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Preface

This book is an introduction to the fundamentals of differential geometry
(manifolds, flows, Lie groups and their actions, invariant theory, differential
forms and de Rham cohomology, bundles and connections, Riemann mani-
folds, isometric actions, symplectic geometry) which stresses naturality and
functoriality from the beginning and is as coordinate-free as possible. The
material presented in the beginning is standard — but some parts are not
so easily found in text books: Among these are initial submanifolds |(2.13)|
and the extension of the Frobenius theorem for distributions of nonconstant
rank (the Stefan-Sussman theory) in - A quick proof of the
Campbell-Baker-Hausdorff formula for Lie groups is in Lie group
actions are studied in detail: Palais’ results that an infinitesimal action of
a finite-dimensional Lie algebra on a manifold integrates to a local action
of a Lie group and that proper actions admit slices are presented with full
proofs in sections and @ The basics of invariant theory are given in
section The Hilbert-Nagata theorem is proved, and Schwarz’s theorem
on smooth invariant functions is discussed, but not proved.

In the section on vector bundles, the Lie derivative is treated for natural
vector bundles, i.e., functors which associate vector bundles to manifolds
and vector bundle homomorphisms to local diffeomorphisms. A formula for
the Lie derivative is given in the form of a commutator, but it involves the
tangent bundle of the vector bundle. So also a careful treatment of tangent
bundles of vector bundles is given. Then follows a standard presentation
of differential forms and de Rham cohomoloy including the theorems of
de Rham and Poincaré duality. This is used to compute the cohomology
of compact Lie groups, and a section on extensions of Lie algebras and Lie
groups follows.
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X Preface

The chapter on bundles and connections starts with a thorough treatment
of the Frolicher-Nijenhuis bracket via the study of all graded derivations
of the algebra of differential forms. This bracket is a natural extension
of the Lie bracket from vector fields to tangent bundle valued differential
forms; it is one of the basic structures of differential geometry. We begin
our treatment of connections in the general setting of fiber bundles (without
structure group). A connection on a fiber bundle is just a projection onto
the vertical bundle. Curvature and the Bianchi identity are expressed with
the help of the Frolicher-Nijenhuis bracket. The parallel transport for such
a general connection is not defined along the whole of the curve in the base
in general — if this is the case, the connection is called complete. We
show that every fiber bundle admits complete connections. For complete
connections we treat holonomy groups and the holonomy Lie algebra, a
subalgebra of the Lie algebra of all vector fields on the standard fiber. Then
we present principal bundles and associated bundles in detail together with
the most important examples. Finally we investigate principal connections
by requiring equivariance under the structure group. It is remarkable how
fast the usual structure equations can be derived from the basic properties
of the Frolicher-Nijenhuis bracket. Induced connections are investigated
thoroughly — we describe tools to recognize induced connections among
general ones. If the holonomy Lie algebra of a connection on a fiber bundle
with compact standard fiber turns out to be finite-dimensional, we are able
to show that in fact the fiber bundle is associated to a principal bundle and
the connection is an induced one. I think that the treatment of connections
presented here offers some didactical advantages: The geometric content of
a connection is treated first, and the additional requirement of equivariance
under a structure group is seen to be additional and can be dealt with later
— so the student is not required to grasp all the structures at the same time.
Besides that it gives new results and new insights. This treatment is taken
from [147].

The chapter on Riemann geometry contains a careful treatment of connec-
tions to geodesic structures to sprays to connectors and back to connections
considering also the roles of the second and third tangent bundles in this.
Most standard results are proved. Isometric immersions and Riemann sub-
mersions are treated in analogy to each other. A unusual feature is the
Jacobi flow on the second tangent bundle. The chapter on isometric ac-
tions starts off with homogeneous Riemann manifolds and the beginnings of
symmetric space theory; then Riemann G-manifolds and polar actions are
treated.

The final chapter on symplectic and Poisson geometry puts some emphasis
on group actions, momentum mappings and reductions.
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There are some glaring omissions: The Laplace-Beltrami operator is treated
only summarily, there is no spectral theory, and the structure theory of Lie
algebras is not treated and used. Thus the finer theory of symmetric spaces
is outside of the scope of this book.

The exposition is not always linear. Sometimes concepts treated in detail in
later sections are used or pointed out earlier on when they appear in a natural
way. Text cross-references to sections, subsections, theorems, numbered
equations, items in a list, etc., appear in parantheses, for example, section

subsection [(1.1)} theorem |(3.16)], equation |(3.16.3)| which will be called
(3) within [(3.16)| and its proof, property [(3.22.1)

This book grew out of lectures which I have given during the last three
decades on advanced differential geometry, Lie groups and their actions,
Riemann geometry, and symplectic geometry. I have benefited a lot from
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I want to thank Konstanze Rietsch whose write-up of my lecture course on
isometric group actions was very helpful in the preparation of this book and
Simon Hochgerner who helped with the last section.
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CHAPTER 1.
Manifolds and Vector
Fields

1. Differentiable Manifolds

1.1. Manifolds. A topological manifold is a separable metrizable space M
which is locally homeomorphic to R™. So for any x € M there is some
homeomorphism u : U — u(U) C R™, where U is an open neighborhood of
x in M and u(U) is an open subset in R™. The pair (U, u) is called a chart
on M.

One of the basic results of algebraic topology, called ‘invariance of domain’,
conjectured by Dedekind and proved by Brouwer in 1911, says that the
number n is locally constant on M if n is constant, M is sometimes called
a pure manifold. We will only consider pure manifolds and consequently we
will omit the prefix pure.

A family (U, ua)aca of charts on M such that the U, form a cover of M is
called an atlas. The mappings

UaB += Ua © Uﬁl : uﬁ(Uaﬂ) - Ua(Uozﬂ)

are called the chart changings for the atlas (U, ), where we use the notation
Uag =U,N Uﬁ.

An atlas (U,, Ug)aca for a manifold M is said to be a C*-atlas, if all chart
changings uag : ug(Usp) — ua(Uap) are differentiable of class C*. Two
C*-atlases are called C*-equivalent if their union is again a C*-atlas for M.
An equivalence class of C*-atlases is called a C*-structure on M.
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2 CHAPTER I. Manifolds and Vector Fields

From differential topology we know that if M has a C'-structure, then it also
has a C'-equivalent C*°-structure and even a C'-equivalent C¥-structure,
where C¥ is shorthand for real analytic; see [84].

By a C*-manifold M we mean a topological manifold together with a C*-
structure and a chart on M will be a chart belonging to some atlas of the
Ck-structure.

But there are topological manifolds which do not admit differentiable struc-
tures. For example, every 4-dimensional manifold is smooth off some point,
but there are such which are not smooth; see [196], [62]. There are also
topological manifolds which admit several inequivalent smooth structures.
The spheres from dimension 7 on have finitely many; see [157]. But the
most surprising result is that on R?* there are uncountably many pairwise
inequivalent (exotic) differentiable structures. This follows from the results
of [42] and [62]; see [78] for an overview.

Note that for a Hausdorff C'**°-manifold in a more general sense the following
properties are equivalent:

(1) It is paracompact.

(2) It is metrizable.

(3) It admits a Riemann metric.
(

4) Each connected component is separable.

In this book a manifold will usually mean a C*°-manifold, and smooth is used
synonymously for C*° — it will be Hausdorff, separable, finite-dimensional,
to state it precisely.

Note finally that any manifold M admits a finite atlas consisting of dim M +
1 (not connected) charts. This is a consequence of topological dimension
theory [169]; a proof for manifolds may be found in [80] I].

1.2. Example: Spheres. We consider the space R"*!, equipped with the
standard inner product (z,y) = > z'y’. The n-sphere S™ is then the subset
{x € R*™ . (z,2) = 1}. Since f(z) = (z,z), f : R — R, satisfies
df (x)y = 2(z,y), it is of rank 1 off 0 and by the sphere S™ is a
submanifold of R"*1.

In order to get some feeling for the sphere, we will describe an explicit atlas
for S™, the stereographic atlas. Choose a € S™ (‘south pole’). Let

Uy := 5"\ {a}, uy Uy = {a}t, uy () = x_f(z 62;1’

Uo ="\ {~a}),  u_:U- > f{a}t, u(e) =2
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From the following drawing in the 2-plane through 0, x, and a it is easily
seen that u, is the usual stereographic projection. We also get

_ 21
wl(y) = Mga+ oAy fory e {a}\ {0}

and (u_ oui')(y) = # The latter equation can directly be seen from the
drawing using the intercept theorem.

—a

1.3. Smooth mappings. A mapping f : M — N between manifolds is
said to be C* if for each x € M and one (equivalently: any) chart (V,v) on
N with f(z) € V there is a chart (U,u) on M with z € U, f(U) C V, and
vo fou~tis C*. We will denote by C*(M, N) the space of all C*-mappings
from M to N.

A C*-mapping f : M — N is called a C*-diffeomorphism if f~1 : N — M
exists and is also C*. Two manifolds are called diffeomorphic if there exists
a diffeomorphism between them. From differential topology (see [84]) we
know that if there is a C'-diffeomorphism between M and N, then there is
also a C°°-diffeomorphism.

There are manifolds which are homeomorphic but not diffeomorphic: On R4
there are uncountably many pairwise nondiffeomorphic differentiable struc-
tures; on every other R™ the differentiable structure is unique. There are
finitely many different differentiable structures on the spheres S™ for n > 7.
A mapping f : M — N between manifolds of the same dimension is called a
local diffeomorphism if each x € M has an open neighborhood U such that
fIU : U — f(U) C N is a diffeomorphism. Note that a local diffeomorphism
need not be surjective.
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1.4. Smooth functions. The set of smooth real valued functions on a
manifold M will be denoted by C°°(M), in order to distinguish it clearly
from spaces of sections which will appear later. The space C°°(M) is a real
commutative algebra.

The support of a smooth function f is the closure of the set where it does not
vanish, supp(f) = {x € M : f(z) # 0}. The zero set of f is the set where f
vanishes, Z(f) ={x € M : f(x) = 0}.

1.5. Theorem. Any (separable, metrizable, smooth) manifold admits
smooth partitions of unity: Let (Uy)aca be an open cover of M.

Then there is a family (pa)aca of smooth functions on M, such that:

(1) @a(x) >0 for allz € M and all « € A.

(2) supp(pa) C Uy for all o € A.

(3) (supp(pa))aca is a locally finite family (so each x € M has an open
neighborhood which meets only finitely many supp(pq)).

(4) >, ¢a =1 (locally this is a finite sum).

Proof. Any (separable, metrizable) manifold is a ‘Lindeldf space’, i.e., each
open cover admits a countable subcover. This can be seen as follows:

Let U be an open cover of M. Since M is separable, there is a countable
dense subset S in M. Choose a metric on M. For each U € U and each
r € U there is a y € S and n € N such that the ball B/, (y) with respect
to that metric with center y and radius % contains x and is contained in
U. But there are only countably many of these balls; for each of them we
choose an open set U € U containing it. This is then a countable subcover
of U.

Now let (Uy)aca be the given cover. Let us fix first o and z € U,. We
choose a chart (U,u) centered at = (i.e., u(z) = 0) and € > 0 such that
eD" C w(UNU,), where D" = {y € R™: |y| < 1} is the closed unit ball. Let

h(t) = e Yt fort >0,
"o for t <0,

a smooth function on R. Then

Faa(2) h(e? — Ju(2)]?) for z € U,
z) =
“r 0 for 2 ¢ U
is a nonnegative smooth function on M with support in U, which is positive
at .

We choose such a function f, , for each o and = € U,. The interiors of the
supports of these smooth functions form an open cover of M which refines
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(Uq), so by the argument at the beginning of the proof there is a countable
subcover with corresponding functions fi, fo,.... Let

W, ={z€M: fu(r) >0and fi(z) < forl<i<n},

and denote by W,, the closure. Then (Wy)n is an open cover. We claim
that (W), is locally finite: Let # € M. Then there is a smallest n such
that x € W,. Let V:={y € M : fo(y) > %fn(:v)} If y € VN Wy, then we
have f,,(y) > %fn(x) and fi(y) < % for i < k, which is possible for finitely

many k only.

Consider the nonnegative smooth function

() = h(fa(@)h(; = fi(2)) ... h(5 = fa-1(z)), neN.

Then obviously supp(g,) = W,. So g := >, 9n is smooth, since it is locally
only a finite sum, and everywhere positive; thus (g,/¢)nen is a smooth
partition of unity on M. Since supp(g,) = W, is contained in some Ua(n)s
we may put oo = > {(n:a(n)=a} %" to get the required partition of unity which
is subordinated to (Uy)acA- O

1.6. Germs. Let M and N be manifolds and x € M. We consider all
smooth mappings f : Uy — N, where U; is some open neighborhood of
x in M, and we put f ~, g if there is some open neighborhood V of z
with f|V = ¢|V. This is an equivalence relation on the set of mappings
considered. The equivalence class of a mapping f is called the germ of f at
x, sometimes denoted by germ, f. The set of all these germs is denoted by
C°(M,N).

Note that for a germs at x of a smooth mapping only the value at x is
defined. We may also consider composition of germs: germ F(z) gOgeTIM, f=
germ,(go f).

If N =R, we may add and multiply germs of smooth functions, so we get
the real commutative algebra C2°(M,R) of germs of smooth functions at .
This construction works also for other types of functions like real analytic
or holomorphic ones if M has a real analytic or complex structure.

Using smooth partitions of unity it is easily seen that each germ of a
smooth function has a representative which is defined on the whole of M.
For germs of real analytic or holomorphic functions this is not true. So
C2°(M,R) is the quotient of the algebra C°°(M) by the ideal of all smooth
functions f : M — R which vanish on some neighborhood (depending on f)
of z.

1.7. The tangent space of R". Let a € R". A tangent vector with foot
point a is simply a pair (a, X) with X € R™, also denoted by X,. It induces
a derivation X, : C*°(R™) — R by X,(f) = df(a)(X,). The value depends
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only on the germ of f at a and we have X,(f-g) = Xo(f)-g(a)+ f(a)- X.(g)
(the derivation property).

If conversely D : C*°(R") — R is linear and satisfies

D(f-g) = D(f)-g(a)+ f(a)- D(g)

(a derivation at a), then D is given by the action of a tangent vector with
foot point a. This can be seen as follows. For f € C*°(R"™) we have

1
f@»=f@»+/‘$ﬂa+ﬂw—a»w
0
+Z/ DL (a+t(x — a))dt (z' — ')

+Zh x—a

On the constant function 1 the derivation gives D(1) = D(1-1) = 2D(1),
so D(constant) = 0. Therefore,

=1
=0+ > D(hi)(a' —a’) + Y hi(a)(D(z") — 0)
i=1 i=1
= F(a)D@E),

where z’ is the i-th coordinate function on R™. So we have

D(f) =3 D)gxlalf), D= ZD 2 la

Thus D is induced by the tangent vector (a, Y., D(z')e;), where (e;) is the
standard basis of R".

1.8. The tangent space of a manifold. Let M be a manifold and let
x € M and dim M = n. Let T, M be the vector space of all derivations at x
of C2°(M,R), the algebra of germs of smooth functions on M at x. Using
it may easily be seen that a derivation of C°°(M) at = factors to a
derivation of C2°(M,R).

So T, M consists of all linear mappings X, : C°°(M) — R with the property
Xo(f-9) = Xo(f)-g(x)+ f(x) - X:(g). The space T,, M is called the tangent
space of M at x.
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If (U, u) is a chart on M with z € U, then u* : f — fow induces an isomor-
phism of algebras C 77 )(]R”, R) = C2°(M,R), and thus also an isomorphism
Tyu : ToM — Ty)R™, given by (Tpu.X)(f) = Xo(f ou). So T M is an
n-dimensional vector space.

We will use the following notation: u = (u!,... u™), so u’ denotes the i-th
coordinate function on U, and

D |m = (Tzu)_l(aii ‘u(z‘)) = (Tmu)_l(u(a:),ei).
So %\ « € T, M is the derivation given by
(fou)
o] _
gu le(f) = =5 (u(2)).
From m )| we have now

TuXx_ZTuX) N luge) = ZX

=1

n .
:ZXI( Z arz‘u(m

=1

n
Xo = (Tow) " TouXe = > Xo(u') 52 ]a.
=1

u(z)

1.9. The tangent bundle. For a manifold M of dimension n we put
TM :=||,cps T M, the disjoint union of all tangent spaces. This is a family
of vector spaces parameterized by M, with projection 7p; : TM — M given
by mp (T, M) = x.
For any chart (U, ua) of M consider the chart (3, (Us), Tua) on TM,
where T, : 7y (Us) = ua(Uy) x R™ is given by
Tua- X = (ua(mas(X)), Trpp(x) U0 X).
Then the chart changings look as follows:
Tug o (Tua) ™' : Tua(my} (Uap)) = ta(Usp) x R —
— up(Uap) x R" = Tug(my (Uap)),
(T o (Tua) ™) V) () = (Tua) ™ (5, Y))(f o ug)
— (1,Y)(f ougouz) = d(f ougouz")(y).Y
= df (ug o ug ' (y))-d(ug o uz")(y).Y
= (ug o ug ' (), d(ug o ug ") ().Y)(f)-

So the chart changings are smooth. We choose the topology on T'M in such
a way that all T'u, become homeomorphisms. This is a Hausdorff topology,
since X, Y € TM may be separated in M if 7(X) # 7n(Y); and they may be
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separated in one chart if 7(X) = 7(Y). So T'M is again a smooth manifold
in a canonical way; the triple (T'"M, mps, M) is called the tangent bundle of
the manifold M.

1.10. Kinematic definition of the tangent space. Let C3°(R, M) de-
note the space of germs at 0 of smooth curves R — M. We put the following
equivalence relation on C§°(R, M): the germ of ¢ is equivalent to the germ
of e if and only if ¢(0) = e(0) and in one (equivalently: each) chart (U, u)
with ¢(0) = e(0) € U we have %|0(u oc)(t) = %|0(u oe)(t). The equiva-
lence classes are also called velocity vectors of curves in M. We have the
following diagram of mappings where a(c)(germ, ) f) = %|0 f(e(t)) and
B :TM — C(R,M) is given by: B((Tu) (y,Y)) is the germ at 0 of
t = u~t(y+tY). So TM is canonically identified with the set of all possible
velocity vectors of curves in M:

Cg*(R, M)/ ~ <— Cg°(R, M)

™™

1.11. Tangent mappings. Let f : M — N be a smooth mapping between
manifolds. Then f induces a linear mapping 7o, f : T, M — T,y N for each
x € M by (Tpf.Xz)(h) = Xg(ho f) for h € C’j??x)(N, R). This mapping
is well defined and linear since f* : C;??x)(N ,R) — C°(M,R), given by
h — ho f,is linear and an algebra homomorphism, and T f is its adjoint,
restricted to the subspace of derivations.

If (U,u) is a chart around z and (V,v) is one around f(z), then
(Tt ele) (07) = a0 0 ) = (07 o f 0w ) (u(w)),
Tofogoile = 3 5(Te foii o) (W) 525 ) by
= 3, 2 () 5 | o

So the matrix of T, f : T M — Ty, N in the bases (% ») and (%U(gj))
is just the Jacobi matrix d(v o f o u™1)(u(z)) of the mapping vo fou™! at
u(x), 80 Tpzyvo Tpf o (Tpu) ™' =d(vo fout)(u(x)).
Let us denote by Tf : TM — TN the total mapping which is given by
Tf|T;M :=T,f. Then the composition

TvoTfo(Tu)™ ' :u(U) xR™ — v(V) x R",

(1Y) = ((vo fou™)(y)dwo fou t)(y)Y),

is smooth; thus T'f : TM — T'N is again smooth.
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If f: M — N and g: N — P are smooth, then we have T'(go f) =TgoTf.
This is a direct consequence of (go f)* = f*og*, and it is the global version
of the chain rule. Furthermore we have T'(Idys) = Idryy.

If feC®M),then Tf:TM — TR = R x R. We define the differential
of f by df :=pryoTf: TM — R. Let t denote the identity function on R.
Then (T'f.X;)(t) = Xz(to f) = Xu(f), so we have df (X;) = X (f).

1.12. Submanifolds. A subset N of a manifold M is called a submanifold
if for each x € N there is a chart (U,u) of M such that w(U N N) =
w(U) N (R* x 0), where RF x 0 < R¥ x R*™* = R™. Then clearly N is itself
a manifold with (U N N,u|(U N N)) as charts, where (U, u) runs through all
submanifold charts as above.

1.13. Let f: R™ — RY be smooth. A point z € RY is called a regular value
of f if the rank of f (more exactly: the rank of its derivative) is ¢ at each
point y of f~!(x). In this case, f~!(z) is a submanifold of R” of dimension
n —q (or empty). This is an immediate consequence of the implicit function
theorem, as follows: Let x = 0 € RY. Permute the coordinates (z',...,2")

on R" such that the Jacobi matrix
o 1SiZa] /g 1<i<q
df (y) = < -(y)> ( -(y)>
027 " J1<ica| \NO¥ ) gr1<icn

has the left hand part invertible. Then u := (f,pr,_,) : R" — R? x R"7¢
has invertible differential at y, so (U,u) is a chart at any y € f~1(0), and
we have fou=t(z1,...,2") = (2,...,29), so u(f~1(0)) = w(U) N (0 x R*~9)
as required.

Constant rank theorem ([41, I 10.3.1]). Let f : W — RY be a smooth
mapping, where W is an open subset of R™. If the derivative df(x) has
constant rank k for each x € W, then for each a € W there are charts (U, u)
of W centered at a and (V,v) of R centered at f(a) such that vo fou™!:
w(U) = v(V) has the following form:

(X1, yxp) = (T1,. .., 2,0,...,0).

So f~1(b) is a submanifold of W of dimension n — k for each b € f(W).

Proof. We will use the inverse function theorem several times. The deriva-
tive df (a) has rank k < n, ¢; without loss we may assume that the upper left
(k x k)-submatrix of df(a) is invertible. Moreover, let a = 0 and f(a) = 0.

We consider u : W — R™, u(z!, ..., 2") := (fi(),..., fFx), 2", ... 2").

Then
du = 027 /11<j<k 029 /k+1<j<n

]IRn—k:
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is invertible, so u is a diffeomorphism U; — Us for suitable open neighbor-
hoods of 0 in R™. Consider g = f ou™! : Uy — RY9. Then we have

9(215- s 2n) = (21500, 28 g1 (2), - -+, Gg(2)),
dg(z) = = dg' k?—lﬁigq ,
* (55 kt1<s<n
rank(dg(z)) = rank (d(f o u_l)(z))
= rank (df (v (2)).du”'(z)) = rank(df(2)) = k.

dg'
077
gi(zl,...,z”):gi(zl,...,zk,O,...,O) fork+1<i<gq.

Let v : U3 — RY, where U3 = {y € R?: (y',...,4*,0,...,0) € Uy C R"}, be
given by

Therefore,

(z)=0 fork+1<i<gandk+1<j<nmn;

y! y!
1 :
y
vl | =]kt k1 1yk k =1 & ykkl
; Yt — gF iyt yR,0,...,0) Yyt — g l(y) |
y . .
y? — gy, ... yk,0,...,0) y? — g1(y)

where j = (y%,...,94%,0,...,0) € R"if ¢ <n and § = (y},...,y") if ¢ > n.
We have v(0) = 0, and

d’U: HRk 0
*  IRa_p

is invertible; thus v : V' — R? is a chart for a suitable neighborhood of 0.
Now let U := f~1(V)uUU;. Then vo fou™! =vog: R* D u(U) — v(V) C RY
looks as follows:

ZL’l l’l .’L'l
1 . . .
X
. g xk v xk _ xk .
. gF () g (z) — gF i (z) 01"
g%(x) g%(x) — g(x) 0

Corollary. Let f: M — N be C* with T,f of constant rank k for all
r e M.

Then for each b € f(M) the set f~1(b) C M is a submanifold of M of
dimension dim M — k. O
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1.14. Products. Let M and N be smooth manifolds described by smooth
atlases (Uq, Ua)aca and (V3,v5)secp, respectively. Then the family (U, x
Vi, uaXvg 1 Ug x Vg — R™xR") (4 g)caxp 18 a smooth atlas for the cartesian
product M x N. Clearly the projections

M N 22N

are also smooth. The product (M x N,pry,pry) has the following universal
property:

For any smooth manifold P and smooth mappings f : P — M and
g : P — N the mapping

(f,9): P = MxN, (f9)(x)=(f(z),9(z)),
is the unique smooth mapping with pr; o(f,g) = f and pryo(f,g) = g.

From the construction of the tangent bundle in|(1.9)|it is immediately clear

that

T(pry) T (prsy)

TM T(M x N) TN

is again a product, so that T'(M x N) =TM x T'N in a canonical way.

Clearly we can form products of finitely many manifolds.

1.15. Theorem. Let M be a connected manifold and suppose that f : M —
M is smooth with fo f = f. Then the image f(M) of f is a submanifold
of M.

This result can also be expressed as: ‘smooth retracts’ of manifolds are
manifolds. If we do not suppose that M is connected, then f(M) will not
be a pure manifold in general; it will have different dimensions in different
connected components.

Proof. We claim that there is an open neighborhood U of f(M) in M such
that the rank of T}, f is constant for y € U. Then by theorem the
result follows.

For z € f(M) we have T, f o T,,f = T, f; thus im T, f = ker(Id — T, f) and
rank Ty f + rank(/d — T, f) = dim M. Since rank T, f and rank(/d — T} f)
cannot fall locally, rank 7). f is locally constant for z € f(M), and since
f(M) is connected, rank T, f = r for all z € f(M).

But then for each = € f(M) there is an open neighborhood U, in M with
rank T, f > r for all y € U,. On the other hand

rank Ty, f = rank T,/ (f o f) = rank Ty(y) f o T, f <vank Ty, f =7

since f(y) € f(M).
So the neighborhood we need is given by U = Uxef(M) U,. U
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1.16. Corollary. (1) The (separable) connected smooth manifolds are ex-
actly the smooth retracts of connected open subsets of R™’s.

(2) A smooth mapping f : M — N is an embedding of a submanifold if
and only if there is an open neighborhood U of f(M) in N and a smooth
mapping r: U — M with r o f = Idyy.

Proof. Any manifold M may be embedded into some R"; see|(1.19)| below.
Then there exists a tubular neighborhood of M in R" (see later or [84 pp.
109-118]), and M is clearly a retract of such a tubular neighborhood. The

converse follows from |(1.15)]

For the second assertion we repeat the argument for NV instead of R”. [J

1.17. Sets of Lebesque measure 0 in manifolds. An m-cube of width
w > 0 in R™ is a set of the form C' = [x1,21 + w] X ... X [Ty, Ty + W].
The measure p(C) is then u(C) = w". A subset S C R™ is called a set of
(Lebesque) measure 0 if for each € > 0 these are at most countably many
m-cubes C; with S C |J;2,C; and > 2, u(C;) < e. Obviously, a countable
union of sets of Lebesque measure 0 is again of measure 0.

Lemma. Let U C R™ be open and let f : U — R™ be C. If S C U is of
measure 0, then also f(S) C R™ is of measure 0.

Proof. Every point of S belongs to an open ball B C U such that the
operator norm ||df (x)|| < Kp for all z € B. Then |f(z) — f(y)| < Kg|x —y|
forall z,y € B. Soif C' C B is an m-cube of width w, then f(C') is contained
in an m-cube C’ of width \/mKpw and measure p(C") < m™2K%u(C).
Now let S = Ujoil S; where each S; is a subset of a ball B; as above. It
suffices to show that each f(S;) is of measure 0.

For each € > 0 there are m-cubes C; in Bj with S; C |J,; C; and ), u(C;) < e.
As we saw above, then f(S;) C |, C} with >, u(C) < mm/2Kg‘j5. O

Let M be a smooth (separable) manifold. A subset S C M is called a set
of (Lebesque) measure 0 if for each chart (U,u) of M the set u(SNU) is of
measure 0 in R™. By the lemma it suffices that there is some atlas whose
charts have this property. Obviously, a countable union of sets of measure
0 in a manifold is again of measure 0.

An m-cube is not of measure 0. Thus a subset of R™ of measure 0 does
not contain any m-cube; hence its interior is empty. Thus a closed set of
measure 0 in a manifold is nowhere dense. More generally, let S be a subset
of a manifold which is of measure 0 and o-compact, i.e., a countable union of
compact subsets. Then each of the latter is nowhere dense, so S is nowhere
dense by the Baire category theorem. The complement of S is residual,
i.e., it contains the intersection of a countable family of open dense subsets.
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The Baire theorem says that a residual subset of a complete metric space is
dense.

1.18. Regular values. Let f : M — N be a smooth mapping between
manifolds.

(1) A point x € M is called a singular point of f if T, f is not surjective,
and it is called a regular point of f if T, f is surjective.

(2) A point y € N is called a regular value of f if T, f is surjective for
all z € f~Y(y). If not, y is called a singular value. Note that any
y € N\ f(M) is a regular value.

Theorem ([167], [197]). The set of all singular values of a C* mapping
f M — N is of Lebesgue measure 0 in N if k > max{0, dim(M )—dim(N)}.

So any smooth mapping has regular values.

Proof. We prove this only for smooth mappings. It is sufficient to prove
this locally. Thus we consider a smooth mapping f : U — R™ where U C R™
is open. If n > m, then the result follows from lemmaabove (consider
the set U x 0 C R™ x R™™™ of measure 0). Thus let m > n.

Let X(f) C U denote the set of singular points of f. Let f = (f!,..., f"),
and let X(f) = 31 U X9 U X3 where:

¥y is the set of singular points = such that Pf(z) = 0 for all linear differ-
ential operators P of order < 7.

Yo is the set of singular points = such that Pf(x) # 0 for some differential
operator P of order > 2.

Y3 is the set of singular points x such that %(3:) = 0 for some 4, j.

We first show that f(X1) has measure 0. Let v = [™* + 1] be the smallest
integer > m/n. Then each point of ¥; has an open neighborhood W C U
such that |f(z) — f(y)| < K|z —y|” for all z € ¥, N W and y € W and for
some K > 0, by Taylor expansion. We take W to be a cube, of width w. It
suffices to prove that f(31 NW) has measure 0. We divide W into p" cubes
of width %; those which meet ¥; will be denoted by C4,...,C, for ¢ < p™.
Each Cj, is contained in a ball of radius %\/ﬁ centered at a point of X1 NW.
The set f(Ck) is contained in a cube €} C R of width 2K (%/m)”. Then
Zﬂn(cilﬁ) < pm(QK)"(E\/E)”" =p" " (2K)"w" — 0 for p — oo,
p
k

since m — vn < 0.

Note that 3X(f) = X1 if n = m = 1. So the theorem is proved in this
case. We proceed by induction on m. So let m > 1 and assume that the
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theorem is true for each smooth map between manifolds M’ — N’ where
dim(M') < m.
We prove that f(X3 \ X3) has measure 0. For each x € ¥y \ X3 there

is a linear differential operator P such that Pf(x) = 0 and ng;(x) # 0

for some 4,j. Let W be the set of all such points, for fixed P,d,j. It
suffices to show that f(7) has measure 0. By assumption, 0 € R is a
regular value for the function Pf* : W — R. Therefore W is a smooth
submanifold of dimension m — 1 in R™. Clearly, X(f) N W is contained in
the set of all singular points of f|WW : W — R™, and by induction we get
that f((X2\ 23)NW) C f(E(f)NW) C f(E(f|W)) has measure 0.

It remains to prove that f(X3) has measure 0. Every point of ¥3 has an

open neighborhood W C U on which % # 0 for some i, j. By shrinking W
if necessary and applying diffeomorphisms, we may assume that

R™ x RD Wy x Wa =W —L R xR, (y,t) = (g(y,1),1).

Clearly, (y,t) is a critical point for f if and only if y is a critical point for
g( ). Thus B(f)NW = U,en, (E(g( 1)) x{t}). Since dim(W;) = m—1,
by induction we get that u"~1(g(Z(g( ,t),t))) = 0, where p"! is the
Lebesque measure in R”~'. By Fubini’s theorem we get

W (Sl 8) = {t}) = / W g(S(g( 1)) di

teWs W2

:/ Odt=0. O
Wo

1.19. Embeddings into R"’s. Let M be a smooth manifold of dimension
m. Then M can be embedded into R™ if
(1) n=2m+ 1 (this is due to [229]; see also [84], p. 55] or [26 p. 73]).
(2) n=2m (see [229]).
(3) Conjecture (still unproved): The minimal n is n = 2m — a(m) + 1,
where «(m) is the number of 1’s in the dyadic expansion of m.
There exists an immersion (see section M — R™ if
(4) n=2m (see [84]).
(5) n=2m — 1 (see [229]).

(6) Conjecture: The minimal n is n = 2m — a(m). The article [34] claims
to have proven this. The proof is believed to be incomplete.
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Examples and Exercises

1.20. Discuss the following submanifolds of R™; in particular make drawings
of them:

The unit sphere S"~! = {z € R" : (z,x) = 1} C R™

2
The ellipsoid {x € R™ : f(z) := Y i, Z—g = 1}, a; # 0, with principal axis
aly...,0n. '
2
The hyperboloid {z € R™ : f(x) := > &% = 1}, & = %1, a; # 0, with

2
principal axis a; and index = ) ¢;. R
The saddle {x € R3 : 23 = 2122},
The torus: the rotation surface generated by rotation of (y — R)? + 22 = r2,
0 < r < R, with center the z—axis, i.e.,

{(z,y,2) : (Va2 +9y2 — R)? + 22 =r?}.

1.21. A compact surface of genus g. Let f(z) := z(x — 1)%(z —
2)2...(x — (g — 1))%(z — g). For small » > 0 the set {(z,y,2) : (y* +
f(z))?+ 2% = r?} describes a surface of genus g (topologically a sphere with
g handles) in R3. Visualize this:

1.22. The Moebius strip. It is not the set of zeros of a regular function
on an open neighborhood of R". Why not? But it may be represented by
the following parameterization:

cos (R + rcos(p/2))
fryp) = | sinp(R+rcos(p/2)) |,
rsin(y/2)
(r,p) € (—1,1) x [0,27),

where R is quite big.

1.23. Describe an atlas for the real projective plane which consists of three
charts (homogeneous coordinates) and compute the chart changings.

Then describe an atlas for the n-dimensional real projective space P"(R)
and compute the chart changes.
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1.24. Let f: L(R",R") — L(R",R") be given by f(A) :== AT A. Where is
f of constant rank? What is f~1(I,,)?

1.25. Let f: L(R",R™) — L(R™,R™), n < m, be given by f(A) := AT A.
Where is f of constant rank? What is f~!(Idgn)?

1.26. Let S be a symmetric matrix, i.e., S(z,y) := = 'Sy is a symmetric
bilinear form on R™. Let f : L(R",R") — L(R"™,R™) be given by f(A) :=
ATSA. Where is f of constant rank? What is f~1(S)?

1.27. Describe T'S? c RS,

2. Submersions and Immersions

2.1. Definition. A mapping f : M — N between manifolds is called a
submersion at x € M if the rank of Ty f : ToM — Ty, N equals dim V.
Since the rank cannot fall locally (the determinant of a submatrix of the
Jacobi matrix is not 0), f is then a submersion in a whole neighborhood of
x. The mapping f is said to be a submersion if it is a submersion at each
r e M.

2.2. Lemma. If f : M — N is a submersion at x € M, then for any chart
(V,v) centered at f(x) on N there is chart (U,u) centered at x on M such
that vo fou™t looks as follows:

Proof. Use the inverse function theorem once: Apply the argument from
the beginning of [[1.13)|to vo f ouj ! for some chart (Uy,u;) centered at the
point x. U

2.3. Corollary. Any submersion f : M — N is open: For each open
U C M the set f(U) is open in N. O

2.4. Definition. A triple (M,p, N), where p : M — N is a surjective
submersion, is called a fibered manifold. The manifold M is called the total
space and N is called the base.

A fibered manifold admits local sections: For each x € M there is an open
neighborhood U of p(z) in N and a smooth mapping s : U — M with
pos=Idy and s(p(x)) = z.
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The existence of local sections in turn implies the following universal prop-

erty:
pi \
f

N ——P.

If (M,p,N) is a fibered manifold and f : N — P is a mapping into some
further manifold such that f op: M — P is smooth, then f is smooth.

2.5. Definition. A smooth mapping f : M — N is called an immersion
at x € M if the rank of T, f : TyM — T}, N equals dim M. Since the
rank is maximal at x and cannot fall locally, f is an immersion on a whole
neighborhood of z. The mapping f is called an immersion if it is so at every
xeM.

2.6. Lemma. If f : M — N is an immersion, then for any chart (U, u)
centered at x € M there is a chart (V,v) centered at f(x) on N such that
vo fou~l has the form

(yl,...,ym) — (yl,...,ym,O,...,O).
Proof. Use the inverse function theorem. O

2.7. Corollary. If f: M — N is an immersion, then for any x € M there
is an open neighborhood U of x € M such that f(U) is a submanifold of N
and flU : U — f(U) is a diffeomorphism. O

2.8. Corollary. If an injective immersion i : M — N is a homeomorphism
onto its image, then i(M) is a submanifold of N.

Proof. Use O

2.9. Definition. If i : M — N is an injective immersion, then (M,i) is
called an immersed submanifold of N.

A submanifold is an immersed submanifold, but the converse is wrong in
general. The structure of an immersed submanifold (M, ) is in general not
determined by the subset i(M) C N. All this is illustrated by the follow-
ing example. Consider the curve y(t) = (sin®t,sint.cost) in R%. Then
((=m,m),v|(—m, 7)) and ((0,27),~|(0,27)) are two different immersed sub-
manifolds, but the image of the embedding is in both cases just the figure
eight.
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2.10. Let M be a submanifold of N. Then the embedding i : M — N is an
injective immersion with the following property:

(1) For any manifold Z a mapping f : Z — M is smooth if and only if
1o f:Z — N is smooth.

There are injective immersions without property ([I); see [(2.9)]

We want to determine all injective immersions ¢ : M — N with property
(). To require that i is a homeomorphism onto its image is too strong
as below shows. To look for all smooth mappings ¢ : M — N with
property (initial mappings in categorical terms) is too difficult as
remark below shows.

2.11. Example. We consider the 2-dimensional torus T? = R?/Z2. Then
the quotient mapping 7 : R? — T? is a covering map, so locally a diffeomor-
phism. Let us also consider the mapping f : R — R2, f(t) = (t, a.t), where
« is irrational. Then 7o f : R — T? is an injective immersion with dense

image, and it is obviously not a homeomorphism onto its image. But 7o f
has property [(2.10.1)] which follows from the fact that 7 is a covering map.

2.12. Remark. If f : R — R is a function such that the powers fP and
f4 are smooth for some p, ¢ which are relatively prime in N, then f itself
turns out to be smooth; see [97]. So the mapping i : ¢t — (z), R — R2, has

property |(2.10.1), but 4 is not an immersion at 0.

In [98] all germs of mappings at 0 with property [(2.10.1)| are characterized
as in the following way: Let ¢ : (R,0) — (R",0) be a germ of a C*°-curve,
g(t) = (g1(t), ..., gn(t)). Without loss we may suppose that g is not infinitely
flat at 0, so that g1(t) = t" for r € N after a suitable change of coordinates.

Then g has property|(2.10.1)| near 0 if and only if the Taylor series of g is
not contained in any R™[[t*]] for s > 2.

2.13. Definition. For an arbitrary subset A of a manifold N and 2y € A
let Cy,(A) denote the set of all x € A which can be joined to z¢ by a smooth
curve in M lying in A.

A subset M in a manifold N is called an initial submanifold of dimension m
if the following property is true:

(1) For each x € M there exists a chart (U,u) centered at x on N such
that u(Cr(U N M)) =uw(U) N (R™ x 0).

The following three lemmas explain the name initial submanifold.

2.14. Lemma. Let f: M — N be an injective immersion between mani-
folds with the universal property|(2.10.1). Then f(M) is an initial subman-
ifold of N.
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Proof. Let z € M. By|(2.6)| we may choose a chart (V,v) centered at f(x)
on N and another chart (W, w) centered at x on M such that
(vo fow (W, ...,y™ = ...,y™0,...,0).
Let r > 0 be small enough such that {y € R™ : |y| < 2r} C w(W) and also
{zeR":|z| <2r} Cv(V). Put
U:=v1{zeR":|z| <r}) CN,
Wii=w'{y e R™:|y| <r}) C M.
We claim that (U, u = v|U) satisfies the condition of [(2.13.1)}
uTHu(U)NR™ x 0)) =u  ({(y"s....y™,0...,0) : [y] <7})
= fow lo(uofow )T H({(yh...,y"™0...,0) [yl <1}
=fow '({y eR™: |yl <r}) = f(W1) C Cpe)(UN f(M)),
since f(W7) CUN f(M) and f(W7) is C°-contractible.
Now let conversely 2z € Cp,) (U N f(M)). By definition there is a smooth
curve ¢ : [0,1] = N with ¢(0) = f(z), ¢(1) = 2z, and ¢([0,1]) CUNf(M). By
property [(2.10.1)[ the unique curve ¢ : [0,1] — M with f o ¢ = ¢ is smooth.
We claim that ¢([0,1]) € Wi. If not, then there is some t € [0,1] with
e(t) e w t{y € R™:r < |y| < 2r}) since ¢ is smooth and thus continuous.
But then we have

(vo f)(e(t) € (vo fow )({y e R™: 7 <[y < 2r})
={(y,0) eR" x0:r <|yl<2r} C{zeR":r <|z| < 2r}.
This means (vo foc)(t) = (voc)(t) e {z € R" :r < |z| < 2r},s0 c(t) ¢ U,
a contradiction.
So ¢([0,1]) € Wy; thus &(1) = f~1(2) € Wiy and z € f(W;). Consequently
we have Cp,)(UNf(M)) = f(W1) and finally f(W1) = u™ ! (w(U)N(R™ % 0))
by the first part of the proof. O

2.15. Lemma. Let M be an initial submanifold of a manifold N. Then
there is a unique C°°-manifold structure on M such that the injection i :

M — N is an injective immersion with property|(2.10.1)|:

(1) For any manifold Z a mapping f : Z — M is smooth if and only if
1o f:Z — N is smooth.

The connected components of M are separable (but there may be uncountably

many of them,).

Proof. We use the sets C,(U, N M) as charts for M, where x € M and
(Ug,ug) is a chart for N centered at x with the property required in|(2.13.1)|
Then the chart changings are smooth since they are just restrictions of the
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chart changings on N. But the sets C, (U, N M) are not open in the induced
topology on M in general. So the identification topology with respect to the
charts (Cy(Uy N M), uz)rens yields a topology on M which is finer than the
induced topology, so it is Hausdorff. Clearly ¢ : M — N is then an injective
immersion. Uniqueness of the smooth structure follows from the universal
property ([{l) which we prove now: For z € Z we choose a chart (U,u) on
N, centered at f(z), such that u(Cy\(UN M)) = uw(U) N (R™ x 0). Then
f~1(U) is open in Z and contains a chart (V,v) centered at z on Z with v(V)
a ball. Then f(V') is C*°-contractible in U N M, so f(V) C Cy,y(U N M),
and (u|Cp,)(UNM))o fov ' =uo fov! is smooth.

Finally note that N admits a Riemann metric which induces one on
M, so each connected component of M is separable, by O

2.16. Transversal mappings. Let M7, M>, and N be manifolds and let
fi + M; — N be smooth mappings for ¢ = 1,2. We say that f; and fy are
transversal at y € N if

im Ty, fi +im Ty, fo =T,N whenever fi(z1)= fo(x2) =y.

Note that they are transversal at any y which is not in f1(M;) or not in
f2(M3). The mappings f1 and f2 are simply said to be transversal if they
are transversal at every y € N.

If P is an initial submanifold of N with embedding ¢ : P — N, then a
mapping f : M — N is said to be transversal to P if ¢ and f are transversal.

Lemma. In this case f~1(P) is an initial submanifold of M with the same
codimension in M as P has in N; or f~Y(P) is the empty set. If P is a
submanifold, then also f~'(P) is a submanifold.

Proof. Let x € f~!(P) and let (U, u) be an initial submanifold chart for P
centered at f(z) on N, i.e., u(Cy)(U N P)) =u(U) N (RP x 0). Then the
mapping

M2 YUY Lo U s w(U) CRP x RV P2, gop

is a submersion at x since f is transversal to P. So by lemma |(2.2)| there is
a chart (V,v) on M centered at x such that we have

(pry ouofov_l)(yl,...,y”_p,...,ym) = (yl,...,y"_p).

But then z € C,.(f~1(P)NV) if and only if v(z) € v(V) N (0 x R™"*P), 50
v(Co(fHP)NV)) = v(V) N (0 x RM=7+P), O
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2.17. Corollary. If fi : My — N and fo : My — N are smooth and
transversal, then the topological pullback

My X My = My Xy My := {(l‘l,ﬁz) € My x Ms : fl(azl) = fg(l‘g)}
(fl’Nny)

is a submanifold of M1 X My, and it has the following universal property:

For any smooth mappings g1 : P — My and go : P — My with fiog1 =
fa0gs there is a unique smooth mapping (g1,g2) : P — My X y Ma with
pry o(g1,92) = g1 and pryo(g, g2) = g.

92

P
W) l
g1 M1 XN MQPL M2
\LPH lf2
m— N

This is also called the pullback property in the category M f of smooth
manifolds and smooth mappings. So one may say that transversal pullbacks
exist in the category M f. But there also exist pullbacks which are not
transversal.

Proof. M xn My = (f1 X fg)il(A), where f1 X f2 : My x My — N x N
and where A is the diagonal of N x N, and f; X fo is transversal to A if
and only if f; and fo are transversal. O

3. Vector Fields and Flows

3.1. Definition. A wvector field X on a manifold M is a smooth section of
the tangent bundle; so X : M — T'M is smooth and w0 X = Idys. A local
vector field is a smooth section which is defined on an open subset only. We
denote the set of all vector fields by X(M). With pointwise addition and
scalar multiplication X(M) becomes a vector space.

Example. Let (U,u) be a chart on M. Then the % U - TM\|U, v —
%\x, described in |(1.8), are local vector fields defined on U.

Lemma. If X is a vector field on M and (U,u) is a chart on M and
z € U, then we have X(x) = > *, X(x)(ui)a‘zi|$. We write X|U =

Z;ZIX(ui)aii. 0
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3.2. The vector fields (a‘zi);’il on U, where (U,u) is a chart on M, form
a holonomic frame field. By a frame field on some open set V. C M we
mean m = dim M vector fields s; € X(U) such that si(x),...,sm(x) is a
linear basis of T, M for each x € V. A frame field is said to be holonomic
it s; = % for some chart (V,v). If no such chart may be found locally, the
frame field is called anholonomic.

With the help of partitions of unity and holonomic frame fields one may
construct ‘many’ vector fields on M. In particular the values of a vector
field can be arbitrarily preassigned on a discrete set {z;} C M.

3.3. Lemma. The space X(M) of vector fields on M coincides canonically
with the space of all derivations of the algebra C*°(M) of smooth functions,
i.e., those R-linear operators D : C*°(M) — C>(M) with

D(fg) = D(f)g + fD(g).

Proof. Clearly each vector field X € X(M) defines a derivation (again
called X; later sometimes called Lx) of the algebra C°°(M) by stipulating
X(f)(x) = X(2)(f) = df (X (2)).

If conversely a derivation D of C*°(M) is given, for any x € M we consider
Dy : C*(M) — R, Dy(f) = D(f)(x). Then D, is a derivation at = of
C>®(M) in the sense of so D, = X, for some X, € T, M. In this
way we get a section X : M — TM. If (U,u) is a chart on M, we have
D, =3%" X(z)(u i)8u1|:’3 by [(1.7)] Choose V openin M,V C V C U, and
¢ € C*°(M,R) such that supp() C U and |V = 1. Then ¢ - u' € C°(M)
and (pu?)|V = u!|V. So D(pu')(z) = X (z)(pu’) = X(x)(u') and X|V =
>, D) i .

3.4. The Lie bracket. By lemma |(3.3)| we can identify X(M) with the
vector space of all derivations of the algebra C°°(M), which we will do
without any notational change in the following.

If X, Y are two vector fields on M, then the mapping f — X(Y(f)) —
Y (X(f)) is again a derivation of C*°(M), as a simple computation shows.
Thus there is a unique vector field [X,Y] € X(M) such that [X,Y](f) =
XY (f) —Y(X(f)) holds for all f e C>(M).

In a local chart (U,u) on M one easily checks that for X|U = 3 X*
YIU=>YY! ?ﬂ we have

[Z XZ@u“ZY] 8u1] = Z (XZ(GUZY]) Yl(auzX])) oul
- Z XJ))

and

Bul
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since second partial derivatives commute. The R-bilinear mapping
[, ]:X(M)xX(M)— X(M)

is called the Lie bracket. Note also that X(M) is a module over the algebra
C>° (M) by pointwise multiplication (f, X) — fX.

Theorem. The Lie bracket [ , | : X(M) x X(M) — X(M) has the
following properties:

(X, Y] = -[v, X],

(X,[Y, 2] = [[X,Y],Z] + [V, [X, Z]], the Jacobi identity,

[FX Y] = fIX, Y] - (Y )X

(X, 1Y) = fIX, Y]+ (X f)
The form of the Jacobi identity we have chosen says that ad(X) = [X, ]is
a derivation for the Lie algebra (X(M),[ , ). The pair (X(M),[ , ]

is the prototype of a Lie algebra. The concept of a Lie algebra is one of the
most important notions of modern mathematics.

Proof. All these properties are checked easily for the commutator [X,Y] =
X oY —Y o X in the space of derivations of the algebra C*°(M). O

3.5. Integral curves. Let ¢: J — M be a smooth curve in a manifold M
defined on an interval J. We will use the following notations: ¢/(t) = ¢(t) =
de(t) == Tyed. Clearly ¢ : J — TM is smooth. We call ¢ a vector field
along ¢ since we have my; o = ¢

M

AL

A smooth curve ¢ : J — M will be called an integral curve or flow line of a
vector field X € X(M) if ¢/(t) = X (c(¢)) holds for all ¢t € J.

3.6. Lemma. Let X be a vector field on M. Then for any x € M there is
an open interval J, containing 0 and an integral curve ¢, : J, — M for X
(i.e., ¢, = X o ¢, ) with ¢, (0) = x. If J, is mazimal, then ¢, is unique.

Proof. In a chart (U,u) on M with x € U the equation ¢/(t) = X(c(t)) is a
system ordinary differential equations with initial condition ¢(0) = x. Since
X is smooth, there is a unique local solution which even depends smoothly
on the initial values, by the theorem of Picard-Lindelof, [41], 10.7.4]. So on
M there are always local integral curves. If J, = (a,b) and lim;_,— ¢, (t) =:
c:(b) exists in M, there is a unique local solution ¢; defined in an open
interval containing b with ¢;(b) = ¢,(b). By uniqueness of the solution on
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the intersection of the two intervals, c; prolongs c, to a larger interval. This
may be repeated (also on the left hand side of J,) as long as the limit
exists. So if we suppose J, to be maximal, J, either equals R or the integral
curve leaves the manifold in finite (parameter-)time in the past or future or
both. O

3.7. The flow of a vector field. Let X € X(M) be a vector field. Let
us write FLX (z) = FI1X(t,2) := c,(t), where ¢, : J, — M is the maximally
defined integral curve of X with ¢;(0) = z, constructed in lemma|(3.6)|

Theorem. For each vector field X on M, the mapping F1X : D(X) — M
is smooth, where D(X) = J e Jo X {x} is an open neighborhood of 0 x M
in R x M. We have

FI¥(t + 5,2) = FI* (¢, F1¥ (s, 2))

in the following sense. If the right hand side exists, then the left hand side
exists and we have equality. If both t, s > 0 or both are < 0, and if the left
hand side exists, then also the right hand side exists and we have equality.

Proof. As mentioned in the proof of F1¥(t,z) is smooth in (¢,z)
for small ¢, and if it is defined for (¢,x), then it is also defined for (s,y)
nearby. These are local properties which follow from the theory of ordinary
differential equations.

Now let us treat the equation FI1¥ (t 4 s, z) = FI1* (¢, F1¥ (s, 2)). If the right
hand side exists, then we consider the equation

LFX(t+5,2) = LFI* (0, 2)|umirs = X(FLE(E+ s5,2)),
FIX(t + s, 2)|t=0 = F1¥ (s, z).

But the unique solution of this is F1¥ (¢, F1¥(s,z)). So the left hand side
exists and equals the right hand side.

If the left hand side exists, let us suppose that t,s > 0. We put
F1¥ (u, x) if u <s,
alu) = { FIX (u — 5, F1% (s, 2)) if u>s.
Then we have
d X _ X
duca(1) = {d: EiXEzjf)s_Ffi((zlx)(;Lz)))((;F; (Zf Z FIX (s, 2))
au 5 5 ) )
= X(cz(u)) for0<u<t+s.

Also ¢;(0) = x and on the overlap both definitions coincide by the first part
of the proof; thus we conclude that ¢,(u) = F1*(u,z) for 0 < u < t + s and
we have FIX (1, F1X (s, 2)) = c,(t + s) = FIX(t + s, ).
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Now we show that D(X) is open and FI* is smooth on D(X). We know
already that D(X) is a neighborhood of 0 x M in R x M and that FI¥ is
smooth near 0 x M.

For 2 € M let J.. be the set of all t € R such that FI¥ is defined and smooth
on an open neighborhood of [0, ¢] x {x} (respectively on [t,0] x {z} for ¢ < 0)
in R x M. We claim that J, = J,, which finishes the proof. It suffices to
show that J! is not empty, open and closed in J,. It is open by construction,
and not empty, since 0 € J. If J. is not closed in Jy, let tg € J. N (J.\ J2)
and suppose that ty > 0, say. By the local existence and smoothness F1X
exists and is smooth near [—¢,e] x {y := FI*(tp,2)} in R x M for some
e > 0, and by construction FI¥ exists and is smooth near [0ty — ¢] x {x}.
Since F1¥(—¢,%) = FI¥ (g — ¢, 2), we conclude for ¢ near [0,%y — €], 2/ near
x, and ' near [—¢,¢] that FIX(t + ¢/, 2') = FIX(#,F1¥(¢,2/)) exists and is
smooth. So ty € J., a contradiction. (]

3.8. Let X € X(M) be a vector field. Tts flow F1¥ is called global or complete
if its domain of definition D(X) equals R x M. Then the vector field X itself
will be called a complete vector field. In this case FI¥ is also sometimes called
exptX; it is a diffeomorphism of M. The support supp(X) of a vector field
X is the closure of the set {x € M : X(z) # 0}.

Lemma. A vector field with compact support on M is complete.

Proof. Let K = supp(X) be compact. Then the compact set 0 x K has
positive distance to the disjoint closed set (R x M)\ D(X) (if it is not
empty), so [—¢,¢] x K C D(X) for some € > 0. If ¢ K, then X (z) =0, so
FI1¥(t,x) = x for all t and R x {z} C D(X). So we have [—¢,e] x M C D(X).
Since F1X(t + €, z) = F1¥(t,F1¥ (¢, x)) exists for |t| < € by theorem
we have [—2e,2¢] x M C D(X) and by repeating this argument we get
R x M = D(X). O

So on a compact manifold M each vector field is complete. If M is not

compact and of dimension > 2, then in general the set of complete vector

fields on M is neither a vector space nor is it closed under the Lie bracket, as
z2 9

the following example on R? shows: X = ya% and Y = T gy are complete,

but neither X +Y nor [X,Y] is complete. In general one may embed R? as
a closed submanifold into M and extend the vector fields X and Y.

3.9. f-related vector fields. If f: M — M is a diffeomorphism, then for
any vector field X € X(M) the mapping Tf~! o X o f is also a vector field,
which we will denote by f*X. We also put f, X :=TfoXof ! =(f1)*X.
But if f : M — N is a smooth mapping and Y € X(N) is a vector field,
there may or may not exist a vector field X € X(M) such that the following
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diagram commutes:

(1) ™ TN

S

M —— N.

Definition. Let f : M — N be a smooth mapping. Two vector fields
X eX(M)andY € X(N) are called f-related if Tf o X =Y o f holds, i.e.,
if diagram () commutes.

Example. If X € X(M) and Y € X(N) and if X xY € X(M x N) is given

by (X xY)(z,y) = (X(z),Y(y)), then we have:

(2) X xY and X are pry-related.

(3) X xY and Y are pry-related.
)

(4) X and X x Y are ins(y)-related if and only if Y (y) = 0, where the
mapping ins(y) : M — M x N is given by ins(y)(z) = (x,y).

3.10. Lemma. Consider vector fields X; € X(M) and Y; € X(N) for
1 = 1,2, and a smooth mapping f : M — N. If X; and Y; are f-related
fori=1,2, then also A\1 X1+ Ao Xso and A\1Y1 + \oYs are f-related, and also
[X1, Xo] and [Y1, Y] are f-related.

Proof. The first assertion is immediate. To prove the second, we choose
h € C*(N). Then by assumption we have T'f o X; = Y; o f; thus:

(Xi(ho f))(x) = Xi(z)(ho f) = (Tof Xi(x))(h)
= (T'f o Xi)(z)(h) = (Yio f)(x)(h) = Yi(f(x))(h) = (Yi(h))(f(x)),
so Xi(ho f) = (Yi(h)) o f, and we may continue:
[X1, Xo](ho f) = X1(Xa(ho f)) — Xa(Xi(ho f))
= X1(Y2(h) o f) = Xa2(Y1(h) o f)
=Y1(Ya(h)) o f = Ya(Y1(h)) o f = [Y1,Y2](h) o f.
But this means T'f o [ X7, Xo] = [V1,Y3] o f. O

3.11. Corollary. If f : M — N is a local diffeomorphism (so (Tf)~*
makes sense for each x € M), then for Y € X(N) a vector field f*Y €
X(M) is defined by (f*Y)(z) = (Tof)" LY (f(z)). The linear mapping f* :
X(N) — X(M) is then a Lie algebra homomorphism, i.e.,

[ N, Y] = [f1, fYa].
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3.12. The Lie derivative of functions. For a vector field X € X(M)
and f € C°(M) we define Lx f € C*(M) by

Lx f(z):= Flof(FI¥(t, ) or
Lxf:= $|0(F1tx) [ = $|0(foFlg()-

Since F1¥ (t,z) is defined for small ¢, for any = € M, the expressions above
make sense.

Lemma. We have
FE) f = (FIN)*X(f) = X((FI)*f);
in particular for t = 0 we have Lx f = X (f) = df (X).

Proof. We have
FELN f(z) = df (& FIX(t,2)) = df (X (FIX (¢, 2))) = (FI)*(X f)(2).
From this we get Lx f = X(f) = df(
EFE)f = &o(FL o FI)* f = Lo (FIX)*(FL)* f = X((F11)*f). O

X) and then in turn

3.13. The Lie derivative for vector fields. For X,Y € X(M) we define
LxY € X(M) by

LxY = LIo(FL)Y = 4o(T(F1Y,) o Y o FIY),
and call it the Lie derivative of Y along X.

Lemma. We have
LxY =[X,Y],
SE)Y = (FI)" LxY = (FIX)*[X,Y] = Lx (FIF)"Y = [X, (FI})*Y].

Proof. For f € C°°(M) consider the mapping a(t,s) := Y (FI* (¢, z))(f o
F1X), which is locally defined near 0. It satisfies

a(t,0) = Y (FI¥ (t,2))(/),
a(0,s) = Y (x)(f o FI),
510(0,0) = OloY (FI* (£, 2))(f) = 0lo(Y [)(FI¥ (¢, 2)) = X (2)(Y ),
5:0(0,0) = LY (2)(f o FIY') = Y (2) §lo(f o FIY) = Y (2)(X f).
But on the other hand we have
2 Joa(u,—u) = ZloY (FIX (u,2))(f o FIX,)
= gulo (T(FIZ,) oY o FIY)_ (f) = (LxY)a(f),
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so the first assertion follows. For the second claim we compute as follows:
2(F)'Y = Z|o (T(FIY,) o T(FI,) o Y o FI o FL)
= T(F1¥,) o Z|o (T(FI¥,) oY o FI) o FI¥
= T(FI*,) o [X,Y] o FIX = (FIX)*[X,Y].
S(FI)'Y = 2[o(FIX)*(FIX)Y = Ly (FIY)'Y. O

3.14. Lemma. Let X € X(M) and Y € X(N) be f-related vector fields for
a smooth mapping f : M — N. Then we have (f o FIX)(z) = (F1Y of)(x)
whenever Flg( (x) is defined. In particular, if f is a diffeomorphism, we have

FI/'Y = f~1oF1Y of.

Proof. We have 4(foFLY)(z) = (T'f o L FIX)(z) = (T'f o X)(FI¥ (t,2)) =
(Y o f o FIX)(z) and f(F1%(0,z)) = f(:v) So t — f(F1¥(¢,z)) is an inte-
gral curve of the vector field Y on N with initial value f(x), so we have
fFIX(t,x)) = FI¥ (¢, f(x)) or foFL* =F1 of. O

3.15. Corollary. Let X,Y € X(M). Then the following assertions are
equivalent:
(1) LxY =[X,Y]=0.
(2) (FE*Y =Y wherever the felt hand side is defined.
(3) (FLX o F1Y)(z) = (F1Y oFL)(z) for all (t,s,x) such that one side is
defined even along [0,t] x [0,s]| fort,s > 0, similarly for other cases.

The open condition in ([B]) on (¢, s, z) is necessary; see [121], 9 19]: On R3\
{z —axis} the vector fields X = 0, — " +y 50, and Y = 0y + 0, commute
but their flows do not satisfy ([3) for all (¢, s, p).

Proof. (1) & (2) is immediate from lemmal|(3.13)l To see [2)) < (@), we note
that, locally under the open condition on (¢, s, x) FlX oFlY FIY o FlX if

X \*
and only if FIY = FIX,0FIY o FI¥ = FI™)™Y by lemma [[3.14)] which is
applicable since the integral curves exist; and this in turn is equivalent to
= (FL*)*Y. 0

x2+y

3.16. Theorem. Let M be a manifold, let ' : R x M D Ugyi — M be
smooth mappings for i = 1,...,k where each Uy is an open neighborhood
of {0} x M in R x M, such that each ¢y is a diffeomorphism on its domain,
o = Idur, and lop; = X; € X(M). We put [¢', o7 = [}, 1] := (¢]) ' o
()L o ! o pl. Then for each formal bracket expression P of length k we
have

ate]gP(got,...,cpf) for1 </{<k,



3. Vector Fields and Flows 29

P(Xla" Xk:) k'@t’“ |0P(90t7 ,‘Pf) E%(M)

in the sense explained in step[d of the proof. In particular we have for vector
fields X, Y € X(M)

0 = 0o(F1Y, o F1%, 0o F1Y o FIY),
(X, Y] = L2 |o(F1Y, o FI¥, o FIY 0 FI)).

Proof. Step 1. Let ¢ : R — M be a smooth curve. If ¢(0) = z € M,
d(0)=0,...,¢*1(0) = 0, then ¢®)(0) is a well defined tangent vector in
T,M which is given by the derivation f ~ (f o ¢)*)(0) at 2. Namely, we
have

k
((7:9) 00 ®(0) = (2 (g0 ) D(0) = 3 (4)(F 0 P (0)(g 0 )" (0)
— (f o)™ (O)g(x) + f(x)(g 0 )M (0),

since all other summands vanish: (f o)) (0) =0 for 1 < j < k.

Step 2. Let ¢ : Rx M D U, — M be a smooth mapping where U,
is an open neighborhood of {0} x M in R x M, such that each ¢; is a
diffeomorphism on its domain and pg = Idy;. We say that ¢; is a curve of
local diffeomorphisms through Idyy.

From step [l we see that if 2 B0 “lopr =0foralll <j <k, then X := k, 8tk |090t
is a well defined vector field on M. We say that X is the first nonvanishing
derivative at 0 of the curve ¢, of local diffeomorphisms. We may paraphrase
this as (0F|ow})f = k'\Lx f.

Claim 3. Let ¢y, 1 be curves of local diffeomorphisms through Idy; and
let f € C*(M). Then we have

k
OFlo(er o) f = Oflo( o i) f =D (5) (@ lowi)(0F lowi) S
7=0

Also the multinomial version of this formula holds:

. k! ; « j *
Ololpto o) f= Y, 0" o(@)) . (3 lo(¢t)")f.
; g J1eee e
Jite+ie=k
We only show the binomial version. For a function h(t,s) of two variables

we have
k

I i
Rn(tt) =7 (o oEIh(t,5)] o,
j=0
since for h(t,s) = f(t)g(s) this is just a consequence of the Leibniz rule, and
linear combinations of such decomposable tensors are dense in the space of all
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functions of two variables in the compact C'*°-topology, so that by continuity
the formula holds for all functions. In the following form it implies the claim:

k

Oflof (p(t,v(t,2))) =Y (50105 f(o(t, v(5, 7)) i=s=o.

J=0

Claim 4. Let ¢; be a curve of local diffeomorphisms through Idy; with
first nonvanishing derivative k!X = (9f|0g0t. Then the inverse curve of local
diffeomorphisms ¢, ! has first nonvanishing derivative —k!X = 8f|0g0; L for
we have got_l o @y = Id, so by claim B we get for 1 < j < k

0= o(p; o) f = Z (@Floer) (@ (o)) f

AN f+s003§!o(sot )*f,
e, 81{’09027 = _85‘0(%—1)7 as required.

Claim 5. Let ¢4 be a curve of local diffeomorphisms through Idy; with first
nonvanishing derivative m!X = 9/"|o¢¢, and let ¢, be a curve of local diffeo-
morphisms through Idy; with first nonvanishing derivative n!Y = 9} o).

Then the curve of local diffeomorphisms [y, ¢:] = ;' 0 ;' 0 4y 0 ¢y has
first nonvanishing derivative

(m+n)[X,Y] = 07" ™ol ¢i]-
From this claim the theorem follows.

By the multinomial version of claim B we have
Anf =0 oy o gt otrow) S
N * — *
- Z Z' i1 (at|090t)(a]|07/’t)(8t ’0( ) )(85‘0(1/}15 1) )f
itj+k+l=N

Let us suppose that 1 < n < m; the case m < n is similar. If N < n, all
summands are 0. If N = n, we have by claim |Z|

AN = (07109?) f + (OF lowd) f + @ lo(er ))f + (0 lo(vi ) f = 0.

If n < N < m, we have, using again claim [4

Anf= ), i (8j|0¢t)(8£|0(¢t V)V f + 6% ((0owl) f + (0 o(e7 D)) )
=N
= (O lo(Wh; o)) f +0=0.

Now we come to the difficult case m,n < N <m + n.

AN = 00wy oo o)+ (W)@ 0w @ ™ oWy oyt o))



3. Vector Fields and Flows 31

6)  + (3 o),

by claim B}, since all other terms vanish; see () below. By claim [3] again we
get:

N lo(w; oo onh) f

= Y @@

jAkA=N

= > (D@l @flotwr ) f

j+e=N
+ (@™ o) (O o(er ) f
+ ()@l )@ ™o ) F + 0N lo(r ) f

— 04+ (M@ ovr)mL_xf + (V)mlL_x (@ o)) f
+ 0N o(e V) f

= 0N n(m+n)(LxLy — LyLx)f + 0 o(ey )* f

(7) = Opn (m A+ 0 Lix v+ 0 ol 1) f-
From the second expression in ([7]) one can also read off that
(8) O oy o o) f =0 ol 'S

If we put () and (®) into (@), we get, using claims Bl and [ again, the final
result which proves claim ] and the theorem:
ANF = G (m et m) Ly f + 0 (e ) f
+ (W)@ @ T oler 1)) f + (0 lowr) f
= bpin(m + n)\Lixyf + N oo o pe)* f
= Opn(m + )Ly f+0. O

3.17. Theorem. Let X1,..., X, be vector fields on M defined in a neigh-
borhood of a point x € M such that X1(z),..., X;m(x) are a basis for T, M
and [X;, X;] =0 for alli,j.

Then there is a chart (U,u) of M centered at x such that X;|U = 8(21"

Proof. For small t = (t!,...,t™) € R™ we put
FE ") = (FL o+ o FINM) ().
By [(3.15)| we may interchange the order of the flows arbitrarily. Therefore

Dft, .t = L (FLY oFLY o )(z) = Xi((FI o+ )(2)).
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So Ty f is invertible, f is a local diffeomorphism, and its inverse gives a chart
with the desired properties. O

3.18. The theorem of Frobenius. The next three subsections will be de-
voted to the theorem of Frobenius for distributions of constant rank. We will
give a powerful generalization for distributions of nonconstant rank below
in -

Let M be a manifold. By a wvector subbundle E of T M of fiber dimension
k we mean a subset & C T'M such that each F, := ENT,M is a linear
subspace of dimension k£ and such that for each zim M there are k vector
fields defined on an open neighborhood of M with values in E and spanning
E, called a local frame for E. Such an FE is also called a smooth distribution
of constant rank k. See section for a thorough discussion of the notion of
vector bundles. The space of all vector fields with values in E will be called
I'(E).

The vector subbundle E of T'M is called integrable or involutive, if for all
X,Y € I'(F) we have [X,Y] e I'(E).

Local version of Frobenius’s theorem. Let E C T M be an integrable
vector subbundle of fiber dimension k of T M.

Then for each x € M there exists a chart (U,u) of M centered at x with
w(U) = VxW C RExR™* such that T(u='(V x{y})) = E|(v"(V x{y}))
for each y € W.

Proof. Let z € M. We choose a chart (U,u) of M centered at x such
that there exist k vector fields Xi,..., X} € I'(E) which form a frame of
E|U. Then we have X; = 370 1fz]auy for f/ € C°°(U). Then f = (f7) is

a (k x m)-matrix valued smooth function on U which has rank k£ on U. So
some (k x k)-submatrix, say the top one, is invertible at = and thus we may
take U so small that this top (k x k)-submatrix is invertible everywhere on
U. Let g = (gf) be the inverse of this submatrix, so that the (k x m)-matrix

f.g is given by
I
f9= < k>
We put

0
@ Y_ZQX ”Z;j aul:6u1+zh67

Jj= p>k+1

We claim that [YZ,Y]] =0 for all 1 < i,j < k. Since F is integrable, we
have [V;,Y;] = S8, cZ]Yl. But from ([Il) we conclude (using the coordinate
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formula in [(3.4)) that [Y;,Y;] = >° o) 4 apa%p. Again by () this implies
that cﬁj =0 for all /, and the claim follows.

Now we consider an (m — k)-dimensional linear subspace W7 in R which is
transversal to the k vectors Tpu.Y;(x) € ToR™ spanning R¥, and we define
f:VxW —=U by

@t . tFy) = (Flz;1 oFlz;Q 0...0 FlZf) (u™(y)),

where t = (t!,...,t*) € V, a small neighborhood of 0 in R¥ and where
y € W, a small neighborhood of 0 in Wj. By |[(3.15)| we may interchange the
order of the flows in the definition of f arbitrarily. Thus

0 0 .
Sid ) = o (FIT P oo ) (! (9)) = YilF (8, w),

(fykf(o,y) - fyk(u-l)(y),

and so Ty f is invertible and the inverse of f on a suitable neighborhood of
x gives us the required chart. O

3.19. Remark. Any charts (U,u : U — V x W C R*¥ x R™*) as con-
structed in theoremwith V and W open balls is called a distinguished
chart for E. The submanifolds v~ (V x {y}) are called plaques. Two plaques
of different distinguished charts intersect in open subsets in both plaques or
not at all: This follows immediately by flowing a point in the intersection
into both plaques with the same construction as in the proof of Thus
an atlas of distinguished charts on M has chart change mappings which
respect the submersion R* x R™% — R™* (the plaque structure on M).
Such an atlas (or the equivalence class of such atlases) is called the foliation
corresponding to the integrable vector subbundle E C T M.

3.20. Global version of Frobenius’s theorem. Let E C T'M be an inte-
grable vector subbundle of T M. Then, using the restrictions of distinguished
charts to plaques as charts, we get a new structure of a smooth manifold on
M, which we denote by Mp. If E # T M, the topology of Mg is finer than
that of M, Mg has uncountably many connected components called the leaves
of the foliation, and the identity induces a bijective immersion Mg — M.
Each leaf L is a second countable initial submanifold of M, and it is a mazx-
imal integrable submanifold of M for E in the sense that T,L = E,, for each
x € L.

Proof. Let (Uy, g : Uy — Vo x W, € RF x R™7F) be an atlas of distin-
guished charts corresponding to the integrable vector subbundle £ C T'M,
as given by theorem Let us now use for each plaque the homeomor-
phisms pry oug|(u; (Ve x {y})) : uz'(Vy x {y}) — Vo € R™* as charts;
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then we describe on M a new smooth manifold structure Mg with finer
topology which however has uncountably many connected components, and
the identity on M induces a bijective immersion Mg — M. The connected
components of Mg are called the leaves of the foliation.

In order to check the rest of the assertions made in the theorem, let us
construct the unique leaf L through an arbitrary point x € M: choose a
plaque containing x and take the union with any plaque meeting the first
one, and keep going. Now choose y € L and a curve ¢ : [0,1] — L with
¢(0) = z and ¢(1) = y. Then there are finitely many distinguished charts
(Ur,u1), ..., (Un,uy) and ay, ..., a, € R™ ¥ such that = € ul_l(Vl x {a1}),
y € u, 1 (V,, x {a,}) and such that for each i

(1) up (Vi x {ai}) Nuigy (Vier x {ain}) # 0.

Given u;, u;t+1, and a;, there are only countably many points a;41 such
that (I]) holds: If not, then we get a cover of the the separable submanifold
u; Vi x {a;}) N Ui41 by uncountably many pairwise disjoint open sets of
the form given in (), which contradicts separability.

Finally, since (each component of) M is a Lindel6f space, any distinguished
atlas contains a countable subatlas. So each leaf is the union of at most
countably many plaques. The rest is clear. ([

3.21. Singular distributions. Let M be a manifold. Suppose that for
each x € M we are given a vector subspace FE, of T, M. The disjoint union
E = || ¢y Bz is called a (singular) distribution on M. We do not suppose
that the dimension of F, is locally constant in x.

Let X;oc(M) denote the set of all locally defined smooth vector fields on
M, ie., Xjoc(M) = |JX(U), where U runs through all open sets in M.
Furthermore let X denote the set of all local vector fields X € X,.(M) with
X (z) € E; whenever defined. We say that a subset V C Xg spans E if for
each z € M the vector space E; is the linear hull of the set {X (z) : X € V}.
We say that E is a smooth distribution if Xg spans E. Note that every subset
W C Xjoe(M) spans a distribution denoted by E (W), which is obviously
smooth (the linear span of the empty set is the vector space 0). From now
on we will consider only smooth distributions.

An integral manifold of a smooth distribution E is a connected immersed
submanifold (N, i) (see such that T,i(T,N) = By for all x € N.
We will see in theorem below that any integral manifold is in fact
an initial submanifold of M (see , so that we need not specify the
injective immersion i. An integral manifold of E is called mazimal if it is
not contained in any strictly larger integral manifold of FE.

3.22. Lemma. Let E be a smooth distribution on M. Then we have:



3. Vector Fields and Flows 35

(1) If (N,i) is an integral manifold of E and X € Xpg, then i*X makes
sense and is an element of Xioo(N), which is i|i~1(Ux)-related to X,
where Ux C M s the open domain of X.

(2) If (N;,i;) are integral manifolds of E for j = 1,2, then iy (i1 (N1) N
io(N2)) and iy (i1(N1) Nig(Nz)) are open subsets in Ny and No, re-
spectively; furthermore i2_1 011 18 a diffeomorphism between them.

(3) If x € M s contained in some integral submanifold of E, then it is
contained in a unique mazximal one.

Proof. () Let Ux be the open domain of X € Xg. If i(x) € Ux for z € N,
we have X(i(z)) € Ejp) = Tyi(TxN), so i*X(z) = ((Tpi) ™ o X o i)(x)
makes sense. The vector field ¢* X is clearly defined on an open subset of IV
and is smooth.

@) Let X € Xg. Then i X € Xi0c(N;) and is i;-related to X. So by lemma
(3.14)| for 7 = 1,2 we have
X
ijoFI7" = FIX 0.
Now choose x; € N; such that i1(x1) = i2(x2) = x¢g € M and choose vector
fields X1,...,X, € Xg such that (Xi(zo),...,Xn(z0)) is a basis of Ey,.
Then
. . X,

Fit ") = (F1) o o FLL ") (@)
is a smooth local mapping R" — N; defined near zero. Since obviously
{;%\ofj = i; X(z;) for j = 1,2, we see that f; is a diffeomorphism near 0.
Finally we have

(i 0o fi)(thy ..., #7) = (i3  odt o FIIN 0 o FIL™) (1)
= (iy ' o FIi" o+ o FIj oiy) (1)
— (FI2% o o FIZY" 0iy ' 0dy) (1)
= fQ(tl, co ).

So iy 154, is a diffeomorphism, as required.

@) Let N be the union of all integral manifolds containing z. Choose the
union of all the atlases of these integral manifolds as atlas for /N, which is a
smooth atlas for N by (2]). Note that a connected immersed submanifold of
a separable manifold is automatically separable (since it carries a Riemann
metric). O

3.23. Integrable singular distributions and singular foliations. A

smooth singular distribution £ on a manifold M is called integrable if each
point of M is contained in some integral manifold of E. By |(3.22.3)| each
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point is then contained in a unique maximal integral manifold, so the max-
imal integral manifolds form a partition of M. This partition is called the
(singular) foliation of M induced by the integrable (singular) distribution
FE, and each maximal integral manifold is called a leaf of this foliation. If
X € Xpg, then by the integral curve ¢t — F1¥(t,z) of X through
x € M stays in the leaf through .

Let us now consider an arbitrary subset V C Xj,.(M). We say that V is
stable if for all X,Y € V and for all ¢ for which it is defined the local vector
field (F1¥)*Y is again an element of V.

If W C Xjo.(M) is an arbitrary subset, we call S(W) the set of all local
vector fields of the form (Flffl 0---0 Flik)*Y for X;,Y € W. By lemma

the flow of this vector field is
FI((FI 0. o FI)F)*Y,t) = FI*} o--- o FI¥} oFLY oFI\ 0. o FI*,

so S(W) is the minimal stable set of local vector fields which contains W.

Now let F' be an arbitrary distribution. A local vector field X € Xy, (M) is

called an infinitesimal automorphism of F if T, (FLX)(F,) C Forx (1.

ever defined. We denote by aut(F') the set of all infinitesimal automorphisms
of F. By arguments given just above, aut(F') is stable.

) when-

3.24. Lemma. Let E be a smooth distribution on a manifold M. Then the
following conditions are equivalent:

(1) E is integrable.

(2) Xg is stable.

(3) There exists a subset W C Xjoc(M) such that SOV) spans E.
(4) aut(E)NXg spans E.

Proof. (Il) = (@) Let X € X and let L be the leaf through x € M, with
i : L — M the inclusion. Then F1¥, 0i = i o FI";X by lemma [(3.14)] so we
have
T, (FIX)(E,) = T(FIX,).Tyi.T, L = T(F1%, 0i).T,, L
= Ti.T,(F1"). T, L
= Ti.Tpiex (4 )L = Epix (—1,0)-

This implies that (FI1X)*Y € X for any Y € Xg.
@) = (@) In fact (@) says that Xp C aut(E).

@) = @) We can choose W = aut(E) N Xg: For X,Y € W we have
(FIX)*Y € Xp; so W C S(W) C X and E is spanned by W.

B) = (@) We have to show that each point € M is contained in some
integral submanifold for the distribution E. Since S(W) spans E and is
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stable, we have
(5) T(FIY).Ey = Egyx ;)

for each X € S(OW). Let dim E; = n. There are Xi,...,X, € S(W) such
that X (z),...,X,(x) is a basis of E,, since F is smooth. As in the proof

of|(3.22.2)| we consider the mapping

F ") = (FLY o o FI") (),
defined and smooth near 0 in R™. Since the rank of f at 0 is n, the image
under f of a small open neighborhood of 0 is a submanifold N of M. We

claim that N is an integral manifold of E. The tangent space T )N
is linearly generated by

D (FIX o o FIN™)(2) = T(FLY 0+ o FL* ) X4 (FLEF o - 0 FIS" ) ()
* X — * n
= ((FL5)" - (FIR ) X (F(E . ™)
Since S(W) is stable, these vectors lie in Ffqy. From the form of f and from

() we see that dim E 7y = dim By, so these vectors even span Ey ;) and we
have Ty N = Ey(;) as required. ([

3.25. Theorem (Local structure of singular foliations). Let E be an
integrable (singular) distribution of a manifold M. Then for each x € M
there exist a chart (U,u) with w(U) = {y € R™ : |y*| < & for all i} for some
€ > 0 and a countable subset A C R™™", such that for the leaf L through x
we have

wUNL)={yecuU): ", ... ,.y") e AL
Each leaf is an initial submanifold.
If furthermore the distribution E has locally constant rank, this property
holds for each leaf meeting U with the same n.

This chart (U, u) is called a distinguished chart for the (singular) distribution
or the (singular) foliation. A connected component of UNL is called a plaque.

Proof. Let L be the leaf through z, dimL = n. Let Xi,...,X, € Xg be
local vector fields such that X;(x),..., X, (z) is a basis of E,. We choose a
chart (V,v) centered at  on M such that the vectors

Xl(x), PP 7Xn<1')7 %’l’? ey &l}im‘x
form a basis of T, M. Then
F ™) = (FL o o L) (070, ..., 0,87 L ¢™))

is a diffeomorphism from a neighborhood of 0 in R onto a neighborhood of
x in M. Let (U,u) be the chart given by f~!, suitably restricted. We have

y€L<:>(Flﬁlo-~oFlf£”)(y) eL
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for all y and all t', ..., t" for which both expressions make sense. So we have
f(t ... t™) € L f(0,...,0,t"" ... t"™) e L,

and consequently L N U is the disjoint union of connected sets of the form
{y € U: (" (y),...,u™(y)) = constant}. Since L is a connected im-
mersive submanifold of M, it is second countable and only a countable
set of constants can appear in the description of w(L N U) given above.
From this description it is clear that L is an initial submanifold since
u(Ce(LNU)) =u(U) N (R™ x0).

The argument given above is valid for any leaf of dimension n meeting U, so
also the assertion for an integrable distribution of constant rank follows. [

3.26. Involutive singular distributions. A subset V C X;,.(M) is called
involutive if [X,Y] € V for all X,Y € V. Here [X,Y] is defined on the
intersection of the domains of X and Y.

A smooth distribution E on M is called inwvolutive if there exists an involutive
subset V C Xj,.(M) spanning F.

For an arbitrary subset W C X;o.(M) let £(WW) be the set consisting of all
local vector fields on M which can be written as finite expressions using Lie
brackets and starting from elements of W. Clearly £(W) is the smallest
involutive subset of X;,.(M) which contains W.

3.27. Lemma. For each subset W C Xjo.(M) we have
EW) C E(LW)) C E(S(W)).
In particular we have E(S(W)) = E(L(S(W))).

Proof. We will show that for X,Y € W we have [X,Y] € Xpgsw)), for
then by induction we get L(W) C Xg(sowy) and E(L(W)) C E(S(WV)).

Let x € M; since by E(S(W)) is integrable, we can choose the leaf
L through z, with the inclusion i. Then ¢*X is ¢-related to X and *Y is
i-related to Y'; thus by the local vector field [i*X,i*Y] € Xpc(L) is
i-related to [X,Y], and [X,Y](z) € E(S(W))., as required. O

3.28. Theorem. Let V C Xj,.(M) be an involutive subset. Then the
distribution E(V) spanned by V is integrable under each of the following
conditions.

(1) M is real analytic and V consists of real analytic vector fields.

(2) The dimension of E(V) is constant along flow lines of vector fields in V.
Proof. (Il) For X,Y € V we have %(Fl;fx)*Y = (Flf{)*EXY; consequently
%(Fltx)*Y = (FLY)*(Lx)*Y, and since everything is real analytic, we get
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for € M and small ¢

Xy th d* X t*

(F1;7)"Y (= )— oo F) Y (2) = Y = (Lx) Y (2).
k: dt k!
k>0

Since V is involutive, all (L'X)kY € V. Therefore we get (FLX)*Y(z) €
E(V), for small t. By the flow property of FI¥ the set of all ¢ satisfying
(F1;)*Y (z) € E(V), is open and closed, so it follows that[(3.24.2)|is satisfied
and thus E(V) is integrable.
@) We choose Xi,...,X,, € V such that X;(z),...,X,(x) is a basis of
E(V)g. For any X € V, by hypothesis, E(V)px(,,) has also dimension n
and admits the vectors X;(FI1% (¢, z)),..., X, (F1¥(t,2)) as basis, for small
t. So there are smooth functions f;;(t) such that

(X, X;)(F1X (¢, ) wa X;(FIX(t, ).

Therefore,
LT(FY,). X (FI¥ (¢, 2)) = T(FIX,).[X, X;](FI¥ (¢, 2))

n

= Z fij(t) FIX j(FlX(ta x))-

So the T} M-valued functions g;(t) = T(F1%,).X;(F1% (t, z)) satisfy the linear
ordinary differential equation %gi(t) = >i_ fij(t)g;(t) and have initial
values in the linear subspace E(V);, so they have values in it for all small
t. Therefore T(F1%,) BE(V)px (t) C E(V)o for small ¢. Using compact time
intervals and the flow property, one sees that condition is satisfied
and E(V) is integrable. O

3.29. Examples. (1) The singular distribution spanned by W C X,.(R?)
is involutive, but not integrable, where W consists of all global vector fields
with support in R? \ {0} and the field a =51; the leaf through 0 should have

dimension 1 at 0 and dimension 2 elsewhere.

(2) Let f : R — R be a smooth function with f(z!) = 0 for z! < 0 and
f(xz') > 0 for 2! > 0. Then the singular distribution on R? spanned by the
two vector fields X (2!, 2%) = 8%1 and Y (z!,2?) = f(z )? is involutive7
but not integrable. Any leaf should pass (0,z2) tangentially to a =21, should
have dimension 1 for z! < 0 and should have dimension 2 for z! > 0.

3.30. By a time dependent vector field on a manifold M we mean a smooth
mapping X : J x M — TM with wp; 0o X = pre, where J is an open interval.
An integral curve of X is a smooth curve ¢ : I — M with ¢(t) = X (¢, ¢(t))
for all t € I, where I is a subinterval of J.
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There is an associated vector field X € X(J x M), given by X(t,z) =
(&, X(t,x)) € TR x T, M.

By the evolution operator of X we mean the mapping ®X : J x J x M —
M, defined in a maximal open neighborhood of A; x M (where A is the
diagonal of J) and satisfying the differential equation

G0N (t,5,0) = X (t, 0¥ (t,5, 7))
X (s,5,2) = .

It is easily seen that (¢, ®X(t,s,2)) = FIX(t —8,(s,x)), so the maximally
defined evolution operator exists and is unique, and it satisfies

@fs = <I>t)’(r o ®X where @ffs(w) = ®(t, s, z),

r,87

whenever one side makes sense (with the restrictions of [(3.7))).
Examples and Exercises

3.31. Compute the flow of the vector field & (z,y) := y(% in R2. Isit a
global flow? Answer the same questions for & (z,y) = %28% Now com-

pute [£1,&2] and investigate its flow. This time it is not global! In fact,

FlFl’EQ](x, y) = (ﬁzt, d(te + 2)2>. Investigate the flow of & + &. It is not

global either! Thus the set of complete vector fields on R? is neither a vector
space nor closed under the Lie bracket.

3.32. Driving a car. The phase space consists of all (z,y,1, ) € R? x
St x (=7 /4,7/4), where

(x,9) is the position of the midpoint of the rear axle,
¥ is the direction of the car axle,
¢ is the steering angle of the front wheels.
(z,y) ¢
) g

6 = 0 direction

There are two ‘control’ vector fields:

_ 0
steer = 26



3. Vector Fields and Flows 41

drive = cos(z?)% + Sin(z?)a% + tan(qﬁ)%% (why?).

Compute [steer,drive] =: park (why?) and [drive, park], and interpret the
results. Is it not convenient that the two control vector fields do not span
an integrable distribution?

3.33. Describe the Lie algebra of all vector fields on S' in terms of Fourier
expansion. This is nearly (up to a central extension) the Virasoro algebra
of theoretical physics.






CHAPTER II.
Lie Groups and Group
Actions

4. Lie Groups 1

4.1. Definition. A Lie group G is a smooth manifold and a group such
that the multiplication u : G x G — G is smooth. We shall see in a moment
that then also the inversion v : G — G turns out to be smooth.

We shall use the following notation:

i G x G — G, multiplication, u(x,y) = z.y.
te : G — G, left translation, p,(x) = a.z.

u® : G — G, right translation, p*(z) = z.a.

v:G — G, inversion, v(x) = 1.

e € (3, the unit element.

Then we have

fla © Hb = Habs pt ot = b, oy = 0
1

fo' = pg-1, (u) "t =pt .

If ¢ : G — H is a smooth homomorphism between Lie groups, then we have
PO Ha = flp(a) O Ps PO UL = /,L‘p(a) o ¢ and thus also Tp.Tua = Tpgq)-Tep,
etc. So T,y is injective (surjective) if and only if T, is injective (surjective)
for all a € G.

43
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4.2. Lemma. The tangent mapping T pp @ ToG x ToG — TopG of the
multiplication u is given by

T(a,b):U“(Xav YE}) = Ta(ﬂb)~Xa + Tb(ua).)fb.

Proof. Let ri, : G — G x G, rig(x) = (a,z) be the right insertion and let
lip : G — G x G, lip(x) = (x,b) be the left insertion. Then we have

T(a,b)ﬂ-(Xaa Yl-v) = T(a,b)ﬂ'(Ta(lib)-Xa + Tb(ria)-i/b)
= To(poliy).Xq + Ty(porig).Yy = Tu(1®). Xo + Ty(pta).Yy. O

4.3. Corollary. The inversion v : G — G is smooth and
Tov = —To(u" ) Tulpta—1) = —Te(pra-1)- Ta(p®

—1

).

Proof. The equation u(z,v(r)) = e determines v implicitly. The mapping
v is smooth in a neighborhood of e by the implicit function theorem since
To(ule, ) = To(pe) = Id. From (v o pg)(z) = 2 L.at = (u* ' ov)(z)
we may conclude that v is everywhere smooth. Now we differentiate the
equation u(a,v(a)) = e; this gives in turn

-1
0e = T(a7a71)u.(Xa,Tay.Xa) =T, (u* )Xo+ Ty—1(pta) Tav.Xa,
Tov.Xe = —To(pa) T )Xo = —To(pg—1).To(p® ). X,. O

4.4. Example. The general linear group GL(n,R) is the group of all in-
vertible real n x n-matrices. It is an open subset of L(R",R"™), given by
det # 0 and a Lie group.

Similarly GL(n,C), the group of invertible complex n x n-matrices, is a Lie
group; also GL(n,H), the group of all invertible quaternionic n X n-matrices,
is a Lie group, since it is open in the real Banach algebra Ly (H", H") as a
glance at the von Neumann series shows; but the quaternionic determinant
is a more subtle instrument here.

4.5. Example. The orthogonal group O(n,R) is the group of all linear
isometries of (R™,( , )), where ( , ) isthestandard positive definite in-
ner product on R™. The special orthogonal group SO(n,R) := {A € O(n,R) :
det A = 1} is open in O(n,R), since we have the disjoint union

O(n,R) = SO(n,R) L (‘01 Hno_l) SO(n,R),

where I}, is short for the identity matrix Idzx. We claim that O(n,R) and
SO(n,R) are submanifolds of L(R™, R™). For that we consider the mapping
f : L(R",R") — L(R™,R"), given by f(A) = AT.A. Then O(n,R) =
f71(1,); so O(n,R) is closed. Since it is also bounded, O(n,R) is compact.
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We have df (A).X = X T.A+A".X,so kerdf(I,) = {X : X"+ X = 0} is the
space 0(n, R) of all skew-symmetric n X n-matrices. Note that dimo(n,R) =

3(n — 1)n. If A is invertible, we get

kerdf(A) ={Y :YT.A+ AT Y =0} ={Y : A".Y € o(n,R)}
= (A™HT.o(n,R).

The mapping f takes values in Lgym(R™,R™), the space of all symmetric
n x n-matrices, and dim ker df (4) + dim Ly, (R", R") = $(n—1)n+ in(n+
1) = n? = dim L(R",R"), so f : GL(n,R) — Lgy,(R™",R") is a submersion.
Since obviously f~!(I,) C GL(n,R), we conclude from [(1.12)|that O(n,R) is
a submanifold of GL(n,R). It is also a Lie group, since the group operations
are smooth as the restrictions of the ones from GL(n,R).

4.6. Example. The special linear group SL(n,R) is the group of all n x n-
matrices of determinant 1. The function det : L(R",R") — R is smooth
and ddet(A)X = Trace(C(A).X), where C’(A);, the cofactor of A?, is the

determinant of the matrix, which results from putting 1 instead of Ag into
A and 0 in the rest of the j-th row and the i-th column of A; see
We recall Cramer’s rule C(A).A = A.C(A) = det(A).I,,. So if C(A) # 0
(i.e., rank(A) > n — 1), then the linear functional df(A) is nonzero. So
det : GL(n,R) — R is a submersion and SL(n,R) = (det)~1(1) is a manifold
and a Lie group of dimension n? — 1. Note finally that Ty, SL(n,R) =
ker ddet(l,,) = {X : Trace(X) = 0}. This space of traceless matrices is
usually called sl(n, R).

4.7. Example. The symplectic group Sp(n,R) is the group of all 2n x 2n-
matrices A such that w(Axz, Ay) = w(z,y) for all z,y € R?", where w is a
(the standard) nondegenerate skew-symmetric bilinear form on R?".

Such a form exists on a vector space if and only if the dimension is even, and
on R™ x (R™)* the form w((z, z*), (y,y*)) = (z,y*)—(y, 2*) (where we use the
duality pairing), in coordinates w((z*)¥, (y?)5%,) = Y_i, (a'y™ T —a"Ty?),
is such a form. Any symplectic form on R?” looks like that after choosing
a suitable basis; see [[31.2)] and [(31.4)] Let (e;)??; be the standard basis in

R2", Then we have

wene = ()=

and the matrix J satisfies J' = —J, J? = —I,, J(m) = (_y) in R" x R",

Y T
and w(z,y) = (x, Jy) in terms of the standard inner product on R?".

For A € L(R?*" R?") we have w(Az, Ay) = (Az, JAy) = (x, AT JAy). Thus
A € Sp(n,R) if and only if ATJA = J.
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We consider now the mapping f : L(R?",R?") — L(R*" R?") given by
f(A) = ATJA. Then f(A)T = (ATJA)T = —ATJA = —f(A), so f takes
values in the space 0(2n, R) of skew-symmetric matrices. We have df (4)X =
XTJA+ ATJX, and therefore

ker df (Ip,) = {X € L(R*™ R*): X "J + JX = 0}
={X : JX is symmetric} =: sp(n,R).
We see that dimsp(n,R) = 2n(2;+1) = (2";1). Furthermore kerdf(A) =
{X:XTJA+ATJX = 0} and the mapping X +— AT .JX is an isomorphism
ker df (A) — Lgym (R?",R?") if A is invertible. Thus dimker df(4) = (**")
for all A € GL(2n,R). If f(A) = J, then AT JA = J, so A has rank 2n and
is invertible, and we have dim ker df (A)+dimo(2n,R) = (2";1) + % =
4n? = dim L(R?",R?*"). So f : GL(2n,R) — 0(2n,R) is a submersion and
f~1(J) = Sp(n,R) is a manifold and a Lie group. It is the symmetry group
of ‘classical mechanics’.

4.8. Example. The complex general linear group GL(n, C) of all invertible
complex n X n-matrices is open in L¢(C™, C"™), so it is a real Lie group of
real dimension 2n?; it is also a complex Lie group of complex dimension n?.
The complex special linear group SL(n,C) of all matrices of determinant 1
is a submanifold of GL(n, C) of complex codimension 1 (or real codimension
2).

The complex orthogonal group O(n,C) is the set
{A e L(C",C") : g(Az, Aw) = g(z,w) for all z,w},

where g(z,w) = > I, z'w’. This is a complex Lie group of complex di-
mension (n_21)n, and it is not compact. Since O(n,C) = {A: ATA =1,},
we have 1 = detc(I,) = detc(ATA) = detc(A4)?, so detc(A) = £1. Thus
SO(n,C) :={A € O(n,C) : detc(A) = 1} is an open subgroup of index 2 in
O(n,C).

The group Sp(n,C) = {A € Lc(C?",C?") : ATJA = J} is also a complex
Lie group of complex dimension n(2n + 1).

The groups treated here are the classical complex Lie groups. The groups
SL(n,C) for n > 2, SO(n,C) for n > 3, Sp(n,C) for n > 4, and five more
exceptional groups exhaust all simple complex Lie groups up to coverings.

4.9. Example. Let C™ be equipped with the standard Hermitian inner
product (z,w) = Y%  Z'w'. The unitary group U(n) consists of all com-
plex n x n-matrices A such that (Az, Aw) = (z,w) for all z, w holds, or
equivalently U(n) = {A: A*A =1,}, where A* = a’.
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We consider the mapping f : Le(C",C") — Lc(C",C"), given by f(A) =
A*A. Then f is smooth but not holomorphic. Its derivative is df(4)X =
X*A+ A*X, so kerdf(I,,) = {X : X* + X = 0} =: u(n), the space of all
skew-Hermitian matrices. We have dimg u(n) = n2. As above we may check
that f : GL(n,C) — Lperm(C™, C") is a submersion, so U(n) = f~1(L,) is a

compact real Lie group of dimension n?.

The special unitary group is SU(n) = U(n) N SL(n,C). For A € U(n) we
have | detc(A)| = 1; thus dimg SU(n) = n? — 1.

4.10. Example. The group Sp(n). Let H be the division algebra of
quaternions. We will use the following description of quaternions: Let
(R3,( , ),A) be the oriented Euclidean space of dimension 3, where A
is a determinant function with value 1 on a positive oriented orthonormal
basis. The vector product on R is then given by (X x Y, Z) = A(X,Y, Z).
Now we let H := R3 x R, equipped with the following product:

(X,8)(Y,t) = (X x Y +sY +tX, st — (X,Y)).

Now we take a positively oriented orthonormal basis of R?, call it (i, j, k),
and identify (0,1) with 1. Then the last formula implies visibly the usual
product rules for the basis (1,4, 7, k) of the quaternions.

The group Sp(1) := S3 C H = R* is then the group of unit quaternions,
obviously a Lie group.

Now let V' be a right vector space over H. Since H is not commutative, we
have to distinguish between left and right vector spaces and we choose right
ones as basic, so that matrices can multiply from the left. By choosing a
basis, we get V = R" @g H = H". For u = (u'), v = (v") € H" we put
(u,v) == > uv'. Then ( , ) is R-bilinear and (ua,vb) = @(u,v)b for
a,be H.

An R linear mapping A : V — V is called H-linear or quaternionically linear
if A(ua) = A(u)a holds. The space of all such mappings shall be denoted
by Ly (V,V). It is real isomorphic to the space of all quaternionic n x n-
matrices with the usual multiplication, since for the standard basis (e;)7;
in V =H" we have A(u) = A(X; eju’) = 2, Alei)u’ = Y, s ejAlu’. TEV is
a right quaternionic vector space, then Ly (V, V') is only a real vector space
— any further structure must come from a second (left) quaternionic vector
space structure on V.

The group GL(n,H) of invertible H-linear mappings of H", is a Lie group,
because it is GL(4n,R) N Ly(H",H") which is open in Ly (H", H").

A quaternionically linear mapping A is called isometric or quaternionically
unitary if (A(u), A(v)) = (u,v) for all u,v € H". We denote by Sp(n) the
group of all quaternionic isometries of H", the quaternionic unitary group.
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The reason for its name is that Sp(n) = Sp(n,C) N U(2n), since we can
decompose the quaternionic Hermitian form ( , ) into a complex Hermit-
ian one and a complex symplectic one. Also we have Sp(n) C O(4n,R),
since the real part of ( , ) is a positive definite real inner product. For
A € Ly(H", H") we put A* := A", Then we have (u, A(v)) = (A*(u),v), so
(A(u), A(v)) = (A*A(u),v). Thus A € Sp(n) if and only if A*A = Id.
Again f : Ly(H",H") — Luperm( ", H") = {A : A* = A}, given by
f(A) = A*A, is a smooth mapping with df(A)X = X*A + A*X. So we
have kerdf(Id) = {X : X* = —X} =: sp(n), the space of quaternionic
skew-Hermitian matrices. The usual proof shows that f has maximal rank
on GL(n,H), so Sp(n) = f~'(Id) is a compact real Lie group of dimension
2n(n — 1) + 3n.

The groups SO(n,R) for n > 3, SU(n) for n > 2, Sp(n) for n > 2 and
the real forms of the five exceptional complex Lie groups exhaust all simple
compact Lie groups up to coverings.

4.11. Invariant vector fields and Lie algebras. Let G be a (real) Lie
group. A vector field £ on G is called left invariant if p & = € for all a € G,
where p'¢ = T(p,-1) 0 € o pg as in section Since by we have
uilé,ml = [, pinl, the space X1 (G) of all left invariant vector fields on
G is closed under the Lie bracket, so it is a Lie subalgebra of X(G). Any
left invariant vector field £ is uniquely determined by £(e) € T.G, since
€(a) = Te(pa)-£(e). Thus the Lie algebra Xp(G) of left invariant vector
fields is linearly isomorphic to T.G, and on T.G the Lie bracket on X1 (G)
induces a Lie algebra structure, whose bracket is again denoted by [ , |.
This Lie algebra will be denoted as usual by g, sometimes by Lie(G).

We will also give a name to the isomorphism with the space of left invariant
vector fields: L : g — X1(G), X — Lx, where Lx(a) = Tepq.X. Thus
[X, Y] = [LX,Ly](e).

A vector field n on G is called right invariant if (u*)*n =n for all a € G. If
¢ is left invariant, then v*¢ is right invariant, since v o u® = p,-1 o v implies
that (u®)*v*¢ = (v o u®)*¢ = (ug—1 o v)*E = v*(ug—1)*¢ = v*¢. The right
invariant vector fields form a Lie subalgebra Xr(G) of X(G), which is again
linearly isomorphic to T,G and induces also a Lie algebra structure on T.G.
Since v* : X1(G) — Xg(G) is an isomorphism of Lie algebras by
T.v = —Id : T.G — T,G is an isomorphism between the two Lie algebra
structures. We will denote by R : g = T.G — Xg(G) the isomorphism
discussed, which is given by Rx(a) = T.(u%).X.

4.12. Lemma. If Lx is a left invariant vector field and Ry is a right
invariant one, then [Lx, Ry] = 0. Thus the flows of Lx and Ry commute.
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Proof. We consider the vector field 0 x Lx € X(G x G), given by (0 x
LX)(a7 b) = (Oaa LX(b))‘ Then T(a,b)/i'(oav Lx (b)) = Taﬂb-oa +Tb,ua'LX(b) =
Lx(ab), so 0 x Lx is p-related to Lx. Likewise Ry x 0 is p-related to Ry-.
But then 0 = [0 x Lx, Ry x 0] is p-related to [Ly, Ry| by[(3.10)] Since p is
surjective, [Lx, Ry] = 0 follows. O

4.13. Lemma. Let p: G — H be a smooth homomorphism of Lie groups.
Then ¢ :=T.p:9=T.G — h=T.H is a Lie algebra homomorphism.

Later, in |(4.21), we shall see that any continuous homomorphism between
Lie groups is automatically smooth.

Proof. For X € g and = € G we have

Too.Lx(z) = TppTepy. X = Te(po pig). X
= Te(ﬂcp(x) ° 90)'X = Te(/igo(x)>'Te<P~X = Lw’(X)(SO(x))'
So Lx is g-related to Ly (x). By |(3.10) the field [Lx,Ly] = Lixy] is

p-related to [Ly(x), Ly(vy] = Lig(x),e/(v): So we have T o Lixy) =
Ly (x),¢(vy) © - If we evaluate this at e, the result follows. (]

Now we will determine the Lie algebras of all the examples given above.

4.14. For the Lie group GL(n,R) we have T.GL(n,R) = L(R",R") =:
gl(n,R) and TGL(n,R) = GL(n,R) x L(R™,R™) by the affine structure
of the surrounding vector space. For A € GL(n,R) we have ua(B) =
A.B, so j14 extends to a linear isomorphism of L(R",R™), and for (B, X) €
TGL(n,R) we get Tp(pa).(B,X) = (A.B,A.X). So the left invariant vector
field Lx € X(GL(n,R)) is given by Lx(A) = Te(pua). X = (A4, A.X).

Let f : GL(n,R) — R be the restriction of a linear functional on L(R™, R™).
Then we have Lx(f)(A) = df(A)(Lx(A)) = df (A)(A.X) = f(A.X), which
we may write as Lx(f) = f( .X). Therefore

Lixy)(f) = [Lx, Ly](f) = Lx(Ly (f)) — Ly (Lx(f))
=Lx(f( Y)-Ly(f( X))=f( XY)-f( YX)
=f( (XY -YX))=Lxy-vx([)

So the Lie bracket on gl(n,R) = L(R",R") is given by [X,Y] = XY - Y X,
the usual commutator.

4.15. Example. Let V be a vector space. Then (V,+) is a Lie group,
ToV =V is its Lie algebra, TV =V x V, left translation is u,(w) = v + w,
Tow(py).(w,X) = (v+ w,X). So Lx(v) = (v,X), a constant vector field.
Thus the Lie bracket is 0.
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4.16. Example. The special linear group is SL(n,R) = det™!(1) and
its Lie algebra is given by TeSL(n,R) = kerddet(I) = {X € L(R",R") :
Trace X = 0} = sl(n,R) by The injection i : SL(n,R) — GL(n,R) is
a smooth homomorphism of Lie groups, so T,i = i’ : sl(n,R) — gl(n,R) is
an injective homomorphism of Lie algebras. Thus the Lie bracket is given
by [X,Y]=XY -YX.

The same argument gives the commutator as the Lie bracket in all other

examples we have treated. We have already determined the Lie algebras as
T.G.

4.17. 1-parameter subgroups. Let G be a Lie group with Lie algebra g.
A 1-parameter subgroup of G is a Lie group homomorphism « : (R, +) — G,
i.e., a smooth curve o in G with (s +t) = a(s).a(t), and hence a(0) = e.

Lemma. Let o : R — G be a smooth curve with a(0) = e. Let X € g. Then
the following assertions are equivalent.

)
(2) a(t) = F1Ex(t,e) for all t.
(3) a(t) = FI1x(t,e) for all t.
4) z.at) = FI¥X (¢, 2), or Flix = o) for all t .
( t M
5) a(t).z = FIFX (¢, z), or F1IX = la(s), for all t.
t ()

Proof. (I) = (@) We have Lz.a(t) = Llpz.at + 5) = L|oz.a(t).a(s) =

%IOMI.a(t)a(s) = Te(:u’x.a(t))'%loa(s) = Te(:“’x.a(t))'X = Lx(flf.a(t)). By
uniqueness of solutions we get z.a(t) = FILX (¢, z).

(@) = (@) This is clear.
@) = (@) We have

sat)als) = L (kamals) = T(kaw) gols)
= T(pa) Lx(a(s)) = Lx(at)a(s))

and a(t)a(0) = a(t). So we get at)a(s) = FIEX (s, a(t)) = FILX FIFX (¢) =
FIXX (t 4 5,e) = a(t + s).

@) < () We have FI'¢ = 11 o FI{ ov by [(3.14)] Therefore we have by
€85y

(FIF (a=1)7 = (v 0 FUR ov)(a) = FIL ¥ ()
= FIX¥ (2) = z.a(—0).
So FIFX (271) = a(t).2™!, and FIF* (y) = a(t).y.
) = @) = (@) can be shown in a similar way. O
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An immediate consequence of the foregoing lemma is that left invariant and
right invariant vector fields on a Lie group are always complete, so they
have global flows, because a locally defined 1-parameter group can always
be extended to a globally defined one by multiplying it up: a(nt) = a(t)".

4.18. Definition. The exponential mapping exp : g — G of a Lie group is
defined by

exp X = FIIX(1,e) = F1FX (1,e) = ax (1),

where ax is the 1-parameter subgroup of G with ax(0) = X.

1) exp : g = G is smooth.
) exp(tX) = F1Ex(t,e).
) FILX(t,2) = 2. exp(tX).
4) FIx (¢, 2) = exp(tX).z.
) exp(0) = e and Tyexp = Id : Tog = g — TG = g; thus exp is a

diffeomorphism from a neighborhood of 0 in g onto a neighborhood of
e G.

Proof. ([Il) Let 0 x L € X(g x G) be given by (0 x L)(X,z) = (0x, Lx(z)).
Then pry FI°*L(t, (X, e)) = ax(t) is smooth in (¢, X).

@) exp(tX) = FI*IX (1, e) = FIFX (¢, e) = ax(t).

@) and (@) follow from lemma |(4.17)

@) Topexp.X = Llgexp(0 +t.X) = Lo FIE¥(te) = X. 0

4.19. Remark. If GG is connected and U C g is open with 0 € U, then the
group generated by exp(U) equals G.

Namely, this group is a subgroup of G containing some open neighborhood
of e, so it is open. The complement in G is also open (as union of the
other cosets), so this subgroup is open and closed. Since G is connected, it
coincides with G.

If G is not connected, then the subgroup generated by exp(U) is the con-
nected component Gg of e in G, an open connected normal subgroup.

4.20. Remark. Let ¢ : G — H be a smooth homomorphism of Lie groups.
Then the diagram

o

g——=h
expci lepo
©
G—H
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commutes, since ¢t — @(exp®(tX)) is a 1-parameter subgroup of H which
satisfies %|090(€XPG tX) = ¢'(X), so p(exp? tX) = expf (tp'(X)).

If G is connected and ¢, : G — H are homomorphisms of Lie groups with
¢ =" :g—b, then ¢ = 1. Namely, ¢ = 9 on the subgroup generated by

exp® g which equals G by [(4.19))

4.21. Theorem. A continuous homomorphism ¢ : G — H between Lie
groups is smooth. In particular a topological group can carry at most one
compatible Lie group structure.

Proof. Let first ¢ = a: (R, 4+) — G be a continuous 1-parameter subgroup.
Then a(—¢,e) C exp(U), where U is an open ball with center 0 in g such
that exp | 2U is a diffeomorphism, for some ¢ > 0. Put

B:=(exp | 2U) toa: (—¢,¢e) —g.
Then for [t| < § we have
exp(26(t)) = exp(B(t))* = a(t)® = a(2t) = exp(B(2t)),
so 26(t) = B(2t); thus B(£) = 3B(s) for |s| < e. Applying exp we have
a($) = exp(B(%)) = exp(38(s)) for all |s| < e and by recursion we get
a(57) = exp(5w6(s)) for n € N and in turn
a(gws) = alzr)" = exp(gB(s))* = exp(gr(s))

for k € Z. Since the 2% for k € Z and n € N are dense in R and since « is
continuous, we get a(ts) = exp(t3(s)) for all t € R. So « is smooth.

Now let ¢ : G — H be a continuous homomorphism. Let Xi,..., X, be a
linear basis of g. We define ¢ : R" — G by

Pttt = exp(tX]) - exp(t"X).

Then Tyt is invertible, so 1) is a diffeomorphism near 0. Sometimes 1! is
called a coordinate system of the second kind. The curve t — @(exp® tX;)
is a continuous 1-parameter subgroup of H, so it is smooth by the first part
of the proof.

We have (p o) (t!,...,t") = (pexp(t'X1))--- (pexp(t"Xy,)), so o1 is
smooth. Thus ¢ is smooth near e € G and so everywhere on G. O

4.22. Theorem. Let G and H be Lie groups (G separable is essential
here), and let ¢ : G — H be a continuous bijective homomorphism. Then ¢
is a diffeomorphism.

Proof. Our first aim is to show that ¢ is a homeomorphism. Let V be an
open e-neighborhood in G, and let K be a compact e-neighborhood in G such
that K.K~! C V. Since G is separable, there is a sequence (a;);en in G such
that G = |J;2; a;.K. Since H is locally compact, it is a Baire space (i.e., V;
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open and dense for i € N implies (| V; dense). The set ¢(a;)p(K) is compact,
thus closed. Since H = J; ¢(a;).¢(K), there is some ¢ such that ¢(a;)e(K)
has nonempty interior, so ¢(K) has nonempty interior. Choose b € G such
that ¢(b) is an interior point of ¢(K) in H. Then ey = @(b)p(b~!) is an
interior point of ¢(K)p(K 1) C »(V). Soif U is open in G and a € U, then
ey is an interior point of ¢(a~1U), so ¢(a) is in the interior of p(U). Thus
©(U) is open in H, and ¢ is a homeomorphism.

Now by [(4.21)] ¢ and ¢! are smooth. O

4.23. Examples. We first describe the exponential mapping of the general
linear group GL(n,R). Let X € gl(n,R) = L(R™,R™); then the left invariant
vector field is given by Lx(A) = (A, A.X) € GL(n,R) x gl(n,R) and the
l-parameter group ax (t) = FILX(¢,1,,) is given by the differential equation
%ax(t) = Lx(ax(t)) = ax(t).X, with initial condition ax(0) = I,. But

the unique solution of this equation is ax (t) = e = Y32, tk—k!X k. So

expCLB (X)) = X = o X*.

If n =1, we get the usual exponential mapping of one real variable. For all
Lie subgroups of GL(n,R), the exponential mapping is given by the same
formula exp(X) = e¥; this follows from [(4.20)]

4.24. The adjoint representation. A representation of a Lie group G on
a finite-dimensional vector space V (real or complex) is a homomorphism
p: G — GL(V) of Lie groups. Its derivative p' : g — gl(V) = L(V,V) is a
Lie algebra homomorphism by

For a € G we define conj, : G — G by conj,(z) = ara™!. It is called the
conjugation or the inner automorphism by a € G. We have conj,(zy) =
conj,(z) conj,(y), conj,, = conj, o conj,, and conj is smooth in all variables.

Next we define for a € G the mapping Ad(a) = (conj,) = Te(conj,) : g — g.
By |(4.13)| the linear map Ad(a) is a Lie algebra homomorphism, so we
have Ad(a)[X,Y] = [Ad(a)X,Ad(a)Y]. Furthermore Ad : G — GL(g) is a
representation, called the adjoint representation of G, since
Ad(ab) = Te(conj,,) = Te(conj, o conjy)
= Te(conj,) o Te(conj,) = Ad(a) o Ad(b).

The relations Ad(a) = Tu(conj,) = Ta(u® ).Te(pta) = Ty-1(pa) To(u® )
will be used later.

Now we define the (lower case) adjoint representation of the Lie algebra g,

ad: g — gl(g) = L(g,g), ad:=Ad =T.Ad.
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Lemma.

(1) Lx(a) = Raqea)x(a) for X € g and a € G.
(2) ad(X)Y :[X,Y] for X,Y € g.

Proof. M) Lx(a)=T.(pta).X = To(u®).To(u® ' 0 pa)- X = Raa(ayx(a).
@) Let Xy,...,X, be a linear basis of g and fix X € g. Then Ad(z)X =
S fil). X, for fi € C*°(G,R) and we have in turn:

A (V)X =T (Ad( )X)Y =d(Ad( )X)[Y =d(3 fiXi)[Y
=2 dfile(Y)X; =3 Ly (fi)(e). X
Lx(z) = Raa@)x(z) = R(X fi(2) Xi)(2) = 3 fi(z).Rx,(z) by [@D).
[Ly,Lx]| = [Ly, > fi-Rx,] = 0+ 3 Ly(fi).Rx, by |[(3.4)] and [(4.12)|
Y. X] = [Ly, Lx](e) = 3_ Ly (fi)(e)-Rx;(e) = Ad'(Y)X = ad(Y)X. O

4.25. Corollary. From|(4.20)| and|(4.23)| we have

Adoexp® = exp®l® o ad,

Ad(exp® X)Y = i G (ad X)FYy = e Xy
k=0
=Y + [X, Y]+ &[X, [X, Y]] + %[ X, [X, [X, Y]] + -

so that also ad(X) = 0]o Ad(exp(tX)).

4.26. The right logarithmic derivative. Let M be a manifold and
let f: M — G be a smooth mapping into a Lie group G with Lie alge-
bra g. We deﬁne the mapping 6f : TM — g by the formula §f(&,) =
Tt )(,uf( )T f.£x. Then &f is a g-valued 1-form on M, 5f € QY(M,g),
as we will write later. We call  f the right logarithmic derivative of f, since

for f: R — (R*,") we have §f(2).1 = £ = (logof)'(x).

Lemma. Let f,g: M — G be smooth. Then we have
6(f.9)(x) = 6f(x) + Ad(f(x)).0g().

Proof. We compute as follows:
3(f.9)(@) = T(u!™ ") T, (1.9)
= T(p/@ )T T (), 9@ - (T f, Trg)

= T(/@ )T (7)) T f + T(paga)) Tog)
)
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Remark. The left logarithmic derivative 6 f € QY(M,g) of a smooth
mapping f : M — G is given by st f.¢, = Tp(2) (B p(@)y-1) - Tuf-&e The
corresponding Leibniz rule for it is uglier than that for the right logarithmic
derivative:

0" (fg)(x) = 8" g(x) + Ad(g(x)"1)a"" f(2).
The form 6" (Idg) € Q'(G, g) is also called the Maurer-Cartan form of the
Lie group G.

21
4.27. Lemma. Forexp:g— G and for g(z) := c we have
§(exp)(X) = T(uP X)) T exp Z o (ad X)? = g(ad X).

p=0

Proof. We put M(X) = d(exp)(X) : g — g. Then

(s+t)M((s+t)X) = (s+1t)d(exp)((s +t)X)
=d(exp((s+t) ))X Dby the chain rule
=d(exp(s ).exp(t )).X
=d(exp(s )).X 4+ Ad(exp(sX)).6(exp(t )).X by [(4.26)]

= 5.9(exp)(sX) + Ad(exp(sX)).t.d(exp)(tX)
= s.M(sX)+ Ad(exp(sX)).t.M(tX).
Next we put
N(t): =t.M(tX) € L(g, 9);
N(s+t) = N(s)+ Ad(exp(sX)).N(t).
We fix ¢, apply %\0, and get
N'(t) = N'(0) + ad(X).N(¢),
N'(0) = M(0) 4+ 0 = §(exp)(0) = Id,.
So we have the differential equation
N'(t) = Idg + ad(X).N ()
in L(g, g) with initial condition N(0) = 0. The unique solution is

s) = Z ﬁ ad(X)P.sPT1 and so

(exp)(X) = M(X =Y o ad(X)P. O
p=0
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4.28. Corollary. The tangent mapping Tx exp is bijective if and only if
no eigenvalue of ad(X) : g — g is of the form /—12kw for k € Z \ {0}.

Proof. The zeros of g(z) = €L are z = 2km/—1 for k € Z\ {0}. The
linear mapping T’y exp is bijective if and only if no eigenvalue of

g(ad(X)) = T(uP %)) Tx exp

is 0. But the eigenvalues of g(ad(X)) are the images under g of the eigen-
values of ad(X). O

4.29. Theorem. The Baker-Campbell-Hausdorff formula.

Let G be a Lie group with Lie algebra g. For complex z near 1 we consider
the function f(z) := 12‘%(1) = n>0 (;lr)ln (z—1)™

Then for X, Y near 0 in g we have exp X.expY = exp C(X,Y), where

1
C(X,Y) —Y+/ f(etadX ead¥y x gt

B )n 1 tk & ¢ n
X+Y+Z /0 > g (ad X)M(ad V)" ) X at
k,0>0

n>1 >
k+0>1
n d X)) (adY)e ... (ad X)Fn(ad V)
—xere e T
= n+ k1,...,kn20( 14tk + DRG0
1yl >0
ki+0;>1

=X +Y +3[X, Y]+ 5(X, [ X, Y] + [V, [V, X]]) +
Proof. Let C(X,Y) := exp_l(exp X.expY) for X, Y near 0 in g, and let
C(t) := C(tX,Y). Then by [(4.27)[ we have
T (OO 4 (exp O(t)) = §(exp oC)(t).1 = exp(C(t)).C(t)
= 2 k>0 ﬁ(ad C)*C()
= g(ad C(1)).C(1),
where g(2) = £ = > k>0 (sz’“l)' We have exp C(t) = exp(tX)expY and
exp(~C(t)) = exp(C(t) " = exp(—Y) exp(—£X);
therefore
T(ueP-C0)) 4 (expC0) = (oY) (X)) 4 (exp(tX) exp V)
— TP (P )T (Y ) exp(tX)
= T(uP ")) Ry (exp(tX)) = X by |[(4.18.4) and [(4.11)]
X = g(ad C(1)).C(1).
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e €M — Ad(exp C(t)) by
= Ad(exp(tX)expY) = Ad(exp(tX)). Ad(expY)

— ead(tX)'eadY _ 6t.ad X'ead Y'

(et.ad X_ead Y)

If X, Y, and ¢ are small enough, we get ad C(t) = log , where

log(2) = > 51 (! (z — 1)™; thus we have

X = g(ad C(t)).C(t) = g(log(e" 2 X 24 YY) C(¢).

For z near 1 we put f(z) := lzgfii) = > >0 %(2 — 1)™. This function

satisfies g(log(z)).f(z) = 1. So we have
X = g(log(etd X c2d YY)y érg) = f(et-ad X ad YVY=1 6,
{C(t) _ fehad X gnd Yy X
Cc0)=Y.

Passing to the definite integral, we get the desired formula

C(X,Y)=C(1) =C(0) + /1 C(t)dt
0
_ ! 6t.adX 6ad Y) X dt
_v+ / J(e X Y,

0 5 )

X4y U ad X)Fad VYY) X dt

+ +nz>:1n+1 ; k;() g (ad X)Had Y)
- k4-0>1

ZX-i-Y—i-Zﬂ Z (ad X)*1(ad V)% ... (ad X)Fn(ad V)

= n+1 bt a0 (k‘l 4+ o+ ky + 1)]{51' Y S R /|
l1,...,8n,>0
ki+0;>1
=X +Y +iX Y]+ (X (X Y]+ [V, X))+ . O

4.30. Remarks. (1) If G is a Lie group of differentiability class C2, then
we may define T'G and the Lie bracket of vector fields. The proof above
then makes sense and the theorem shows that in the chart given by exp~!
the multiplication p : G x G — G is C¥ near e, hence everywhere. So in
this case (G is a real analytic Lie group. See also remark below.

(2) Let G be a Lie groups with Lie algebra g. Then Trotter’s formula holds:
For X,Y € g we have, by ((4.29)

(exp(5X) exp(;))" = exp(n.C(; X, 1Y)
= exp(X + Y + L. (bounded)) ——— exp(X +Y).
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(3) Similarly, by [(4.29)
(exp (3, X) exp (1Y) exp(SHX) exp(F1Y))"
— (2 C(C(LX, 1Y), (31X, 211))
= exp([X, Y] + 7 (bounded)) ——— exp([X, Y]).

(4) Let P be a formal bracket expression of length k as in|(3.16) On G we use
[g,h] = ghg~'h~! as commutator. We consider smooth curves g; : R — G
with ¢;(0) = e and ¢/(0) = X; € g. Then ;(t,h) = h.gi(t) = p%®(h) are
global curves of diffeomorphisms on G with 0|oy;(t,h) = Lx,(h). Evaluat-

ing [(3.16) at e, we then get
O_éa:ﬁ’op(gtlw‘wgf) f0r1§£<k7
P(X1,.., Xg) = 525 0P (gl .., o) € X(M).
A special case of this is: For X; € g we have

@tz‘OP(eXP(t X1),...,exp(t.- X)) forl</l<k,

P(X1,...,Xg) = kl @tk ‘OP(eXp(t Xi),...,exp(t.Xg)) € 9.

4.31. Example. The group SO(3,R). From|(4.5) and |(4.16)| we know that
the Lie algebra o(3,R) of SO(3,R) is the space Lgew(R?,R?) of all linear
mappings which are skew-symmetric with respect to the inner product, with
the commutator as Lie bracket.

The group Sp(1) = S3 of unit quaternions has as Lie algebra 715 = 1+,
the space of imaginary quaternions, with the commutator of the quaternion

multiplications as bracket. From|(4.10)| we see that thisis [X,Y] =2X x Y.
Then we observe that the mapping

a:5p(1) = 0(3,R) = Lyew (R, R?),  a(X)Y =2X x Y,

is a linear isomorphism between two 3-dimensional vector spaces and is also
an isomorphism of Lie algebras because [a(X),a(Y)]Z = 4(X x (Y x Z) —
Y X (X x2Z)=4X x (Y XxZ)+Y x(Zx X)) =—-4Zx (Y xX)) =
22X xY)xZ = o([X,Y])Z. Since S? is simply connected, we may conclude
from below that Sp(1) is the universal cover of SO(3).

We can also see this directly as follows: Consider the mapping 7 : % ¢ H —
SO(3,R) which is given by 7(P)X = PXP, where X € R3 x {0} C H is
an imaginary quaternion. It is clearly a homomorphism 7 : S — GL(3,R),
and since |7(P)X| = |[PXP| = |X| and S? is connected, it has values in
SO(3,R). The tangent mapping of 7 is computed as (T17.X)Y = XY1 +
1Y (-X) =2(X xY) = «(X)Y, so it is an isomorphism. Thus 7 is a local
diffeomorphism, the image of 7 is an open and compact (since S? is compact)
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subgroup of SO(3,R), so 7 is surjective since SO(3,R) is connected. The
kernel of 7 is the set of all P € S% with PXP = X for all X € R3, ie.,
the intersection of the center of H with S3, the set {1,—1}. So 7 is a two
sheeted covering mapping.

So the universal cover of SO(3,R) is the group S = Sp(1) = SU(2) =
Spin(3). Here Spin(n) is just a name for the universal cover of SO(n), and
the isomorphism Sp(1) = SU(2) is just given by the fact that the quaternions
can also be described as the set of all complex matrices

a b .
<—b a>~a1+bj.

The fundamental group 71 (SO(3,R)) = Zo = Z/27Z.

4.32. Example. The group SO(4,R). We consider the smooth homo-
morphism p : S x $3 — SO(4,R) given by p(P,Q)Z := PZQ in terms
of multiplications of quaternions. The derived mapping is p/(X,Y)Z =
(Tayp(X,Y))Z = XZ1 +1Z(=Y) = XZ — ZY, and its kernel consists
of all pairs of imaginary quaternions (X,Y) with XZ = ZY for all Z € H.
If we put Z = 1, we get X = Y; then X is in the center of H which
intersects sp(1) at 0 only. So p’ is a Lie algebra isomorphism since the di-
mensions are equal, and p is a local diffeomorphism. Its image is open and
closed in SO(4,R), so p is surjective, a covering mapping. The kernel of p
is easily seen to be {(1,1),(—1,—1)} C S* x S3. So the universal cover of
SO(4,R) is §2 x 83 = Sp(1) x Sp(1) = Spin(4), and the fundamental group
m1(SO(4,R)) = Zg again.

Examples and Exercises

4.33. Let A € L(R™,R™) be an (n x n)-matrix. Let C'(A) be the matrix of
the signed algebraic complements of A, i.e.,

AL AL 0 AL, oA

» s »

| AU Atk oAl A
C(A)i:=det| 0 ... 0 1 0 ... 0
j+1 j+1 j+1 j+1

AP Ath o Al A

AL AT 0 AL, ... AT

Prove that C(A)A = AC(A) = det(A) - I,, (Cramer’s rule)! This can be
done by remembering the expansion formula for the determinant while mul-
tiplying it out.
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Prove that d(det)(A)X = Trace(C(A)X)! There are two ways to do this.
The first one is to check that the standard inner product on L(R™ R™) is
given by (A, X) = Trace(AT X) and by computing the gradient of det at A.

The second way uses [(14.19)]
det(A +tL,) = t" + " ! Trace(A) + t" 25 (A) 4+ -+t (A) + det(A).
Assume that A is invertible. Then:
det(A+tX) =t"det(t A+ X) = t"det(A(A7IX +t711,))

= t" det(A) det(A X +t711,)

= " det(A)(t™" + t17" Trace(A71X) + - - - + det(4A71 X))

= det(A)(1 + t Trace(A™'X) + O(t?)),

ddet(A)X = 9|y det(A +tX) = d|pdet(A)(1 + t Trace(A™1X) + O(t?))

= det(A) Trace(A™ ' X) = Trace(det(A) A~ X)

= Trace(C(A4)X).
Since invertible matrices are dense, the formula follows by continuity.
What about detc : L¢(C™,C") — C?
4.34. For a matrix A € L(R",R") let 4 := 2 k>0 HAF. Prove that e
converges everywhere, that det(e?) = eT2*(4) and thus e? € GL(n,R) for
all A € L(R™,R"™).
4.35. We can insert matrices into real analytic functions in one variable:

f(A) = f(0) -1, + Z %Ak, if the norm |A| < p,
k>0

where p is the radius of convergence of f at 0. Develop some theory about
that (pay attention to constants): (f-g)(A) = f(4) - g(A), (fog)(4) =
f(g(A), df(A)X = f(A)X if [A,X] = 0. What about df(A)X in the
general case?

4.36. Quaternions. Let ( , ) denote the standard inner product on
oriented R*. Put 1 := (0,0,0,1) € R* and R?® =2 R3 x {0} = 1+ c R*. The
vector product on R? is then given by (z x y,2) := det(z,y, z). We define
a multiplication on R* by (X,s)(Y,t) := (X x Y + sY +tX, st — (X,Y)).
Prove that we get the skew-field of quaternions H, and derive all properties:
associativity, |p.q| = |p|.|q|, p.p = |p|>.1, p~* = |p|~2.p, P-¢ = ¢.p. How many
representations of the form =z = xgl + x17 + z9j + x3k can we find? Show
that H is isomorphic to the algebra of all complex (2 x 2)-matrices of the

form
U v
< _ _> , u,veC.
—-U u
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4.37. The exponential mapping for self-adjoint operators. Let V
be a Euclidean vector space with positive definite inner product ( | )
(or a Hermitian vector space over C). Let S(V) be the vector space of all
symmetric (or self-adjoint) linear operators on V. Let ST (V) be the open
subset of all positive definite symmetric operators A, so that (Av|v) > 0 for
v # 0. Then the exponential mapping exp : A — ed = Yoo %Ak maps
S(V) into ST(V).

Lemma. The exponential mapping exp : S(V) — ST(V) is a diffeomor-
phism.

Proof. We start with a complex Hermitian vector space V. Let CT := {\ €
C : Re(\) > 0}, and let log : C™ — C be given by log()\) = f[l)\] 27 ldz,
where [1, A] denotes the line segment from 1 to A.

Let B € ST(V). Then all eigenvalues of B are real and positive. We
chose a (positively oriented) circle v C C* such that all eigenvalues of B
are contained in the interior of 7. We consider A +— log(A)(A Idy —B)~!
as a meromorphic function in C* with values in the complex vector space
C® S(V), and we define

log(B) := 277\1/j1/10g(A)(A Idy —B)"'d\, BeST(V).
g

We shall see that this does not depend on the choice of v. We may use the
same choice of the curve « for all B in an open neighborhood in S*(V); thus
log(B) is real analytic in B.

We claim that log = exp~!. If B € ST(V), then B has eigenvalues \; > 0

with eigenvectors v; forming an orthonormal basis of V', so that Bv; = \v;.
Thus (AIdy —B) v = x5 for A # X, and

1 log A
27’(‘\/—1 ~ )\—)\1

by Cauchy’s integral formula. Thus log(B) does not depend on the choice
of v and exp(log(B))v; = elos(\i)y, = X\; v; = By for all i. Thus expolog =
Idg+(yy. Similarly one sees that logoexp = Idgy.

Now let V be a real Euclidean vector space. Let V€ = C ® V be the
complexified Hermitian vector space. If B : V — V is symmetric, then
§(B) := B® = 1d¢®B : V& — VC is self-adjoint. Thus we have an em-
bedding of real vector spaces j : S(V) — S(VC). The eigenvalues of j(B)
are the same as the eigenvalues of B; thus j restricts to an embedding
j:ST(V) — SH(VC). By definition the left hand diagram below commutes

(log B)v; = ( dA) v; = log(\)vi
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and thus also the right hand one:

S(V) —L~ §(v°) S(V) —L= 5(ve)
expl expcl dexp<B>l dexp%B)l
ST(V) —Ls 5V, S(V) —1» S(VO).

Thus dexp(B) : S(V) — S(V) is injective for each B, thus a linear isomor-
phism, and by the inverse function theorem exp : S(V) — ST (V) is locally
a diffeomorphism and is injective by the diagram. It is also surjective: for
B € ST(V) we have Bv; = \;jv; for an orthonormal basis v;, where \; > 0.
Let A € S(V) be given by Av; = log(\;) v;; then exp(A) = B. O

4.38. Polar decomposition. Let (V,g) be a Euclidean real vector space
(positive definite). Then we have a real analytic diffeomorphism

GL(V) = 87(V,g) x O(V, g);

thus each A € GL(V') decomposes uniquely and real analytically as A = B.U
where B is g-symmetric and g-positive definite and U € O(V, g).

Proof. The decomposition A = BU, if it exists, must satisfy AAT =
BUU'TB' = B%2. By the exponential mapping X +— e~ is a real
analytic diffeomorphism exp : S(V, g) — ST(V, g) from the real vector space
of g-symmetric operators in V' onto the submanifold of g-symmetric positive
definite operators in GL(V'), with inverse B + log(B). The operator AAT
is g-symmetric and positive definite. Thus we may put B := VAAT =
exp(3log(AAT)) € ST(V,g). Moreover, B commutes with AA". Let U :=
B7'A. Then UUT = B7'AAT(B™Y)T =1dy, so U € O(V, g). O

5. Lie Groups II. Lie Subgroups and Homogeneous Spaces

5.1. Definition. Let G be a Lie group. A subgroup H of G is called a
Lie subgroup if H is itself a Lie group (so it is separable) and the inclusion
i: H — (G is smooth.

In this case the inclusion is even an immersion. It suffices to check that
T.i is injective: If X € b is in the kernel of T.i, then i o exp(tX) =
exp®(t.T.i.X) = e. Since i is injective, X = 0.

From the next result it follows that H C G is then an initial submanifold in
the sense of[(2.13)} If Hy is the connected component of H, then i(Hp) is the
Lie subgroup of G generated by i'(h) C g, which is an initial submanifold,
and this is true for all components of H.
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5.2. Theorem. Let G be a Lie group with Lie algebra g. If b C g is a Lie
subalgebra, then there is a unique connected Lie subgroup H of G with Lie
algebra . Moreover, H is an initial submanifold of G.

Proof. Put E; := {T.(p:).X : X € b} C T;G. Then E := | |, .o E; is
a distribution of constant rank on G. It is spanned by the involutive set
{Lx,X € b} of vector fields. So by theorem the distribution FE is
integrable and the leaf H through e is an initial submanifold. It is even a
subgroup, since for x € H the initial submanifold p, H is again a leaf (since
E is left invariant) and intersects H at x, so u,(H) = H. Thus HH = H
and consequently H~! = H. The multiplication p : H x H — G is smooth
by restriction and smooth as a mapping H x H — H, since H is an initial

submanifold, by lemma |(2.15)] O

5.3. Theorem. Let g be a finite-dimensional real Lie algebra. Then there
exists a connected Lie group G whose Lie algebra is g.

Sketch of Proof. By the theorem of Ado (see [96] or [224] p. 237]) g has
a faithful (i.e., injective) representation on a finite-dimensional vector space
V, i.e., g can be viewed as a Lie subalgebra of gl(V') = L(V, V). By theorem
above there is a Lie subgroup G of GL(V') with g as its Lie algebra. O

This is a rather involved proof, since the theorem of Ado needs the structure
theory of Lie algebras for its proof. There are simpler proofs available,
starting from a neighborhood of e in G' (a neighborhood of 0 in g with the
Baker-Campbell-Hausdorff formula as multiplication) and extending
the Lie group structure.

5.4. Theorem. Let G and H be Lie groups with Lie algebras g and b,
respectively. Let f : g — b be a homomorphism of Lie algebras. Then there
is a Lie group homomorphism @, locally defined near e, from G to H, such
that o' =T, = f. If G is simply connected, then there is a globally defined
homomorphism of Lie groups ¢ : G — H with this property.

Proof. Let £ := graph(f) C g x h. Then ¢ is a Lie subalgebra of g x b, since
f is a homomorphism of Lie algebras. The product g x b is the Lie algebra of
Gx H, so by theoremthere is a connected Lie subgroup K C G x H with
algebra . We consider the homomorphism g := pr; oincl : K - GxH — G,
whose tangent mapping satisfies

Teg(Xa f(X)) = T(e,e) pry T incl (Xa f(X)) =X;

so it is invertible. Thus g is a local diffeomorphism, so g : K — Gg is a
covering of the connected component Gy of e in G. If G is simply connected,
g is an isomorphism. Now we consider the homomorphism v := pryoincl :
K — G x H — H, whose tangent mapping satisfies T.(X, f(X)) = f(X).
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We see that ¢ := o (g | U)"' : G D U — H solves the problem, where
U is an e-neighborhood in K such that g [ U is a diffeomorphism. If G is
simply connected, ¢ = 1 o g~! is the global solution. ([

5.5. Theorem. Let H be a closed subgroup of a Lie group G. Then H is
a Lie subgroup and a submanifold of G.

Proof. Let g be the Lie algebra of G. We consider the subset h := {¢/(0) :
ce C®(R,G), ¢(R) C H,c(0) = e}.

Claim 1. b is a linear subspace.

If ¢(0) € h and ¢; € R, we define ¢(t) := cy(t1.t).ca(t2.t). Then we have
C/(O) = T(e,e),u~(t1-cll (0), tQ.CIQ(O)) = tl.C/l (0) + tQ.Cé(O) €bh.

Claim 2. h = {X € g:exp(tX) € H for all t € R}.

Clearly we have ‘2’. To check the other inclusion, let X = ¢/(0) € b and
consider v(t) := (exp®)~lc(t) for small . Then we have X = ¢(0) =
%|0 exp(v(t)) = v'(0) = lim, 00 n.v(1). We put ¢, := 1 and X,, := n.v(d),
so that exp(t,.X,,) = exp(v(2)) = ¢(2) € H. By claim 3 below we then get
exp(tX) € H for all t.

Claim 3. Let X, - X in g, 0 <t, — 0 in R with exp(¢,X,,) € H. Then
exp(tX) € H for all t € R.

Let t € R and take m,, € (i -1, ﬁ] N Z for large n. Then t,.m, — t and
Myp.tn. X, — tX, and since H is closed, we may conclude that

exp(tX) = lizn exp(mp.tn.Xp) = lirrln exp(t,.Xn)™" € H.

Claim 4. Let £ be a complementary linear subspace for b in g. Then there
is an open 0-neighborhood W in ¢ such that exp(W) N H = {e}.

If not, there are 0 # Yj, € ¢ with Y — 0 such that exp(Yy) € H. Choose
anorm | | on gand let X,, =Y, /|Y,|. Passing to a subsequence, we may
assume that X;, — X in ¢; then |X| = 1. But exp(|Y,|. X») = exp(Y,) € H
and 0 < |Y,,| — 0, so by claim 3 we have exp(tX) € H for all t € R. By
claim 2 we get X € h, a contradiction.

Claim 5. Put ¢ : h x ¢ = G, ¢(X,Y) = expX.expY. Then there are
0-neighborhoods V in h, W in ¢, and an e-neighborhood U in G such that
¢ :V xW = U is a diffeomorphism and U N H = exp(V).

Choose V, W, and U so small that ¢ becomes a diffeomorphism. By claim
4 the set W may be chosen so small that exp(W) N H = {e}. By claim
2 we have exp(V) € HNU. Let x € HNU. Since x € U, we have
x =expX.expY for unique (X,Y) € V x W. Then = and exp X € H, so
expY € HNexp(W) ={e}; thus Y =0. So x =exp X € exp(V).

Claim 6. H is a submanifold and a Lie subgroup.

The pair (U, (¢ | V x W)~! =: u) is a submanifold chart for H centered at e
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by claim 5. For x € H the pair (u;(U),u o p,—1) is a submanifold chart for
H centered at . So H is a closed submanifold of G, and the multiplication
is smooth since it is a restriction. O

5.6. Theorem. Let H be a subgroup of a Lie group G which is C°°-pathwise
connected (see|(2.13)]). Then H is a connected Lie group and an initial Lie
subgroup of G.

Proof. Let us call any smooth curve ¢ : R — G with ¢(0) = e and ¢(R) C H
an H-curve in G. As in the proof of let b be the set of ¢/(0) for all
H-curves ¢ in G. Claim 1 in the proof of shows that b is a linear
subspace of g. For H-curves ¢; in G we use[(4.30.3)| to see that [c} (0), c5(0)] =
202|091 (t)g2(t)g1(t) "g2(t) ! is again in b; so b is a Lie subalgebra of g.
Let Hy be the connected initial Lie subgroup of G corresponding to f which
is the leaf through e of the foliation given by the left invariant distribution
of constant rank generated by b; see For any H-curve c in G we
have T'(prepy-1).c'(t) = Osloc(t)"Le(t +5) € h. Thus c is tangent to this
distribution and thus lies in the leaf H; through e. By assumption, any
point in H is connected to e with such a curve. Thus H C H;.

To prove that Hy C H, we choose a basis Xq,...,X; of h and H-curves
ci in G with ¢;(0) = X;. We consider the mapping f : R¥ — H and H
which is given by f(t1,...,tx) = c1(t1)...cx(ty). Since Tpf is invertible
R* — B, the mapping f is a local diffeomorphism near 0 onto an open e-
neighborhood in H;. This shows that an open e-neighborhood of Hj is in
H; thus H; C H. O

5.7. Remarks. The following stronger results on subgroups and the rela-
tion between topological groups and Lie groups in general are available.

Any C°-pathwise connected subgroup of a Lie group is a connected Lie sub-
group, [231]. Theorem |(5.6)|is a weaker version of this, fitting the spirit of
(2.13)] The proof of [(5.6)| works also for C''-pathwise connected subgroups,

without any changes.

Let G be a separable locally compact topological group. If it has an e-
neighborhood which does not contain a proper subgroup, then G is a Lie
group. This is the solution of the 5-th problem of Hilbert; see [163] p. 107].

Any subgroup H of a Lie group G has a coarsest Lie group structure, but
it might be nonseparable. To indicate a proof of this statement, consider
all continuous curves ¢ : R — G with ¢(R) C H, and equip H with the
final topology with respect to them. Then apply the Yamabe theorem cited
above to the component of the identity. Or consider all smooth H-curves in
G (as in the proof of and put the final topology with respect to these
on H, and apply to the connected component.
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5.8. Let g be a Lie algebra. An ideal £ in g is a linear subspace ¢ such that
[¢,g] C €. Then the quotient space g/t carries a unique Lie algebra structure
such that g — g/t is a Lie algebra homomorphism.

Lemma. A connected Lie subgroup H of a connected Lie group G is a
normal subgroup if and only if its Lie algebra by is an ideal in g.

Proof. H normal in G means xHz ' = conj,(H) C H for all x € G. By
remark [(4.20)] this is equivalent to T,(conj,)(h) C b, i.e., Ad(z)h C b, for all
x € G. But this in turn is equivalent to ad(X)h C b for all X € g, so to the
fact that § is an ideal in g. O

5.9. Let G be a connected Lie group. If A C @ is an arbitrary subset,
the centralizer of A in G is the closed subgroup Zg(A) := {x € G : za =
ax for all a € A}, which by is a Lie subgroup.

The Lie algebra 34(A) of Zg(A) consists of all X € g with a.exp(tX).a™! =
exp(tX) for all a € A, ie., 34(A) = {X € g: Ad(a)X = X for all a € A}.

If A is itself a connected Lie subgroup of G with Lie algebra a, then 34(A) =
{X €g:ad(Y)X =0forall Y € a}. This set is also called the centralizer
of ain g. If A = G is connected, then Zg = Z5(G) is called the center of
G and 34(G) =3 ={X €g:[X,Y]=0for all Y € g} is then the center of
the Lie algebra g.

5.10. The normalizer of a subset A of a connected Lie group G is the
subgroup
Ng(A)={z € G: u,(A) =p*(A)} ={x € G : conj,(A) = A}.
If A is closed, then Ng(A) is also closed.
If A is a connected Lie subgroup of G, then Ng(A) = {x € G : Ad(z)a C a}.
Its Lie algebra
ng(A) ={X € g:ad(X)a C a} =ny(a)

is then the normalizer or idealizer of a in g.

5.11. Homogeneous spaces. Let G be a Lie group and let H C G be a
closed subgroup. By theorem H is a Lie subgroup of G. We denote
by G/H the space of all right cosets of G, i.e., G/H = {gH : g € G}. Let
p: G — G/H be the projection. We equip G/H with the quotient topology,
i.e., U C G/H is open if and only if p~!(U) is open in G. Since H is closed,
G/H is a Hausdorff space.

The quotient space G/H is called a homogeneous space of G. We have a left
action of G on GG/H, which is induced by the left translation and is given

by fig(g1 H) = gg1 H.



5. Lie Groups II. Lie Subgroups and Homogeneous Spaces 67

Theorem. If H is a closed subgroup of G, then there exists a unique struc-
ture of a smooth manifold on G/H such that p: G — G/H is a submersion.
Thus dimG/H = dimG — dim H.

Proof. Surjective submersions have the universal property thus the
manifold structure on G/H is unique, if it exists. Let h be the Lie algebra
of the Lie subgroup H. We choose a complementary linear subspace ¢ such
that g =bh @ ¢.

Claim 1. We consider the mapping f : ¢ x H — G, given by f(X,h) :=
exp X.h. Then there is an open 0-neighborhood W in £ and an open e-neigh-
borhood U in G such that f: W x H — U is a diffeomorphism.

By claim 5 in the proof of theoremthere are open O-neighborhoods V' in
h, W’ in ¢, and an open e-neighborhood U’ in G such that ¢ : W/ xV — U’
is a diffeomorphism, where ¢(X,Y) = exp X.exp Y, and such that U'NH =
exp V. Now we choose W in W’ C € so small that exp(W) ! exp(W) C U'.
We will check that this W satisfies claim 1.

Claim 2. f [ W x H is injective.

The equality f(Xi,h1) = f(X2,h2) means exp X1.h; = exp Xs.ho; thus
hahi' = (exp X2)lexp X1 € exp(W)lexp(W)NH C U'NH =expV. So
there is a unique Y € V with hghl_l =expY. But then p(X7,0) = exp X7 =
eprg.hg.hfl = exp Xo.expY = p(Xo,Y). Since ¢ is injective, X1 = Xo
and Y =0, so h; = hs.

Claim 3. f | W x H is a local diffeomorphism.

The diagram
Idxexp

WXV W x (U' N H)
g |
o(W x V) incl U’

commutes, and Idy X exp and ¢ are diffeomorphisms. So f | W x (U'NH) is
a diffeomorphism. Since f(X,h) = f(X,e).h, we conclude that f [ W x H
is everywhere a local diffeomorphism. So finally claim 1 follows, where
U=f(WxH).

Now we put g := po(exp [ W) : ¢ D W — G/H. Then the following
diagram commutes:

W x H U
PHi \LP
w—2 G/H.

Claim 4. g is a homeomorphism onto p(U) =: U C G/H.
Clearly ¢ is continuous, and g is open, since p is open. If g(X;) = g(X3),
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then exp X; = exp Xo.h for some h € H, so f(Xi,e) = f(X2,h). By claim

1 we get X1 = Xo, so g is injective. Finally g(W) = U, so claim 4 follows.
For a € G we consider U, = Ji,(U) = a.U and the mapping

Ug =g Lofig—:U, =W C L

Claim 5. (U, u, = g‘{o fla-1 U, — W)aeg is a smooth atlas for G/H.
Let a, b € G such that U, N U, # (). Then

ugouy t =gt ofig-10fipog:up(Us NTy) = ua(Uy N Tp)
=g o figopo(exp | W)
=g opopiy0 (exp | W)
=pryof topu,—1,0(exp | W) issmooth. [

6. Transformation Groups and G-Manifolds

6.1. Group actions. A left action of a Lie group G on a manifold M is
a smooth mapping £ : G x M — M such that £, ol = £y, and £, = Id)y,
where £4(z) = {(g, 2).

A right action of a Lie group G on a manifold M is a smooth mapping
r: M xG — M such that 907" = r"9 and ¢ = Idys, where r9(z) = r(z, g).

A G-space or a G-manifold is a manifold M together with a right or left
action of G on M.

We will describe the following notions only for a left action of G on M. They
make sense also for right actions.

The orbit through z € M is the set G.z = ¢(G,z) C M.
The action is called:
e Transitive if M is one orbit, i.e., for all z,w € M there is some g € G
with g.z = w.
e Freeif g1.z = go.z for some z € M implies already g1 = go.
o Effective if £, = £}, implies g = h, i.e., if £ : G — Diff(M) is injective
where Diff (M) denotes the group of all diffeomorphisms of M.
e Infinitesimally free if To(¢*) : g — T, M is injective for each z € M.

e Infinitesimally transitive if T,(¢*) : g — T, M is surjective for each
reM.

e Linear if M is a vector space and the action defines a representation.
o Affine if M is an affine space, and every ¢, : M — M is an affine map.

e Orthogonal if (M,~) is a Euclidean vector space and ¢, € O(M,~) for
all g € G.
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o Isometric if (M,~) is a Riemann manifold and ¢, is an isometry for all
g € G} see section

o Symplectic if (M,w) is a symplectic manifold and ¢, is a symplecto-
morphism for all g € G see section |(31)

e Principal fiber bundle action if it is free and if the projection onto the
orbit space 7w : M — M/G is a principal fiber bundle; see section |(17)|

More generally, a continuous transformation group of a topological space M
is a pair (G, M) where G is a topological group and where to each element
g € G there is given a homeomorphism ¢, of M such that £ : G x M — M
is continuous and /¢, o £}, = £4,. The continuity is an obvious geometrical
requirement, but in accordance with the general observation that group
properties often force more regularity than explicitly postulated (cf. ,
differentiability follows in many situations. So, if G is locally compact, M
is a smooth or real analytic manifold, all ¢, are smooth or real analytic
homeomorphisms and the action is effective, then G is a Lie group and £ is
smooth or real analytic, respectively; see [163], p. 212].

6.2. Let /: G x M — M be a left action. Then we have partial mappings
ly: M — M and ¢* : G — M, given by {,(z) = ¢*(a) = l(a,z) = a.x, where
a€Gandzxe M.

For any X € g we define the fundamental vector field (x = (¥ € X(M) by

Cx(7) = Te(£). X = Tie 5)0-(X,0z).

Lemma. In this situation the following assertions hold:

(1) ¢:g— X(M) is a linear mapping.

(2) Ta(la) Cx(2) = Caa(a)x (@-2).
(3) Rx x 0pr € X(G x M) 1is l-related to (x € X(M).
(4)

4) [Cx,¢v] = —(x,v)-
Proof. () is clear.
@) We have £,¢*(b) = abxr = aba~'ax = ¢°* conj,(b), so

Ty(0a)-Cx () = To(le) To(E%).X = To(ly o £7).X
= Te(**). Ad(a). X = (ad(a)x (a).

@) We have o (Id x £,) = o (u* x Id) : G x M — M, so

Cx (0(a, ) = Tieawyl- (X, 0az) = TL(Id x T(£,)).(X, 0,)
= TO(T(u®) x Id).(X,0,) = TL.(Rx x 0p)(a, ).
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@) [Rx x Onr, Ry x Op] = [Rx, Ry] x O = —Rjx,y] X Opr is f-related to
[Cx,Cy] by @) and by |(3.10)l On the other hand —Rx y] x Oy is f-related
to —([x,y] by @) again. Since ¢ is surjective, we get [(x,Cy] = —(xy)- O

6.3. Let r : M x G — M be a right action, so 7 : G — Diff (M) is a group
antihomomorphism. We will use the following notation: r* : M — M and
ry : G — M, given by ry(a) = r*(z) = r(z,a) = z.a.

For any X € g we define the fundamental vector field (x = Cé\g € X(M) by
Cx(x) = Te(Tx).X = T(l,’e)r.(ox, X)

Lemma. In this situation the following assertions hold:

(1) ¢:g9— X(M) is a linear mapping.

(2) To(r®).Cx () = Cada—1)x (2.a).
(3) O x Ly € X(M x G) is r-related to x € X(M).
(4)

4) [Cx,Cv] = Cix.y)- ([

6.4. Theorem. Let £ : G x M — M be a smooth left action. For x € M
let G, ={a € G :ax = x} be the isotropy subgroup or fixpoint group of x in
G, a closed subgroup of G. Then ¢* : G — M factors over p: G — G/G,
to an injective immersion i* : G/G, — M, which is G-equivariant, i.e.,
by 0" =1i% o iy for all a € G. The image of i¥ is the orbit through x.

The fundamental vector fields span an integrable distribution on M in the
sense of. Its leaves are the connected components of the orbits, and
each orbit is an initial submanifold. Thus i* : G/Gy — M is an initial
1MMersion.

Proof. Clearly ¢* factors over p to an injective mapping i* : G/G, — M; by
the universal property of surjective submersions i* is smooth, and obviously
it is equivariant. Thus T}, (). Tp(e) (fla) = Tpe) (1% © fia) = Tp(e )(ﬁa 0i%) =

T:(a) Tp(e)(i%) for all @ € G and it suffices to show that Ty, (i) is injective.

Let X € g and consider its fundamental vector field (x € X(M). By |(3.14)
and we have
Uexp(tX), z) = L(FI>0 (¢ 2)) = FI¥X (£(e, 2)) = FIS* (2).
So exp(tX) € Gy, i.e.,, X € g,, if and only if (x(z) = 0,. In other words,
0r = (x () = Te(€%). X = Ty (i) Tep. X if and only if Tep. X = 0. Thus

i* is an immersion.

Since the connected components of the orbits are integral manifolds, the
fundamental vector fields span an integrable distribution in the sense of

(3.23); but also the condition [(3.28.2)| is satisfied. So by theorem |(3.25)]
each orbit is an initial submanifold in the sense of [(2.13), By uniqueness
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of the manifold structure on an initial submanifold, the mapping #* is an
initial immersion. ([l

6.5. Theorem ([186]). Let M be a smooth manifold and let ¢ : g — X (M)
be a homomorphism from a finite-dimensional Lie algebra g into the Lie
algebra of vector fields on M. Let G be a simply connected Lie group with
Lie algebra g.

Then there exists a local left action G x M D U LN M, where U is an

open neighborhood of {e} x M in G x M whose fundamental vector field
mapping equals —C. Here U is an open neighborhood of {e} x M in G x M
and (g, l(h,x)) = l(gh, z) whenever both sides are defined.

Suppose moreover that each element (x in the image of ( is a complete
vector field. Then there exists a left action £ : G x M — M of the Lie group
G on the manifold M whose fundamental vector field mapping equals —(.

The domain U of the local action cannot be chosen maximal in general:
When trying to do so, one glues together open pieces of covering spaces of
subsets of G and gets sets spread over G but not contained in G. See [102]
for more information and examples.

Proof. On the product manifold G x M we consider the vector subbun-
dle £ = {(Lx(g9),¢(x(z)) : (9,2) € Gx M, X € g} C TG x TM where
Lx € X(G) is the left invariant vector field generated by X € g. We have
dim E, ; = dim g. The subbundle E is integrable since [Lx X (x, Ly X (y] =
[Lx,Ly] X [Cx,<y] = L[X,Y] X C[X,Y}~ Thus by theorem |(3.20)| (01" |(3.28)|)
the bundle E induces a foliation on G x M. Let us denote the leaf through
(9,x) € G x M by L(g,z). Note that by [(4.18.3) for the flow we have

(1) FI/ XX (g, 2) = (g. exp(tX), FIi¥ (z)).

This flow line lies in the leaf L(g, x) since it is tangent to it.

Thus for (x a complete vector field we have (u®PX x Flgx) : L(g,xz) —
L(g,z). In particular,

(2)  Llg.exp(X),FIi* () = L(g,), L(g-exp(X),y) = L(g. FI% ().

If {x is not complete, then (2) holds only whenever both sides (of any
equation) are defined.

We have T'(pug x Idar)(Lx (h), Cx () = (Lx (gh),(x () for X € g,9,h € G,
and x € M. Thus (ug x Idpr) maps leaves to leaves:

(3)  Llg,z) ={(gh,y) : (h,y) € L(e,x)} = (ng x Idar)(L(e, z)).

We suppose now that each vector field (x for X € g is complete.
(4) Claim. Then for any leaf L C G x M, the restriction pry |L : L — G is
a covering map.
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For (g,x) € L we have T{4.)(pry)(Lx(9),Cx(z)) = Lx(g); thus pry|L is
locally a diffeomorphism. For any g; € G we can find a piecewise smooth
curve ¢ in G connecting g with g; consisting of pieces of the form t —
gi-exp(tX;). Starting from (g,x) € L, we can fit together corresponding
pieces of the form FltLle Xex; to obtain a curve ¢ in L with pr; o¢ = ¢ which
connects (g,x) with (g1,21) € L for some z; € M. Thus pry : L — G is
surjective. Next we consider some absolutely convex ball B C g such that
exp:g D B — U C G is a diffeomorphism onto an open neighborhood U of
e in G. We consider the inverse image (pry |L)™1(g.U) C L and decompose
it into its connected components, (pry |L)~!(g9.U) = | ]V; € L. Choose x;
such that (g, x;) € V;. Any point in ¢.U is of the form g. exp(X) for a unique
X € B, with unique inverse image FltL xX6x (g9, ;) € V; under pry |V;. Since
{FleXCX (g,7;) : X € B} is open and closed in (pry |[L)~1(g.U), it equals
Vi, which is diffeomorphic to ¢g.U via pry |V;, and the claim follows.

Since G is simply connected, we conclude that for each leaf L the mapping
pr;|L : L — G is a diffeomorphism. We now define the action as follows:
For g € G and x € M consider the leaf L(e, z) through (e, z) and put

(5) Ug,x) = g.x = pro((pry | L(e, ) " (g7h)) € M.
Obviously, ¢ is smooth.

Let us now pass to the general case, where some (x may be incomplete.
Then claim (@) is wrong in general. Consider the following diagram, where
W, C G is the image of the leaf L(e, z) in G:

(6) U, L(e, z) - M

l‘\ \ prs

|

(pry lg,) pry GxM

|

| iprl

|

U,C W, L q.

To describe Uy, we consider the vector field ¢ € X(gx M) given by (X, z) =
(Ox, Cx(x)) with flow FIS (X, 2) = (X,FI5* () defined as FI¢ : D(¢) — M
where the (maximal) domain of definition D(¢) is an open neighborhood
of {0} x g x M in R x g x M by|[B37)] Let U = {(X,z) € gx M :
[—1,1] x {X} x {z} € D(¢)}. Since [—1,1] is compact, U’ is open. Now we
consider an open ball B C g centered at 0 such that exp : B — exp(B) C G is
a diffeomorphism. Then we let U = (exp x Idy ) (U'N(BxM)) —225 Gx M
and we denote U, := pri(U N (G x {z})) which is open in exp(B) inside G
and which is also simply connected, since (¢, X,z) € D({) <= (1,1X,z) €
D(¢). By construction, U, C W, and there is a branch U, C L(e,z) of
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pry : L(e,z) — W, over U, such that pr; |U, : U, — U, is a diffeomorphism.
So all entries of diagram (@]) have now been explained. We can define the
local action for (g,z) € U by

open J4 — _
(7) GXxM««==—U—M, lg,z)=gz:=pry((pr]z,) " (g")

Note that (7)) is the local version of (B). Again ¢ is smooth.

It remains to show that ¢ is a global or local action. Both definitions say:
gr=y < (¢97"y) € L(e,x) <= L(g~',g.x) = L(g~',y) = L(e,x) (for
(9,x) € U in the noncomplete case). So L(e, h.z) = L(h, z) determines h.z
uniquely; compare with [B]). Applying pg x Idps and @B), we get L(g, h.z) =
L(g.h,z) for all g,h € G and z € M. Thus ¢ : G x M — M is a (local)
action, since L(e, g.(h.x)) = L(g, h.x) = L(g.h,z) = L(e, (g.h).z). From the
considerations in the proof of the claim () and from (dl) and (@) it follows
that for X € g we also have (for X small in the noncomplete case)

(8) U(exp(X), z) = exp(X ).z = FI*X (z) € M.
So the fundamental vector field mapping of ¢ is —(. U

6.6. Semidirect products of Lie groups. Let H and K be two Lie
groups and let ¢ : H x K — K be a smooth left action of H in K such
that each ¢;, : K — K is a group automorphism. So the associated mapping
/:H — Aut(K) is a smooth homomorphism into the automorphism group
of K. Then we can introduce the following multiplication and inversion on
K x H:

(1) (k,h)(K,B) = (kb (K),mE), (k,h)" = (L1 (K1), h7 ).

It is easy to see that this defines a Lie group G = K Xy H called the semidirect
product of H and K with respect to £. If the action £ is clear from the context,
we write G = K x H only. The second projection pry : K x H — H is a
surjective smooth homomorphism with kernel K x {e}, and the insertion
ins, : H - K x H, ins.(h) = (e, h) is a smooth group homomorphism with
pryoinse = Idy.

Conversely we consider an exact sequence of Lie groups and homomorphisms
(2) (e} » K 25 G 25 H— {e).

So j is injective, p is surjective, and the kernel of p equals the image of
j. We suppose furthermore that the sequence splits, so that there is a
smooth homomorphism s : H — G with po s = Idy. Then the rule
(n(k) = s(h)ks(h™!) (where we suppress j) defines a left action of H on
K by automorphisms. It is easily seen that the mapping K xy H — G
given by (k,h) — k.s(h) is an isomorphism of Lie groups with inverse g —
(g.sp(g9)~1,sp(g)). Note that g — g.sp(g)~! is not a homomorphism of
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groups but only of H-modules G — K. So we see that semidirect products
of Lie groups correspond exactly to splitting short exact sequences.

6.7. The tangent group of a Lie group. Let G be a Lie group with Lie
algebra g. We will use the notation from |(4.1)l First note that T'G is also
a Lie group with multiplication T’y and inversion T'v, given by (see [(4.2)))

T(a7b),U~(€a, nb) = Ta(ub)'fa + Tb(ﬂa)'nb and Tov.8 = _Te(ﬂafl)-Ta(Ma_ )'fa-

Lemma. Via the isomorphism given by the right trivialization gx G — TG,
(X,9) — Te(u9).X, the group structure on TG looks as follows:

(X,a).(Y,b) = (X + Ad(a)Y,a.b) and (X,a)"'=(—Ad(aHX,a™ ).
So T'G is isomorphic to the semidirect product g x G.

Proof. We compute:
Tapyp- (T X, TplY) = Tpl Tp®. X + Tpa TpP.Y
= Tu X + Tpb Tp®. Tp®  Tp,.Y = T (X + Ad(a)Y),
T,vTu* X = —T,uail.T,uafl.T,ua.X = —Tu‘fl.Ad(a*l)X. O

Remark. In the left trivialization G x g = TG, (g9, X) — Te(pg).X, the
semidirect product structure looks awkward:
(a,X).(b,Y) = (ab,Ad(b=")X +Y) and (a, X)"! = (a~!, — Ad(a) X).

6.8. G-actions and their orbit spaces. If M is a left G-manifold, then
M /@G, the space of all G-orbits endowed with the quotient topology, is called
the orbit space. We consider some examples:

The standard action of O(n) on R™. It is orthogonal. The orbits are the
concentric spheres around the fixed point 0 and 0 itself. The orbit space is
R"/O(n) = [0, 00).

Every Lie group G acts on itself by conjugation conj : G x G — G which is
defined by (g, h) — conj,(h) := g.h.g”" and which is a smooth left action of
G on itself.

The adjoint action Ad : G — GL(g) of a Lie group G on its Lie algebra g
from |(4.24)| In particular, the orthogonal group acts orthogonally on o(n),
the Lie algebra of all skew-symmetric n x n-matrices.

The O(n)-action on S(n) treated in |(7.1)l Similarly, SU(n) acts unitarily
on the Hermitian (n X n) matrices by conjugation.
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6.9. Isotropy groups. Let M be a G-manifold; then the closed subgroup
G, ={g € G:g.x=x} of G is called the isotropy subgroup of x.

The map * : G/G, — M defined by * : ¢g.G, — gx € M is a G-
equivariant initial immersion with image G.x, by |(6.4)

G/G,.

6.10. Lemma. Let M be a G-manifold and z,y € M; then

(1) Ggo = 9.G4.97 1,
(2) If GanGy #0, then Gz = G.y,
(3) Tx(G.x) = T.(£%).g.

Proof. (1)) a € Gy, means ag.x = g.x or ¢ lag.x = z and again ¢ lag € G,

which in turn is equivalent to a € ¢ Gog~ .

@) If z € G.x N G.y, then z = g1.x = go.y for some g1,92 € G. So z =
g7 '.g2.y; therefore G.x = G.(97 .g92.y) = G.y.

B) X € Tp(G.x) & X = 04|oc(t) for some smooth curve ¢(t) = g(t).z € G.x
with g(0) = e. So we have X = 000" (g¢) € Te(¢*).g.

6.11. Conjugacy classes. The closed subgroups of G' can be partitioned
into equivalence classes by writing

H ~ H' if there exists g € G for which H = gH'g ™.

The equivalence class of H is denoted by (H).

Using lemma we have as a first consequence: The conjugacy class
of an isotropy subgroup is invariant under the action of G : (G;) = (Ggz).
Therefore we can assign to each orbit G.x the conjugacy class (G). We will
call (G) the isotropy type or the orbit type of the orbit through z.

If G is compact, we can define a partial ordering on the conjugacy classes
simply by transferring the usual partial ordering “C” on the subgroups to
the classes:

(H)<(H) : < JKe(H),K'e(H): KCK'
— JgeG:HCgH'g %

If G is not compact, this relation may not be reflexive. For compact G the
reflexivity of this relation is a consequence of the following:
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6.12. Lemma. Let G be a compact Lie group and H a closed subgroup of
G; then

gHg'CH = g¢gHg '=H.

Proof. By iteration, gHg~' C H implies g"Hg " C H for all n € N. Now
let us study the set A := {g" : n € Z>o}. We will show that g~ ! is contained
in its closure A.

Suppose that e is discrete in A. So there is an e-neighborhood U in G such
that UN A = {e}. Then ¢"U N {g* : k > n} = {g"}, so by induction A is
discrete. Since G is compact, A = A is finite. Therefore ¢g" = e for some
n>0,and g" ' =g € A

Suppose now that e is an accumulation point of A. Then for any neighbor-
hood U of e there is a g" € U where n > 0. This implies ¢"~! € ¢g7'U N A.
Since the sets ¢g~'U form a neighborhood basis of g~!, we see that ¢! is an
accumulation point of A as well. That is, g~! € A.

Since conj : G x G — G is continuous and H is closed, we have conj(A4, H) C
H. In particular, g ' Hg C H which together with our premise implies that
gHg ' =H. ([

6.13. Principal orbits. Let M be a G-manifold. The orbit G.x is called
a principal orbit if there is an invariant open neighborhood U of x in M and
for all y € U an equivariant map

f:Gx— Guy.

Note that f is automatically surjective: Namely, let f(x) =: a.y. For an
arbitrary z = g.y € G.y this gives us

z=gy=ga 'ay=ga " f(x) = f(ga " .2).

The existence of f in the above definition is equivalent to the condition:
Gz C aGya™! for some a € G:

If f exists, then for g € G, we have g.x = z and thus g.f(z) = f(g.2) = f(z).
For f(x) =: a.y we get ga.y = a.y; thus g € G4y = aGya™? by

To show the converse, we define f : G.x — G.y explicitly by f(g.x) := ga.y.
We have to check: If g1.x = g2.7, ie., g := g;lgl € Gy, then g1a.y = gaa.y
or g€ Goy = aGya_l. This is guaranteed by our assumption.

We call x € M a regular point if G.x is a principal orbit. Otherwise, x is

called singular. The subset of all regular points in M is denoted by M,eg,
and Mg denotes the subset of all singular points.
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6.14. Slices. Let M be a G-manifold and x € M, then a subset S C M is
called a slice at x if there is a G-invariant open neighborhood U of G.x and
a smooth equivariant retraction r : U — G.x such that S = r~!(z). Since r
is equivariant, it is a submersion onto G.x.

6.15. Proposition. If M is a G-manifold and S = r~1(x) a slice at x € M,
where r : U — G.x is the corresponding retraction, then:

(1) x€ S and G,.S C S.
(2) If g.SNS # 0, then g € G.
(3) GS={gs:geG,seSt=U.

Proof. () We have x € S since S = r~!(x) and r(z) = . To show that
G;.S C S, take an s € S and g € G5. Then r(g.s) = g.r(s) = g.x = z, and
therefore g.s € r~1(z) = S.

@) If g.SNS # 0, then g.s € S for some s € S. So we get x = r(g.s) =
g.r(s) = g.x; thus g € G,.

@) We have G.S = G.r~Y(z) =r 1(G.x) = U. O

6.16. Corollary. If M is a G-manifold and S a slice at x € M, then:
(1) S is a Gz-manifold.
(2) Gs C Gy foralls e S.
(3) If G.x is a principal orbit and G5 compact, then Gy = G, for ally € S
if the slice S at x is chosen small enough. In other words, all orbits
near G.x are principal as well.

(4) If two Gy-orbits G.s1,Gy.s2 in S have the same orbit type as G -orbits
i S, then G.s1 and G.sy have the same orbit type as G-orbits in M.

(5) S/G = G.S/G is an open neighborhood of G.x in the orbit space M /G.

Proof. ([{l) This is clear from |(6.15.1)

@) If g € Gy then g.y =y € S; thus g € G by |(6.15.2)]

@) By @) we have G, C G, so Gy is compact as well. Because G.x is
principal it follows that for y € S close to x, G, is conjugate to a subgroup
of Gy, Gy € G, C g.Gyg™!. Since Gy is compact, Gy C g.Gyg~! implies
Gy = g.Gyg~! by [(6.12)] Therefore G, = G, and G.y is also a principal
orbit.

@) For any s € S we have (G;)s = G, since (G;)s C Gs. Conversely,
by @), Gs C Gg; therefore Gy C (Gy)s. So (Gi)s, = 9(Gy)s,g~ ! implies
Gs, = gGs,971 and the G-orbits have the same orbit type.
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(B) The isomorphism S/G, = G.S/G is given by the map G5.s — G.s which
is an injection by L Since G.S = U is an open G-invariant neighbor-
hood of G.x in M by @ we have G.S/G is an open neighborhood of
G.zxin M/G. O

6.17. Remark. The converse to |(6.16.4) is generally false. If the two G-
orbits G.s1, G.s2 are of the same type, then the isotropy groups Gg, and
(s, are conjugate in GG. They need not be conjugate in G;. For example,
consider the following semidirect product, the compact Lie group G := (S' x
S1) x Zo with multiplication defined as follows. Let 1, @2, 1,12 € S' and
a, B € Zy. Take on S' x S! the usual multiplication by components, and as
Zo-action:

Za 30— i := Idgi g1, I (i1 : (p1,902) = (92, 901))-

Then we consider the semidirect product structure:

(901’ ¥2, O‘)'(¢1a¢2’/8) = ((9017 902)'ia(1/)17¢2)a o+ 5)

Now we let G act on M := VUW where V =W = CxC. For any element in
M we will indicate its connected component by the index (x,y)y or (x,y)w.
The action shall be the following;:

(Sola P2, 0)($a y)V = (‘101-337 @2-3/)‘/7
(01,02, 1).(z, y)v = (1.9, p2.2)w-
The action on W is simply given by interchanging the V’s and W’s in the
above formulae. This defines an action. Denote by H the abelian subgroup
St x S x {0}. Then H is the isotropy subgroup of (0,0)y, and V is a slice
at (0,0)y. Now consider s1 := (0,v!)y and sy := (v2,0)y, both not equal
to zero. Then let
Hy =Gy, = S' x {1} x {0},
Hy := Gy, = {1} x S x {0}.
The subgroups H; and Hjy are conjugate in G by (1,1,1). Yet they are

clearly not conjugate in H since H is abelian. So H.s; and H.sy have
different orbit types in H while G.s; and G.sy are of the same G-orbit type.

6.18. Proposition. Let M be a G-manifold and S a slice at x; then there
is a G-equivariant diffeomorphism of the associated bundle G[S] onto G.S,

f:G[S] =G xg, S— G.S
which maps the zero section G X, {x} onto G.x.

See [(18.7)| below for more information on associated bundles.
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Proof. Since ¢(gh,h1.s) = g.s = {(g,s) for all h € G, there is an f :
G[S] — G.S such that the following diagram commutes:

GxS—t—-as

|
q
GXGIS.

The map f is smooth because f o ¢ = £ is smooth and ¢ is a submersion. It
is equivariant since ¢ and ¢ are equivariant. Also, f maps the zero section
G X¢g, {z} onto G.xz. The map f is bijective: If g1.s1 = g2.52, then s; =
91_192.82; thus h = gl_lgg € G, by But then g1 = goh and s; = h.ss.
This is equivalent to ¢(g1,s1) = (g2, S2).

To see that f is a diffeomorphism, let us prove that the rank of f equals the
dimension of M. First of all, note that rank({y;) = dim(g.5) = dim S and
rank(¢*) = dim(G.z). Since S = r~!(x) and r : G.S — G.z is a submersion,
it follows that dim(G.z) = codim S. Therefore,

rank(f) = rank(¢) = rank({,) + rank(¢*) = dim S + dim(G.x)
=dim S + codim § =dim M. O

6.19. Remark. The converse also holds. If f : G xg, S — G.S is a
G-equivariant diffeomorphism, then for some g € G and § € S whe have
flg,3] = . So flg,s] := flgg,s] defines a G-equivariant diffeomorphism
with the additional property that z = fle, §]:

Gxa §1—=a.s

prll rl
G/G, ——> G.z.
If we define 7 := iopr;of~! : G.S — G.x, then r is again a smooth G-

equivariant map, and it is a retraction onto G.zx since

—1 .
L opr
PRRE AN [e,5] —— .Gy — e.x.

Furthermore, r~!(z) = S, making S a slice.

6.20. Proper actions. Recall that a continuous mapping between topolog-
ical spaces is called proper if compact subsets have compact inverse images.
A smooth action £ : G x M — M is called proper if it satisfies one of the
following three equivalent conditions:

(1) (¢,pry) :Gx M — M x M, (g,z) — (g.x,z), is a proper mapping
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(2) gn-xn — y and z, — z in M, for some g, € G and z,,z,y € M,
implies that these g, have a convergent subsequence in G.

(3) K and L compact in M implies that {g € G : g. K N L # 0} is compact
as well.

Proof. () = (@) This is a direct consequence of the definitions.

@) = @) Let g, be a sequence in {g € G : ¢ KNL # 0} and z, € K
such that g,.z, € L. Since K is compact, we can choose a convergent
subsequence z,, — x € K of x,. Since L is compact, we can do the same
for gn,.rn, there. Now (2)) tells us that in such a case g, must have a
convergent subsequence; therefore {g € G : g.K N L # ()} is compact.

@) = (@) Let R be a compact subset of M x M. Then L := pr;(R) and
K := pry(R) are compact, and (£,pry) H(R) C{g€G:g.KNL#0} x K.
By @), {g € G:gKNL # (0} is compact. Therefore (£,pry)~(R) is
compact, and (¢, pry) is proper. O

6.21. Remark. If GG is compact, then every G-action is proper. If £: G x
M — M is a proper action and G is not compact, then for any noncompact
H C G and x € M the set H.x is noncompact in M. Furthermore, all

isotropy groups are compact (most easily seen from [(6.20.3)| by setting K =
L ={x}).

6.22. Lemma. A continuous, proper map f : X — Y between two topolog-
ical spaces is closed.

Proof (For metric spaces). Consider a closed subset A C X, and take a
point y in the closure of f(A). Let f(an) € f(A) converge to y (a, € A).
Then the f(a,) are contained in a compact subset K C Y. Therefore
an C f7Y(K) N A which is now, since f is proper, a compact subset of A.
Consequently, (a,) has a convergent subsequence with limit a € A, and
by continuity of f, it gives a convergent subsequence of f(a,) with limit
f(a) € f(A). Since f(ay) converges to y, we have y = f(a) € f(A). O

6.23. Proposition. The orbits of a proper action £ : G x M — M are
closed submanifolds.

Proof. By the preceding lemma, (¢, pr,) is closed. Therefore (¢, pry)(G,z) =
G.z x {z}, and with it G.z is closed.

G i G.x

G/G,.
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As a maximal integral manifold of the involutive distribution of (in general)
nonconstant rank spanned by all fundamental vector fields, G.x is an initial
submanifold, and * is an initial immersion by ((6.4)] Thus * : G/G; — G.x
is open. O

6.24 Examples of nonproper actions. The standard action of SL(2,R)
on R? has two orbits, 0 and R?\ 0 which is not closed. By [(6.23)|this action
is not proper.

The action of GL(n,R) on the space Lgym(R", R™) of symmetric matrices
given by (g, A) — g'.A.g is not proper, since the isotropy group of the
symmetric bilinear form with signature p,n — p is the group O(p,n — p,R)
which is not compact for 0 < p < n.

6.25. Lemma. Let (M,v) be a Riemann manifold and ¢ : G x M — M
an effective isometric action (i.e., g.x = x for allx € M = g = e), such
that (G) C Isom(M,~) is closed in the compact open topology. Then ¢ is
proper.

Proof. Assume without loss that M is connected. Let g, € G and x,, z,y €
M such that g,.x, — y and x,, — x; then we have to show that g, has a
convergent subsequence which is the same as proving that {g, : n € N} is
relatively compact, since £(G) C Isom(M, ) is closed.

Let us choose a compact neighborhood K of z in M. Put a metric on M
(e.g., the Riemann distance function). Note first Isom(M) > ¢ — ¢|x €
CY(K, M) is an injective embedding, where we put the uniform metric on
CY%(K,M). Then, since the g, act isometrically, we can find a compact
neighborhood L C M of y such that (J;~ | gn.K is contained in L. So {gn}
is bounded in C°(K, M). Furthermore, the set of all g,, is equicontinuous as
subset of Isom(M). Therefore, by the theorem of Ascoli-Arzela, {g,, : n € N}
is relatively compact in Isom(M). O

6.26. Theorem (Existence of slices, [I87]. Let M be a G-space and let
x € M be a point with compact isotropy group Gy. If for all open neigh-
borhoods W of G, in G there is a neighborhood V of x in M such that
{g€ G:g.V NV £0} CW, then there exists a slice at x.

Proof. Let 4 be any Riemann metric on M. Since G, is compact, we
can get a Gy-invariant Riemann metric on M by integrating over the Haar

measure for the action of G; see

Y(X,Y) = /G (¢5)(X,Y)da = /G 5(TCu X, Tl,Y)da.
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exp;

We choose € > 0 small enough for T, M DO By,(e) M to be a

diffeomorphism onto its image and we define:
S := exp] (:rgc(c;.;c)L N B, (5)) C M.

Then S is a submanifold of M and the first step towards obtaining a real
slice. Let us show that S is G-invariant. Since G, leaves v unchanged and
Ty (G.x) is invariant under T,¢, (for g € G,), T}¢, is an isometry and leaves
T.(G.z)* N By, (¢) invariant. Therefore:

zgg
T,(G.z)* N B, () —— T,(G.z)* N Bo, (¢)

o o

~ Y4 ~
S ? S.

We have to shrink S to an open subset S such that for g € G with ¢.SNS % 0
we have g € G,. This property is necessary for a slice. At this point, we
shall need the condition that for every open neighborhood W of G, in G,
there is a neighborhood V of x in M such that {g € G: g.V NV #0} CW.
First we must construct a W fitting our purposes. Choose an open neigh-
borhood U C G/G, of e.G, such that there is a smooth section x : U — G
of m: G — G/G, with x(e.G,) = e. Also, let U and possibly S be small
enough to get an embedding

f:UxS— M:(u,s)— x(u).s.

Our neighborhood of G, will be W := 7=1(U). Now by our assumption,
there is a neighborhood V of z in M such that {g € G: 9.V NV £ 0} CW.

Next we will prove that V' can be chosen G -invariant. Suppose we can
choose an open neighborhood W of G, in G such that Gx.W CW (we
will prove this below). Let V' be the neighborhood of z in M satisfying
{geG:gV' NV #£0} CW. Now V := G,.V’' has the desired property,

since:

{g€G:9.G,.V' NGV #£0} = U {g€G:9.1.V' Ng V' # 0}
91792€Gz

= | {veG:g'lgn V' nV' £0}
91192€Gx

= U g{g€G:gV' NV £} !
91,92€G%

=G {geG:gV' NV #£0V.G, C Go.W.Gp CW.Gy = W.
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To complete the above argumentation, we have only to prove the

Claim. To any open neighborhood W of G, in G there is an open neigh-
borhood W of G, such that G,.W C W.

The proof of this claim relies on the compactness of G;. For all (a,b) € G, x
G, we choose neighborhoods A, of a and B, of b, such that A, p.B,p C W.
This is possible by continuity, since G.Gy = Gy. {Bgp : b € G} is an open
cover of G,. Then there is a finite subcover UjV: 1 Bap; = Ba 2 G Since
Aap;-Bap; € W, we must choose 4, := ﬂ;vzl Aap;, to get Aq. B, C W. Now
since A, is a neighborhood of a in G,, the A, cover G, again. Consider a
finite subcovering A := |Jj_; Aq; 2 G4, and as before define B := (;_; B,
so that A.B C W. In particular, this gives us G5.B C W, so W := B is an
open neighborhood of G, with the desired property.

So we have a G -invariant neighborhood V' of z with {g € G : gV NV # ()}
contained in W. Now we define S := SNV and hope for the best. The
S is an open subset of S, and it is again invariant under G,. Let us check
whether we have the converse: {g € G : g.SNS # 0} C G,. If g.s1 = s9
for some s1,52 € S, then ¢ € W = 7= 1(U) by the above effort. Therefore
7(g) € U. Choose h = g~ x(7(g)) € Gx. Then

f(w(g),hilsl) = X(ﬂ(g))hflsl = g.s1 = s2 = f(w(e), s2).

Since f is a diffeomorphism onto its image, we have shown that 7(g) = m(e),
that is, g € G,.

Now, it is easy to see that F': G xg, S — G.S : [g, s] — g.s is well defined,
G-equivariant and smooth. We have the diagram

GxS

~ 7

G X Gy S.

To finish the proof, we have to show that F' is a diffeomorphism, according
t0/(6.19)} Firstly, F' is injective because:

Flg,s]=Fl¢,s|=>gs=¢g.sd =>¢97'¢s =5

-1 7

=g g €Gr= 9,8l =[9,9795)=1d,5]

Next, we notice that ((W,S) = W.S = f(U,S) is open in M since f :
U xS — M is an embedding with an open image. Consequently, G.S5 =
(G, W.S) is open, since ¢ is open, and thus F' is a diffeomorphism. O

6.27. Theorem ([187]). If M is a proper G-manifold, then for all x € M
the conditions of the previous theorem are satisfied, so each x has slices.
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Proof. We have already shown that each isotropy group G, is compact
(6.21)l Now for every neighborhood U of G, in G, for every z € M, it
remains to find a neighborhood V' of x in M such that

{g€G:gVNV £} CU.

Claim. U contains an open neighborhood U with G,.U = U; so we will be
able to assume G,.U = U without loss of generality.

The claim in the proof of theorem shows the existence of a neighbor-
hood B of G, such that G,.B C U, using only the compactness of G;. So
U:=G,.B= Uger g.B is again an open neighborhood of G, and it has
the desired properties.

Now we can suppose U = G,.U. Next, we have to construct an open
neighborhood V' C M of z, such that {g € G: g.V NV # @} C U. This is
the same as saying (G \ U).V NV should be empty. So we have to look for
V in the complement of (G \ U).x.

We see that M \ ((G\ U).z) is open, or rather that (G \U).x is closed. This
is because (G\U).x x {x} = ({,pry)((G\U) x {z}) is the image of a closed
set under (¢, pry) which is a closed mapping by lemma

Now let us choose a compact neighborhood W of x in M\ ((G\U).x). Then
since G acts properly, it follows that {g € G : ¢ W NW =# 0} is compact; in
particular K := {g € G\U : g WNW = (} is compact. But what we need is
for {g € G\U : g.V NV # 0} to be empty. An z-neighborhood V' contained
in W fulfills this if K.V C M \ W. Let us find such a neighborhood.

Our choice of W guarantees K.x C M \ W. But M \ W is open; therefore
for each k € K we can choose a neighborhood @ of k in G and V;, of x in
W, such that Q.Vx € M \ W. The neighborhoods Q cover K, and we can
choose a finite subcovering UT:l Qr,;- Then V := ﬂ;”zl Vi, has the desired
property: K.V C M\ W. O

6.28. Lemma. Let M be a proper G-manifold, V a linear G-space and
f: M — 'V smooth with compact support. Then

f:a:»—)/Gg_lf(g.m)ng

is a G-equivariant C*°-map with f(x) =0 for x ¢ G.supp f (where dp
stands for a right Haar measure on G).

Proof. Since G acts properly, {g € G : g.x € supp f} is compact. Therefore
the map g — ¢! f(g.z) has compact support, and f is well defined. To see
that f is smooth, let x¢p be in M, and let U be a compact neighborhood
of 9. Then the set {g € G : g.U Nsupp f # 0} is compact. Therefore,
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f restricted to U is smooth; in particular f is smooth in zg. Also, f is
G-equivariant, since

flha) = /G g f(gh-x)dpg = /G h(gh) " f(gh.z)dng
—h [ g7 f(g)dng = hf(a).
G

Furthermore, if ¢ G.supp f, then f(g.z) = 0 for all g € G; thus f(z) =
0. [l

6.29. Corollary. If M is a proper G-manifold, then M/G is completely
regular.

Proof. Choose FF C M/G closed and Zg = 7(xg) ¢ F. Now let U be a
compact neighborhood of xg in M fulfilling U N7~ (F) = 0, and choose
f € C>®(M,[0,00)) with support in U such that f(xzg) > 0. If we take the
trivial representation of G on R, then from lemma it follows that

f(a) = /G f(9.2)drg

defines a smooth G-invariant function. Here drg denote the right Harr mea-

sure on G; see[(14.4)] Moreover, f(xo) > 0. Since supp(f) € G.supp(f) C
G.U, we have supp(f) N7 1 (F) = 0. Since f € C>(M,]0, og))G is invari-
ant, f factors over 7 to a map f € C°(M/G,[0,00)), with f(zg) > 0 and
flr=o0. O

6.30. Theorem. If M is a proper G-manifold, then there is a G-invariant
Riemann metric on M.

Proof. By |(6.27) there is a slice S, at « for all z € M. Let 7 : M — M /G
be the quotient map. Notice first that M /G is Hausdorff by [(6.29)|

For each x choose f, € C*°(M,[0,00)) with f,(z > 0) and supp(f;) C G.S;
compact; then by

Faly) = /G f2(g9)drg € C=(M, [0, 00))°

is G-invariant, positive on G.z, and has supp(f,) € G.S,. Moreover,
m(supp fz) is a compact neighborhood of 7(z), so M/G is locally compact.
The interiors of the supports of the smooth functions f, form an open cover
of M. Since M is a Lindelof-space |(1.6), there is a countable subcover with
corresponding functions fy,, fz,,.... We write f, := f;, and Sy = Sg,,.
Let

W,={x€M: f(r) >0and fi(z) < for 1 <i<n}CG.S,,
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and denote by W, the closure. Then {W,} is a G-invariant open cover.
We claim that {W,, : n € N} is locally finite: Let x € M. Then there is
a smallest n such that x € W,,. Let V := {y € M : f,(y) > 2 fu(z)}. If
y € VN Wy, then we have f,,(y) > 3 fn(z) and fi(y) <  for i < k, which is
possible for finitely many k only. Let h(t) = e~'/* for t > 0 and h(t) = 0 for
t < 0. Consider the nonnegative smooth function

fu(@) = b(fu(@))h( = fi(@)) . b5 = fuoa(2))
for each n. Then obviously supp(f,) = W, C G.S,,.

The action of the compact group G, on T'M]|g, is fiber linear, so there is
a G, -invariant Riemann metric 4™ on the vector bundle T M| S,, Dy inte-
gration over the compact group G,,,. To get a Riemann metric on TM|g g,
invariant under the whole group G, consider the following diagram:

GxTM|s, —~TM|gs,.
i ot
q
G XGzn TM|SM
ER T p——

The map T»¢ : (9, Xs) — Tsly. X, factors over ¢ to a map ﬁé which is
injective, since if Txl(g, Xs) = T2l(¢', Xs), then on the one side £(g.s) =
Ug's") so g7tg'.s’ = s and g7'¢’ € G,. On the other side, Tsl,. X; =
Tslfg/.Xsl. So

(¢', Xs) ={9(97"9"), Tty Tsly. X };
thus ¢(¢', Xs) = q(g, Xs)-
The Riemann metric 4™ induces a G-invariant vector bundle metric on

G xTM|g, — G x Sy by

’Yn((g’ Xs)’ (97 }/s)) = 'Y(n) (X87 1/5)
It is also invariant under the right G, -action (g, Xs).h = (gh, T¥,-1.X5)
and, therefore, induces a Riemann metric 4, on G xg, T M|g, . This metric is
again G-invariant, since the actions of G' and G, commute. Now (@/E)*'?n =:
Yn is a G-invariant Riemann metric on TM|q.s,, and v := > > foYn is a
G-invariant Riemann metric on M. ]

6.31. Result ([187]). Let G be a matriz group, that is, a Lie group with
a faithful finite-dimensional representation, and let M be a proper G-space
with only a finite number of orbit types. Then there is a G-equivariant
embedding f : M — V into a linear G-space V.
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7. Polynomial and Smooth Invariant Theory

7.1. A motivating example. Let S(n) denote the space of symmetric
n X n matrices with entries in R and O(n) the orthogonal group. Consider
the action:

0:0(n) x S(n) = S(n), (A, B)— ABA™' = ABAT.

If 3 is the space of all real diagonal matrices and S, is the symmetric group
on n letters, then we have the following:

Theorem.
(1) This is an orthogonal O(n)-action on S(n) for the inner product given
by (A, B) = Trace(ABT) = Trace(AB).
(2) ¥ meets every O(n)-orbit.
(3) If B € X, then £(O(n), B)NY, the intersection of the O(n)-orbit through

B with %, equals the Sy,-orbit through B, where S, acts on B € ¥ by
permuting the eigenvalues.

(4) X intersects each orbit orthogonally with respect to the inner product
(A, B) = Trace(ABT) = Trace(AB) on S(n).

(5) R[S(n)]°™), the space of all O(n)-invariant polynomials in S(n) is
isomorphic to R[X]5", the symmetric polynomials in ¥ (by restriction,).

(6) The space C®(S(n))°™ of O(n)-invariant C>®-functions is isomor-
phic to C™(X)%", the space of all symmetric C™®-functions in ¥ (again
by restriction), and these again are isomorphic to the C*°-functions in
the elementary symmetric polynomials.

(7) The space of all O(n)-invariant horizontal p-forms on S(n), the space
of all O(n)-invariant p-forms w with the property ixw = 0 for all X €
T4(O(n).A), is isomorphic to the space of Sy-invariant p-forms on 3:

QP (S(n))0M = QP (x5,

hor

Proof. () Let A € O(n) act on Hy, Hs € S(n); then

Trace(AHy A™H(AH A™Y)T) = Trace(AH, A=Y (A~ H)THT AT)
= Trace(AH, AV AHT A™Y) = Trace(AH,HE A™Y) = Trace(HoHY ).

@) Clear from linear algebra.

@) The transformation of a symmetric matrix into normal form is unique
except for the order in which the eigenvalues appear.

(@) Take an A in . For any X € o(n), that is, for any skew-symmetric X,
let {x denote the corresponding fundamental vector field on S(n). Then we
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have

d
CX (A> = expe(tX)A €XPe (tXT)
dt|,_,

= XAid+id AXT = XA - AX.
Now the inner product with n € T43 = ¥ computes to
(Cx(A),n) = Trace(Cx (A)n) = Trace(X A — AX)n)
= Trace(X An) — Trace(AXn) = Trace(XnA) — Trace(XnA) = 0.
XnA
=X

@) If p € R[S(n)]°™), then clearly p := p|z € R[X]5". To construct p from p,
we use the result from algebra that R[R™]" is just the ring of all polynomials
in the elementary symmetric functions. So if we use the isomorphism

aq 0 0
0 as ...

A=\ . . — (a1,a2,...,a,) =t a
O 0 ... ap

to replace R™ by X, we find that each symmetric polynomial p on ¥ is of
the form

p(A) = p(o1(A),02(A),...,0n(A4)).
It can be expressed as a polynomial p in the elementary symmetric functions

o1 =—at =2 — .. — 2",

02:x1x2+x1x3+...,

op = (—1)F Z It

J1<<Jk

on = (—1)"X1. 2™
Let us consider the characteristic polynomial of the diagonal matrix X with

eigenvalues 2!, ..., z":

n
[[t-2)=t"+ort" "+ +on1t+o,
i=1
— det(t.Id — X)
n . .
(=D)""t'cp—i(X), where
i=0

k k k
cr(Y) = Trace(\ Y : AR" — AR")
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is the k-th characteristic coefficient of a matrix Y; see [(14.9)l So the o;
extend to O(n)-invariant polynomials ¢; on S(n). We can now extend p to
a polynomial on S(n) by

p(H) :=p(cr(H),ca(H),...,cn(H)) for all H € S(n).
Therefore, p is an O(n)-invariant polynomial on S(n) and is unique as such
due to ().

(@) Again we have that f € C>(S(n))°™ implies f := flg € C®(X)S".

Finding an inverse map f — f as above is possible due to the following
theorem by Gerald Schwarz; see below:

Let G be a compact Lie group with a finite-dimensional representation G —
GL(V) and let p1,pa,...,pr be generators for the algebra R[V]Y of G-in-
variant polynomials on V. It is finitely generated as an algebra due to
Hilbert; see . Then, for any smooth function h € C>®(V)%, there is
a function h € C®(R¥) such that h(v) = h(p1(v), ..., pr(v)).

Now we can prove the assertion as in (&) above. Again we take the symmet-
ric polynomials o7y, ..., 0, as generators of R[¥]%". By Schwarz’s theorem
(7.13)] any f € C(2)" can be written as a smooth function in o1, ..., 0p.
So we have an f € C°°(R") such that

f(A) = f(o1(A),...0n(A)) for all A € ¥.
If we extend the o; onto S(n) as in ({l), we can define
F(H) = F(ex(H),a(H), ... ea(H))  for H € S(n).

Then f is again a smooth function and it is the unique O(n)-invariant ex-
tension of f.

(@) Consider o = (01,...,05,) : ¥ — R™ and put J(x) := det(do(x)). For
each a € §,, we have

Jdz' A Nda" =doy A - Adoy
= (doy A -+ Ndoy)
= (Joa).a*(dz' A--- Adz™)
= (Joa).det(a).dzt A - Adz™,
(8) Joa=det(a™).J

From this we see firstly that J is a homogeneous polynomial of degree

0414+ (n—1)="00 <Z>

The mapping ¢ is a local diffeomorphism on the open set U = ¥\ J~1(0);
thus doy,...,do, is a coframe on U, i.e., a basis of the cotangent bundle
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everywhere on U. Let (ij) be the transpositions in S, and let

Hj) = {reX:z'—2/ =0}
be the reflection hyperplanes of the (ij). If x € H(;), then by () we
have J(x) = J((ij)r) = —J(x), so J(X) = 0. Thus J|Hj = 0, so the
polynomial J is divisible by the linear form 2® — 27, for each i < j. By
comparing degrees, we see that
9) J(x) =c. H(:Ul —27),  where 0 # c € R.

1<J
By the same argument we see that:
(10) If g € C>(X) satisfies go a = det(a™!).g for all a € S,,, then g = J.h
for h € C®(X)5n.
(11) Claim. Let w € QP(X)S*. Then we have
w = Z Wi ,...\dp del VANEEIWAN dO’jp
J1<j2<-+<Jp

on ¥, for wj, ., € C®(X)5,

To prove claim (II]) recall that doq,...,do, is an Sy-invariant coframe on
the S,-invariant open set U. Thus
w|U = Z 951, doj, /\"'/\dO‘jp
71<g2<-<Jp ec=(U)
1
(12) = Z (n' Z a*gjl,m,jp> doj, N+ N\ dep.
1 <j2<<jp a€Sn
R oenip EC(U) SR

Now choose I = {iy < -+ < i} C{l,...,n}and let I = {1,...,n}\ I =
{ip41 < --- <in}. Then we have for a sign ¢ = £1

wlU ANdoi,, ., N---Ndog, = e.hp.doy A--- Ndoy

do!

=c.hp.Jdzt Ao Ada™
On the whole of ¥ we have
wAdo! = ekrdr' Ao Adz"

for suitable k; € C*°(X). By comparing the two expressions on U, we see
from (®) that k7 o a = det(a~!).k; since U is dense in X. So from (I0) we
may conclude that k; = Jwy for wy € C°(X)%", but then h; = wr|U and
w=>;wrdo’! as asserted in claim (II]).
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Now we may finish the proof. By the theorem of G. Schwarz there
exist fr € C*°(R") with w; = fr(o1,...,0,). Recall now the characteristic
coefficients ¢; € R[S(n)] from the proof of (Bl) which satisfy ¢;|X = o;. If we
put now

W= Z fi1,...,ip (Cl, ceey Cn) dCi1 A A dcip € Qflor(S(n))O(”),

i1 < <ip

then the pullback of & to X equals w. [l

7.2. Theorem of Hilbert and Nagata. Let G be a Lie group with a
finite-dimensional representation G — GL(V') and let one of the following
conditions be fulfilled:

(1) G is semisimple and has only a finite number of connected components.
(2) V and (G.f)r are completely reducible for all f € R[V]; see|(7.8).

Then R[V]G is finitely generated as an algebra, or equivalently, there is
a finite set of polynomials py,...,pr € R[V]®, such that the map p :=
(p1,.--,px) : V — R induces a surjection

R[RF — R[VC.

Remark. The first condition is stronger than the second since for a con-
nected, semisimple Lie group, or for one with a finite number of connected
components, every finite-dimensional representation is completely reducible.
To prove the theorem, we will only need to know complete reducibility for
the finite-dimensional representations V' and (G.f)r though as in (2.

7.3. Lemma. Let A = @izoAi be a graded R-algebra with Ay = R.
If Ay = @A is finitely generated as an A-module, then A is finitely
generated as an R-algebra.

Proof. Let a1,...,a, € Ay be generators of A} as an A-module. Since
they can be chosen homogeneous, we assume a; € Ag, for positive integers
d;.

Claim. The a; generate A as an R-algebra: A = Rlay,...,ay].

We will show by induction that A; C Rlay,...,a,] for all i. For i = 0 the

assertion is clearly true, since A9 = R. Now suppose A; C Rlay,...,a,] for
all ¢ < N. Then we have to show that
AN g R[al, .. .,an]

as well. Take any a € Ayx. Then a can be expressed as

_ i i )
a= g ;a4 c; € Aj.
'7]’
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Since a is homogeneous of degree N, we can discard all cé»ai with total degree
j+di # N from the right hand side of the equation. If we set c%, 4 = c,

we get
a= E cla;,
i

In this equation all terms are homogeneous of degree . In particular, any
occurring a; have degree d; < N. Consider first the a; of degree d; = N. The
corresponding ¢’ then automatically lie in Ag = R, so cla; € Rlay,...,a,].
To handle the remaining a;, we use the induction hypothesis. Since a; and ¢’
are of degree < N, they are both contained in Ra1, ..., a,]. Therefore, c‘a;
lies in Rlaq,...,a,] as well. So a =" c'a; € Rlay, ..., a,], which completes
the proof. O

Remark. If we apply this lemma for A = R[V]%, we see that to prove
we only have to show that R[V]¢, the algebra of all invariant polynomials
of strictly positive degree, is finitely generated as a module over [V]G. The
first step in this direction will be to prove the weaker statement:

B := <R[V]§>R[V] = R[V].R[V]¢ is finitely generated as an ideal.
This is a consequence of a well known theorem by Hilbert:

7.4. Theorem (Hilbert’s ideal basis theorem). If A is a commutative
Noetherian ring, then the polynomial ring A[z] is Noetherian as well.

A ring is Noetherian if every strictly ascending sequence of left ideals Iy C
I C Iy C ... is finite, or equivalently, if every left ideal is finitely generated.
If we choose A = R, the theorem states that R[z] is again Noetherian. Now
consider A = R[z]; then R[z][y] = R[z,y] is Noetherian, and so on. By
induction, we see that R[V] is Noetherian. Therefore, any left ideal in R[V],
in particular B, is finitely generated.

Proof of|(7.4)l Take any ideal I C Alx| and denote by A; the set of leading
coefficients of all i-th degree polynomials in I. Then A; is an ideal in A, and
we have a sequence of ideals

AgC A C Ay C--- CA.

Since A is Noetherian, this sequence stabilizes after a certain index r, i.e.,

A, = Arpr = ---. Let {ai1,...,ain,} be a set of generators for A; (i =
1,...,r), and let p;; be a polynomial of degree ¢ in I with leading coefficient
Qg -

Claim. These polynomials generate I.

Let P = (pij) ajz] € Alz] be the ideal generated by the p;;. Then P clearly
contains all constants in I (A9 C I). Let us show by induction that it
contains all polynomials in I of degree d > 0 as well. Take any polynomial
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p of degree d. We distinguish between two cases.
(1) Suppose d < r. Then we can find coefficients ci,. .., c,, € A such that
D =P —C1Pd1 — C2Pd2 — - - - — CnyPdny

has degree < d.

(2) Suppose d > 7. Then the leading coefficients of 24 "p,1, ..., 2% ", € 1

generate Ag. So we can find coefficients ¢y, ..., ¢, € A such that
pr=p—cz’pn —cx pra — = e, 2 prn,

has degree < d.

In both cases we have p € p + P and degp < d. Therefore by the induction

hypothesis p, and with it p, lies in P. O

To prove theorem [(7.2)| it remains only to show the following:

7.5. Lemma. Let G be a Lie group acting on V such that the same condi-
tions as in Hilbert and Nagata’s theorem are satisfied. Then for fi,..., fix €
R[V]C:

RIVIC O (fr,- s fodmpy) = (10 r)rpve

where the brackets denote the generated ideal (module) in the specified space.

7.6. Remark. In our case, if we take f; = p; € R[V]{ to be the finite
system of generators of B as an ideal in R[V], we get:

RIVI{ =R[VI°NB = (p1,..., pu)rv|c-

That is, the p; generate R[V]§ as an R[V]%module. With lemma [(7.3))
Hilbert and Nagata’s theorem [(7.2)| follows immediately.

7.7. Remark. The inclusion (D) in lemma|(7.5)|is trivial. If G is compact,
then the opposite inclusion

RIVIN (fr,. s fodry) S (foe o i)

is easily seen as well. Take any f € R[V]“ N {f1,..., fe)rv)- Then f can be
written as

f=> pifi,  pieRV]
Since G is compact, we can integrate both sides over G using the Haar

measure dg; see
f@) = [ 1= [ ploaritands =3 ([ plga)dy) fia)
a ~Ja G

i
=:pj (z)
The p} are G-invariant polynomials; therefore f is in (f1,..., fk>R[V]G.

To show the lemma in its general form, we will need to find a replacement
for the integral. This is done in the following central lemma.



94 CHAPTER II. Lie Groups and Group Actions

7.8. Lemma ([170]). Under the same conditions as theorem|(7.2)|, for any
f € R[V] there exists an f* € R[V]Y N {(G.f)r such that

f=1"€(Gf=Gfr.

Proof. Take f € R[V]. Clearly, f is contained in M := (G.f)r, where
f* is supposed to lie as well. The vector space M/ is a finite-dimensional
subspace of R[V] since it is contained in

M;C P RV
i<deg f

In addition we have that
<Gf — Gf>R =: Nf - Mf

is an invariant subspace. So we can restrict all our considerations to the
finite-dimensional G-space M which is completely reducible by our assump-
tion.

If f € Ny, then we can set f* =0 and we are done. Suppose f ¢ Ny. Then
the f* we are looking for must also lie in M\ Ny. From the identity

gf=f+@f-11) forall g e G
——
EN;
it follows that
My= N;oR.f.
In particular, Ny has codimension 1 in M.

Since we require f* to be G-invariant, R.f* will be a 1-dimensional G-
invariant subspace of My which is not contained in Ny. As we just saw, Ny
has codimension 1 in My; therefore R. f* will be a complementary subspace
to N f-

If we now write My as the direct sum
M = N f &) P,
where P is the invariant subspace complementary to Ny guaranteed by the

complete irreducibility of M}, then P is a good place to look for f*.

Now P = My /Ny as a G-module, so let us take a look at the action of G' on
My /Ny¢. Every element of My/Ny has a representative in R.f, so we need
only consider elements of the form A\f + Ny (A € R). For arbitrary g € G
we have:

9. (A +Np) = Ag.f + Ny = Af + (Ag.f — M) +Nj = Af + Ny
~————

ENf
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So G acts trivially on My/Ny and therefore on P. This is good news, since
now every f’ € P is G-invariant and we only have to project f onto P (along
Ny) to get the desired f* € R[V]% N Mj. O

Proof of lemma |(7.5). Recall that for arbitrary fi,..., fx we have to
show

R[V}G N <f17 .. ')fk>R[V] - <f17 .- '7fk>R[V}G'

We will do so by induction on k. For k = 0 the assertion is trivial.
Suppose the lemma is valid for k = r — 1. Consider fi,..., f, € R[V]% and
fERVI®N(f1,.... fr)rp)- Then

f=> _pfi, pieRV]
=1

By Nagata’s lemma |(7.8), we can approximate p; up to (G.p; — G.p;)r by a
pf € R[V]Y. So for some finite subset F' C G' x G we have

pi =pi+ Z )\;t(s.pi —t.pi), )\;t eR.
s,teF
Therefore we have
T T
f — Zp;kfz = Z Z )\éjt(s.pi — t.pi)fi < R[V]G.
i=1 i=1 steF

It remains to show that the right hand side of this lies in (f1,..., fr)rp1o-
Notice that by the G-invariance of f:

> (spi—tp)fi=s.Y pifi—t.> pifi=sf—tf=0

i=1 i=1 i=1
for all s,t € G. Therefore
r—1
Z(s.pi —t.pi)fi = (t.pr — s.pr) fr.
i=1

Now we can use the induction hypothesis on

DD Aulspi— tpi) fi

=1 stel
r—1 '
=3 ) (M= A (spi —tpi) fi € RVIC N (fis- o, frot)rpyy
=1 steF

to complete the proof. O
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7.9. Remark. With lemma|(7.5)| Hilbert and Nagata’s theorem is proved
as well. So in the setting of |(7.2)| we now have an exact sequence

0 — p* — RRF 25 R[V]® — 0

where ker p* = {R € R[R¥] : R(p1,...,pr) = 0} is just the finitely generated
ideal consisting of all relations between the p;.

Since the action of G respects the grading of R[V] = @R[V, it induces
an action on the space of all power series, R[[V]] = II}2 | R[V]x, and we have
the following:

7.10. Theorem. Let G be a Lie group with a finite-dimensional representa-
tion G — GL(V) satisfying the conditions of Hilbert and Nagata’s theorem
(7.2) Let p1,...,pr € R[V]E be generators for the algebra R[V]Y which

exist by . Then the map
p:=(p1,-...px): V= R
induces a surjection
R[[R*]] <= R[V])®
between the spaces of formal power series.

Proof. Write the formal power series f € R[[V]]“ as the sum of its homo-
geneous parts:

f(z) = fo+ fi(z) + fo(x)+....
Then to each f;(x) € R[V]{ there is a gi(y) € R[R¥] such that f;(x) =
gi(p1(x),..., pr(x)). Before we can set

9(y) = g0+ g1(y) + 92(y) + - ..

to finish the proof, we have to check whether this expression is finite in each
degree. This is the case, since the lowest degree )\; that can appear in g;
goes to infinity with ¢:

Write explicitly g; = Z|a|<i A; oy® and take an A; o # 0. Then deg f; =i =
ar1dy + - - - + agdg, where d; = deg p; and

Ai=inf{lal:i=> ajd} 00 (i—o00). O

7.11. The orbit space of a representation. If G is a Lie group acting
smoothly on a manifold M, then the orbit space M/G is not generally again
a smooth manifold. Yet, it still has a functional structure induced by the
smooth structure on M simply by calling a function f : M/G — R smooth
if and only if for : M — R is smooth (where 7 : M — M /G is the quotient
map).
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In the following, let G be a compact Lie group, ¢ : G — L(V') a representa-
tion on V = R™. Let pi,...,pr € R[V]® denote a finite system of generators
for the algebra R[V]%, and let p denote the polynomial mapping:

p:=(p1,....pp): V — R~

Lemma. Let G be a compact Lie group. Then we have
(1) pis proper so p~t(compact) is compact.
(2) p separates the orbits of G.
(3) There is a map p: V/G — R¥ such that the diagram

vV —2 o RE

7
™ o
P

V/G

commutes and p is a homeomorphism onto its image.

Proof. () Let r(z) = |z|> = (x,z), for an invariant inner product on V.
Then r € R[V]%. By there is a polynomial p € R[R*] such that r(z) =
p(p(x)). If (z,) € V is an unbounded sequence, then r(z,) is unbounded.
Therefore p(p(x,)) is unbounded, and, since p is a polynomial, p(z,) is also
unbounded. For compact K C R¥ then p~!(K) is closed and bounded, thus
compact. So p is proper.

() Choose two different orbits G.x # G.y (z,y € V') and consider the map:

fi .
f:GxUGy — R, Flv) = 0 forvedG.uz,
1 forveGuy.

Both orbits are compact and f is continuous. Therefore, by the Weierstrass
approximation theorem, there is a polynomial p € R[V] such that

lp = fllcavey = sup{lp(z) = f(2)] : 2 € Ga UGy} < 5.

Now we can average p over the group using the Haar measure dg on G from

(14.4)| to get a G-invariant function
q(v) := /Gp(g-v)dg-

Note that since the action of G is linear, ¢ is again a polynomial. For
v € G.x UG.y, we have

| sta0tg— | p(gw)dg.] < [ 1ftg) = plaldg < 55 [ do.
G G G 10 Jg
=f(v)

=1
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Recalling how f was defined, we get
lq(v)| <€ & for v € G.z,
I1—q(v)| < & for v e G.y.

Therefore ¢(G.z) # q(G.y), and since ¢ can be expressed in the Hilbert
generators, we can conclude that p(G.z) # p(G.y).

@) Clearly, p is well defined and continuous for the quotient topology on
V/G. By (@) the mapping p is injective, and by () it is proper, thus closed
by So it is a homeomorphism onto its image. O

7.12. Remark. (1) If f : V — R is in C%(V)%, then f factors over 7
to a continuous map f : V/G — R. By there is a continuous map
f:p(V) = Rgiven by f = fop~!. It has the property f = fop. Since p(V)
is closed, f extends to a continuous function f € C°(R¥) (Tietze-Urysohn).
So for continuous functions we have the assertion that

p*: CORF) = CO(V)“ is surjective.

(2) The subset p(V) C R¥ is a real semialgebraic variety, i.e., it is described
by a finite number of polynomial equations and inequalities. In the complex
case, the image of an algebraic variety under a polynomial map is again
an algebraic variety, meaning it is described by polynomial equations only.
In the real case this is already disproved by the simple polynomial map:
T 22,

7.13. Result. C*-Invariant Theorem. Let G be a compact Lie group, ¢ :
G — O(V) a finite-dimensional representation, and p1, p2, .. ., px generators
for the algebra R[V]E of G-invariant polynomials on V' (this space is finitely
generated as an algebra by . If

p:=1(p1,...,pr): V= RF,
then

p*  C®(RF) — C=(V)¢
is surjective with a continuous linear section.

This theorem is due to Schwarz [204], who showed surjectivity. The arti-
cle [138] extended the result to split surjective (existence of a continuous
section). Later, [18] and [19] generalized this to ‘semiproper real analytic
mappings’ p. For the action of G = {£1} on R! the result is due to [228].
If G = S, acting on R™ by the standard representation, it was shown by
[75]. Tt is easy to see that p*C°(RF) is dense in C>°(V)¥ in the compact
C>-topology. Therefore, Schwarz’s theorem is equivalent to: p*C(R¥) is
closed in C*°(V)%. Further results in this direction were obtained by Luna
who, among other things, generalized the theorem of Schwarz to reductive
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Lie groups losing only the property of the Hilbert generators separating the
orbits.

7.14. Result (Luna’s Theorem [126]). Consider a representation of a
reductive Lie group G on K™ (where K = C,R), and let 0 = (01,...,00) :
K™ — K", where 01, ...,0, generate the algebra K[K™]%. Then the follow-
ing assertions hold:

(1) If K = C, then o* : O(C") = O(C™)% is surjective.

(2) If K =R, then o* : C¥(R") — C¥(R™)% is surjective.

(3) If K =R, then also

o1 C®°(R™) — {f € C®°(R™) : f constant on o~ (y)Vy € R"}

18 surjective.






CHAPTER II11.
Differential Forms and

de Rham Cohomology

8. Vector Bundles

8.1. Vector bundles. Let p: E — M be a smooth mapping between man-
ifolds. By a wector bundle chart on (E,p, M) we mean a pair (U, 1), where
U is an open subset in M and where v is a fiber respecting diffeomorphism
as in the following diagram:

UxV

E|U:=p ' (U)

Here V is a fixed finite-dimensional vector space, called the standard fiber
or the typical fiber, real for the moment.

Two vector bundle charts (Uy, 1) and (Us,1)2) are said to be compatible if
(IR w;l is a fiber linear isomorphism, i.e.,

(1 0¥y ") (2, 0) = (2, ¢12(2)0)

for some smooth mapping 112 : Uy 2 := Uy N Uz — GL(V). The mapping
11,2 is then unique and smooth, and it is called the transition function
between the two vector bundle charts.

A wvector bundle atlas (Uy, Vo )acAa for (E,p, M) is a set of pairwise compat-
ible vector bundle charts (Uy, %) such that (Uy)aca is an open cover of

101
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M. Two vector bundle atlases are called equivalent if their union is again a
vector bundle atlas.

A wector bundle (E,p, M) consists of manifolds E (the total space), M (the
base), and a smooth mapping p : E — M (the projection) together with an
equivalence class of vector bundle atlases: So we must know at least one
vector bundle atlas. The projection p turns out to be a surjective submer-
sion.

8.2. Let us fix a vector bundle (E,p, M) for the moment. On each fiber
E, = p~Y(z) (for x € M) there is a unique structure of a real vector space,
induced from any vector bundle chart (Uy, 1) with x € U,. So 0, € E,, is
a special element and 0 : M — E, 0(x) = 0,, is a smooth mapping which is
called the zero section.

A section u of (E,p, M) is a smooth mapping u : M — E with pou = Idy,.
The support of the section u is the closure of the set {x € M : u(x) # 0,} in
M. The space of all smooth sections of the bundle (E, p, M) will be denoted
by either I'(E) = I'(E,p, M) = I'(E — M). Clearly it is a vector space with
fiberwise addition and scalar multiplication.

If (Ua,¥a)aca is a vector bundle atlas for (E, p, M), then any smooth map-
ping fo : Uy — V (where V is the standard fiber) defines a local section
x> P (@, fo(z)) on Uy. If (ga)aca is a partition of unity subordinated to
(U ), then a global section can be formed by x + > ga(z) - 5, fa()).
So a smooth vector bundle has ‘many’ smooth sections.

8.3. We will now give a formal description of the set of equivalence classes
of vector bundles with fixed base M and fixed standard fiber V.

Let us first fix an open cover (Uy)aea of M. If (E,p, M) is a vector bundle
which admits a vector bundle atlas (Uy, 1) with the given open cover, then
we have 1, o ¢§1(x,v) = (x,¢qp(x)v) for transition functions g : Uss =
Uy NUg — GL(V), which are smooth. This family of transition functions
satisfies

W Vo) - Yy (T) = oy () for each z € Uypy = Uo NUg N U,,
Yaa(z) =€ for all z € U,,.

Condition () is called the cocycle condition and thus we call the family (¢,3)
the cocycle of transition functions for the vector bundle atlas (Uy, 14 ).

Let us suppose now that the same vector bundle (F,p, M) is described by
an equivalent vector bundle atlas (Ua, @) with the same open cover (Uy).
Then the vector bundle charts (Uy, 1o ) and (Ua, o) are compatible for each
a, SO

Pa 0ty (2,0) = (z,Ta()V)
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for some smooth mapping 7, : Uy — GL(V'). But then we have
(2, Ta(2)¥as(2)0) = (Pa 0 U5 ") (@, Yas(x)v)
= (pa 0Py 0 Yo 0P ) (@, 0) = (pa 095" )(2,0)
= (pa o9y w0ty )(x,v) = (v, pap(@)T8(2)0).

So we get

(2) Ta(2)Vap(x) = pap(x)Ta(2x) for all x € Uyp.

We say that the two cocycles (1q5) and (pap) of transition functions over
the cover (Uy,) are cohomologous. The cohomology classes of cocycles (1q3)
over the open cover (U,) (where we identify cohomologous ones) form a set
H'Y((Uy), GL(V)), the first Cech cohomology set of the open cover (U,) with
values in the sheaf C*°( ,GL(V)) =: GL(V).

Now let (W;);cr be an open cover of M that refines (Uy) with W; C Ue(i)s
where € : I — A is some refinement mapping; then for any cocycle (¢,3)
over (Uy) we define the cocycle €*(¢q3) =: (¢4j) by the prescription ¢;; :=
Ye(i)e(j) | Wij. The mapping €* respects the cohomology relations and in-
duces therefore a mapping & : H'((U,), GL(V)) — H'((W;),GL(V)). One
can show that the mapping €* depends on the choice of the refinement map-
ping ¢ only up to cohomology (use 7; = 9.(;) (i) | Wi if € and 7 are two refine-
ment mappings), so we may form the inductive limit h_n)lﬁ Yu,GL(V)) =:
HY(M,GL(V)) over all open covers of M directed by refinement.

Theorem. There is a bijective correspondence between the (nonabelian if
dim(V') > 1) cohomology space H(M,GL(V)) and the set of isomorphism
classes of vector bundles over M with typical fiber V.

Proof. Let (143) be a cocycle of transition functions 9, : Usg — GL(V)
over some open cover (Uy) of M. We consider the disjoint union | |, 4{a} X
Uy x V and the following relation on it: (o, z,v) ~ (8,y,w) if and only if
z =y and Y, (z)v = w.

By the cocycle property () of (143) this is an equivalence relation. The
space of all equivalence classes is denoted by E = VB(13) and it is
equipped with the quotient topology. We put p : E — M, p[(a, z,v)] = =z,
and we define the vector bundle charts (U, ¥qa) by ¢a[(a, z,v)] = (z,v),
Yo 1 p 1 (Uy) =: E | Uy — Uy x V. Then the mapping 1, o wﬁ_l(:r,v) =
Yal(B, z,v)] = Yal(a, z,0a5(2)v)] = (2, ¥ap(zx)v) is smooth; so E becomes
a smooth manifold which is is Hausdorff: Let u # v in Ej; if p(u) # p(v), we
can separate them in M and take the inverse image under p; if p(u) = p(v),
we can separate them in one chart. So (E,p, M) is a vector bundle.

Now suppose that we have two cocycles, (143) over (Uy) and (¢;;) over (V;).
Then there is a common refinement (W) for the two covers (U,) and (V;).
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The construction described a moment ago gives isomorphic vector bundles if
we restrict the cocycle to a finer open cover. So we may assume that (¢3)
and (pqg) are cocycles over the same open cover (Uy,). If the two cocycles
are cohomologous, S0 T4 - Yag = @ap - T3 00 Uyg, then a fiber linear diffeo-
morphism 7 : VB(ag) = VB(pag) is given by oat[(a, z,v)] = (z, 7o (x)v).
By relation () this is well defined, so the vector bundles V B(1,5) and
VB(¢ap) are isomorphic.

Most of the converse direction was already shown in the discussion before the
theorem, and the argument can be easily refined to show also that isomorphic
bundles give cohomologous cocycles. ([

8.4. Remark. If GL(V) is an abelian group (only if V' is of real or com-
plex dimension 1), then H'(M,GL(V)) is a usual cohomology group with
coefficients in the sheaf GL(V) and it can be computed with the methods
of algebraic topology. We will treat the two situations in a moment. If
GL(V) is not abelian, then the situation is rather mysterious: There is no
clear definition for H?(M,GL(V)) for example. So H'(M,GL(V)) is more
a notation than a mathematical concept.

A coarser relation on vector bundles (stable isomorphism) leads to the con-
cept of topological K-theory, which can be handled much better, but is only
a quotient of the real situation.

Example: Real line bundles. As an example we want to determine here
the set of all real line bundles on a smooth manifold M. Let us first consider
the following exact sequence of abelian Lie groups:

0— (R,+) —25 GL(1,R) = (R\ 0,-) =5 Zy — 0. >0

where Zg := Z/27Z is the two element group. This gives rise to an exact
sequence of sheafs with values in abelian groups:

0= C®( ,R) —2,C®( ,GL(1,R)) 2 Zy — 0

where in the end we find the constant sheaf. This induces the following long
exact sequence in cohomology (the Bockstein sequence):

C€XPy

o= 0=H'(M,C™( ,R)) —— H'(M,C>*( ,GL(1,R)))

P HY (M, Zs) 2 H2(M,C°( ,R))=0—....

Here the sheaf C*°( ,R) has 0 cohomology in dimensions > 1 since this is a
fine sheaf, i.e., it admits partitions of unity; see for example [77]. Thus the
pullback p, : H'(M,C>( ,GL(1,R))) — H'(M,Zs) is an isomorphism,
and by theorem a real line bundle E over M is uniquely determined by
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a certain cohomology class in H'(M,Zs), namely the first Stiefel-Whitney
class w1 (F) of this line bundle.

Example: Complex line bundles. As another example we want to deter-
mine here the set of all smooth complex line bundles on a smooth manifold
M. Again we first consider the following exact sequence of abelian Lie
groups:
0221 (C,4) 2%, GL(1,C) = (C\0,-) = 0.
This gives rise to the following exact sequence of sheafs with values in abelian
groups:
07— C® ,C) =22 0> ,GL(1,C)) >0

where in the beginning we find the constant sheaf. This induces the following
long exact sequence in cohomology (the Bockstein sequence):

= 0=HY(M,C™( ,C)) —= H'(M,C*( ,GL(1,0)))
S B, 7) L BA(ML,0( ,C) =05 ...

Again the sheaf C*°( ,R) has 0 cohomology in dimensions > 1 since it
is a fine sheaf. Thus ¢§ : H'(M,C>®( ,GL(1,C))) — H?(M,Z) is an iso-
morphism, and by theorem a complex smooth line bundle F over M
is uniquely determined by a certain cohomology class in H?(M,Z), namely
the first Chern class c1(F) of this line bundle.

8.5. Let (Ua,%q) be a vector bundle atlas for a vector bundle (E,p, M).
Let (ej)le be a basis of the standard fiber V. We consider the section
sj(x) := ¢y (z,ej) for x € U,. Then the s; : U, — E are local sections of
E such that (sj(a:))?:1 is a basis of E, for each x € U,: We say that

s=(S1,-..,5k)

is a local frame field for E over U,.

Now let conversely U C M be an open set and let s; : U — E be local
sections of E such that s = (s1,...,s,) is a local frame field of E over
U. Then s determines a unique vector bundle chart (U,1) of E such that
sj(r) = 9~ (z,¢;), in the following way. We define f: U x R¥ — E | U by
flzvt . o) = E?:l v/sj(z). Then f is smooth, invertible, and a fiber
linear isomorphism, so (U,7) = f~!) is the vector bundle chart promised
above.
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8.6. Let (E,p, M) and (F,q, N) be vector bundles. A vector bundle homo-
morphism ¢ : B — F is a fiber respecting, fiber linear smooth mapping

E-Y.F

hd
M —— N.

So we require that ¢, : By — F(,) is linear. We say that ¢ covers ¢. If ¢
is invertible, it is called a wvector bundle isomorphism.

8.7. A wector subbundle (F,p, M) of a vector bundle (E,p, M) is a vector
bundle and a vector bundle homomorphism 7 : F' — E, which covers Idyy,
such that 7, : F, — E, is a linear embedding for each x € M.

Lemma. Let ¢ : (E,p, M) — (E’,q,N) be a vector bundle homomorphism
such that rank(p, : Ey — E{p(x)) is locally constant in x € M. Then ker ¢,

given by (ker ¢), = ker(p,), is a vector subbundle of (E,p, M).

Proof. This is a local question, so we may assume that both bundles are
trivial: Let E = M xRP and let F' = N x R%; then ¢(z,v) = (¢(x), p(z).v),
where % : M — L(RP,R%). The matrix %(z) has rank k, so by the elimi-
nation procedure we can find p — k linearly independent solutions v;(z) of
the equation @(x).v = 0. The elimination procedure (with the same lines)
gives solutions v;(y) for y near x which are smooth in y, so near = we get a
local frame field v = (v1, ..., vp—y) for ker ¢. By ker ¢ is then a vector

subbundle. O

8.8. Constructions with vector bundles. Let F be a covariant functor
from the category of finite-dimensional vector spaces and linear mappings
into itself, such that F : L(V,W) — L(F(V),F(W)) is smooth. Then F
will be called a smooth functor for shortness sake. Well known examples of
smooth functors are F(V) = A¥(V) (the k-th exterior power), or F(V) =
®" V', and the like.

If (E,p, M) is a vector bundle, described by a vector bundle atlas with cocy-
cle of transition functions ¢ag : Uayg — GL(V'), where (U, ) is an open cover
of M, then we may consider the smooth functions F(¢ag) : © — F(pas(x)),
Uap = GL(F(V)). Since F is a covariant functor, F(¢p.g) satisfies again the
cocycle condition and cohomology of cocycles is respected, so
there exists a unique vector bundle (F(E) := VB(F(gag)),p, M), the value
at the vector bundle (E,p, M) of the canonical extension of the functor F
to the category of vector bundles and their homomorphisms.

If F is a contravariant smooth functor like the duality functor F(V) = V*,
then we have to consider the new cocycle F (go(;ﬁl) instead of F(pag).
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If F is a contra-covariant smooth bifunctor like L(V, W), then the construc-
tion F(VB(Wag), VB(vag)) = VB(]-"(dJ;Bl, ©ap)) describes the induced
canonical vector bundle construction, and similarly in other constructions.

So for vector bundles (E,p, M) and (F,q, M) we have the following vec-
tor bundles with base M: A\*E, E® F, E*, N\E = @50 \"E, E®F,
L(E,F)= E*® F, and so on.

8.9. Pullbacks of vector bundles. Let (E,p, M) be a vector bundle and
let f: N — M be smooth. Then the pullback vector bundle (f*E, f*p, N)
with the same typical fiber and a vector bundle homomorphism

f*E%E

f*pl ; lp

N ——M

is defined as follows. Let E be described by a cocycle (¢,43) of transition
functions over an open cover (U,) of M, E = VB(1¢,3). Then (a3 o f)
is a cocycle of transition functions over the open cover (f~1(U,)) of N
and the bundle is given by f*E := VB(¢as o f). As a manifold we have

[*E = N X(fmp) E in the sense of |(2.17)

The vector bundle f*F has the following universal property: For any vector
bundle (F,gq, P), vector bundle homomorphism ¢ : F' — E and smooth g :
P — N such that fog = ¢, there is a unique vector bundle homomorphism
¢: F — f*E with 1 = g and p*f o ¢ = ¢

F Y
N
q rEX E
!
P2 N—T

8.10. Theorem. Any vector bundle admits a finite vector bundle atlas.

Proof. Let (E,p, M) be the vector bundle in question, where dim M = m.
Let (Uq, %a)aca be a vector bundle atlas. By topological dimension theory,
since M is separable, there exists a refinement of the open cover (Uy,)aca
of the form (Vij)i=1,..m+1;jen, such that Vij; NV, = 0 for j # k; see the
remarks at the end of We define the set W; := ||, Vij (a disjoint
union) and v; [ Vij = ¥ j), where a: {1,...,m+1} x N — A is a refining
map. Then (W, 1;)i=1,..m+1 is a finite vector bundle atlas of E. O
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8.11. Theorem. For any vector bundle (E,p, M) there is a second vector
bundle (F,p, M) such that (E @ F,p,M) is a trivial vector bundle, i.e
isomorphic to M x RN for some N € N.

Proof. Let (U;, ;) be a finite vector bundle atlas for (E,p, M). Let (g;)
be a smooth partition of unity subordinated to the open cover (U;). Let
l; : RF — (RF)" = R¥ x ... x R¥ be the embedding on the i-th factor, where
R is the typical fiber of E. Let us define ¢ : E — M x R™ by

( Zgz ) (i © pry o) (u >),

then ¢ is smooth, fiber hnear, and an embedding on each fiber, so F is a
vector subbundle of M x R™ via 1. Now we define F, = Ex in {z} x R™
with respect to the standard inner product on R?*. Then F' — M is a vector
bundle and E @ F = M x R, O

8.12. The tangent bundle of a vector bundle. Let (E,p, M) be a
vector bundle with fiber addition +g : E X3y E — FE and fiber scalar
multiplication mt : B — E. Then (TE,ng, E), the tangent bundle of
the manifold FE, is 1tself a vector bundle, with fiber addition denoted by
+TE and scalar multiplication denoted by mTE )

If (Uy,Vo: E [ Uy — Uy X V)aea is a vector bundle atlas for E, such that
(Un, uq) is also a manifold atlas for M, then (E | Uy, 1), )aca is an atlas for
the manifold F, where

VPl = (uq X Idy) 0thy : E [ Uy — Uy X V = un(Uy) X V CR™ x V.
Hence the family (T(E | U,),T¢), : T(E | Uy) — T(ua(Uy) x V) =

Ua(Ua) XV XR™ X V)4e4 is the atlas describing the canonical vector bundle
structure of (T'E, wg, E'). The transition functions are in turn:

(Ya 05" (@,0) = (2,9ap(x)v)  for z € U,
(wa 0 uz')(y) = uas(y) fory € us(Uap),
(Ve 0 (¥5) ")y, v) = (wap(y), Yas(uz' (¥)v),
(Tl 0 T(4h) )y, v: €, w) = (wap(y), Yap(uz' (4))v; d(uap) (Y)E,
(d(vhap o uz ) HEV + Yap(uz (y))w).

So we see that for fixed (y,v) the transition functions are linear in (£, w) €
R™ x V. This describes the vector bundle structure of the tangent bundle
(TE, 5, E).

For fixed (y,&) the transition functions of TE are also linear in (v,w) €
V x V. This gives a vector bundle structure on (T'E,Tp, TM). Its fiber
addition will be denoted by T'(+g) : T(FE Xy E) = TE X7y TE — TE,
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since it is the tangent mapping of 4+ 5. Likewise its scalar multiplication will
be denoted by T'(mF). One may say that the second vector bundle structure
on TFE, that one over T'M, is the derivative of the original one on FE.

The space {E€ TE : Tp.2 =0 in TM} = (Tp)~1(0) is denoted by VE and
is called the vertical bundle over E. The local form of a vertical vector Z is
TY.,.E = (y,v;0,w), so the transition function looks like

(Tt 0 T(35) ™)y, v; 0,w) = (uap(y), Yap(uz' (1)v; 0, Yap(ug’ (y)w).

They are linear in (v,w) € V x V for fixed y, so VE is a vector bundle
over M. It coincides with 0},(TE,Tp, TM), the pullback of the bundle
TE — TM over the zero section. We have a canonical isomorphism vlg :
Exy E — VE, called the vertical lift, given by vlg(uy, vy;) := %\O(Um—i-tvgg),
which is fiber linear over M. The local representation of the vertical lift is
(Tg, o vlg o(yy x ¥6) ™) ((y,w), (4, 0)) = (y,u; 0,0).

If (and only if) ¢ : (E,p, M) — (F,q, N) is a vector bundle homomorphism,
then we have vlpo(p Xy p) =Tpovlg : Exyy E— VF CTF. So vl is
a natural transformation between certain functors on the category of vector
bundles and their homomorphisms.

The mapping vprg := pry olel : VE — FE is called the vertical projection.
Note also the relation pry o VlEl =7 | VE.

8.13. The second tangent bundle of a manifold. All of is valid
for the second tangent bundle T2M = TTM of a manifold, but here we have
one more natural structure at our disposal. The canonical flip or involution
kar s T2M — T?M is defined locally by

(T*uo ka0 T2u™) (2, &1, Q) = (2,13, ),

where (U,u) is a chart on M. Clearly this definition is invariant under
changes of charts.
The flip xjs has the following properties:

(1) ky o T?f =T?f o kyy for each f € C°(M, N).
(2)
(3)
(4) Ky} = K.
(5) kar is a linear isomorphism from the bundle (T'TM,T(mar), TM) to

the bundle (TTM, wppr, TM), so it interchanges the two vector bundle
structures on T7T'M.

(6) It is the unique smooth mapping TTM — TTM which satisfies the
equation %%c(t, s) = K}M%%C(t, s) for each ¢ : R? — M.

( )OHM:’/TTM.

TTM O KM = T(?TM)
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All this follows from the local formula given above.

8.14. Lemma. For vector fields X, Y € X(M) we have
(X, Y] =vprypyo(TY o X —kppoTX oY),
TY o X —kppoTX oY =vlpy (Y, [X,Y]).

We will give global proofs of this result later on: the first one is
Proof. We prove this locally, so we may assume that M is open in R™,
X(z) = (z,X(x)), and Y(z) = (z,Y(x)). Then by [(3.4)] we have
(X, Y](z) = (2,dY (z).X (z) — dX (x).Y (x)),
and thus:
(TY o X —kppoTX oY) (z) =TY.(x,X(x)) — kpr o
= (2,Y(2); X(2),dY (2). X () — £ (2, X (2); Y (@),
= (2,Y(2);0,dY (2).X(z) — dX (z).Y (z
vprrpy o(TY o X —kppoTX oY) () =

8.15. Natural vector bundles or vector bundle functors. Let M f,,
denote the category of all m-dimensional smooth manifolds and local dif-
feomorphisms (i.e., immersions) between them. A wvector bundle functor
or natural vector bundle is a functor F' which associates a vector bundle
(F(M),pm, M) to each m-manifold M and a vector bundle homomorphism

Fn) 2L povy

M l iPN
!

M N

to each f : M — N in Mf,,, which covers f and is fiberwise a linear
isomorphism. We also require that for smooth f : R x M — N the mapping
(t,z) — F(fy)(z) is smooth R x F(M) — F(N). We will say that F
maps smoothly parametrized families to smoothly parametrized families.
See [108] for more information on naturality in differential geometry.

Examples. (1) TM, the tangent bundle. This is even a functor on the
category M f of all manifolds and all smooth mappings, not only local dif-
feomorphisms.

(2) T*M, the cotangent bundle, where by the action on morphisms is
given by (T*f), := (T f)~1)* : T M — T )N This functor is defined on
M fp, only.

(3) N*T*M, NT*M = @yog N T*M
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1) Q" T"M @ QTM = T*M @ - @ T*M @ TM @ --- ® TM, where
the action on morphisms involves 7 f~! in the T*M-parts and T'f in the
T M-parts.

(5) F(T'M), where F is any smooth functor on the category of finite-
dimensional vector spaces and linear mappings, as in |(8.8)]

(6) All examples discussed till now are of the following form: For a man-
ifold of dimension m, consider the linear frame bundle GL(R™,TM) =
invJ}(R™, M) (see [(18.11)] and [(21.6)) and a representation of the struc-
ture group p : GL(m,R) — GL(V) on some vector space V. Then the
associated bundle GL(R™,TM) Xgrmr) V is a natural bundle. This can
be generalized to frame bundles of higher order, which is described in .

8.16. Lie derivative. Let F' be a vector bundle functor on M f,, as de-
scribed in Let M be a manifold and let X € X(M) be a vector field
on M. Then the flow Flf( , for fixed t, is a diffeomorphism defined on an
open subset of M, which we do not specify. The mapping

X
Fon ) pon

pPm i \LPM
FIX

M——-M

is then a vector bundle isomorphism, defined over an open subset of M.

We consider a section s € I'(F(M)) of the vector bundle (F(M), par, M)
and we define for t € R

(F1;¥)*s := F(FIX,) 0 s 0 FIX,

a local section of the bundle F(M). For each € M the value ((FL1X)*s)(z) €
F (M) is defined, if ¢ is small enough (depending on z). So in the vector
space F/(M), the expression %|o((F1;¥)*s)(x) makes sense and therefore the
section

Lxs:= %\O(Flix)*s

is globally defined and is an element of I'(F'(M)). It is called the Lie deriv-
ative of s along X.

Lemma. In this situation we have
(1) (FI)*(FLY)*s = (F1;%.,)*s, wherever defined.
(2) %(Flf()*s = (Flf()*ﬁxs = EX(Flf()*s, 50
[Lx, (FIX)*] := Lx o (FIX)* — (FIX)* o Lx = 0, whenever defined.
(3) (FLX)*s = s for all relevant t if and only if Lxs = 0.
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Proof. () is clear. (2) is seen by the following computations:
G (FIY)"s = fo(FIY) " (FI7)*s = Lx (FI7)"s,
H ()" 5)(2) = L lo((FI)*(FLT)"s) ()

= 4| F(FIX)(F(FIX,) 0 s o FLX)(FI¥ (2))
= F(F1%,) L |o(F(FI¥,) 0 s o FLY)(FI* (2))
= ((FI)* Lxs)(x),
since F(FI%X,) : F(M)Flff (@) F(M) is linear.
@) follows from (). O

8.17. Let Fi, F5 be two vector bundle functors on M f,,. Then the (fiber-
wise) tensor product (F} ® Fb)(M) = Fi(M) ® F>(M) is again a vec-
tor bundle functor and for s; € I'(F;(M)) there is a section s; ® sy €
I'((F1 ® F»)(M)), given by the pointwise tensor product.

Lemma. In this situation, for X € X(M) we have
Lx(s1® s2) =Lx51® 82+ 51 @ Lx5s0.
In particular, for f € C°(M) we have Lx(fs) =df(X)s+ f Lxs.
Proof. Using bilinearity of the tensor product, we have
Lx(s1® 83) = Flo(FI)*(s1 @ s2)
= lo(FEY)"s1 ® (FI')"s2)
= %|0(Flix)*81 ® 82+ 51 ® %|0(F1§()*52
=Lxs1®82+ 8 ®Lxse. O

8.18. Let ¢ : Iy — F5 be a linear natural transformation between vector
bundle functors on M f,,. So for each M € M f,, we have a vector bundle
homomorphism ¢y @ F1(M) — Fy(M) covering the identity on M, such
that Fao(f) o popr = on o Fi(f) holds for any f: M — N in M fp,.

Example. A tensor field of type (g) is a smooth section of the natu-
ral bundle @T*M @ Q" TM. For such tensor fields, by the Lie
derivative along any vector field is defined and by it is a deriva-
tion with respect to the tensor product. For functions and vector fields
the Lie derivative was already defined in section This natural bun-
dle admits many natural transformations: Any ‘contraction’ like the trace
T*M @ TM = L(TM,TM) — M x R, but applied just to one specified
factor T* M and another one of type T'M, is a natural transformation. Also,
any ‘permutation of the same kind of factors’ is a natural transformation.
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Lemma. In this situation, for s € I'(Fi(M)) and X € X(M) we have
Lx(pns) = om(Lxs),

Proof. Since ¢, is fiber linear and natural, we can compute as follows:
Lx (e s)(@) = Glo(FI) (o 5)) (@) = Glo(F2(FIY) 0 par 0 s 0 FIY ) ()
— a0 &lo(FL(FIX) 0 50 FIY)(2) = (par Lx5)(a). O

Thus the Lie derivative on tensor fields commutes with any kind of ‘contrac-
tion’ or ‘permutation of the indices’.

8.19. Let F' be a vector bundle functor on M f,, and let X € X(M) be a
vector field. We consider the local vector bundle homomorphism F(FLY) on
F(M). Since F(FI¥) o F(FIY) = F(FIX,) and F(FIy) = Idp(ys), we have
4p(FIX) = L1,F(FIX)o F(FIX) = XF o F(FIY), so we get F(FIY) = FIX",

where X7 = d%|0F(F1‘SX) € X(F(M)) is a vector field on F(M), which is
called the flow prolongation or the natural lift of X to F(M).

Lemma.
(1) XT =kpoTX.
2) [X,Y]F =[x, YT

(3) X (F(M),pp, M) — (TF(M), T(py), TM) is a vector bundle ho-
momorphism for the T (+)-structure.

(4) For s e T(F(M)) and X € X(M) we have
Lxs =vprpano(T'so X —XFos).

(5) Lxs is linear in X and s.

Proof. (D) is an easy computation. The mapping F(FLY) is fiber linear and
this implies (3]).
() is seen as follows:
(Lxs)(x) = glo(F(F1%) 0 s o FIF)(z) in F(M),
= vprpn (L]o(F(FIX,) 0 s 0 FI))(z) in VF(M))
= vprpn (— X" 0 s o Fl (z) + T(F(FI)) 0 T's 0 X ()
= Ver(M)(TS o X —XFo s)(z).
B Lxs is homogeneous of degree 1 in X by formula (), and it is smooth

as a mapping X(M) — I'(F(M)), so it is linear. See [64] or [113] for the
convenient calculus in infinite dimensions.

() Note first that F' induces a smooth mapping between appropriate spaces
of local diffeomorphisms which are infinite-dimensional manifolds; see [113].
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By we have
0 = 8|o(FIY, o FIX, o F1 o FIY),
(X, Y] =3 38;2 lo(F1¥, o FI%, o FI} o FIX)
= 8o I
Applying F' to these curves of local diffeomorphisms, we get
0= lo(FIY, oFIX] oFII"" o FIX"),
XF Y = L0 (F1Y) o FIY o FY " o FIX)
= 10 |, F(F1Y, o FIX, o FIY o FIY)
=0l FEIY) =[x, v]F. O

8.20. Theorem. For any vector bundle functor F' on M fy,, and X,Y €
X(M) we have

[,Cx,ﬁy] = ,CX o ,Cy - ,Cy o ,CX = L[X,Y} : F(F(M)) — F(F(M))
So L:X(M)— EndI'(F(M)) is a Lie algebra homomorphism.
Proof. We need some preparation.

(1) X ovprpp = FloF(FLY) o vprpay
= Lo VDT )oTF(FlX) [VF(M

)
= T(vprpq) © g loTF(FLY) | VE(M
FL1X

)
T(vPrp(an) © Ky wmy o T(LIoF(FLY)) | VE(M)
T(vPrp(ary) © KE(ar) © T(X") [ VF(M).

(2) Sublemma. For any vector bundle (E,p, M) we have
vprg T (vprg) o kg = vprg oI (vprg) = vprgovpryg : VIENTVE — E,
and this is linear for all three vector bundle structures on TTE.

The assertion of this sublemma is local over M, so one may assume that
(E,p, M) is trivial. Then one may carefully write out the action of the three
mappings on a typical element (z,v;0,w;;0,0;0,w") € VITENTVE and get
the result.

Now we can start the actual proof.
E[X’y]s = Ver(M)(Ts o[X,Y] - [X, Y 08) by-
= VDPI'p(ur) o(Tsovpryp o(TY o X —kpyoTX oY)
— VPITR(M) o(TY! o Xt — KF(M) © TXFovHo s)
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= VDI () OVpI‘TF(M)O(TQSOTYOX —kpan 0 T?s0TX oY
—TY o X" os—kpanoTX oY os),
LxLys=Lx(vprpnno(TsoY — Y¥os))
= VDPI'p(ar) O(T(Ver(M)) o(T?soTY T(=) T(YF)oTs)o X
—XFover(M)o(TsoY—YFos))
= vprpar) °T (VPrp(ar)) © (T?s0TY o X T(—) T(Y!) 0 Ts 0 X)
— VDI p(ar) T (VDT p(ary) © KE(0r) oT(XM) o (TsoY =Y 05s)
= vprp(an) 0 vPrrpn © (T?s 0 TY o X = T(Y ) o Tso X
— KE(M) oT(XT) oTsoY + Kp(u) oT(XM)ovT 0s).

Finally we have

[Lx,Ly]s=LxLys— LyLxs
= vprp(an) © vPrrpn © (1?50 TY o X = T(Y ) o Tso X
—kpan o T(XT) o TsoY + kpa o T(XF) oY o)
— VPI'p(ar) © VPYTR(M) OKF(M) © (T?soTY o X T(—) T(YH)oTso X
T(=) kpan o T(XF) o TsoY T(+) kpany o T(XT) o YF 05)
=Lixys- U

9. Differential Forms

9.1. The cotangent bundle of a manifold M is the vector bundle T*M :=
(TM)*, the (real) dual of the tangent bundle.

If (U,u) is a chart on M, then (8%1, e auim) is the associated frame field
over U of TM. Since 2 |o(u?) = du? (;2]2) = 07, we see that (du', ..., du™)

is the dual frame field on T*M over U. It is also called a holonomic frame
field. A section of T*M is also called a 1-form.

9.2. According to [(8.18)| a tensor field of type (Iq’) on a manifold M is a
smooth section of the vector bundle

p times q times

p q
QRrMeRQT*M=TMx - TMT*M®--- @ T*M.

The position of p (up) and ¢ (down) can be explained as follows: If (U, u)
is a chart on M, we have the holonomous frame field

9 9 - el J1 . j
(Wl ®5% @@ wd @ ®du q)ie{1,...,m}P,j6{1,...,m}‘1
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over U of this tensor bundle, and for any ( ) -tensor field A we have

21 .. K3 ]
AU = ZAﬁ f@uq Q- @ dula.

The coefficients have p indices up and ¢ indices down, and they are smooth
functions on U.

From a categorical point of view one should look where the indices of the
frame field are, but this convention here has a long tradition.

9.3. Lemma. Let

O X(M) x -+ x X(M) = X(M)F - T(Q)TM)

be a mapping which is k-linear over C*°(M). Then ® is given by the action
of a (li) -tensor field.

Proof. For simplicity’s sake we put k =1, £ =0, s0 & : X(M) — C*(M)
is a C°°(M)-linear mapping: ®(f.X) = f.®(X). In the general case we
subject each entry to the treatment described below.

Claim 1. If X | U = 0 for some open subset U C M, then we have
(X) | U =0.

Let 2 € U. We choose f € C*°(M) with f(z) =0 and f \ M\ U = 1. Then
fX =X, 50 ®(X)(z) = (f.X)(x) = f(2).B(X)(x) =

Claim 2. If X (z) = 0, then also ®(X)(x) = 0.

Let (U, u) be a chart centered at x, and let V be open withz € V.C V C U.
Then

X|U=) X2 and X'(z)=0.

We choose g € C*°(M) with g | V = 1 and with support contained in U.
Then (¢2.X) | V = X | V and by claim 1 the restriction ®(X) | V depends
only on X | V; thus ¢2.X = Zi(g.Xi)(g.aii) is a decomposition which is
globally defined on M. Therefore we have

O(X)(z) = B(g>.X)(a) = @ <Z<g.xi><g.£i>) (2)
= S (g.X7)(2).0(g.5%) (@) = 0.

So we see that for a general vector field X the value ®(X)(x) depends only
on the value X (x), for each z € M. So there is a linear map ¢, : T, M — R
for each x € M with ®(X)(z) = ¢z (X (x)). Then ¢ : M — T*M is smooth
since |V =3, @(g.aii ) du® in the setting of claim 2. O
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9.4. Definition. A differential form of degree k, or a k-form for short,
is a section of the (natural) vector bundle /\k T*M. The space of all k-
forms will be denoted by QF(M). It may also be viewed as the space of all
skew-symmetric (2)—tensor fields, i.e., (by the space of all mappings

0 X(M) x - x X(M) = X(M)* — C>=(M),
which are k-linear over C*° (M) and are skew-symmetric:
o(Xo1,..., Xop) =signo - (X1, ..., Xg)

for each permutation o € S.
We put Q°(M) := C>°(M). Then the space

dim M

QM) = P k)
k=0

is an algebra with the following product, called the wedge product. For
¢ € QF(M) and ¢ € QY(M) and for X; in X(M) (or in T, M) we put

(90 A w)(le EER) XkJrf)
=ma Y. signo-o(Xot,. o Xor) W (Xo(r)s - - Xo(ore):

UESk+[

This product is defined fiberwise, i.e., (p A1)y = @z A1), for each x € M. It
is also associative, i.e., (p AY) AT =@ A (p AT), and graded commutative,
ie., o Ap = (=1)*4) A @. There are differing conventions for the factor in
the definition of the wedge product: in [192] the factor ﬁ is used. But
then the insertion operator of is no longer a graded derivation.

9.5. If f : N — M is a smooth mapping and ¢ € Q¥(M), then the pullback
f*p € QF(N) is defined for X; € T, N by

(1) (f*(p)x(Xl, cee ,Xk) = gof(x) (Txf.Xl, ‘e ,Txf.Xk).

Then we have f*(p A) = f*o A f*, so f*: Q(M) — Q(N) is an algebra
homomorphism. Moreover we have (g o f)* = f*og* : Q(P) — Q(N) if
g:M — P,and (Idy)* = Idgy-

So M — Q(M) =T(NT*M) is a contravariant functor from the category
M of all manifolds and all smooth mappings into the category of real
graded commutative algebras, whereas M — AT*M is a covariant vector
bundle functor defined only on M f,,, the category of m-dimensional mani-
folds and local diffeomorphisms, for each m separately.
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9.6. The Lie derivative of differential forms. Since M — A" T*M is
a vector bundle functor on M f,, by |(8.16)|for X € X (M) the Lie derivative
of a k-form ¢ along X is defined by

Lxp= %’0(1:‘12){)*90-

Lemma. The Lie derivative has the following properties.
(1) Lx(eAY)=Lxe AN+ @ALx, so Lx is a derivation.
(2) ForY; € X(M) we have
k

(Lx) (Y1, Ye) = X (oY1, V) = > (Y1, [X Y], Yy,
i=1

(3) [Lx, Lyl = Lixy)p-
(4) Z(FL) ¢ = (FIX)* Lxp = Lx((FI*)* ).

Proof. () The mapping Alt : @ T*M — A" T*M, given by
(AILA)(Y1,..., Vi) =3 Y _sign(o) A(Yor, ..., Yop),

is a linear natural transformation in the sense of |(8.18)| and induces an
algebra homomorphism from ;- D(®" T M) onto Q(M). So (@) follows
from |(8.17)| and |(8.18)]

Second, direct proof, using the definition and [(9.5)
Lx( A ) = L0(FIX) (o A1) = Lo ((FIX)*o A (FIX) )
= L1o(FY) o A (FIX) "y + (FIF) @ A S lo(F) "4
=Lxp N+ oA Lxy.

@) Again by [(8.17)| and |(8.18)| we may compute as follows, where Trace is
the full evaluation of the form on all vector fields:

X(o(Y1,...,Y%)) = Lx oTrace(p @Y1 ® - - @ Yy)
= TraceoLx(p @Y1 ® - ®Y})
= Trace(Lxp @ (V1@ @Yy + 9@ (1, V1@ @ LxY; ® - ® Y})).
Now we use LxY; = [X,Y;] from
Second, independent proof:
X(p(V1,- V) = Flo(FI)* (p(V1, ..., Y1)
= & lo((FIF) @) (FI)* Y1, ..., (FI)*Y))

k
= (Lxo)(Y1,. V) + > e(Vi,. o LxYi, ., V).
=1
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@) is a special case of |(8.20) See|(9.9.7)| below for another proof.

k
@ SEE)e=2 (/\ T(F1%,) o T(F1%,)* 0 p 0 F1X © F1§f>

k k
= ATEX)" o &g </\ T(FIX ) opo Flgf) o FI¥

k
= ATEY)* o LxpoFIY = (FI})*Lxep,

GEL)Y = S lo(F) (FIF)Y = Lx(FIY)*p. O
9.7. The insertion operator. For a vector field X € X(M) we define the
insertion operator ix = i(X) : Q¥ (M) — QF1(M) by
(iX(P)(Yly oo 7Yk71) = (p(X, Yl, N 7Yk71)~

Lemma.

(1) ix is a graded derivation of degree —1 of the graded algebra Q(M), so
we have ix(p Ap) =ixp A+ (—1)" 98P0 Adxap.
(2) ix oty +1y otx = 0.

(3) [Lx,iy] == Lx ody —iy o Lx =[x y]-
Proof. () For ¢ € QF(M) and v € QY(M) we have

(ix, (@ A )Xz, X)) = (@ A ) (X1, - Xiep)
= ﬁ Z Sign(g) SO(Xala oo 7Xak)w(Xa(k+1)7 s )Xa(k+€))a

(ix,9 A+ (1) e N ix, ) (X2, Xio)
= m Z Sign(U) QO(Xl) Xo2s- s Xcrk)w(Xo'(kJrl)a B XU(kJrZ))

—1)* )
+ k'((f—)l)' > sign(o) o(Xoz, - -, X))V (X1, Xo gy - - )

Using the skew-symmetry of ¢ and v, we may distribute X; to each position
by adding an appropriate sign. There are k 4+ ¢ summands. Since

L1kt
=D T E@—D! — R

and since we can generate each permutation in Sk, in this way, the result
follows.



120 CHAPTER III. Differential Forms and de Rham Cohomology

@) (ixive)(Zi,...,Zr—2) =Y, X, Z1,...,Zy)
=—p(X,Y,Z1,...,Z,) = —(iyixp)(Z1, ..., Zk_2).
@) By |(8.17)| and [(8.18)| we have:
Lxiyp = Lx Trace; (Y ® ¢) = Trace; Lx (Y ® )
= Trace; (LxY @ p +Y ®@ Lx¢) = ixy)p +iyvLxe.

See below for another proof. O

9.8. The exterior differential. We want to construct a differential oper-
ator QF(M) — QF+1(M) which is natural. We will show that the simplest
choice will work and (later) that it is essentially unique.

Let U be open in R", and let ¢ € Q*(U) = C=(U, L¥,,(R™,R)). We consider
the derivative Dy € C°(U, L(R", Lk, (R",R))), and we take its canonical

image in C*°(U, Lsfgl(R”, R)). Here we write D for the derivative in order

to distinguish it from the exterior differential, which we define as
de = (k+ 1) Alt Dy,
more explicitly as

(1) (dp)o(Xo,-- -, Xi) = g7 > sign(0) Dep(a) (Xo0) (X, - -, Xok)

—

k
— Z(_l)iDgp(a:)(Xi)(Xo, D, CHD. ¢3 N
=0

where the hat over a symbol means that this is to be omitted and where
X; e R,

Now we pass to an arbitrary manifold M. For a k-form ¢ € QF(M) and
vector fields X; € X(M) we try to replace Do(x)(X;)(Xo,...) in formula
(@) by Lie derivatives. We differentiate

Xi(p(x)(Xo,--.))

= Do(2)(X:)(Xo,... )+ > p(@)(Xo,...,DX;(x)X;,...)
0<j<k,j#i

and insert this expression into formula (1) in order to get (cf.|(3.4)) our
working definition

k

(2) do(Xo,...,Xp) = Z(—l)iXi(ap(Xo, X X))



9. Differential Forms 121

This formula gives dy as a (k 4 1)-linear mapping over C*°(M), as a short
computation involving [(3.4)[shows. It is obviously skew-symmetric, so dy is
a (k + 1)-form by [(9.3)] and the operator d : QF(M) — Q¥ (M) is called

the exterior derivative.
If (U,u) is a chart on M, then we have
90 r U = Z spilyn,ikduil /\ te /\ du2k7
1< <ip
where

_ o) Js]
Pi,ip — (p(auil 7 Btk )

An easy computation shows that (2]) leads to
(3) dp 1 U= > deiy i Ndu™ A= Adu',
11 <<t

so that formulas () and (2]) really define the same operator.

9.9. Theorem. The exterior derivative d : QF(M) — QF1(M) has the
following properties:

(1) d(p Ap) = do AN + (—1)48%p A dyp, so d is a graded derivation of
degree 1.

) Lx =ix od+doix for any vector field X.

) d>=dod=0.

) ffod=do f* for any smooth f: N — M.

) Lxod=doLx for any vector field X.

6) [Lx,iy] = Lx oiy —iy o Lx =1xy]. See also .

7) [Lx,Ly] = Lixy) for any two vector fields X, Y.

Remark. In terms of the graded commutator
[Dl, DQ] = D1 e} D2 — (_1)deg(D1)deg(D2)D2 e} D1
for graded homomorphisms and graded derivations (see|(16.1))) the assertions

of this theorem take the following form:

@) Lx =[ix,d.
@) %[d7d] =0.
@) [f*,d =0
@ [Lx,d = 0.

This point of view will be developed in section [(16)| below. The equation
([@) is a special case of |(8.20)
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Proof. () For ¢ € QF(M) and X; € X(M) we have
(Lxop) (X1, Xi) = Xo(p(X1, ..., X))
k
+ 3 (1) ([ Xo, X1, X1, o, Xy, Xp) by [0.6:2)
j=1
(ixode) (X1, ..., Xi) = de(Xo, ..., Xi)
k —~
= (1) Xi(e(Xo, ..., Xi, ..., Xx))

K3

=0
+ 3 ()X, X ), Xo, -, X X X0,

0<i<y
k . —~
(dixgp) (X1, .., Xi) = > (=D Xi((ix,0) (X1, ., Xy o, X))
i=1
+ 3 () (ix,0) (1X0, X5, X1y Xy, Xy, Xa)
1<i<y

k
_ _Z(_l)ix.( (X0, X1, Xir oo, X3))

- Z D o([Xi, X5], X0, X1,y ooy Xay oo Xy oy X).
1<i<y

By summing up, the result follows.

(@) Let ¢ € QP(M) and ¢ € Q¢(M). We prove the result by induction on

p+gq.
p+q=0:d(f-g)=df - g+ [-dg.
Suppose that () is true for p+ g < k. Then for X € X(M) we have by part

@) and (9.7)| and by induction

ix d(pA) =Lx(eAY) —dix(p AY)
=Lxe AN+ ANLxp—d(ixp AN+ (=1)Pp Nixy)
=ixdp ANy +dixp AN+ o Nixdp+pAdixyy —dixe ANy
— (=) lixo Adyp — (=1)Pdp Nixh — o A dixa)
=ix(de N+ (=1)Pp Ady).

Since X is arbitrary, () follows.

@) By (@) the operator d is a graded derivation of degree 1, so d> = %[d, d] is
a graded derivation of degree 2; see It is obviously local: d?(pAv) =
d*(p) A + o Ad(y). Since Q(M) is locally generated as an algebra by
C>(M) and {df : f € C>®(M)}, it suffices to show that d2f = 0 for each
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f€C>®(M) (d*f =0 is a consequence). But this is easy:
P f(X,Y) = Xdf(Y) - Ydf(X) - df([X.Y]) = XY [~ Y X[~ [X,Y]f =0.

@) f*: QM) — Q(N) is an algebra homomorphism by so f*od and
do f* are both graded derivations over f* of degree 1. So if f*od and do f*
agree on ( and on ), then they also agree on ¢ A Y. By the same argument
as in the proof of ([B]) above it suffices to show that they agree on g and dg
for all g € C°°(M). We have

(f*dg)y(Y) = (dg) () (Ty f.Y) = (Tyf-Y)(g) = Y (g0 f)(y) = (df*g)y(Y);
thus also df*dg = ddf*g = 0, and f*ddg = 0.
(ﬂ) dLx =dixd+ddix = dixd+ixdd = Lxd.
([6) We use the graded commutator alluded to in the remarks. Both £x and
iy are graded derivations; thus the graded commutator [Lx,iy] is also a

graded derivation as is i[x y). Thus it suffices to show that they agree on
O-forms g € C*°(M) and on exact 1-forms dg. We have

[Lx,iv]g = Lxiyg —iyLxg = Lx0—iy(dg(X)) = 0=1ixy|9,
[Lx,iy]dg = Lxiydg —iyLxdg = LxLyg —iydLxg
= (XY - YX)g = [X,Y]g = i[xy)dg.
(@) By the (graded) Jacobi identity and by (@) (or lemma we have

[Lx, Ly] = [Lx, [iv,d]] = [[Lx,iy], d] + [iv, [Lx, d]]
= [i[X,y}, d+0= E[X,Y]- [l

9.10. A differential form w € QF(M) is called closed if dw = 0, and it is
called ezact if w = dy for some ¢ € QF~1(M). Since d? = 0, any exact form
is closed. The quotient space

 ker(d: QF (M) — QFFL(M))
HA(M) = im(d : QF1(M) — QF(M))

is called the k-th de Rham cohomology space of M. As a preparation for
our treatment of cohomology we finish with the

Lemma of Poincaré. A closed differential form of degree k > 1 is locally
exact. More precisely: let w € QF(M) with dw = 0. Then for any v € M
there is an open neighborhood U of x in M and a p € Q¥ (U) with dp =
wlU.

Proof. Let (U, u) be a chart on M centered at = such that u(U) = R™. So
we may just assume that M = R™.



124 CHAPTER III. Differential Forms and de Rham Cohomology

We consider a : R x R™ — R™, given by a( x) = ay(x) = tx. Let I €
X(R™) be the vector field I(z) = z; then a(e!, z) = Fl(z). So for t > 0 we
have

d 1
dtatw = dt (Fllogt)*w = f( logt) Liw

= 1oj(irdw + dijw) = tdajiw.

Note that T (a;) = t.Id. Therefore
(%Of;i[w)m(Xg, - ,Xk) = %(i[w)m(th, - ,th>
= twip(te, tXo, ... 1Xk) = wia (2, tXo, ... tXy).

So if k > 1, the (k — 1)-form 1aji;w is defined and smooth in (t,z) for all
t € R. Clearly ajw = w and agw = 0; thus

1
w=ojw— ogw = / 4 ajwdt
0

1 1
:/ d( ajijw)dt = d </ 1afi1wdt> =dp. O
0 0

10. Integration on Manifolds

10.1. Let U C R™ be an open subset, let dx denote Lebesque measure on
R™ (which depends on the Euclidean structure), let g : U — ¢(U) be a
diffeomorphism onto some other open subset in R”, and let f : g(U) - R
be an integrable continuous function. Then the transformation formula for
multiple integrals reads

/ e dy—/f ))| det dg(z)|dz.

This suggests that the suitable objects for integration on a manifold are sec-
tions of a 1-dimensional vector bundle whose cocycle of transition functions
is given by the absolute value of the Jacobi matrix of the chart changes.
They will be called densities below.

10.2. The volume bundle. Let M be a manifold and let (U,,u,) be
a smooth atlas for it. The wvolume bundle (Vol(M),mpr, M) of M is the
1-dimensional vector bundle (line bundle) which is given by the following
cocycle of transition functions; see

Yap 1 Usp = U NUg = R\ {0} = GL(1,R),

z) = |det d(ug o ug ') (ua ()| = 1 ’
Yap(x) = |detd(ug o uy ™) (ua(x))] |detd(uaougl)(uﬂ(l’))|

Lemma. Vol(M) is a trivial line bundle over M.
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But there is no natural trivialization.

Proof. We choose a positive local section over each U, and we glue them
with a partition of unity. Since positivity is invariant under the transitions,
the resulting global section p is nowhere 0. By w1 is a global frame
field and trivializes Vol(M). O

Definition. Sections of the line bundle Vol(M) are called densities.

10.3. Integral of a density. Let p € I'(Vol(M)) be a density with com-
pact support on the manifold M. We define the integral of the density u as
follows:

Let (Uy,uq) be an atlas on M, and let f, be a partition of unity with
supp(fa) C Uy. Then we put

IS TR ) N A R L

If 1 does not have compact support, we require that > fUa folp| < co. The
series is then absolutely convergent.

Lemma. [, pu is well defined.

Proof. Let (Vj,vg) be another atlas on M, and let (g3) be a partition
of unity with supp(gg) C V3. Let (Ua,%q) be the vector bundle atlas of
Vol(M) induced by the atlas (U, uqa), and let (V3, @) be the one induced by
(V3,v3). By the transformation formula of integrals for the diffeomorphisms
Ug O %—1 :08(Ua N V3) = ua(Ua N V3) we have:

S fan=) (fa o uz )W) Palp(ug (v))) dy
(Ua)
D SO A IR

=52 [ 8 O N )

:Z/(U v>(950051)($)(fa°“§1)(:”)'
aB s «NVp

: wa(,u(vﬁ_l(x)))\ det d(uq o vﬁ_l)(a:)\ dx

> oy 9203 V@ a0 w5 ) @)pau(v5 () do
aB Y vsUalVg

_ O
Eﬁ:/vﬁgﬁu
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Remark. If 4 € I'(Vol(M)) is an arbitrary section and f € C°(M) is a
function with compact support, then we may define the integral of f with
respect to p by [ a f 1 since fpuis a density with compact support. In this
way p defines a Radon measure on M.

For the converse we note first that (C! suffices) diffeomorphisms between
open subsets on R™ map sets of Lebesque measure zero to sets of Lebesque
measure zero. Thus on a manifold we have a well defined notion of sets
of Lebesque measure zero — but no measure. If v is a Radon measure on
M which is absolutely continuous, i.e., the |v|-measure of a set of Lebesque
measure zero is zero, then it is given by a uniquely determined measurable
section of the line bundle Vol. Here a section is called measurable if in any
line bundle chart it is given by a measurable function.

10.4. p-densities. For 0 < p < 1 let Vol?(M) be the line bundle defined
by the cocycle of transition functions

dﬁﬁ : Uaﬂ - R \ {0}7
ns(@) = |detd(uq 0 ugt)(ug(z))|7P.

This is also a trivial line bundle. Its sections are called p-densities. Note

that 1-densities are just densities and that O-densities are functions. If p

is a p-density and v is a ¢-density with p 4+ ¢ < 1, then p.v := p® v is a

p + g-density, i.e., Vol?(M) ® Vol!(M) = Vol?*4(M). Thus the product of
1

two 5-densities with compact support can be integrated, so I (Vol'/2(M))

is a pre-Hilbert space in a natural way.

Distributions on M (in the sense of generalized functions) are elements of
the dual space of the space I'.(Vol(M)) of densities with compact support
equipped with the inductive limit topology — so they contain functions.

10.5. Example. The density of a Riemann metric. Let g be a Rie-
mann metric on a manifold M; see section below. So g is a symmetric
(g) -tensor field such that g, is a positive definite inner product on T, M for
each z € M. If (U,u) is a chart on M, then we have

glU Z gij du’ @ du’
ij=1
where the functions gj%; = g( a?ﬂ" %) form a positive definite symmetric
matrix. So det(g;;) = det((g(a‘zi, %))%_1) > 0. We put

vol(g)" := y/det((g(;2% 525)) 7).
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If (V,v) is another chart, we have

vol(g)" = \/det((g(aii ; %))Tj:l)

= \Jdet (25102 det((g(52, 52))es)
= |detd(vou 1)’ VOl(g) ,

so these local representatives determine a section vol(g) € I'(Vol(M)), which
is called the density or volume of the Riemann metric g. If M is compact,
then [,,vol(g) is called the volume of the Riemann manifold (M, g).

10.6. The orientation bundle. For a manifold M with dim M = m and
an atlas (Uy, uq) for M the line bundle A" T*M is given by the cocycle of
transition functions

pas(r) = det d(ug o ug ") (uq /\d up o uy ") (ua()).

We consider the line bundle Or(M) which is given by the cocycle of transition
functions

Tap () = sign pas(z) = signdet d(ug o uy ') (ua(z)).
Since Tag(z)pas(r) = Yap(z), the cocycle of the volume bundle of |(10.2)

we have
Vol(M ) ® /\ "M

7\ T*M = Or(M) @ Vol(M).

10.7. Definition. A manifold M is called orientable if the orientation
bundle Or(M) is trivial. Obviously this is the case if and only if there
exists an atlas (Uy, uq) for the smooth structure of M such that det d(uq o
ugl)(UB(m’)) > 0 for all x € Uyg.

Since the transition functions of Or(M) take only the values +1 and —1,
there is a well defined notion of a fiberwise absolute value on Or(M), given
by |s(x)| := pra7a(s(z)), where (Uy, 7o) is a vector bundle chart of Or(M)
induced by an atlas for M. If M is orientable, there are two distinguished
global frames for the orientation bundle Or(M ), namely those with absolute
value |s(z)| = 1.

The two normed frames s; and sg of Or(M) will be called the two possible
orientations of the orientable manifold M. We call M an oriented manifold
if one of these two normed frames of Or(M) is specified: We call it 0,y.
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If M is oriented, then Or(M) = M x R with the help of the orientation, so
we have also

7\T*M = Or(M) ® Vol(M) = (M x R) @ Vol(M) = Vol(M).

So an orientation gives us a canonical identification of m-forms and den-
sities. Thus for any m-form w € Q™(M) the integral [,,w is defined by
the isomorphism above as the integral of the associated density; see
If (Uy,uq) is an oriented atlas (i.e., in each induced vector bundle chart
(Uq, 7o) for Or(M) we have 7,(0ps) = 1), then the integral of the m-form w
is given by

= QW 1= a_adl e A du™
/Mw Za:/Uafw Za:/Uafw u A Adu

. Za: /uQ(Ua) falug () w(ug ' (v) dy' A--- Ady™,

where the last integral has to be interpreted as an oriented integral on an
open subset in R™.

10.8. Manifolds with boundary. A manifold with boundary M is a
second countable metrizable topological space together with an equivalence
class of smooth atlases (Uy,uq) which consist of charts with boundary: So
Uq : Uy = un(Uy) is @ homeomorphism from U, onto an open subset of a
half-space

(—00,0] x R™™L = {(z1,...,2m) : 21 <0},

and all chart changes uag : ug(Us N Ug) — ua(Us N Upg) are smooth in
the sense that they are restrictions of smooth mappings defined on open
(in R™) neighborhoods of the respective domains. There is a more intrinsic
treatment of this notion of smoothness by means of Whitney jets, [227],
[221], and for the case of half-spaces and quadrants as here, [205].

We have u,s5(ug(Us NU3) N (0 x R™71)) = 1o (Us NUs) N (0 x R™71) since
interior points (with respect to R™) are mapped to interior points by the
inverse function theorem.

Thus the boundary of M, denoted by 0M, is uniquely given as the set of all
points & € M such that u(x) € 0 x R™~! for one (equivalently any) chart
(U, ug) of M. Obviously the boundary OM is itself a smooth manifold of
dimension m — 1.

A simple example: The closed unit ball B™ = {z € R™ : |z| < 1} is a
manifold with boundary; its boundary is 9B™ = S™~1.

The notions of smooth functions, smooth mappings, tangent bundle (use the
approach [(1.9)| without any change in notation) are analogous to the usual
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ones. If x € 9M, we may distinguish in 7, M tangent vectors pointing into
the interior, pointing into the exterior, and those in 7, (9M).

10.9. Lemma. Let M be a manifold with boundary of dimension m. Then
M is a submanifold with boundary of an m-dimensional manifold M without
boundary.

Proof. Using partitions of unity, we construct a vector field X on M which
points strictly into the interior of M. We may multiply X by a strictly
positive function so that the flow FIX exists for all 0 < ¢t < 2¢ for some
€ > 0. Then Flg( : M — M\ OM is a diffeomorphism onto its image which
embeds M as a submanifold with boundary of M \ 0M. O

10.10. Lemma. Let M be an oriented manifold with boundary. Then there
is a canonical induced orientation on the boundary OM.

Proof. Let (U,,uq) be an oriented atlas for M. Then the chart changes
respect the boundary,

Uap UB(UQB NOM) — ua(Uag NOM).
Thus for 2 € ug(Uag NOM) we have dugp(z) : 0 x R™™1 — 0 x R™™1)

duaﬂ(x):@ 0 - 0>,

where A > 0 since duyg(x)(—e1) is again pointing downwards. So
det dugp(z) = Adet(duag(2)[0 x R™) > 0;

consequently det(duag(z)|0 x R™1) > 0 and the restriction of the atlas
(Uq, uq) is an oriented atlas for oM. O

10.11. Theorem of Stokes. Let M be an m-dimensional oriented man-
ifold with boundary OM. Then for any (m — 1)-form w € Q™Y M) with
compact support on M we have

/dw:/ i*w:/ w,
M oM oM

where i : OM — M is the embedding.

Proof. Clearly dw again has compact support. Let (Uy,us) be an ori-
ented smooth atlas for M and let (f,) be a smooth partition of unity with
supp(fa) C Uy. Then we have ) fow = w and )" d(faw) = dw. Conse-
quently

/M dw = ; . d(fow) and /8Mw = ; - faw.
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It suffices to show that for each v we have

/ d(focw): U faw-

For simplicity’s sake we now omit the index «. The form fw has compact
support in U and we have in turn

m
fw:Zwkdul/\‘-'/\duk--'/\dum,

d(fw) = gwkdu Adub A Adub e A du™

Ui Ow
Z VARGt A A du™,
=1

Since i*du! = 0, we have fw|0U = i*(fw) = widu® A --- A du™, where
i:0U — U is the embedding. Finally we get

" ow
k 1 k m
/ / E 8ukd A Adu

= Z( 1)kt %dul A Adu™

1 U 3uk

i _ ﬁwk
_ -1 k—1 / 1A ... m
= k§:1( ) ) Ik dx” N---ANdx

“ _ &uk -7
—1’“/ ——da® ) dat . dak L da™
+Z( ) (—o0,0] xR™—2 < —00 Ox* ! ! ! !
—/ (w1(0,22%,...,2™) — 0)dz? ... dz™
Rm—l

:/8 (w1 |OU)du? . .. du™ = fw.
U

ou

We used the fundamental theorem of calculus twice,

0 00
%dx =wi(0,2%,...,2™) -0, 8—(*):
oo O

o dz* =0,

which holds since fw has compact support in U. O
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11. De Rham Cohomology

11.1. De Rham cohomology. Let M be a smooth manifold which may
have boundary. We consider the graded algebra Q(M) = @,‘ii:n%M QF (M)
of all differential forms on M. The space Z(M) := {w € Q(M) : dw = 0}
of closed forms is a graded subalgebra of (), i.e., it is a subalgebra and
satisfies Z(M) = @M (QF(M) N Z(M)) = @M Z*(M). The space
B(M) = {dp : ¢ € Q(M)} of exact forms is a graded ideal in Z(M):
B(M) A Z(M) C B(M). This follows directly from the derivation property
d(p A1) = dp A+ (—1)98%p A dip of the exterior derivative.

Definition. The algebra

Z(M)  {we QM) : dw =0}
B(M)  {dp:peQM)}

H*(M) :=

is called the de Rham cohomology algebra of the manifold M. It is graded
by

dim M dim M

ker(d : QF(M QL (M
H*(M) = kEB H'(M) = P im(d:Qk(l(J)WTH Q’“EMS)'
=0

k=0

If f: M — N is a smooth mapping between manifolds, then f*: Q(N) —
Q(M) is a homomorphism of graded algebras byWhiCh satisfies do f* =
f*¥odby Thus f* induces an algebra homomorphism which we again
call f*: H*(N) — H*(M).

11.2. Remark. Since QF(M) = 0 for k > dim M =: m, we have
_ Qm(M)
{do: o e Qr=t(M)}
H¥(M)=0 for k > m,
[ € QM) = C=(M) : df =0}

0
= the space of locally constant functions on M

— RbO(M)7

H™ (M)

H'(M) =

where bo(M) is the number of pathwise connected components of M. We
put by(M) := dimg H*(M) and call it the k-th Betti number of M. If
br(M) < oo for all k, we put
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and call it the Poincaré polynomial of M. The number
X =Y be(M)(=1)F = far(=1)
k=0

is called the Fuler-Poincaré characteristic of M; see also|(13.7)| below.

11.3. Examples. We have H’(R™) = R since it has only one connected
component. We have H*¥(R™) = 0 for & > 0 by the proof of the lemma of

Poincaré |(9.10)

For the 1-dimensional sphere we have H°(S!) = R since it is connected, and
clearly H*(S') =0 for k > 1 by reasons of dimension. Also, we have

we (S 1 dw=0
O e
_ Ql(sh)
C{df s feCx(shY
QNSY ={fadv: feC™(S")}
=~ {f e C™R): f is periodic with period 27},

where di denotes the global coframe of T*St. If f € C*°(R) is periodic with

period 27, then fdt is exact if and only if [ fdt is also 27 periodic, i.e.,

027r f(t)dt = 0. So we have

HI(S!) = {f € C®(R) : f is periodic with period 27} B
- . . 1. . . 2 -
{f € C>(R) : f is periodic with period 27, [;" f dt = 0}

)

where f fo% f dt factors to the isomorphism.

11.4. Lemma. Let f, g : M — N be smooth mappings between man-
ifolds which are C*°-homotopic: There exists h € C°(R x M,N) with
h(0,2) = f(z) and h(1,2) = g(x). Then f and g induce the same map-
ping in cohomology:

ff=g"H(N)— H(M).

Remark. f, g € C°®°(M, N) are called homotopic if there exists a continu-
ous mapping h : [0,1]x M — N with h(0,z) = f(z) and h(1,z) = g(z). This
seemingly looser relation in fact coincides with the relation of C'*°-homotopy.
We sketch a proof of this statement: Let ¢ : R — [0, 1] be a smooth function
with ¢((—o00,1/4]) = 0 and ¢([3/4,00)) = 1, and with ¢ monotone in be-
tween. Then consider h : Rx M — N, given by h(t,z) = h(p(t), ). Now we
may approximate h by smooth functions h:R x M — N without changing
it on (—o0,1/8) x M where it equals f and on (7/8,00) x M where it equals
g. This is done chartwise by convolution with a smooth function with small
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support on R™. See [26] for a careful presentation of the approximation. So
we will use the equivalent concept of homotopic mappings below.

Proof. For w € QF(N) we have h*w € QF(Rx M). We consider the insertion
operator ins; : M — R x M, given by ins;(z) = (¢, ). For ¢ € QF(Rx M) we
then have a smooth curve t — ins} h* in Q¥(M) (this can be made precise
with the help of the calculus in infinite dimensions of [64]). We define
the integral operator I} : Q¥(R x M) — QF(M) by I}(p) := fol ins} ¢ dt.
Looking at this locally on M, one sees that it is well defined, even without
infinite-dimensional calculus. Let T := % € X(R x M) be the unit vector
field in direction R.

We have ins; s = FltT oins, for s, t € R, so
% ins? ¢ = 9|o(F17 oinsy)* = d|oinsi(F1] )*p
= ins} Alo(FI} )*¢ = (insy)"Lre by [(9.6)

We have used that (insy)* : QF(R x M) — QF(M) is linear and continuous
and so one may differentiate through it by the chain rule. This can also be
checked by evaluating at * € M. Then we have in turn

1 1
dlécp:d/o ins;"gpdt:/o d insy @ dt
1
— [insidpdt=tide  by[@)
0

(ins] —insg)p = /01 % insy pdt = /01 insy Lpe dt
= Iy Lre = Iy(dir +ird)p  by[(99)
Now we define the homotopy operator h := I} oipoh* : QF(N) — QF-1(M).
Then we get
g"— f*=(hoins;)* — (hoinsy)* = (ins] — insj) o h*
= (doItoir+I}oirod) oh* =doh—hod,

which implies the desired result since for w € QF (M) with dw = 0 we have
g*'w — ffw = hdw + dhw = dhw. O

11.5. Lemma. If a manifold is decomposed into a disjoint union M =
LI, Mo of open submanifolds, then H*(M) =[], H*(M,) for all k.

Proof. QF(M) is isomorphic to [, Q¥(M,) via ¢ — (¢|My)a. This iso-
morphism commutes with exterior differential d and induces the result. [
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11.6. The setting for the Mayer-Vietoris sequence. Let M be a
smooth manifold, and let U, V' C M be open subsets such that M = U UV.
We consider the following embeddings:

unvy
N
U Vv
N
M.

Lemma. In this situation the sequence
0= QM) 25 QU)a V) 2 oUunv) =0

is exact, where a(w) = (ifw, iy,w) and B(p, V) = jie — jyv. We also have
(d®d)oa=aodanddof =po(dDd).

Proof. We have to show that « is injective, ker 5 = im«, and that
is surjective. The first two assertions are obvious and for the last one we
let {fv, fv} be a partition of unity with supp fy C U and supp fy C V.
For ¢ € QU NV) we consider fyyp € QU NV); note that supp(fyr) is
closed in the set U NV which is open in U, so we may extend fy ¢ by 0 to
vy € QU). Likewise we extend —fyrp by 0 to ¢y € Q(V). Then we have

Blev,ev) = (fu + fv)e=¢. O

Now we are in the situation where we may apply the main theorem of ho-
mological algebra, So we deviate now to develop the basics of homo-
logical algebra.

11.7. The essentials of homological algebra. A graded differential
space (GDS) K = (K, d) is a sequence

1 dnl dn
ey g1 K" Kl

of abelian groups K™ and group homomorphisms d” : K" — K"! such
that d"*' o d® = 0. In our case these are the vector spaces K" = Q"(M)
and the exterior derivative. The group

ker(d" : K" — K1)

im(dn—1: Kn=1 — Kn)

is called the n-th cohomology group of the GDS K. We consider also the
direct sum

H"(K) :=

H*(K):= @ H"(K)

n=—oo
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as a graded group. A homomorphism f : K — L of graded differential spaces
is a sequence of homomorphisms f™ : K™ — L™ such that d"o f* = f*+lod".
It induces a homomorphism

fo=H*(f): H'(K) — H*(L)

and H* has clearly the properties of a functor from the category of graded
differential spaces into the category of graded groups:

H*(ldg) = Idg+(k),

H*(f og) = H*(f) o H"(g).
A graded differential space (K, d) is called a graded differential algebra if
P,, K" is an associative algebra which is graded (so K™.K™ C K"*™), such

that the differential d is a graded derivation: d(x.y) = dz.y + (—1)%&%z.dy.
The cohomology group H*(K,d) of a graded differential algebra is a graded

algebra; see [(11.1)

By a short exact sequence of graded differential spaces we mean a sequence
0K -L-LsM—0

of homomorphisms of graded differential spaces which is degreewise exact:
For each n the sequence 0 - K™ — L™ — M"™ — 0 is exact.

11.8. Theorem. Mayer-Vietoris sequence. Let

0K —-L-LsM—0
be an exact sequence of graded differential spaces. Then there exists a graded
homomorphism § = (6™ : H*(M) — H""Y(K)),ez called the ‘connecting ho-
momorphism’ such that the following is an exact sequence of abelian groups:

e HY M) S HY(K) < HY(L) -2 BN M) 2 HPY(K) — - -

It is called the ‘long exact sequence in cohomology’. Here § is a natural
transformation in the following sense: Let

0—=K L M——=0
|
0—>K' — =L —= M —>0
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be a commutative diagram of homomorphisms of graded differential spaces
with exact lines. Then also the following diagram is commutative:

= BTN (M) e HY(K) s B (L) 2 B (M) — -

m*l k*i Z*i m*l
Ty P

The long exact sequence in cohomology can also be written in the following
way:

=

H*(K) H*(L)
H*(M).

Definition of §. The connecting homomorphism is defined by ‘6 = i~! o

dop~b or 6[pf] = [i~'dl]. This is meant as follows:

n—1 pn71 n—1
L — M —0

dn—l dn—l \L
n " n pn n
0 K L M 0
d”l dn dm J/
n41 n+1
0 Kntl ¢ It P Mt 0
dn+1 l dn+1

0 — K2 I oz,

The following argument is called a diagram chase. Let [m] € H™(M). Then
m € M™ with dm = 0. Since p is surjective, there is £ € L™ with pf = m.
We consider d¢ € L™*! for which we have pd¢ = dpl = dm = 0, so dlf €
kerp = im4; thus there is an element & € K"*! with ik = d¢. We have
idk = dik = dd¢ = 0. Since i is injective, we have dk = 0, so [k] € H"t(K).
Now we put 6[m] := [k] or §[pf] = [i~1d/).

This method of diagram chasing can be used for the whole proof of the
theorem. The reader is advised to do it at least once in his life with fingers
on the diagram above. For the naturality imagine two copies of the diagram
lying above each other with homomorphisms going up.
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11.9. Five-lemma. Let

a1 a2 a3 Qy

Al A2 A3 A4 A5
wll ¢2l sosl ml Wsi
B, B1 By B2 Bs B3 By Ba B

be a commutative diagram of abelian groups with exact lines. If o1, va, @4,
and 5 are isomorphisms, then also the middle w3 is an isomorphism.

Proof. Diagram chasing in this diagram leads to the result. The chase
becomes simpler if one first replaces the diagram by the following equivalent
one with exact lines:

/

. Qo a3
0 —> Ay/imay —> Ay —> ker ay ——> 0

%J/% sogl wg‘l%
B Bs

0 — By/imf3y =—— B3 —>ker fy —= 0. O

11.10. Theorem. Mayer-Vietoris sequence. Let U and V be open
subsets in a manifold M such that M = U UV. Then there is an exact
sequence

o HYOM) =2 qROY o HY (V) 2 BRUNV) S B (M) > -

which is natural in the triple (M, U, V') in the sense explained in|(11.8), The

homomorphisms o, and By are algebra homomorphisms, but § is not.

Proof. This follows from |(11.6)[ and theorem |(11.8) O

Since we shall need it later, we will give now a detailed description of the
connecting homomorphism §. Let {fy, fy} be a partition of unity with
supp fu C U and supp fy C V. Let w € Q¥(U N V) with dw = 0 so that
[w] € HX(UNV). Then (fy.w, —fr.w) € QF(U) @& QF(V) is mapped to w by
6 and so we have by the description of § in

Slw] = [a M d(fv.w, — frw)] = [a™ (dfy Aw, —dfy Aw)]
= [dfv /\w] = —[de /\w],
where we have used the following fact: fy + fiy = 1 implies that on U NV
we have dfy = —dfy; thus dfy A w = —dfy Aw and off U NV both are 0.

11.11. Axioms for cohomology. The de Rham cohomology is uniquely
determined by the following properties which we have already verified:
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(1) H*( ) is a contravariant functor from the category of smooth mani-
folds and smooth mappings into the category of Z-graded groups and
graded homomorphisms.

(2) H*(point) = R for &k = 0 and H*(point) = 0 for k # 0.
(3) If f and g are C'*°-homotopic, then H*(f) = H*(g).
(4) If M =| |, M, is a disjoint union of open subsets, then
H*(M) =[], H*(Ma).
(5) If U and V are open in M, then there exists a connecting homomor-

phism ¢ : H*(U NV) — H**Y(U U V) which is natural in the triple
(UUV,U,V) such that the following sequence is exact:

s HNUUV) = HY U)o H* (V) -» HYUNV) -5 B (U UV) —- -

There are many other cohomology theories for topological spaces, like sin-
gular cohomology, Cech cohomology, simplicial cohomology, Alexander-Spa-
nier cohomology, etc., which satisfy the above axioms for smooth manifolds
when defined with real coefficients, so they all coincide with the de Rham co-
homology on manifolds. See books on algebraic topology or sheaf theory for
all this and look for the abstract theorem of de Rham in sheaf cohomology.

11.12. Example. If M is contractible (which is equivalent to the seem-
ingly stronger concept of C*°-contractibility; see the remark in, then
HO(M) = R since M is connected, and H*(M) = 0 for k # 0, because the
constant mapping ¢ : M — point — M onto some fixed point of M is
homotopic to Idy, so H*(c) = H*(Idy) = Idg-(ap by But we have

HE(0)

HFE(M) HE(M)

~

HF(point).

More generally, two manifolds M and N are called smoothly homotopy
equivalent if there exist smooth mappings f: M — N and g : N — M such
that g o f is homotopic to Idy; and f o g is homotopic to Idy. If this is the
case, both H*(f) and H*(g) are isomorphisms, since

H*(g) o H*(f) = Idy~(ary and  H'(f) o H*(g) = Idp~(n)-

As an example consider a vector bundle (F,p, M) with zero section Og :
M — E. Then po O = Idy; whereas O o p is homotopic to Idg via
(t,u) — t.u. Thus H*(FE) is isomorphic to H*(M).
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11.13. Example. The cohomology of spheres. For n > 1 we have

R fork=0,

H*(5™) = 0 for1<k<n-1, Hk(SO):{R2 for k=0,
R for k=n, 0 for k> 0.
0 fork>n,

We may say: The cohomology of S™ has two generators as a graded vector
space, one in dimension 0 and one in dimensionn. The Poincaré polynomial
is given by fen(t) =14 t".

Proof. The assertion for SY is obvious, and for S* it was proved in [(11.3)|
so let n > 2. Then HY(S™) = R since it is connected, so let k > 0. Now fix
a north pole a € S, 0 < e < 1, and let

S"={z e R"™: |z|? = (2,2) = 1},

U={zeS":(x,a) > —¢},

V={xeS": (x,a) <e},
so U and V are overlapping northern and southern hemispheres, respectively,
which are diffeomorphic to an open ball and thus smoothly contractible.
Their cohomology is thus described in |(11.12)l Clearly U UV = S™ and
UNV = 8" 1 x (—¢,¢) which is obviously (smoothly) homotopy equivalent

to S"~!. By theorem [(11.10)] we have the following part of the Mayer-
Vietoris sequence

HMU) ® HE (V) — HHU N V) 2= HF1(S7) — HFLU) @ HF1(V)

b e .

where the vertical isomorphisms are from [(T1.12)] Thus H*(S"71) is iso-
morphic to H*+1(S") for k > 0 and n > 2.

Next we look at the initial segment of the Mayer-Vietoris sequence:

0 —= HO(S") —= HOU UV) > HOU N V) o= HY(S") — H\(U LV)

|

From exactness we have: In the lower line « is injective, so dim(ker 5) = 1,
so B is surjective and thus § = 0. This implies that H'(S™) = 0 for n > 2.
Starting from H¥(S') for k > 0 the result now follows by induction on 7.

By looking more closely on the initial segment of the Mayer-Vietoris se-
quence for n = 1 and taking into account the form of § : H°(S%) — H'(S1),



140 CHAPTER III. Differential Forms and de Rham Cohomology

we could even derive the result for S without using [(11.3)] The reader is
advised to try this. O

11.14. Example. The Stiefel manifold V (k, n; R) of oriented orthonormal
k-frames in R™ (see [(18.5)]) has the following Poincaré polynomial:

For: Fvthm =
l
n=2m, k=21+1,1>0: L+ D]+t
i=1
l .
n:2m—|—1, ]{;:2[7 [ >1: H(1+t4m—47,+3)
i=1

-1
n=2m, k=2, m>1>1: (142" 2@+ )]+

i=1
n=2m+1k=2+1, =1 .
10 (1 + t2m721) H(l + t4m741+3)
= i=1

Since V(n — 1,n;R) = SO(n; R), we get

m—1
fsoemm)(®) = @1+ T+
=1

m

fso@mirm®) =[] +7).

i=1
So the cohomology can be quite complicated. For a proof of these formulas
using the Gysin sequence for sphere bundles, see [80, II].
11.15. Relative de Rham cohomology. Let N C M be a closed sub-
manifold and let
QF (M, N) := {w € QF(M) : i*w = 0},

where ¢ : N — M is the embedding. Since i*od = doi*, we get a graded dif-
ferential subalgebra (2*(M,N),d) of (2*(M),d). Its cohomology, denoted
by H*(M,N), is called the relative de Rham cohomology of the manifold
pair (M, N).

11.16. Lemma. In the setting of|(11.15)|

0— Q (M, N) — Q*(M) —— Q*(N) = 0
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is an exact sequence of differential graded algebras. Thus by |(11.8) we have

the long exact sequence in cohomology
o= HY(M,N) — H*(M) — H*(N) -2 HF (M, N) — ...

which is natural in the manifold pair (M,N). It is called the long exact
cohomology sequence of the pair (M, N).

Proof. We only have to show that i* : Q*(M) — Q*(N) is surjective. So
we have to extend each w € QF(N) to the whole of M. We cover N by
submanifold charts of M with respect to N. These and M \ N cover M.
On each of the submanifold charts one can easily extend the restriction of
w and one can glue all these extensions by a partition of unity which is
subordinated to the cover of M. (|

12. Cohomology with Compact Supports and Poincaré
Duality

12.1. Cohomology with compact supports. Let QF()M) denote the
space of all k-forms with compact support on the manifold M. Since
supp(dw) C supp(w), supp(Lxw) C supp(X) Nsupp(w), and supp(ixw) C
supp(X) N supp(w), all formulas of section [(9)] are also valid in (M) =
@gﬁ)M QF(M). So Qf(M) is an ideal and a differential graded subalgebra
of Q*(M). The cohomology of 2% (M)
_ ker(d : QF(M) — QFFL(M))
imd: QEY (M) — QF(M)

dim M
Hi(M):= P Hi(M)
k=0

H*(M) -

)

is called the de Rham cohomology algebra with compact supports of the man-
ifold M. It has no unit if M is not compact.

12.2. Mappings. If f: M — N is a smooth mapping between manifolds
and if w € QF(N) is a form with compact support, then f*w is a k-form
on M, in general with noncompact support. So €27 is not a functor on the
category of all smooth manifolds and all smooth mappings. But if we restrict
the morphisms suitably, then {2 becomes a functor. There are two ways to
do this:

(1) 7 is a contravariant functor on the category of all smooth manifolds
and proper smooth mappings (f is called proper if f~!(compact set) is
a compact set) by the usual pullback operation.
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(2) QF is a covariant functor on the category of all smooth manifolds and
embeddings of open submanifolds: For i : U < M and w € QF(U) just
extend w by 0 off U to get iww € QE(M) Clearly iy o d = d 0 iy.

12.3. Remarks. (1) If a manifold M is a disjoint union, M = ||, Ma,
then we have obviously H¥(M) = @, HE(M,).

(2) H2(M) is a direct sum of copies of R, one for each compact connected
component of M.

(3) If M is compact, then H¥(M) = H*(M).

12.4. The Mayer-Vietoris sequence with compact supports. Let
M be a smooth manifold, and let U, V C M be open subsets such that
M = U UYV. We consider the following embeddings:

unv

UiU/ \jV\V
N

Theorem. The following sequence of graded differential algebras is exact:
0= QUNV) 25 Q2 (U) @ QE(V) —2 QF (M) — 0,

where fe(w) = ((Ju)ww, (Jv)sw) and ac(p,¥) = (iv)«p — (iv)«p. So by
(11.8)| we have the long exact sequence

coo o HYY(M) 2 HRU N V) = HYNU) @ HY (V) —
= HYM) 2 BN UNV) >
which is natural in the triple (M,U, V). 1t is called the Mayer Vietoris
sequence with compact supports.
The connecting homomorphism 6, : H¥(M) — HETY(U N V) is given by

dell = (B dac ()] = 1B d(fup, —fr o))
=[dfu np TUNV] = —ldfy A [TNV].

Proof. The only part that is not completely obvious is that a. is surjective.
Let {fu, fv'} be a partition of unity with supp(fy) C U and supp(fy) C
V, and let ¢ € QF(M). Then fye € QF(U) and —firo € QF(V) satisfy
ac(fue, —fve) = (fu + fv)e = ¢ O
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12.5. Proper homotopies. A smooth mapping h: Rx M — N is called a
proper homotopy if h=!(compact set) N ([0, 1] x M) is compact. A continuous
homotopy h : [0,1] x M — N is a proper homotopy if and only if it is a
proper mapping.

Lemma. Let f,g: M — N be proper and proper homotopic. Then f* =
g* : HE(N) — HF(M) for all k.

Proof. Recall the proof of lemma

Claim. In the proof of [[11.4)] we have furthermore h : QF(N) — QF~1(M).
Let w € QF(N) and let K; := supp(w), a compact set in N. Then Ko :=
h=Y(K1) N ([0,1] x M) is compact in R x M, and finally K3 := pra(Ks) is
compact in M. If z ¢ K3, then we have

1
(hw)y = ((I§ 0 ip 0 h*)w), = /0 (insy (irh*w)), dt = 0.

The rest of the proof is then again as in |(11.4)] O
12.6. Lemma.

R k=n,
CHEDES S

0 otherwise.
Proof. We embed R™ into its one point compactification R™ U{oco} which is
diffeomorphic to S"; see[(1.2)l The embedding induces the exact sequence

of complexes
0— Q(R") = Q") = 2(5")oc — 0,

where (S™)~ denotes the space of germs at the point co € S™. For germs at
a point the lemma of Poincaré is valid, so we have H?(Q2(5")s) = R
and H¥(Q(S")s) = 0 for k > 0. By theorem there is a long exact
sequence in cohomology whose beginning is:

HY(RY) ~ HO(S™) = HO(US")oe) = HL(RY) = H'(S™) = H'(2(S")c)
0 R R 0

From this we see that 6 = 0 and consequently H!(R") = H'(S™). Another
part of this sequence for k£ > 2 is:

HF1(Q(S™) o) 2> HE(R™) — HF(S") —— H*(Q(S™).0)
[l [l
0 0.

It implies H*(R™) = H*(S") for all k. O
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12.7. Fiber integration. Let M be a manifold, and let pr; : M xR — M.
We define an operator called the fiber integration

/ COF(M x R) — QM)
fiber

as follows. Let ¢ be the coordinate function on R. A differential form with
compact support on M x R is a finite linear combination of two types of
forms:

(1) prie.f(z,t), or for short ¢.f,
(2) pri@ A f(x,t)dt, or for short ¢ A f dt,
where ¢ € Q(M) and f € C(M x R,R). We then put
@ faper P17 2f =0,
@ foperPrieAfdt=¢ [T f( t)dt.
This is well defined since the only relation which we have to satisfy is

pri(pg) A f(z,t)dt = pri g(x) A f(z,t)dt.

Lemma. We have d o fﬁber = fﬁber od. Thus fﬁber induces a linear mapping
in cohomology

(AM);HﬂMxR»ﬁH&%M»

which however is not an algebra homomorphism.

Proof. In case ([l) we have

— _1\k _1\k af
~/ﬁber d(QOf) /ﬁber dsOf - ( 1) /ﬁber QDde - ( 1) /ﬁber Vo at

o
= (—1)’“@ / %dt =0 since f has compact support
—00

= d/ w.f.
fiber

In case ([2]) we get

/ d(go/\fdt):/ dgo/\fdt—l—(—l)k/ o Ndpyr f A dt
fiber fiber

fiber

—do [ 5 a0 [ s o

—0o0

:d(w/:;f( ,t)dt) :d/ﬁbergo/\fdt. 0

In order to find a mapping in the converse direction, we let e = e(t)dt
be a compactly supported 1-form on R with f_oooo e(t)dt = 1. We define
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et QF (M) — QF1(M x R) by e.(p) = ¢ Ae. Then
de (p) =d(pNe) =dpNe+0=e.dp),

so we have an induced mapping in cohomology e, : H¥(M) — HF (M xR).
We have [g, . oex = Idgr ), since

[ etor= [ onet yi=p [~ et

Next we define K : QF(M x R) — Q=1(M x R) by

@ K(e.f) =0,
@) K(pAfdt) = ['_ fdt — . A(t) [ fdt, where A(t) := ['__e(t)dt.

Lemma. Then we have

(3) [ — o/ — (C1)F N do K — K od).
fiber

Proof. We have to check the two cases. In case ([Il) we have

(td=c.o [ s =pf =0,

(doK — Kod)(p.f) =0~ K(dp.f + (—1)fo Adif + (—1)Fp A GLat)
vt (o[ G- gt [ )
= (-t f+o0.

In case ([2) we get

(Id—e*O/ﬁb )((p/\fdt):go/\fdt—w/_ fdt Ne,

(do K — K od)(p A fdt) :d<go/_;fdt—go.A(t)/oo fdt>

—00

— K(dp A fdt+ (=) Lo Adyf Adt)

= (—1)k? <gp/\fdt—g0/\e/ fdt). 0

—00

[e.e]

Corollary. The induced mappings (fﬁber) and e, are inverse to each other

*

and thus isomorphisms between H¥(M x R) and H*=1(M).

Proof. This is clear from the chain homotopy (). (]
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12.8. Second proof of |[(12.6). For k£ < n we have
HFRY) 2 g R > =2 HIRF)

_J0 for k < n,
| HYRY) =R for k =n.

Note that the isomorphism H”(R™) = R is given by integrating the dif-
ferential form with compact support with respect to the standard orien-

tation. This is well defined since by Stokes’s theorem [(10.11)] we have
Jgn dw = [yw =0, so the integral induces a mapping [, : H*(R") = R. O

12.9. Example. We consider the open Mébius strip M in R?; see .
Open means without boundary. Then M is contractible onto S'; in fact M
is the total space of a real line bundle over S'. So from we see that
HY(M)= H*(S') =R for k=0,1 and = 0 for k > 1.

Now we claim that H¥(M) = 0 for all k. For that we cut the Mobius strip
in two pieces which are glued at the end with one turn,

aT Tb
| |®
so that M = UUV where U =2 R?, V =2 R? and U NV = R?UR?, the

disjoint union. We also know that H?(M) = 0 since M is not compact and
connected. Then the Mayer-Vietoris sequence (see|(12.4)]) is given by

a

HA\U) & HAV) — HY (M) —% 120 nv) —2

|
0 ROR

% H2(U) @ HA(V) —= HX(M) — H3(UNV)

RoR 0.

We shall show that the linear mapping (. has rank 2. So we read from
the sequence that H!(M) = 0 and H2(M) = 0. By reasons of dimension
H*(M) =0 for k > 2.

Let ¢, 1 € Q2(U NV) be two forms, supported in the two connected com-
ponents, respectively, with integral 1 in the orientation induced from one
on U. Then [, =1, [;% = 1, but for some orientation on V' we have
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Jiy¢=1and [,1 = —1. So the matrix of the mapping f. in these bases is

(1 1 ), which has rank 2.
1 -1

12.10. Mapping degree for proper mappings. Let f : R — R" be a
smooth proper mapping; then f* : QF(R") — QF(R") is defined and is an
algebra homomorphism. So also the induced mapping in cohomology with
compact supports makes sense and by

H (BY) 1 HY(R)
e |1
e

R =R

a linear mapping R — R, i.e., multiplication by a real number, is defined.
This number deg f is called the mapping degree of f.

12.11. Lemma. The mapping degree of proper mappings has the following
properties:
(1) If f, g : R™ — R"™ are proper, then deg(f o g) = deg(f).deg(g).
(2) If f and g : R™ — R™ are proper homotopic (see , then deg(f) =
deg(g)-
(3) deg(Idgn) =1.
(4) If f : R™ — R"™ is proper and not surjective, then deg(f) = 0.

Proof. Only statement () needs a proof. Since f is proper, f(R") is closed
in R™: For K compact in R” the inverse image K; = f~!(K) is compact, so
f(K1) = f(R")N K is compact, thus closed. By local compactness f(R") is
closed.

Suppose that there exists x € R™\ f(R™); then there is an open neighborhood
U C R*\ f(R™). We choose a bump n-form a on R"™ with support in U
and [« = 1. Then f*a = 0, so deg(f) = 0 since [a] is a generator of
HM(R™). O

12.12. Lemma. For a proper smooth mapping f : R — R" the mapping
degree is an integer; in fact for any regular value y of f we have

deg(f) = Z sign(det(df(x))) € Z.

z€f~1(y)

Proof. By the Morse-Sard theorem, see there exists a regular value

y of f. If f~1(y) = 0, then f is not surjective, so deg(f) = 0 by [(12.11.4)|
and the formula holds. If f~!(y) # 0, then for all z € f~!(y) the tangent

mapping T, f is surjective, thus an isomorphism. By the inverse mapping
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theorem f is locally a diffeomorphism from an open neighborhood of z onto a
neighborhood of 3. Thus f~!(y) is a discrete and compact set, say f~!(y) =
{z1,..., 2} CR™

Now we choose pairwise disjoint open neighborhoods U; of x; and an open
neighborhood V' of y such that f : U; — V is a diffeomorphism for each
i. We choose an n-form a on R"™ with support in V and [a = 1. So
f*a=>",(f|U;)* o and moreover

/ (flU) o« = sign(det(df(a:i)))/ a = sign(det(df (z;))),
U; 14
k
dee(f) = | fra=3 [ (100 =Y sn(@et(df(a)) €7 O

12.13. Example. The last result for a proper smooth mapping f: R — R
can be interpreted as follows: Think of f as parametrizing the path of a car
on an (infinite) street. A regular value of f is then a position on the street
where the car never stops. Wait there and count the directions of the passes
of the car: The sum is the mapping degree, the number of journeys from
—00 to oo. In dimension 1 it can be only —1, 0, or +1 (why?).

12.14. Poincaré duality. Let M be an oriented smooth manifold of di-
mension m without boundary. By Stokes’s theorem the integral
operator [ : QI"(M) — R vanishes on exact forms and induces the cohomo-
logical integral

(1) /: H™(M) — R.

It is surjective (use a bump m-form with small support). The Poincaré
product is the bilinear form

(2) Py HY(M) x H™ % (M) — R,
Ply((al.18) = [ lal A1) = /Maw.

It is well defined since for 8 closed dy A 8 = d(y A B), etc. If j: U - M
is an orientation preserving embedding of an open submanifold, then for
[a] € H¥(M) and for [3] € H**(U) we may compute as follows:

(3) P (7o), [6)) = / (*[a]) A [8] = /U Fanp

*

—/Uj*(aAj*ﬁ)—/j(U)a/\j*ﬁ
_ / a A8 = P(lal, j.18]).
M
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Now we define the Poincaré duality operator
(4) Dy« HE (M) — (Hg" (M),
(8], Dislal) = Pi([al, [8).

For example, we have

DBV = ([ )€ (H®)"
Let M = U UV with U, V open in M; then we have the two Mayer-Vietoris
sequences from |(11.10)| and from |(12.4)]
S HYM) 2 YUY @ HYV) L BN U N V) S B (M) -

H™ F (M)« H" U) @ H" (V) H™ (U N V) Lo gD,

We take dual spaces and dual mappings in the second sequence and we
replace § in the first sequence by (—1)*716 and get the following diagram
which is commutative as we will see in a moment:

()

(-1)k=25 de

Dk
H*(M) = H (M)

(3,75 (@), (v ))"
D¥ @Dk
H*U) & HH(V) —= Hr=RU)* & HP 5 (V)*

Iv—iv (G )«=Gv)«)"

HYUNV) — 29V gmeky A v)*

(~1*1s s
D+l
M

Hk—i—l(M) Hén*(kJFl)(M)*

12.15. Lemma. Diagram|(12.14.5)| commutes.

Proof. The first and the second square from the top commute by |(12.14.3)]
So we have to check that the bottom one commutes. Let [a] € H*(U N'V)
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and [f] € H:%(kﬂ)(M), and let (fy, fi) be a partition of unity which is
subordinated to the open cover (U, V) of M. Then we have

(8], D (—1)"15[a]) = Py ((—1)*"4[al, [8])
= PEF (=1 Ydfy Aal,[8]) by [(TL.10)]

= (-1+! /M dfv Na A B,

(8], 3z Df o)) = (5c[8], Dirvle]) = Py ([, 8c[B])
= Pkoy (o], [dfu A B] = —[dfy AB]) by

:—/ a/\dfv/\ﬁ:—(—l)k/ dfy NangB. O
unv M

12.16. Theorem. Poincaré duality. If M is an oriented manifold of
dimenston m without boundary, then the Poincaré duality mapping

D}« H*(M) — H *(M)*
s a linear isomorphism for each k.

Proof. Step 1. Let O be an i-base for the open sets of M, i.e., O is a basis
containing all finite intersections of sets in O. Let Oy be the set of all open
sets in M which are finite unions of sets in 0. Let Oy be the set of all open
sets in M which are at most countable disjoint unions of sets in . Then
obviously Oy and Oy are again i-bases.

Step 2. Let O be an i-base for M. If Do : H(O) — H.(O)* is an isomor-
phism for all O € O, then it is so also for all O € Oy.

Let U € Of, U = O1U---UO for O; € O. We consider O1 and V =
O2U---UOk. Then O NV = (O NO2)U---U (01 NOy) is again a
union of elements of O since it is an i-base. Now we prove the claim by
induction on k. The case k = 1 is trivial. By induction Dp,, Dy, and
Do,nv are isomorphisms, so Dy is also an isomorphism by the five-lemma

(11.9)[applied to the diagram |(12.14.5)]

Step 3. If O is a basis of open sets in M such that Do is an isomorphism
for all O € O, then it is so also for all O € O.

IfU € Oy, we have U =01 U0 U... =2, O; for O; € O. But then the

diagram

H() 12, 1(0)
Dui lHDoi
H(U)" == (B, He(0i))" == 1[I[:Z, He(0:)"

commutes and implies that Dy is an isomorphism.
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Step 4. If Do is an isomorphism for each O € O where O is an i-base for
the open sets of M, then Dy is an isomorphism for each open set U C M.

Namely, ((Of)s)s contains all open sets of M; then the result follows from
steps 2 and 3. Indeed, given an open U C M, choose compact sets K; C M
with K; C K;11 and U = U;’il K;. Then we choose open sets O; € Oy for
i=1,2,... of U such that O; is compact, Ule O; D K so that the O; also
cover U, Ule 0; D Ui-:ll O;, and O;NOj =0 unless j =i —1or j =1+ 1.
Then let Vi = (J;5¢ O2i+1 and Vo = |J;~ O2; which are elements of (O¢)s,.
Hence U = V1 UV is in ((Oy)s) -
Step 5. Drm : H(R™) — H.(R™)* is an isomorphism.
We have

Hk(Rm) _ {R for k =0, Hf(]Rm) _ {]R for k = m,

0 for k>0, 0 for k # m.

The class [1] is a generator for H°(R™), and [a] is a generator for H™(R™)
where « is any m-form with compact support and | y @ = 1. But then

PR ([1],[a]) = [gm La=1.

Step 6. For each open subset U C R™ the mapping Dy is an isomorphism.
The set {{x € R™ : a’ < 2' < b for all i} : @’ < b’} is an i-base of R™. Each
element O in it is diffecomorphic (with orientation preserved) to R™, so Do
is an isomorphism by step 5. From step 4 the result follows.

Step 7. D) is an isomorphism for each oriented manifold M.

Let O be the set of all open subsets of M which are diffeomorphic to an open
subset of R™, i.e., all charts of a maximal atlas. Then O is an i-base for M,
and Dy is an isomorphism for each O € O. By step 4 the operator Dy is an
isomorphism for each open U in M; thus also Dj; is an isomorphism.  [J

12.17. Corollary. For each oriented manifold M without boundary the
bilinear pairings
Py H (M) x HY (M) — R,
Py HY (M) x HF(M) - R
are not degenerate.
12.18. Corollary. Letj: U — M be the embedding of an open submanifold
of an oriented manifold M of dimension m without boundary. Then of the

following two mappings one is an isomorphism if and only if the other one
18:

§* - H¥(U) « H*(M),
ot HIFHU) — HIH(M).
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Proof. Use P (j*[al, 18)) = Pl ([al, j[8))- 0

12.19. Theorem. Let M be an oriented connected manifold of dimension
m without boundary. Then the integral

/ L H™(M) — R
is an isomorphism. So ker [, = d(QI1(M)) C QI*(M).
Proof. Considering m-forms with small support shows that the integral is

surjective. By Poincaré duality [(12.16)} dimg H™(M)* = dimg H*(M) =1
since M is connected. O

Definition. The uniquely defined cohomology class wys € H'(M) with
integral [,, wy = 1 is called the orientation class of the manifold M.

12.20. Relative cohomology with compact supports. Let M be a
smooth manifold and let N be a closed submanifold. Then the injection
i: N — M is a proper smooth mapping. We consider the spaces

QF(M,N) :={we (M) : w|N =i*w =0}

whose direct sum (Q}(M,N),d) is a graded differential subalgebra of the
graded differential algebra (25(M),d). Its cohomology, HY(M, N), is called
the relative de Rham cohomology with compact supports of the manifold pair
(M, N). The sequence of graded differential algebras

0— QH(M,N) = QM) —— Q*(N) = 0

is exact. This is seen by the same proof as of [(11.16)| with some obvious
changes. Thus by [(11.8)| we have the long exact sequence in cohomology

o= HYM,N) — H¥(M) — H*(N) -2 HF(M,N) — ...

which is natural in the manifold pair (M, N). It is called the long exact
cohomology sequence with compact supports of the pair (M, N).

12.21. Now let M be an oriented smooth manifold of dimension m with
boundary dM. Then M is a closed submanifold of M. Since for w €
Q=1 (M,0M) we have [,,dw = [,,,w = [5,,0 = 0, the integral of m-
forms factors as

QP(M, M) —— QI (M) L, R

7

i J:

H™(M,0M)
to the cohomological integral [, : H*(M,0M) — R.
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Example. Let I = [a,b] be a compact interval; then I = {a,b}. We have
HY(I) =0 since fdt =d fj f(s)ds. The long exact sequence in cohomology
of the pair (I,01) is

0— HO(I,dI) — HO(I) — H(8I) % HY(I,dI) — H'(I) — H(3I)

| H H I | H
0 R R2 0.

1%

R 0

The connecting homomorphism 6 : H°(0I) — H'(I,0I) is given by the
following procedure: Let (f(a), f(b)) € H°(OI), where f € C°°(I). Then

f(a
3@, £0) = laf) = [ 1af) = / af = / F(#)dt = £(b) — f(a).

So the fundamental theorem of calculus can be interpreted as the connecting
homomorphism for the long exact sequence of the relative cohomology for
the pair (1,01).

The general situation. Let M be an oriented smooth manifold with
boundary M. We consider the following piece of the long exact sequence
in cohomology with compact supports of the pair (M, 9M):

H (M) — H"Y(0M) —~ H™(M,0M) — H™(M) — 0

| |t

R R.

The connecting homomorphism is given by

Slw|OM] = [dw]gm(aronn, w € QP (M),

so commutation of the diagram above is equivalent to the validity of Stokes’s
theorem.

13. De Rham Cohomology of Compact Manifolds

13.1. The oriented double cover. Let M be a manifold. We consider
the orientation bundle Or(M) of M which we discussed in and we
consider the subset or(M) := {v € Or(M) : |v| = 1}; see for the
modulus. We shall see shortly that it is a submanifold of the total space
Or(M), that it is orientable, and that mps : or(M) — M is a double cover
of M. The manifold or(M) is called the orientable double cover of M.

We first check that the total space Or(M) of the orientation bundle is ori-
entable. Let (U,,u,) be an atlas for M. Then the orientation bundle is
given by the cocycle of transition functions

Tap(x) = sign pap(x) = signdet d(ug o uy ) (ue ().
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Let (Uq, 7o) be the induced vector bundle atlas for Or(M); see We
consider the mappings

OI‘(M)’UQ To Ua % R uq XId ua(Ua) % R C Rm+1

™M pri

Ua

and we use them as charts for Or(M). The chart changes ug(Uyg) x R —
ta(Uqap) x R are then given by

(y,) = (ua 0 ug™(y), Tap(ug ' (¥))t)
= (uq o ugl(y), sign det d(ug o ug ') ((uq © u/gl)(y))t)
= (uq o ugl(y), sign det d(uq © ugl)(y)t).

The Jacobi matrix of this mapping is

d(ug o ugl)(y) *
0 sign det d(uq o ugl) (y)

which has positive determinant.

Now we let Z := {v € Or(M) : |v| < 1} which is a submanifold with
boundary in Or(M) of the same dimension and thus orientable. Its boundary
0Z coincides with or(M), which is thus orientable.

Next we consider the diffeomorphism ¢ : or(M) — or(M) which is induced
by the multiplication with —1 in Or(M). We have po ¢ = Id and 7/ (z) =
{z,0(2)} for z € or(M) and 7ps(z) = x.

Suppose that the manifold M is connected. Then the oriented double cover
or(M) has at most two connected components, since 7y is a two sheeted
covering map. If or(M) has two components, then ¢ restricts to a diffeo-
morphism between them. The projection 7y, if restricted to one of the
components, becomes invertible, so Or(M) admits a section which vanishes
nowhere; thus M is orientable. So we see that or(M) is connected if and
only if M is not orientable.

The pullback mapping ¢* : Q(or(M)) — Q(or(M)) also satisfies p*op* = Id.
We put

Qi(or(M)) : ={w € Qor(M)) : ¢*w = w},

Q_(or(M)) : ={w € Qor(M)) : p*w = —w}.
For each w € Q(or(M)) we have w = 3 (w+¢*w)+3(w—p*w) € Uy (or(M))®
Q_(or(M)), so Q(or(M)) = Qi (or(M))®Q_(or(M)). Since do p* = ¢*od,
these two subspaces are invariant under d; thus we conclude that

(1) H"(or(M)) = H* (2 (or(M))) & H"(Q- (or(M))).
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Since 7y, @ Q(M) — Q(or(M)) is an embedding with image Q. (or(M)),
we see that the induced mapping 7%, : H¥(M) — H¥(or(M)) is also an
embedding with image H* (2, (or(M))).

13.2. Theorem. For a compact manifold M we have dimgp H*(M) < co.

Proof. Step 1. If M is orientable, we have by Poincaré duality |(12.16)|

1 () 2 () = (k) S

~ ~

! k),
so H*(M) is finite-dimensional since otherwise dim(H*(M))* > dim H*(M).
Step 2. Let M be not orientable. Then from |(13.1)| we see that the oriented

double cover or(M) of M is compact, oriented, and connected, and we have
dim H*(M) = dim H*(Q4 (or(M))) < dim H*(or(M)) < oo. O

13.3. Theorem. Let M be a connected manifold of dimension m. Then

R if M is compact and orientable,

H™(M) = {

0 otherwise.

Proof. If M is compact and orientable, the integral f* :H™(M) — Risan
isomorphism, by

Next let M be compact but not orientable. Then the oriented double cover
or(M) is connected, compact and oriented. Let w € Q" (or(M)) be an m-
form which vanishes nowhere. Then also ¢*w is nowhere zero where ¢ :
or(M) — or(M) is the covering transformation from So p*w = fw
for a function f € C*°(or(M)) which vanishes nowhere. So f > 0 or f < 0.
If f>0, then a :=w+ ¢*w = (1 + f)w is again nowhere 0 and p*a = «,
so a = 7y, for an m-form S on M without zeros. So M is orientable, a
contradiction. Thus f < 0 and ¢ changes the orientation.

The m-form v := w — ¢*w = (1 — f)w has no zeros, so for(M)’y > 0 if we
orient or(M) using w; thus the cohomology class [y] € H™(or(M)) is not
zero. But ¢*y = —y so v € Q_(or(M)); thus H™(Q2_(or(M))) # 0. By
the first part of the proof we have H™(or(M)) = R and from we get
H™(or(M)) = H™(Q—(or(M))), so H™(M) = H™(Q4(or(M))) = 0.
Finally let us suppose that M is not compact. If M is orientable, we have
by Poincaré duality and by that H™(M) = HJ(M)* = 0.
If M is not orientable, then or(M) is connected by and not compact,
so H™(M) = H™(Q4(or(M))) C H™(or(M)) = 0. O
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13.4. Corollary. Let M be a connected manifold which is not orientable.
Then or(M) is orientable and the Poincaré duality pairing of or(M) satisfies

r(M)), (Hy" ") (or(M))) = 0
(M), (HZ'™F)~(or(M))) = 0,
(H™) - (or(M)
(HZF)4 (or(M)

[

k
H+

Q

) (
) (

]
=

*

1

)

(
or(M) HE(
)
)

) )
( r(M) ).

Il

Proof. From we know that or(M) is connected and orientable. So
R = H%or(M)) = H™(or(M))*.

Now we orient or(M) and choose a nonnegative bump m-form w with com-
pact support on or(M) so that for(M)w > 0. From the proof of
we know that the covering transformation ¢ : or(M) — or(M) changes
the orientation, so <p*w is negatively oriented, i.e., fo( )ap*w < 0. Then

w—p*w e Q™ (or(M)) and f (M) (w—p*w) >0, so (Hm) (or(M)) =R and
(H") 4 (or(M)) = 0
Since ¢* is an algebra homomorphism, we have

O (or(M)) A (77F) 4 (ox(M)) € () (or (M),

QF (or(M)) A (@) _ (0r(M)) € (") (or(M)).

From (H[")4(or(M)) = 0 the first two results follows. The last two asser-
tions then follow from this and H*(or(M)) = H* (or(M)) & H* (or(M)) and

the analogous decomposition of H¥(or(M)). O

13.5. Theorem. For the real projective spaces we have

( )

for1 <k <mn,

0
n(RP") R for odd n,
for even n.

Proof. The projection 7 : §™ — RP" is a smooth covering mapping with
two sheets; the covering transformation is the antipodal mapping A : S™ —
S" oz — —x. We put Q4(5") = {w € Q") : A*w = w} and Q_(S") =
{w € Q(S™) : A*'w = —w}. The pullback 7* : QRP") — Q(S") is an
embedding onto Q4 (S™).

Let A be the determinant function on the oriented Euclidean space R,
We identify 7},S™ with {z}* in R"*! and we consider the n-form wgn €
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Q"(S™) which is given by (wgn)(X1,...,Xn) = Az, X1,...,X;). Then we
have

(A*wsn ) (X1, .. Xn) = (wsn) a@) (Te A X1, ..., Te A X )
= (WS”)—z(_Xla 7_Xn)
= A(—(L‘, —Xl, ey —Xn)

= (-1)"" Az, X1,..., X,)
= (=1)" M wgn)e(X1, ..., Xp).

Since wgn is invariant under the action of the group SO(n + 1,R), it must
be the Riemann volume form, so

— vol(S™ _<n+1)7rn7+1_ (192%1;)' forn:Qk—l,
"WSH_VO( )_W_ _ 2l g =2k — 2
2 1-3:5...(2k—3) = .

Thus [wgn] € H™(S™) is a generator for the cohomology. We have A*wgn =
(_1)n+1w5"7 SO

Q" (S™)  for even n.
Thus H"(RP") = H™"(Q4(S™)) equals H"(S™) = R for odd n and equals 0
for even n.

Since RP" is connected, we have H’(RP") = R. For 1 < k < n we have
HFRPY) = H*(Q.(S™)) € H*(S™) = 0. O

Qn(S™) for odd
anE{ n(S") for odd n,

13.6. Corollary. Let M be a compact manifold. Then for all Betti num-
bers, we have by(M) := dimg H*(M) < oco. If M is compact and orientable
of dimension m, we have b (M) = by,_i(M).

Proof. This follows from |(13.2)| and from Poincaré duality |(12.16) O

13.7. Euler-Poincaré characteristic. If M is compact, then all Betti
numbers are finite, so the Euler-Poincaré characteristic (see also|(11.2)))

dim M

xv =Y (=DFo(M) = far(-1)

k=0
is defined.

Theorem. Let M be a compact and orientable manifold of dimension m.
Then we have:

(1) If m is odd, then xpr = 0.
(2) If m = 2n for odd n, then xp = by, (M) =0 mod (2).
(3) If m = 4k, then xar = bop (M) = signature(PEF) mod (2).
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Proof. From |(13.6) we have by(M) = by,—q(M). Thus the Euler-Poincaré
characteristic is xar = >_;Lo(=1)%g = >, o(=1)%bm—g = (=1)™xar which
implies ().

If m = 2n, we have xp = Zzio(—l)qbq = 22;:01(—1)%(1 + (=1)"by, so
XM = b, mod (2). In general we have for a compact oriented manifold

P (o], [6]) = /

anp=(-1)%m=9 / BAa= (=110 PEa((g], [a]).
M M

For odd n and m = 2n we see that Py, is a skew-symmetric nondegenerate

bilinear form on H™(M), so b, must be even (see or below)
which implies (2]).

@) If m = 4k, then P]%f is a nondegenerate symmetric bilinear form on
H?*(M), an inner product. By the signature of a nondegenerate symmetric
inner product one means the number of positive eigenvalues minus the num-
ber of negative eigenvalues, so the number dim H?*(M), —dim H?*(M)_ =
ay —a_, but since H2*(M), @ H?*(M)_ = H?*(M), we have a; +a_ = by,
S0 ay —a_ = by, — 2a_ = by, mod (2). O

13.8. The mapping degree. Let M and N be smooth compact oriented
manifolds, both of the same dimension m. Then for any smooth mapping
f : M — N there is a real number deg f, called the degree of f, which is
given in the bottom row of the diagram

() 20 gy

r|= |-

R~ R

where the vertical arrows are isomorphisms by [(12.19)| and where deg f is
the linear mapping given by multiplication with that number. So we also
have the defining relation

/f*w:degf/w for all w € Q™(N).
M N

13.9. Lemma. The mapping degree deg has the following properties:
(1) deg(fog) =deg f-degg, and deg(Idy) = 1.
(2) If f, g: M — N are (smoothly) homotopic, then deg f = degg.
(3) If deg f # 0, then f is surjective.
(4)

4 If f: M — M is a diffeomorphism, then deg f = 1 if f respects the
orientation and deg f = —1 if f reverses the orientation.
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Proof. () and (@) are clear. [B]) If f(M) # N, we choose a bump m-form
w on N with support in the open set N \ f(M). Then f*w = 0 so we have
0= [ [fw=degf [yw. Since [y, w # 0, we get deg f = 0.

@) follows either directly from the definition of the integral |(10.7)| or from
(13.11)| below. 0

13.10. Examples on spheres. Let f € O(n + 1,R) and restrict it to
a mapping f : ™ — S™ Then degf = det f. This follows from the
description of the volume form on S™ given in the proof of (13.5)]
Let f, g : S™ — S™ be smooth mappings. If f(z) # —g(x) for all z € S™,
then the mappings f and g are smoothly homotopic: The homotopy moves
f(x) along the shorter arc of the geodesic (big circle) to g(z). So deg f =
degg.
If f(z) # —x for all z € S™, then f is homotopic to Idgn, so deg f = 1.
If f(z) # x forall z € S™, then f is homotopic to —Idgn, so deg f = (—1)"+1,
The hairy ball theorem says that on S™ for even n each vector field vanishes
somewhere. This can be seen as follows. The tangent bundle of the sphere
is

TS™ = {(z,y) € R"™ x R""!: |z|> = 1, (z,y) = 0},
so a vector field without zeros is a mapping = — (x, g(z)) with g(z) Lz; then
f(z) := g(x)/|g(x)| defines a smooth mapping f : S™ — S™ with f(z)Llx
for all . So f(x) # x for all z; thus deg f = (—1)""! = —1. But also
f(z) # —x for all z, so deg f = 1, a contradiction.

Finally we consider the unit circle S* 1 € = R2. Tts volume form is given

by w:=i*(zdy —ydx) = i* xjg;g;“; obviously we have [, zdy — ydx = 27.

Now let f: St — S! be smooth, f(t) = (x(t),y(t)) for 0 <t < 2x. Then

1 *
deg f = 2/ [ (zdy — ydx)
s St
is the winding number about 0 from complex analysis.

13.11. The mapping degree is an integer. Let f : M — N be a
smooth mapping between compact oriented manifolds of dimension m. Let
b € N be a regular value for f which exists by Sard’s theorem; see [(1.18)
Then for each z € f~1(b) the tangent mapping T, f is invertible, so f is a
diffeomorphism near . Thus f~!(b) is a finite set, since M is compact. We
define the mapping ¢ : M — {—1,0,1} by

0 if T, f is not invertible,
e(z) =<1 if T,. f is invertible and respects orientations,

—1 if T, f is invertible and changes orientations.



160 CHAPTER III. Differential Forms and de Rham Cohomology

13.12. Theorem. In the setting of |(13.11), if b € N is a regular value for
f, then

deg f = Z e(z).
zef~1(b)
In particular deg f is always an integer.

Proof. The proof is the same as for lemma [(12.12)| with obvious changes.
([

14. Lie Groups III. Analysis on Lie Groups

Invariant Integration on Lie Groups

14.1. Invariant differential forms on Lie groups. Let G be a real Lie
group of dimension n with Lie algebra g. Then the tangent bundle of G is
a trivial vector bundle, see so G is orientable. Recall from section
the notation:

i G x G — G, multiplication, u(x,y) = z.y.
fe : G — G, left translation, p,(x) = a.z.
u® : G — G, right translation, p®(z) = z.a.
v:G — G, inversion, v(z) = 1.
e € (G, the unit element.
A differential form w € Q"(G) is called left invariant if
ww=w forall ze€G.

Then w is uniquely determined by its value

We € /n\T*G: /n\g*.

For each determinant function A on g there is a unique left invariant n-form
LA on G which is given by

(1) (LA)IE(le s 7Xn) = A(TI(Mafl)'Xla s 7TIE(M$*1)'XH)7
(La)e = To(pe—1)"A.
Likewise there is a unique right invariant n-form Ra which is given by

(2) (Ra)2(X1, ., X)) = AT (1 )X, Te(p® 1 ).X0).

14.2. Lemma. We have for alla € G

(1) (1)*La = det(Ad(a™"))La,
(2) (ta)" Ra = det(Ad(a))Ra,
(3) (RA)a = det(Ad(a))(La)a-
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Proof. We compute as follows:

(1) La)s(X1, ..o, Xn) = (La)ea(Te (1) X1, - ., To(1%). Xn)
= A(Tea(ti(zay-1) To(1®). X1, - -+, Tra(fi(zay-1) T (1) Xn)
= A(Tu(tg1) Toa(pte ) To (1) X1, s Ta(ptg1) Toala—1)-To (1?). X0)
= A(Tu(pta1)-Te(u)- T (1) X1, oy Ta(ptg1)-To(p®)- T (1g1)-X0)
= AAd(a ™). To(py1) X1, ., Ad(a™ ). T (pp-1)-Xn)
= det(Ad(a ) A(Tu(pty-1). X1, -, Te(pt1). Xon)
= det(Ad(a"))(La)z(X1, ..., Xn),
(1a)* Ra)a(X1, - Xn) = (R )aw (T (pta)- X1, - - To(pta)-Xo)
= A(Top (19 ™) To () X, -+, T (). T (10)-X0)

= A(To(p® ) Tuw(® ) To(ta) X1, - Ta(u® ) Taw(1® ). T p1a). X )
= A(Ta(p® ) Te(pa) To(p® ). X1, oo Talp® ). To(a) To (1™ )-Xn)

1

= AAd(a) To(p® ). X1, ..., Ad(a). Tp(i* ). X0)

= det(Ad(a) A(T (1" ) X1, ..., Tu(u® ). Xn)

= det(Ad(a))(Ra)z(X1,. .., Xn),
det(Ad(a))(La)a(X1, ..., Xn)

= det(Ad(a))A(T, <ua D).X1, - Tapg-1). Xo)

A(Ad(a) Ta(pg-1)-X1, - - -, Ad(a) Ta(ptg-1)-Xn)
= A(Ta(1") Telpta) Talpta-1)- X1, o Ta(u™ ). Te(ta) Talpta-1).- Xn)

1

)T
= A(Tu(p® ). X1, Ta(p® ). X0) = (Ra)a(X1, ..., Xp). O

14.3. Corollary and Definition. The Lie group G admits a bi-invariant
(i.e., left and right invariant) n-form if and only if det(Ad(a)) = 1 for all
a€d.

The Lie group G is called unimodular if | det(Ad(a))| =1 for all a € G.

Note that det(Ad(a)) > 0 if G is connected.
Proof. This is obvious from lemma |(14.2)] O

14.4. Haar measure. We orient the Lie group G by a left invariant n-form
La where n = dim(G). If f € C°(G,R) is a smooth function with compact
support on G, then the integral [, ¢ JLa is defined and we have

Jwanta = [ wisra) = [ ria.
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because p, : G — G is an orientation preserving diffeomorphism of G. Thus
f— fG fLA is a left invariant integration on G, which is also denoted by
fG f(z)drx and which gives rise to a left invariant measure on G, the so-
called left Haar measure. It is unique up to a multiplicative constant, since
dim(A" g*) = 1. In the other notation the left invariance looks like

/ flax)dpz = / f(z)dpz for all f € C°(G,R),a € G.
G G

From lemma |(14.2.1)[ we have

/ ((4)* f)La = det(Ad(a)) / (1) (fLa) = | det(Ad(a))| / fLa,
G G G

since the mapping p® is orientation preserving if and only if det(Ad(a)) > 0.
So a left invariant Haar measure is also a right invariant one if and only if
the Lie group G is unimodular.

14.5. Lemma. Fach compact Lie group is unimodular.

Proof. The mapping deto Ad : G — GL(1,R) is a homomorphism of Lie
groups, so its image is a compact subgroup of GL(1,R). Thus det(Ad(G))
equals {1} or {1,—1}. In both cases we have |det(Ad(a))| = 1 for all
acG. O

Analysis for Mappings between Lie Groups

14.6. Definition. Let G and H be Lie groups with Lie algebras g and b,
respectively, and let f : G — H be a smooth mapping. Then we define the
mapping Df : G — L(g, h) by

Df (@) i= Ty (0! ) ). To f Te(p®) = 6 (). Te ("),
and we call it the right trivialized derivative of f.

14.7. Lemma. The chain rule: For smooth g: K — G and f: G — H we
have

D(fog)(z) = Df(g(x)) o Dg(x).
The product rule: For f,h € C*°(G, H) we have

D(fh)(z) = Df(z) + Ad(f(x))Dh(z).

Proof. We compute as follows:

D(f o g)(w) = T(u/ W) .T,(f 0 g).T. (")
= T( OO Ty (F). Te(p8@).T () Ty (g). Te (1)
= Df(g()).Dg(z),

D(fh)(x) = T(p @MD" T (o (f, 1)) Te (1)
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= T(p @ )T (). Ty 0y oy (T f Te (i), Toh Te (1))

= T(p! @)1, T(W T Teli) + Tty ) Toh T (")
= T(p! )T f T (i) + T (D) T (g0 T (") T b T (%)
= Df(z) + Ad(f(z)).Dh(z). O

14.8. Inverse function theorem. Let f : G — H be smooth and for some
x € Glet Df(x) : g — b be invertible. Then f is a diffeomorphism from a
suitable neighborhood of x in G onto a neighborhood of f(x) in H, and for
the derivative we have D(f~1)(f(x)) = (Df(z))~!

Proof. This follows from the usual inverse function theorem. O

14.9. Lemma. Let f € C°(G,G) and let A € N"™C g* be a determinant
function on g. Then we have for all x € G,

(f*Ra)z = det(Df(2))(Ra)e-

Proof. Let dim G = n. We compute as follows:
(f*RA)2(X1, .. Xn) = (RA) pay (T f X1, .o, T f. X )
= AT YT f.X,, ..
= AT @) T f T (") T (™). X, )
= A(Df (). T(1* ). X1,...)
= det(Df(2))A(T (1" ). X1,...)
=det(Df(x))(Ra)z(X1,...,Xyn). O

14.10. Theorem. Transformation formula for multiple integrals.
Let f : G — G be a diffeomorphism, and let A € /\dlmGg*. Then for any
g € CX(G,R) we have

/ o(f ()] det(Df () |dpz = / 9(y)dry,
G G

where drx s the right Haar measure, given by RA.

Proof. We consider the locally constant function e(z) = signdet(D f(x))
which is 1 on those connected components where f respects the orientation
and is —1 on the other components. Then the integral is the sum of all
integrals over the connected components and we may investigate each one
separately, so let us restrict attention to the component G of the identity.
By a right translation (which does not change the integrals) we may assume
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that f(Go) = Go. So finally let us assume without loss of generality that G
is connected, so that ¢ is constant. Then by lemma we have

/G gRa =< /G (gRa) =€ /G F*(@)1*(Ra)

- / (g0 f)edet(Df)Ra = / (g0 )| det(Df)[Ra. O
G G

14.11. Theorem. Let G be a compact and connected Lie group, and let
feC®@G, Q) and A € N"™C g*. Then we have for g € C(G),

degf/gRA:/(gof)det(Df)RA, or
dee s [ oy = [ o7()det(DS ()

Here deg f, the mapping degree of f, see|(13.8), is an integer.

Proof. From lemma [(14.9)| we have f*Ra = det(Df)Ra. Using this and
the defining relation from - for deg f, we may compute as follows:

degf/gRA_/f (gRa) /f

- / (g0 f)det(Df)Ra. O
G

14.12. Examples. Let G be a compact connected Lie group.

(1) If f=p*:G — G, then D(u*)(x) = Idg. From theorem |(14.11)| we get
Jo9RA = [(g 0 p*)Ra, the right invariance of the right Haar measure.

(2) 1 f = pa s G = G, then D) () = T(u@) " ).T3 (1a) T (%) = Ad(a).
So the last two results give [, gRA = [5(g © pta)| det Ad(a)|Ra which we
already know from |(14.4)|

(3) If f(x) = 22 = p(x,z), we have
Df () = Toa (™) Tyt (Te(s®), Te(s")

= To(u™ ) T (0 ) (To(pta) Te (1) + T (p®). Te ("))
= Ad(z) + Id,.

Let us now suppose that fG RA = 1; then we get

dea(( %) =deal( ) [ Ra = [ der(Tdg-+ Ad(w))dne

/ 9(22) det(Idy + Ad(x))dga — / det(Idy + Ad(x))dpr / o(2)dna.
G G G
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(4) Let f(z) = 2" for k € N, and suppose that [, dgz = 1. Then we claim
that

k—1
D(( (=) =D Ad()).
i=0
This follows from induction, starting from example (3) above, since
D(( )(z) = D(Idg.( ) )()
= D(Idg)(z) + Ad(x).D(( )" N)(x) by [T4.7)

k—2 k—1
= Idg + Ad(2)(Y_ Ad(z')) = > Ad(a").
=0 =0

We conclude that

k—1 .
deg( )k:/Gdet (ZAd(m’)) dre.
=0

If G is abelian, we have deg( )* = k since then Ad(z) = Id,.

(5) Let f(x) = v(z) = 2~!. Then we have Dv(z) = Tp® " Ty Tou* =
— Ad(z~1). Using this, we see that the result in (4) holds also for negative
k if the summation is interpreted in the right way:

0 k-1
D(( ) M) = ) Ad@’)=-) Ad=").
1=0

i=—k+1
Cohomology of Compact Connected Lie Groups

14.13. Let G be a connected Lie group with Lie algebra g. The de Rham co-
homology of G is the cohomology of the graded differential algebra (Q(G), d).
We will investigate now what is contributed by the subcomplex of the left
invariant differential forms.

Definition. A differential form w € Q(G) is called left invariant if piw = w
for all a € G. We denote by Qr,(G) the subspace of all left invariant forms.
Clearly the mapping

L: Ng* = QL(G),
(Lo)a(X1, -5 Xp) = (T (pg-1)-X1, - - o, T(pg-1)-Xp),

is a linear isomorphism. Since u’ od = d o u¥, the space (Qr(G),d) is a
graded differential subalgebra of (Q(G), d).

We shall also need the representation Ad: G — GL(A g*) which is given by
Ad(a) = A(Ad(a=1)*) or
(Ad(a)w)(X1, ..., Xp) = w(Ad(a™Y).X1,...,Ad(a"1).X},).
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14.14. Lemma. (1) Via the isomorphism L : \ g* — QL(G) the exterior
differential d has the following form on ) g*:

dw(X(), ce ,Xk) = Z (—1)i+jw([Xi,Xj],X0, e 7551'7 v )/(:j, N ,Xk),
0<i<j<k
where w € \¥ g* and X; € g.

(2) For X € g we have i(Lx)Q(G) C Qr(G) and L1, QL(G) C QL(G).
Thus we have induced mappings

k k—1
Z‘X : /\g* — /\ 9*7

(iXW)(le---’Xk—l) :w(X,Xl,...,Xk_l);
k k
Lx: No* = N\o",
k

(Lxw)(X1,..., Xp) =Y (-D'w([X, X;], X1,..., Xy, ... Xp).
i=1

(3) These mappings satisfy all the properties from section@ in particular
Lx =1ixod+doix, see
Lxyod=doLx, see
[Lx,Ly] = Lixy), see((9.6.3)]
[Lx,iv] =ixy]s see .

(4) The representation Ad:G — GL(A g*) has derivative T,AdX = L.

Proof. For w € A" g* and X; € g the function
(Lw)I(Lxl (), ... s Lix, (z)) = W(T(Mx—l)'LX1 (),...)
=w(T(pg-1).T (). X1,...)
(X X
is constant in z. This implies already that i(Lx ) (G) C Qr(G) and the
form of ix in (2). Then by |(9.8.2)| we have
(dw)(Xo, “ee ,Xk) = (de)(LXO, ‘e ,LXk)(e)

k
= (1)L, (e)(w(Xo, ... X;, ... X))
i=0

+ Z (_1)i+jw([Xian]7X0) s 7)?1'7 B 'a)?ja .. in)a
0<i<y<k

from which assertion (IJ) follows since the first summand is 0. Similarly we
have
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(EXw)(Xl, . ,Xk) = (»CLXLUJ)(LXN . ,ka)(e)
k
= Lx(e)(@(X1,.... X)) + > _(—-D'w (X, Xi], X1,..., X;, ... Xp).
=1

Again the first summand is 0 and the second result of (2]) follows.
@) This is obvious.
@) For X and X; € g and for w € A" g* we have

(T.Ad. X)w) (X1, ..., Xi) = 0lo(Ad(exp(tX))w) (X1, . .., Xi)
= J|ow(Ad(exp(—tX)).X1,...,Ad(exp(—tX)).Xk)

I
M)~

w(X1, ..., Xi—1, —ad(X) Xy, Xipr, ... Xi)
1

-.
> |l

(_1)Zw([X7 Xi],Xh ‘e ,)?i, .. Xk‘)
=1
(ﬁxw)(Xl, e ,Xk> J

14.15. Lemma of Maschke. Let G be a compact Lie group, and let
0=V 5V, 251350

be an exact sequence of G-modules and module homomorphisms such that
each V; is a complete locally convex vector space, © and p are continuous, and
the representation of G on each V; consists of continuous linear mappings
with g — g.v continuous G — V; for each v € V;. Then also the sequence

. G

0V 5 VF 2=V =0

is evact, where VC := {v € V; : gv = v for all g € G}.
Convenient vector spaces are sufficient for this lemma; see[113].

Proof. We prove first that p© is surjective. Let v3 € V3G C V3. Since
p : Vo — V3 is surjective, there is a vo € Vo with p(vy) = v3. We consider
the element vy := fG x.vodr,x; the integral makes sense since x — x.v9 is a
continuous mapping G — V3, G is compact, and Riemann sums converge in
the locally convex topology of V5. We assume that fG drx = 1. Then we

have
a.U9 = a./ T.09d T = / (ax).vodrx = / T.09d1x = U9
G G G

by the left invariance of the integral, see |(14.4)) where one uses continuous
linear functionals to reduce to the scalar valued case. So @ € V& and since
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p is a G-homomorphism, we get
pO(5) = ple2) = p( | zv2ds)
G

_ /G p(@.vn)diz — / ©.p(vs)dpa

G

= /:U.UgdL$:/ UgdLl’:Ug.
G

Now we prove that the sequence is exact at VQG. Clearly p©oi© = (poi) ]VlG =
0. Suppose conversely that vy € Vi with p®(vg) = p(v2) = 0. Then there is
a vy € V1 with i(v1) = vy. Consider 0; := fG z.v1drx. As above we see that
U1 € VlG and that i% (1) = vo. O

So p© is surjective.

14.16. Theorem (Chevalley, Eilenberg). Let G be a compact connected
Lie group with Lie algebra g. Then we have:

(1) H*(G) = H*(\g",d) =: H*(g).

(2) H*(g) = H*(Ag".d) = (Ng")* ={w e Ng" : Lxw =0 forall X €

g}, the space of all g-invariant forms on g.

The algebra H*(g) = H(A g*,d) is called the Chevalley cohomology of the
Lie algebra g. For the proof we follow [194].

Proof of (). Let Z*(G) = ker(d : Q¥(G) — QFF1(@G)), and let us consider
the following exact sequence of vector spaces:

(3) QFL(G) -Ls ZF(G) — HY(G) — 0.

The group G acts on Q(G) by a +— p’_;; this action commutes with d and
induces thus an action of G on Z*(G) and also on H*(G). On the space
Q(G) we may consider the compact C'*°-topology (uniform convergence on
the compact G, in all derivatives separately, in a fixed set of charts). In
this topology d is continuous, Z*(G) is closed, and the action of G is point-
wise continuous. So the assumptions of the lemma of Maschke are
satisfied and we conclude that the following sequence is also exact:

(4) (@) - ZM@)° - HYNG)E - 0.

Since G is connected, for each a € G we may find a smooth curve ¢ : [0,1] —

G with ¢(0) = e and ¢(1) = a. Then (t,z) — pup-1(z) = c(t) 'z is a
smooth homotopy between Idg and p,-1, so by [(11.4)| the two mappings
induce the same mapping in homology; we have

gy =1d: H*(G) — H*(G) for each a€G.
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Thus H*(G)¢ = H*(G). Moreover Z¥(G)¢ = ker(d : Q§(G) — Q¥(@)),
so from the exact sequence () we may conclude that

ker(d: QK (G) = Q7TN(@) oA
im(d: O 1(G) - 9k (G)) (A d).
Proof of (2). Fromwe have Lx od =do Lx, so byMwe

conclude that Ad( Jod=do Ad( ) : Ag* — Ag* since G is connected.
Thus the sequence

k—1
(5) Ao 5 Z5g*) — BN\ g*.d) 0

is an exact sequence of G-modules and G-homomorphisms, where Z k(g*) =
ker(d : /\k g — /\]€+1 g*). All spaces are finite-dimensional, so the lemma of
Maschke is applicable and we may conclude that also the following
sequence is exact:

H*(G) = HYG)Y =

(6) /\9 ~4 Z8(g)C - HE(N\ g*,d)¢

The space H*(\ g*,d)“ consists of all cohomology classes o with A\(/i(a)a =
« for all a € G. Since G is connected, by these are exactly the «
with Lxa =0 for all X € g. For w € A g* with dw = 0 we have by
that Lxw = ixdw+dixw = dixw, so that Lxa = 0 for all a € Hk(/\g*,d).
Thus we get H¥(A\g*,d) = H*(\g*,d)%. Also we have (A g*)¢ = (A g*)®
so that the exact sequence (@) translates to

(7) H"g) = H*(/\ ¢",d) = H*((\ g")°, ).

Now let w € (AFg*)® = {p : Lxp = Oforall X € g} and consider the
inversion v : G — G. Then we have for w € /\k g and X; € g:

(V" Lo)a(Tolpta) X1, - - ., To(pta)-X5)

= (Lw)q—1 (Tav.Te(pa) X1, - - -, Tav. Te(pa) - Xr,)
= (Lu)o1 (=T (). T(ptg1)-Te(pta)-X1, ...
= (Lu)at (~Te(u® ). X1, oo, ~Te(n® ). Xp)
= (D Fw(Tpe. Tp® " X1, ..., Tua T X3
= (-1)*w(Ad(a). X1, ..., Ad(a).Xy)
= (—DF(Ad(a M w) (X1, ..., Xp)

k
(—DFw(X1,..., X5 since w € (/\g*)g
(_1)k(Lw)a<Te(ﬂa)-X17 s Te(ﬂa)'Xk)-
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So for w € (A* g*)? we have v*L,, = (—1)FL,, and thus also (—1)F+!Lg, =
v*dL, = dv*L, = (—1)*dL,, = (—1)*Lg, which implies dw = 0. Hence we
have d|(A\ g*)? = 0.

From () we now get H¥(g) = HF((A\ ¢*),0) = (A" g*)% as required. O

14.17. Corollary. Let G be a compact connected Lie group. Then its
Poincaré polynomial is given by

falt) = /Gdet(Ad(ﬂc) + tIdg)d .

Proof. Let dim G = n. By|((11.2)|and |(13.6)| we have

n

fa(t) = bp(G)tF =) "b(G)t"F =D dimg H¥(G)t" "
k=0 k=0

k=0

On the other hand we have

/ det(Ad(z) + t1dg)drz = / det(Ad(z™)* + tIdg:)dpa
G G

n k
= [ ) Trace(\ Ad(z™")*)t" Fdrz by [14.19)] below

& k=0
n N k
= Z/ Trace(Ad(z)| /\g*)dLa: k.
k=0"C

If p: G — GL(V) is a finite-dimensional representation of G, then the
operator fG p(x)dpxz : V — V is just a projection onto V&, the space of
fixed points of the representation; see the proof of the lemma of Maschke
The trace of a projection is the dimension of the image. So

N k N k
/G Trace(Ad(a)| /\ g*)dLx = Trace ( /G (Ad(a)| /\ g*)dL:c>

k
= dim(/\ g") = dim H*(G). O

14.18. Let T* = (SY)™ be the n-dimensional torus, and let t* be its Lie
algebra. The Lie bracket is zero since the torus is an abelian group. From

theorem [(14.16)] we have then that H*(T") = (A(t")*)"" = A(t")*, so the

Poincaré polynomial is fn(t) = (1 +¢)".
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14.19. Lemma. Let V be an n-dimensional vector space and let A:V —V
be a linear mapping. Then we have

n k
det(A + tldy) =Y " FTrace(\ A).
k=0

Proof. By /\kA : /\k V > /\kV we mean the mapping v1 A -+ A v —
Avy A -+ N Avg. Let eq,...,e, be a basis of V. By the definition of the
determinant we have

det(A+tldy)(er A+ Nep) = (Aer +ter) A--- A (Aeyp, + tey)

n
=D "N e A Ade Ao AN Aei A Ny,

k=0 1 <<tk

The multivectors (ej, A--- A€, )i <..<i, are a basis of A"V and we can thus
write

(/\A)(eil/\--'/\eik):Aeil/\---/\Aeik: Z Afll z]:ejl c N ey,

J1<<Jk

where (A7) is the matrix of AF A in this basis. We see that

01...0)

61/\"'/\A€i1/\"'/\A€ik /\en_All zke/\ <N ep.

21...2%
Consequently we have

det(A + tIdV)Gl N Nep = Zt” k Z A” Zk Ae,

i1.. zk
k=0 i< <ip

n k
= Zt”_k Trace(/\A) e1N - Aen,
which implies the result. O

15. Extensions of Lie Algebras and Lie Groups

Extension of Lie Algebras

In this section we describe first the theory of semidirect products and central
extensions of Lie algebras, later the more involved theory of general exten-
sions with noncommutative kernels. For the latter we follow the presentation
from [6], with special emphasis on relations with the (algebraic) theory of
covariant exterior derivatives, curvature and the Bianchi identity in differen-
tial geometry (see section [(15.3)). The results are due to [89], [164], [209],
and generalizations for Lie algebroids are in [127]. The analogous result for
Lie super-algebras are available in [7].
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15.1. Extensions. An extension of a Lie algebra g with kernel b is an
exact sequence of homomorphisms of Lie algebras:

0—>hL>eL>g—>O.

(1) This extension is called a semidirect product if we can find a section s :
g — ¢ which is a Lie algebra homomorphism. Then we have a representation
of the Lie algebra a : g — L(b,h) which is given by ax(H) = [s(X), H]
where we suppress the injection 7. It is a representation since ajxy|H =
(s(1X, Y]), H] = [[s(X),s(Y)], H] = [s(X), [s(Y), H]| — [s(¥), [s(X, H)]] =
(axay—ayax)H. This representation takes values in the Lie algebra der(h)
of derivations of b, so a : g — der(h). From the data «, s we can reconstruct
the extension e since on h x g we have [H + s(X),H' + s(X')] = [H,H'] +
(s(X), H] — [s(X'), H] + [X, X'] = [H, B + ax (H') — ax: (H) + [X, X'].
(2) The extension is called a central extension if b or rather i(h) is in the
center of e.

15.2. Describing extensions. Consider any exact sequence of homomor-
phisms of Lie algebras:

0—>b—i+e—3+g—>0.

Consider a linear mapping s : g — ¢ with pos = Idg. Then s induces
mappings

(1) a:g—der(h),  ax(H)=[s(X) H],

2
(2) p:Na—b p(XY) =[s(X),s(Y)] - s([X,Y]),
which are easily seen to satisfy

(3) [ax, ay] — axy] = a'dp(X,Y)7

() > (axp(vi2) - p((X,Y],2)) =0.
cyclic{ XY, Z}

We can completely describe the Lie algebra structure on ¢ = h @ s(g) in
terms of o and p :

(5) [Hi+s(X1), Ha + s(X2)]
= ([H1, Ha] + ax, Hy — ax, H1 + p(X1, X2)) + s[X1, X2

and one can check that formula (Bl gives a Lie algebra structure on h @ s(g)
if o : g — der(h) and p: A® g — b satisfy @3) and (@).
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15.3. Motivation: Lie algebra extensions associated to a principal
bundle. Let 7 : P — M = P/K be a principal bundle with structure group
K see section P is a manifold with a free right action of a Lie group K
and 7 is the projection on the orbit space M = P/K. Denote by g = X(M)
the Lie algebra of the vector fields on M, by ¢ = X(P)X the Lie algebra
of K-invariant vector fields on P and by h = Xy (P)¥ the ideal of the
K-invariant vertical vector fields of e. Geometrically, ¢ is the Lie algebra
of infinitesimal automorphisms of the principal bundle P and § is the ideal
of infinitesimal automorphisms acting trivially on M, i.e., the Lie algebra
of infinitesimal gauge transformations. We have a natural homomorphism
s : ¢ — g with the kernel b, i.e., ¢ is an extension of g by b.

Note that we have additional structures of C*° (M )-modules on g, b, ¢, such
that [X, fY] = f[X,Y] + (mX)fY, where X, Y € ¢, f € C®°(M). In
particular, h is a Lie algebra over C*°(M). The extension

0—=h—>e—g—0

is also an extension of C'*°(M )-modules.

Assume now that the section s : g — ¢ is a homomorphism of C*°(M)-
modules. Then it can be considered as a connection in the principal bundle
7, see section and the h-valued 2-form p as its curvature. In this sense
we interpret the constructions from section as follows in below.
The analogy with differential geometry has also been noticed by [117] and
[118].

15.4. Geometric interpretation. Note that |(15.2.2)| is similar to the
Maurer-Cartan formula for the curvature on principal bundles of differential

geometry [(19.2.3)

p=ds+ %[s, S|,
where for an arbitrary vector space V' the usual Chevalley differential, see

(14.14.2)] is given by

skew \8
do(Xo, ..., X,) = Z(—l)erj(p([Xi,Xj],Xo, o X X X))
1<J
and where for a vector space W and a Lie algebra f the Ng-graded Lie bracket

[ Inon Ly, (Wif), see [19:2]} is given by

[@7¢]A(X17"' p+q ' ZSlgn 0’17"'7XUp)7w(XU(p+1)7“')]f'

Similarly formula |(15.2.3)[ reads as
ad, = da + 3o, ala.
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Thus we view s as a connection in the sense of a horizontal lift of vector
fields on the base of a bundle and « as an induced connection; see |(19.8)]
Namely, for every der(h)-module V' we put

an s L (8 V) = LEL (a3 V),

skew
p

arp(Xo, ..., Xp) = > (—Viax,(¢(Xo, ..., Xi, ..., Xp)).
i=0
Then we have the covariant exterior differential (on the sections of an asso-

ciated vector bundle; see [(19.12)))
(1) Sat Lh (V) = LEL(@: V), dap = app +dop,

skew skew

for which formula|(15.2.4)|1ooks like the Bianchi identity, see|(19.5.6) 0op =

0. Moreover one can prove by direct evaluation that another well known
result from differential geometry holds, namely [(19.5.9), i.e.,

(2) 306a(0) = [psln, € LP . (3:h).

If we change the linear section s to s’ = s + b for linear b : g — b, then we
get,

(3) oy = ax + adg(x),
4) PXY)=p(X)Y)+axb(Y) — ayb(X) — b([X,Y]) + [bX, bY]
— (X, Y) + (5ub)(X,Y) + [bX, bY],
p = p+3ab+ 3[b, b

15.5. Theorem. Let bt and g be Lie algebras.

Then isomorphism classes of extensions of g over b, i.e., short exact se-
quences of Lie algebras 0 — §h — ¢ — g — 0, modulo the equivalence
described by the commutative diagram of Lie algebra homomorphisms

0 b e g 0
|

0 b ¢ g 0,
correspond bijectively to equivalence classes of data of the following form:
(1) a linear mapping « : g — der(h),
(2) a skew-symmetric bilinear mapping p: g X g — b
such that
(3)  lax,ay] —apxy) = ady(x,y),

(4) Z (OéX,O(Y, Z) - p([X,Y], Z)) =0, equivalently, dop = 0.

cyclic
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On the vector space ¢ := h @ g a Lie algebra structure is given by

(5) [Hi+ X1, Hy + Xo)e
= [Hy, Haly + ax, Ho — ax, Hy + p(X1, X2) + [ X1, Xo]g,

and the associated exact sequence is
0obh-—shdg=c—25g-0.

Two data («, p) and (¢, p') are equivalent if there exists a linear mapping
b:g— b such that
(6) ay =ax + adz(x),
(1) P(XY) =p(X,Y) + axb(Y) — ayb(X) = b([X, Y]) + [b(X),b(Y)],
Pl =p+dab—+ 3[b, 0],
the corresponding isomorphism being
e=hdg—ohdg=", H+Xw— H-bX)+X.

Moreover, a datum («, p) corresponds to a split extension (a semidirect prod-
uct) if and only if (a, p) is equivalent to a datum of the form (¢/,0) (then o
is a homomorphism). This is the case if and only if there exists a mapping
b:g— b such that

(8) p=—0ab— 1[b,b].
Proof. Straightforward computations. O

15.6. Corollary ([120]). Let g and b be Lie algebras such that b has
no center. Then isomorphism classes of extensions of g over by correspond
bijectively to Lie homomorphisms

a: g — out(h) = der(h)/ad(h).

Proof. If («,p) is a datum, then the map a : g — der(h)/ad(h) is a Lie
algebra homomorphism by Conversely, let & be given. Choose a
linear lift o : g — der(h) of &. Since & is a Lie algebra homomorphism and
h has no center, there is a uniquely defined skew-symmetric linear mapping

p:gxg— bsuch that [ax,ay] — axy] = ad,(x,y). Condition [(15.5.4)]is
then automatically satisfied. For later use also, we record the simple proof:

> |axe(v.2) = p(IX,Y],2), H]
cyclic X,Y,Z

= > (axlp(v:2), H] = [p(¥. 2),ax H) - [p(1X, Y], 2), H])
cyclic X,Y,Z
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= E (Oéx lay, az] — axayy,z — oy, azlax + oy, zjax
cyclic X,Y,Z

— laxy), az] + a[[X,Y]Z]>H
= Y (lax.lav,az) — lax, apz) - lapxy) az) + agxyiz) H =0.
cyclic X,Y,Z

Thus (a, p) describes an extension by theorem |(15.5)l The rest is clear. [

15.7. Remarks. If h has no center and & : g — out(h) = der(h)/ad(h) is a
given homomorphism, the extension corresponding to & can be constructed
in the following easy way: It is given by the pullback diagram

pro

0 b der(h) Xout () 9 g 0
| l
0 b der(b) T out(h) —=0

where der(h) X o) 9 is the Lie subalgebra
der(h) Xout(p) 8 := {(D, X) € der(h) x g: w(D) = a(X)} C der(h) x g.
We owe this remark to E. Vinberg.

If h has no center and satisfies der(h) = b and if b is normal in a Lie algebra
¢, then ¢ 2 h @ ¢/, since Out(h) = 0.

15.8. Theorem. Let g and b be Lie algebras and let
G+ g — out(h) = der(h)/ ad(h)

be a Lie algebra homomorphism. For a linear lift o : g — der(h) of & choose
e /\29 — b satisfying ([ax, ay] — ajxy)) = ad,x,y)- Then A = Xa, p) =
dap: /\39 — Z(h) is a cocycle for the cochain complex

0« L% (3 Z(9)) = LY (g: Z(b)), 6005 = 0.

skew

The cohomology class [\ € H3(g; Z(h)) depends only on & and not on the
choices of a and p. Then the following are equivalent:

(1) The d5-cohomology class of A vanishes: [\] =0 € H3(g; Z(h)).

(2) There ezists an extension 0 — b — ¢ — g — 0 inducing the homomor-
phism &.

If this is the case, then all extensions 0 — h — ¢ — g — 0 inducing the ho-
momorphism & are parameterized by H*(g,(Z(b),a)), the second Chevalley
cohomology space of g with values in the center Z(h), considered as g-module
via Q.
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Proof. Using once more the computation in the proof of corollary we
see that ad(A(X,Y,Z)) = ad(d.p(X,Y, Z)) = 0 so that \(X,Y,Z) € Z(b).
The Lie algebra out(h) = der(h)/ad(h) acts on the center Z(h); thus Z(h)
is a g-module via @&, and dg is the differential of the Chevalley cohomology.

Using |(15.4.2), we see that
0a) = adap = Ip, pln = —(=1)*2[p, plr = 0,
so that [\] € H3(g; Z(b)).

Let us check next that the cohomology class [A] does not depend on the
choices we made. If we are given a pair («, p) as above and we take another
linear lift o/ : g — der(h), then o'y = ax + ady(x) for some linear b: g — b.
We consider

2
7 Na—b AXY) = p(X,Y) + (6.)(X,Y) + [B(X),b(Y)].

Computations involving only the definitions and the Jacobi identity show
that

[ale a/Y] - Oé,[X,Y] = adp’(X,Y)a )\(O{, p) = 606/) = 50/p, = )‘(O/a p,)a

so that even the cochain did not change. So let us consider for fixed « two
linear mappings

2
p,p /\9 — b, Jax,ay] —axy) =ad,xy) = ady(xy) -

Then p— o =: pu: N9 — Z(b) and Aa, p) — Ma, p') = 6ap — ap’ = dapt.
If there exists an extension inducing @, then for any lift o we may find p as
in |(15.5)[such that A(a, p) = 0. On the other hand, given a pair («, p) as in
(1) such that [A(a, p)] = 0 € H3(g, (Z(h),a)), there exists pu: A\>g — Z(b)
such that dzu = A. But then

ad(p—py(x,y) = adpx,yys  Oalp —p) =0,
so that (a, p — p) satisfies the conditions of |(15.5)[ and thus defines an ex-

tension which induces a.

Finally, suppose that (1) is satisfied, and let us determine how many ex-
tensions there exist which induce @. By we have to determine all
equivalence classes of data (a, p) as in [(15.5)] We may fix the linear lift «
and one mapping p : A? g — b which satisfies [(15.5.3)] and [(15.5.4), and we
have to find all p/ with this property. But then p —p' = p: A°g = Z(h)
and

Sapt = bap —0ap =0—0=0
so that p is a 2-cocycle. We may still pass to equivalent data in the sense
of [(15.5)| using some b : g — h which does not change «, i.e., b: g — Z(h).
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The corresponding p’ is, by [(15.5.7)}, p' = p+ dab+ 1[b,b]n = p+ 65b. Thus
only the cohomology class of u matters. ([l

15.9. Corollary. Let g and by be Lie algebras such that § is abelian. Then
isomorphism classes of extensions of g over by correspond bijectively to the set
of all pairs (e, [p]), where a: g — gl(h) = der(h) is a homomorphism of Lie
algebras and [p] € H%(g,bh) is a Chevalley cohomology class with coefficients
in the g-module b given by a.

Isomorphism classes of central extensions correspond bijectively to elements
[p] € H*(g,R)® b (0 action of g on b).

Proof. This is obvious from theorem [(15.8) O

15.10. An interpretation of the class . Let h and g be Lie algebras
and let a homomorphism @ : g — der(h)/ad(h) be given. We consider the
extension

0 — ad(h) — der(h) — der(h)/ad(h) — 0
and the following diagram, where the bottom right hand square is a pullback

(compare with remark [(15.7)]):

0 0
i
Z(h) 40
) JE >§ \\\\\\\\\\\\\\\\\\\\\\\\\\ —g——0
0 — ad(h) ——— g —L—e g ——0
0 —> ad(h) der(h) — der(h)/ ad(h) — 0.

The left hand vertical column describes h as a central extension of ad(h) with
abelian kernel Z(h) which is moreover killed under the action of g via a; it
is given by a cohomology class [v] € H?(ad(h); Z(h))®. In order to get an
extension e of g with kernel § as in the third row, we have to check that the
cohomology class [v] is in the image of i* : H?(eq; Z(h)) — H?(ad(h); Z(h))®.
It would be interesting to express this in terms of the Hochschild-Serre exact
sequence; see [92].
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Extensions of Groups and Lie Groups

In this section we present a discussion and variants of cohomology results
going back to O. Schreier [201], 202], R. Baer [15], S. Eilenberg and S.
MacLane, [56], G. Hochschild [88), [89], and G. Hochschild and J.-P Serre
[91]. A convenient source for group cohomology is [74]. We have to be

careful when taking sections; see |(15.12)[ for a discussion of this.

15.11. Describing extensions. Let G and N be Lie groups. An eztension
of G over N is an exact sequence of homomorphism of groups:

e—>N—i—>E—}L>G—>e.

Two extensions are defined to be equivalent if there exists a homomorphism
@ fitting commutatively into the diagram

N—>prg-".q
‘|
N> E G

/ p

e

e €.

Note that if such a morphism ¢ exists, then it is an isomorphism.
For a given extension let us choose a section s : G — E of p with s(e) = e.
We may assume that s is smooth on an open e-neighborhood U in G. Then
s defines mappings
a: G — Aut(N), oz (h) = s(z)hs(z) 7!,
f:GxG—=N, fla,y) = s()s(y)s(zy) ™",
which are smooth near e in G and, by the definition of o and by associativity,
have the following properties:
Oz O (yy = conjf(xjy) OQpy,
ax(f(y7 Z))f(%, yZ) = f(xvy)f(xya Z)a
fle,e) = f(z,e) = fle,x) =,
where conj,(n) = hnh~! is conjugation by H, an inner automorphism. We
shall denote by Int(N) C Aut(/N) the normal subgroup of all inner auto-
morphisms in the group of all automorphisms. If we choose another section

s’ : G — E which is smooth near e, then §'(z) = b(x)s(x) for a mapping
b: G — N which is smooth near e in G. We have

Qy = Conjb(a:) Oy,

f(wy) = b(x)aa(b(y)) f (@, y)b(ay) ™.
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The group multiplication on E is then described in terms of a and f by
ms(x).ns(y) = ms(@)ns(z) " s(x)s(y) = mag(n) f(z,y).s(xy),
(ms(x)) ™" = ag 1 (flz,a7h) " m™)s(z7h)
= (az) " H(m ™ f(a, 27 ) s(z )
= fla™h ) taga(mTh) s,

See [(15.12)[ below for the reconstruction of the smooth structure.

15.12 Choosing sections smoothly or reconstructing the smooth
manifold structure. Let

e—)N—i—>E—g—>G—>e

be an exact sequence of smooth homomorphisms of Lie groups. In particular,
FE is a principal fiber bundle over G with structure group N. If we are able
to choose a smooth section s : G — FE of p as in then this is a
trivial fiber bundle, so F =2 N x G as a smooth manifold, and we can use
all constructions of |(15.13)H(15.27)| below to describe Lie group extensions
of G over N which are topologically trivial.

Let us look at the long exact sequence in homotopy:
o= m(G) = m(N) = m(E) = m(G) = mp(N) — ...

We always have mo(N) = 0. So if N is connected and E is simply connected,
then both NV and G are simply connected. Using structure theory of Lie
algebras and Lie groups, one can prove the following (see [90]): If E is
simply connected and N is connected, then there is a closed submanifold M
of E meeting N only in {e} transversally, such that E = N x M. Thus there
exists a global smooth section s : G — FE.

For the topologically nontrivial case, we can find a global section s which is
smooth only on a neighborhood U of e in G which also satisfies U~! = U.

Lemma. Then we can reconstruct the Lie group structure on E from the
extension data (which are all smooth near e on G) and the smooth manifold
structure on N x U 2 U = p~}(U) C E.

Proof. Choose e € V C U open with V™! = V and V.V C U, and let
V :=p~ (V). In the setting of [(15.11)| we then have: o : U — Aut(N) and
f:VxV — N are smooth and the group multiplication is smooth
on V xV — U. We then use (2.V, jiz—1 : 2.V — V),cp as atlas for E. The
chart changes are pi,-1 0 fiz = ft,-1 e (zVNyV)=Vn(zlyV)—
(y_l.x.f/) NV, so they are smooth. The resulting smooth manifold structure
on FE has the property that p: E — G and i : N — E are smooth, and the
group structure maps p and v are smooth also. Moreover F is Hausdorff:
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Either p(z) = p(y) and then we can separate them already in one chart
.V = p~Y(p(x).V), or we can separate them with open sets of the form
p~Y(Uy) and p~1(Us). O

We shall use this lemma in all constructions below without mentioning it.
Note that a homomorphism between Lie groups which is smooth near e is
smooth everywhere.

15.13. Proposition ([201, 202]). Let G and N be Lie groups. We
consider pairs (o, f) of mappings which are smooth near e:

a:G—Aut(N) and f:GxG— N
with the properties

(1) QU © Quy = CONJ p(5.4)) Oy
(2) flese) = f(z,e) = fle,y) = e,
(3) e = au(f(y,2))f(z,y2) f(zy, )7 flz,y) "

Then the following assertions hold:

(4) Ewvery such pair (c, f) defines a Lie group extension of G over N, given
by the set E = N x G, with the group structure

(m, 2).(n,y) = (maz(n)f(z,y), zy),
(n,z) L = (fla™ 2) tag-1(nh), z7h).
Up to isomorphism, every extension of G over N can be so obtained.
(5) Two data (c, f) and (<, ') define equivalent extensions if there exists

a mapping b : G — N (smooth near e) such that

Uy = CONjp(z) O,
(@, y) = b(z)aw(b(y)) f(, y)b(ay) ™.
The induced smooth isomorphism E — E’ between the extensions de-
fined by (o, f) and (o, f') is given by (n,z) — (nb(z)~!, z).
(6) A datum (o, f) describes a splitting extension (a semidirect product) if
and only if it is equivalent to a datum (¢, f'), where f' is constant = e.

This is the case if and only if there exists a map b : G — N (smooth
near e) with

F@,y) = bx)ou (b(y)b(zy) "

Note that for such a pair (¢, f' = e) the map o must be a homomor-
phism and thus is smooth everywhere.

Proof. |(15.11)| and routine calculations. O
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15.14. Remarks. (1) The center Z(N) of N is preserved by all automor-
phisms of N and pointwise fixed by all inner automorphisms, so the Lie
group Aut(N)/Int(NN) acts by automorphisms on Z(N). Every homomor-
phism @ : G — Aut(N)/Int(N) naturally induces a homomorphism G —
Aut(Z(N)) and therefore turns Z(N) into a smooth G-module (Z(N), @).
Condition implies that every extension of G over N induces a
smooth homomorphism & : G — Aut(N)/Int(N), hence defines a G-module
structure on Z(N). Thus we have the following commutative diagram with
exact rows:

e N : E

conj l conj | N l dl

e — Int(N) —= Aut(N) —= Aut(N)/ Int(N) — e.

Note that the commutativity of this diagram yields a surjective homomor-
phism F — T', where I' is the pullback object of the morphisms ¢ and a.
We shall exploit this fact later.

(2) Note that if («, f) is the data of an extension then every lift o/ : G — N
(smooth near e) of & shows up in a data pair (¢, f’) equivalent to («, f).

This is a consequence of [(15.13.5)|

(3) In [15] and [56] a triplet (IV, G, &), where N and G are groups and & is
a homomorphism G' — Aut(N)/Int(N), is usually called an abstract kernel
or kernel for short. The kernel (N, G, &) is said to be extendible if it can be
derived from an extension of G over N.

In the following we want to characterize those smooth homomorphisms &
for which (N, G, &) is an extendible kernel.

15.15. Notation. Let us fix a smooth homomorphism of Lie groups & :
G — Aut(N)/Int(N) and consider all pairs (a, f) consisting of a lift « :
G — Aut(N), x +— ay, of @, and of f: G x G — N which are smooth near
e and satisfy conditions |(15.13.1)and [(15.13.2)f

(1) QU © Qi = CONJ p(.4)) Oy

(2) fle,e) = f(x,e) = fle,x) =€, ae=Idy.

For the sake of brevity, we call such a pair («, f) an a-pair. We write
3) Ay, 2) = aa(F(y, ) @, y2) flay, 2) 7 Fla, )~

for the right side of equation [(15.13.3)l To avoid taking inverses it will be
often convenient to write ([B]) in the equivalent form

@) A, y, 2) (2, y) f (2y, 2) = aa(fy, 2)) f (@, y2).
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Note that the normalization condition |(15.13.2) implies that A is also nor-

malized, i.e.,
(4) Ae,y,z) = Mz, e, 2) = ANz, y,e) =€ for all z,y,z € G.
Two a-pairs (o, f) and (¢, f/) are said to be equivalent if there exists a

mapping b : G — N such that

!/ .
o, = COIlJb(x) oy,

f(@,y) = b(w)aa (b(y)) f (2, y)blzy) "

Following [93], the function f is traditionally called a factor set, and \ is
called the obstruction of («, f) to form an extension. We shall not use this
terminology here.

15.16. Nonabelian cohomology. Let (Z,3) be a smooth G-module, i.e.,
an abelian Lie group with a smooth G-action. The boundary operator of
group cohomology with values in (Z, §) is given by
dp Map,(G*, Z) — Map, (G**1, 2),
(0af) (0,21, - - k) = Bao (f (w1, -, 2p))-fwoxn, w2, . )
—1)k _1)k+1
.f(.’IJ(), T1T2, T3y . .. ,xk) e f(xo, e ,.%'k_ll‘k)( b .f(iL'o, ey wk—l)( b "

where Map, denotes the space of mappings which are smooth near e. This
gives rise to abelian group cohomology; here Z is abelian!

Now we discuss a nonabelian version. Inspired by condition |(15.13.3)| or by
(15.15.3)} for every map o : G — Aut(N) and f : G x G — N which are

smooth near e we consider
baf :GXxGxG— N,
Gaf) (@Y. 2) = au(f(y. 2) f (@, y2) fxy, 2) " fla,y) "
Then §, looks like the nonabelian version of a coboundary — except that

(a) « is not a homomorphism, and that

(b) in comparison with the above traditional definition the order of the two
middle terms of the expression for d, f is reversed.

Likewise assertion |(15.13.6)| suggests to consider for b : G — N (smooth
near e) the ‘nonabelian coboundary’

Sab: G x G — N, (8ab)(z,9) = b(x)am(b(y))b(zy)~ .

Also in this case the terms in the expression on the right hand side do not
follow the traditional order.
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A straightforward computation shows that
dadab(x,y, 2)
— v (b()ary (b(2))b(y2) )bl e (b(y2) ey (b(=)) ~eta (b))~ bla) .
If the image of b is central in N, then this reduces to
000ab(2,y, 2) = agz 0 ay(b(2))ag, (b(2)) .

Thus we cannot expect §,0,b = e in general.

15.17. Remarks. By |(15.13)| an a-pair («, f) is the data of an extension
if and only if the associated map A\ = §,.f is identically = e.

If o/ : G — Aut(N) is another lift (smooth near e) of &, then there exists
amap f': G x G — N (smooth near e) such that (¢, f') is equivalent to

(a, f).

For fixed o the a-pairs (a, f) and (a, f’) are equivalent if and only if there
exists a map b: G — Z(N) which is smooth near e such that

(@, y) = b(x)aw (b(y)) f(, y)b(zy)
that is, the maps f’ and f differ only by the coboundary d5b with respect

to cohomology with values in the G-module (Z(N),@). Since a = o/, the
equation oy = conjy,) ooy, implies conjy,) = id, so b(z) must be central.

15.18. Lemma.
(1) For any a-pair (a, f) the associated A = 0, f takes values in the center
of N.

(2) If the pairs (o, f) and (¢, f') are equivalent, then the associated maps
A and N coincide. In particular, if (o, f) is the data of an extension,
then so is every equivalent pair (o, f').

Proof of (Il). Applying condition |(15.13.1), we find

conj/\(%y,z) = conjaz(f(y7z)) conjf(%yz) conjf(x%z)q conjf(%y)_l

-1, -1 -1 -1
Qgyz O, Oy Ol Oy~ Oy

-1 -1
= QOO0 0 Qg Oy Ol

= Ide
which means that \(x,y, z) must lie in the center of N.
Proof of (2). Let (o/, f’) be equivalent to («, f). Then there exists a map
b:G — N with
(3)  aj=conjyg oz, [f(z,y) = b(x)au(b(y))f (=, y)b(zy) .
By definition we have

N(z,y,2) f' (@, y) f(xy, 2) = &, (f (y, 2)) f (. y2).
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Inserting the identities (B]), the left side of this equation reads

N(x,y,2) - ['(w,y) - [y, 2)
= N(2,y,2) - b(@)ax (b(y)) [ (x,9)blay) " - blzy)awy (b(2)) f (zy, 2)bzy=z) "
= N(2,y,2) - b(a)az (b(y)) f(x, y)awy (b(2)) f (zy, 2)b(zy=) .
Since conj ¢ (g ) Oy = azoay, we have f(x,y)awy(b(2)) = azay(b(2)) f(z,y)
and therefore (using also that \'(x,y, z) is central in N):
N(@,y,2) - f'(2,9) - f'(2y, 2)
= N(z,y,2) - b(2) o (b(y))away (b(2)) f (z,y) f (zy, 2)b(ayz) !
= N(z,y,2) - b(x)az(b(y)ay (b(2))) f(z, y) f (zy, 2)b(ayz) "
= b(x) o (b(y)ay (b(2)))X (2, y, 2) f (2, y) f (xy, 2)b(wyz) "

Similarly, the right side can be transformed into

o (f'(y. 2)) - f'(z,y2)
= conjy(y) @ (b(y)ay (b(2)) f(y, 2)b(y2) ") - b(a)aw (b(y2)) f (x, y2)b(ayz) ™
= () (b(y)ay (b(2)) f(y, 2)b(y2) ~)b(2) " b(2)aa (b(y2)) f (, y2)b(zyz) "
= b(x) g (b(y)ay (b(2)) s (f (y, 2)) f (2, y2)blayz) .
Canceling the term b(z)ay (b(y)ay (b(2))) on the right and the term b(zyz)~!
on the left, we see that A (z,y, z) satisfies
N(z,y,2) f(z,y) f(2y, 2) = aa(f(y, 2)) f (2, y2),
the defining equation for A(z,y, z). Thus A = \. O

15.19. Lemma. Let (a, f) be an a-pair and let A = d,.f.
(1) The map
A:GxGxG— Z(N), (x,y,2) = Az, v, 2),

is a normalized 3-cocycle with respect to d5 cohomology with values in
the G-module (Z(N), &) and is smooth near e.

(2) The cocycles (smooth near e) in the d5 cohomology class [\ of A are
exactly the maps N = 0, f which are induced by an a-pair of the form
(a, f).

(3) An a-pair (o, f') induces the same cocycle X € [\ as («, f) if and only
if f=1Ff"-c, where c: G x G — Z(N), is a 2-cocycle with respect to
da cohomology, normalized by the condition c(x,e) = c(e,y) = e, and
15 smooth near e.
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Proof. (1) In order to show that A is a 3-cocycle, we have to prove that,
for any quadruplet (z,y, z,u) of elements in G,

(0aN)(z,y, z,u)
= a,( My, z,u))AMzy, z,u) Nz, yz, w) Nz, y, 2u) I\ (z,y,2) = e,
or, equivalently, that
az( Ay, z,u) Az, yz, u) A (2, y, 2) = May, z,u)A(z,y, 2u).

By the definition of A and the centrality of the A’s, we have for the right
side R of this equation:

R = gy (f(2,w) f(zy, 2u) f(wyz,u) " fzy, 2) "1 Az, y, 2u)
= agy(f(z,u)) - Ma,y, zu) - 2y, zu) f(yz,u) " flay, 2) 7"
Applying the equation «,, = conj Flay)—1 OOz © 0y, we conclude
Rf(wy, =) f(zyz,u) = fz,y) " away(f(z, ) f (2, y) Az, y, 2u) f (2, zu),
and, by the centrality of R and the \’s,
Rf(z,y)f(zy, z) f(zyz,u) = azoy(f(z,u) - Mz, y, zu) f(z,y) f (zy, zu)
= oy (f (2, w))aw (f(y, 2u)) f (2, yzu) f (zy, zu) " f(2,9) 7 f(2,9) f (2y, 2u)
= azay(f(2,u))ox(f(y, 2u)) f(z, yzu).
For the left side L = a,(A(y, z,u))A(z, yz, u)\(z,y, 2) we see
L =a,( Ay, z,u) - Mz,yz,u) - XNz,y, 2)
= ax(A\(y, z,u)) - M, yz,u) - @ (fy, 2)) f@,y2) f ey, 2) 7 fa,y) "
)+ [y, 2) - Ma,yz,u) f (e, y2) f (wy, 2) 7 f ()~
)+ [y, 2) - aw(fyz, w) f (2, yzu) f(zyz,u) " flz,yz) 7!
S y2) fay, 2) 7 e, y) ™
= ag(ay (f(z, ) f (y, zu) f(yz, )" f(y, 2) 7 f (9, 2) f(yz.w)
[ yzu) feyz, )~ f ey, 2) " f (2,y) 7
= au(ay (f(z,u) f(y, zu)) f(a, y2u) f(xyz,u) " 2y, 2) 7 f (2 y) 7
Thus we conclude that
Lf () (e, 2) Fa2, 1) = g (f(2, 0) £, 20)) f (2, y=)
= Rf(z,y)f(zy,2)f(zyz,u)
and, upon cancellation, L = R. This finishes the proof of ().

|
Q
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@) Consider any mapping f' : G x G — N such that (a, f’) is an a-pair.

Then

; : -1, -1
CONJf(gy) = CONJpr(g ) = (Qay) ™ O Qy,
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and therefore the element c(x,y) = f(x,y) " f/(z,y) lies in the center Z(N)
of N. Now

N(z,y, )Mz, y,2) !
= az(f(y, 2)e(y, 2)) f(z, y2)e(w, y2)e(wy, 2) 7 fzy, 2) " e(z,y) 7 fz,y) 7
f( 7y)f(:13y,2’)f($, yz)ilax(f(ya 2)71)

x
= aI(C(ya Z))C(.%‘, yZ)C(fL‘y, Z)ilc(xv y)il = (6076) (LIZ‘, Y, Z)
so that [\] = [\] € H3(G, (Z(N),a)).
Reading the above calculations backwards, we see that, conversely, every
cochain A’ lying in the cohomology class of \ is induced by some pair («, f7).

[B) We have seen in the proof of ([2)) that the cochains A = d,f, X = dof’
induced, respectively, by the a-pairs (a, f) and (a, f’) differ by the cocycle
dac, where c(z,y) = f(x,y) " f (z,y). Thus (a, f) and (o, f') induce the
same cocycle A if and only if dzc vanishes. This implies that the cocycles
in the cohomology class [A] are in 1-1 correspondence to the 2-cocycles with
respect to dz-cohomology. This finishes the proof. ([

15.20. Corollary. The cohomology class of A = o f depends only on &,
not on the particular choice of the a-pair (a, f).

Proof. Suppose that (¢, f') is another @-pair and let \' = 6, f'. By
(15.17)] the pair (o, f') is equivalent to some pair (a, f”). Since by lemma
(15.18.2)|equivalent pairs produce the same \, we have X' = 4§, f”. By lemma
(15.19.2)| dof and &, f" are in the same cohomology class. This proves the
assertion. ([l

Notation. For given & we henceforth write A* for the cohomology class
[\] € H3(G;(Z(N),a)) (smooth near e). By the corollary above this nota-
tion is unambiguous.

15.21. Theorem ([56]). Let G and N be Lie groups and consider a smooth
homomorphism & : G — Aut(N)/Int(N). Then the following assertions
hold:

(1) The homomorphism & is induced by a Lie group extension if and only
if the corresponding cohomology class \* € H*(G,Z(N)) vanishes.

(2) If a is induced by an extension, then all extensions inducing & are
parameterized by H*(G,Z(N)).

(3) The homomorphism & is induced by a splitting extension if and only if
it can be lifted to a (smooth) homomorphism o : G — Aut(N).

Here H*(G, Z(N))) denotes the group cohomology (smooth near e) of G with
values in the G-module (Z(N), &).
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Proof. (1) We know already from|(15.13)|that if (¢, f) is the data associated

with an extension, then \4 = e.

Conversely, if A% is trivial, then by [(15.19)| for any lift o : G — Aut(N) of &
we can find a map f: G x G — N such that (a, f) is a pair with d,f = €;

by [(15.13)| this pair («, f) defines an extension inducing &.

@) By an a-pair («, f) is the data of an extension if and only if
dof = e. By we know that if 0, f = dof’, then f = f' - ¢, where
c:GxG — Z(N) is a 2-cocycle. Furthermore, by two such a-
pairs are equivalent — and thus define equivalent extensions — if and only
if f = f'-c where ¢ is the coboundary ¢ = d5zb for b : G — Z(N). Thus
we see that the extensions inducing & are in 1-1 correspondence with the
elements of H?(G; (Z(N),a)).

@) By we know that if (a, f) is an @-pair inducing a splitting
extension, then there exists amap b : G — N such that the map o/ : G — N,
T > conjy,) oa is a homomorphism, so @& has a homomorphic lift. The
converse is obvious. (]

15.22. Corollary. Let G and N be Lie groups, N abelian. Then isomor-
phism classes of Lie group extensions of G over N correspond bijectively
to the set of pairs (o, [f]) where o : G — Aut(N) is a smooth homomor-
phism and [f] € H?(G; (N, a)) is an element in the second group cohomology
(smooth near e) of G with values in the G-module (N, «).

Proof. Since N is abelian, Int(N) = e and therefore & can be considered
as a homomorphism « : G — Aut(/N). Thus we can form the semidirect
product N x,G, so extensions inducing & exist. Now theoremapplies
and yields the assertion. O

15.23. Corollary ([15]). Let G and N be Lie groups, N without center.
Then isomorphism classes of Lie group extensions correspond bijectively to
smooth group homomorphisms & : G — Aut(N)/Int(N).

Proof. Since Z(N) = e, the cohomologies H3(G; Z(N)) and H?(G; Z(N))
obviously vanish; hence by theorem |(15.21)| every homomorphism & induces
a unique extension.

Conversely, every extension induces some @ : G — Aut(N)/Int(N) by the

construction in |(15.11)] O
Alternative proof of [(15.23). For a given & consider the group

I'={(g9,¢) € G x Aut(N) | p € a(g)}
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which is the pullback object of the diagram
G
|
Aut(N) —— Aut(N)/Int(N).

By assumption, N has no center. Therefore the map N — Aut(N),h —
conj;, is injective and hence the map N — I', h — (e, conj;) is a homo-
morphic injection. Moreover, its image N is the kernel of the quotient map
I' - G, (g9,¢) — g. Thus we have an extension

(1) e N—=I—G—e
of G by N which induces @&. Conversely, let
(2) e N-SE-L2yGe

be an extension inducing &. Then the map ¥ : E — T', x — (p(z), q(z)),
where ¢(z) denotes the automorphism of N induced by conj,, is a homo-
morphism. Thus () and (2] are equivalent extensions. (]

15.24. In the general case this construction runs as follows: Define I and
1 as above. Then every extension

(1) e N-S5E-L2sG>e

gives rise to an extension of I" over the center Z(N) of N:

il Z(N)

(2) e — Z(N) E-2sT e,

where I' operates on Z(N) via z - (g,¢) = ¢(z). These two extensions fit
into the commutative diagram

|
e —= Z(N) sl p-ft-r e
incli P"“ll
i P
e N E G e.

Roughly speaking, F can be regarded both as an extension of G over N
and as an extension of I' over Z(N). It can be shown that if & admits an
extension, then every extension inducing & is obtained in this way.

Note that for a given abstract kernel (N, G, @) there is always an extension
of T over Z(N), but if [\%] € H3(G, Z(N)) is nonzero, then the inclusion
Z(N) — E does not extend to an inclusion N — E.
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15.25. In [56] a pair (K1), with ¢ : G — Aut(K)/Int(K) a homomor-
phism (G being fixed), is called a kernel. As we have seen above, ¥ induces
a homomorphism g : G — Aut(Z(K)). Consider all kernels (K1), with
fixed center C' = Z(K) and fixed restriction 1g. Two such kernels are said
to be similar if they differ only by a kernel coming from a homomorphism.
One of the results in [56] is that the similarity classes of kernels form a group
under a multiplication which is defined using the amalgamated direct prod-
uct of two kernels with C' as amalgamating subgroup and that this group
can be naturally identified with the third cohomology group H3(G, (C,vy)).
In the following we outline the arguments.

15.26. Proposition. Suppose that we are given an abelian group Z, a
homomorphism o : G — Aut(Z) and a normalized 3-cocycle X : G x G x
G — Z. Then there exists a group N containing Z as its center and a
homomorphism & : G — Aut(N)/Int(N) inducing both o® and \.

Proof. Let S be the free group generated by the symbols [z,y] with e #
x € G and e # y € G. For convenience the identity e of F' is identified with
all symbols [z, y] such that either x = e or y = e. The group F' is centerfree
except in the case where G is cyclic of order two. For the moment we set
aside the exceptional case.

We define N to be the direct product F' x Z and, for every g € G, we define
a homomorphism «a, : N — N by the formula
ag([z,y],2) = (lg,2]lgz, yllg. y] ™" Mg, 2, y)ag(2)).

Since X is normalized, we see that a, is the identity. We claim that

(1) QO = CON([g 4] ¢) OCay-

To see this, we apply the left side of this equation to an element ([u,v], z):

azay([u, ], 2) = aq [y, ullyu, o[y, uo] ™, Ay, u, v)aj(2))
= ([z, ylley, ullz, yu] ™ - [z, yul[eyu, o[z, yuo]
[, yuo)[zy, wo] ~Ha, y) 7Y
A, y, w) A, yu, ) Az, y, wv) " g (A(y, u, v))ag, (2))
= Oz y1,) (29, ul[zyu, v]fey, wo] [z, y] 7,
A, y, w)A (2, yu, v)A(z, y, uv) " af (A(y, u, v))ag, (2)).
Since ) is a cocycle, we have
€ = 0o\ (T, Yy, u,v)

= a2 (A(y, u,v)) M@y, u, v) Nz, yu, V)@, y, wv) " A(z, Y, u)
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and therefore

0
x

Thus we find

ay (AMy, u, v)) Nz, yu, v)A(z, ¥y, uv)fl)\(:c,y, u) = Azy, u,v).

agoy([u,v], 2)

= CONj(a,y1,) (2, ul[zyu, v][zy, wo] [z, 4] 71 May, wv)ag, (2))

= conj([,y1,¢) (Qay ([, V]))
which establishes our claim ().
By () we have the equations a,-1 0 a; = conjj-1, and agy 0 a,-1 =
conj, ,-1], S0 every homomorphism oy, x € G, is injective as well as surjec-
tive, hence an automorphism.
If we assume that G is not cyclic of order two, then e x Z is exactly the center
of N and equation (1) defines a homomorphism & : G — Aut(N)/Int(N)
which, by construction, induces both A and a®. O

15.27. An interpretation of the class A\. Let N and G be Lie groups
and let a homomorphism « : G — Aut(N)/Int(N) be given. We consider
the extension

e — Int(N) — Aut(N) — Aut(N)/Int(N) — e

and the following diagram, where the bottom right hand square is a pullback
(compare with the alternative proof of |(15.23)]):

e e
Z(N) Z(N)
v
€ ——> IN o =B -G —c¢
e — Int(N Ey G—e
e e a
pull back

e — Int(N)

Aut(N) — Aut(N)/Int(N) —e.

The left hand vertical column describes N as a central extension of Int(NV)
with abelian kernel Z(N) which is moreover invariant under the action of
G via @; it is given by a cohomology class [v] € H?(N; Z(N))¢. In order
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to get an extension F of G with kernel N as in the third row, we have to
check that the cohomology class [v] is in the image of i* : H?(Eg; Z(N)) —
H?*(N; Z(N))“.



CHAPTER 1V.
Bundles and
Connections

16. Derivations on the Algebra of Differential Forms

16.1. Derivations. In this section let M be a smooth manifold. We
consider the graded commutative algebra

dim M 00
QM) = @ o' = f ok
k=0 k=—o00

of differential forms on M, where we put Q¥(M) = 0 for k < 0 and k >
dim M. We denote by Dery (M) the space of all (graded) derivations of
degree k, i.e., all linear mappings D : Q(M) — Q(M) with D(QY(M)) C
QFH(M) and D(p A ) = D(p) A+ (=1)* @ A D(1)) for ¢ € Q4(M).

Lemma. Then the space Der Q(M) = @, Dery, Q(M) is a graded Lie alge-
bra with the graded commutator [D1, D] := Dy o Dy — (—1)¥1%2Dy 0 Dy as
bracket. This means that the bracket is graded anticommutative and satisfies
the graded Jacobi identity

[D17 DQ] - _(_1)k1k2[D27 Dl]?
[D1, (D2, D3]] = [[D1, Da), Ds] + (=1)***2[ Dy, [Dy, Ds]
(so that ad(Dq) = [Dy, | is itself a derivation of degree ki ).

Proof. Plug in the definition of the graded commutator and compute. [

193
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In section @ we have already met some graded derivations: For a vector
field X on M the derivation ix is of degree —1, Lx is of degree 0, and d is of
degree 1. Note also that the important formula Lx = dix + ¢x d translates
to Lx = [ix,d].

16.2. Algebraic derivations. A derivation D € Der, Q(M) is called alge-
braic if D | Q°(M) = 0. Then D(f.w) = f.D(w) for f € C*(M), so D is of
tensorial character by So D induces a derivation D, € Dery A\ Ti M
for each x € M. It is uniquely determined by its restriction to 1-forms
D |TM = T*M — AFTT*M which we may view as an element K, €
/\kJrl T M @ T,M depending smoothly on z € M. To express this de-
pendence, we write D = ix = i(K), where K € DA™ T*M @ TM) =:
QFFL(M;TM). Note the defining equation: ix(w) = w o K for w € QY (M).
We call Q(M,TM) = @g%M QF(M,TM) the space of all vector valued
differential forms.

Theorem. (1) For K € Q*(M, TM) the formula

(in)(Xl"'ka-‘rﬂ)
= O > signo WK (X1, Xoga1) Xo(er2)s - - )

0ESkK4s

forw € QYM), X; € X(M) (or T,M ) defines an algebraic graded derivation
i € Dery Q(M) and any algebraic derivation is of this form.

(2) By i([K,L]") = lik,iL] we get a bracket [ , " on QL (M, TM)
which defines a graded Lie algebra structure with the grading as indicated,
and for K € Q¥ Y (M, TM), L € Q“*Y(M,TM) we have

K, L] =ixgL — (-1)* K
where ig(w® X) == ig(w)® X.

The bracket [ , | is called the algebraic bracket or the Nijenhuis-Richard-
son bracket; see [178].

Proof. Since A\T;M is the free graded commutative algebra generated
by the vector space T M, any K € QFFY(M,TM) extends to a graded
derivation. By applying it to an exterior product of 1-forms, one can derive
the formula in (Il). The graded commutator of two algebraic derivations is
again algebraic, so the injection 4 : Q*+1(M, T M) — Der,(2(M)) induces a
graded Lie bracket on Q*T(M, T M) whose form can be seen by applying it
to a 1-form. O
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16.3. Lie derivations. The exterior derivative d lies in Der; Q(M). In
view of the formula Lx = [ix,d] = ixd + dix for vector fields X, we
define for K € Q¥(M;TM) the Lie derivative L = L(K) € Dery Q(M) by
L = [lK,d] =igd— (—1)k_1diK.
Then the mapping £ : Q(M,TM) — Der Q(M) is injective, since Lxf =
igdf =df o K for f € C™(M).
Theorem. For any graded derivation D € Dery Q(M) there are unique
K € QF(M;TM) and L € Q1 (M; T M) such that

D=Lkg+1ir.

We have L = 0 if and only if [D,d] = 0. The derivation D is algebraic if
and only if K = 0.
Proof. Let X; € X(M) be vector fields. Then f +— (Df)(Xy,...,X) is a
derivation C*°(M) — C*°(M), so there exists a vector field K (X71,..., X) €
X(M) by |(3.3) such that

(DAY (Xy,..., Xk) = K(X1,..., X)) f =df (K(X1,...,Xk)).
Clearly K (X7, ..., X) is C°°(M)-linear in each X; and alternating, so K is
tensorial by [(9.3)] K € QF(M;TM).
The defining equation for K is Df = df o K = igdf = L f for f € C>°(M).
Thus D — L is an algebraic derivation, so D — Lx = iy, by [(16.2)|for unique
L € QM Y(M; TM).
Since we have [d,d] = 2d?> = 0, by the graded Jacobi identity, we obtain
0 = [ix, [d,d]] = [lir,d],d] + (=1)*"'[d, [ix, d]] = 2[Lk,d]. The mapping
K — [ig,d] = Lk is injective, so the last assertions follow. O

16.4. Applying i(Idry) on a k-fold exterior product of 1-forms, we get
i(Idry)w = kw for w € QF(M). Thus we have L(Idry)w = i(Idpa)dw —
di(Idry)w = (k+ 1)dw — kdw = dw. Thus L(Idry) = d.

16.5. Let K € QF(M;TM) and L € QY(M;TM). Then [[Lx,Lr],d] = 0,
so we have

(LK), L(L)] = L([K, L])
for a uniquely defined [K,L] € Q*(M;TM). This vector valued form
[K, L] is called the Frélicher-Nijenhuis bracket of K and L.

Theorem. The space Q(M;TM) = @(/?;%M QF(M;TM) with its usual
grading is a graded Lie algebra for the Frolicher-Nijenhuis bracket. So we
have

[Ka L] = _(_1)M[L> K]v
(K1, [, Ks]] = [[K1, Ko], K3] + (—=1)"*2[Ky, [Ky, K3]].
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The 1-form Idry € QY(M;TM) is in the center, i.e., [K, Idry] = 0 for all
K. The operator L : (UM;TM),[ , |]) — DerQ(M) is an injective ho-
momorphism of graded Lie algebras. For vector fields the Frélicher-Nijenhuis
bracket coincides with the Lie bracket.

Proof. df o [X,Y] = L([X,Y])f = [Lx,Ly]f. The rest is clear. O

16.6. Lemma. For K € Q¥(M;TM) and L € Q" (M; TM) we have
[Lr,i) = i([K, L]) — (~)*L(iLK), or
[iz, Lx] = L(iLK) — (~1)*i([L, K]).

This generalizes |(9.7.3)]
Proof. For f € C>*(M) we have [ir, Lx|f = ipixdf —0 =ir(df o K) =
df o (i K) = L(iLK)f. So [ir, Lx] — L(irK) is an algebraic derivation.
[[iLvCK}v d] = [iL’ [[’K’d]] - (_1)kz[[’K’ [iL’ dH
=0 — (-D)™L(K, L)) = (-)"[i([L, K]),d].
Since [ ,d] kills the ‘L’s” and is injective on the ‘’s’, the algebraic part of

i, Lx] is (=1)*i([L, K]). O

16.7. Module structure. The space Der Q(M) is a graded module over
the graded algebra Q(M) with the action (w A D) = w A D(g), because
Q(M) is graded commutative.

Theorem. Let the degree of w be q, of ¢ be k, and of 1 be £. Let the other
degrees be as indicated. Then we have:

(1) [wA Dy, Dy] = w A [Dy, Do) — (—1)@Tk0R2 Dy () A Dy
(2) i(wA L) =wAi(L).
(3) WALk =L(wAK)+ (=1)*Li(dw A K).
(4) [wA Ly, Lo) = w A [Ly, Lo) — (—1)a+0=0DE=05(0)w A L.
(5) [wA K1, Ko =wA [K1, K] — (—1)@F0%2 (K w A Ky
+ (=) R dw A i(K)) K.
6) [pXYveY]=pAy®[X,Y]
- (iydap Ay @ X — (—D)*ixdy A p @ Y)

— (dlive nw) @ X — (-1)d(ixp np) 2 Y)
=pAYR X, Y]+ oALxYRY — Ly Ay @ X
+ (—D)* (dp N ixth ®Y +iyp Ady @ X).
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Proof. For (), @), @) write out the definitions. For @) compute i(jw A
Ly, Lo]™). For (B) compute L([w A K1, K3]). For () use (f). O

16.8. Theorem. For K € QF(M;TM) and w € QY(M) the Lie derivative
of w along K is given by the following formula, where the X; are vector fields
on M:

(Lrw) (X1, Xkre)
= o Z signo L(K(Xo1, -, Xok)) @ Xoki1)s - - Xo(hrs))

+ ZSlgHU WK (Xots- s Xok), Xos1))s Xoks2)s- )

1 k—1
g i) = (=)t Z&gnaw Jl,Xag],ng,...),Xg(k+2),...).

Proof. It suffices to consider K = ¢ ® X. Then by [(16.7.3)] we have
Le®X)=9pALx — (—1)*1dp Nix. Now use the global formulas of
section @ to expand this. ([

16.9. Theorem. For K € Q¥(M;TM) and L € Q“(M;TM) we have for
the Frolicher-Nijenhuis bracket [K, L] the following formula, where the X;
are vector fields on M :

[K, L)(X1,..., Xkio)

= ﬁZsigna [K(Xgl,.. . 7X0'k)7L(Xa(k+1)a-'-7Xa(k+£))]

o

-1 .

+m281gn0L([K(XUI7"'7Xak)’XU(k+1)]7Xa(k+2)7-")

_ kZ

G 11)'@ ZSlgDU K([L(Xo1, -, Xot), Xoor1)], Xo(e42), - - -)
_ k 1

(k— 1)114 1 ,Q,ZSIgnO'L alyX ] X037"')7Xa'(k+2)7"')

1)(k—1)¢
k 1), -1 ,2,251gn0K 0'17X ] ng,...),XU(HQ),...).

Proof. It suffices to consider K = ¢ ® X and L = ¢ ® Y; then for [p ®

X, ® Y] we may use |(16.7.6)| and evaluate that at (X1,..., Xpi¢). After
some combinatorial computation we get the right hand side of the above

formula for K =p®@ X and L=9y QY. O

There are more illuminating ways to prove this formula; see [147].
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16.10. Local formulas. In a local chart (U,u) on the manifold M we
pit K |U =Y K.d*®0;, L |U = ZLJBdﬁ®8j, and w | U = > w,d?,
where o = (1 < ag < ag < - < o < dimM) is a form index, d* =
du® A .. A du®k, 9; = i and so on.

Plugging Xj = 0;; into the global formulas[(16.2)} [(16.8)} and [(16.9) we get
the following local formulas:

igw | U= Z 0. akwiak+1...ak+e,l d®,
(K, L) | U = Z( ..ok 1ak+1 Qe
— (_1)(k—1)(z—1)L3) Klja”l akH) d* ® 0;,
Lxw|U = Z( ar oy OiWay iy gy

+( ) (8 K(ZXQ ak+1)wiak+2...ak+4)daa

K L |U Z( at.. Oék Oék+1- O+
_( )kéLZ 8K

a1...0p Qpp1--Oftp
_ J (
kKal Q1% a"‘kLakH Qe
+ (—1)*eL? Do, K d* ® 0;
al...0p—1% [eTAR RYNe AN J°

16.11. Theorem. For K; € QN (M;TM) and L; € Q¥TYM;TM) we
have

(1) [Lx + i, Ly +ina] = £ (1K1, K] + i, Ko — (<10, K)

+i ([LI,LQ]A +[Ky, L] — (—1)kke [KQ,Ll]) .

Each summand of this formula looks like a semidirect product of graded Lie
algebras, but the mappings

i Q(M;TM) — End(Q(M;TM),[ , ),
ad : Q(M;TM) — End(Q(M;TM),[ , 1)

do not take values in the subspaces of graded derivations. We have instead
for K € QF¥(M;TM) and L € QTY(M; TM) the following relations:

(2) iL[K1, K] = [in K1, Ko) + (—=1)[Ky, i Ko,

= (=D ti([Ky, L) K — (—1)®H08i([K, L) Ky )
() K (L, Lo]'] = [[K, L], Lol + (< 1)L, [K, L))"

— ()™M L) K, L] = (~)®FOR [ Ly) K, Ly])
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The algebraic meaning of the relations of this theorem and its consequences
in group theory have been investigated in [150]. The corresponding product
of groups is well known to algebraists under the name Zappa-Szep product.

Proof. Equation (IJ) is an immediate consequence of Equations
@) and @) follow from () by writing out the graded Jacobi identity or as
follows: Consider L£(if,[K7, K»]) and use repeatedly to obtain £ of the
right hand side of ). Then consider i([K,[L1, Lo]"]) and use again
several times to obtain i of the right hand side of (3]). ]

16.12. Corollary (of[(16.9)). For K, L € QY(M;TM) we have

[K,L)(X,Y) = [KX,LY] - [KY,LX] — L(KX,Y] - [KY, X))
— K([LX,Y] - [LY, X]) + (LK + KL)[X,Y].

16.13. Curvature. Let P € Q!'(M; T M) be a fiber projection, i.e., PoP =
P. This is the most general case of a (first order) connection. We may call
ker P the horizontal space and im P the vertical space of the connection. If
P is of constant rank, then both are vector subbundles of T'M. If im P is
some primarily fixed vector subbundle or (tangent bundle of) a foliation,

P can be called a connection for it. Special cases of this will be treated
extensively later on. The following result is immediate from [(16.12)|

Lemma. We have

[P,P] = 2R + 2R,
where R, R € Q*(M;TM) are given by R(X,Y) = P[(Id— P)X, (Id— P)Y]
and R(X,Y) = (Id — P)[PX, PY].
If P has constant rank, then R is the obstruction against integrability of the
horizontal bundle ker P, and R is the obstruction against integrability of the
vertical bundle im P. Thus we call R the curvature and R the cocurvature

of the connection P. We will see later that for a principal fiber bundle R is
just the negative of the usual curvature.

16.14. Lemma (Bianchi identity). If P € Q'(M;TM) is a connection
(fiber projection) with curvature R and cocurvature R, then we have

[P,R+R] =0,
[R,P] =igrR+izR.

Proof. We have [P, P] = 2R + 2R by [(16.13) and [P, [P, P]] = 0 by the
graded Jacobi identity. So the first formula follows. We have 2R = P o

[Pv P] = Z.[P,P]P' ByWG get i[RP][Pv P] = 2[i[P7P]P7 P]_O = 4[R7 P]
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Therefore [R, P] = jijpp[P, P] = i(R+ R)(R+ R) = irR + igR since R
has vertical values and kills vertical vectors, so irR = 0; likewise for R. 0O

16.15. Naturality of the Frolicher-Nijenhuis bracket. Let f: M —
N be a smooth mapping between manifolds. Two vector valued forms K €
QF(M;TM) and K’ € QF(N;TN) are called f-related or f-dependent if for
all X; € T, M we have

(1) K}(x)(Tmf Xy, Tof X)) =T f - Ko (Xq, ..., Xi).
Theorem.
(2) If K and K' as above are f-related, then ik o f* = f*oig : Q(N) —

(3) Ifig o f* | BY(N) = f*oigs | BY(N), then K and K' are f-related,
where B' denotes the space of exact 1-forms.

(4) If K; and K are f-related for j = 1,2, then ik, K2 and ig/ K3 are
f-related, and also [K1, Ks])" and [K', K}]" are f-related.

(5) If K and K' are f-related, then Lk o f* = f*o Ly : Q(N) — Q(M).

(6) If Ligo f* | QUN) = f*o L | Q°(N), then K and K' are f-related.

(7) If K and KJ/ are f-related for j = 1,2, then their Frélicher-Nijenhuis
brackets K1, K2] and [K{, K}] are also f-related.

Proof. () By we have for w € Q9(N) and X; € T, M:
(i ffw)e(X1s o, Xgra-1)
= wram D sien o (fw)e (Ke(Xots -+, Xon), Xo(ht1)s- )

= = 2L S o Wiy (Tof - Ka(Xots ), Tof - Xo(reinys- )

= m Z signowf(x)(K}(m) (Txf . Xgl, ‘e .), Txf . Xg(k+1), - )

= (fMigpw)e(X1, .., Xgpr—1)-
@B)) follows from this computation, since the df, f € C°°(M), separate points.
@) follows from the same computation for Ks instead of w; the result for

the bracket then follows from [(16.2.2)|

() By (@) the algebra homomorphism f* intertwines the operators ix and
ixr, and f* commutes with the exterior derivative d. Thus f* intertwines
the commutators [ix,d] = Lk and [ig/,d] = Lk .

@) For g € Q°(N) we have L f*g = ixdf*g = ix f*dg and f* Ly g =
f*igr dg. By () the result follows.
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(@) The algebra homomorphism f* intertwines Lx; and L'KJ/,, so also their

graded commutators which equal L([K71, K»]) and L([K{, K}]), respectively.
Now use ({@l). O

16.16. Let f : M — N be a local diffecomorphism. Then we can consider
the pullback operator f*: Q(N;TN) — Q(M;TM), given by

(1) (f*K>;E(X17 e 7Xk) = (Tacf)ile(m)(Tmf : le e 7Tacf ' Xk)

Note that this is a special case of the pullback operator for sections of natural
vector bundles in [(8.16), Clearly K and f*K are then f-related.

Theorem. In this situation we have:
(2) f1IK, L] =[f"K, f*L].
(3) frixL =iprf*L.
(4) f*[K, L]" = [f*K, f*L)".
(5) For a vector field X € X(M) and K € Q(M;TM) by|(8.16)| the Lie de-

rivative Lx K = 0|o(FI1X)*K is defined. Then we have LxK = [X, K],
the Frolicher-Nijenhuis bracket.

We may say that the Frolicher-Nijenhuis bracket, [ , ", etc., are natural
bilinear mappings.

Proof. (2) — (@) are obvious from |(16.15)| (&) Obviously Lx is R-linear, so
it suffices to check this formula for K = ¢ ® Y, ¢ € Q(M) and Y € X(M).

But then

Lx(W@Y)=Lxp®Y +9®LxY by[EI7)
=LxY®Y +9®[X,Y]

=X,y ®Y] by[I676)] O

16.17. Remark. At last we mention the best known application of the Fro-
licher-Nijenhuis bracket, which also led to its discovery. A vector valued 1-
form J € QY(M; TM) with JoJ = —Id is called an almost complez structure;
if it exists, dim M is even and J can be viewed as a fiber multiplication with

v—1on TM. By |(16.12)[ we have
[ J(X,)Y)=2([JX,JY] - [X,Y] - JX,JY] - J[JX,Y]).
The vector valued form %[J, J] is also called the Nijenhuis tensor of J. For

it the following result is true:

A manifold M with an almost complex structure J is a complex
manifold (i.e., there exists an atlas for M with holomorphic chart-
change mappings) if and only if [J, J] = 0. See [173].
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17. Fiber Bundles and Connections

17.1. Definition. A (fiber) bundle (E,p, M,S) consists of manifolds F,
M, S, and a smooth mapping p : E — M, furthermore each x € M has an
open neighborhood U such that E | U := p~(U) is diffeomorphic to U x S
via a fiber respecting diffeomorphism:

E|U v UxS
p
U.

The manifold E is called the total space, M is called the base space or basis,
p is a surjective submersion, called the projection, S is called standard fiber,
and (U, 1) as above is called a fiber chart.

A collection of fiber charts (Uy, 1), such that (U,) is an open cover of M,
is called a fiber bundle atlas. If we fix such an atlas, then ¢, o ¢5*1(x, s) =
(x,%ap(x,s)), where a5 : (Us NUg) x S — S is smooth and g(z, ) is a
diffeomorphism of S for each x € U,p := U, N Ug. We may thus consider
the mappings Y3 : Uy — Diff(S) with values in the group Diff(S) of all
diffeomorphisms of S; their differentiability is a subtle question, which will
not be discussed in this book, but see [148]. In either form these mappings
Yap are called the transition functions of the bundle. They satisfy the
cocycle condition: VYag(x) 0y (x) = Vay(x) for x € Uygy and Yaq(z) = Ids
for x € U,. Therefore the collection (1¢,4) is called a cocycle of transition
functions.

Given an open cover (U,) of a manifold M and a cocycle of transition
functions (143), we may construct a fiber bundle (E,p, M, S) in a similar

way as in

17.2. Lemma. Let p : N — M be a surjective submersion (a fibered
manifold) which is proper, so that p~1(K) is compact in N for each compact
K C M, and let M be connected. Then (N,p, M) is a fiber bundle.

Proof. We have to produce a fiber chart at each zyp € M. So let (U,u)
be a chart centered at xg on M such that u(U) = R™. For each x € U let
&:(y) == (Tyu) " u(x); then we have &, € X(U) which depends smoothly on
x € U, such that u(Flfz u~Y(z)) = z + tau(z). Thus each &, is a complete
vector field on U. Since p is a submersion, with the help of a partition
of unity on p~!(U) we may construct vector fields n, € X(p~!(U)) which
depend smoothly on x € U and are p-related to &;: Tp.ny = & o p. Thus
poFlr = Flf”c op by so FIJ is fiber respecting, and since p is proper
and ¢, is complete, 7, has a global flow too. Denote p~!(xg) by S. Then
0 :U xS — p 1 (U), defined by p(z,y) = F1{*(y), is a diffeomorphism and
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is fiber respecting, so (U, ¢~!) is a fiber chart. Since M is connected, the
fibers p~!(z) are all diffeomorphic.

17.3. Let (E,p, M, S) be a fiber bundle; we consider the fiber linear tangent
mapping Tp : TE — T'M and its kernel ker Tp =: V E which is called the
vertical bundle of E. The following is a special case of [(16.13)]

Definition. A connection on the fiber bundle (E, p, M, S) is a vector valued
1-form ® € QY(E;VE) with values in the vertical bundle VE such that
Po® = and Im® = VE; so ® is just a projection TFH — VE.

Then ker @ is of constant rank, so ker ® is a vector subbundle of TE by
it is called the space of horizontal vectors or the horizontal bundle and it is
denoted by HE = ker ®. Clearly TE = HE® VE and T, F = H,E &V, FE
foru e E.

Now we consider the mapping (T'p,ng) : TE — TM xp E. Then by
definition (T'p, 7)™ Oy, u) = VuE, so (T'p,ng) | HE : HE — TM x E
is fiber linear over E and injective, so by reason of dimensions it is a fiber
linear isomorphism: Its inverse is denoted by

C:=((Tp,mp) | HE)™ : TM xy E — HE — TE.

So C : TM xp E — TFE is fiber linear over E and is a right inverse for
(T'p,mg). The mapping C is called the horizontal lift associated to the
connection ®.

Note the formula ®(&,) = &, — C(Tp.&y, u) for &, € T, E. So we can equally
well describe a connection ® by specifying C. Then we call ® the vertical
projection (no confusion with will arise) and x := idpp —® = C o
(T'p, 7g) will be called the horizontal projection.

17.4. Curvature. If & : TE — VE is a connection on the bundle
(E,p, M, S), then as in |(16.13)| the curvature R of ® is given by

2R=[®,®] = [Id — ®,Id — ®] = [x, x] € B*(E;VE).

The cocurvature R vanishes since the vertical bundle V E is integrable. We
have

R(X,Y) = 3[®,®](X,Y) = ®[xX, xY],
so R is an obstruction against integrability of the horizontal subbundle. Note
that for vector fields £,7 € X(M) and their horizontal lifts C¢,Cn € X(F)
we have
Since the vertical bundle V' E' is integrable, by |(16.14)[ we have the Bianchi
identity (@, R] = 0.
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17.5. Pullback. Let (E,p, M, S) be a fiber bundle and consider a smooth
mapping f : N — M. Since p is a submersion, f and p are transversal in the
sense of and thus the pullback N Xy 7,y F exists. It will be called
the pullback of the fiber bundle E by f and we will denote it by f*E. The
following diagram sets up some further notation for it:

f*ELE

f*/pl ; lp

N —— M.

Proposition. In the situation above we have:

(1) (f*E, f*p, N, S) is again a fiber bundle, and p*f is a fiberwise diffeo-
morphism.

(2) If ® € QY(E;VE) C QYE;TE) is a connection on E, then the vector
valued form f*®, given by (f*®),(X) = Vu(p*f)~L.®.T,(p*f). X for
X e T FE, is a connection on the bundle f*E. The forms f*® and ®
are p* f-related in the sense of [(16.15)|.

(3) The curvatures of f*® and ® are also p* f-related.

Proof. () If (Ua,%q) is a fiber bundle atlas of (E,p, M,S) in the sense

of [(17.1)} then (f~Y(U,), (f*p,pryoths o p*f)) is a fiber bundle atlas for
(f*E, f*p,N,S), by the formal universal properties of a pullback [(2.17)|

Part ([2)) is obvious. Part (B]) follows from (2) and |(16.15.7)| O

17.6. Let us suppose that a connection ® on the bundle (E, p, M, S) has zero
curvature. Then by the horizontal bundle is integrable and gives rise
to the horizontal foliation by Each point u € F lies on a unique leaf
L(u) such that T,L(u) = H,E for each v € L(u). The restriction p | L(u)
is locally a diffeomorphism, but in general it is neither surjective nor is
it a covering onto its image. This is seen by devising suitable horizontal
foliations on the trivial bundle pry : R x St — S or pryR x R — R, like
L(0,t) = {(tan(s — t),s) : s € R}.

17.7. Local description. Let ® be a connection on (E,p, M, S). Let us fix
a fiber bundle atlas (U, ) with transition functions (¢ns), and let us consider
the connection ((1)~1)*® € QY(U, x S;U, x T'S), which may be written
in the form

(Ya) ™) @) (&ymy) = —=T%(&s,y) + 1y for & € T,U, and 1, € TS,

since it reproduces vertical vectors. The I'* are given by

(02, T%(82y y)) := _T(wa)'q)'T(wa)_l-(’fmv 0y>-
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We consider I'* as an element of the space Q(Uy; X(9)), a 1-form on U®
with values in the infinite-dimensional Lie algebra X(.5) of all vector fields on
the standard fiber. The I'* are called the Christoffel forms of the connection
® with respect to the bundle atlas (U, ¥q).

Lemma. The transformation law for the Christoffel forms is

Ty(Wap(z, )T (&, y) = T Yap(@,9) = Te(@ap( ))&
The curvature R of ® satisfies

($a )R = dD® + [, T x(s).

Here dI'® is the exterior derivative of the 1-form I'® € QY (U,; X(S)) with
values in the complete locally convex space X(S). We will later also use the
Lie derivative of it and the usual formulas apply: Consult [I13] for calculus
in infinite-dimensional spaces.

The formula for the curvature is the Maurer-Cartan formula which in this
general setting appears only in the level of local description.

Proof. From (1, o (v5) 1) (@, y) = (2, Yas(x,y)) we get that

T(T/Ja © (wﬁ)il)’(fwa Uy) = (éﬂ»‘v T(x,y)(waﬁ)'(facv Uy))
and thus:

(¢U< (&) = —@(T(v5") (&, 0y))
@(waa1»7%¢@c>w51»<amo )

—®(T (5 ") (&e Tia ) (Yas) (éx 0y)))
¢<IK¢@P><5x,o¢a5¢myﬂ> (T (5") (0, Tyt (&s, 0y)
:=frowa1><0m,Fa<fz,wa5<x,y>)>—-T%¢%f><ox,7&cwa5( ))&

This implies the transformation law.
For the curvature R of ® we have by |(17.4)[and |[(17.5.3)|

(W R((E 0", (€% 1%)
= (W) @(Id— (v ) @) (&, n'), (Id = (') ®)(E%, )]
= (¥ ) O[(EN,T*(€h), (&2, T(%)]
)@ ]
e (

*

= (1)@ ([¢', €7, €' T(¢?) — €T(¢") + [T (&), T*(€%)])
€1, %) + £ (€2) — €2T(€h) + [T(€Y), T*(€)]
:ﬂW&ﬁ + (€N, I(E)]xs). O
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17.8. Theorem (Parallel transport). Let ® be a connection on a bundle
(E,p,M,S) and let ¢ : (a,b) — M be a smooth curve with 0 € (a,b),
c(0) = z.

Then there is a neighborhood U of E, x {0} in E, X (a,b) and a smooth
mapping Pt. : U — E such that:

(1) p(Pt(c, ug, t)) = c(t) if defined, and Pt(c,ug,0) = ug.

(2) @(% Pt(c,ug,t)) = 0 if defined.

(3) Reparameterization invariance: If f : (a',b') — (a,b) is smooth with
0 € (d,b), then Pt(c,uy, f(t)) = Pt(co f,Pt(c,us, £(0)),t) if defined.

(4) U is mazximal for properties () and (2.

(5) In a certain sense Pt depends smoothly also on c.

First proof. In local bundle coordinates @(% Pt(c,us,t)) = 0 is an or-
dinary differential equation of first order, nonlinear, with initial condition
Pt(c, ugz,0) = ug. So there is a maximally defined local solution curve which
is unique. All further properties are consequences of uniqueness.

Second proof. Consider the pullback bundle (¢*E, c*p, (a,b),S) and the
pullback connection ¢*® on it. It has zero curvature, since the horizontal
bundle is 1-dimensional. By the horizontal foliation exists and the
parallel transport just follows a leaf and we may map it back to F, in detail:

Pt(c, ug, t) = p*e((c*p | L(uz)) 7 (1))

Third proof. Consider a fiber bundle atlas (U, %) as in|(17.7)l Then we
have 1a(Pt(c, 5! (2,y),t)) = (c(t),7(y, t)), where

0= ((a")*®) (ge(®), gy, 1) = =T (Ge(t), vy, 1) + Gy t),
so v(y,t) is the integral curve (evolution line) through y € S of the time
dependent vector field T'* (%c(t)) on S. This vector field visibly depends

smoothly on c. Clearly local solutions exist and all properties follow, even
[B). For more detailed information on (&) we refer to [143] or [113]. O

17.9. A connection ® on (F,p, M, S) is called a complete connection if the
parallel transport Pt. along any smooth curve ¢ : (a,b) — M is defined on

the whole of E,(g) x (a,b). The third proof of theorem |(17.8)| shows that on
a fiber bundle with compact standard fiber any connection is complete.

The following is a sufficient condition for a connection ® to be complete:

There exists a fiber bundle atlas (Uy, 1) and complete Riemann
metrics g, on the standard fiber S such that each Christoffel
form I'* € QY (U,,X(9)) takes values in the linear subspace of
ga-bounded vector fields on S.
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This is true because in the third proof of theorem above the time
dependent vector field Fa(%c(t)) on S is go-bounded for compact time in-
tervals. By this vector field is complete. So by continuation the
solution exists globally.

A complete connection is called an Ehresmann connection in [80, I, p. 314],
where the following result is given as an exercise.

Theorem. Fach fiber bundle admits complete connections.

Proof. Let dim M = m. Let (Ua,%q) be a fiber bundle atlas as in [(17.1)]
By topological dimension theory [169] the open cover (U,) of M admits a
refinement such that any m + 2 members have empty intersection; see also
Let (U,) itself have this property. Choose a smooth partition of unity
(fo) subordinated to (Uy). Then the sets Vg, := {z : fo(x) > #ﬁ} Cc U,
still form an open cover of M since Y fo(z) = 1 and at most m + 1 of
the fo(z) can be nonzero. By renaming, assume that each V, is connected.
Then we choose an open cover (W,,) of M such that W, C V.

Now let g; and g3 be complete Riemann metrics on M and S, respectively
(see . For not connected Riemann manifolds complete means that
each connected component is complete. Then g;|U, X g2 is a Riemann
metric on U, x S and we consider the metric g := Y fo¥k(91|Us X g2) on
E. Obviously p: E — M is a Riemann submersion for the metrics g and g¢;:
This means that Typ : (Tu(Ep(u))L,gu) = (TpyM, (91)p(u)) 18 an isometry
for each v € E. We choose now the connection ® : TE — VE as the

orthonormal projection with respect to the Riemann metric g.

Claim. ® is a complete connection on F.

Let ¢ : [0,1] - M be a smooth curve. We choose a partition 0 = ¢ <
t1 < --- <ty = 1 such that ¢([t;,ti+1]) C Va, for suitable «;. It suffices to
show that Pt(c(ti+ ), uc,),t) exists for all 0 < ¢ <41 —t; and all uy,),
for all 4, since then we may piece them together. So we may assume that
¢ :[0,1] — Vg for some . Let us now assume that for = ¢(0) and some
y € S the parallel transport Pt(c,¥q(z,y),t) is defined only for ¢ € [0,t)
for some 0 <t < 1. By the third proof of theorem we have

Pt(c, 5 (z,y), 1) = 5 ' (c(t), (1)),

where 7 : [0,¢') — S is the maximally defined integral curve through y € S of
the time dependent vector field Fa(%c(t), ) on S. We put g, = (¢¥51)*g;
then

(ga)(x,y) = (gl)x X (Z fﬁ(x)w,@a(xv )*92)?;'
B

Since pry : (Vo X S, 90) = (Va, 91|Va) is a Riemann submersion and since
the connection (¢;1)*® is also given by orthonormal projection onto the
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vertical bundle, we get

t/
00 > g-lengthf) (¢) = ga-length(c,v) = /0 (' (1), v (8))lg, dt

= /0 \/|C'(t) 2+ 25 a(c(t) (Wap(e(t), =) *g2) (£ (1), Fy(t)) dt
/ V ale(t) | 57 (1)]go dt > \/7/ FRIGIFR:

So go-length(y) is finite and since the Riemann metric g2 on S is complete,
the limit limy_,p y(t) =: (') exists in S and the integral curve v can be
continued. O

17.10. Holonomy groups and Lie algebras. Let (E,p, M, S) be a fiber
bundle with a complete connection ®, and let us assume that M is connected.
We choose a fixed base point o € M and we identity E,, with the standard
fiber S. For each closed piecewise smooth curve ¢ : [0,1] — M through
xo the parallel transport Pt(c, ,1) =: Pt(c,1) (pieced together over the
smooth parts of ¢) is a diffeomorphism of S. All these diffeomorphisms form
together the group Hol(®,x(), the holonomy group of ® at x, a subgroup
of the diffeomorphism group Diff(S). If we consider only those piecewise
smooth curves which are homotopic to zero, we get a subgroup Holy(®, zy),
called the restricted holonomy group of the connection ® at x.

Now let C : TM X3 E — TFE be the horizontal lifting as in and
let R be the curvature (see of the connection ®. For any z € M
and X, € T, M the horizontal lift C'(X,) := C(X,, ): E, - TE isa
vector field along E,. For X, and Y, € T, M we consider R(CX,,CY,) €
X(E;). Now we choose any piecewise smooth curve ¢ from xy to = and
consider the diffeomorphism Pt(c,t) : S = E;, — E, and the pullback
Pt(c, 1)*R(CX,,CY,) € X(S). Let us denote by hol(®, z() the closed linear
subspace, generated by all these vector fields (for all x € M, X,, Y, € T,M
and curves ¢ from xg to x) in X(S) with respect to the compact C*°-topology,
and let us call it the holonomy Lie algebra of ® at xg.

Lemma. hol(®,zg) is a Lie subalgebra of X(S).

Proof. For X € X(M) we consider the local flow FI’X of the horizontal
lift of X. It restricts to parallel transport along any of the flow lines of X
in M. Then for vector fields on M the expression

Slo(FIT) (FIPY)*(FIEF)“(FIT?)*R(CU, CV) | Bg,
= (FIT)*[CY, (FIEF) (FIT?)* R(CU,CV)] | E
= [(F1¢%) ¢y, (FIS?)*R(CU,CV)| | E
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is in hol(®, z¢), since it is closed in the compact C*°-topology and the de-
rivative can be written as a limit. Thus

[(FISX)*[CY1, CYa], (FIS?)* R(CU, CV)] | Ey, € hol(®, a0)
by the Jacobi identity and
[(FI€%)*Cy1, Ya), (FISZ)*R(CU,CV)] | Ey, € hol(®, x0),
so also their difference
[(FIF%)*R(CY1, CY2), (FIS?)* R(CU, CV)] | By,
is in hol(®, xo). O

17.11. The following theorem is a generalization of the theorem of [174),
175] and [9] on principal connections. The reader who does not know prin-
cipal connections is advised to read parts of sections and first. We
include this result here in order not to disturb the development in section

(19)| later.

Theorem. Let & be a complete connection on the fiber bundle (E,p, M, S)
and let M be connected. Suppose that for some (hence any) xo € M the ho-
lonomy Lie algebra hol(®, xg) is finite-dimensional and consists of complete
vector fields on the fiber E,.

Then there is a principal bundle (P,p, M, G) with finite-dimensional struc-
ture group G, a connection w on it and a smooth action of G on S such
that the Lie algebra g of G equals the holonomy Lie algebra hol(®, xg), the
fiber bundle E is isomorphic to the associated bundle P[S], and ® is the
connection induced by w. The structure group G equals the holonomy group
Hol(®, x). The principle bundle P and its connection w are unique up to
isomorphism.

By a theorem of [186] a finite-dimensional Lie subalgebra of X(E,,) like
hol(®, x() consists of complete vector fields if and only if it is generated by
complete vector fields as a Lie algebra.

Proof. Let us again identify E,, and S. Then g := hol(®,z) is a finite-
dimensional Lie subalgebra of X(.5), and since each vector field in it is com-
plete, there is a finite-dimensional connected Lie group G of diffeomor-
phisms of S with Lie algebra g, by theorem

Claim 1. Gy contains Holy(®, z¢), the restricted holonomy group.

Let f € Holy(®,xzg); then f = Pt(c,1) for a piecewise smooth closed curve
¢ through g, which is nullhomotopic. Since the parallel transport is essen-
tially invariant under reparametrization, we can replace ¢ by co g,
where g is smooth and flat at each corner of c. So we may assume that ¢
itself is smooth. Since ¢ is homotopic to zero, by approximation we may
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assume that there is a smooth homotopy H : R? — M with H1|[0,1] = ¢
and Hyl|[0,1] = zo. Then f; := Pt(H;, 1) is a curve in Holp(®, x¢) which is
smooth as a mapping R x § — S; this can be seen by using the proof of
claim 2 below or as in the proof of We will continue the proof of
claim 1 below.

Claim 2. (%ft) of; ' =:Z isin g for all .

To prove claim 2, we consider the pullback bundle H*E — R? with the
induced connection H*®. It is sufficient to prove claim 2 there. Let X = %
and Y = % be constant vector fields on R2, so [X,Y] = 0. Then Pt(c,s) =

FI¢% |S and so on. We put
fr.s = FICX o FI9Y o FISX 0 FIEY . 5 — S,
so fr.1 = f;. Then we have in the vector space X(5)
(4 Fus) o ik = —(FIEX)CY 4 (FICX P (RIEY y (FIEX)*Cy,

1
(%ft,l) o ftfll :/0 % ((%ft,s) o ftjsl) ds

— / ' (—=(FI¥*Y* [CX, CY] + (FIZX) [0X, (FIFY )*(F1I€F)*CY]
0
—(FICY)*(FIFY) (F199)*[0X, CY)) ds.

Since [X,Y] = 0, we have [CX,CY] = ®[CX,CY]| = R(CX,CY) and
(F)*Y =Y thus

(FIF)*CY = C ((FL9)*Y) + @ ((FIfY)*CY)

t t
=CY +/ LO(FIF*)*CY dt = CY + / O(FIENY [CX,CY] dt
0 0

t t

=Y +/ B(FICY)*R(CX,CY) dt = CY + / (FICX)*R(CX,CY) dt.
0 0

The flows (F1IS%)* and their derivatives Lox = [CX, | do not lead out of

g; thus all parts of the integrand above are in g and so (% fea)o ft}l isin g

for all ¢ and claim 2 follows.

Now claim 1 can be shown as follows. There is a unique smooth curve g(t)
in Gy satisfying T, (u9®)Z; = Zs.g(t) = 4g(t) and g(0) = e; via the action
of Gg on S the curve g(t) is a curve of diffecomorphisms on S, generated by
the time dependent vector field Z;, so g(t) = f; and f = f; is in Gp. So we
get Holy(®, zp) C Gy.

Claim 3. Holy(®, ) equals Gy.

In the proof of claim 1 we have seen that Holg(®, z¢) is a smoothly arcwise
connected subgroup of Gy, so it is a connected Lie subgroup by the theorem
(5.6)l It suffices thus to show that the Lie algebra g of Gy is contained
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in the Lie algebra of Holy(®,zp), and for that it is enough to show that
for each ¢ in a linearly spanning subset of g there is a smooth mapping
f:[=1,1]x S — S such that the associated curve f lies in Holy(®, o) with
J(0) = 0 and f(0) = €.

By definition we may assume £ = Pt(c,1)*R(CX,,CY;) for X, Y, € T, M
and a smooth curve ¢ in M from g to x. We extend X, and Y, to vector
fields X and Y € X(M) with [X,Y] = 0 near . We may also suppose that
Z € X(M) is a vector field which extends ¢/(t) along ¢(t): If ¢ is simple, we
approximate it by an embedding and can consequently extend ¢'(t) to such
a vector field. If ¢ is not simple, we do this for each simple piece of ¢, and
then have several vector fields Z instead of one below. So we have

¢ = (FIY?)*R(CX,CY) = (FI{%)*[CX,CY] since [X,Y](z) =0
= (FIFZ)" L 42 —o(FIZY o FI%X o FITY o FIEY) by [(3.16)

= L&), (FI92 0 F19Y o FICK o FIFY o FIFX 0 FIZ),

where the parallel transport in the last equation first follows ¢ from zg to
x, then follows a small closed parallelogram near x in M (since [X,Y] =0
near x) and then follows ¢ back to xy. This curve is clearly nullhomotopic.

Step 4. Now we make Hol(®, ) into a Lie group which we call G, by taking
Holy(®,z9) = Go as its connected component of the identity. Then the
quotient Hol(®, z¢)/ Holy(®P, o) is a countable group, since the fundamental
group 71 (M) is countable (by Morse theory M is homotopy equivalent to a
countable CW-complex).

Step 5. Construction of a cocycle of transition functions with values in G.
Let (U, uq : Uy — R™) be a locally finite smooth atlas for M such that
each u, @ Uy, — R™ is surjective. Put z, := u;'(0) and choose smooth
curves ¢ : [0,1] — M with ¢, (0) = z¢ and co(1) = z4. For each z € U,
let ¢ : [0,1] — M be the smooth curve t — u_*(t.uq()); then ¢ connects
zq and z and the mapping (x,t) — ¢Z(t) is smooth U, x [0,1] — M. Now
we define a fiber bundle atlas (U, s : E|Usy — Us x S) by 9, (x,5) =
Pt(cZ,1) Pt(ca,1) s. Then ¢, is smooth since Pt(cZ,1) = FIZ*= for a local
vector field X, depending smoothly on z. Let us investigate the transition
functions:

wawgl(a:, s) = (x, Pt(cq,1) ' Pt(c%, 1) ! Pt(cj, 1) Pt(cp, 1) s)
= (l’,Pt(Cﬁ.C%.(Cz)_l.(Ca)_l,4) s)
=: (z,v%qp(x) s), where 15 : Usg — G.

Clearly vgq : Ugq x S — S is smooth, which implies that g, : Ugy — G is
also smooth. (4p) is a cocycle of transition functions and we use it to glue a
principal bundle with structure group G over M which we call (P, p, M, G).
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From its construction it is clear that the associated bundle P[S] = P x¢g S
equals (E,p, M, S).

Step 6. Lifting the connection ® to P.

For this we have to compute the Christoffel symbols of ® with respect to
the atlas of step 5. To do this directly is quite difficult since we have to
differentiate the parallel transport with respect to the curve. Fortunately
there is another way. Let ¢ : [0,1] — U, be a smooth curve. Then we have

Ya(Pt(c, )05 (c(0), 5))
- (c(t),Pt((ca)_l,1)Pt((cg(0))_1,1)Pt(c, £ Pt(cg(o),l)Pt(ca,l)s>
= (c(t),7(t)-s),

where 7 is a smooth curve in the holonomy group G. Let I'® € Q! (U,, X(5))
be the Christoffel symbol of the connection & with respect to the chart
(U, ¥q). From the third proof of theorem |(17.8)| we have

va(Pt(c, )5 (c(0), 5)) = (c(t),7(t, 5)),

where %(t, s) is the integral curve through s of the time dependent vector
field Fa(%c(t)) on S. But then we get

P (ge®)(3(t,5)) = G(ts) = F(v(t).5) = (F(1)-5,
D (ge() = (Fr®) o) € g.
So I'“ takes values in the Lie subalgebra of fundamental vector fields for the
action of G on S. By theorem|(19.9)|below the connection ® is thus induced
by a principal connection w on P. Since by [(19.8)| the principal connection

w has the ‘same’ holonomy group as ® and since this is also the structure
group of P, the principal connection w is irreducible; see |(19.7)| O

18. Principal Fiber Bundles and G-Bundles

18.1. Definition. Let G be a Lie group and let (E,p, M,S) be a fiber
bundle as in A G-bundle structure on the fiber bundle consists of the
following data:

(1) a left action £: G x S — S of the Lie group on the standard fiber,

(2) afiber bundle atlas (Uy, 1) whose transition functions (1) act on S
via the G-action: There is a family of smooth mappings (pag : Uas —
G) which satisfies the cocycle condition as(x)psy () = Yoy (z) for
x € Uppy and @aq () = e, the unit in the group, such that 1,5(z, s) =

Upap(x),s) = pap(x).s.
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A fiber bundle with a G-bundle structure is called a G-bundle. A fiber
bundle atlas as in ([2)) is called a G-atlas and the family (¢43) is also called
a cocycle of transition functions, but now for the G-bundle.

To be more precise, two G-atlases are said to be equivalent (to describe
the same G-bundle) if their union is also a G-atlas. This translates as
follows to the two cocycles of transition functions, where we assume that
the two coverings of M are the same (by passing to the common refinement,
if necessary): (pap) and (¢, 5) are called cohomologous if there is a family
(Ta : Uy — G) such that ¢.p(x) = Ta(a:)_l.@’aﬁ(x).rg(:z) holds for all z €
Uap; compare with

In ([2)) one should specify only an equivalence class of G-bundle structures
or only a cohomology class of cocycles of G-valued transition functions.
The proof of now shows that from any open cover (U,) of M, some
cocycle of transition functions (pag : Usg — G) for it, and a left G-action
on a manifold S, we may construct a G-bundle, which depends only on
the cohomology class of the cocycle. By some abuse of notation we write
(E,p,M,S,QG) for a fiber bundle with specified G-bundle structure.

Examples. The tangent bundle of a manifold M is a fiber bundle with
structure group GL(m). More generally, a vector bundle (E,p, M,V) as
in is a fiber bundle with standard fiber the vector space V and with
GL(V)-structure.

18.2. Definition. A principal (fiber) bundle (P,p, M,G) is a G-bundle
with typical fiber a Lie group G, where the left action of G on G is just the
left translation.

So bywe are given a bundle atlas (Uy, ¢q : P|Uy — Uy X G) such that
we have cpacpgl(m, a) = (x, pag(x).a) for the cocycle of transition functions
(pap : Uap — G). This is now called a principal bundle atlas. Clearly the
principal bundle is uniquely specified by the cohomology class of its cocycle
of transition functions.

Each principal bundle admits a unique right action r : PxG — P, called the
principal right action, given by ¢4 (r(p5 (z,a),g)) = (z,ag). Since left and
right translation on G commute, this is well defined. As in |(6.1)| we write
r(u,g) = u.g when the meaning is clear. The principal right action is visibly
free and for any u, € P, the partial mapping r,, = 7(uy, ):G — P, isa
diffeomorphism onto the fiber through w,, whose inverse is denoted by 7, :
P, — G. These inverses together give a smooth mapping 7: P X3 P — G,
whose local expression is 7(¢, (2, a), o5 (x,b)) = a=1.b. This mapping is
also uniquely determined by the implicit equation r(uy, 7(uy, v;)) = v,; thus
we also have 7(uz.g,u’.g") = g7 .7 (up, ul).g" and 7(ug, uz) = e.
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When considering principal bundles, the reader should think of frame bun-
dles as the foremost examples for this book. They will be treated in |(18.11)
below.

18.3. Lemma. Letp : P — M be a surjective submersion (a fibered
manifold), and let G be a Lie group which acts freely on P such that the
orbits of the action are exactly the fibers p~*(z) of p. Then (P,p, M, Q) is
a principal fiber bundle.

Proof. Let the action be a right one by using the group inversion if nec-
essary. Let s, : Uy, — P be local sections (right inverses) for p : P — M
such that (Uy,) is an open cover of M. Let ¢ ! : U, x G — P|U, be given
by o5 (z,a) = sa(x).a, which is obviously injective with invertible tangent
mapping, so its inverse ¢, : P|U, — U, X G is a fiber respecting diffeomor-
phism. So (Ua, ¢q) is already a fiber bundle atlas. Let 7: P x3y P — G
be given by the implicit equation r(ug, 7(ug,ul)) = ul,, where r is the right

G-action. The mapping 7 is smooth by the implicit function theorem and
clearly we have

T(ux,u;.g) = 7(ug,u,).g and  u(ug) = (z,7(sa(x), uz)).

Thus we have

pay ' (2,9) = alsp(2).9) = (2, 7(sa(2), 55(2).9))
= (z,7(sa(2), s8(x)).9)
and (U, ¢q) is a principal bundle atlas. O

18.4. Remarks. In the proof of 1emmawe have seen that a principal
bundle atlas of a principal fiber bundle (P, p, M,G) is already determined
if we specify a family of smooth sections of P whose domains of definition
cover the base M.

Lemma can serve as an equivalent definition for a principal bundle.
But this is true only if an implicit function theorem is available, so in topol-
ogy or in infinite-dimensional differential geometry one should stick to our
original definition.

From lemma itself it follows that the pullback f*P over a smooth
mapping f : M’ — M is again a principal fiber bundle.

18.5. Homogeneous spaces. Let G be a Lie group with Lie algebra g.
Let K be a closed subgroup of G; then by theorem K is a closed
Lie subgroup whose Lie algebra will be denoted by ¢. By theorem
there is a unique structure of a smooth manifold on the quotient space G/ K
such that the projection p : G — G/K is a submersion, so by the implicit
function theorem p admits local sections.
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Theorem. (G,p,G/K, K) is a principal fiber bundle.

Proof. The group multiplication of G restricts to a free right action p :
G x K — G whose orbits are exactly the fibers of p. By lemma |(18.3)[ the
result follows. O

For the convenience of the reader we discuss now the best known homoge-
neous spaces.

The group SO(n) acts transitively on S"~! c R™. The isotropy group of
the ‘north pole’ (1,0,...,0) is the subgroup

1 0
0 SO(n—-1)
which we identify with SO(n —1). So

Sl = 80(n)/SO(n —1)
and we get a principal fiber bundle
(SO(n),p, 8™ 1, SO(n —1)).
Likewise the follwing are principal fiber bundles:
(O(n),p,$"~",0(n — 1)),
(SU(n),p, $*"~1, SU(n - 1)),
(U(n),p,$*" "1, U(n — 1)),
(Sp(n),p, S, Sp(n —1)).
The Grassmann manifold G(k,n;R) is the space of all k-planes containing

0 in R™. The group O(n) acts transitively on it and the isotropy group of
the k-plane R¥ x {0} is the subgroup

(Oék) O(no— k)) 5

G(k,n;R) = O(n)/O(k) x O(n — k)
is a compact manifold and we get the principal fiber bundle
(O(n),p,G(k,n;R),0(k) x O(n — k)).
Likewise the follwing are principal fiber bundles:
(50(n),p,G(k,n;R), S(O(k) x O(n — k))),
(SO(n),p, G(k,n;R), SO(k) x SO(n — k)),
(U(n),p (knC) U(k) x U(n — k)),
(Sp(n ) G(k,n; H), Sp(k) x Sp(n — k)).

therefore
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The Stiefel manifold V (k,n;R) is the space of all orthonormal k-frames in
R™. Clearly the group O(n) acts transitively on V(k,n; R) and the isotropy
subgroup of (e1,...,ex) is Iy x O(n — k), so

V(k,n;R) =0O(n)/O(n — k)
is a compact manifold, and

(O(n),p, V(ka n; R)v O(?’L - k))

is a principal fiber bundle. But O(k) also acts from the right on V' (k, n; R);
its orbits are exactly the fibers of the projection p : V(k,n;R) — G(k,n; R).
So by lemma |(18.3)| we get a principal fiber bundle

(V(k,n,R), p, G(k,n; R), O(k)).

Indeed we have the following diagram where all arrows are projections of
principal fiber bundles and where the respective structure groups are written
on the arrows:

(1) O(n) — 2 v (s R)
O(k)l lO(k)
V(n—k,n;R) ) G(k,n;R).

The Stiefel manifold V(k,n;R) is also diffeomorphic to the space {A €
L(R¥,R™) : AT.A = I}, i.e., the space of all linear isometries R* — R".
There are furthermore complex and quaternionic versions of Stiefel manifolds
and flag manifolds.

18.6. Homomorphisms. Let x : (P,p, M,G) — (P',p', M',G) be a prin-
cipal fiber bundle homomorphism, i.e., a smooth G-equivariant mapping
X : P — P’. Then obviously the diagram

(1) p—_X.p

| b

M — M

commutes for a uniquely determined smooth mapping x : M — M’. For
each x € M the mapping x, := x|Px : Px — P)ﬁ((z) is G-equivariant and
therefore a diffeomorphism, so diagram (Il is a pullback diagram.

But the most general notion of a homomorphism of principal bundles is
the following. Let ® : G — G’ be a homomorphism of Lie groups. A
mapping x : (P,p, M,G) — (P',p’, M',G’) is called a homomorphism over
® of principal bundles if x : P — P’ is smooth and x(u.g) = x(u).®(g) holds



18. Principal Fiber Bundles and G-Bundles 217

in general. Then x is fiber respecting, so diagram (Il) again makes sense,
but it is no longer a pullback diagram in general.

If x covers the identity on the base, it is called a reduction of the structure
group G’ to G for the principal bundle (P’,p', M’ G') — the name comes
from the case when & is the embedding of a subgroup.

By the universal property of the pullback any general homomorphism y of
principal fiber bundles over a group homomorphism can be written as the
composition of a reduction of structure groups and a pullback homomor-
phism as follows, where we also indicate the structure groups:

(2) (P,G) — (X"P,G) — (P, &)
=~

18.7. Associated bundles. Let (P,p, M,G) be a principal bundle and
let £: G xS — S be a left action of the structure group G on a manifold
S. We consider the right action R : (P x S) x G — P x S, given by

R((u,5),9) = (u.g,g~".s).

Theorem. In this situation we have:

(1) The space P xg S of orbits of the action R carries a unique smooth
manifold structure such that the quotient map q: P x S — P xg S is
a submersion.

(2) (P xgS,p, M, S,G) is a G-bundle in a canonical way, where p: P x ¢
S — M is given as in the following diagram, where q, : {u} x S —
(P %G 8)p(u) s a diffeomorphism for each u € P:

(a) PxS—1>PxgS
-
P—2 M
(3) (P xS,q,P xg S,G) is a principal fiber bundle with principal action
R

(4) If (Uq, 0 : PlUy — Uy x G) is a principal bundle atlas with cocycle
of transition functions (pap : Usg — G), then together with the left
action £ : G x S — S this cocycle is also one for the G-bundle (P X¢
S,p, M, S,G).

Notation. (P xgS,p, M, S,G) is called the associated bundle for the action
0:G xS — S. We will also denote it by P[S,¢] or simply P[S] and we
will write p for p if no confusion is possible. We also define the smooth
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mapping 7 = 7% : P xp P[S, €] = S by 7(us,v;) == ¢ ! (vy) which satisfies
7(u, q(u,8)) = 5, q(ug, T(Ug, Vz)) = Vs, and 7(Uz.g,v:) = g~ .7 (U, vz). In
the special situation where S = G and the action is left translation, so that
P[G] = P, this mapping coincides with 7 considered in |(18.2)]

Proof. In the setting of diagram (a) in (2)) the mapping p o pr; is constant
on the R-orbits, so p exists as a mapping. Let (Uy, ¢q : P|lUy — Uy X G)
be a principal bundle atlas with transition functions (¢as : Usg — G). We
define ¥;1 1 Uy x S = 57 (Ua) € P xa S by t51(2,5) = alpz(x,€),5),
which is fiber respecting. For each point in p~!(x) C P xS there is exactly
one s € S such that the orbit corresponding to this point passes through
(oat(z,e),s), namely s = 7 (uy, o5 (2, e))~L.s" if (ug, 8') is the orbit, since
the principal right action is free. Thus v, (2, ):S — p~!(z) is bijective.

Furthermore

7/{571(33, 5) = Q(¢E1(x’ 6), 8)
a(x (@, pap(x).€), 5) = qloy (. €).Pap(x), 5)
q

(¢;1(x, 6)7 90015(‘7;)'8) = w;l(x? 90045(‘%)'8)7

SO wawgl(w,s) = (x,¢ap(x).5). So (Uqa,vq) is a G-atlas for P xg S and
makes it into a smooth manifold and a G-bundle. The defining equation for
1) shows that ¢ is smooth and a submersion and consequently the smooth
structure on P X S is uniquely defined, and p is smooth by the universal
properties of a submersion.

By the definition of 1), the diagram

(5) p U) xS F L o ax s

| o

Yo U, xS

commutes; since its lines are diffeomorphisms, we conclude that ¢, : {u} X
S — pY(p(u)) is a diffeomorphism. So (@), @), and (@) are checked.

@) follows directly from lemma |(18.3)] We give below an explicit chart
construction. We rewrite the last diagram in the following form:

(6) pHUs) x S —=q (V) BELINE VANYe




18. Principal Fiber Bundles and G-Bundles 219

Here V,, := p ' (U,) C P x¢ S, and the diffeomorphism ), is given by the
expression A\;1(v;1(x,s),9) = (o5 (z,9),97.5). Then we have

Mg (o (w,9),9) = A5 (05 (2, ppal@).5), 9)
= (¢5'(2,9), 97" ppal®).5)
= (pa " (@, Pap().9), g pap(x) " .5)
=2\ (g (@, 8), pap(2).9),

50 XX (15 (@, 5),9) = (U5 (2, 5), Pas(x).g) and (P x S,4, P xg S, G) is
a principal bundle with structure group G' and the same cocycle (p,3) we
started with. ([

18.8. Corollary. Let (E,p,M,S,G) be a G-bundle, specified by a cocycle
of transition functions (pag) with values in G and a left action £ of G on S.
Then from the cocycle of transition functions we may glue a unique principal
bundle (P,p, M,G) such that E = P|S, /). O

This is the usual way a differential geometer thinks of an associated bundle.
He is given a bundle E and a principal bundle P, and the G-bundle structure
then is described with the help of the mappings 7 and gq.

18.9. Equivariant mappings and associated bundles.

(1) Let (P,p, M, G) be a principal fiber bundle and consider two left actions
of G,0:GxS— Sand V' :GxS — 5. Let furthermore f: S — 5" be a
G-equivariant smooth mapping, so f(g.s) = g.f(s) or f oty ={; o f. Then
Idpx f: PxS — PxS'is equivariant for the actions R : (PxS)xG — PxS
and R : (P x S") x G — P x S and is thus a homomorphism of principal
bundles, so there is an induced mapping

Idx f

(2) PxS P xS
Ql J{q’
P ><GS faxal P XaG S’,

which is fiber respecting over M, and a homomorphism of G-bundles in the

sense of the definition below.

(3) Let x : (P,p, M,G) — (P',p/,M',G) be a principal fiber bundle ho-
momorphism as in Furthermore we consider a smooth left action
{:Gx8S— S. Then y x Idg : P xS — P’ x S is G-equivariant and induces
a mapping x Xg Ids : P xS — P’ X S, which is fiber respecting over M,
fiberwise a diffeomorphism, and again a homomorphism of G-bundles in the

sense of definition |(18.10)| below.



220 CHAPTER IV. Bundles and Connections

(4) We consider the situation of () and (2]) at the same time. Given two
associated bundles P[S, (] and P'[S’, (], let

x: (P,p,M,G) = (P',p',M',G)

be a principal fiber bundle homomorphism and let f : S — S’ be a G-
equivariant mapping. Then y x f : P x S — P’ x S’ is clearly G-equivariant
and therefore induces a mapping

X xa [ : P[S, €] = P'[S", ]

which again is a homomorphism of G-bundles.
(5) Let S be a point. Then P[S] = P xS = M. Furthermore let y € S’ be

a fixed point of the action ¢ : G x S’ — S’; then the inclusion i : {y} — S’
is G-equivariant. Thus Idp X 7 induces

Idp Xgi M = P[{y}] — P[Sl],

which is a global section of the associated bundle P[S].

If the action of GG on S is trivial, so g.s = s for all s € S, then the associated
bundle is trivial: P[S] = M x S. For a trivial principal fiber bundle any
associated bundle is trivial.

18.10. Definition. In the situation of a smooth fiber respecting
mapping v : P[S,¢] — P'[S’,¢'] covering a smooth mapping 7 : M —
M’ of the bases is called a homomorphism of G-bundles if the following
conditions are satisfied: P is isomorphic to the pullback ¥*P’, and the local
representations of «y in pullback-related fiber bundle atlases belonging to the
two G-bundles are fiberwise G-equivariant.

Let us describe this in more detail now. Let (U.,v)) be a G-atlas for
P'[S", 0] with cocycle of transition functions (¢],5), belonging to the princi-
pal fiber bundle atlas (U, ¢,,) of (P',p', M’,G). Then the pullback-related
principal fiber bundle atlas (U, = ¥~ 1(U.), pa) for P = 5* P’ as described in
the proof of has the cocycle of transition functions (pas = ¢/, 50 3);
it induces the G-atlas (Uy, %) for P[S,£]. Then (¢!, o~y o9y ') (z,s) =
(F(x),va(z,s)) and yo(z, ) : S — S’ is required to be G-equivariant for
all « and all z € U,,.

Lemma. Let vy : P[S,{] — P'[S", V'] be a homomorphism of G-bundles as in
(18.9). Then there is a homomorphism

X (Pp, M,G) — (P',p,M',G)
of principal bundles and a G-equivariant mapping f : S — S’ such that
v=xxg f:P[S,{ — P'S, 1]
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Proof. The homomorphism x : (P,p, M,G) — (P',p', M',G) of principal
fiber bundles is already determined by the requirement that P = *P’, and
we have ¥ = Y. The G-equivariant mapping f : S — S’ can be read off the
following diagram:

(1) Py P[S] -~

XXMVi lf
S/

P X M PI[S/] —/ S/,

which by the assumptions is seen to be well defined in the right column. [

So a homomorphism of G-bundles is described by the whole triple (x : P —
P f:S — S (G-equivariant),~ : P[S] — P’[S’]), such that diagram (T
commutes.

18.11. Associated vector bundles. Let (P,p, M, G) be a principal fiber
bundle, and consider a representation p : G — GL(V) of G on a finite-
dimensional vector space V. Then P[V,p] is an associated fiber bundle
with structure group G, but also with structure group GL(V), for in the
canonically associated fiber bundle atlas the transition functions also have
values in GL(V'). So by section PV, p| is a vector bundle.

Now let F be a covariant smooth functor from the category of finite-dimen-
sional vector spaces and linear mappings into itself, as considered in section
Then clearly Fop: G — GL(V) — GL(F(V)) is another representa-
tion of G and the associated bundle P[F(V'), F o p] coincides with the vector
bundle F(P[V, p|) constructed with the method of but now it has an
extra G-bundle structure. For contravariant functors F we have to consider
the representation F o p o v, where v(g) = g~'. A similar choice works for
bifunctors. In particular the bifunctor L(V, W) may be applied to two dif-
ferent representations of two structure groups of two principal bundles over
the same base M to construct a vector bundle

L(P[V, pl, P'[V", p]) = (P xas P)[L(V, V'), Lo ((pov) x p)].

If (E,p, M) is a vector bundle with n-dimensional fibers, we may consider
the open subset GL(R", E) C L(M x R", E), a fiber bundle over the base
M, whose fiber over x € M is the space GL(R", E,) of all invertible linear
mappings. Composition from the right by elements of GL(n) gives a free
right action on GL(R"™, E') whose orbits are exactly the fibers, so by lemma
we have a principal fiber bundle (GL(R™, E),p, M,GL(n)). The as-
sociated bundle GL(R"™, E)[R"] for the banal representation of GL(n) on
R™ is isomorphic to the vector bundle (E,p, M) we started with, for the
evaluation mapping ev : GL(R", F) x R® — F is invariant under the right
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action R of GL(n), and locally in the image there are smooth sections to it,
so it factors to a fiber linear diffeomorphism

GL(R", E)[R"] = GL(R"™, E) X1 R" = E.

The principal bundle GL(R™, E) is called the linear frame bundle of E.
Note that local sections of GL(R™, E) are exactly the local frame fields of
the vector bundle E as discussed in |(8.5)]

To illustrate the notion of reduction of structure groups, we consider now
a vector bundle (E,p, M,R"™) equipped with a Riemann metric g, that is,
a section g € C°°(S2E*) such that g, is a positive definite inner product
on FE, for each x € M. Any vector bundle admits Riemann metrics: local
existence is clear and we may glue with the help of a partition of unity on
M, since the positive definite sections form an open convex subset. Now let

s'=(s},...,s,) € C°(GLR", E)|U)

be a local frame field of the bundle E over U C M. Now we may apply the
Gram-Schmidt orthonormalization procedure to the basis (s1(z), ..., s,(x))
of E, for each x € U. Since this procedure is smooth (even real analytic),
we obtain a frame field s = (s1,...,$,) of E over U which is orthonormal
with respect to g. We call it an orthonormal frame field. Now let (Uy) be
an open cover of M with orthonormal frame fields s® = (s{, ..., s%), where
s is defined on U,. We consider the vector bundle charts

(Uay o : BE|Uy — Uy x R™)

given by the orthonormal frame fields:
v (vt = z:sf‘(ac)vZ =: s%(x).v.

For x € Uyp we have s{(z) = Zsf(w)ggaf(x) for C*°-functions gagg :
Usp — R. Since s%(x) and s%(x) are both orthonormal bases of F,, the
matrix gog(x) = (gaﬂg(x)) is an element of O(n,R). We write s® = s°.g3,
for short. Then we have

1[)6_1(% v) =s8(x)w = 5().gap(2).0 = P (2, gap(z).0)

and consequently waw/gl(m,v) = (x, gap(x).v). Sothe (gop : Usp = O(n,R))
are the cocycle of transition functions for the vector bundle atlas (Uy, ¥4 ).
So we have constructed an O(n,R)-structure on E. The corresponding prin-
cipal fiber bundle will be denoted by O(R", (E, g)); it is usually called the
orthonormal frame bundle of E. It is derived from the linear frame bundle
GL(R", E) by reduction of the structure group from GL(n) to O(n). The
phenomenon discussed here plays a prominent role in the theory of classify-
ing Spaces.
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18.12. Sections of associated bundles. Let (P,p, M,G) be a principal

fiber bundle and £ : G x S — S a left action. Let C*(P,S)“ denote the
space of all smooth mappings f : P — S which are G-equivariant in the
sense that f(u.g) = g~ '.f(u) holds for g € G and u € P.

Theorem. The sections of the associated bundle P|S, (] correspond exactly
to the G-equivariant mappings P — S; we have a bijection

= (P, S)¢ = T(P[S]).

This result follows from |(18.9)| and |(18.10)} Since it is very important, we
include a direct proof.

Proof. If f € C®(P,S)%, we construct sy € I'(P[S]) in the following
way: The mapping graph(f) = (Id, f) : P — P x S is G-equivariant, since
(Id, f)(u.g) = (w.g, f(u.g)) = (w.g,97".f(w)) = ((Id, f)(u)).g. So it induces
a smooth section sy € I'(P[S]) as seen from |(18.9)] and the diagram:

(1) P x {point} p— U _pyg
pl lq
M a—
For s € T(P[S]) we define f, € C*®(P,S)% by

fs:=7"0(Idp xprs): P=Pxy M — P xy P[S] = S.
This is G-equivariant since we have by |(18.7)]
fs(ug.g) = 7% (uz.g,5(2)) = g L7 (ua, 5(2)) = g7 fo(ug)-

These constructions are inverse to each other since we have

Foin (@) = 7°(u, s5(p(w)) = 75(u, q(u, f(w)) = f(u),
575 (p(w) = a(u, f5(w) = a(u, 75(u, s(p(w)))) = s(p(w)). O

18.13. Induced representations. Let K be a closed subgroup of a Lie
group G. Let p : K — GL(V) be a representation in a vector space V,
which we assume to be finite-dimensional to begin with. Then we consider
the principal fiber bundle (G, p, G/K, K) and the associated vector bundle
(G[V],p,G/K). The smooth (or even continuous) sections of G[V] corre-
spond exactly to the K-equivariant mappings f : G — V, those satisfying

f(gk) = p(k=1)f(g), by lemma [(18.12)] Each g € G acts as a principal
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bundle homomorphism by left translation:

Hg

G G

| v

G/K > G/K.
So by [(18.9)| we have an induced isomorphism of vector bundles

Id
GXV%GXV

.| Bt

G[V]

al ) |

G/K — 1 G/K

—~a
which gives rise to the representation indyp of G in the space I'(G[V]),
defined by

(indyep)(9)(s) = (g x5 V) 050 fig1 = (g x5 V)u(5):

Now let us assume that the original representation p is unitary, p : K —
U(V) for a complex vector space V with inner product ( , )y. Then v —
|lv]|? = (v,v) is an invariant symmetric homogeneous polynomial V' — R of
degree 2, so it is equivariant where K acts trivially on R. By again we
get an induced mapping G[V] — G[R| = G/K xR, which we can polarize to
a smooth fiberwise Hermitian form ( , )gpy] on the vector bundle G[V].
We may also express this by

<U:cawz>G[V] = <TV(u9:7Um)7TV(Umywx)>V
= (k:_lTV(ux?vx),k_lTV(umwx)>v
= <7‘V(u$.k,Ux),’i'v(ux.k,wx»v

for some u, € G, using the mapping 7V : G xg/p G[V] — V from [(18.7)}
it does not depend on the choice of u,. Still another way to describe the
fiberwise Hermitian form is

(GxV)xg/k (GxV)
J/ !
G[V] Xg/K G[V](\)

i

G/K;

here f((g1,v1), (g2,v2)) := (v1, p(TK(gl, 92))v2)y where we use the mapping
™. G Xg/xk G — K given by 78(g1,92) = 97 *g2 from [(18.2)] From this
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last description it is also clear that each g € G acts as an isometric vector
bundle homomorphism.

Now we consider the natural line bundle Vol'/?(G/K) of all %—densities on
the manifold G/K from [(10.4)] Then for 1-densities y; € ['(Vol'/2(G/M))

and any diffeomorphism f : G/K — G/K the pushforward f.u; is defined
and for those with compact support we have

/G (g = /G L J) = /G o

The Hermitian inner product on G[V] now defines a fiberwise Hermitian
mapping

(GIV]@ VOl 2(G/K)) ¢ (GIV] @ Vol 2(G/K)) Y, violl (G )

and on the space C®°(G[V] ® Vol'/2(G/K)) of all smooth sections with
compact support we have the following Hermitian inner product:

(01,02) 5:/ (01, 02)Gv)-
G/K

For a decomposable section o; = s; ® o; (where s; € I'(G[V]) and where
a; € C2(Vol'/2(G/K))) we may consider (using the equivariant
lifts fs, : G — V, their invariant inner product (fs,, fs,)v : G — C, and its
factorization to (fs,, fs,) : G/K — C. Then

(01,09) := /G/K<fs17fsg>\7 ara.

Obviously the resulting action of the group G on T'(G[V] ® Vol'/?(G/K)) is
unitary with respect to the Hermitian inner product, and it can be extended
to the Hilbert space completion of this space of sections. The resulting
unitary representation is called the induced representation and is denoted
by ind% p.

If the original unitary representation p : K — U(V) is in an infinite-
dimensional Hilbert space V', one can first restrict the representation p to
the subspace of smooth vectors, on which it is differentiable, and repeat the
above construction with some modifications. See [151] for more details on
this infinite-dimensional construction.

18.14. Theorem. Consider a principal fiber bundle (P,p, M,G) and a
closed subgroup K of G. Then the reductions of structure group from G
to K correspond bijectively to the global sections of the associated bundle
P[G/K, ) in a canonical way, where A : G x G/K — G/K is the left action

on the homogeneous space from|(5.11),.
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Proof. By[(18.12)|the section s € I'(P[G/K]) corresponds to an equivariant
mapping f, € C®(P,G/K)%, which is a surjective submersion since the
action A : GxG/K — G/K is transitive. Thus Ps := f; (&) is a submanifold
of P which is stable under the right action of K on P. Furthermore the K-
orbits are exactly the fibers of the mapping p : P — M, so by lemma
we get a principal fiber bundle (Ps,p, M, K). The embedding Ps; — P is
then a reduction of structure groups as required.

If conversely we have a principal fiber bundle (P’,p/, M, K) and a reduction
of structure groups x : P’ — P, then  is an embedding covering the identity
of M and is K-equivariant, so we may view P’ as a fiber subbundle of P
which is stable under the right action of K. Now we consider the mapping
7:Pxy P — G from and restrict it to P x3; P’. Since we have
T(Ug, Vg.k) = T(ug,vz).k for k € K, this restriction induces f : P — G/K
by

Pxy P T G

ok

P=PxyP/K—>G/K,

since P'/K = M; and from 7(uz.g,v;) = g~ .7 (uz, v,) it follows that f is G-
equivariant as required. Finally f~!(&) = {u € P : 7(u, PI’)(U)) CK}=P,
so the two constructions are inverse to each other. O

18.15. The bundle of gauges. If (P,p, M, G) is a principal fiber bundle,
we denote by Aut(P) the group of all G-equivariant diffeomorphisms y :
P — P. Then poyxy = xop for a unique diffeomorphism Y of M, so
there is a group homomorphism from Aut(P) into the group Diff(M) of all
diffeomorphisms of M. The kernel of this homomorphism is called Gau(P),
the group of gauge transformations. So Gau(P) is the space of all y : P — P
which satisfy po x = p and x(u.g) = x(u).g. A vector field £ € X(P)
is an infinitesimal gauge transformation if its flow Flf consists of gauge
transformations, i.e., if £ is vertical and G-invariant, (r9)*¢ = &.

Theorem. The group Gau(P) of gauge transformations is equal to the space
Gau(P) = C*®(P, (G, conj))¥ = I'(P[G, conj]).

The Lie algebra X ert(P)C of infinitesimal gauge transformations is equal to
the space

Xpert(P)Y = C®(P, (g,Ad))Y = T'(P[g, Ad]).

Proof. We use again the mapping 7 : P x)y P — G from |(18.2), For
x € Gau(P) we define f, € C®(P,(G,conj))” by f, := 7o (Id,x). Then
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Fr(u.g) = 7(u.g,x(u.g)) = g~ .7(u, x(u)).g = conj,—1 fy(u), so fy is indeed
G-equivariant.

If conversely f € O%(P,(G,conj))? is given, we define x; : P — P by
Xf(u) :=u.f(u). It is easy to check that x; is indeed in Gau(P) and that
the two constructions are inverse to each other, namely

xs(ug) = ugf(ug) = ugg™" f(u)g = xs(u)g,
Frr () =79 (u, xp(w) = 7w, u. f(w) = 7 (u, u) f(w) = f(u),
X, (0) = ufy(u) = ur®(u, x(u) = x(u).

(
The isomorphism C*(P, (G, conj))¢ = T'(P[G,conj]) is a special case of

theorem [(18.12)

A vertical vector field £ € Xyert (P) = I'(V P) is given uniquely by a mapping
fe: P — gvia{(u) = Te(ry). fe(u), and it is G-equivariant if and only if

T, (ru)-fe(u) = €(u) = (1)) (w) = T(r7).£(u.g)
= T(r9).Telrug) -felu.g) = T(r9 " oruy).felu.g)
=Te(ry o conjg).fg(u.g) = Te(ry). Adyg . fe(u.g).
The isomorphism C®(P, (g, Ad))¢ = I'(P[g, Ad]) is again a special case of

theorem [(18.12) O

18.16. The tangent bundles of homogeneous spaces. Let GG be a
Lie group and K a closed subgroup, with Lie algebras g and €, respec-
tively. We recall the mapping Adg : G — Autyie(g) from and put
Adgx = Adg|K : K — Autric(g). For X € ¢ and k € K we have
Adg k (k)X = Adg(k)X = Adg (k)X € ¢ so tis an invariant subspace for
the representation Adg i of K in g, and we have the factor representation
Adt : K — GL(g/t). Then

(1) 0—-t—>g—g/t—0
is short exact and K-equivariant.

Now we consider the principal fiber bundle (G, p, G/K, K) and the associ-
ated vector bundles G[g/¢, Adt] and G[¢, Adg].

Theorem. In these circumstances we have

T(G/K) = Gla/t, Add"] = (G xx g/t p,G/K,0/b).
The left action g — T(fig) of G on T(G/K) corresponds to the canonical left
action of G on G xk g/t. Furthermore G[g/t, Adt] ® G[¢, Adk] is a trivial
vector bundle.

Proof. For p : G — G/K we consider the tangent mapping T.p : g —
T:(G/K) which is linear and surjective and induces a linear isomorphism
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T.p: g/t — T:(G/K). For k € K we have p o conj, :pouko,uk_l =jipop
and consequently T.p o Adg (k) = Tep o Te(conjy,) = Tejix, © Tep. Thus the
isomorphism Tep : g/t — Tz(G/K) is K-equivariant for the representations
Adt and TN : k — Tsfir, where, for the moment, we use the notation
MG x G/K — G/K for the left action.

Let us now consider the associated vector bundle

GT:(G/K),T:N = (G x g T:(G/K),p, G/ K, T:(G/K)),
which is isomorphic to the vector bundle G[g/¢, Ad1], since the representa-
tion spaces are isomorphic. The mapping 1o\ : G x Te(G/K) — T(G/K)
(where T; is the second partial tangent functor) is K-invariant, since
ToA((g, X)k) = ToX(gk, Tefig—1.X) = Thgr.Thig-1.X = Thg.X.

Therefore it induces a mapping 1 as in the following diagram:

(2) G x Ts(G/K)

/\

G xx Ts(G/K) T(G/K)

S,

This mapping v is an isomorphism of vector bundles.

It remains to show the last assertion. The short exact sequence ([l) induces
a sequence of vector bundles over G/K:

G/K x 0 — G[¢, Adg] — Glg, Adg k] — Glg/¢, Adt] — G/K x 0.
This sequence splits fiberwise thus also locally over G/ K, so we get
Glg/t, Adt] @ GJe, Adk] = Glg, Adg k).

We have to show that Gg, Adg k| is a trivial vector bundle. Let ¢ : Gxg —
G % g be given by ¢(g,X) = (¢9,Adg(g)X). Then for k € K we have

o((9, X).k) = p(gk, Adg x (k™) X)
= (gk,Adg(g.k.k~")X) = (gk, Adg(g) X).
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So ¢ is K-equivariant for the ‘joint’ K-action to the ‘on the left’ K-action
and therefore induces a mapping ¢ as in the diagram:

)

(3) Gxg Gxg
| |
G XK g ? G/K x g
K pr;
G/K.
The map @ is a vector bundle isomorphism. O

18.17. Tangent bundles of Grassmann manifolds. From we
know that (V(k,n) = O(n)/O(n — k),p,G(k,n),O0(k)) is a principal fiber
bundle. Using the standard representation of O(k), we consider the asso-
ciated vector bundle (Ej, := V(k,n)[R¥], p, G(k,n)). Recall from the
description of V(k,n) as the space of all linear isometries R¥ — R™; we
get from it the evaluation mapping ev : V(k,n) x R¥ — R™. The mapping
(p, ev) in the diagram

(1) V(k,n) x RF
l (p,ev)
q
E, ==V (k,n) xo@) R — G(k,n) x R™

is O(k)-invariant for the action R and factors therefore to an embedding of
vector bundles ¢ : B, — G(k,n) x R™. So the fiber (Ej)w over the k-plane
W in R” is just the linear subspace W. Note finally that the fiberwise or-
thogonal complement E* of Ej in the trivial vector bundle G(k,n) x R”
with its standard Riemann metric is isomorphic to the universal vector bun-
dle E,,_j over G(n—k,n), where the isomorphism covers the diffeomorphism
G(k,n) — G(n — k,n) given also by the orthogonal complement mapping.

Corollary. The tangent bundle of the Grassmann manifold is

TG(k,n) = L(Ey, Exb).

Proof. We have G(k,n) = O(n)/(O(k) x O(n — k)), so by theorem [(18.16)]

we get

TG(k,n) =0(n) O(k)xé(nik)(so(n)/(so(k) x so(n —k))).
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On the other hand we have V(k,n) = O(n)/O(n — k) and the right action
of O(k) commutes with the right action of O(n — k) on O(n); therefore

V(k,n)[RF] = (O(n)/O(n —k)) x RF =0(n) X RF,
o(k) O(k)xO(n—Fk)
where O(n — k) acts trivially on R¥. We have
L(Ey, Ex) =1L <O(n) X R¥, O(n) X R”"“)
O(k)xO(n—k) O(k)xO(n—k)

=0(n) x  LRYR"F),
O(k)xO(n—Fk)
where O(k) x O(n — k) acts on L(RF,R" %) by (A, B)(C) = B.C.A™'.
Finally, we have an (O(k) x O(n — k))-equivariant linear isomorphism as
follows:

L(R* R"*) = s0(n)/(so(k) x so(n — k)),

s0(n)/(s0(k) x s0(n — k)) = (skew) / <skoew 0 >

skew
0 —AT k mon—k
=3y o ) AcL®RH. O

18.18. Tangent bundles and vertical bundles. Let (E,p, M,S) be a
fiber bundle. The vector subbundle VE = {¢{ € TE : Tp.§ = 0} of TE is
called the vertical bundle and is denoted by (VE, 7, E).

Theorem. Let (P,p, M,G) be a principal fiber bundle with principal right
actionrT : PxG — P. Let{: Gx S — S be a left action. Then the following
assertions hold:

(1) (TP, Tp, TM,TQG) is again a principal fiber bundle with principal right
action Tr : TP x TG — TP, where the structure group TG is the
tangent group of G; see|(6.7)]

(2) The vertical bundle (V P, 7, P,g) of the principal bundle is trivial as a
vector bundle over P: VP = P X g.

(3) The vertical bundle of the principal bundle as bundle over M is again
a principal bundle: (VP,pomw, M,TQG).

(4) The tangent bundle of the associated bundle P[S,{] is given by
T(P[S,¢]) =TP[TS,TY.

(5) The vertical bundle of the associated bundle P[S, /] is given by
V(P[S, 6]) = P[TS, Tge] =P XaG TS.

Proof. Let (Uy, 9o : P|Uy — Uy X G) be a principal fiber bundle atlas with
cocycle of transition functions (pag : Usg — G). Since T is a functor which
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respects products, (TUy, Tpq : TP|TU, — TU, x TQG) is again a principal
fiber bundle atlas with cocycle of transition functions (T'p,g : TUss — T'G),
describing the principal fiber bundle (T'P, T'p, TM,TG). The assertion about
the principal action is obvious. So (1] follows. For completeness sake we
include here the transition formula for this atlas in the right trivialization
of TG:

T(pa0 ‘PEI)(&& Te(p?).X) = (&, Te(ﬂwaﬁ(x)'g)-(y%@aﬂ(gx) + Ad(@aﬂ(x))X>)7

where dpa5 € Q' (Uag;g) is the right logarithmic derivative of ¢,g; see

€25
@) The mapping (u, X) = Te(ry). X = T(ye)7 (04, X) is a vector bundle
isomorphism P x g — V' P over P.

@) Obviously T'r : TP x TG — TP is a free right action which acts transi-
tively on the fibers of Tp : TP — TM. Since VP = (Tp)~1(05), the bundle

VP — M is isomorphic to TP|0j; and T'r restricts to a free right action,
which is transitive on the fibers, so by lemma |(18.3)| the result follows.

(@) The transition functions of the fiber bundle P[S,¢] are given by the
expression £ o (pag x Idg) : Ugg x S — G x S — S. Then the transition
functions of T'(P[S, ¢]) are T'({o (pap x Ids)) = Tlo (T x Idrs) : TUqyp X
TS - TG xTS — TS, from which the result follows.

([B)) Vertical vectors in T'(P[S, £]) have local representations (05,7s) € TUqg X
TS. Under the transition functions of T'(P[S,/]) they transform as T'(¢ o

(ap % 1ds)).(0z,m5) = TC.(Op, (2 Ms) = Ty, g(2))-ns = T2l.(pap(T),ns)
and this implies the result O

19. Principal and Induced Connections

19.1. Principal connections. Let (P, p, M, G) be a principal fiber bundle.
Recall from that a (general) connection on P is a fiber projection
® : TP — VP, viewed as a 1-form in Q'(P,TP). Such a connection ®
is called a principal connection if it is G-equivariant for the principal right
action r : P x G — P, so that T'(r9).® = ®.T(r9) and ® is r9-related to
itself, or (r9)*® = ® in the sense of [(16.16)] for all ¢ € G. By theorem
the curvature R = 3.[®, ®| is then also r9-related to itself for all
g€ aq.

Recall from [(18.18.2)| that the vertical bundle of P is trivialized as a vector
bundle over P by the principal action. So
(1) w(Xy) = Te(ry) 1 2(Xy) € 9

and in this way we get a g-valued 1-form w € Q!(P,g), which is called
the (Lie algebra valued) connection form of the connection ®. Recall from
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the fundamental vector field mapping ¢ : g — X(P) for the princi-
pal right action given by (x(u) = Te(r,)X which satisfies T, (r9)(x (u) =
Cad(g-1)x (u.g). The defining equation for w can be written also as ®(Xy) =
CUJ(Xu)(u)'

Lemma. If ® € QY(P,V P) is a principal connection on the principal fiber

bundle (P,p, M,G), then the connection form has the following two proper-
ties:

(2) w reproduces the generators of fundamental vector fields:
w(Cx(u)) =X foral Xeg.
(3) w is G-equivariant, i.e.,
(1) w)(Xu) = w(Tu(r?).Xu) = Ad(g™")-w(Xy)
forall g € G and X, € T,,P. Consequently we have for the Lie deriv-
ative Lyw = —ad(X).w.

Conversely a 1-form w € QY (P, g) satisfying @) defines a connection ® on
P by ®(Xy) = Te(ry).w(Xy), which is a principal connection if and only if
@) is satisfied.

Proof. @) Te(r.)w((x(u)) = ®((x(u)) = (x(u) = Te(ry).X. Since
Te(ry) : g — Vi, P is an isomorphism, the result follows.

@B)) Both directions follow from

Te(rug)'w(Tu(rg)-Xu) = Cw(Tu(rg).Xu)(u.g) = (I)(Tu(rg)'Xu)7

Te(rug)- Ad(gil)'w(Xu) = gAd(gfl).w(Xu)<U’g) = Tu(rg)-CW(Xu)(U)
— T,(r9).8(X,). O

19.2. Curvature. Let ® be a principal connection on the principal fiber
bundle (P, p, M, G) with connection form w € Q'(P, g). We already noted in
[(19.1)| that the curvature R = 1[®, ®] is then also G-equivariant, (r9)*R = R
for all ¢ € G. Since R has vertical values, we may again define a g-valued
2-form

Qe Q*Pyg), QUX,Y,) :=-T.(r.) " .R(Xu,Ya),

which is called the (Lie algebra valued) curvature form of the connection.
We also have

We take the negative sign to get the usual curvature form as in [107] I].

We equip the space Q(P,g) of all g-valued forms on P in a canonical way
with the structure of a graded Lie algebra by
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0, 07(X1, .+, Xpig)

1 .
= Z signo [U(Xo1, -, Xop), O(Xo(pi1)s - - » Xo(pra))ls

or equivalently by
VX, 9Y|r =9 ANI®[X,Y],.
From the latter description it is clear that
d[¥,0], = [dV¥, 0], + (—1)1eY[¥, d6],.
In particular for w € Q'(P, g) we have
@, wn(X,Y) = 20w(X),0(Y)ly.

Theorem. The curvature form € of a principal connection with connection
form w has the following properties:

(1) Q is horizontal, i.e., it kills vertical vectors.

(2) Q is G-equivariant in the following sense: (r9)*Q = Ad(g~1).Q. Con-
sequently L¢, ) = —ad(X).Q.

(3) The Maurer-Cartan formula holds: Q = dw + 1w, w]x.

Proof. () is true for R by For ([2) we compute as follows:
Te(rug)-(r?) Q) ( Xy, Yu) = Te(rug) QUTu(r?). Xy, Tu(r9).Y,)
= —Rug(Tu(r?). Xy, Tu(r9).Yy) = =T (r?).((r?)*R)(Xu, Yu)
= —Tu(r?).R(Xy, Yu) = Tu(r?)-Carx,,v.) (w)
= Cad(g-1).0(Xu,ve) (19) = Te(rug). Ad(g™1). (X, Ya), by [(6:3]}
@) For X € g we have ic, R = 0 by (), and using[(19.1.2)] we get
icy (dw + %[w,w]/\) =iy dw + %[icijw]/\ — %[w,igxw]/\
=Lew~+ [X,wh = —ad(X)w+ ad(X)w = 0.

So the formula holds for vertical vectors, and for horizontal vector fields
&,n e (H(P)) we have

R(fﬂ?) = (I)[f - (1)5’77 - q)n] = (I)[f, 77] = gw([{,n}))

(o + 5o, (€ m) = () — mol€) — (&) +0 = ~w((E ). O

19.3. Lemma. Any principal fiber bundle (P,p, M,G) (with paracompact
basis) admits principal connections.
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Proof. Let (Uy, ¢o : PlUy — Uy X G), be a principal fiber bundle atlas.
Let us define vo (T, (Ex, Tepg- X)) = X for & € T,U, and X € g. Using

lemma [(6.3)} we get
(") 7a) (Tg " (Eos Tettg-X)) = 7a(Tr" Ty (€n, Teng. X))
=0Ty (&, T Tepg. X))
= Ya (T3 (&, Tepign- Ad(R71). X)) = Ad(h 1) .X,
so that v, € QY(P|U,,g) satisfies the requirements of lemma [(19.1)] and
thus is a principal connection on P|U,. Now let (f,) be a smooth partition
of unity on M which is subordinated to the open cover (U,), and let w :=

> o(fa ©0P)Va- Since both requirements of lemma |(19.1)| are invariant under

convex linear combinations, w is a principal connection on P. O

19.4. Local descriptions of principal connections. We consider a
principal fiber bundle (P,p, M,G) with some principal fiber bundle atlas
(Uas 9o : PlUy = Uy x G) and corresponding cocycle (¢qp : Ugg — G) of
transition functions. We consider the sections s, € I'(P|U,) which are given
by va(sa(2)) = (x,€) and satisfy sq.0ap = sg, since we have in turn:

va(58(2)) = Papy' (@, €) = (2, Pap(2)),
s5(2) = 95 (2, e.pap(e)) = 95 (2, €)ap(e) = sa(T)pas().
(1) Let x! € Q1(G, g) be the left logarithmic derivative of the identity, also
called the left Maurer-Cartan form, i.e., k' (1g) := Ty(py-1).ng. We will
use the forms Hflﬂ = pagk € Q1 (Uap, 9).
Let ® = (ow € QY(P,VP) be a principal connection with connection form
w € QY(P,g). We may associate the following local data to the connection:
(2) wo = sa*w € QY (U,,g), the physicists’ version or Cartan moving
frame version of the connection,
(3) the Christoffel forms I'* € QY(U,, X(G)) from [(17.7)] which are given
by (02, 1%z, 9)) = *T(@a)-qlT(S@a)_l(ngOg)v
(4) Yo = (1) w € QY (U, x G, g), the local expressions of w.

Lemma. These local data have the following properties and are related by
the following formulas.
(5) The forms wa € QY (Uq, 8) satisfy the transition formulas
Wa = Ad(@gal)wﬁ + K’,lé’a’

and any set of forms like that with this transition behavior determines
a unique principal connection.

(6) We have va(Ee, Thg-X) = Ya(&e,0g) + X = Ad(g™Nwa (&) + X.
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(7) We have T'*(£z) = — Ry, (¢,), a right invariant vector field, since

Fa(grag) = _Te
=-T,

tg)-Ya &z, Og)

Hg)- Ad(g™ wa (&) = ~T (1 )wa (&s).

Proof. ([{) From the definition of the Christoffel forms we have

(02, T%(6,9)) = —T(¢a)-2.T(a) " (&, 0y)
— T(pa) Tulr 1y )0 T(Pa) (6, 0p) by [T1T]
= —Te(Pa 0 Tyt () )W T () ™" (€, 0)
= —(Ox,T( )w.T(¢a) ™" (&, 04))
— (02, Te(pg)70(82: 0g)), by @),

where we also used goao:p;l(x A1) = Palez (@.00h) = palos(z,gh)) =
(x,gh). This is the first part of (). The second part follows from ().

@) Ya(&a: Thg-X) = Ya(&, Og) + Ya (0, Tpig-X)
= Ya(&r, 0g) +w(T(pa) ™ (02, Tg. X))
= Ya (s 0g) + w(Cx (05! (2, 9)))
= Ya(&z, 0g) + X.
So the first part of () holds. The second part is seen from
Ya(&as 0g) = Ya(€es Te(1?)0e) = (w0 T(pa) ™" 0 T(Idx X %)) (€ Oc)
— (@0 T(r9 063 "))(En 0) = Ad(g™ (T (95 ") (€ 0.)
= Ad(g ) (sa"w) (&) = Ad(g™ " wal&).

() Via () the transition formulas for the w, are easily seen to be equivalent
to the transition formulas for the Christoffel forms in lemma|(17.7)l A direct
proof goes as follows: We have s, (2) = sg(x)pga(r) = 7(s5(2), pgalr)) and
thus

(
(

wa(§x> = W(Tx(sa) &)
= (W o T(ss(2) 050 (@) (12852, 00 (2) + (055 (%), Twppa-Ea))
= w(T(r? ). Ty (sp).&) + W(Tp, () (s y () Te(9a) L)
= Ad(ppa(r) w(Tu(ss) &)
+ W(Tppa (@) (Ts5(2))- T (Bppa (@) © Hopa(e)-1) Lo (Ppa)-€a)
= Ad(ppa(z) wp(&)
+ (Te(Ts5 () (@) -Ka-E)
= Ad(pga(r) M wp(&e) + o). O
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19.5. The covariant derivative. Let (P,p, M,G) be a principal fiber
bundle with principal connection ® = ( o w. We consider the horizontal
projection x = Idprp — ® : TP — HP, cf. which satisfies

xox=x, imx=HP, kerx=VP, xoT(r9)=T(r9)ox

for all g € G.

If W is a finite-dimensional vector space, we consider the mapping x*
Q(P,W) — Q(P,W) which is given by

(X @)u(X1, -5 Xi) = ou(X(X1), -5 x(Xk))-

The mapping x* is a projection onto the subspace of horizontal differential
forms, i.e., the space Qpor(P,W) :={¢p € Q(P,W) :ix1 =0 for X € VP}.
The notion of horizontal form is independent of the choice of a connection.
The projection x* has the following properties: x*(p A1) = x*p Ax* 1 if one
of the two forms has values in R; x* o x* = x*; x* o (r9)* = (r9)* o x* for all
g € G; x*w=0; and x* o L({x) = L(Cx) o x*. They follow easily from the
corresponding properties of x; the last property uses that Flg (X) _ pexptX

We define the covariant exterior derivative d,, : Q¥ (P, W) — Q¥1(P, W) by
prescribing d,, := x* o d.

Theorem. The covariant exterior derivative d,, has the following properties.
(1) du(pAY) = du(P) AX Y+ (—1)48Px* o Ady, () if ¢ or 1 is real valued.
(2) L(Cx)ody =dy,o0L(Cx) for each X € g.

(3) (r9)*ody, =d, o (r9)* for each g € G.

(4) dyop*=dop*=p od: QM,W) — Qpor(P,W).

(5) dow = Q, the curvature form.

(6) d,Q =0, the Bianchi identity.

(7) dyox*—dy, = x"0i(R), where R is the curvature.

(8) dyod, =x*0i(R)od.

(9)

9) Let Quor(P, )¢ be the algebra of all horizontal G-equivariant g-valued
forms, i.e., (r9)* = Ad(g~'). Then for any ¢ € Qpor(P,9)¢
have d, v = di + [w, P]A.

(10) The mapping © + Gy, where Cy(X1,..., Xp)(u) = Cpexy,.xp)(w) (W),
is an isomorphism between Qpor(P,g)¢ and the algebra Qpor(P,V P)%
of all horizontal G-equivariant forms with values in the vertical bundle
VP. Then we have (g, = —[P, (y).

Proof. Parts () through () follow from the properties of x*.
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([B) We have
(dww)(&:m) = (X dw)(§,m) = dw(x§E, xn)
= (x§wxn) — (xn)w(x§) — w((x& xnl)

= —w([x& xnl),
_C(Q(£7 77)) = R(fﬂ?) = ‘I’[Xﬁ’xn] = Cw([xf,xn])'

([6) Using we have
dpQ = dyy(dw + 3w, w]p)
= x*ddw + %x*d[w,w]/\
= %X*([dw,w]A — [w,dw]p) = X [dw, w]A
= [x"dw, x*w]r = 0, since x*w = 0.
(@) For ¢ € Q(P,W) we have
(doXx*@)(Xo, -, Xi) = (dx ) (x(Xo), - - -, x(Xk))

= O;k(—l)iX(Xi)((x*w)(X(Xo), () X(X))
+_é:(—1)”j () (D (Xa), x (X)) x(Xo), - -+

:Oggk(—l)’x(x)(w(x(xo), XX, (X))
+_g<1>i+jso<[x<xi>, X(X;5)] = ®[x(Xs), X(X))], X(Xo),

—_—

X (X)), x(XG), )
= (de)(x(X0), - - .- X(Xk)) + (ire) (X(X0), - - -, X (Xk))
= (dw + x"ir)(¢)(Xo, - .., Xp).
®) dudy, = x*dx*d = (x*ir + x*d)d = x*ird holds by ().
@) If we insert one vertical vector field, say (x for X € g, into d,v, we
get 0 by definition. For the right hand side we use i¢, % = 0 and LY =

o (F1$X ) 4y = 8o (r™*PX) x4 = 8o Ad(exp(—t X))t = — ad(X )t to get
iey (dip + [w, YIA) = dedib + digy ) + [ic e w, %] — [wyicy V]
= Lot + [X,0] = —ad(X)d + [X, ] = 0.
Now let all vector fields &; be horizontal; then we get
(dwt0) (o, - -+ &) = (X "dY)(Cos - - -, &) = dY(&o, - - -+ k)
(dip + [w, ¥In) oy - -+, §k) = dp(Eo, - - -5 k)
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So the first formula holds.
(I0) We proceed in a similar manner. Let ¥ be in the space Qf_ (P, V P)% of

hor
all horizontal G-equivariant forms with vertical values. Then for each X € g

we have i, U = 0; furthermore the G-equivariance (r9)*W¥ = ¥ implies that

LoV =[Cx,V]=0by Using formula we have
gy [®, 0] = [igy @, W] = [® g, W] +i([®, Cx )W +i([V, Cx]) @
=[x, U] —0+0+0=0.

Now let all vector fields &; again be horizontal; then from the huge formula
(16.9)| for the Frolicher-Nijenhuis bracket only the following terms in the
third and fifth lines survive:

(@, 9](&1 v Eor) = G signo B(W(Eor, - -, Ene) Enern)

+ m ZSignU ¢<\P<[§Ul7§o’2]75037 ce 7§U(f+l)))'

For f : P — g and horizontal § we have ®[£,(f] = Cep) = Capey: It is
C*°(P)-linear in &; or imagine it in local coordinates. So the last expression
becomes

—C(dwtp (o, - -+ &) = —C(d (8o, - - -, &) = —C((de + [w, P]n) (b0, - - -, Ek))

as required. O

19.6. Theorem. Let (P,p, M,G) be a principal fiber bundle with principal
connection w. Then the parallel transport for the principal connection is
globally defined and G-equivariant.

In detail: For each smooth curve ¢ : R — M there is a smooth mapping
Pt : R x Py — P such that the following hold:

(1) Pt(c,t,u) € Poyy, Pt(c,0) = Idp,,, and w(% Pt(c,t,u)) = 0.

(2) Pt(c,t) : Pyoy — Pepy is G-equivariant, i.e., Pt(c,t,u.g) = Pt(c,t,u).g
holds for all g € G and u € P. Moreover we have Pt(c,t)*((x|P.y)) =
CX‘PC(O) forall X € g.

(3) For any smooth function f:R — R we have
Pt(c, f(t),u) = Pt(co f,t,Pt(c, £(0),u)).

Proof. By the Christoffel forms I'* € Q' (U,, X(G)) of the connec-
tion w with respect to a principal fiber bundle atlas (U,, ¢,) are given by
(&) = Ry, (e,)s S0 they take values in the Lie subalgebra Xg(G) of all
right invariant vector fields on GG, which are bounded with respect to any
right invariant Riemann metric on G. Each right invariant metric on a Lie
group is complete. So the connection is complete by proposition |(23.9)
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Properties (Il) and (3] follow from theorem |(17.8), and (2) is seen as follows:
We have w(% Pt(e,t,u).g) = Ad(g_l)w(% Pt(c,t,u)) = 0, and this implies
Pt(c,t,u).g = Pt(c,t,u.g). For the second assertion we compute for u €
Pc(O):

Pt(c.t)* (Cx|Pagy) () = T Pt(e, ) Cx (Pi(e, t, )
= T Pt(c, t)_1%|0 Pt(e,t,u). exp(sX)
= T Pt(c, t)_1%|0 Pt(e, t,u. exp(sX))
= di|0 Pt(c,t) "' Pt(c, t,u. exp(sX))

S

— d%bu.exp(sX) =(x(u). O

19.7. Holonomy groups. Let (P,p, M, G) be a principal fiber bundle with
principal connection ® = ( ow. We assume that M is connected and we fix
xg € M.

In we defined the holonomy group Hol(®,xo) C Diff(P,,) as the
group of all Pt(c,1) : Py, — Py, for ¢ any piecewise smooth closed loop
through xg. (Reparameterizing ¢ by a function which is flat at each corner
of ¢, we may assume that any c is smooth.) If we consider only those
curves ¢ which are nullhomotopic, we obtain the restricted holonomy group
Holy(®, zp), a normal subgroup.

Now let us fix ug € P,,. The elements 7(ug,Pt(c,1,u9)) € G (for ¢ all
piecewise smooth closed loops through xg) form a subgroup of the structure
group G which is isomorphic to Hol(®, z(); we denote it by Hol(w, ug) and
we call it again the holonomy group of the connection. Considering only
nullhomotopic curves, we get the restricted holonomy group Holy(w,up), a
normal subgroup of Hol(w, ug).

Theorem. Let (P,p, M,G) be a principal fiber bundle with principal con-
nection ® = ( ow. We assume that M is connected and we fix xy € M and
ug € Pxo-
(1) We have an isomorphism Hol(w, ug) — Hol(®, zg) given by
g (u— fg(u) = ug.9.7(ug, u)) with inverse gy := 7(uo, f(ug))  f.
(2) We have Hol(w, ug.g) = conj(g~!) Hol(w, uo) and
Holg(w, ug.g) = conj(g~") Holg(w, uo).
(3) For any curve c with ¢(0) = x¢ we have Hol(w, Pt(c,t,ug)) = Hol(w, ug)
and Holyp(w, Pt(c,t,up)) = Holp(w, ug).
(4) The restricted holonomy group Holy(w, ug) is a connected Lie subgroup

of G. The quotient group Hol(w, ug)/ Holg(w,ug) is at most countable,
so Hol(w,ug) is also a Lie subgroup of G.
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(5) The Lie algebra hol(w,up) C g of Hol(w, ug) is generated by
{QXy,Y,) : Xu, Yy € TyP,u = Pt(c,1,up),c: [0,1] = M,c(0) = zo}
as a vector space. It is isomorphic to the Lie algebra hol(®,xy) we

considered in |(17.10)|

(6) For ug € Py, let P(w,ug) be the set of all Pt(c,t,up) for ¢ any (piece-
wise) smooth curve in M with ¢(0) = xo and fort € R. Then P(w,up)
s a fiber subbundle of P which is invariant under the right action of
Hol(w, ug); so it is itself a principal fiber bundle over M with struc-
ture group Hol(w,up) and we have a reduction of structure group; see
[(18.6)| and |(18.14). The pullback of w to P(w,up) is also a principal
connection form i*w € QY (P(w,up); hol(w, up)).

(7) P is foliated by the leaves P(w,u), u € Py,.

(8) If the curvature Q = 0, then Holp(w,up) = {e} and each P(w,u) is a
covering of M. The leaves P(w,u) are all isomorphic and are associated

to the universal covering of M, which is a principal fiber bundle with
structure group the fundamental group m (M).

In view of assertion (@) a principal connection w is called irreducible if
Hol(w, up) equals the structure group G for some (equivalently: any) ug €
Py,.

Proof. (] follows from the definition of Hol(w, ugp).

(@) This follows from the properties of the mapping 7 from |(18.2)| and from
the G-equivariance of the parallel transport:

T(ug.g9, Pt(c, 1,u9.9)) = 7(ug, Pt(c,1,up).g) = gil.T(uo, Pt(c,1,up)).g.

So via the diffeomorphism 7(ug, ): Py, — G the action of the holonomy
group Hol(®, up) on P, is conjugate to the left translation of Hol(w, ug) on
G.

@) By reparameterizing the curve ¢, we may assume that ¢ = 1, and we
put Pt(c,1,up) =: u;. Then by definition, for an element g € G we have
g € Hol(w, uy) if and only if g = 7(u1,Pt(e, 1,u1)) for some closed smooth
loop e through z; := ¢(1) = p(uy), i.e.,

Pt(c, 1)(uo-9) = Pt(e, 1)(r*(uo)) = r¥(Pt(c, 1)(up)) = urg
= Pt(e, 1)(Pt(c, 1)(ug))

(e,

ug.g = Pt(c, 1)t Pt(e, 1) Pt(c, 1)(ug) = Pt(c.e.c™t, 3)(uo),
where c.e.c™! is the curve traveling along c(t) for 0 <t < 1, along e(t — 1)
for 1 <t < 2, and along ¢(3 —t) for 2 < ¢t < 3. This is equivalent to
g € Hol(w,up). Furthermore e is nullhomotopic if and only if c.e.c™! is

nullhomotopic, so we also have Holy(w, u1) = Holp(w, ugp).
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@) Let ¢ : [0,1] — M be a nullhomotopic curve through x and let h : R? —
M be a smooth homotopy with h;|[0, 1] = ¢ and h(0, s) = h(t,0) = h(t,1) =
xo. We consider the pullback bundle

*h
wpLt_-p
h*pi lp
R2 —" M.
Then for the parallel transport Pt® on P and for the parallel transport Pt" ®
of the pulled back connection we have

Pt (he, 1,u0) = (ph) P2 ((t, ), 1,u0) = (p*h) FIE" "% (¢, up).

So t = 7(ug, Pt®(h, 1,ug)) is a smooth curve in the Lie group G starting
from e, so Holp(w, up) is a smoothly arcwise connected subgroup of G. By
theorem the subgroup Holg(w, up) is a Lie subgroup of G. The quotient
group Hol(w, ug)/ Holp(w, up) is a countable group, since by Morse theory
M is homotopy equivalent to a countable CW-complex, so the fundamental
group 71 (M) is countably generated, thus countable.

([B) Note first that for g € G and X € X(M) we have for the horizontal lift
(r9)*CX = CX, since (r9)*® = & implies T, (r9).H,P = H, 4P and thus
Tu(r).C(X, u) = Tu(r).(Tup| Hu P) (X (p(u)))
= (TugplHuy P) (X (p(w))) = C(X, u.g).
The vector space hol(w) C g is normalized by the subgroup Hol(w, ug)

G since for g = 7(uo, Pt(c,1,up)) (where ¢ is a loop at zp) and for u
Pt(c1,1,up) (where ¢1(0) = xg) we have

Ad(g7HQC(X, u), C(Y,w)) = QTu(r?).C(X, u), Tu(r?).C(Y, u))
=Q(C(X,u.9),C(Y,u.g)) € hol(w),
u.g = Pt(e1,1,u0).g = Pt(c1, 1,up.9) = Pt(c1, 1, Pt(e, 1, up))
= Pt(c1.¢,2,up).

N

We consider now the mapping
€“ s hol(w) — X(Pyy),
% (W) = Cad(r(uo,u)-1)x (1)

It turns out that £5° is related to the right invariant vector field Rx on G
under the diffeomorphism 7(ug, )= (7y4,)" ' : Py, — G, since we have

Tg(ruo)'RX(g) = Tg(ruo)‘Te(:U’g)'X = Tuo (Tg)'Te(ruo)'X
= Ty (r7)¢x 