w)

)1/p|u− w|,

with equality if and only if the vector
(
d(c(u), c(v)), d(c(v), c(w))

)
in R2 is parallel

to the vector (v − u,w − v).
Let c : [s, t] → M be a continuous curve. Then c is a minimizing geodesic with

constant speed if and only if it satisfies for all u ≤ v ≤ w in [s, t] that

d(c(u), c(v)) + d(c(v), c(w) = d(c(u), c(w)),

d(c(u), c(v)) = d(c(s), c(t))|u− v|.

Equivalently, by the above Hölder inequality, it holds for all u ≤ v ≤ w in [s, t] that

Eu,v(c(u), c(v)) + Ev,w(c(v), c(w) = Eu,w(c(u), c(w)),

which means that c minimizes the energy–action pair (E,A). □

Lemma A.6 (Atomic distributions). LetM be a metric space or, more generally, a
first-countable space. Then the set Pn(M) coincides with the set of {0, 1/n, . . . , 1}-
valued probability distributions on M .

Proof. Clearly, every distribution in Pn(M) takes values in {0, 1/n, . . . , 1}. Con-
versely, assume that P is a {0, 1/n, . . . , 1}-valued probability distribution. Let
x ∈ M , and let (Ui)i∈N be a decreasing basis of open neighborhoods of x. If
mini∈N P (Ui) vanishes, then it vanishes for sufficiently large i, and consequently
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x does not belong to the support of P . Otherwise, P ({x}) = mini∈N P (Ui) ≥ 1
n ,

which can be the case for only finitely many x ∈ M . Therefore, the support of P
is a finite set. It follows that P is a weighted sum of Dirac measures at distinct
points in M . Necessarily, the weights are multiples of 1/n. □
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