Topics in
Differential Geometry

Peter W. Michor

Fakultat fiir Mathematik der Universitat Wien, Nordbergstrasse 15, A-1090
Wien, Austria.

Erwin Schrodinger Institut fiir Mathematische Physik, Boltzmanngasse 9,
A-1090 Wien, Austria.

peter.michor@univie.ac.at







To the ladies of my life,
Elli, Franziska, and Johanna






Contents

X

16
21

43
43

68
87

101
101
115
124
131
141
153
160
171

193
193

vii



viii Contents

202
212
231
253
268

275
275
291
300
312
329
347

365
365
373
387

413
413
435
441
453

479
481
493



Preface

This book is an introduction to the fundamentals of differential geometry
(manifolds, flows, Lie groups and their actions, invariant theory, differential
forms and de Rham cohomology, bundles and connections, Riemann mani-
folds, isometric actions, symplectic geometry) which stresses naturality and
functoriality from the beginning and is as coordinate-free as possible. The
material presented in the beginning is standard — but some parts are not
so easily found in text books: Among these are initial submanifolds |(2.13)|
and the extension of the Frobenius theorem for distributions of nonconstant
rank (the Stefan-Sussman theory) in - A quick proof of the
Campbell-Baker-Hausdorff formula for Lie groups is in Lie group
actions are studied in detail: Palais’ results that an infinitesimal action of
a finite-dimensional Lie algebra on a manifold integrates to a local action
of a Lie group and that proper actions admit slices are presented with full
proofs in sections and @ The basics of invariant theory are given in
section The Hilbert-Nagata theorem is proved, and Schwarz’s theorem
on smooth invariant functions is discussed, but not proved.

In the section on vector bundles, the Lie derivative is treated for natural
vector bundles, i.e., functors which associate vector bundles to manifolds
and vector bundle homomorphisms to local diffeomorphisms. A formula for
the Lie derivative is given in the form of a commutator, but it involves the
tangent bundle of the vector bundle. So also a careful treatment of tangent
bundles of vector bundles is given. Then follows a standard presentation
of differential forms and de Rham cohomoloy including the theorems of
de Rham and Poincaré duality. This is used to compute the cohomology
of compact Lie groups, and a section on extensions of Lie algebras and Lie
groups follows.
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X Preface

The chapter on bundles and connections starts with a thorough treatment
of the Frolicher-Nijenhuis bracket via the study of all graded derivations
of the algebra of differential forms. This bracket is a natural extension
of the Lie bracket from vector fields to tangent bundle valued differential
forms; it is one of the basic structures of differential geometry. We begin
our treatment of connections in the general setting of fiber bundles (without
structure group). A connection on a fiber bundle is just a projection onto
the vertical bundle. Curvature and the Bianchi identity are expressed with
the help of the Frolicher-Nijenhuis bracket. The parallel transport for such
a general connection is not defined along the whole of the curve in the base
in general — if this is the case, the connection is called complete. We
show that every fiber bundle admits complete connections. For complete
connections we treat holonomy groups and the holonomy Lie algebra, a
subalgebra of the Lie algebra of all vector fields on the standard fiber. Then
we present principal bundles and associated bundles in detail together with
the most important examples. Finally we investigate principal connections
by requiring equivariance under the structure group. It is remarkable how
fast the usual structure equations can be derived from the basic properties
of the Frolicher-Nijenhuis bracket. Induced connections are investigated
thoroughly — we describe tools to recognize induced connections among
general ones. If the holonomy Lie algebra of a connection on a fiber bundle
with compact standard fiber turns out to be finite-dimensional, we are able
to show that in fact the fiber bundle is associated to a principal bundle and
the connection is an induced one. I think that the treatment of connections
presented here offers some didactical advantages: The geometric content of
a connection is treated first, and the additional requirement of equivariance
under a structure group is seen to be additional and can be dealt with later
— so the student is not required to grasp all the structures at the same time.
Besides that it gives new results and new insights. This treatment is taken
from [147].

The chapter on Riemann geometry contains a careful treatment of connec-
tions to geodesic structures to sprays to connectors and back to connections
considering also the roles of the second and third tangent bundles in this.
Most standard results are proved. Isometric immersions and Riemann sub-
mersions are treated in analogy to each other. A unusual feature is the
Jacobi flow on the second tangent bundle. The chapter on isometric ac-
tions starts off with homogeneous Riemann manifolds and the beginnings of
symmetric space theory; then Riemann G-manifolds and polar actions are
treated.

The final chapter on symplectic and Poisson geometry puts some emphasis
on group actions, momentum mappings and reductions.
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There are some glaring omissions: The Laplace-Beltrami operator is treated
only summarily, there is no spectral theory, and the structure theory of Lie
algebras is not treated and used. Thus the finer theory of symmetric spaces
is outside of the scope of this book.

The exposition is not always linear. Sometimes concepts treated in detail in
later sections are used or pointed out earlier on when they appear in a natural
way. Text cross-references to sections, subsections, theorems, numbered
equations, items in a list, etc., appear in parantheses, for example, section

subsection [(1.1)} theorem |(3.16)], equation |(3.16.3)| which will be called
(3) within [(3.16)| and its proof, property [(3.22.1)

This book grew out of lectures which I have given during the last three
decades on advanced differential geometry, Lie groups and their actions,
Riemann geometry, and symplectic geometry. I have benefited a lot from
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I want to thank Konstanze Rietsch whose write-up of my lecture course on
isometric group actions was very helpful in the preparation of this book and
Simon Hochgerner who helped with the last section.
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CHAPTER 1.
Manifolds and Vector
Fields

1. Differentiable Manifolds

1.1. Manifolds. A topological manifold is a separable metrizable space M
which is locally homeomorphic to R™. So for any x € M there is some
homeomorphism u : U — u(U) C R™, where U is an open neighborhood of
x in M and u(U) is an open subset in R™. The pair (U, u) is called a chart
on M.

One of the basic results of algebraic topology, called ‘invariance of domain’,
conjectured by Dedekind and proved by Brouwer in 1911, says that the
number n is locally constant on M if n is constant, M is sometimes called
a pure manifold. We will only consider pure manifolds and consequently we
will omit the prefix pure.

A family (U, ua)aca of charts on M such that the U, form a cover of M is
called an atlas. The mappings

UaB += Ua © Uﬁl : uﬁ(Uaﬂ) - Ua(Uozﬂ)

are called the chart changings for the atlas (U, ), where we use the notation
Uag =U,N Uﬁ.

An atlas (U,, Ug)aca for a manifold M is said to be a C*-atlas, if all chart
changings uag : ug(Usp) — ua(Uap) are differentiable of class C*. Two
C*-atlases are called C*-equivalent if their union is again a C*-atlas for M.
An equivalence class of C*-atlases is called a C*-structure on M.
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2 CHAPTER I. Manifolds and Vector Fields

From differential topology we know that if M has a C'-structure, then it also
has a C'-equivalent C*°-structure and even a C'-equivalent C¥-structure,
where C¥ is shorthand for real analytic; see [84].

By a C*-manifold M we mean a topological manifold together with a C*-
structure and a chart on M will be a chart belonging to some atlas of the
Ck-structure.

But there are topological manifolds which do not admit differentiable struc-
tures. For example, every 4-dimensional manifold is smooth off some point,
but there are such which are not smooth; see [196], [62]. There are also
topological manifolds which admit several inequivalent smooth structures.
The spheres from dimension 7 on have finitely many; see [157]. But the
most surprising result is that on R?* there are uncountably many pairwise
inequivalent (exotic) differentiable structures. This follows from the results
of [42] and [62]; see [78] for an overview.

Note that for a Hausdorff C'**°-manifold in a more general sense the following
properties are equivalent:

(1) It is paracompact.

(2) It is metrizable.

(3) It admits a Riemann metric.
(

4) Each connected component is separable.

In this book a manifold will usually mean a C*°-manifold, and smooth is used
synonymously for C*° — it will be Hausdorff, separable, finite-dimensional,
to state it precisely.

Note finally that any manifold M admits a finite atlas consisting of dim M +
1 (not connected) charts. This is a consequence of topological dimension
theory [169]; a proof for manifolds may be found in [80] I].

1.2. Example: Spheres. We consider the space R"*!, equipped with the
standard inner product (z,y) = > z'y’. The n-sphere S™ is then the subset
{x € R*™ . (z,2) = 1}. Since f(z) = (z,z), f : R — R, satisfies
df (x)y = 2(z,y), it is of rank 1 off 0 and by the sphere S™ is a
submanifold of R"*1.

In order to get some feeling for the sphere, we will describe an explicit atlas
for S™, the stereographic atlas. Choose a € S™ (‘south pole’). Let

Uy := 5"\ {a}, uy Uy = {a}t, uy () = x_f(z 62;1’

Uo ="\ {~a}),  u_:U- > f{a}t, u(e) =2
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From the following drawing in the 2-plane through 0, x, and a it is easily
seen that u, is the usual stereographic projection. We also get

_ 21
wl(y) = Mga+ oAy fory e {a}\ {0}

and (u_ oui')(y) = # The latter equation can directly be seen from the
drawing using the intercept theorem.

—a

1.3. Smooth mappings. A mapping f : M — N between manifolds is
said to be C* if for each x € M and one (equivalently: any) chart (V,v) on
N with f(z) € V there is a chart (U,u) on M with z € U, f(U) C V, and
vo fou~tis C*. We will denote by C*(M, N) the space of all C*-mappings
from M to N.

A C*-mapping f : M — N is called a C*-diffeomorphism if f~1 : N — M
exists and is also C*. Two manifolds are called diffeomorphic if there exists
a diffeomorphism between them. From differential topology (see [84]) we
know that if there is a C'-diffeomorphism between M and N, then there is
also a C°°-diffeomorphism.

There are manifolds which are homeomorphic but not diffeomorphic: On R4
there are uncountably many pairwise nondiffeomorphic differentiable struc-
tures; on every other R™ the differentiable structure is unique. There are
finitely many different differentiable structures on the spheres S™ for n > 7.
A mapping f : M — N between manifolds of the same dimension is called a
local diffeomorphism if each x € M has an open neighborhood U such that
fIU : U — f(U) C N is a diffeomorphism. Note that a local diffeomorphism
need not be surjective.
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1.4. Smooth functions. The set of smooth real valued functions on a
manifold M will be denoted by C°°(M), in order to distinguish it clearly
from spaces of sections which will appear later. The space C°°(M) is a real
commutative algebra.

The support of a smooth function f is the closure of the set where it does not
vanish, supp(f) = {x € M : f(z) # 0}. The zero set of f is the set where f
vanishes, Z(f) ={x € M : f(x) = 0}.

1.5. Theorem. Any (separable, metrizable, smooth) manifold admits
smooth partitions of unity: Let (Uy)aca be an open cover of M.

Then there is a family (pa)aca of smooth functions on M, such that:

(1) @a(x) >0 for allz € M and all « € A.

(2) supp(pa) C Uy for all o € A.

(3) (supp(pa))aca is a locally finite family (so each x € M has an open
neighborhood which meets only finitely many supp(pq)).

(4) >, ¢a =1 (locally this is a finite sum).

Proof. Any (separable, metrizable) manifold is a ‘Lindeldf space’, i.e., each
open cover admits a countable subcover. This can be seen as follows:

Let U be an open cover of M. Since M is separable, there is a countable
dense subset S in M. Choose a metric on M. For each U € U and each
r € U there is a y € S and n € N such that the ball B/, (y) with respect
to that metric with center y and radius % contains x and is contained in
U. But there are only countably many of these balls; for each of them we
choose an open set U € U containing it. This is then a countable subcover
of U.

Now let (Uy)aca be the given cover. Let us fix first o and z € U,. We
choose a chart (U,u) centered at = (i.e., u(z) = 0) and € > 0 such that
eD" C w(UNU,), where D" = {y € R™: |y| < 1} is the closed unit ball. Let

h(t) = e Yt fort >0,
"o for t <0,

a smooth function on R. Then

Faa(2) h(e? — Ju(2)]?) for z € U,
z) =
“r 0 for 2 ¢ U
is a nonnegative smooth function on M with support in U, which is positive
at .

We choose such a function f, , for each o and = € U,. The interiors of the
supports of these smooth functions form an open cover of M which refines
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(Uq), so by the argument at the beginning of the proof there is a countable
subcover with corresponding functions fi, fo,.... Let

W, ={z€M: fu(r) >0and fi(z) < forl<i<n},

and denote by W,, the closure. Then (Wy)n is an open cover. We claim
that (W), is locally finite: Let # € M. Then there is a smallest n such
that x € W,. Let V:={y € M : fo(y) > %fn(:v)} If y € VN Wy, then we
have f,,(y) > %fn(x) and fi(y) < % for i < k, which is possible for finitely

many k only.

Consider the nonnegative smooth function

() = h(fa(@)h(; = fi(2)) ... h(5 = fa-1(z)), neN.

Then obviously supp(g,) = W,. So g := >, 9n is smooth, since it is locally
only a finite sum, and everywhere positive; thus (g,/¢)nen is a smooth
partition of unity on M. Since supp(g,) = W, is contained in some Ua(n)s
we may put oo = > {(n:a(n)=a} %" to get the required partition of unity which
is subordinated to (Uy)acA- O

1.6. Germs. Let M and N be manifolds and x € M. We consider all
smooth mappings f : Uy — N, where U; is some open neighborhood of
x in M, and we put f ~, g if there is some open neighborhood V of z
with f|V = ¢|V. This is an equivalence relation on the set of mappings
considered. The equivalence class of a mapping f is called the germ of f at
x, sometimes denoted by germ, f. The set of all these germs is denoted by
C°(M,N).

Note that for a germs at x of a smooth mapping only the value at x is
defined. We may also consider composition of germs: germ F(z) gOgeTIM, f=
germ,(go f).

If N =R, we may add and multiply germs of smooth functions, so we get
the real commutative algebra C2°(M,R) of germs of smooth functions at .
This construction works also for other types of functions like real analytic
or holomorphic ones if M has a real analytic or complex structure.

Using smooth partitions of unity it is easily seen that each germ of a
smooth function has a representative which is defined on the whole of M.
For germs of real analytic or holomorphic functions this is not true. So
C2°(M,R) is the quotient of the algebra C°°(M) by the ideal of all smooth
functions f : M — R which vanish on some neighborhood (depending on f)
of z.

1.7. The tangent space of R". Let a € R". A tangent vector with foot
point a is simply a pair (a, X) with X € R™, also denoted by X,. It induces
a derivation X, : C*°(R™) — R by X,(f) = df(a)(X,). The value depends
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only on the germ of f at a and we have X,(f-g) = Xo(f)-g(a)+ f(a)- X.(g)
(the derivation property).

If conversely D : C*°(R") — R is linear and satisfies

D(f-g) = D(f)-g(a)+ f(a)- D(g)

(a derivation at a), then D is given by the action of a tangent vector with
foot point a. This can be seen as follows. For f € C*°(R"™) we have

1
f@»=f@»+/‘$ﬂa+ﬂw—a»w
0
+Z/ DL (a+t(x — a))dt (z' — ')

+Zh x—a

On the constant function 1 the derivation gives D(1) = D(1-1) = 2D(1),
so D(constant) = 0. Therefore,

=1
=0+ > D(hi)(a' —a’) + Y hi(a)(D(z") — 0)
i=1 i=1
= F(a)D@E),

where z’ is the i-th coordinate function on R™. So we have

D(f) =3 D)gxlalf), D= ZD 2 la

Thus D is induced by the tangent vector (a, Y., D(z')e;), where (e;) is the
standard basis of R".

1.8. The tangent space of a manifold. Let M be a manifold and let
x € M and dim M = n. Let T, M be the vector space of all derivations at x
of C2°(M,R), the algebra of germs of smooth functions on M at x. Using
it may easily be seen that a derivation of C°°(M) at = factors to a
derivation of C2°(M,R).

So T, M consists of all linear mappings X, : C°°(M) — R with the property
Xo(f-9) = Xo(f)-g(x)+ f(x) - X:(g). The space T,, M is called the tangent
space of M at x.
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If (U, u) is a chart on M with z € U, then u* : f — fow induces an isomor-
phism of algebras C 77 )(]R”, R) = C2°(M,R), and thus also an isomorphism
Tyu : ToM — Ty)R™, given by (Tpu.X)(f) = Xo(f ou). So T M is an
n-dimensional vector space.

We will use the following notation: u = (u!,... u™), so u’ denotes the i-th
coordinate function on U, and

D |m = (Tzu)_l(aii ‘u(z‘)) = (Tmu)_l(u(a:),ei).
So %\ « € T, M is the derivation given by
(fou)
o] _
gu le(f) = =5 (u(2)).
From m )| we have now

TuXx_ZTuX) N luge) = ZX

=1

n .
:ZXI( Z arz‘u(m

=1

n
Xo = (Tow) " TouXe = > Xo(u') 52 ]a.
=1

u(z)

1.9. The tangent bundle. For a manifold M of dimension n we put
TM :=||,cps T M, the disjoint union of all tangent spaces. This is a family
of vector spaces parameterized by M, with projection 7p; : TM — M given
by mp (T, M) = x.
For any chart (U, ua) of M consider the chart (3, (Us), Tua) on TM,
where T, : 7y (Us) = ua(Uy) x R™ is given by
Tua- X = (ua(mas(X)), Trpp(x) U0 X).
Then the chart changings look as follows:
Tug o (Tua) ™' : Tua(my} (Uap)) = ta(Usp) x R —
— up(Uap) x R" = Tug(my (Uap)),
(T o (Tua) ™) V) () = (Tua) ™ (5, Y))(f o ug)
— (1,Y)(f ougouz) = d(f ougouz")(y).Y
= df (ug o ug ' (y))-d(ug o uz")(y).Y
= (ug o ug ' (), d(ug o ug ") ().Y)(f)-

So the chart changings are smooth. We choose the topology on T'M in such
a way that all T'u, become homeomorphisms. This is a Hausdorff topology,
since X, Y € TM may be separated in M if 7(X) # 7n(Y); and they may be
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separated in one chart if 7(X) = 7(Y). So T'M is again a smooth manifold
in a canonical way; the triple (T'"M, mps, M) is called the tangent bundle of
the manifold M.

1.10. Kinematic definition of the tangent space. Let C3°(R, M) de-
note the space of germs at 0 of smooth curves R — M. We put the following
equivalence relation on C§°(R, M): the germ of ¢ is equivalent to the germ
of e if and only if ¢(0) = e(0) and in one (equivalently: each) chart (U, u)
with ¢(0) = e(0) € U we have %|0(u oc)(t) = %|0(u oe)(t). The equiva-
lence classes are also called velocity vectors of curves in M. We have the
following diagram of mappings where a(c)(germ, ) f) = %|0 f(e(t)) and
B :TM — C(R,M) is given by: B((Tu) (y,Y)) is the germ at 0 of
t = u~t(y+tY). So TM is canonically identified with the set of all possible
velocity vectors of curves in M:

Cg*(R, M)/ ~ <— Cg°(R, M)

™™

1.11. Tangent mappings. Let f : M — N be a smooth mapping between
manifolds. Then f induces a linear mapping 7o, f : T, M — T,y N for each
x € M by (Tpf.Xz)(h) = Xg(ho f) for h € C’j??x)(N, R). This mapping
is well defined and linear since f* : C;??x)(N ,R) — C°(M,R), given by
h — ho f,is linear and an algebra homomorphism, and T f is its adjoint,
restricted to the subspace of derivations.

If (U,u) is a chart around z and (V,v) is one around f(z), then
(Tt ele) (07) = a0 0 ) = (07 o f 0w ) (u(w)),
Tofogoile = 3 5(Te foii o) (W) 525 ) by
= 3, 2 () 5 | o

So the matrix of T, f : T M — Ty, N in the bases (% ») and (%U(gj))
is just the Jacobi matrix d(v o f o u™1)(u(z)) of the mapping vo fou™! at
u(x), 80 Tpzyvo Tpf o (Tpu) ™' =d(vo fout)(u(x)).
Let us denote by Tf : TM — TN the total mapping which is given by
Tf|T;M :=T,f. Then the composition

TvoTfo(Tu)™ ' :u(U) xR™ — v(V) x R",

(1Y) = ((vo fou™)(y)dwo fou t)(y)Y),

is smooth; thus T'f : TM — T'N is again smooth.
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If f: M — N and g: N — P are smooth, then we have T'(go f) =TgoTf.
This is a direct consequence of (go f)* = f*og*, and it is the global version
of the chain rule. Furthermore we have T'(Idys) = Idryy.

If feC®M),then Tf:TM — TR = R x R. We define the differential
of f by df :=pryoTf: TM — R. Let t denote the identity function on R.
Then (T'f.X;)(t) = Xz(to f) = Xu(f), so we have df (X;) = X (f).

1.12. Submanifolds. A subset N of a manifold M is called a submanifold
if for each x € N there is a chart (U,u) of M such that w(U N N) =
w(U) N (R* x 0), where RF x 0 < R¥ x R*™* = R™. Then clearly N is itself
a manifold with (U N N,u|(U N N)) as charts, where (U, u) runs through all
submanifold charts as above.

1.13. Let f: R™ — RY be smooth. A point z € RY is called a regular value
of f if the rank of f (more exactly: the rank of its derivative) is ¢ at each
point y of f~!(x). In this case, f~!(z) is a submanifold of R” of dimension
n —q (or empty). This is an immediate consequence of the implicit function
theorem, as follows: Let x = 0 € RY. Permute the coordinates (z',...,2")

on R" such that the Jacobi matrix
o 1SiZa] /g 1<i<q
df (y) = < -(y)> ( -(y)>
027 " J1<ica| \NO¥ ) gr1<icn

has the left hand part invertible. Then u := (f,pr,_,) : R" — R? x R"7¢
has invertible differential at y, so (U,u) is a chart at any y € f~1(0), and
we have fou=t(z1,...,2") = (2,...,29), so u(f~1(0)) = w(U) N (0 x R*~9)
as required.

Constant rank theorem ([41, I 10.3.1]). Let f : W — RY be a smooth
mapping, where W is an open subset of R™. If the derivative df(x) has
constant rank k for each x € W, then for each a € W there are charts (U, u)
of W centered at a and (V,v) of R centered at f(a) such that vo fou™!:
w(U) = v(V) has the following form:

(X1, yxp) = (T1,. .., 2,0,...,0).

So f~1(b) is a submanifold of W of dimension n — k for each b € f(W).

Proof. We will use the inverse function theorem several times. The deriva-
tive df (a) has rank k < n, ¢; without loss we may assume that the upper left
(k x k)-submatrix of df(a) is invertible. Moreover, let a = 0 and f(a) = 0.

We consider u : W — R™, u(z!, ..., 2") := (fi(),..., fFx), 2", ... 2").

Then
du = 027 /11<j<k 029 /k+1<j<n

]IRn—k:
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is invertible, so u is a diffeomorphism U; — Us for suitable open neighbor-
hoods of 0 in R™. Consider g = f ou™! : Uy — RY9. Then we have

9(215- s 2n) = (21500, 28 g1 (2), - -+, Gg(2)),
dg(z) = = dg' k?—lﬁigq ,
* (55 kt1<s<n
rank(dg(z)) = rank (d(f o u_l)(z))
= rank (df (v (2)).du”'(z)) = rank(df(2)) = k.

dg'
077
gi(zl,...,z”):gi(zl,...,zk,O,...,O) fork+1<i<gq.

Let v : U3 — RY, where U3 = {y € R?: (y',...,4*,0,...,0) € Uy C R"}, be
given by

Therefore,

(z)=0 fork+1<i<gandk+1<j<nmn;

y! y!
1 :
y
vl | =]kt k1 1yk k =1 & ykkl
; Yt — gF iyt yR,0,...,0) Yyt — g l(y) |
y . .
y? — gy, ... yk,0,...,0) y? — g1(y)

where j = (y%,...,94%,0,...,0) € R"if ¢ <n and § = (y},...,y") if ¢ > n.
We have v(0) = 0, and

d’U: HRk 0
*  IRa_p

is invertible; thus v : V' — R? is a chart for a suitable neighborhood of 0.
Now let U := f~1(V)uUU;. Then vo fou™! =vog: R* D u(U) — v(V) C RY
looks as follows:

ZL’l l’l .’L'l
1 . . .
X
. g xk v xk _ xk .
. gF () g (z) — gF i (z) 01"
g%(x) g%(x) — g(x) 0

Corollary. Let f: M — N be C* with T,f of constant rank k for all
r e M.

Then for each b € f(M) the set f~1(b) C M is a submanifold of M of
dimension dim M — k. O
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1.14. Products. Let M and N be smooth manifolds described by smooth
atlases (Uq, Ua)aca and (V3,v5)secp, respectively. Then the family (U, x
Vi, uaXvg 1 Ug x Vg — R™xR") (4 g)caxp 18 a smooth atlas for the cartesian
product M x N. Clearly the projections

M N 22N

are also smooth. The product (M x N,pry,pry) has the following universal
property:

For any smooth manifold P and smooth mappings f : P — M and
g : P — N the mapping

(f,9): P = MxN, (f9)(x)=(f(z),9(z)),
is the unique smooth mapping with pr; o(f,g) = f and pryo(f,g) = g.

From the construction of the tangent bundle in|(1.9)|it is immediately clear

that

T(pry) T (prsy)

TM T(M x N) TN

is again a product, so that T'(M x N) =TM x T'N in a canonical way.

Clearly we can form products of finitely many manifolds.

1.15. Theorem. Let M be a connected manifold and suppose that f : M —
M is smooth with fo f = f. Then the image f(M) of f is a submanifold
of M.

This result can also be expressed as: ‘smooth retracts’ of manifolds are
manifolds. If we do not suppose that M is connected, then f(M) will not
be a pure manifold in general; it will have different dimensions in different
connected components.

Proof. We claim that there is an open neighborhood U of f(M) in M such
that the rank of T}, f is constant for y € U. Then by theorem the
result follows.

For z € f(M) we have T, f o T,,f = T, f; thus im T, f = ker(Id — T, f) and
rank Ty f + rank(/d — T, f) = dim M. Since rank T, f and rank(/d — T} f)
cannot fall locally, rank 7). f is locally constant for z € f(M), and since
f(M) is connected, rank T, f = r for all z € f(M).

But then for each = € f(M) there is an open neighborhood U, in M with
rank T, f > r for all y € U,. On the other hand

rank Ty, f = rank T,/ (f o f) = rank Ty(y) f o T, f <vank Ty, f =7

since f(y) € f(M).
So the neighborhood we need is given by U = Uxef(M) U,. U
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1.16. Corollary. (1) The (separable) connected smooth manifolds are ex-
actly the smooth retracts of connected open subsets of R™’s.

(2) A smooth mapping f : M — N is an embedding of a submanifold if
and only if there is an open neighborhood U of f(M) in N and a smooth
mapping r: U — M with r o f = Idyy.

Proof. Any manifold M may be embedded into some R"; see|(1.19)| below.
Then there exists a tubular neighborhood of M in R" (see later or [84 pp.
109-118]), and M is clearly a retract of such a tubular neighborhood. The

converse follows from |(1.15)]

For the second assertion we repeat the argument for NV instead of R”. [J

1.17. Sets of Lebesque measure 0 in manifolds. An m-cube of width
w > 0 in R™ is a set of the form C' = [x1,21 + w] X ... X [Ty, Ty + W].
The measure p(C) is then u(C) = w". A subset S C R™ is called a set of
(Lebesque) measure 0 if for each € > 0 these are at most countably many
m-cubes C; with S C |J;2,C; and > 2, u(C;) < e. Obviously, a countable
union of sets of Lebesque measure 0 is again of measure 0.

Lemma. Let U C R™ be open and let f : U — R™ be C. If S C U is of
measure 0, then also f(S) C R™ is of measure 0.

Proof. Every point of S belongs to an open ball B C U such that the
operator norm ||df (x)|| < Kp for all z € B. Then |f(z) — f(y)| < Kg|x —y|
forall z,y € B. Soif C' C B is an m-cube of width w, then f(C') is contained
in an m-cube C’ of width \/mKpw and measure p(C") < m™2K%u(C).
Now let S = Ujoil S; where each S; is a subset of a ball B; as above. It
suffices to show that each f(S;) is of measure 0.

For each € > 0 there are m-cubes C; in Bj with S; C |J,; C; and ), u(C;) < e.
As we saw above, then f(S;) C |, C} with >, u(C) < mm/2Kg‘j5. O

Let M be a smooth (separable) manifold. A subset S C M is called a set
of (Lebesque) measure 0 if for each chart (U,u) of M the set u(SNU) is of
measure 0 in R™. By the lemma it suffices that there is some atlas whose
charts have this property. Obviously, a countable union of sets of measure
0 in a manifold is again of measure 0.

An m-cube is not of measure 0. Thus a subset of R™ of measure 0 does
not contain any m-cube; hence its interior is empty. Thus a closed set of
measure 0 in a manifold is nowhere dense. More generally, let S be a subset
of a manifold which is of measure 0 and o-compact, i.e., a countable union of
compact subsets. Then each of the latter is nowhere dense, so S is nowhere
dense by the Baire category theorem. The complement of S is residual,
i.e., it contains the intersection of a countable family of open dense subsets.
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The Baire theorem says that a residual subset of a complete metric space is
dense.

1.18. Regular values. Let f : M — N be a smooth mapping between
manifolds.

(1) A point x € M is called a singular point of f if T, f is not surjective,
and it is called a regular point of f if T, f is surjective.

(2) A point y € N is called a regular value of f if T, f is surjective for
all z € f~Y(y). If not, y is called a singular value. Note that any
y € N\ f(M) is a regular value.

Theorem ([167], [197]). The set of all singular values of a C* mapping
f M — N is of Lebesgue measure 0 in N if k > max{0, dim(M )—dim(N)}.

So any smooth mapping has regular values.

Proof. We prove this only for smooth mappings. It is sufficient to prove
this locally. Thus we consider a smooth mapping f : U — R™ where U C R™
is open. If n > m, then the result follows from lemmaabove (consider
the set U x 0 C R™ x R™™™ of measure 0). Thus let m > n.

Let X(f) C U denote the set of singular points of f. Let f = (f!,..., f"),
and let X(f) = 31 U X9 U X3 where:

¥y is the set of singular points = such that Pf(z) = 0 for all linear differ-
ential operators P of order < 7.

Yo is the set of singular points = such that Pf(x) # 0 for some differential
operator P of order > 2.

Y3 is the set of singular points x such that %(3:) = 0 for some 4, j.

We first show that f(X1) has measure 0. Let v = [™* + 1] be the smallest
integer > m/n. Then each point of ¥; has an open neighborhood W C U
such that |f(z) — f(y)| < K|z —y|” for all z € ¥, N W and y € W and for
some K > 0, by Taylor expansion. We take W to be a cube, of width w. It
suffices to prove that f(31 NW) has measure 0. We divide W into p" cubes
of width %; those which meet ¥; will be denoted by C4,...,C, for ¢ < p™.
Each Cj, is contained in a ball of radius %\/ﬁ centered at a point of X1 NW.
The set f(Ck) is contained in a cube €} C R of width 2K (%/m)”. Then
Zﬂn(cilﬁ) < pm(QK)"(E\/E)”" =p" " (2K)"w" — 0 for p — oo,
p
k

since m — vn < 0.

Note that 3X(f) = X1 if n = m = 1. So the theorem is proved in this
case. We proceed by induction on m. So let m > 1 and assume that the
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theorem is true for each smooth map between manifolds M’ — N’ where
dim(M') < m.
We prove that f(X3 \ X3) has measure 0. For each x € ¥y \ X3 there

is a linear differential operator P such that Pf(x) = 0 and ng;(x) # 0

for some 4,j. Let W be the set of all such points, for fixed P,d,j. It
suffices to show that f(7) has measure 0. By assumption, 0 € R is a
regular value for the function Pf* : W — R. Therefore W is a smooth
submanifold of dimension m — 1 in R™. Clearly, X(f) N W is contained in
the set of all singular points of f|WW : W — R™, and by induction we get
that f((X2\ 23)NW) C f(E(f)NW) C f(E(f|W)) has measure 0.

It remains to prove that f(X3) has measure 0. Every point of ¥3 has an

open neighborhood W C U on which % # 0 for some i, j. By shrinking W
if necessary and applying diffeomorphisms, we may assume that

R™ x RD Wy x Wa =W —L R xR, (y,t) = (g(y,1),1).

Clearly, (y,t) is a critical point for f if and only if y is a critical point for
g( ). Thus B(f)NW = U,en, (E(g( 1)) x{t}). Since dim(W;) = m—1,
by induction we get that u"~1(g(Z(g( ,t),t))) = 0, where p"! is the
Lebesque measure in R”~'. By Fubini’s theorem we get

W (Sl 8) = {t}) = / W g(S(g( 1)) di

teWs W2

:/ Odt=0. O
Wo

1.19. Embeddings into R"’s. Let M be a smooth manifold of dimension
m. Then M can be embedded into R™ if
(1) n=2m+ 1 (this is due to [229]; see also [84], p. 55] or [26 p. 73]).
(2) n=2m (see [229]).
(3) Conjecture (still unproved): The minimal n is n = 2m — a(m) + 1,
where «(m) is the number of 1’s in the dyadic expansion of m.
There exists an immersion (see section M — R™ if
(4) n=2m (see [84]).
(5) n=2m — 1 (see [229]).

(6) Conjecture: The minimal n is n = 2m — a(m). The article [34] claims
to have proven this. The proof is believed to be incomplete.
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Examples and Exercises

1.20. Discuss the following submanifolds of R™; in particular make drawings
of them:

The unit sphere S"~! = {z € R" : (z,x) = 1} C R™

2
The ellipsoid {x € R™ : f(z) := Y i, Z—g = 1}, a; # 0, with principal axis
aly...,0n. '
2
The hyperboloid {z € R™ : f(x) := > &% = 1}, & = %1, a; # 0, with

2
principal axis a; and index = ) ¢;. R
The saddle {x € R3 : 23 = 2122},
The torus: the rotation surface generated by rotation of (y — R)? + 22 = r2,
0 < r < R, with center the z—axis, i.e.,

{(z,y,2) : (Va2 +9y2 — R)? + 22 =r?}.

1.21. A compact surface of genus g. Let f(z) := z(x — 1)%(z —
2)2...(x — (g — 1))%(z — g). For small » > 0 the set {(z,y,2) : (y* +
f(z))?+ 2% = r?} describes a surface of genus g (topologically a sphere with
g handles) in R3. Visualize this:

1.22. The Moebius strip. It is not the set of zeros of a regular function
on an open neighborhood of R". Why not? But it may be represented by
the following parameterization:

cos (R + rcos(p/2))
fryp) = | sinp(R+rcos(p/2)) |,
rsin(y/2)
(r,p) € (—1,1) x [0,27),

where R is quite big.

1.23. Describe an atlas for the real projective plane which consists of three
charts (homogeneous coordinates) and compute the chart changings.

Then describe an atlas for the n-dimensional real projective space P"(R)
and compute the chart changes.
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1.24. Let f: L(R",R") — L(R",R") be given by f(A) :== AT A. Where is
f of constant rank? What is f~1(I,,)?

1.25. Let f: L(R",R™) — L(R™,R™), n < m, be given by f(A) := AT A.
Where is f of constant rank? What is f~!(Idgn)?

1.26. Let S be a symmetric matrix, i.e., S(z,y) := = 'Sy is a symmetric
bilinear form on R™. Let f : L(R",R") — L(R"™,R™) be given by f(A) :=
ATSA. Where is f of constant rank? What is f~1(S)?

1.27. Describe T'S? c RS,

2. Submersions and Immersions

2.1. Definition. A mapping f : M — N between manifolds is called a
submersion at x € M if the rank of Ty f : ToM — Ty, N equals dim V.
Since the rank cannot fall locally (the determinant of a submatrix of the
Jacobi matrix is not 0), f is then a submersion in a whole neighborhood of
x. The mapping f is said to be a submersion if it is a submersion at each
r e M.

2.2. Lemma. If f : M — N is a submersion at x € M, then for any chart
(V,v) centered at f(x) on N there is chart (U,u) centered at x on M such
that vo fou™t looks as follows:

Proof. Use the inverse function theorem once: Apply the argument from
the beginning of [[1.13)|to vo f ouj ! for some chart (Uy,u;) centered at the
point x. U

2.3. Corollary. Any submersion f : M — N is open: For each open
U C M the set f(U) is open in N. O

2.4. Definition. A triple (M,p, N), where p : M — N is a surjective
submersion, is called a fibered manifold. The manifold M is called the total
space and N is called the base.

A fibered manifold admits local sections: For each x € M there is an open
neighborhood U of p(z) in N and a smooth mapping s : U — M with
pos=Idy and s(p(x)) = z.
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The existence of local sections in turn implies the following universal prop-

erty:
pi \
f

N ——P.

If (M,p,N) is a fibered manifold and f : N — P is a mapping into some
further manifold such that f op: M — P is smooth, then f is smooth.

2.5. Definition. A smooth mapping f : M — N is called an immersion
at x € M if the rank of T, f : TyM — T}, N equals dim M. Since the
rank is maximal at x and cannot fall locally, f is an immersion on a whole
neighborhood of z. The mapping f is called an immersion if it is so at every
xeM.

2.6. Lemma. If f : M — N is an immersion, then for any chart (U, u)
centered at x € M there is a chart (V,v) centered at f(x) on N such that
vo fou~l has the form

(yl,...,ym) — (yl,...,ym,O,...,O).
Proof. Use the inverse function theorem. O

2.7. Corollary. If f: M — N is an immersion, then for any x € M there
is an open neighborhood U of x € M such that f(U) is a submanifold of N
and flU : U — f(U) is a diffeomorphism. O

2.8. Corollary. If an injective immersion i : M — N is a homeomorphism
onto its image, then i(M) is a submanifold of N.

Proof. Use O

2.9. Definition. If i : M — N is an injective immersion, then (M,i) is
called an immersed submanifold of N.

A submanifold is an immersed submanifold, but the converse is wrong in
general. The structure of an immersed submanifold (M, ) is in general not
determined by the subset i(M) C N. All this is illustrated by the follow-
ing example. Consider the curve y(t) = (sin®t,sint.cost) in R%. Then
((=m,m),v|(—m, 7)) and ((0,27),~|(0,27)) are two different immersed sub-
manifolds, but the image of the embedding is in both cases just the figure
eight.
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2.10. Let M be a submanifold of N. Then the embedding i : M — N is an
injective immersion with the following property:

(1) For any manifold Z a mapping f : Z — M is smooth if and only if
1o f:Z — N is smooth.

There are injective immersions without property ([I); see [(2.9)]

We want to determine all injective immersions ¢ : M — N with property
(). To require that i is a homeomorphism onto its image is too strong
as below shows. To look for all smooth mappings ¢ : M — N with
property (initial mappings in categorical terms) is too difficult as
remark below shows.

2.11. Example. We consider the 2-dimensional torus T? = R?/Z2. Then
the quotient mapping 7 : R? — T? is a covering map, so locally a diffeomor-
phism. Let us also consider the mapping f : R — R2, f(t) = (t, a.t), where
« is irrational. Then 7o f : R — T? is an injective immersion with dense

image, and it is obviously not a homeomorphism onto its image. But 7o f
has property [(2.10.1)] which follows from the fact that 7 is a covering map.

2.12. Remark. If f : R — R is a function such that the powers fP and
f4 are smooth for some p, ¢ which are relatively prime in N, then f itself
turns out to be smooth; see [97]. So the mapping i : ¢t — (z), R — R2, has

property |(2.10.1), but 4 is not an immersion at 0.

In [98] all germs of mappings at 0 with property [(2.10.1)| are characterized
as in the following way: Let ¢ : (R,0) — (R",0) be a germ of a C*°-curve,
g(t) = (g1(t), ..., gn(t)). Without loss we may suppose that g is not infinitely
flat at 0, so that g1(t) = t" for r € N after a suitable change of coordinates.

Then g has property|(2.10.1)| near 0 if and only if the Taylor series of g is
not contained in any R™[[t*]] for s > 2.

2.13. Definition. For an arbitrary subset A of a manifold N and 2y € A
let Cy,(A) denote the set of all x € A which can be joined to z¢ by a smooth
curve in M lying in A.

A subset M in a manifold N is called an initial submanifold of dimension m
if the following property is true:

(1) For each x € M there exists a chart (U,u) centered at x on N such
that u(Cr(U N M)) =uw(U) N (R™ x 0).

The following three lemmas explain the name initial submanifold.

2.14. Lemma. Let f: M — N be an injective immersion between mani-
folds with the universal property|(2.10.1). Then f(M) is an initial subman-
ifold of N.
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Proof. Let z € M. By|(2.6)| we may choose a chart (V,v) centered at f(x)
on N and another chart (W, w) centered at x on M such that
(vo fow (W, ...,y™ = ...,y™0,...,0).
Let r > 0 be small enough such that {y € R™ : |y| < 2r} C w(W) and also
{zeR":|z| <2r} Cv(V). Put
U:=v1{zeR":|z| <r}) CN,
Wii=w'{y e R™:|y| <r}) C M.
We claim that (U, u = v|U) satisfies the condition of [(2.13.1)}
uTHu(U)NR™ x 0)) =u  ({(y"s....y™,0...,0) : [y] <7})
= fow lo(uofow )T H({(yh...,y"™0...,0) [yl <1}
=fow '({y eR™: |yl <r}) = f(W1) C Cpe)(UN f(M)),
since f(W7) CUN f(M) and f(W7) is C°-contractible.
Now let conversely 2z € Cp,) (U N f(M)). By definition there is a smooth
curve ¢ : [0,1] = N with ¢(0) = f(z), ¢(1) = 2z, and ¢([0,1]) CUNf(M). By
property [(2.10.1)[ the unique curve ¢ : [0,1] — M with f o ¢ = ¢ is smooth.
We claim that ¢([0,1]) € Wi. If not, then there is some t € [0,1] with
e(t) e w t{y € R™:r < |y| < 2r}) since ¢ is smooth and thus continuous.
But then we have

(vo f)(e(t) € (vo fow )({y e R™: 7 <[y < 2r})
={(y,0) eR" x0:r <|yl<2r} C{zeR":r <|z| < 2r}.
This means (vo foc)(t) = (voc)(t) e {z € R" :r < |z| < 2r},s0 c(t) ¢ U,
a contradiction.
So ¢([0,1]) € Wy; thus &(1) = f~1(2) € Wiy and z € f(W;). Consequently
we have Cp,)(UNf(M)) = f(W1) and finally f(W1) = u™ ! (w(U)N(R™ % 0))
by the first part of the proof. O

2.15. Lemma. Let M be an initial submanifold of a manifold N. Then
there is a unique C°°-manifold structure on M such that the injection i :

M — N is an injective immersion with property|(2.10.1)|:

(1) For any manifold Z a mapping f : Z — M is smooth if and only if
1o f:Z — N is smooth.

The connected components of M are separable (but there may be uncountably

many of them,).

Proof. We use the sets C,(U, N M) as charts for M, where x € M and
(Ug,ug) is a chart for N centered at x with the property required in|(2.13.1)|
Then the chart changings are smooth since they are just restrictions of the
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chart changings on N. But the sets C, (U, N M) are not open in the induced
topology on M in general. So the identification topology with respect to the
charts (Cy(Uy N M), uz)rens yields a topology on M which is finer than the
induced topology, so it is Hausdorff. Clearly ¢ : M — N is then an injective
immersion. Uniqueness of the smooth structure follows from the universal
property ([{l) which we prove now: For z € Z we choose a chart (U,u) on
N, centered at f(z), such that u(Cy\(UN M)) = uw(U) N (R™ x 0). Then
f~1(U) is open in Z and contains a chart (V,v) centered at z on Z with v(V)
a ball. Then f(V') is C*°-contractible in U N M, so f(V) C Cy,y(U N M),
and (u|Cp,)(UNM))o fov ' =uo fov! is smooth.

Finally note that N admits a Riemann metric which induces one on
M, so each connected component of M is separable, by O

2.16. Transversal mappings. Let M7, M>, and N be manifolds and let
fi + M; — N be smooth mappings for ¢ = 1,2. We say that f; and fy are
transversal at y € N if

im Ty, fi +im Ty, fo =T,N whenever fi(z1)= fo(x2) =y.

Note that they are transversal at any y which is not in f1(M;) or not in
f2(M3). The mappings f1 and f2 are simply said to be transversal if they
are transversal at every y € N.

If P is an initial submanifold of N with embedding ¢ : P — N, then a
mapping f : M — N is said to be transversal to P if ¢ and f are transversal.

Lemma. In this case f~1(P) is an initial submanifold of M with the same
codimension in M as P has in N; or f~Y(P) is the empty set. If P is a
submanifold, then also f~'(P) is a submanifold.

Proof. Let x € f~!(P) and let (U, u) be an initial submanifold chart for P
centered at f(z) on N, i.e., u(Cy)(U N P)) =u(U) N (RP x 0). Then the
mapping

M2 YUY Lo U s w(U) CRP x RV P2, gop

is a submersion at x since f is transversal to P. So by lemma |(2.2)| there is
a chart (V,v) on M centered at x such that we have

(pry ouofov_l)(yl,...,y”_p,...,ym) = (yl,...,y"_p).

But then z € C,.(f~1(P)NV) if and only if v(z) € v(V) N (0 x R™"*P), 50
v(Co(fHP)NV)) = v(V) N (0 x RM=7+P), O
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2.17. Corollary. If fi : My — N and fo : My — N are smooth and
transversal, then the topological pullback

My X My = My Xy My := {(l‘l,ﬁz) € My x Ms : fl(azl) = fg(l‘g)}
(fl’Nny)

is a submanifold of M1 X My, and it has the following universal property:

For any smooth mappings g1 : P — My and go : P — My with fiog1 =
fa0gs there is a unique smooth mapping (g1,g2) : P — My X y Ma with
pry o(g1,92) = g1 and pryo(g, g2) = g.

92

P
W) l
g1 M1 XN MQPL M2
\LPH lf2
m— N

This is also called the pullback property in the category M f of smooth
manifolds and smooth mappings. So one may say that transversal pullbacks
exist in the category M f. But there also exist pullbacks which are not
transversal.

Proof. M xn My = (f1 X fg)il(A), where f1 X f2 : My x My — N x N
and where A is the diagonal of N x N, and f; X fo is transversal to A if
and only if f; and fo are transversal. O

3. Vector Fields and Flows

3.1. Definition. A wvector field X on a manifold M is a smooth section of
the tangent bundle; so X : M — T'M is smooth and w0 X = Idys. A local
vector field is a smooth section which is defined on an open subset only. We
denote the set of all vector fields by X(M). With pointwise addition and
scalar multiplication X(M) becomes a vector space.

Example. Let (U,u) be a chart on M. Then the % U - TM\|U, v —
%\x, described in |(1.8), are local vector fields defined on U.

Lemma. If X is a vector field on M and (U,u) is a chart on M and
z € U, then we have X(x) = > *, X(x)(ui)a‘zi|$. We write X|U =

Z;ZIX(ui)aii. 0
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3.2. The vector fields (a‘zi);’il on U, where (U,u) is a chart on M, form
a holonomic frame field. By a frame field on some open set V. C M we
mean m = dim M vector fields s; € X(U) such that si(x),...,sm(x) is a
linear basis of T, M for each x € V. A frame field is said to be holonomic
it s; = % for some chart (V,v). If no such chart may be found locally, the
frame field is called anholonomic.

With the help of partitions of unity and holonomic frame fields one may
construct ‘many’ vector fields on M. In particular the values of a vector
field can be arbitrarily preassigned on a discrete set {z;} C M.

3.3. Lemma. The space X(M) of vector fields on M coincides canonically
with the space of all derivations of the algebra C*°(M) of smooth functions,
i.e., those R-linear operators D : C*°(M) — C>(M) with

D(fg) = D(f)g + fD(g).

Proof. Clearly each vector field X € X(M) defines a derivation (again
called X; later sometimes called Lx) of the algebra C°°(M) by stipulating
X(f)(x) = X(2)(f) = df (X (2)).

If conversely a derivation D of C*°(M) is given, for any x € M we consider
Dy : C*(M) — R, Dy(f) = D(f)(x). Then D, is a derivation at = of
C>®(M) in the sense of so D, = X, for some X, € T, M. In this
way we get a section X : M — TM. If (U,u) is a chart on M, we have
D, =3%" X(z)(u i)8u1|:’3 by [(1.7)] Choose V openin M,V C V C U, and
¢ € C*°(M,R) such that supp() C U and |V = 1. Then ¢ - u' € C°(M)
and (pu?)|V = u!|V. So D(pu')(z) = X (z)(pu’) = X(x)(u') and X|V =
>, D) i .

3.4. The Lie bracket. By lemma |(3.3)| we can identify X(M) with the
vector space of all derivations of the algebra C°°(M), which we will do
without any notational change in the following.

If X, Y are two vector fields on M, then the mapping f — X(Y(f)) —
Y (X(f)) is again a derivation of C*°(M), as a simple computation shows.
Thus there is a unique vector field [X,Y] € X(M) such that [X,Y](f) =
XY (f) —Y(X(f)) holds for all f e C>(M).

In a local chart (U,u) on M one easily checks that for X|U = 3 X*
YIU=>YY! ?ﬂ we have

[Z XZ@u“ZY] 8u1] = Z (XZ(GUZY]) Yl(auzX])) oul
- Z XJ))

and

Bul
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since second partial derivatives commute. The R-bilinear mapping
[, ]:X(M)xX(M)— X(M)

is called the Lie bracket. Note also that X(M) is a module over the algebra
C>° (M) by pointwise multiplication (f, X) — fX.

Theorem. The Lie bracket [ , | : X(M) x X(M) — X(M) has the
following properties:

(X, Y] = -[v, X],

(X,[Y, 2] = [[X,Y],Z] + [V, [X, Z]], the Jacobi identity,

[FX Y] = fIX, Y] - (Y )X

(X, 1Y) = fIX, Y]+ (X f)
The form of the Jacobi identity we have chosen says that ad(X) = [X, ]is
a derivation for the Lie algebra (X(M),[ , ). The pair (X(M),[ , ]

is the prototype of a Lie algebra. The concept of a Lie algebra is one of the
most important notions of modern mathematics.

Proof. All these properties are checked easily for the commutator [X,Y] =
X oY —Y o X in the space of derivations of the algebra C*°(M). O

3.5. Integral curves. Let ¢: J — M be a smooth curve in a manifold M
defined on an interval J. We will use the following notations: ¢/(t) = ¢(t) =
de(t) == Tyed. Clearly ¢ : J — TM is smooth. We call ¢ a vector field
along ¢ since we have my; o = ¢

M

AL

A smooth curve ¢ : J — M will be called an integral curve or flow line of a
vector field X € X(M) if ¢/(t) = X (c(¢)) holds for all ¢t € J.

3.6. Lemma. Let X be a vector field on M. Then for any x € M there is
an open interval J, containing 0 and an integral curve ¢, : J, — M for X
(i.e., ¢, = X o ¢, ) with ¢, (0) = x. If J, is mazimal, then ¢, is unique.

Proof. In a chart (U,u) on M with x € U the equation ¢/(t) = X(c(t)) is a
system ordinary differential equations with initial condition ¢(0) = x. Since
X is smooth, there is a unique local solution which even depends smoothly
on the initial values, by the theorem of Picard-Lindelof, [41], 10.7.4]. So on
M there are always local integral curves. If J, = (a,b) and lim;_,— ¢, (t) =:
c:(b) exists in M, there is a unique local solution ¢; defined in an open
interval containing b with ¢;(b) = ¢,(b). By uniqueness of the solution on
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the intersection of the two intervals, c; prolongs c, to a larger interval. This
may be repeated (also on the left hand side of J,) as long as the limit
exists. So if we suppose J, to be maximal, J, either equals R or the integral
curve leaves the manifold in finite (parameter-)time in the past or future or
both. O

3.7. The flow of a vector field. Let X € X(M) be a vector field. Let
us write FLX (z) = FI1X(t,2) := c,(t), where ¢, : J, — M is the maximally
defined integral curve of X with ¢;(0) = z, constructed in lemma|(3.6)|

Theorem. For each vector field X on M, the mapping F1X : D(X) — M
is smooth, where D(X) = J e Jo X {x} is an open neighborhood of 0 x M
in R x M. We have

FI¥(t + 5,2) = FI* (¢, F1¥ (s, 2))

in the following sense. If the right hand side exists, then the left hand side
exists and we have equality. If both t, s > 0 or both are < 0, and if the left
hand side exists, then also the right hand side exists and we have equality.

Proof. As mentioned in the proof of F1¥(t,z) is smooth in (¢,z)
for small ¢, and if it is defined for (¢,x), then it is also defined for (s,y)
nearby. These are local properties which follow from the theory of ordinary
differential equations.

Now let us treat the equation FI1¥ (t 4 s, z) = FI1* (¢, F1¥ (s, 2)). If the right
hand side exists, then we consider the equation

LFX(t+5,2) = LFI* (0, 2)|umirs = X(FLE(E+ s5,2)),
FIX(t + s, 2)|t=0 = F1¥ (s, z).

But the unique solution of this is F1¥ (¢, F1¥(s,z)). So the left hand side
exists and equals the right hand side.

If the left hand side exists, let us suppose that t,s > 0. We put
F1¥ (u, x) if u <s,
alu) = { FIX (u — 5, F1% (s, 2)) if u>s.
Then we have
d X _ X
duca(1) = {d: EiXEzjf)s_Ffi((zlx)(;Lz)))((;F; (Zf Z FIX (s, 2))
au 5 5 ) )
= X(cz(u)) for0<u<t+s.

Also ¢;(0) = x and on the overlap both definitions coincide by the first part
of the proof; thus we conclude that ¢,(u) = F1*(u,z) for 0 < u < t + s and
we have FIX (1, F1X (s, 2)) = c,(t + s) = FIX(t + s, ).
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Now we show that D(X) is open and FI* is smooth on D(X). We know
already that D(X) is a neighborhood of 0 x M in R x M and that FI¥ is
smooth near 0 x M.

For 2 € M let J.. be the set of all t € R such that FI¥ is defined and smooth
on an open neighborhood of [0, ¢] x {x} (respectively on [t,0] x {z} for ¢ < 0)
in R x M. We claim that J, = J,, which finishes the proof. It suffices to
show that J! is not empty, open and closed in J,. It is open by construction,
and not empty, since 0 € J. If J. is not closed in Jy, let tg € J. N (J.\ J2)
and suppose that ty > 0, say. By the local existence and smoothness F1X
exists and is smooth near [—¢,e] x {y := FI*(tp,2)} in R x M for some
e > 0, and by construction FI¥ exists and is smooth near [0ty — ¢] x {x}.
Since F1¥(—¢,%) = FI¥ (g — ¢, 2), we conclude for ¢ near [0,%y — €], 2/ near
x, and ' near [—¢,¢] that FIX(t + ¢/, 2') = FIX(#,F1¥(¢,2/)) exists and is
smooth. So ty € J., a contradiction. (]

3.8. Let X € X(M) be a vector field. Tts flow F1¥ is called global or complete
if its domain of definition D(X) equals R x M. Then the vector field X itself
will be called a complete vector field. In this case FI¥ is also sometimes called
exptX; it is a diffeomorphism of M. The support supp(X) of a vector field
X is the closure of the set {x € M : X(z) # 0}.

Lemma. A vector field with compact support on M is complete.

Proof. Let K = supp(X) be compact. Then the compact set 0 x K has
positive distance to the disjoint closed set (R x M)\ D(X) (if it is not
empty), so [—¢,¢] x K C D(X) for some € > 0. If ¢ K, then X (z) =0, so
FI1¥(t,x) = x for all t and R x {z} C D(X). So we have [—¢,e] x M C D(X).
Since F1X(t + €, z) = F1¥(t,F1¥ (¢, x)) exists for |t| < € by theorem
we have [—2e,2¢] x M C D(X) and by repeating this argument we get
R x M = D(X). O

So on a compact manifold M each vector field is complete. If M is not

compact and of dimension > 2, then in general the set of complete vector

fields on M is neither a vector space nor is it closed under the Lie bracket, as
z2 9

the following example on R? shows: X = ya% and Y = T gy are complete,

but neither X +Y nor [X,Y] is complete. In general one may embed R? as
a closed submanifold into M and extend the vector fields X and Y.

3.9. f-related vector fields. If f: M — M is a diffeomorphism, then for
any vector field X € X(M) the mapping Tf~! o X o f is also a vector field,
which we will denote by f*X. We also put f, X :=TfoXof ! =(f1)*X.
But if f : M — N is a smooth mapping and Y € X(N) is a vector field,
there may or may not exist a vector field X € X(M) such that the following
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diagram commutes:

(1) ™ TN

S

M —— N.

Definition. Let f : M — N be a smooth mapping. Two vector fields
X eX(M)andY € X(N) are called f-related if Tf o X =Y o f holds, i.e.,
if diagram () commutes.

Example. If X € X(M) and Y € X(N) and if X xY € X(M x N) is given

by (X xY)(z,y) = (X(z),Y(y)), then we have:

(2) X xY and X are pry-related.

(3) X xY and Y are pry-related.
)

(4) X and X x Y are ins(y)-related if and only if Y (y) = 0, where the
mapping ins(y) : M — M x N is given by ins(y)(z) = (x,y).

3.10. Lemma. Consider vector fields X; € X(M) and Y; € X(N) for
1 = 1,2, and a smooth mapping f : M — N. If X; and Y; are f-related
fori=1,2, then also A\1 X1+ Ao Xso and A\1Y1 + \oYs are f-related, and also
[X1, Xo] and [Y1, Y] are f-related.

Proof. The first assertion is immediate. To prove the second, we choose
h € C*(N). Then by assumption we have T'f o X; = Y; o f; thus:

(Xi(ho f))(x) = Xi(z)(ho f) = (Tof Xi(x))(h)
= (T'f o Xi)(z)(h) = (Yio f)(x)(h) = Yi(f(x))(h) = (Yi(h))(f(x)),
so Xi(ho f) = (Yi(h)) o f, and we may continue:
[X1, Xo](ho f) = X1(Xa(ho f)) — Xa(Xi(ho f))
= X1(Y2(h) o f) = Xa2(Y1(h) o f)
=Y1(Ya(h)) o f = Ya(Y1(h)) o f = [Y1,Y2](h) o f.
But this means T'f o [ X7, Xo] = [V1,Y3] o f. O

3.11. Corollary. If f : M — N is a local diffeomorphism (so (Tf)~*
makes sense for each x € M), then for Y € X(N) a vector field f*Y €
X(M) is defined by (f*Y)(z) = (Tof)" LY (f(z)). The linear mapping f* :
X(N) — X(M) is then a Lie algebra homomorphism, i.e.,

[ N, Y] = [f1, fYa].
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3.12. The Lie derivative of functions. For a vector field X € X(M)
and f € C°(M) we define Lx f € C*(M) by

Lx f(z):= Flof(FI¥(t, ) or
Lxf:= $|0(F1tx) [ = $|0(foFlg()-

Since F1¥ (t,z) is defined for small ¢, for any = € M, the expressions above
make sense.

Lemma. We have
FE) f = (FIN)*X(f) = X((FI)*f);
in particular for t = 0 we have Lx f = X (f) = df (X).

Proof. We have
FELN f(z) = df (& FIX(t,2)) = df (X (FIX (¢, 2))) = (FI)*(X f)(2).
From this we get Lx f = X(f) = df(
EFE)f = &o(FL o FI)* f = Lo (FIX)*(FL)* f = X((F11)*f). O

X) and then in turn

3.13. The Lie derivative for vector fields. For X,Y € X(M) we define
LxY € X(M) by

LxY = LIo(FL)Y = 4o(T(F1Y,) o Y o FIY),
and call it the Lie derivative of Y along X.

Lemma. We have
LxY =[X,Y],
SE)Y = (FI)" LxY = (FIX)*[X,Y] = Lx (FIF)"Y = [X, (FI})*Y].

Proof. For f € C°°(M) consider the mapping a(t,s) := Y (FI* (¢, z))(f o
F1X), which is locally defined near 0. It satisfies

a(t,0) = Y (FI¥ (t,2))(/),
a(0,s) = Y (x)(f o FI),
510(0,0) = OloY (FI* (£, 2))(f) = 0lo(Y [)(FI¥ (¢, 2)) = X (2)(Y ),
5:0(0,0) = LY (2)(f o FIY') = Y (2) §lo(f o FIY) = Y (2)(X f).
But on the other hand we have
2 Joa(u,—u) = ZloY (FIX (u,2))(f o FIX,)
= gulo (T(FIZ,) oY o FIY)_ (f) = (LxY)a(f),
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so the first assertion follows. For the second claim we compute as follows:
2(F)'Y = Z|o (T(FIY,) o T(FI,) o Y o FI o FL)
= T(F1¥,) o Z|o (T(FI¥,) oY o FI) o FI¥
= T(FI*,) o [X,Y] o FIX = (FIX)*[X,Y].
S(FI)'Y = 2[o(FIX)*(FIX)Y = Ly (FIY)'Y. O

3.14. Lemma. Let X € X(M) and Y € X(N) be f-related vector fields for
a smooth mapping f : M — N. Then we have (f o FIX)(z) = (F1Y of)(x)
whenever Flg( (x) is defined. In particular, if f is a diffeomorphism, we have

FI/'Y = f~1oF1Y of.

Proof. We have 4(foFLY)(z) = (T'f o L FIX)(z) = (T'f o X)(FI¥ (t,2)) =
(Y o f o FIX)(z) and f(F1%(0,z)) = f(:v) So t — f(F1¥(¢,z)) is an inte-
gral curve of the vector field Y on N with initial value f(x), so we have
fFIX(t,x)) = FI¥ (¢, f(x)) or foFL* =F1 of. O

3.15. Corollary. Let X,Y € X(M). Then the following assertions are
equivalent:
(1) LxY =[X,Y]=0.
(2) (FE*Y =Y wherever the felt hand side is defined.
(3) (FLX o F1Y)(z) = (F1Y oFL)(z) for all (t,s,x) such that one side is
defined even along [0,t] x [0,s]| fort,s > 0, similarly for other cases.

The open condition in ([B]) on (¢, s, z) is necessary; see [121], 9 19]: On R3\
{z —axis} the vector fields X = 0, — " +y 50, and Y = 0y + 0, commute
but their flows do not satisfy ([3) for all (¢, s, p).

Proof. (1) & (2) is immediate from lemmal|(3.13)l To see [2)) < (@), we note
that, locally under the open condition on (¢, s, x) FlX oFlY FIY o FlX if

X \*
and only if FIY = FIX,0FIY o FI¥ = FI™)™Y by lemma [[3.14)] which is
applicable since the integral curves exist; and this in turn is equivalent to
= (FL*)*Y. 0

x2+y

3.16. Theorem. Let M be a manifold, let ' : R x M D Ugyi — M be
smooth mappings for i = 1,...,k where each Uy is an open neighborhood
of {0} x M in R x M, such that each ¢y is a diffeomorphism on its domain,
o = Idur, and lop; = X; € X(M). We put [¢', o7 = [}, 1] := (¢]) ' o
()L o ! o pl. Then for each formal bracket expression P of length k we
have

ate]gP(got,...,cpf) for1 </{<k,
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P(Xla" Xk:) k'@t’“ |0P(90t7 ,‘Pf) E%(M)

in the sense explained in step[d of the proof. In particular we have for vector
fields X, Y € X(M)

0 = 0o(F1Y, o F1%, 0o F1Y o FIY),
(X, Y] = L2 |o(F1Y, o FI¥, o FIY 0 FI)).

Proof. Step 1. Let ¢ : R — M be a smooth curve. If ¢(0) = z € M,
d(0)=0,...,¢*1(0) = 0, then ¢®)(0) is a well defined tangent vector in
T,M which is given by the derivation f ~ (f o ¢)*)(0) at 2. Namely, we
have

k
((7:9) 00 ®(0) = (2 (g0 ) D(0) = 3 (4)(F 0 P (0)(g 0 )" (0)
— (f o)™ (O)g(x) + f(x)(g 0 )M (0),

since all other summands vanish: (f o)) (0) =0 for 1 < j < k.

Step 2. Let ¢ : Rx M D U, — M be a smooth mapping where U,
is an open neighborhood of {0} x M in R x M, such that each ¢; is a
diffeomorphism on its domain and pg = Idy;. We say that ¢; is a curve of
local diffeomorphisms through Idyy.

From step [l we see that if 2 B0 “lopr =0foralll <j <k, then X := k, 8tk |090t
is a well defined vector field on M. We say that X is the first nonvanishing
derivative at 0 of the curve ¢, of local diffeomorphisms. We may paraphrase
this as (0F|ow})f = k'\Lx f.

Claim 3. Let ¢y, 1 be curves of local diffeomorphisms through Idy; and
let f € C*(M). Then we have

k
OFlo(er o) f = Oflo( o i) f =D (5) (@ lowi)(0F lowi) S
7=0

Also the multinomial version of this formula holds:

. k! ; « j *
Ololpto o) f= Y, 0" o(@)) . (3 lo(¢t)")f.
; g J1eee e
Jite+ie=k
We only show the binomial version. For a function h(t,s) of two variables

we have
k

I i
Rn(tt) =7 (o oEIh(t,5)] o,
j=0
since for h(t,s) = f(t)g(s) this is just a consequence of the Leibniz rule, and
linear combinations of such decomposable tensors are dense in the space of all
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functions of two variables in the compact C'*°-topology, so that by continuity
the formula holds for all functions. In the following form it implies the claim:

k

Oflof (p(t,v(t,2))) =Y (50105 f(o(t, v(5, 7)) i=s=o.

J=0

Claim 4. Let ¢; be a curve of local diffeomorphisms through Idy; with
first nonvanishing derivative k!X = (9f|0g0t. Then the inverse curve of local
diffeomorphisms ¢, ! has first nonvanishing derivative —k!X = 8f|0g0; L for
we have got_l o @y = Id, so by claim B we get for 1 < j < k

0= o(p; o) f = Z (@Floer) (@ (o)) f

AN f+s003§!o(sot )*f,
e, 81{’09027 = _85‘0(%—1)7 as required.

Claim 5. Let ¢4 be a curve of local diffeomorphisms through Idy; with first
nonvanishing derivative m!X = 9/"|o¢¢, and let ¢, be a curve of local diffeo-
morphisms through Idy; with first nonvanishing derivative n!Y = 9} o).

Then the curve of local diffeomorphisms [y, ¢:] = ;' 0 ;' 0 4y 0 ¢y has
first nonvanishing derivative

(m+n)[X,Y] = 07" ™ol ¢i]-
From this claim the theorem follows.

By the multinomial version of claim B we have
Anf =0 oy o gt otrow) S
N * — *
- Z Z' i1 (at|090t)(a]|07/’t)(8t ’0( ) )(85‘0(1/}15 1) )f
itj+k+l=N

Let us suppose that 1 < n < m; the case m < n is similar. If N < n, all
summands are 0. If N = n, we have by claim |Z|

AN = (07109?) f + (OF lowd) f + @ lo(er ))f + (0 lo(vi ) f = 0.

If n < N < m, we have, using again claim [4

Anf= ), i (8j|0¢t)(8£|0(¢t V)V f + 6% ((0owl) f + (0 o(e7 D)) )
=N
= (O lo(Wh; o)) f +0=0.

Now we come to the difficult case m,n < N <m + n.

AN = 00wy oo o)+ (W)@ 0w @ ™ oWy oyt o))
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6)  + (3 o),

by claim B}, since all other terms vanish; see () below. By claim [3] again we
get:

N lo(w; oo onh) f

= Y @@

jAkA=N

= > (D@l @flotwr ) f

j+e=N
+ (@™ o) (O o(er ) f
+ ()@l )@ ™o ) F + 0N lo(r ) f

— 04+ (M@ ovr)mL_xf + (V)mlL_x (@ o)) f
+ 0N o(e V) f

= 0N n(m+n)(LxLy — LyLx)f + 0 o(ey )* f

(7) = Opn (m A+ 0 Lix v+ 0 ol 1) f-
From the second expression in ([7]) one can also read off that
(8) O oy o o) f =0 ol 'S

If we put () and (®) into (@), we get, using claims Bl and [ again, the final
result which proves claim ] and the theorem:
ANF = G (m et m) Ly f + 0 (e ) f
+ (W)@ @ T oler 1)) f + (0 lowr) f
= bpin(m + n)\Lixyf + N oo o pe)* f
= Opn(m + )Ly f+0. O

3.17. Theorem. Let X1,..., X, be vector fields on M defined in a neigh-
borhood of a point x € M such that X1(z),..., X;m(x) are a basis for T, M
and [X;, X;] =0 for alli,j.

Then there is a chart (U,u) of M centered at x such that X;|U = 8(21"

Proof. For small t = (t!,...,t™) € R™ we put
FE ") = (FL o+ o FINM) ().
By [(3.15)| we may interchange the order of the flows arbitrarily. Therefore

Dft, .t = L (FLY oFLY o )(z) = Xi((FI o+ )(2)).
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So Ty f is invertible, f is a local diffeomorphism, and its inverse gives a chart
with the desired properties. O

3.18. The theorem of Frobenius. The next three subsections will be de-
voted to the theorem of Frobenius for distributions of constant rank. We will
give a powerful generalization for distributions of nonconstant rank below
in -

Let M be a manifold. By a wvector subbundle E of T M of fiber dimension
k we mean a subset & C T'M such that each F, := ENT,M is a linear
subspace of dimension k£ and such that for each zim M there are k vector
fields defined on an open neighborhood of M with values in E and spanning
E, called a local frame for E. Such an FE is also called a smooth distribution
of constant rank k. See section for a thorough discussion of the notion of
vector bundles. The space of all vector fields with values in E will be called
I'(E).

The vector subbundle E of T'M is called integrable or involutive, if for all
X,Y € I'(F) we have [X,Y] e I'(E).

Local version of Frobenius’s theorem. Let E C T M be an integrable
vector subbundle of fiber dimension k of T M.

Then for each x € M there exists a chart (U,u) of M centered at x with
w(U) = VxW C RExR™* such that T(u='(V x{y})) = E|(v"(V x{y}))
for each y € W.

Proof. Let z € M. We choose a chart (U,u) of M centered at x such
that there exist k vector fields Xi,..., X} € I'(E) which form a frame of
E|U. Then we have X; = 370 1fz]auy for f/ € C°°(U). Then f = (f7) is

a (k x m)-matrix valued smooth function on U which has rank k£ on U. So
some (k x k)-submatrix, say the top one, is invertible at = and thus we may
take U so small that this top (k x k)-submatrix is invertible everywhere on
U. Let g = (gf) be the inverse of this submatrix, so that the (k x m)-matrix

f.g is given by
I
f9= < k>
We put

0
@ Y_ZQX ”Z;j aul:6u1+zh67

Jj= p>k+1

We claim that [YZ,Y]] =0 for all 1 < i,j < k. Since F is integrable, we
have [V;,Y;] = S8, cZ]Yl. But from ([Il) we conclude (using the coordinate




3. Vector Fields and Flows 33

formula in [(3.4)) that [Y;,Y;] = >° o) 4 apa%p. Again by () this implies
that cﬁj =0 for all /, and the claim follows.

Now we consider an (m — k)-dimensional linear subspace W7 in R which is
transversal to the k vectors Tpu.Y;(x) € ToR™ spanning R¥, and we define
f:VxW —=U by

@t . tFy) = (Flz;1 oFlz;Q 0...0 FlZf) (u™(y)),

where t = (t!,...,t*) € V, a small neighborhood of 0 in R¥ and where
y € W, a small neighborhood of 0 in Wj. By |[(3.15)| we may interchange the
order of the flows in the definition of f arbitrarily. Thus

0 0 .
Sid ) = o (FIT P oo ) (! (9)) = YilF (8, w),

(fykf(o,y) - fyk(u-l)(y),

and so Ty f is invertible and the inverse of f on a suitable neighborhood of
x gives us the required chart. O

3.19. Remark. Any charts (U,u : U — V x W C R*¥ x R™*) as con-
structed in theoremwith V and W open balls is called a distinguished
chart for E. The submanifolds v~ (V x {y}) are called plaques. Two plaques
of different distinguished charts intersect in open subsets in both plaques or
not at all: This follows immediately by flowing a point in the intersection
into both plaques with the same construction as in the proof of Thus
an atlas of distinguished charts on M has chart change mappings which
respect the submersion R* x R™% — R™* (the plaque structure on M).
Such an atlas (or the equivalence class of such atlases) is called the foliation
corresponding to the integrable vector subbundle E C T M.

3.20. Global version of Frobenius’s theorem. Let E C T'M be an inte-
grable vector subbundle of T M. Then, using the restrictions of distinguished
charts to plaques as charts, we get a new structure of a smooth manifold on
M, which we denote by Mp. If E # T M, the topology of Mg is finer than
that of M, Mg has uncountably many connected components called the leaves
of the foliation, and the identity induces a bijective immersion Mg — M.
Each leaf L is a second countable initial submanifold of M, and it is a mazx-
imal integrable submanifold of M for E in the sense that T,L = E,, for each
x € L.

Proof. Let (Uy, g : Uy — Vo x W, € RF x R™7F) be an atlas of distin-
guished charts corresponding to the integrable vector subbundle £ C T'M,
as given by theorem Let us now use for each plaque the homeomor-
phisms pry oug|(u; (Ve x {y})) : uz'(Vy x {y}) — Vo € R™* as charts;
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then we describe on M a new smooth manifold structure Mg with finer
topology which however has uncountably many connected components, and
the identity on M induces a bijective immersion Mg — M. The connected
components of Mg are called the leaves of the foliation.

In order to check the rest of the assertions made in the theorem, let us
construct the unique leaf L through an arbitrary point x € M: choose a
plaque containing x and take the union with any plaque meeting the first
one, and keep going. Now choose y € L and a curve ¢ : [0,1] — L with
¢(0) = z and ¢(1) = y. Then there are finitely many distinguished charts
(Ur,u1), ..., (Un,uy) and ay, ..., a, € R™ ¥ such that = € ul_l(Vl x {a1}),
y € u, 1 (V,, x {a,}) and such that for each i

(1) up (Vi x {ai}) Nuigy (Vier x {ain}) # 0.

Given u;, u;t+1, and a;, there are only countably many points a;41 such
that (I]) holds: If not, then we get a cover of the the separable submanifold
u; Vi x {a;}) N Ui41 by uncountably many pairwise disjoint open sets of
the form given in (), which contradicts separability.

Finally, since (each component of) M is a Lindel6f space, any distinguished
atlas contains a countable subatlas. So each leaf is the union of at most
countably many plaques. The rest is clear. ([

3.21. Singular distributions. Let M be a manifold. Suppose that for
each x € M we are given a vector subspace FE, of T, M. The disjoint union
E = || ¢y Bz is called a (singular) distribution on M. We do not suppose
that the dimension of F, is locally constant in x.

Let X;oc(M) denote the set of all locally defined smooth vector fields on
M, ie., Xjoc(M) = |JX(U), where U runs through all open sets in M.
Furthermore let X denote the set of all local vector fields X € X,.(M) with
X (z) € E; whenever defined. We say that a subset V C Xg spans E if for
each z € M the vector space E; is the linear hull of the set {X (z) : X € V}.
We say that E is a smooth distribution if Xg spans E. Note that every subset
W C Xjoe(M) spans a distribution denoted by E (W), which is obviously
smooth (the linear span of the empty set is the vector space 0). From now
on we will consider only smooth distributions.

An integral manifold of a smooth distribution E is a connected immersed
submanifold (N, i) (see such that T,i(T,N) = By for all x € N.
We will see in theorem below that any integral manifold is in fact
an initial submanifold of M (see , so that we need not specify the
injective immersion i. An integral manifold of E is called mazimal if it is
not contained in any strictly larger integral manifold of FE.

3.22. Lemma. Let E be a smooth distribution on M. Then we have:
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(1) If (N,i) is an integral manifold of E and X € Xpg, then i*X makes
sense and is an element of Xioo(N), which is i|i~1(Ux)-related to X,
where Ux C M s the open domain of X.

(2) If (N;,i;) are integral manifolds of E for j = 1,2, then iy (i1 (N1) N
io(N2)) and iy (i1(N1) Nig(Nz)) are open subsets in Ny and No, re-
spectively; furthermore i2_1 011 18 a diffeomorphism between them.

(3) If x € M s contained in some integral submanifold of E, then it is
contained in a unique mazximal one.

Proof. () Let Ux be the open domain of X € Xg. If i(x) € Ux for z € N,
we have X(i(z)) € Ejp) = Tyi(TxN), so i*X(z) = ((Tpi) ™ o X o i)(x)
makes sense. The vector field ¢* X is clearly defined on an open subset of IV
and is smooth.

@) Let X € Xg. Then i X € Xi0c(N;) and is i;-related to X. So by lemma
(3.14)| for 7 = 1,2 we have
X
ijoFI7" = FIX 0.
Now choose x; € N; such that i1(x1) = i2(x2) = x¢g € M and choose vector
fields X1,...,X, € Xg such that (Xi(zo),...,Xn(z0)) is a basis of Ey,.
Then
. . X,

Fit ") = (F1) o o FLL ") (@)
is a smooth local mapping R" — N; defined near zero. Since obviously
{;%\ofj = i; X(z;) for j = 1,2, we see that f; is a diffeomorphism near 0.
Finally we have

(i 0o fi)(thy ..., #7) = (i3  odt o FIIN 0 o FIL™) (1)
= (iy ' o FIi" o+ o FIj oiy) (1)
— (FI2% o o FIZY" 0iy ' 0dy) (1)
= fQ(tl, co ).

So iy 154, is a diffeomorphism, as required.

@) Let N be the union of all integral manifolds containing z. Choose the
union of all the atlases of these integral manifolds as atlas for /N, which is a
smooth atlas for N by (2]). Note that a connected immersed submanifold of
a separable manifold is automatically separable (since it carries a Riemann
metric). O

3.23. Integrable singular distributions and singular foliations. A

smooth singular distribution £ on a manifold M is called integrable if each
point of M is contained in some integral manifold of E. By |(3.22.3)| each
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point is then contained in a unique maximal integral manifold, so the max-
imal integral manifolds form a partition of M. This partition is called the
(singular) foliation of M induced by the integrable (singular) distribution
FE, and each maximal integral manifold is called a leaf of this foliation. If
X € Xpg, then by the integral curve ¢t — F1¥(t,z) of X through
x € M stays in the leaf through .

Let us now consider an arbitrary subset V C Xj,.(M). We say that V is
stable if for all X,Y € V and for all ¢ for which it is defined the local vector
field (F1¥)*Y is again an element of V.

If W C Xjo.(M) is an arbitrary subset, we call S(W) the set of all local
vector fields of the form (Flffl 0---0 Flik)*Y for X;,Y € W. By lemma

the flow of this vector field is
FI((FI 0. o FI)F)*Y,t) = FI*} o--- o FI¥} oFLY oFI\ 0. o FI*,

so S(W) is the minimal stable set of local vector fields which contains W.

Now let F' be an arbitrary distribution. A local vector field X € Xy, (M) is

called an infinitesimal automorphism of F if T, (FLX)(F,) C Forx (1.

ever defined. We denote by aut(F') the set of all infinitesimal automorphisms
of F. By arguments given just above, aut(F') is stable.

) when-

3.24. Lemma. Let E be a smooth distribution on a manifold M. Then the
following conditions are equivalent:

(1) E is integrable.

(2) Xg is stable.

(3) There exists a subset W C Xjoc(M) such that SOV) spans E.
(4) aut(E)NXg spans E.

Proof. (Il) = (@) Let X € X and let L be the leaf through x € M, with
i : L — M the inclusion. Then F1¥, 0i = i o FI";X by lemma [(3.14)] so we
have
T, (FIX)(E,) = T(FIX,).Tyi.T, L = T(F1%, 0i).T,, L
= Ti.T,(F1"). T, L
= Ti.Tpiex (4 )L = Epix (—1,0)-

This implies that (FI1X)*Y € X for any Y € Xg.
@) = (@) In fact (@) says that Xp C aut(E).

@) = @) We can choose W = aut(E) N Xg: For X,Y € W we have
(FIX)*Y € Xp; so W C S(W) C X and E is spanned by W.

B) = (@) We have to show that each point € M is contained in some
integral submanifold for the distribution E. Since S(W) spans E and is
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stable, we have
(5) T(FIY).Ey = Egyx ;)

for each X € S(OW). Let dim E; = n. There are Xi,...,X, € S(W) such
that X (z),...,X,(x) is a basis of E,, since F is smooth. As in the proof

of|(3.22.2)| we consider the mapping

F ") = (FLY o o FI") (),
defined and smooth near 0 in R™. Since the rank of f at 0 is n, the image
under f of a small open neighborhood of 0 is a submanifold N of M. We

claim that N is an integral manifold of E. The tangent space T )N
is linearly generated by

D (FIX o o FIN™)(2) = T(FLY 0+ o FL* ) X4 (FLEF o - 0 FIS" ) ()
* X — * n
= ((FL5)" - (FIR ) X (F(E . ™)
Since S(W) is stable, these vectors lie in Ffqy. From the form of f and from

() we see that dim E 7y = dim By, so these vectors even span Ey ;) and we
have Ty N = Ey(;) as required. ([

3.25. Theorem (Local structure of singular foliations). Let E be an
integrable (singular) distribution of a manifold M. Then for each x € M
there exist a chart (U,u) with w(U) = {y € R™ : |y*| < & for all i} for some
€ > 0 and a countable subset A C R™™", such that for the leaf L through x
we have

wUNL)={yecuU): ", ... ,.y") e AL
Each leaf is an initial submanifold.
If furthermore the distribution E has locally constant rank, this property
holds for each leaf meeting U with the same n.

This chart (U, u) is called a distinguished chart for the (singular) distribution
or the (singular) foliation. A connected component of UNL is called a plaque.

Proof. Let L be the leaf through z, dimL = n. Let Xi,...,X, € Xg be
local vector fields such that X;(x),..., X, (z) is a basis of E,. We choose a
chart (V,v) centered at  on M such that the vectors

Xl(x), PP 7Xn<1')7 %’l’? ey &l}im‘x
form a basis of T, M. Then
F ™) = (FL o o L) (070, ..., 0,87 L ¢™))

is a diffeomorphism from a neighborhood of 0 in R onto a neighborhood of
x in M. Let (U,u) be the chart given by f~!, suitably restricted. We have

y€L<:>(Flﬁlo-~oFlf£”)(y) eL
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for all y and all t', ..., t" for which both expressions make sense. So we have
f(t ... t™) € L f(0,...,0,t"" ... t"™) e L,

and consequently L N U is the disjoint union of connected sets of the form
{y € U: (" (y),...,u™(y)) = constant}. Since L is a connected im-
mersive submanifold of M, it is second countable and only a countable
set of constants can appear in the description of w(L N U) given above.
From this description it is clear that L is an initial submanifold since
u(Ce(LNU)) =u(U) N (R™ x0).

The argument given above is valid for any leaf of dimension n meeting U, so
also the assertion for an integrable distribution of constant rank follows. [

3.26. Involutive singular distributions. A subset V C X;,.(M) is called
involutive if [X,Y] € V for all X,Y € V. Here [X,Y] is defined on the
intersection of the domains of X and Y.

A smooth distribution E on M is called inwvolutive if there exists an involutive
subset V C Xj,.(M) spanning F.

For an arbitrary subset W C X;o.(M) let £(WW) be the set consisting of all
local vector fields on M which can be written as finite expressions using Lie
brackets and starting from elements of W. Clearly £(W) is the smallest
involutive subset of X;,.(M) which contains W.

3.27. Lemma. For each subset W C Xjo.(M) we have
EW) C E(LW)) C E(S(W)).
In particular we have E(S(W)) = E(L(S(W))).

Proof. We will show that for X,Y € W we have [X,Y] € Xpgsw)), for
then by induction we get L(W) C Xg(sowy) and E(L(W)) C E(S(WV)).

Let x € M; since by E(S(W)) is integrable, we can choose the leaf
L through z, with the inclusion i. Then ¢*X is ¢-related to X and *Y is
i-related to Y'; thus by the local vector field [i*X,i*Y] € Xpc(L) is
i-related to [X,Y], and [X,Y](z) € E(S(W))., as required. O

3.28. Theorem. Let V C Xj,.(M) be an involutive subset. Then the
distribution E(V) spanned by V is integrable under each of the following
conditions.

(1) M is real analytic and V consists of real analytic vector fields.

(2) The dimension of E(V) is constant along flow lines of vector fields in V.
Proof. (Il) For X,Y € V we have %(Fl;fx)*Y = (Flf{)*EXY; consequently
%(Fltx)*Y = (FLY)*(Lx)*Y, and since everything is real analytic, we get
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for € M and small ¢

Xy th d* X t*

(F1;7)"Y (= )— oo F) Y (2) = Y = (Lx) Y (2).
k: dt k!
k>0

Since V is involutive, all (L'X)kY € V. Therefore we get (FLX)*Y(z) €
E(V), for small t. By the flow property of FI¥ the set of all ¢ satisfying
(F1;)*Y (z) € E(V), is open and closed, so it follows that[(3.24.2)|is satisfied
and thus E(V) is integrable.
@) We choose Xi,...,X,, € V such that X;(z),...,X,(x) is a basis of
E(V)g. For any X € V, by hypothesis, E(V)px(,,) has also dimension n
and admits the vectors X;(FI1% (¢, z)),..., X, (F1¥(t,2)) as basis, for small
t. So there are smooth functions f;;(t) such that

(X, X;)(F1X (¢, ) wa X;(FIX(t, ).

Therefore,
LT(FY,). X (FI¥ (¢, 2)) = T(FIX,).[X, X;](FI¥ (¢, 2))

n

= Z fij(t) FIX j(FlX(ta x))-

So the T} M-valued functions g;(t) = T(F1%,).X;(F1% (t, z)) satisfy the linear
ordinary differential equation %gi(t) = >i_ fij(t)g;(t) and have initial
values in the linear subspace E(V);, so they have values in it for all small
t. Therefore T(F1%,) BE(V)px (t) C E(V)o for small ¢. Using compact time
intervals and the flow property, one sees that condition is satisfied
and E(V) is integrable. O

3.29. Examples. (1) The singular distribution spanned by W C X,.(R?)
is involutive, but not integrable, where W consists of all global vector fields
with support in R? \ {0} and the field a =51; the leaf through 0 should have

dimension 1 at 0 and dimension 2 elsewhere.

(2) Let f : R — R be a smooth function with f(z!) = 0 for z! < 0 and
f(xz') > 0 for 2! > 0. Then the singular distribution on R? spanned by the
two vector fields X (2!, 2%) = 8%1 and Y (z!,2?) = f(z )? is involutive7
but not integrable. Any leaf should pass (0,z2) tangentially to a =21, should
have dimension 1 for z! < 0 and should have dimension 2 for z! > 0.

3.30. By a time dependent vector field on a manifold M we mean a smooth
mapping X : J x M — TM with wp; 0o X = pre, where J is an open interval.
An integral curve of X is a smooth curve ¢ : I — M with ¢(t) = X (¢, ¢(t))
for all t € I, where I is a subinterval of J.



40 CHAPTER I. Manifolds and Vector Fields

There is an associated vector field X € X(J x M), given by X(t,z) =
(&, X(t,x)) € TR x T, M.

By the evolution operator of X we mean the mapping ®X : J x J x M —
M, defined in a maximal open neighborhood of A; x M (where A is the
diagonal of J) and satisfying the differential equation

G0N (t,5,0) = X (t, 0¥ (t,5, 7))
X (s,5,2) = .

It is easily seen that (¢, ®X(t,s,2)) = FIX(t —8,(s,x)), so the maximally
defined evolution operator exists and is unique, and it satisfies

@fs = <I>t)’(r o ®X where @ffs(w) = ®(t, s, z),

r,87

whenever one side makes sense (with the restrictions of [(3.7))).
Examples and Exercises

3.31. Compute the flow of the vector field & (z,y) := y(% in R2. Isit a
global flow? Answer the same questions for & (z,y) = %28% Now com-

pute [£1,&2] and investigate its flow. This time it is not global! In fact,

FlFl’EQ](x, y) = (ﬁzt, d(te + 2)2>. Investigate the flow of & + &. It is not

global either! Thus the set of complete vector fields on R? is neither a vector
space nor closed under the Lie bracket.

3.32. Driving a car. The phase space consists of all (z,y,1, ) € R? x
St x (=7 /4,7/4), where

(x,9) is the position of the midpoint of the rear axle,
¥ is the direction of the car axle,
¢ is the steering angle of the front wheels.
(z,y) ¢
) g

6 = 0 direction

There are two ‘control’ vector fields:

_ 0
steer = 26
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drive = cos(z?)% + Sin(z?)a% + tan(qﬁ)%% (why?).

Compute [steer,drive] =: park (why?) and [drive, park], and interpret the
results. Is it not convenient that the two control vector fields do not span
an integrable distribution?

3.33. Describe the Lie algebra of all vector fields on S' in terms of Fourier
expansion. This is nearly (up to a central extension) the Virasoro algebra
of theoretical physics.






CHAPTER II.
Lie Groups and Group
Actions

4. Lie Groups 1

4.1. Definition. A Lie group G is a smooth manifold and a group such
that the multiplication u : G x G — G is smooth. We shall see in a moment
that then also the inversion v : G — G turns out to be smooth.

We shall use the following notation:

i G x G — G, multiplication, u(x,y) = z.y.
te : G — G, left translation, p,(x) = a.z.

u® : G — G, right translation, p*(z) = z.a.

v:G — G, inversion, v(x) = 1.

e € (3, the unit element.

Then we have

fla © Hb = Habs pt ot = b, oy = 0
1

fo' = pg-1, (u) "t =pt .

If ¢ : G — H is a smooth homomorphism between Lie groups, then we have
PO Ha = flp(a) O Ps PO UL = /,L‘p(a) o ¢ and thus also Tp.Tua = Tpgq)-Tep,
etc. So T,y is injective (surjective) if and only if T, is injective (surjective)
for all a € G.

43
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4.2. Lemma. The tangent mapping T pp @ ToG x ToG — TopG of the
multiplication u is given by

T(a,b):U“(Xav YE}) = Ta(ﬂb)~Xa + Tb(ua).)fb.

Proof. Let ri, : G — G x G, rig(x) = (a,z) be the right insertion and let
lip : G — G x G, lip(x) = (x,b) be the left insertion. Then we have

T(a,b)ﬂ-(Xaa Yl-v) = T(a,b)ﬂ'(Ta(lib)-Xa + Tb(ria)-i/b)
= To(poliy).Xq + Ty(porig).Yy = Tu(1®). Xo + Ty(pta).Yy. O

4.3. Corollary. The inversion v : G — G is smooth and
Tov = —To(u" ) Tulpta—1) = —Te(pra-1)- Ta(p®

—1

).

Proof. The equation u(z,v(r)) = e determines v implicitly. The mapping
v is smooth in a neighborhood of e by the implicit function theorem since
To(ule, ) = To(pe) = Id. From (v o pg)(z) = 2 L.at = (u* ' ov)(z)
we may conclude that v is everywhere smooth. Now we differentiate the
equation u(a,v(a)) = e; this gives in turn

-1
0e = T(a7a71)u.(Xa,Tay.Xa) =T, (u* )Xo+ Ty—1(pta) Tav.Xa,
Tov.Xe = —To(pa) T )Xo = —To(pg—1).To(p® ). X,. O

4.4. Example. The general linear group GL(n,R) is the group of all in-
vertible real n x n-matrices. It is an open subset of L(R",R"™), given by
det # 0 and a Lie group.

Similarly GL(n,C), the group of invertible complex n x n-matrices, is a Lie
group; also GL(n,H), the group of all invertible quaternionic n X n-matrices,
is a Lie group, since it is open in the real Banach algebra Ly (H", H") as a
glance at the von Neumann series shows; but the quaternionic determinant
is a more subtle instrument here.

4.5. Example. The orthogonal group O(n,R) is the group of all linear
isometries of (R™,( , )), where ( , ) isthestandard positive definite in-
ner product on R™. The special orthogonal group SO(n,R) := {A € O(n,R) :
det A = 1} is open in O(n,R), since we have the disjoint union

O(n,R) = SO(n,R) L (‘01 Hno_l) SO(n,R),

where I}, is short for the identity matrix Idzx. We claim that O(n,R) and
SO(n,R) are submanifolds of L(R™, R™). For that we consider the mapping
f : L(R",R") — L(R™,R"), given by f(A) = AT.A. Then O(n,R) =
f71(1,); so O(n,R) is closed. Since it is also bounded, O(n,R) is compact.



4. Lie Groups I 45

We have df (A).X = X T.A+A".X,so kerdf(I,) = {X : X"+ X = 0} is the
space 0(n, R) of all skew-symmetric n X n-matrices. Note that dimo(n,R) =

3(n — 1)n. If A is invertible, we get

kerdf(A) ={Y :YT.A+ AT Y =0} ={Y : A".Y € o(n,R)}
= (A™HT.o(n,R).

The mapping f takes values in Lgym(R™,R™), the space of all symmetric
n x n-matrices, and dim ker df (4) + dim Ly, (R", R") = $(n—1)n+ in(n+
1) = n? = dim L(R",R"), so f : GL(n,R) — Lgy,(R™",R") is a submersion.
Since obviously f~!(I,) C GL(n,R), we conclude from [(1.12)|that O(n,R) is
a submanifold of GL(n,R). It is also a Lie group, since the group operations
are smooth as the restrictions of the ones from GL(n,R).

4.6. Example. The special linear group SL(n,R) is the group of all n x n-
matrices of determinant 1. The function det : L(R",R") — R is smooth
and ddet(A)X = Trace(C(A).X), where C’(A);, the cofactor of A?, is the

determinant of the matrix, which results from putting 1 instead of Ag into
A and 0 in the rest of the j-th row and the i-th column of A; see
We recall Cramer’s rule C(A).A = A.C(A) = det(A).I,,. So if C(A) # 0
(i.e., rank(A) > n — 1), then the linear functional df(A) is nonzero. So
det : GL(n,R) — R is a submersion and SL(n,R) = (det)~1(1) is a manifold
and a Lie group of dimension n? — 1. Note finally that Ty, SL(n,R) =
ker ddet(l,,) = {X : Trace(X) = 0}. This space of traceless matrices is
usually called sl(n, R).

4.7. Example. The symplectic group Sp(n,R) is the group of all 2n x 2n-
matrices A such that w(Axz, Ay) = w(z,y) for all z,y € R?", where w is a
(the standard) nondegenerate skew-symmetric bilinear form on R?".

Such a form exists on a vector space if and only if the dimension is even, and
on R™ x (R™)* the form w((z, z*), (y,y*)) = (z,y*)—(y, 2*) (where we use the
duality pairing), in coordinates w((z*)¥, (y?)5%,) = Y_i, (a'y™ T —a"Ty?),
is such a form. Any symplectic form on R?” looks like that after choosing
a suitable basis; see [[31.2)] and [(31.4)] Let (e;)??; be the standard basis in

R2", Then we have

wene = ()=

and the matrix J satisfies J' = —J, J? = —I,, J(m) = (_y) in R" x R",

Y T
and w(z,y) = (x, Jy) in terms of the standard inner product on R?".

For A € L(R?*" R?") we have w(Az, Ay) = (Az, JAy) = (x, AT JAy). Thus
A € Sp(n,R) if and only if ATJA = J.



46 CHAPTER II. Lie Groups and Group Actions

We consider now the mapping f : L(R?",R?") — L(R*" R?") given by
f(A) = ATJA. Then f(A)T = (ATJA)T = —ATJA = —f(A), so f takes
values in the space 0(2n, R) of skew-symmetric matrices. We have df (4)X =
XTJA+ ATJX, and therefore

ker df (Ip,) = {X € L(R*™ R*): X "J + JX = 0}
={X : JX is symmetric} =: sp(n,R).
We see that dimsp(n,R) = 2n(2;+1) = (2";1). Furthermore kerdf(A) =
{X:XTJA+ATJX = 0} and the mapping X +— AT .JX is an isomorphism
ker df (A) — Lgym (R?",R?") if A is invertible. Thus dimker df(4) = (**")
for all A € GL(2n,R). If f(A) = J, then AT JA = J, so A has rank 2n and
is invertible, and we have dim ker df (A)+dimo(2n,R) = (2";1) + % =
4n? = dim L(R?",R?*"). So f : GL(2n,R) — 0(2n,R) is a submersion and
f~1(J) = Sp(n,R) is a manifold and a Lie group. It is the symmetry group
of ‘classical mechanics’.

4.8. Example. The complex general linear group GL(n, C) of all invertible
complex n X n-matrices is open in L¢(C™, C"™), so it is a real Lie group of
real dimension 2n?; it is also a complex Lie group of complex dimension n?.
The complex special linear group SL(n,C) of all matrices of determinant 1
is a submanifold of GL(n, C) of complex codimension 1 (or real codimension
2).

The complex orthogonal group O(n,C) is the set
{A e L(C",C") : g(Az, Aw) = g(z,w) for all z,w},

where g(z,w) = > I, z'w’. This is a complex Lie group of complex di-
mension (n_21)n, and it is not compact. Since O(n,C) = {A: ATA =1,},
we have 1 = detc(I,) = detc(ATA) = detc(A4)?, so detc(A) = £1. Thus
SO(n,C) :={A € O(n,C) : detc(A) = 1} is an open subgroup of index 2 in
O(n,C).

The group Sp(n,C) = {A € Lc(C?",C?") : ATJA = J} is also a complex
Lie group of complex dimension n(2n + 1).

The groups treated here are the classical complex Lie groups. The groups
SL(n,C) for n > 2, SO(n,C) for n > 3, Sp(n,C) for n > 4, and five more
exceptional groups exhaust all simple complex Lie groups up to coverings.

4.9. Example. Let C™ be equipped with the standard Hermitian inner
product (z,w) = Y%  Z'w'. The unitary group U(n) consists of all com-
plex n x n-matrices A such that (Az, Aw) = (z,w) for all z, w holds, or
equivalently U(n) = {A: A*A =1,}, where A* = a’.



4. Lie Groups I 47

We consider the mapping f : Le(C",C") — Lc(C",C"), given by f(A) =
A*A. Then f is smooth but not holomorphic. Its derivative is df(4)X =
X*A+ A*X, so kerdf(I,,) = {X : X* + X = 0} =: u(n), the space of all
skew-Hermitian matrices. We have dimg u(n) = n2. As above we may check
that f : GL(n,C) — Lperm(C™, C") is a submersion, so U(n) = f~1(L,) is a

compact real Lie group of dimension n?.

The special unitary group is SU(n) = U(n) N SL(n,C). For A € U(n) we
have | detc(A)| = 1; thus dimg SU(n) = n? — 1.

4.10. Example. The group Sp(n). Let H be the division algebra of
quaternions. We will use the following description of quaternions: Let
(R3,( , ),A) be the oriented Euclidean space of dimension 3, where A
is a determinant function with value 1 on a positive oriented orthonormal
basis. The vector product on R is then given by (X x Y, Z) = A(X,Y, Z).
Now we let H := R3 x R, equipped with the following product:

(X,8)(Y,t) = (X x Y +sY +tX, st — (X,Y)).

Now we take a positively oriented orthonormal basis of R?, call it (i, j, k),
and identify (0,1) with 1. Then the last formula implies visibly the usual
product rules for the basis (1,4, 7, k) of the quaternions.

The group Sp(1) := S3 C H = R* is then the group of unit quaternions,
obviously a Lie group.

Now let V' be a right vector space over H. Since H is not commutative, we
have to distinguish between left and right vector spaces and we choose right
ones as basic, so that matrices can multiply from the left. By choosing a
basis, we get V = R" @g H = H". For u = (u'), v = (v") € H" we put
(u,v) == > uv'. Then ( , ) is R-bilinear and (ua,vb) = @(u,v)b for
a,be H.

An R linear mapping A : V — V is called H-linear or quaternionically linear
if A(ua) = A(u)a holds. The space of all such mappings shall be denoted
by Ly (V,V). It is real isomorphic to the space of all quaternionic n x n-
matrices with the usual multiplication, since for the standard basis (e;)7;
in V =H" we have A(u) = A(X; eju’) = 2, Alei)u’ = Y, s ejAlu’. TEV is
a right quaternionic vector space, then Ly (V, V') is only a real vector space
— any further structure must come from a second (left) quaternionic vector
space structure on V.

The group GL(n,H) of invertible H-linear mappings of H", is a Lie group,
because it is GL(4n,R) N Ly(H",H") which is open in Ly (H", H").

A quaternionically linear mapping A is called isometric or quaternionically
unitary if (A(u), A(v)) = (u,v) for all u,v € H". We denote by Sp(n) the
group of all quaternionic isometries of H", the quaternionic unitary group.
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The reason for its name is that Sp(n) = Sp(n,C) N U(2n), since we can
decompose the quaternionic Hermitian form ( , ) into a complex Hermit-
ian one and a complex symplectic one. Also we have Sp(n) C O(4n,R),
since the real part of ( , ) is a positive definite real inner product. For
A € Ly(H", H") we put A* := A", Then we have (u, A(v)) = (A*(u),v), so
(A(u), A(v)) = (A*A(u),v). Thus A € Sp(n) if and only if A*A = Id.
Again f : Ly(H",H") — Luperm( ", H") = {A : A* = A}, given by
f(A) = A*A, is a smooth mapping with df(A)X = X*A + A*X. So we
have kerdf(Id) = {X : X* = —X} =: sp(n), the space of quaternionic
skew-Hermitian matrices. The usual proof shows that f has maximal rank
on GL(n,H), so Sp(n) = f~'(Id) is a compact real Lie group of dimension
2n(n — 1) + 3n.

The groups SO(n,R) for n > 3, SU(n) for n > 2, Sp(n) for n > 2 and
the real forms of the five exceptional complex Lie groups exhaust all simple
compact Lie groups up to coverings.

4.11. Invariant vector fields and Lie algebras. Let G be a (real) Lie
group. A vector field £ on G is called left invariant if p & = € for all a € G,
where p'¢ = T(p,-1) 0 € o pg as in section Since by we have
uilé,ml = [, pinl, the space X1 (G) of all left invariant vector fields on
G is closed under the Lie bracket, so it is a Lie subalgebra of X(G). Any
left invariant vector field £ is uniquely determined by £(e) € T.G, since
€(a) = Te(pa)-£(e). Thus the Lie algebra Xp(G) of left invariant vector
fields is linearly isomorphic to T.G, and on T.G the Lie bracket on X1 (G)
induces a Lie algebra structure, whose bracket is again denoted by [ , |.
This Lie algebra will be denoted as usual by g, sometimes by Lie(G).

We will also give a name to the isomorphism with the space of left invariant
vector fields: L : g — X1(G), X — Lx, where Lx(a) = Tepq.X. Thus
[X, Y] = [LX,Ly](e).

A vector field n on G is called right invariant if (u*)*n =n for all a € G. If
¢ is left invariant, then v*¢ is right invariant, since v o u® = p,-1 o v implies
that (u®)*v*¢ = (v o u®)*¢ = (ug—1 o v)*E = v*(ug—1)*¢ = v*¢. The right
invariant vector fields form a Lie subalgebra Xr(G) of X(G), which is again
linearly isomorphic to T,G and induces also a Lie algebra structure on T.G.
Since v* : X1(G) — Xg(G) is an isomorphism of Lie algebras by
T.v = —Id : T.G — T,G is an isomorphism between the two Lie algebra
structures. We will denote by R : g = T.G — Xg(G) the isomorphism
discussed, which is given by Rx(a) = T.(u%).X.

4.12. Lemma. If Lx is a left invariant vector field and Ry is a right
invariant one, then [Lx, Ry] = 0. Thus the flows of Lx and Ry commute.
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Proof. We consider the vector field 0 x Lx € X(G x G), given by (0 x
LX)(a7 b) = (Oaa LX(b))‘ Then T(a,b)/i'(oav Lx (b)) = Taﬂb-oa +Tb,ua'LX(b) =
Lx(ab), so 0 x Lx is p-related to Lx. Likewise Ry x 0 is p-related to Ry-.
But then 0 = [0 x Lx, Ry x 0] is p-related to [Ly, Ry| by[(3.10)] Since p is
surjective, [Lx, Ry] = 0 follows. O

4.13. Lemma. Let p: G — H be a smooth homomorphism of Lie groups.
Then ¢ :=T.p:9=T.G — h=T.H is a Lie algebra homomorphism.

Later, in |(4.21), we shall see that any continuous homomorphism between
Lie groups is automatically smooth.

Proof. For X € g and = € G we have

Too.Lx(z) = TppTepy. X = Te(po pig). X
= Te(ﬂcp(x) ° 90)'X = Te(/igo(x)>'Te<P~X = Lw’(X)(SO(x))'
So Lx is g-related to Ly (x). By |(3.10) the field [Lx,Ly] = Lixy] is

p-related to [Ly(x), Ly(vy] = Lig(x),e/(v): So we have T o Lixy) =
Ly (x),¢(vy) © - If we evaluate this at e, the result follows. (]

Now we will determine the Lie algebras of all the examples given above.

4.14. For the Lie group GL(n,R) we have T.GL(n,R) = L(R",R") =:
gl(n,R) and TGL(n,R) = GL(n,R) x L(R™,R™) by the affine structure
of the surrounding vector space. For A € GL(n,R) we have ua(B) =
A.B, so j14 extends to a linear isomorphism of L(R",R™), and for (B, X) €
TGL(n,R) we get Tp(pa).(B,X) = (A.B,A.X). So the left invariant vector
field Lx € X(GL(n,R)) is given by Lx(A) = Te(pua). X = (A4, A.X).

Let f : GL(n,R) — R be the restriction of a linear functional on L(R™, R™).
Then we have Lx(f)(A) = df(A)(Lx(A)) = df (A)(A.X) = f(A.X), which
we may write as Lx(f) = f( .X). Therefore

Lixy)(f) = [Lx, Ly](f) = Lx(Ly (f)) — Ly (Lx(f))
=Lx(f( Y)-Ly(f( X))=f( XY)-f( YX)
=f( (XY -YX))=Lxy-vx([)

So the Lie bracket on gl(n,R) = L(R",R") is given by [X,Y] = XY - Y X,
the usual commutator.

4.15. Example. Let V be a vector space. Then (V,+) is a Lie group,
ToV =V is its Lie algebra, TV =V x V, left translation is u,(w) = v + w,
Tow(py).(w,X) = (v+ w,X). So Lx(v) = (v,X), a constant vector field.
Thus the Lie bracket is 0.
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4.16. Example. The special linear group is SL(n,R) = det™!(1) and
its Lie algebra is given by TeSL(n,R) = kerddet(I) = {X € L(R",R") :
Trace X = 0} = sl(n,R) by The injection i : SL(n,R) — GL(n,R) is
a smooth homomorphism of Lie groups, so T,i = i’ : sl(n,R) — gl(n,R) is
an injective homomorphism of Lie algebras. Thus the Lie bracket is given
by [X,Y]=XY -YX.

The same argument gives the commutator as the Lie bracket in all other

examples we have treated. We have already determined the Lie algebras as
T.G.

4.17. 1-parameter subgroups. Let G be a Lie group with Lie algebra g.
A 1-parameter subgroup of G is a Lie group homomorphism « : (R, +) — G,
i.e., a smooth curve o in G with (s +t) = a(s).a(t), and hence a(0) = e.

Lemma. Let o : R — G be a smooth curve with a(0) = e. Let X € g. Then
the following assertions are equivalent.

)
(2) a(t) = F1Ex(t,e) for all t.
(3) a(t) = FI1x(t,e) for all t.
4) z.at) = FI¥X (¢, 2), or Flix = o) for all t .
( t M
5) a(t).z = FIFX (¢, z), or F1IX = la(s), for all t.
t ()

Proof. (I) = (@) We have Lz.a(t) = Llpz.at + 5) = L|oz.a(t).a(s) =

%IOMI.a(t)a(s) = Te(:u’x.a(t))'%loa(s) = Te(:“’x.a(t))'X = Lx(flf.a(t)). By
uniqueness of solutions we get z.a(t) = FILX (¢, z).

(@) = (@) This is clear.
@) = (@) We have

sat)als) = L (kamals) = T(kaw) gols)
= T(pa) Lx(a(s)) = Lx(at)a(s))

and a(t)a(0) = a(t). So we get at)a(s) = FIEX (s, a(t)) = FILX FIFX (¢) =
FIXX (t 4 5,e) = a(t + s).

@) < () We have FI'¢ = 11 o FI{ ov by [(3.14)] Therefore we have by
€85y

(FIF (a=1)7 = (v 0 FUR ov)(a) = FIL ¥ ()
= FIX¥ (2) = z.a(—0).
So FIFX (271) = a(t).2™!, and FIF* (y) = a(t).y.
) = @) = (@) can be shown in a similar way. O
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An immediate consequence of the foregoing lemma is that left invariant and
right invariant vector fields on a Lie group are always complete, so they
have global flows, because a locally defined 1-parameter group can always
be extended to a globally defined one by multiplying it up: a(nt) = a(t)".

4.18. Definition. The exponential mapping exp : g — G of a Lie group is
defined by

exp X = FIIX(1,e) = F1FX (1,e) = ax (1),

where ax is the 1-parameter subgroup of G with ax(0) = X.

1) exp : g = G is smooth.
) exp(tX) = F1Ex(t,e).
) FILX(t,2) = 2. exp(tX).
4) FIx (¢, 2) = exp(tX).z.
) exp(0) = e and Tyexp = Id : Tog = g — TG = g; thus exp is a

diffeomorphism from a neighborhood of 0 in g onto a neighborhood of
e G.

Proof. ([Il) Let 0 x L € X(g x G) be given by (0 x L)(X,z) = (0x, Lx(z)).
Then pry FI°*L(t, (X, e)) = ax(t) is smooth in (¢, X).

@) exp(tX) = FI*IX (1, e) = FIFX (¢, e) = ax(t).

@) and (@) follow from lemma |(4.17)

@) Topexp.X = Llgexp(0 +t.X) = Lo FIE¥(te) = X. 0

4.19. Remark. If GG is connected and U C g is open with 0 € U, then the
group generated by exp(U) equals G.

Namely, this group is a subgroup of G containing some open neighborhood
of e, so it is open. The complement in G is also open (as union of the
other cosets), so this subgroup is open and closed. Since G is connected, it
coincides with G.

If G is not connected, then the subgroup generated by exp(U) is the con-
nected component Gg of e in G, an open connected normal subgroup.

4.20. Remark. Let ¢ : G — H be a smooth homomorphism of Lie groups.
Then the diagram

o

g——=h
expci lepo
©
G—H
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commutes, since ¢t — @(exp®(tX)) is a 1-parameter subgroup of H which
satisfies %|090(€XPG tX) = ¢'(X), so p(exp? tX) = expf (tp'(X)).

If G is connected and ¢, : G — H are homomorphisms of Lie groups with
¢ =" :g—b, then ¢ = 1. Namely, ¢ = 9 on the subgroup generated by

exp® g which equals G by [(4.19))

4.21. Theorem. A continuous homomorphism ¢ : G — H between Lie
groups is smooth. In particular a topological group can carry at most one
compatible Lie group structure.

Proof. Let first ¢ = a: (R, 4+) — G be a continuous 1-parameter subgroup.
Then a(—¢,e) C exp(U), where U is an open ball with center 0 in g such
that exp | 2U is a diffeomorphism, for some ¢ > 0. Put

B:=(exp | 2U) toa: (—¢,¢e) —g.
Then for [t| < § we have
exp(26(t)) = exp(B(t))* = a(t)® = a(2t) = exp(B(2t)),
so 26(t) = B(2t); thus B(£) = 3B(s) for |s| < e. Applying exp we have
a($) = exp(B(%)) = exp(38(s)) for all |s| < e and by recursion we get
a(57) = exp(5w6(s)) for n € N and in turn
a(gws) = alzr)" = exp(gB(s))* = exp(gr(s))

for k € Z. Since the 2% for k € Z and n € N are dense in R and since « is
continuous, we get a(ts) = exp(t3(s)) for all t € R. So « is smooth.

Now let ¢ : G — H be a continuous homomorphism. Let Xi,..., X, be a
linear basis of g. We define ¢ : R" — G by

Pttt = exp(tX]) - exp(t"X).

Then Tyt is invertible, so 1) is a diffeomorphism near 0. Sometimes 1! is
called a coordinate system of the second kind. The curve t — @(exp® tX;)
is a continuous 1-parameter subgroup of H, so it is smooth by the first part
of the proof.

We have (p o) (t!,...,t") = (pexp(t'X1))--- (pexp(t"Xy,)), so o1 is
smooth. Thus ¢ is smooth near e € G and so everywhere on G. O

4.22. Theorem. Let G and H be Lie groups (G separable is essential
here), and let ¢ : G — H be a continuous bijective homomorphism. Then ¢
is a diffeomorphism.

Proof. Our first aim is to show that ¢ is a homeomorphism. Let V be an
open e-neighborhood in G, and let K be a compact e-neighborhood in G such
that K.K~! C V. Since G is separable, there is a sequence (a;);en in G such
that G = |J;2; a;.K. Since H is locally compact, it is a Baire space (i.e., V;
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open and dense for i € N implies (| V; dense). The set ¢(a;)p(K) is compact,
thus closed. Since H = J; ¢(a;).¢(K), there is some ¢ such that ¢(a;)e(K)
has nonempty interior, so ¢(K) has nonempty interior. Choose b € G such
that ¢(b) is an interior point of ¢(K) in H. Then ey = @(b)p(b~!) is an
interior point of ¢(K)p(K 1) C »(V). Soif U is open in G and a € U, then
ey is an interior point of ¢(a~1U), so ¢(a) is in the interior of p(U). Thus
©(U) is open in H, and ¢ is a homeomorphism.

Now by [(4.21)] ¢ and ¢! are smooth. O

4.23. Examples. We first describe the exponential mapping of the general
linear group GL(n,R). Let X € gl(n,R) = L(R™,R™); then the left invariant
vector field is given by Lx(A) = (A, A.X) € GL(n,R) x gl(n,R) and the
l-parameter group ax (t) = FILX(¢,1,,) is given by the differential equation
%ax(t) = Lx(ax(t)) = ax(t).X, with initial condition ax(0) = I,. But

the unique solution of this equation is ax (t) = e = Y32, tk—k!X k. So

expCLB (X)) = X = o X*.

If n =1, we get the usual exponential mapping of one real variable. For all
Lie subgroups of GL(n,R), the exponential mapping is given by the same
formula exp(X) = e¥; this follows from [(4.20)]

4.24. The adjoint representation. A representation of a Lie group G on
a finite-dimensional vector space V (real or complex) is a homomorphism
p: G — GL(V) of Lie groups. Its derivative p' : g — gl(V) = L(V,V) is a
Lie algebra homomorphism by

For a € G we define conj, : G — G by conj,(z) = ara™!. It is called the
conjugation or the inner automorphism by a € G. We have conj,(zy) =
conj,(z) conj,(y), conj,, = conj, o conj,, and conj is smooth in all variables.

Next we define for a € G the mapping Ad(a) = (conj,) = Te(conj,) : g — g.
By |(4.13)| the linear map Ad(a) is a Lie algebra homomorphism, so we
have Ad(a)[X,Y] = [Ad(a)X,Ad(a)Y]. Furthermore Ad : G — GL(g) is a
representation, called the adjoint representation of G, since
Ad(ab) = Te(conj,,) = Te(conj, o conjy)
= Te(conj,) o Te(conj,) = Ad(a) o Ad(b).

The relations Ad(a) = Tu(conj,) = Ta(u® ).Te(pta) = Ty-1(pa) To(u® )
will be used later.

Now we define the (lower case) adjoint representation of the Lie algebra g,

ad: g — gl(g) = L(g,g), ad:=Ad =T.Ad.
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Lemma.

(1) Lx(a) = Raqea)x(a) for X € g and a € G.
(2) ad(X)Y :[X,Y] for X,Y € g.

Proof. M) Lx(a)=T.(pta).X = To(u®).To(u® ' 0 pa)- X = Raa(ayx(a).
@) Let Xy,...,X, be a linear basis of g and fix X € g. Then Ad(z)X =
S fil). X, for fi € C*°(G,R) and we have in turn:

A (V)X =T (Ad( )X)Y =d(Ad( )X)[Y =d(3 fiXi)[Y
=2 dfile(Y)X; =3 Ly (fi)(e). X
Lx(z) = Raa@)x(z) = R(X fi(2) Xi)(2) = 3 fi(z).Rx,(z) by [@D).
[Ly,Lx]| = [Ly, > fi-Rx,] = 0+ 3 Ly(fi).Rx, by |[(3.4)] and [(4.12)|
Y. X] = [Ly, Lx](e) = 3_ Ly (fi)(e)-Rx;(e) = Ad'(Y)X = ad(Y)X. O

4.25. Corollary. From|(4.20)| and|(4.23)| we have

Adoexp® = exp®l® o ad,

Ad(exp® X)Y = i G (ad X)FYy = e Xy
k=0
=Y + [X, Y]+ &[X, [X, Y]] + %[ X, [X, [X, Y]] + -

so that also ad(X) = 0]o Ad(exp(tX)).

4.26. The right logarithmic derivative. Let M be a manifold and
let f: M — G be a smooth mapping into a Lie group G with Lie alge-
bra g. We deﬁne the mapping 6f : TM — g by the formula §f(&,) =
Tt )(,uf( )T f.£x. Then &f is a g-valued 1-form on M, 5f € QY(M,g),
as we will write later. We call  f the right logarithmic derivative of f, since

for f: R — (R*,") we have §f(2).1 = £ = (logof)'(x).

Lemma. Let f,g: M — G be smooth. Then we have
6(f.9)(x) = 6f(x) + Ad(f(x)).0g().

Proof. We compute as follows:
3(f.9)(@) = T(u!™ ") T, (1.9)
= T(p/@ )T T (), 9@ - (T f, Trg)

= T(/@ )T (7)) T f + T(paga)) Tog)
)
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Remark. The left logarithmic derivative 6 f € QY(M,g) of a smooth
mapping f : M — G is given by st f.¢, = Tp(2) (B p(@)y-1) - Tuf-&e The
corresponding Leibniz rule for it is uglier than that for the right logarithmic
derivative:

0" (fg)(x) = 8" g(x) + Ad(g(x)"1)a"" f(2).
The form 6" (Idg) € Q'(G, g) is also called the Maurer-Cartan form of the
Lie group G.

21
4.27. Lemma. Forexp:g— G and for g(z) := c we have
§(exp)(X) = T(uP X)) T exp Z o (ad X)? = g(ad X).

p=0

Proof. We put M(X) = d(exp)(X) : g — g. Then

(s+t)M((s+t)X) = (s+1t)d(exp)((s +t)X)
=d(exp((s+t) ))X Dby the chain rule
=d(exp(s ).exp(t )).X
=d(exp(s )).X 4+ Ad(exp(sX)).6(exp(t )).X by [(4.26)]

= 5.9(exp)(sX) + Ad(exp(sX)).t.d(exp)(tX)
= s.M(sX)+ Ad(exp(sX)).t.M(tX).
Next we put
N(t): =t.M(tX) € L(g, 9);
N(s+t) = N(s)+ Ad(exp(sX)).N(t).
We fix ¢, apply %\0, and get
N'(t) = N'(0) + ad(X).N(¢),
N'(0) = M(0) 4+ 0 = §(exp)(0) = Id,.
So we have the differential equation
N'(t) = Idg + ad(X).N ()
in L(g, g) with initial condition N(0) = 0. The unique solution is

s) = Z ﬁ ad(X)P.sPT1 and so

(exp)(X) = M(X =Y o ad(X)P. O
p=0




56 CHAPTER II. Lie Groups and Group Actions

4.28. Corollary. The tangent mapping Tx exp is bijective if and only if
no eigenvalue of ad(X) : g — g is of the form /—12kw for k € Z \ {0}.

Proof. The zeros of g(z) = €L are z = 2km/—1 for k € Z\ {0}. The
linear mapping T’y exp is bijective if and only if no eigenvalue of

g(ad(X)) = T(uP %)) Tx exp

is 0. But the eigenvalues of g(ad(X)) are the images under g of the eigen-
values of ad(X). O

4.29. Theorem. The Baker-Campbell-Hausdorff formula.

Let G be a Lie group with Lie algebra g. For complex z near 1 we consider
the function f(z) := 12‘%(1) = n>0 (;lr)ln (z—1)™

Then for X, Y near 0 in g we have exp X.expY = exp C(X,Y), where

1
C(X,Y) —Y+/ f(etadX ead¥y x gt

B )n 1 tk & ¢ n
X+Y+Z /0 > g (ad X)M(ad V)" ) X at
k,0>0

n>1 >
k+0>1
n d X)) (adY)e ... (ad X)Fn(ad V)
—xere e T
= n+ k1,...,kn20( 14tk + DRG0
1yl >0
ki+0;>1

=X +Y +3[X, Y]+ 5(X, [ X, Y] + [V, [V, X]]) +
Proof. Let C(X,Y) := exp_l(exp X.expY) for X, Y near 0 in g, and let
C(t) := C(tX,Y). Then by [(4.27)[ we have
T (OO 4 (exp O(t)) = §(exp oC)(t).1 = exp(C(t)).C(t)
= 2 k>0 ﬁ(ad C)*C()
= g(ad C(1)).C(1),
where g(2) = £ = > k>0 (sz’“l)' We have exp C(t) = exp(tX)expY and
exp(~C(t)) = exp(C(t) " = exp(—Y) exp(—£X);
therefore
T(ueP-C0)) 4 (expC0) = (oY) (X)) 4 (exp(tX) exp V)
— TP (P )T (Y ) exp(tX)
= T(uP ")) Ry (exp(tX)) = X by |[(4.18.4) and [(4.11)]
X = g(ad C(1)).C(1).
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e €M — Ad(exp C(t)) by
= Ad(exp(tX)expY) = Ad(exp(tX)). Ad(expY)

— ead(tX)'eadY _ 6t.ad X'ead Y'

(et.ad X_ead Y)

If X, Y, and ¢ are small enough, we get ad C(t) = log , where

log(2) = > 51 (! (z — 1)™; thus we have

X = g(ad C(t)).C(t) = g(log(e" 2 X 24 YY) C(¢).

For z near 1 we put f(z) := lzgfii) = > >0 %(2 — 1)™. This function

satisfies g(log(z)).f(z) = 1. So we have
X = g(log(etd X c2d YY)y érg) = f(et-ad X ad YVY=1 6,
{C(t) _ fehad X gnd Yy X
Cc0)=Y.

Passing to the definite integral, we get the desired formula

C(X,Y)=C(1) =C(0) + /1 C(t)dt
0
_ ! 6t.adX 6ad Y) X dt
_v+ / J(e X Y,

0 5 )

X4y U ad X)Fad VYY) X dt

+ +nz>:1n+1 ; k;() g (ad X)Had Y)
- k4-0>1

ZX-i-Y—i-Zﬂ Z (ad X)*1(ad V)% ... (ad X)Fn(ad V)

= n+1 bt a0 (k‘l 4+ o+ ky + 1)]{51' Y S R /|
l1,...,8n,>0
ki+0;>1
=X +Y +iX Y]+ (X (X Y]+ [V, X))+ . O

4.30. Remarks. (1) If G is a Lie group of differentiability class C2, then
we may define T'G and the Lie bracket of vector fields. The proof above
then makes sense and the theorem shows that in the chart given by exp~!
the multiplication p : G x G — G is C¥ near e, hence everywhere. So in
this case (G is a real analytic Lie group. See also remark below.

(2) Let G be a Lie groups with Lie algebra g. Then Trotter’s formula holds:
For X,Y € g we have, by ((4.29)

(exp(5X) exp(;))" = exp(n.C(; X, 1Y)
= exp(X + Y + L. (bounded)) ——— exp(X +Y).
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(3) Similarly, by [(4.29)
(exp (3, X) exp (1Y) exp(SHX) exp(F1Y))"
— (2 C(C(LX, 1Y), (31X, 211))
= exp([X, Y] + 7 (bounded)) ——— exp([X, Y]).

(4) Let P be a formal bracket expression of length k as in|(3.16) On G we use
[g,h] = ghg~'h~! as commutator. We consider smooth curves g; : R — G
with ¢;(0) = e and ¢/(0) = X; € g. Then ;(t,h) = h.gi(t) = p%®(h) are
global curves of diffeomorphisms on G with 0|oy;(t,h) = Lx,(h). Evaluat-

ing [(3.16) at e, we then get
O_éa:ﬁ’op(gtlw‘wgf) f0r1§£<k7
P(X1,.., Xg) = 525 0P (gl .., o) € X(M).
A special case of this is: For X; € g we have

@tz‘OP(eXP(t X1),...,exp(t.- X)) forl</l<k,

P(X1,...,Xg) = kl @tk ‘OP(eXp(t Xi),...,exp(t.Xg)) € 9.

4.31. Example. The group SO(3,R). From|(4.5) and |(4.16)| we know that
the Lie algebra o(3,R) of SO(3,R) is the space Lgew(R?,R?) of all linear
mappings which are skew-symmetric with respect to the inner product, with
the commutator as Lie bracket.

The group Sp(1) = S3 of unit quaternions has as Lie algebra 715 = 1+,
the space of imaginary quaternions, with the commutator of the quaternion

multiplications as bracket. From|(4.10)| we see that thisis [X,Y] =2X x Y.
Then we observe that the mapping

a:5p(1) = 0(3,R) = Lyew (R, R?),  a(X)Y =2X x Y,

is a linear isomorphism between two 3-dimensional vector spaces and is also
an isomorphism of Lie algebras because [a(X),a(Y)]Z = 4(X x (Y x Z) —
Y X (X x2Z)=4X x (Y XxZ)+Y x(Zx X)) =—-4Zx (Y xX)) =
22X xY)xZ = o([X,Y])Z. Since S? is simply connected, we may conclude
from below that Sp(1) is the universal cover of SO(3).

We can also see this directly as follows: Consider the mapping 7 : % ¢ H —
SO(3,R) which is given by 7(P)X = PXP, where X € R3 x {0} C H is
an imaginary quaternion. It is clearly a homomorphism 7 : S — GL(3,R),
and since |7(P)X| = |[PXP| = |X| and S? is connected, it has values in
SO(3,R). The tangent mapping of 7 is computed as (T17.X)Y = XY1 +
1Y (-X) =2(X xY) = «(X)Y, so it is an isomorphism. Thus 7 is a local
diffeomorphism, the image of 7 is an open and compact (since S? is compact)
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subgroup of SO(3,R), so 7 is surjective since SO(3,R) is connected. The
kernel of 7 is the set of all P € S% with PXP = X for all X € R3, ie.,
the intersection of the center of H with S3, the set {1,—1}. So 7 is a two
sheeted covering mapping.

So the universal cover of SO(3,R) is the group S = Sp(1) = SU(2) =
Spin(3). Here Spin(n) is just a name for the universal cover of SO(n), and
the isomorphism Sp(1) = SU(2) is just given by the fact that the quaternions
can also be described as the set of all complex matrices

a b .
<—b a>~a1+bj.

The fundamental group 71 (SO(3,R)) = Zo = Z/27Z.

4.32. Example. The group SO(4,R). We consider the smooth homo-
morphism p : S x $3 — SO(4,R) given by p(P,Q)Z := PZQ in terms
of multiplications of quaternions. The derived mapping is p/(X,Y)Z =
(Tayp(X,Y))Z = XZ1 +1Z(=Y) = XZ — ZY, and its kernel consists
of all pairs of imaginary quaternions (X,Y) with XZ = ZY for all Z € H.
If we put Z = 1, we get X = Y; then X is in the center of H which
intersects sp(1) at 0 only. So p’ is a Lie algebra isomorphism since the di-
mensions are equal, and p is a local diffeomorphism. Its image is open and
closed in SO(4,R), so p is surjective, a covering mapping. The kernel of p
is easily seen to be {(1,1),(—1,—1)} C S* x S3. So the universal cover of
SO(4,R) is §2 x 83 = Sp(1) x Sp(1) = Spin(4), and the fundamental group
m1(SO(4,R)) = Zg again.

Examples and Exercises

4.33. Let A € L(R™,R™) be an (n x n)-matrix. Let C'(A) be the matrix of
the signed algebraic complements of A, i.e.,

AL AL 0 AL, oA

» s »

| AU Atk oAl A
C(A)i:=det| 0 ... 0 1 0 ... 0
j+1 j+1 j+1 j+1

AP Ath o Al A

AL AT 0 AL, ... AT

Prove that C(A)A = AC(A) = det(A) - I,, (Cramer’s rule)! This can be
done by remembering the expansion formula for the determinant while mul-
tiplying it out.
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Prove that d(det)(A)X = Trace(C(A)X)! There are two ways to do this.
The first one is to check that the standard inner product on L(R™ R™) is
given by (A, X) = Trace(AT X) and by computing the gradient of det at A.

The second way uses [(14.19)]
det(A +tL,) = t" + " ! Trace(A) + t" 25 (A) 4+ -+t (A) + det(A).
Assume that A is invertible. Then:
det(A+tX) =t"det(t A+ X) = t"det(A(A7IX +t711,))

= t" det(A) det(A X +t711,)

= " det(A)(t™" + t17" Trace(A71X) + - - - + det(4A71 X))

= det(A)(1 + t Trace(A™'X) + O(t?)),

ddet(A)X = 9|y det(A +tX) = d|pdet(A)(1 + t Trace(A™1X) + O(t?))

= det(A) Trace(A™ ' X) = Trace(det(A) A~ X)

= Trace(C(A4)X).
Since invertible matrices are dense, the formula follows by continuity.
What about detc : L¢(C™,C") — C?
4.34. For a matrix A € L(R",R") let 4 := 2 k>0 HAF. Prove that e
converges everywhere, that det(e?) = eT2*(4) and thus e? € GL(n,R) for
all A € L(R™,R"™).
4.35. We can insert matrices into real analytic functions in one variable:

f(A) = f(0) -1, + Z %Ak, if the norm |A| < p,
k>0

where p is the radius of convergence of f at 0. Develop some theory about
that (pay attention to constants): (f-g)(A) = f(4) - g(A), (fog)(4) =
f(g(A), df(A)X = f(A)X if [A,X] = 0. What about df(A)X in the
general case?

4.36. Quaternions. Let ( , ) denote the standard inner product on
oriented R*. Put 1 := (0,0,0,1) € R* and R?® =2 R3 x {0} = 1+ c R*. The
vector product on R? is then given by (z x y,2) := det(z,y, z). We define
a multiplication on R* by (X,s)(Y,t) := (X x Y + sY +tX, st — (X,Y)).
Prove that we get the skew-field of quaternions H, and derive all properties:
associativity, |p.q| = |p|.|q|, p.p = |p|>.1, p~* = |p|~2.p, P-¢ = ¢.p. How many
representations of the form =z = xgl + x17 + z9j + x3k can we find? Show
that H is isomorphic to the algebra of all complex (2 x 2)-matrices of the

form
U v
< _ _> , u,veC.
—-U u
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4.37. The exponential mapping for self-adjoint operators. Let V
be a Euclidean vector space with positive definite inner product ( | )
(or a Hermitian vector space over C). Let S(V) be the vector space of all
symmetric (or self-adjoint) linear operators on V. Let ST (V) be the open
subset of all positive definite symmetric operators A, so that (Av|v) > 0 for
v # 0. Then the exponential mapping exp : A — ed = Yoo %Ak maps
S(V) into ST(V).

Lemma. The exponential mapping exp : S(V) — ST(V) is a diffeomor-
phism.

Proof. We start with a complex Hermitian vector space V. Let CT := {\ €
C : Re(\) > 0}, and let log : C™ — C be given by log()\) = f[l)\] 27 ldz,
where [1, A] denotes the line segment from 1 to A.

Let B € ST(V). Then all eigenvalues of B are real and positive. We
chose a (positively oriented) circle v C C* such that all eigenvalues of B
are contained in the interior of 7. We consider A +— log(A)(A Idy —B)~!
as a meromorphic function in C* with values in the complex vector space
C® S(V), and we define

log(B) := 277\1/j1/10g(A)(A Idy —B)"'d\, BeST(V).
g

We shall see that this does not depend on the choice of v. We may use the
same choice of the curve « for all B in an open neighborhood in S*(V); thus
log(B) is real analytic in B.

We claim that log = exp~!. If B € ST(V), then B has eigenvalues \; > 0

with eigenvectors v; forming an orthonormal basis of V', so that Bv; = \v;.
Thus (AIdy —B) v = x5 for A # X, and

1 log A
27’(‘\/—1 ~ )\—)\1

by Cauchy’s integral formula. Thus log(B) does not depend on the choice
of v and exp(log(B))v; = elos(\i)y, = X\; v; = By for all i. Thus expolog =
Idg+(yy. Similarly one sees that logoexp = Idgy.

Now let V be a real Euclidean vector space. Let V€ = C ® V be the
complexified Hermitian vector space. If B : V — V is symmetric, then
§(B) := B® = 1d¢®B : V& — VC is self-adjoint. Thus we have an em-
bedding of real vector spaces j : S(V) — S(VC). The eigenvalues of j(B)
are the same as the eigenvalues of B; thus j restricts to an embedding
j:ST(V) — SH(VC). By definition the left hand diagram below commutes

(log B)v; = ( dA) v; = log(\)vi
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and thus also the right hand one:

S(V) —L~ §(v°) S(V) —L= 5(ve)
expl expcl dexp<B>l dexp%B)l
ST(V) —Ls 5V, S(V) —1» S(VO).

Thus dexp(B) : S(V) — S(V) is injective for each B, thus a linear isomor-
phism, and by the inverse function theorem exp : S(V) — ST (V) is locally
a diffeomorphism and is injective by the diagram. It is also surjective: for
B € ST(V) we have Bv; = \;jv; for an orthonormal basis v;, where \; > 0.
Let A € S(V) be given by Av; = log(\;) v;; then exp(A) = B. O

4.38. Polar decomposition. Let (V,g) be a Euclidean real vector space
(positive definite). Then we have a real analytic diffeomorphism

GL(V) = 87(V,g) x O(V, g);

thus each A € GL(V') decomposes uniquely and real analytically as A = B.U
where B is g-symmetric and g-positive definite and U € O(V, g).

Proof. The decomposition A = BU, if it exists, must satisfy AAT =
BUU'TB' = B%2. By the exponential mapping X +— e~ is a real
analytic diffeomorphism exp : S(V, g) — ST(V, g) from the real vector space
of g-symmetric operators in V' onto the submanifold of g-symmetric positive
definite operators in GL(V'), with inverse B + log(B). The operator AAT
is g-symmetric and positive definite. Thus we may put B := VAAT =
exp(3log(AAT)) € ST(V,g). Moreover, B commutes with AA". Let U :=
B7'A. Then UUT = B7'AAT(B™Y)T =1dy, so U € O(V, g). O

5. Lie Groups II. Lie Subgroups and Homogeneous Spaces

5.1. Definition. Let G be a Lie group. A subgroup H of G is called a
Lie subgroup if H is itself a Lie group (so it is separable) and the inclusion
i: H — (G is smooth.

In this case the inclusion is even an immersion. It suffices to check that
T.i is injective: If X € b is in the kernel of T.i, then i o exp(tX) =
exp®(t.T.i.X) = e. Since i is injective, X = 0.

From the next result it follows that H C G is then an initial submanifold in
the sense of[(2.13)} If Hy is the connected component of H, then i(Hp) is the
Lie subgroup of G generated by i'(h) C g, which is an initial submanifold,
and this is true for all components of H.
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5.2. Theorem. Let G be a Lie group with Lie algebra g. If b C g is a Lie
subalgebra, then there is a unique connected Lie subgroup H of G with Lie
algebra . Moreover, H is an initial submanifold of G.

Proof. Put E; := {T.(p:).X : X € b} C T;G. Then E := | |, .o E; is
a distribution of constant rank on G. It is spanned by the involutive set
{Lx,X € b} of vector fields. So by theorem the distribution FE is
integrable and the leaf H through e is an initial submanifold. It is even a
subgroup, since for x € H the initial submanifold p, H is again a leaf (since
E is left invariant) and intersects H at x, so u,(H) = H. Thus HH = H
and consequently H~! = H. The multiplication p : H x H — G is smooth
by restriction and smooth as a mapping H x H — H, since H is an initial

submanifold, by lemma |(2.15)] O

5.3. Theorem. Let g be a finite-dimensional real Lie algebra. Then there
exists a connected Lie group G whose Lie algebra is g.

Sketch of Proof. By the theorem of Ado (see [96] or [224] p. 237]) g has
a faithful (i.e., injective) representation on a finite-dimensional vector space
V, i.e., g can be viewed as a Lie subalgebra of gl(V') = L(V, V). By theorem
above there is a Lie subgroup G of GL(V') with g as its Lie algebra. O

This is a rather involved proof, since the theorem of Ado needs the structure
theory of Lie algebras for its proof. There are simpler proofs available,
starting from a neighborhood of e in G' (a neighborhood of 0 in g with the
Baker-Campbell-Hausdorff formula as multiplication) and extending
the Lie group structure.

5.4. Theorem. Let G and H be Lie groups with Lie algebras g and b,
respectively. Let f : g — b be a homomorphism of Lie algebras. Then there
is a Lie group homomorphism @, locally defined near e, from G to H, such
that o' =T, = f. If G is simply connected, then there is a globally defined
homomorphism of Lie groups ¢ : G — H with this property.

Proof. Let £ := graph(f) C g x h. Then ¢ is a Lie subalgebra of g x b, since
f is a homomorphism of Lie algebras. The product g x b is the Lie algebra of
Gx H, so by theoremthere is a connected Lie subgroup K C G x H with
algebra . We consider the homomorphism g := pr; oincl : K - GxH — G,
whose tangent mapping satisfies

Teg(Xa f(X)) = T(e,e) pry T incl (Xa f(X)) =X;

so it is invertible. Thus g is a local diffeomorphism, so g : K — Gg is a
covering of the connected component Gy of e in G. If G is simply connected,
g is an isomorphism. Now we consider the homomorphism v := pryoincl :
K — G x H — H, whose tangent mapping satisfies T.(X, f(X)) = f(X).
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We see that ¢ := o (g | U)"' : G D U — H solves the problem, where
U is an e-neighborhood in K such that g [ U is a diffeomorphism. If G is
simply connected, ¢ = 1 o g~! is the global solution. ([

5.5. Theorem. Let H be a closed subgroup of a Lie group G. Then H is
a Lie subgroup and a submanifold of G.

Proof. Let g be the Lie algebra of G. We consider the subset h := {¢/(0) :
ce C®(R,G), ¢(R) C H,c(0) = e}.

Claim 1. b is a linear subspace.

If ¢(0) € h and ¢; € R, we define ¢(t) := cy(t1.t).ca(t2.t). Then we have
C/(O) = T(e,e),u~(t1-cll (0), tQ.CIQ(O)) = tl.C/l (0) + tQ.Cé(O) €bh.

Claim 2. h = {X € g:exp(tX) € H for all t € R}.

Clearly we have ‘2’. To check the other inclusion, let X = ¢/(0) € b and
consider v(t) := (exp®)~lc(t) for small . Then we have X = ¢(0) =
%|0 exp(v(t)) = v'(0) = lim, 00 n.v(1). We put ¢, := 1 and X,, := n.v(d),
so that exp(t,.X,,) = exp(v(2)) = ¢(2) € H. By claim 3 below we then get
exp(tX) € H for all t.

Claim 3. Let X, - X in g, 0 <t, — 0 in R with exp(¢,X,,) € H. Then
exp(tX) € H for all t € R.

Let t € R and take m,, € (i -1, ﬁ] N Z for large n. Then t,.m, — t and
Myp.tn. X, — tX, and since H is closed, we may conclude that

exp(tX) = lizn exp(mp.tn.Xp) = lirrln exp(t,.Xn)™" € H.

Claim 4. Let £ be a complementary linear subspace for b in g. Then there
is an open 0-neighborhood W in ¢ such that exp(W) N H = {e}.

If not, there are 0 # Yj, € ¢ with Y — 0 such that exp(Yy) € H. Choose
anorm | | on gand let X,, =Y, /|Y,|. Passing to a subsequence, we may
assume that X;, — X in ¢; then |X| = 1. But exp(|Y,|. X») = exp(Y,) € H
and 0 < |Y,,| — 0, so by claim 3 we have exp(tX) € H for all t € R. By
claim 2 we get X € h, a contradiction.

Claim 5. Put ¢ : h x ¢ = G, ¢(X,Y) = expX.expY. Then there are
0-neighborhoods V in h, W in ¢, and an e-neighborhood U in G such that
¢ :V xW = U is a diffeomorphism and U N H = exp(V).

Choose V, W, and U so small that ¢ becomes a diffeomorphism. By claim
4 the set W may be chosen so small that exp(W) N H = {e}. By claim
2 we have exp(V) € HNU. Let x € HNU. Since x € U, we have
x =expX.expY for unique (X,Y) € V x W. Then = and exp X € H, so
expY € HNexp(W) ={e}; thus Y =0. So x =exp X € exp(V).

Claim 6. H is a submanifold and a Lie subgroup.

The pair (U, (¢ | V x W)~! =: u) is a submanifold chart for H centered at e
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by claim 5. For x € H the pair (u;(U),u o p,—1) is a submanifold chart for
H centered at . So H is a closed submanifold of G, and the multiplication
is smooth since it is a restriction. O

5.6. Theorem. Let H be a subgroup of a Lie group G which is C°°-pathwise
connected (see|(2.13)]). Then H is a connected Lie group and an initial Lie
subgroup of G.

Proof. Let us call any smooth curve ¢ : R — G with ¢(0) = e and ¢(R) C H
an H-curve in G. As in the proof of let b be the set of ¢/(0) for all
H-curves ¢ in G. Claim 1 in the proof of shows that b is a linear
subspace of g. For H-curves ¢; in G we use[(4.30.3)| to see that [c} (0), c5(0)] =
202|091 (t)g2(t)g1(t) "g2(t) ! is again in b; so b is a Lie subalgebra of g.
Let Hy be the connected initial Lie subgroup of G corresponding to f which
is the leaf through e of the foliation given by the left invariant distribution
of constant rank generated by b; see For any H-curve c in G we
have T'(prepy-1).c'(t) = Osloc(t)"Le(t +5) € h. Thus c is tangent to this
distribution and thus lies in the leaf H; through e. By assumption, any
point in H is connected to e with such a curve. Thus H C H;.

To prove that Hy C H, we choose a basis Xq,...,X; of h and H-curves
ci in G with ¢;(0) = X;. We consider the mapping f : R¥ — H and H
which is given by f(t1,...,tx) = c1(t1)...cx(ty). Since Tpf is invertible
R* — B, the mapping f is a local diffeomorphism near 0 onto an open e-
neighborhood in H;. This shows that an open e-neighborhood of Hj is in
H; thus H; C H. O

5.7. Remarks. The following stronger results on subgroups and the rela-
tion between topological groups and Lie groups in general are available.

Any C°-pathwise connected subgroup of a Lie group is a connected Lie sub-
group, [231]. Theorem |(5.6)|is a weaker version of this, fitting the spirit of
(2.13)] The proof of [(5.6)| works also for C''-pathwise connected subgroups,

without any changes.

Let G be a separable locally compact topological group. If it has an e-
neighborhood which does not contain a proper subgroup, then G is a Lie
group. This is the solution of the 5-th problem of Hilbert; see [163] p. 107].

Any subgroup H of a Lie group G has a coarsest Lie group structure, but
it might be nonseparable. To indicate a proof of this statement, consider
all continuous curves ¢ : R — G with ¢(R) C H, and equip H with the
final topology with respect to them. Then apply the Yamabe theorem cited
above to the component of the identity. Or consider all smooth H-curves in
G (as in the proof of and put the final topology with respect to these
on H, and apply to the connected component.
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5.8. Let g be a Lie algebra. An ideal £ in g is a linear subspace ¢ such that
[¢,g] C €. Then the quotient space g/t carries a unique Lie algebra structure
such that g — g/t is a Lie algebra homomorphism.

Lemma. A connected Lie subgroup H of a connected Lie group G is a
normal subgroup if and only if its Lie algebra by is an ideal in g.

Proof. H normal in G means xHz ' = conj,(H) C H for all x € G. By
remark [(4.20)] this is equivalent to T,(conj,)(h) C b, i.e., Ad(z)h C b, for all
x € G. But this in turn is equivalent to ad(X)h C b for all X € g, so to the
fact that § is an ideal in g. O

5.9. Let G be a connected Lie group. If A C @ is an arbitrary subset,
the centralizer of A in G is the closed subgroup Zg(A) := {x € G : za =
ax for all a € A}, which by is a Lie subgroup.

The Lie algebra 34(A) of Zg(A) consists of all X € g with a.exp(tX).a™! =
exp(tX) for all a € A, ie., 34(A) = {X € g: Ad(a)X = X for all a € A}.

If A is itself a connected Lie subgroup of G with Lie algebra a, then 34(A) =
{X €g:ad(Y)X =0forall Y € a}. This set is also called the centralizer
of ain g. If A = G is connected, then Zg = Z5(G) is called the center of
G and 34(G) =3 ={X €g:[X,Y]=0for all Y € g} is then the center of
the Lie algebra g.

5.10. The normalizer of a subset A of a connected Lie group G is the
subgroup
Ng(A)={z € G: u,(A) =p*(A)} ={x € G : conj,(A) = A}.
If A is closed, then Ng(A) is also closed.
If A is a connected Lie subgroup of G, then Ng(A) = {x € G : Ad(z)a C a}.
Its Lie algebra
ng(A) ={X € g:ad(X)a C a} =ny(a)

is then the normalizer or idealizer of a in g.

5.11. Homogeneous spaces. Let G be a Lie group and let H C G be a
closed subgroup. By theorem H is a Lie subgroup of G. We denote
by G/H the space of all right cosets of G, i.e., G/H = {gH : g € G}. Let
p: G — G/H be the projection. We equip G/H with the quotient topology,
i.e., U C G/H is open if and only if p~!(U) is open in G. Since H is closed,
G/H is a Hausdorff space.

The quotient space G/H is called a homogeneous space of G. We have a left
action of G on GG/H, which is induced by the left translation and is given

by fig(g1 H) = gg1 H.
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Theorem. If H is a closed subgroup of G, then there exists a unique struc-
ture of a smooth manifold on G/H such that p: G — G/H is a submersion.
Thus dimG/H = dimG — dim H.

Proof. Surjective submersions have the universal property thus the
manifold structure on G/H is unique, if it exists. Let h be the Lie algebra
of the Lie subgroup H. We choose a complementary linear subspace ¢ such
that g =bh @ ¢.

Claim 1. We consider the mapping f : ¢ x H — G, given by f(X,h) :=
exp X.h. Then there is an open 0-neighborhood W in £ and an open e-neigh-
borhood U in G such that f: W x H — U is a diffeomorphism.

By claim 5 in the proof of theoremthere are open O-neighborhoods V' in
h, W’ in ¢, and an open e-neighborhood U’ in G such that ¢ : W/ xV — U’
is a diffeomorphism, where ¢(X,Y) = exp X.exp Y, and such that U'NH =
exp V. Now we choose W in W’ C € so small that exp(W) ! exp(W) C U'.
We will check that this W satisfies claim 1.

Claim 2. f [ W x H is injective.

The equality f(Xi,h1) = f(X2,h2) means exp X1.h; = exp Xs.ho; thus
hahi' = (exp X2)lexp X1 € exp(W)lexp(W)NH C U'NH =expV. So
there is a unique Y € V with hghl_l =expY. But then p(X7,0) = exp X7 =
eprg.hg.hfl = exp Xo.expY = p(Xo,Y). Since ¢ is injective, X1 = Xo
and Y =0, so h; = hs.

Claim 3. f | W x H is a local diffeomorphism.

The diagram
Idxexp

WXV W x (U' N H)
g |
o(W x V) incl U’

commutes, and Idy X exp and ¢ are diffeomorphisms. So f | W x (U'NH) is
a diffeomorphism. Since f(X,h) = f(X,e).h, we conclude that f [ W x H
is everywhere a local diffeomorphism. So finally claim 1 follows, where
U=f(WxH).

Now we put g := po(exp [ W) : ¢ D W — G/H. Then the following
diagram commutes:

W x H U
PHi \LP
w—2 G/H.

Claim 4. g is a homeomorphism onto p(U) =: U C G/H.
Clearly ¢ is continuous, and g is open, since p is open. If g(X;) = g(X3),
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then exp X; = exp Xo.h for some h € H, so f(Xi,e) = f(X2,h). By claim

1 we get X1 = Xo, so g is injective. Finally g(W) = U, so claim 4 follows.
For a € G we consider U, = Ji,(U) = a.U and the mapping

Ug =g Lofig—:U, =W C L

Claim 5. (U, u, = g‘{o fla-1 U, — W)aeg is a smooth atlas for G/H.
Let a, b € G such that U, N U, # (). Then

ugouy t =gt ofig-10fipog:up(Us NTy) = ua(Uy N Tp)
=g o figopo(exp | W)
=g opopiy0 (exp | W)
=pryof topu,—1,0(exp | W) issmooth. [

6. Transformation Groups and G-Manifolds

6.1. Group actions. A left action of a Lie group G on a manifold M is
a smooth mapping £ : G x M — M such that £, ol = £y, and £, = Id)y,
where £4(z) = {(g, 2).

A right action of a Lie group G on a manifold M is a smooth mapping
r: M xG — M such that 907" = r"9 and ¢ = Idys, where r9(z) = r(z, g).

A G-space or a G-manifold is a manifold M together with a right or left
action of G on M.

We will describe the following notions only for a left action of G on M. They
make sense also for right actions.

The orbit through z € M is the set G.z = ¢(G,z) C M.
The action is called:
e Transitive if M is one orbit, i.e., for all z,w € M there is some g € G
with g.z = w.
e Freeif g1.z = go.z for some z € M implies already g1 = go.
o Effective if £, = £}, implies g = h, i.e., if £ : G — Diff(M) is injective
where Diff (M) denotes the group of all diffeomorphisms of M.
e Infinitesimally free if To(¢*) : g — T, M is injective for each z € M.

e Infinitesimally transitive if T,(¢*) : g — T, M is surjective for each
reM.

e Linear if M is a vector space and the action defines a representation.
o Affine if M is an affine space, and every ¢, : M — M is an affine map.

e Orthogonal if (M,~) is a Euclidean vector space and ¢, € O(M,~) for
all g € G.
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o Isometric if (M,~) is a Riemann manifold and ¢, is an isometry for all
g € G} see section

o Symplectic if (M,w) is a symplectic manifold and ¢, is a symplecto-
morphism for all g € G see section |(31)

e Principal fiber bundle action if it is free and if the projection onto the
orbit space 7w : M — M/G is a principal fiber bundle; see section |(17)|

More generally, a continuous transformation group of a topological space M
is a pair (G, M) where G is a topological group and where to each element
g € G there is given a homeomorphism ¢, of M such that £ : G x M — M
is continuous and /¢, o £}, = £4,. The continuity is an obvious geometrical
requirement, but in accordance with the general observation that group
properties often force more regularity than explicitly postulated (cf. ,
differentiability follows in many situations. So, if G is locally compact, M
is a smooth or real analytic manifold, all ¢, are smooth or real analytic
homeomorphisms and the action is effective, then G is a Lie group and £ is
smooth or real analytic, respectively; see [163], p. 212].

6.2. Let /: G x M — M be a left action. Then we have partial mappings
ly: M — M and ¢* : G — M, given by {,(z) = ¢*(a) = l(a,z) = a.x, where
a€Gandzxe M.

For any X € g we define the fundamental vector field (x = (¥ € X(M) by

Cx(7) = Te(£). X = Tie 5)0-(X,0z).

Lemma. In this situation the following assertions hold:

(1) ¢:g— X(M) is a linear mapping.

(2) Ta(la) Cx(2) = Caa(a)x (@-2).
(3) Rx x 0pr € X(G x M) 1is l-related to (x € X(M).
(4)

4) [Cx,¢v] = —(x,v)-
Proof. () is clear.
@) We have £,¢*(b) = abxr = aba~'ax = ¢°* conj,(b), so

Ty(0a)-Cx () = To(le) To(E%).X = To(ly o £7).X
= Te(**). Ad(a). X = (ad(a)x (a).

@) We have o (Id x £,) = o (u* x Id) : G x M — M, so

Cx (0(a, ) = Tieawyl- (X, 0az) = TL(Id x T(£,)).(X, 0,)
= TO(T(u®) x Id).(X,0,) = TL.(Rx x 0p)(a, ).
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@) [Rx x Onr, Ry x Op] = [Rx, Ry] x O = —Rjx,y] X Opr is f-related to
[Cx,Cy] by @) and by |(3.10)l On the other hand —Rx y] x Oy is f-related
to —([x,y] by @) again. Since ¢ is surjective, we get [(x,Cy] = —(xy)- O

6.3. Let r : M x G — M be a right action, so 7 : G — Diff (M) is a group
antihomomorphism. We will use the following notation: r* : M — M and
ry : G — M, given by ry(a) = r*(z) = r(z,a) = z.a.

For any X € g we define the fundamental vector field (x = Cé\g € X(M) by
Cx(x) = Te(Tx).X = T(l,’e)r.(ox, X)

Lemma. In this situation the following assertions hold:

(1) ¢:g9— X(M) is a linear mapping.

(2) To(r®).Cx () = Cada—1)x (2.a).
(3) O x Ly € X(M x G) is r-related to x € X(M).
(4)

4) [Cx,Cv] = Cix.y)- ([

6.4. Theorem. Let £ : G x M — M be a smooth left action. For x € M
let G, ={a € G :ax = x} be the isotropy subgroup or fixpoint group of x in
G, a closed subgroup of G. Then ¢* : G — M factors over p: G — G/G,
to an injective immersion i* : G/G, — M, which is G-equivariant, i.e.,
by 0" =1i% o iy for all a € G. The image of i¥ is the orbit through x.

The fundamental vector fields span an integrable distribution on M in the
sense of. Its leaves are the connected components of the orbits, and
each orbit is an initial submanifold. Thus i* : G/Gy — M is an initial
1MMersion.

Proof. Clearly ¢* factors over p to an injective mapping i* : G/G, — M; by
the universal property of surjective submersions i* is smooth, and obviously
it is equivariant. Thus T}, (). Tp(e) (fla) = Tpe) (1% © fia) = Tp(e )(ﬁa 0i%) =

T:(a) Tp(e)(i%) for all @ € G and it suffices to show that Ty, (i) is injective.

Let X € g and consider its fundamental vector field (x € X(M). By |(3.14)
and we have
Uexp(tX), z) = L(FI>0 (¢ 2)) = FI¥X (£(e, 2)) = FIS* (2).
So exp(tX) € Gy, i.e.,, X € g,, if and only if (x(z) = 0,. In other words,
0r = (x () = Te(€%). X = Ty (i) Tep. X if and only if Tep. X = 0. Thus

i* is an immersion.

Since the connected components of the orbits are integral manifolds, the
fundamental vector fields span an integrable distribution in the sense of

(3.23); but also the condition [(3.28.2)| is satisfied. So by theorem |(3.25)]
each orbit is an initial submanifold in the sense of [(2.13), By uniqueness
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of the manifold structure on an initial submanifold, the mapping #* is an
initial immersion. ([l

6.5. Theorem ([186]). Let M be a smooth manifold and let ¢ : g — X (M)
be a homomorphism from a finite-dimensional Lie algebra g into the Lie
algebra of vector fields on M. Let G be a simply connected Lie group with
Lie algebra g.

Then there exists a local left action G x M D U LN M, where U is an

open neighborhood of {e} x M in G x M whose fundamental vector field
mapping equals —C. Here U is an open neighborhood of {e} x M in G x M
and (g, l(h,x)) = l(gh, z) whenever both sides are defined.

Suppose moreover that each element (x in the image of ( is a complete
vector field. Then there exists a left action £ : G x M — M of the Lie group
G on the manifold M whose fundamental vector field mapping equals —(.

The domain U of the local action cannot be chosen maximal in general:
When trying to do so, one glues together open pieces of covering spaces of
subsets of G and gets sets spread over G but not contained in G. See [102]
for more information and examples.

Proof. On the product manifold G x M we consider the vector subbun-
dle £ = {(Lx(g9),¢(x(z)) : (9,2) € Gx M, X € g} C TG x TM where
Lx € X(G) is the left invariant vector field generated by X € g. We have
dim E, ; = dim g. The subbundle E is integrable since [Lx X (x, Ly X (y] =
[Lx,Ly] X [Cx,<y] = L[X,Y] X C[X,Y}~ Thus by theorem |(3.20)| (01" |(3.28)|)
the bundle E induces a foliation on G x M. Let us denote the leaf through
(9,x) € G x M by L(g,z). Note that by [(4.18.3) for the flow we have

(1) FI/ XX (g, 2) = (g. exp(tX), FIi¥ (z)).

This flow line lies in the leaf L(g, x) since it is tangent to it.

Thus for (x a complete vector field we have (u®PX x Flgx) : L(g,xz) —
L(g,z). In particular,

(2)  Llg.exp(X),FIi* () = L(g,), L(g-exp(X),y) = L(g. FI% ().

If {x is not complete, then (2) holds only whenever both sides (of any
equation) are defined.

We have T'(pug x Idar)(Lx (h), Cx () = (Lx (gh),(x () for X € g,9,h € G,
and x € M. Thus (ug x Idpr) maps leaves to leaves:

(3)  Llg,z) ={(gh,y) : (h,y) € L(e,x)} = (ng x Idar)(L(e, z)).

We suppose now that each vector field (x for X € g is complete.
(4) Claim. Then for any leaf L C G x M, the restriction pry |L : L — G is
a covering map.



72 CHAPTER II. Lie Groups and Group Actions

For (g,x) € L we have T{4.)(pry)(Lx(9),Cx(z)) = Lx(g); thus pry|L is
locally a diffeomorphism. For any g; € G we can find a piecewise smooth
curve ¢ in G connecting g with g; consisting of pieces of the form t —
gi-exp(tX;). Starting from (g,x) € L, we can fit together corresponding
pieces of the form FltLle Xex; to obtain a curve ¢ in L with pr; o¢ = ¢ which
connects (g,x) with (g1,21) € L for some z; € M. Thus pry : L — G is
surjective. Next we consider some absolutely convex ball B C g such that
exp:g D B — U C G is a diffeomorphism onto an open neighborhood U of
e in G. We consider the inverse image (pry |L)™1(g.U) C L and decompose
it into its connected components, (pry |L)~!(g9.U) = | ]V; € L. Choose x;
such that (g, x;) € V;. Any point in ¢.U is of the form g. exp(X) for a unique
X € B, with unique inverse image FltL xX6x (g9, ;) € V; under pry |V;. Since
{FleXCX (g,7;) : X € B} is open and closed in (pry |[L)~1(g.U), it equals
Vi, which is diffeomorphic to ¢g.U via pry |V;, and the claim follows.

Since G is simply connected, we conclude that for each leaf L the mapping
pr;|L : L — G is a diffeomorphism. We now define the action as follows:
For g € G and x € M consider the leaf L(e, z) through (e, z) and put

(5) Ug,x) = g.x = pro((pry | L(e, ) " (g7h)) € M.
Obviously, ¢ is smooth.

Let us now pass to the general case, where some (x may be incomplete.
Then claim (@) is wrong in general. Consider the following diagram, where
W, C G is the image of the leaf L(e, z) in G:

(6) U, L(e, z) - M

l‘\ \ prs

|

(pry lg,) pry GxM

|

| iprl

|

U,C W, L q.

To describe Uy, we consider the vector field ¢ € X(gx M) given by (X, z) =
(Ox, Cx(x)) with flow FIS (X, 2) = (X,FI5* () defined as FI¢ : D(¢) — M
where the (maximal) domain of definition D(¢) is an open neighborhood
of {0} x g x M in R x g x M by|[B37)] Let U = {(X,z) € gx M :
[—1,1] x {X} x {z} € D(¢)}. Since [—1,1] is compact, U’ is open. Now we
consider an open ball B C g centered at 0 such that exp : B — exp(B) C G is
a diffeomorphism. Then we let U = (exp x Idy ) (U'N(BxM)) —225 Gx M
and we denote U, := pri(U N (G x {z})) which is open in exp(B) inside G
and which is also simply connected, since (¢, X,z) € D({) <= (1,1X,z) €
D(¢). By construction, U, C W, and there is a branch U, C L(e,z) of
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pry : L(e,z) — W, over U, such that pr; |U, : U, — U, is a diffeomorphism.
So all entries of diagram (@]) have now been explained. We can define the
local action for (g,z) € U by

open J4 — _
(7) GXxM««==—U—M, lg,z)=gz:=pry((pr]z,) " (g")

Note that (7)) is the local version of (B). Again ¢ is smooth.

It remains to show that ¢ is a global or local action. Both definitions say:
gr=y < (¢97"y) € L(e,x) <= L(g~',g.x) = L(g~',y) = L(e,x) (for
(9,x) € U in the noncomplete case). So L(e, h.z) = L(h, z) determines h.z
uniquely; compare with [B]). Applying pg x Idps and @B), we get L(g, h.z) =
L(g.h,z) for all g,h € G and z € M. Thus ¢ : G x M — M is a (local)
action, since L(e, g.(h.x)) = L(g, h.x) = L(g.h,z) = L(e, (g.h).z). From the
considerations in the proof of the claim () and from (dl) and (@) it follows
that for X € g we also have (for X small in the noncomplete case)

(8) U(exp(X), z) = exp(X ).z = FI*X (z) € M.
So the fundamental vector field mapping of ¢ is —(. U

6.6. Semidirect products of Lie groups. Let H and K be two Lie
groups and let ¢ : H x K — K be a smooth left action of H in K such
that each ¢;, : K — K is a group automorphism. So the associated mapping
/:H — Aut(K) is a smooth homomorphism into the automorphism group
of K. Then we can introduce the following multiplication and inversion on
K x H:

(1) (k,h)(K,B) = (kb (K),mE), (k,h)" = (L1 (K1), h7 ).

It is easy to see that this defines a Lie group G = K Xy H called the semidirect
product of H and K with respect to £. If the action £ is clear from the context,
we write G = K x H only. The second projection pry : K x H — H is a
surjective smooth homomorphism with kernel K x {e}, and the insertion
ins, : H - K x H, ins.(h) = (e, h) is a smooth group homomorphism with
pryoinse = Idy.

Conversely we consider an exact sequence of Lie groups and homomorphisms
(2) (e} » K 25 G 25 H— {e).

So j is injective, p is surjective, and the kernel of p equals the image of
j. We suppose furthermore that the sequence splits, so that there is a
smooth homomorphism s : H — G with po s = Idy. Then the rule
(n(k) = s(h)ks(h™!) (where we suppress j) defines a left action of H on
K by automorphisms. It is easily seen that the mapping K xy H — G
given by (k,h) — k.s(h) is an isomorphism of Lie groups with inverse g —
(g.sp(g9)~1,sp(g)). Note that g — g.sp(g)~! is not a homomorphism of
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groups but only of H-modules G — K. So we see that semidirect products
of Lie groups correspond exactly to splitting short exact sequences.

6.7. The tangent group of a Lie group. Let G be a Lie group with Lie
algebra g. We will use the notation from |(4.1)l First note that T'G is also
a Lie group with multiplication T’y and inversion T'v, given by (see [(4.2)))

T(a7b),U~(€a, nb) = Ta(ub)'fa + Tb(ﬂa)'nb and Tov.8 = _Te(ﬂafl)-Ta(Ma_ )'fa-

Lemma. Via the isomorphism given by the right trivialization gx G — TG,
(X,9) — Te(u9).X, the group structure on TG looks as follows:

(X,a).(Y,b) = (X + Ad(a)Y,a.b) and (X,a)"'=(—Ad(aHX,a™ ).
So T'G is isomorphic to the semidirect product g x G.

Proof. We compute:
Tapyp- (T X, TplY) = Tpl Tp®. X + Tpa TpP.Y
= Tu X + Tpb Tp®. Tp®  Tp,.Y = T (X + Ad(a)Y),
T,vTu* X = —T,uail.T,uafl.T,ua.X = —Tu‘fl.Ad(a*l)X. O

Remark. In the left trivialization G x g = TG, (g9, X) — Te(pg).X, the
semidirect product structure looks awkward:
(a,X).(b,Y) = (ab,Ad(b=")X +Y) and (a, X)"! = (a~!, — Ad(a) X).

6.8. G-actions and their orbit spaces. If M is a left G-manifold, then
M /@G, the space of all G-orbits endowed with the quotient topology, is called
the orbit space. We consider some examples:

The standard action of O(n) on R™. It is orthogonal. The orbits are the
concentric spheres around the fixed point 0 and 0 itself. The orbit space is
R"/O(n) = [0, 00).

Every Lie group G acts on itself by conjugation conj : G x G — G which is
defined by (g, h) — conj,(h) := g.h.g”" and which is a smooth left action of
G on itself.

The adjoint action Ad : G — GL(g) of a Lie group G on its Lie algebra g
from |(4.24)| In particular, the orthogonal group acts orthogonally on o(n),
the Lie algebra of all skew-symmetric n x n-matrices.

The O(n)-action on S(n) treated in |(7.1)l Similarly, SU(n) acts unitarily
on the Hermitian (n X n) matrices by conjugation.
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6.9. Isotropy groups. Let M be a G-manifold; then the closed subgroup
G, ={g € G:g.x=x} of G is called the isotropy subgroup of x.

The map * : G/G, — M defined by * : ¢g.G, — gx € M is a G-
equivariant initial immersion with image G.x, by |(6.4)

G/G,.

6.10. Lemma. Let M be a G-manifold and z,y € M; then

(1) Ggo = 9.G4.97 1,
(2) If GanGy #0, then Gz = G.y,
(3) Tx(G.x) = T.(£%).g.

Proof. (1)) a € Gy, means ag.x = g.x or ¢ lag.x = z and again ¢ lag € G,

which in turn is equivalent to a € ¢ Gog~ .

@) If z € G.x N G.y, then z = g1.x = go.y for some g1,92 € G. So z =
g7 '.g2.y; therefore G.x = G.(97 .g92.y) = G.y.

B) X € Tp(G.x) & X = 04|oc(t) for some smooth curve ¢(t) = g(t).z € G.x
with g(0) = e. So we have X = 000" (g¢) € Te(¢*).g.

6.11. Conjugacy classes. The closed subgroups of G' can be partitioned
into equivalence classes by writing

H ~ H' if there exists g € G for which H = gH'g ™.

The equivalence class of H is denoted by (H).

Using lemma we have as a first consequence: The conjugacy class
of an isotropy subgroup is invariant under the action of G : (G;) = (Ggz).
Therefore we can assign to each orbit G.x the conjugacy class (G). We will
call (G) the isotropy type or the orbit type of the orbit through z.

If G is compact, we can define a partial ordering on the conjugacy classes
simply by transferring the usual partial ordering “C” on the subgroups to
the classes:

(H)<(H) : < JKe(H),K'e(H): KCK'
— JgeG:HCgH'g %

If G is not compact, this relation may not be reflexive. For compact G the
reflexivity of this relation is a consequence of the following:
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6.12. Lemma. Let G be a compact Lie group and H a closed subgroup of
G; then

gHg'CH = g¢gHg '=H.

Proof. By iteration, gHg~' C H implies g"Hg " C H for all n € N. Now
let us study the set A := {g" : n € Z>o}. We will show that g~ ! is contained
in its closure A.

Suppose that e is discrete in A. So there is an e-neighborhood U in G such
that UN A = {e}. Then ¢"U N {g* : k > n} = {g"}, so by induction A is
discrete. Since G is compact, A = A is finite. Therefore ¢g" = e for some
n>0,and g" ' =g € A

Suppose now that e is an accumulation point of A. Then for any neighbor-
hood U of e there is a g" € U where n > 0. This implies ¢"~! € ¢g7'U N A.
Since the sets ¢g~'U form a neighborhood basis of g~!, we see that ¢! is an
accumulation point of A as well. That is, g~! € A.

Since conj : G x G — G is continuous and H is closed, we have conj(A4, H) C
H. In particular, g ' Hg C H which together with our premise implies that
gHg ' =H. ([

6.13. Principal orbits. Let M be a G-manifold. The orbit G.x is called
a principal orbit if there is an invariant open neighborhood U of x in M and
for all y € U an equivariant map

f:Gx— Guy.

Note that f is automatically surjective: Namely, let f(x) =: a.y. For an
arbitrary z = g.y € G.y this gives us

z=gy=ga 'ay=ga " f(x) = f(ga " .2).

The existence of f in the above definition is equivalent to the condition:
Gz C aGya™! for some a € G:

If f exists, then for g € G, we have g.x = z and thus g.f(z) = f(g.2) = f(z).
For f(x) =: a.y we get ga.y = a.y; thus g € G4y = aGya™? by

To show the converse, we define f : G.x — G.y explicitly by f(g.x) := ga.y.
We have to check: If g1.x = g2.7, ie., g := g;lgl € Gy, then g1a.y = gaa.y
or g€ Goy = aGya_l. This is guaranteed by our assumption.

We call x € M a regular point if G.x is a principal orbit. Otherwise, x is

called singular. The subset of all regular points in M is denoted by M,eg,
and Mg denotes the subset of all singular points.
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6.14. Slices. Let M be a G-manifold and x € M, then a subset S C M is
called a slice at x if there is a G-invariant open neighborhood U of G.x and
a smooth equivariant retraction r : U — G.x such that S = r~!(z). Since r
is equivariant, it is a submersion onto G.x.

6.15. Proposition. If M is a G-manifold and S = r~1(x) a slice at x € M,
where r : U — G.x is the corresponding retraction, then:

(1) x€ S and G,.S C S.
(2) If g.SNS # 0, then g € G.
(3) GS={gs:geG,seSt=U.

Proof. () We have x € S since S = r~!(x) and r(z) = . To show that
G;.S C S, take an s € S and g € G5. Then r(g.s) = g.r(s) = g.x = z, and
therefore g.s € r~1(z) = S.

@) If g.SNS # 0, then g.s € S for some s € S. So we get x = r(g.s) =
g.r(s) = g.x; thus g € G,.

@) We have G.S = G.r~Y(z) =r 1(G.x) = U. O

6.16. Corollary. If M is a G-manifold and S a slice at x € M, then:
(1) S is a Gz-manifold.
(2) Gs C Gy foralls e S.
(3) If G.x is a principal orbit and G5 compact, then Gy = G, for ally € S
if the slice S at x is chosen small enough. In other words, all orbits
near G.x are principal as well.

(4) If two Gy-orbits G.s1,Gy.s2 in S have the same orbit type as G -orbits
i S, then G.s1 and G.sy have the same orbit type as G-orbits in M.

(5) S/G = G.S/G is an open neighborhood of G.x in the orbit space M /G.

Proof. ([{l) This is clear from |(6.15.1)

@) If g € Gy then g.y =y € S; thus g € G by |(6.15.2)]

@) By @) we have G, C G, so Gy is compact as well. Because G.x is
principal it follows that for y € S close to x, G, is conjugate to a subgroup
of Gy, Gy € G, C g.Gyg™!. Since Gy is compact, Gy C g.Gyg~! implies
Gy = g.Gyg~! by [(6.12)] Therefore G, = G, and G.y is also a principal
orbit.

@) For any s € S we have (G;)s = G, since (G;)s C Gs. Conversely,
by @), Gs C Gg; therefore Gy C (Gy)s. So (Gi)s, = 9(Gy)s,g~ ! implies
Gs, = gGs,971 and the G-orbits have the same orbit type.
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(B) The isomorphism S/G, = G.S/G is given by the map G5.s — G.s which
is an injection by L Since G.S = U is an open G-invariant neighbor-
hood of G.x in M by @ we have G.S/G is an open neighborhood of
G.zxin M/G. O

6.17. Remark. The converse to |(6.16.4) is generally false. If the two G-
orbits G.s1, G.s2 are of the same type, then the isotropy groups Gg, and
(s, are conjugate in GG. They need not be conjugate in G;. For example,
consider the following semidirect product, the compact Lie group G := (S' x
S1) x Zo with multiplication defined as follows. Let 1, @2, 1,12 € S' and
a, B € Zy. Take on S' x S! the usual multiplication by components, and as
Zo-action:

Za 30— i := Idgi g1, I (i1 : (p1,902) = (92, 901))-

Then we consider the semidirect product structure:

(901’ ¥2, O‘)'(¢1a¢2’/8) = ((9017 902)'ia(1/)17¢2)a o+ 5)

Now we let G act on M := VUW where V =W = CxC. For any element in
M we will indicate its connected component by the index (x,y)y or (x,y)w.
The action shall be the following;:

(Sola P2, 0)($a y)V = (‘101-337 @2-3/)‘/7
(01,02, 1).(z, y)v = (1.9, p2.2)w-
The action on W is simply given by interchanging the V’s and W’s in the
above formulae. This defines an action. Denote by H the abelian subgroup
St x S x {0}. Then H is the isotropy subgroup of (0,0)y, and V is a slice
at (0,0)y. Now consider s1 := (0,v!)y and sy := (v2,0)y, both not equal
to zero. Then let
Hy =Gy, = S' x {1} x {0},
Hy := Gy, = {1} x S x {0}.
The subgroups H; and Hjy are conjugate in G by (1,1,1). Yet they are

clearly not conjugate in H since H is abelian. So H.s; and H.sy have
different orbit types in H while G.s; and G.sy are of the same G-orbit type.

6.18. Proposition. Let M be a G-manifold and S a slice at x; then there
is a G-equivariant diffeomorphism of the associated bundle G[S] onto G.S,

f:G[S] =G xg, S— G.S
which maps the zero section G X, {x} onto G.x.

See [(18.7)| below for more information on associated bundles.
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Proof. Since ¢(gh,h1.s) = g.s = {(g,s) for all h € G, there is an f :
G[S] — G.S such that the following diagram commutes:

GxS—t—-as

|
q
GXGIS.

The map f is smooth because f o ¢ = £ is smooth and ¢ is a submersion. It
is equivariant since ¢ and ¢ are equivariant. Also, f maps the zero section
G X¢g, {z} onto G.xz. The map f is bijective: If g1.s1 = g2.52, then s; =
91_192.82; thus h = gl_lgg € G, by But then g1 = goh and s; = h.ss.
This is equivalent to ¢(g1,s1) = (g2, S2).

To see that f is a diffeomorphism, let us prove that the rank of f equals the
dimension of M. First of all, note that rank({y;) = dim(g.5) = dim S and
rank(¢*) = dim(G.z). Since S = r~!(x) and r : G.S — G.z is a submersion,
it follows that dim(G.z) = codim S. Therefore,

rank(f) = rank(¢) = rank({,) + rank(¢*) = dim S + dim(G.x)
=dim S + codim § =dim M. O

6.19. Remark. The converse also holds. If f : G xg, S — G.S is a
G-equivariant diffeomorphism, then for some g € G and § € S whe have
flg,3] = . So flg,s] := flgg,s] defines a G-equivariant diffeomorphism
with the additional property that z = fle, §]:

Gxa §1—=a.s

prll rl
G/G, ——> G.z.
If we define 7 := iopr;of~! : G.S — G.x, then r is again a smooth G-

equivariant map, and it is a retraction onto G.zx since

—1 .
L opr
PRRE AN [e,5] —— .Gy — e.x.

Furthermore, r~!(z) = S, making S a slice.

6.20. Proper actions. Recall that a continuous mapping between topolog-
ical spaces is called proper if compact subsets have compact inverse images.
A smooth action £ : G x M — M is called proper if it satisfies one of the
following three equivalent conditions:

(1) (¢,pry) :Gx M — M x M, (g,z) — (g.x,z), is a proper mapping
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(2) gn-xn — y and z, — z in M, for some g, € G and z,,z,y € M,
implies that these g, have a convergent subsequence in G.

(3) K and L compact in M implies that {g € G : g. K N L # 0} is compact
as well.

Proof. () = (@) This is a direct consequence of the definitions.

@) = @) Let g, be a sequence in {g € G : ¢ KNL # 0} and z, € K
such that g,.z, € L. Since K is compact, we can choose a convergent
subsequence z,, — x € K of x,. Since L is compact, we can do the same
for gn,.rn, there. Now (2)) tells us that in such a case g, must have a
convergent subsequence; therefore {g € G : g.K N L # ()} is compact.

@) = (@) Let R be a compact subset of M x M. Then L := pr;(R) and
K := pry(R) are compact, and (£,pry) H(R) C{g€G:g.KNL#0} x K.
By @), {g € G:gKNL # (0} is compact. Therefore (£,pry)~(R) is
compact, and (¢, pry) is proper. O

6.21. Remark. If GG is compact, then every G-action is proper. If £: G x
M — M is a proper action and G is not compact, then for any noncompact
H C G and x € M the set H.x is noncompact in M. Furthermore, all

isotropy groups are compact (most easily seen from [(6.20.3)| by setting K =
L ={x}).

6.22. Lemma. A continuous, proper map f : X — Y between two topolog-
ical spaces is closed.

Proof (For metric spaces). Consider a closed subset A C X, and take a
point y in the closure of f(A). Let f(an) € f(A) converge to y (a, € A).
Then the f(a,) are contained in a compact subset K C Y. Therefore
an C f7Y(K) N A which is now, since f is proper, a compact subset of A.
Consequently, (a,) has a convergent subsequence with limit a € A, and
by continuity of f, it gives a convergent subsequence of f(a,) with limit
f(a) € f(A). Since f(ay) converges to y, we have y = f(a) € f(A). O

6.23. Proposition. The orbits of a proper action £ : G x M — M are
closed submanifolds.

Proof. By the preceding lemma, (¢, pr,) is closed. Therefore (¢, pry)(G,z) =
G.z x {z}, and with it G.z is closed.

G i G.x

G/G,.
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As a maximal integral manifold of the involutive distribution of (in general)
nonconstant rank spanned by all fundamental vector fields, G.x is an initial
submanifold, and * is an initial immersion by ((6.4)] Thus * : G/G; — G.x
is open. O

6.24 Examples of nonproper actions. The standard action of SL(2,R)
on R? has two orbits, 0 and R?\ 0 which is not closed. By [(6.23)|this action
is not proper.

The action of GL(n,R) on the space Lgym(R", R™) of symmetric matrices
given by (g, A) — g'.A.g is not proper, since the isotropy group of the
symmetric bilinear form with signature p,n — p is the group O(p,n — p,R)
which is not compact for 0 < p < n.

6.25. Lemma. Let (M,v) be a Riemann manifold and ¢ : G x M — M
an effective isometric action (i.e., g.x = x for allx € M = g = e), such
that (G) C Isom(M,~) is closed in the compact open topology. Then ¢ is
proper.

Proof. Assume without loss that M is connected. Let g, € G and x,, z,y €
M such that g,.x, — y and x,, — x; then we have to show that g, has a
convergent subsequence which is the same as proving that {g, : n € N} is
relatively compact, since £(G) C Isom(M, ) is closed.

Let us choose a compact neighborhood K of z in M. Put a metric on M
(e.g., the Riemann distance function). Note first Isom(M) > ¢ — ¢|x €
CY(K, M) is an injective embedding, where we put the uniform metric on
CY%(K,M). Then, since the g, act isometrically, we can find a compact
neighborhood L C M of y such that (J;~ | gn.K is contained in L. So {gn}
is bounded in C°(K, M). Furthermore, the set of all g,, is equicontinuous as
subset of Isom(M). Therefore, by the theorem of Ascoli-Arzela, {g,, : n € N}
is relatively compact in Isom(M). O

6.26. Theorem (Existence of slices, [I87]. Let M be a G-space and let
x € M be a point with compact isotropy group Gy. If for all open neigh-
borhoods W of G, in G there is a neighborhood V of x in M such that
{g€ G:g.V NV £0} CW, then there exists a slice at x.

Proof. Let 4 be any Riemann metric on M. Since G, is compact, we
can get a Gy-invariant Riemann metric on M by integrating over the Haar

measure for the action of G; see

Y(X,Y) = /G (¢5)(X,Y)da = /G 5(TCu X, Tl,Y)da.
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exp;

We choose € > 0 small enough for T, M DO By,(e) M to be a

diffeomorphism onto its image and we define:
S := exp] (:rgc(c;.;c)L N B, (5)) C M.

Then S is a submanifold of M and the first step towards obtaining a real
slice. Let us show that S is G-invariant. Since G, leaves v unchanged and
Ty (G.x) is invariant under T,¢, (for g € G,), T}¢, is an isometry and leaves
T.(G.z)* N By, (¢) invariant. Therefore:

zgg
T,(G.z)* N B, () —— T,(G.z)* N Bo, (¢)

o o

~ Y4 ~
S ? S.

We have to shrink S to an open subset S such that for g € G with ¢.SNS % 0
we have g € G,. This property is necessary for a slice. At this point, we
shall need the condition that for every open neighborhood W of G, in G,
there is a neighborhood V of x in M such that {g € G: g.V NV #0} CW.
First we must construct a W fitting our purposes. Choose an open neigh-
borhood U C G/G, of e.G, such that there is a smooth section x : U — G
of m: G — G/G, with x(e.G,) = e. Also, let U and possibly S be small
enough to get an embedding

f:UxS— M:(u,s)— x(u).s.

Our neighborhood of G, will be W := 7=1(U). Now by our assumption,
there is a neighborhood V of z in M such that {g € G: 9.V NV £ 0} CW.

Next we will prove that V' can be chosen G -invariant. Suppose we can
choose an open neighborhood W of G, in G such that Gx.W CW (we
will prove this below). Let V' be the neighborhood of z in M satisfying
{geG:gV' NV #£0} CW. Now V := G,.V’' has the desired property,

since:

{g€G:9.G,.V' NGV #£0} = U {g€G:9.1.V' Ng V' # 0}
91792€Gz

= | {veG:g'lgn V' nV' £0}
91192€Gx

= U g{g€G:gV' NV £} !
91,92€G%

=G {geG:gV' NV #£0V.G, C Go.W.Gp CW.Gy = W.
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To complete the above argumentation, we have only to prove the

Claim. To any open neighborhood W of G, in G there is an open neigh-
borhood W of G, such that G,.W C W.

The proof of this claim relies on the compactness of G;. For all (a,b) € G, x
G, we choose neighborhoods A, of a and B, of b, such that A, p.B,p C W.
This is possible by continuity, since G.Gy = Gy. {Bgp : b € G} is an open
cover of G,. Then there is a finite subcover UjV: 1 Bap; = Ba 2 G Since
Aap;-Bap; € W, we must choose 4, := ﬂ;vzl Aap;, to get Aq. B, C W. Now
since A, is a neighborhood of a in G,, the A, cover G, again. Consider a
finite subcovering A := |Jj_; Aq; 2 G4, and as before define B := (;_; B,
so that A.B C W. In particular, this gives us G5.B C W, so W := B is an
open neighborhood of G, with the desired property.

So we have a G -invariant neighborhood V' of z with {g € G : gV NV # ()}
contained in W. Now we define S := SNV and hope for the best. The
S is an open subset of S, and it is again invariant under G,. Let us check
whether we have the converse: {g € G : g.SNS # 0} C G,. If g.s1 = s9
for some s1,52 € S, then ¢ € W = 7= 1(U) by the above effort. Therefore
7(g) € U. Choose h = g~ x(7(g)) € Gx. Then

f(w(g),hilsl) = X(ﬂ(g))hflsl = g.s1 = s2 = f(w(e), s2).

Since f is a diffeomorphism onto its image, we have shown that 7(g) = m(e),
that is, g € G,.

Now, it is easy to see that F': G xg, S — G.S : [g, s] — g.s is well defined,
G-equivariant and smooth. We have the diagram

GxS

~ 7

G X Gy S.

To finish the proof, we have to show that F' is a diffeomorphism, according
t0/(6.19)} Firstly, F' is injective because:

Flg,s]=Fl¢,s|=>gs=¢g.sd =>¢97'¢s =5

-1 7

=g g €Gr= 9,8l =[9,9795)=1d,5]

Next, we notice that ((W,S) = W.S = f(U,S) is open in M since f :
U xS — M is an embedding with an open image. Consequently, G.S5 =
(G, W.S) is open, since ¢ is open, and thus F' is a diffeomorphism. O

6.27. Theorem ([187]). If M is a proper G-manifold, then for all x € M
the conditions of the previous theorem are satisfied, so each x has slices.



84 CHAPTER II. Lie Groups and Group Actions

Proof. We have already shown that each isotropy group G, is compact
(6.21)l Now for every neighborhood U of G, in G, for every z € M, it
remains to find a neighborhood V' of x in M such that

{g€G:gVNV £} CU.

Claim. U contains an open neighborhood U with G,.U = U; so we will be
able to assume G,.U = U without loss of generality.

The claim in the proof of theorem shows the existence of a neighbor-
hood B of G, such that G,.B C U, using only the compactness of G;. So
U:=G,.B= Uger g.B is again an open neighborhood of G, and it has
the desired properties.

Now we can suppose U = G,.U. Next, we have to construct an open
neighborhood V' C M of z, such that {g € G: g.V NV # @} C U. This is
the same as saying (G \ U).V NV should be empty. So we have to look for
V in the complement of (G \ U).x.

We see that M \ ((G\ U).z) is open, or rather that (G \U).x is closed. This
is because (G\U).x x {x} = ({,pry)((G\U) x {z}) is the image of a closed
set under (¢, pry) which is a closed mapping by lemma

Now let us choose a compact neighborhood W of x in M\ ((G\U).x). Then
since G acts properly, it follows that {g € G : ¢ W NW =# 0} is compact; in
particular K := {g € G\U : g WNW = (} is compact. But what we need is
for {g € G\U : g.V NV # 0} to be empty. An z-neighborhood V' contained
in W fulfills this if K.V C M \ W. Let us find such a neighborhood.

Our choice of W guarantees K.x C M \ W. But M \ W is open; therefore
for each k € K we can choose a neighborhood @ of k in G and V;, of x in
W, such that Q.Vx € M \ W. The neighborhoods Q cover K, and we can
choose a finite subcovering UT:l Qr,;- Then V := ﬂ;”zl Vi, has the desired
property: K.V C M\ W. O

6.28. Lemma. Let M be a proper G-manifold, V a linear G-space and
f: M — 'V smooth with compact support. Then

f:a:»—)/Gg_lf(g.m)ng

is a G-equivariant C*°-map with f(x) =0 for x ¢ G.supp f (where dp
stands for a right Haar measure on G).

Proof. Since G acts properly, {g € G : g.x € supp f} is compact. Therefore
the map g — ¢! f(g.z) has compact support, and f is well defined. To see
that f is smooth, let x¢p be in M, and let U be a compact neighborhood
of 9. Then the set {g € G : g.U Nsupp f # 0} is compact. Therefore,
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f restricted to U is smooth; in particular f is smooth in zg. Also, f is
G-equivariant, since

flha) = /G g f(gh-x)dpg = /G h(gh) " f(gh.z)dng
—h [ g7 f(g)dng = hf(a).
G

Furthermore, if ¢ G.supp f, then f(g.z) = 0 for all g € G; thus f(z) =
0. [l

6.29. Corollary. If M is a proper G-manifold, then M/G is completely
regular.

Proof. Choose FF C M/G closed and Zg = 7(xg) ¢ F. Now let U be a
compact neighborhood of xg in M fulfilling U N7~ (F) = 0, and choose
f € C>®(M,[0,00)) with support in U such that f(xzg) > 0. If we take the
trivial representation of G on R, then from lemma it follows that

f(a) = /G f(9.2)drg

defines a smooth G-invariant function. Here drg denote the right Harr mea-

sure on G; see[(14.4)] Moreover, f(xo) > 0. Since supp(f) € G.supp(f) C
G.U, we have supp(f) N7 1 (F) = 0. Since f € C>(M,]0, og))G is invari-
ant, f factors over 7 to a map f € C°(M/G,[0,00)), with f(zg) > 0 and
flr=o0. O

6.30. Theorem. If M is a proper G-manifold, then there is a G-invariant
Riemann metric on M.

Proof. By |(6.27) there is a slice S, at « for all z € M. Let 7 : M — M /G
be the quotient map. Notice first that M /G is Hausdorff by [(6.29)|

For each x choose f, € C*°(M,[0,00)) with f,(z > 0) and supp(f;) C G.S;
compact; then by

Faly) = /G f2(g9)drg € C=(M, [0, 00))°

is G-invariant, positive on G.z, and has supp(f,) € G.S,. Moreover,
m(supp fz) is a compact neighborhood of 7(z), so M/G is locally compact.
The interiors of the supports of the smooth functions f, form an open cover
of M. Since M is a Lindelof-space |(1.6), there is a countable subcover with
corresponding functions fy,, fz,,.... We write f, := f;, and Sy = Sg,,.
Let

W,={x€M: f(r) >0and fi(z) < for 1 <i<n}CG.S,,
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and denote by W, the closure. Then {W,} is a G-invariant open cover.
We claim that {W,, : n € N} is locally finite: Let x € M. Then there is
a smallest n such that x € W,,. Let V := {y € M : f,(y) > 2 fu(z)}. If
y € VN Wy, then we have f,,(y) > 3 fn(z) and fi(y) <  for i < k, which is
possible for finitely many k only. Let h(t) = e~'/* for t > 0 and h(t) = 0 for
t < 0. Consider the nonnegative smooth function

fu(@) = b(fu(@))h( = fi(@)) . b5 = fuoa(2))
for each n. Then obviously supp(f,) = W, C G.S,,.

The action of the compact group G, on T'M]|g, is fiber linear, so there is
a G, -invariant Riemann metric 4™ on the vector bundle T M| S,, Dy inte-
gration over the compact group G,,,. To get a Riemann metric on TM|g g,
invariant under the whole group G, consider the following diagram:

GxTM|s, —~TM|gs,.
i ot
q
G XGzn TM|SM
ER T p——

The map T»¢ : (9, Xs) — Tsly. X, factors over ¢ to a map ﬁé which is
injective, since if Txl(g, Xs) = T2l(¢', Xs), then on the one side £(g.s) =
Ug's") so g7tg'.s’ = s and g7'¢’ € G,. On the other side, Tsl,. X; =
Tslfg/.Xsl. So

(¢', Xs) ={9(97"9"), Tty Tsly. X };
thus ¢(¢', Xs) = q(g, Xs)-
The Riemann metric 4™ induces a G-invariant vector bundle metric on

G xTM|g, — G x Sy by

’Yn((g’ Xs)’ (97 }/s)) = 'Y(n) (X87 1/5)
It is also invariant under the right G, -action (g, Xs).h = (gh, T¥,-1.X5)
and, therefore, induces a Riemann metric 4, on G xg, T M|g, . This metric is
again G-invariant, since the actions of G' and G, commute. Now (@/E)*'?n =:
Yn is a G-invariant Riemann metric on TM|q.s,, and v := > > foYn is a
G-invariant Riemann metric on M. ]

6.31. Result ([187]). Let G be a matriz group, that is, a Lie group with
a faithful finite-dimensional representation, and let M be a proper G-space
with only a finite number of orbit types. Then there is a G-equivariant
embedding f : M — V into a linear G-space V.
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7. Polynomial and Smooth Invariant Theory

7.1. A motivating example. Let S(n) denote the space of symmetric
n X n matrices with entries in R and O(n) the orthogonal group. Consider
the action:

0:0(n) x S(n) = S(n), (A, B)— ABA™' = ABAT.

If 3 is the space of all real diagonal matrices and S, is the symmetric group
on n letters, then we have the following:

Theorem.
(1) This is an orthogonal O(n)-action on S(n) for the inner product given
by (A, B) = Trace(ABT) = Trace(AB).
(2) ¥ meets every O(n)-orbit.
(3) If B € X, then £(O(n), B)NY, the intersection of the O(n)-orbit through

B with %, equals the Sy,-orbit through B, where S, acts on B € ¥ by
permuting the eigenvalues.

(4) X intersects each orbit orthogonally with respect to the inner product
(A, B) = Trace(ABT) = Trace(AB) on S(n).

(5) R[S(n)]°™), the space of all O(n)-invariant polynomials in S(n) is
isomorphic to R[X]5", the symmetric polynomials in ¥ (by restriction,).

(6) The space C®(S(n))°™ of O(n)-invariant C>®-functions is isomor-
phic to C™(X)%", the space of all symmetric C™®-functions in ¥ (again
by restriction), and these again are isomorphic to the C*°-functions in
the elementary symmetric polynomials.

(7) The space of all O(n)-invariant horizontal p-forms on S(n), the space
of all O(n)-invariant p-forms w with the property ixw = 0 for all X €
T4(O(n).A), is isomorphic to the space of Sy-invariant p-forms on 3:

QP (S(n))0M = QP (x5,

hor

Proof. () Let A € O(n) act on Hy, Hs € S(n); then

Trace(AHy A™H(AH A™Y)T) = Trace(AH, A=Y (A~ H)THT AT)
= Trace(AH, AV AHT A™Y) = Trace(AH,HE A™Y) = Trace(HoHY ).

@) Clear from linear algebra.

@) The transformation of a symmetric matrix into normal form is unique
except for the order in which the eigenvalues appear.

(@) Take an A in . For any X € o(n), that is, for any skew-symmetric X,
let {x denote the corresponding fundamental vector field on S(n). Then we
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have

d
CX (A> = expe(tX)A €XPe (tXT)
dt|,_,

= XAid+id AXT = XA - AX.
Now the inner product with n € T43 = ¥ computes to
(Cx(A),n) = Trace(Cx (A)n) = Trace(X A — AX)n)
= Trace(X An) — Trace(AXn) = Trace(XnA) — Trace(XnA) = 0.
XnA
=X

@) If p € R[S(n)]°™), then clearly p := p|z € R[X]5". To construct p from p,
we use the result from algebra that R[R™]" is just the ring of all polynomials
in the elementary symmetric functions. So if we use the isomorphism

aq 0 0
0 as ...

A=\ . . — (a1,a2,...,a,) =t a
O 0 ... ap

to replace R™ by X, we find that each symmetric polynomial p on ¥ is of
the form

p(A) = p(o1(A),02(A),...,0n(A4)).
It can be expressed as a polynomial p in the elementary symmetric functions

o1 =—at =2 — .. — 2",

02:x1x2+x1x3+...,

op = (—1)F Z It

J1<<Jk

on = (—1)"X1. 2™
Let us consider the characteristic polynomial of the diagonal matrix X with

eigenvalues 2!, ..., z":

n
[[t-2)=t"+ort" "+ +on1t+o,
i=1
— det(t.Id — X)
n . .
(=D)""t'cp—i(X), where
i=0

k k k
cr(Y) = Trace(\ Y : AR" — AR")
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is the k-th characteristic coefficient of a matrix Y; see [(14.9)l So the o;
extend to O(n)-invariant polynomials ¢; on S(n). We can now extend p to
a polynomial on S(n) by

p(H) :=p(cr(H),ca(H),...,cn(H)) for all H € S(n).
Therefore, p is an O(n)-invariant polynomial on S(n) and is unique as such
due to ().

(@) Again we have that f € C>(S(n))°™ implies f := flg € C®(X)S".

Finding an inverse map f — f as above is possible due to the following
theorem by Gerald Schwarz; see below:

Let G be a compact Lie group with a finite-dimensional representation G —
GL(V) and let p1,pa,...,pr be generators for the algebra R[V]Y of G-in-
variant polynomials on V. It is finitely generated as an algebra due to
Hilbert; see . Then, for any smooth function h € C>®(V)%, there is
a function h € C®(R¥) such that h(v) = h(p1(v), ..., pr(v)).

Now we can prove the assertion as in (&) above. Again we take the symmet-
ric polynomials o7y, ..., 0, as generators of R[¥]%". By Schwarz’s theorem
(7.13)] any f € C(2)" can be written as a smooth function in o1, ..., 0p.
So we have an f € C°°(R") such that

f(A) = f(o1(A),...0n(A)) for all A € ¥.
If we extend the o; onto S(n) as in ({l), we can define
F(H) = F(ex(H),a(H), ... ea(H))  for H € S(n).

Then f is again a smooth function and it is the unique O(n)-invariant ex-
tension of f.

(@) Consider o = (01,...,05,) : ¥ — R™ and put J(x) := det(do(x)). For
each a € §,, we have

Jdz' A Nda" =doy A - Adoy
= (doy A -+ Ndoy)
= (Joa).a*(dz' A--- Adz™)
= (Joa).det(a).dzt A - Adz™,
(8) Joa=det(a™).J

From this we see firstly that J is a homogeneous polynomial of degree

0414+ (n—1)="00 <Z>

The mapping ¢ is a local diffeomorphism on the open set U = ¥\ J~1(0);
thus doy,...,do, is a coframe on U, i.e., a basis of the cotangent bundle
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everywhere on U. Let (ij) be the transpositions in S, and let

Hj) = {reX:z'—2/ =0}
be the reflection hyperplanes of the (ij). If x € H(;), then by () we
have J(x) = J((ij)r) = —J(x), so J(X) = 0. Thus J|Hj = 0, so the
polynomial J is divisible by the linear form 2® — 27, for each i < j. By
comparing degrees, we see that
9) J(x) =c. H(:Ul —27),  where 0 # c € R.

1<J
By the same argument we see that:
(10) If g € C>(X) satisfies go a = det(a™!).g for all a € S,,, then g = J.h
for h € C®(X)5n.
(11) Claim. Let w € QP(X)S*. Then we have
w = Z Wi ,...\dp del VANEEIWAN dO’jp
J1<j2<-+<Jp

on ¥, for wj, ., € C®(X)5,

To prove claim (II]) recall that doq,...,do, is an Sy-invariant coframe on
the S,-invariant open set U. Thus
w|U = Z 951, doj, /\"'/\dO‘jp
71<g2<-<Jp ec=(U)
1
(12) = Z (n' Z a*gjl,m,jp> doj, N+ N\ dep.
1 <j2<<jp a€Sn
R oenip EC(U) SR

Now choose I = {iy < -+ < i} C{l,...,n}and let I = {1,...,n}\ I =
{ip41 < --- <in}. Then we have for a sign ¢ = £1

wlU ANdoi,, ., N---Ndog, = e.hp.doy A--- Ndoy

do!

=c.hp.Jdzt Ao Ada™
On the whole of ¥ we have
wAdo! = ekrdr' Ao Adz"

for suitable k; € C*°(X). By comparing the two expressions on U, we see
from (®) that k7 o a = det(a~!).k; since U is dense in X. So from (I0) we
may conclude that k; = Jwy for wy € C°(X)%", but then h; = wr|U and
w=>;wrdo’! as asserted in claim (II]).
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Now we may finish the proof. By the theorem of G. Schwarz there
exist fr € C*°(R") with w; = fr(o1,...,0,). Recall now the characteristic
coefficients ¢; € R[S(n)] from the proof of (Bl) which satisfy ¢;|X = o;. If we
put now

W= Z fi1,...,ip (Cl, ceey Cn) dCi1 A A dcip € Qflor(S(n))O(”),

i1 < <ip

then the pullback of & to X equals w. [l

7.2. Theorem of Hilbert and Nagata. Let G be a Lie group with a
finite-dimensional representation G — GL(V') and let one of the following
conditions be fulfilled:

(1) G is semisimple and has only a finite number of connected components.
(2) V and (G.f)r are completely reducible for all f € R[V]; see|(7.8).

Then R[V]G is finitely generated as an algebra, or equivalently, there is
a finite set of polynomials py,...,pr € R[V]®, such that the map p :=
(p1,.--,px) : V — R induces a surjection

R[RF — R[VC.

Remark. The first condition is stronger than the second since for a con-
nected, semisimple Lie group, or for one with a finite number of connected
components, every finite-dimensional representation is completely reducible.
To prove the theorem, we will only need to know complete reducibility for
the finite-dimensional representations V' and (G.f)r though as in (2.

7.3. Lemma. Let A = @izoAi be a graded R-algebra with Ay = R.
If Ay = @A is finitely generated as an A-module, then A is finitely
generated as an R-algebra.

Proof. Let a1,...,a, € Ay be generators of A} as an A-module. Since
they can be chosen homogeneous, we assume a; € Ag, for positive integers
d;.

Claim. The a; generate A as an R-algebra: A = Rlay,...,ay].

We will show by induction that A; C Rlay,...,a,] for all i. For i = 0 the

assertion is clearly true, since A9 = R. Now suppose A; C Rlay,...,a,] for
all ¢ < N. Then we have to show that
AN g R[al, .. .,an]

as well. Take any a € Ayx. Then a can be expressed as

_ i i )
a= g ;a4 c; € Aj.
'7]’
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Since a is homogeneous of degree N, we can discard all cé»ai with total degree
j+di # N from the right hand side of the equation. If we set c%, 4 = c,

we get
a= E cla;,
i

In this equation all terms are homogeneous of degree . In particular, any
occurring a; have degree d; < N. Consider first the a; of degree d; = N. The
corresponding ¢’ then automatically lie in Ag = R, so cla; € Rlay,...,a,].
To handle the remaining a;, we use the induction hypothesis. Since a; and ¢’
are of degree < N, they are both contained in Ra1, ..., a,]. Therefore, c‘a;
lies in Rlaq,...,a,] as well. So a =" c'a; € Rlay, ..., a,], which completes
the proof. O

Remark. If we apply this lemma for A = R[V]%, we see that to prove
we only have to show that R[V]¢, the algebra of all invariant polynomials
of strictly positive degree, is finitely generated as a module over [V]G. The
first step in this direction will be to prove the weaker statement:

B := <R[V]§>R[V] = R[V].R[V]¢ is finitely generated as an ideal.
This is a consequence of a well known theorem by Hilbert:

7.4. Theorem (Hilbert’s ideal basis theorem). If A is a commutative
Noetherian ring, then the polynomial ring A[z] is Noetherian as well.

A ring is Noetherian if every strictly ascending sequence of left ideals Iy C
I C Iy C ... is finite, or equivalently, if every left ideal is finitely generated.
If we choose A = R, the theorem states that R[z] is again Noetherian. Now
consider A = R[z]; then R[z][y] = R[z,y] is Noetherian, and so on. By
induction, we see that R[V] is Noetherian. Therefore, any left ideal in R[V],
in particular B, is finitely generated.

Proof of|(7.4)l Take any ideal I C Alx| and denote by A; the set of leading
coefficients of all i-th degree polynomials in I. Then A; is an ideal in A, and
we have a sequence of ideals

AgC A C Ay C--- CA.

Since A is Noetherian, this sequence stabilizes after a certain index r, i.e.,

A, = Arpr = ---. Let {ai1,...,ain,} be a set of generators for A; (i =
1,...,r), and let p;; be a polynomial of degree ¢ in I with leading coefficient
Qg -

Claim. These polynomials generate I.

Let P = (pij) ajz] € Alz] be the ideal generated by the p;;. Then P clearly
contains all constants in I (A9 C I). Let us show by induction that it
contains all polynomials in I of degree d > 0 as well. Take any polynomial
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p of degree d. We distinguish between two cases.
(1) Suppose d < r. Then we can find coefficients ci,. .., c,, € A such that
D =P —C1Pd1 — C2Pd2 — - - - — CnyPdny

has degree < d.

(2) Suppose d > 7. Then the leading coefficients of 24 "p,1, ..., 2% ", € 1

generate Ag. So we can find coefficients ¢y, ..., ¢, € A such that
pr=p—cz’pn —cx pra — = e, 2 prn,

has degree < d.

In both cases we have p € p + P and degp < d. Therefore by the induction

hypothesis p, and with it p, lies in P. O

To prove theorem [(7.2)| it remains only to show the following:

7.5. Lemma. Let G be a Lie group acting on V such that the same condi-
tions as in Hilbert and Nagata’s theorem are satisfied. Then for fi,..., fix €
R[V]C:

RIVIC O (fr,- s fodmpy) = (10 r)rpve

where the brackets denote the generated ideal (module) in the specified space.

7.6. Remark. In our case, if we take f; = p; € R[V]{ to be the finite
system of generators of B as an ideal in R[V], we get:

RIVI{ =R[VI°NB = (p1,..., pu)rv|c-

That is, the p; generate R[V]§ as an R[V]%module. With lemma [(7.3))
Hilbert and Nagata’s theorem [(7.2)| follows immediately.

7.7. Remark. The inclusion (D) in lemma|(7.5)|is trivial. If G is compact,
then the opposite inclusion

RIVIN (fr,. s fodry) S (foe o i)

is easily seen as well. Take any f € R[V]“ N {f1,..., fe)rv)- Then f can be
written as

f=> pifi,  pieRV]
Since G is compact, we can integrate both sides over G using the Haar

measure dg; see
f@) = [ 1= [ ploaritands =3 ([ plga)dy) fia)
a ~Ja G

i
=:pj (z)
The p} are G-invariant polynomials; therefore f is in (f1,..., fk>R[V]G.

To show the lemma in its general form, we will need to find a replacement
for the integral. This is done in the following central lemma.
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7.8. Lemma ([170]). Under the same conditions as theorem|(7.2)|, for any
f € R[V] there exists an f* € R[V]Y N {(G.f)r such that

f=1"€(Gf=Gfr.

Proof. Take f € R[V]. Clearly, f is contained in M := (G.f)r, where
f* is supposed to lie as well. The vector space M/ is a finite-dimensional
subspace of R[V] since it is contained in

M;C P RV
i<deg f

In addition we have that
<Gf — Gf>R =: Nf - Mf

is an invariant subspace. So we can restrict all our considerations to the
finite-dimensional G-space M which is completely reducible by our assump-
tion.

If f € Ny, then we can set f* =0 and we are done. Suppose f ¢ Ny. Then
the f* we are looking for must also lie in M\ Ny. From the identity

gf=f+@f-11) forall g e G
——
EN;
it follows that
My= N;oR.f.
In particular, Ny has codimension 1 in M.

Since we require f* to be G-invariant, R.f* will be a 1-dimensional G-
invariant subspace of My which is not contained in Ny. As we just saw, Ny
has codimension 1 in My; therefore R. f* will be a complementary subspace
to N f-

If we now write My as the direct sum
M = N f &) P,
where P is the invariant subspace complementary to Ny guaranteed by the

complete irreducibility of M}, then P is a good place to look for f*.

Now P = My /Ny as a G-module, so let us take a look at the action of G' on
My /Ny¢. Every element of My/Ny has a representative in R.f, so we need
only consider elements of the form A\f + Ny (A € R). For arbitrary g € G
we have:

9. (A +Np) = Ag.f + Ny = Af + (Ag.f — M) +Nj = Af + Ny
~————

ENf
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So G acts trivially on My/Ny and therefore on P. This is good news, since
now every f’ € P is G-invariant and we only have to project f onto P (along
Ny) to get the desired f* € R[V]% N Mj. O

Proof of lemma |(7.5). Recall that for arbitrary fi,..., fx we have to
show

R[V}G N <f17 .. ')fk>R[V] - <f17 .- '7fk>R[V}G'

We will do so by induction on k. For k = 0 the assertion is trivial.
Suppose the lemma is valid for k = r — 1. Consider fi,..., f, € R[V]% and
fERVI®N(f1,.... fr)rp)- Then

f=> _pfi, pieRV]
=1

By Nagata’s lemma |(7.8), we can approximate p; up to (G.p; — G.p;)r by a
pf € R[V]Y. So for some finite subset F' C G' x G we have

pi =pi+ Z )\;t(s.pi —t.pi), )\;t eR.
s,teF
Therefore we have
T T
f — Zp;kfz = Z Z )\éjt(s.pi — t.pi)fi < R[V]G.
i=1 i=1 steF

It remains to show that the right hand side of this lies in (f1,..., fr)rp1o-
Notice that by the G-invariance of f:

> (spi—tp)fi=s.Y pifi—t.> pifi=sf—tf=0

i=1 i=1 i=1
for all s,t € G. Therefore
r—1
Z(s.pi —t.pi)fi = (t.pr — s.pr) fr.
i=1

Now we can use the induction hypothesis on

DD Aulspi— tpi) fi

=1 stel
r—1 '
=3 ) (M= A (spi —tpi) fi € RVIC N (fis- o, frot)rpyy
=1 steF

to complete the proof. O
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7.9. Remark. With lemma|(7.5)| Hilbert and Nagata’s theorem is proved
as well. So in the setting of |(7.2)| we now have an exact sequence

0 — p* — RRF 25 R[V]® — 0

where ker p* = {R € R[R¥] : R(p1,...,pr) = 0} is just the finitely generated
ideal consisting of all relations between the p;.

Since the action of G respects the grading of R[V] = @R[V, it induces
an action on the space of all power series, R[[V]] = II}2 | R[V]x, and we have
the following:

7.10. Theorem. Let G be a Lie group with a finite-dimensional representa-
tion G — GL(V) satisfying the conditions of Hilbert and Nagata’s theorem
(7.2) Let p1,...,pr € R[V]E be generators for the algebra R[V]Y which

exist by . Then the map
p:=(p1,-...px): V= R
induces a surjection
R[[R*]] <= R[V])®
between the spaces of formal power series.

Proof. Write the formal power series f € R[[V]]“ as the sum of its homo-
geneous parts:

f(z) = fo+ fi(z) + fo(x)+....
Then to each f;(x) € R[V]{ there is a gi(y) € R[R¥] such that f;(x) =
gi(p1(x),..., pr(x)). Before we can set

9(y) = g0+ g1(y) + 92(y) + - ..

to finish the proof, we have to check whether this expression is finite in each
degree. This is the case, since the lowest degree )\; that can appear in g;
goes to infinity with ¢:

Write explicitly g; = Z|a|<i A; oy® and take an A; o # 0. Then deg f; =i =
ar1dy + - - - + agdg, where d; = deg p; and

Ai=inf{lal:i=> ajd} 00 (i—o00). O

7.11. The orbit space of a representation. If G is a Lie group acting
smoothly on a manifold M, then the orbit space M/G is not generally again
a smooth manifold. Yet, it still has a functional structure induced by the
smooth structure on M simply by calling a function f : M/G — R smooth
if and only if for : M — R is smooth (where 7 : M — M /G is the quotient
map).
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In the following, let G be a compact Lie group, ¢ : G — L(V') a representa-
tion on V = R™. Let pi,...,pr € R[V]® denote a finite system of generators
for the algebra R[V]%, and let p denote the polynomial mapping:

p:=(p1,....pp): V — R~

Lemma. Let G be a compact Lie group. Then we have
(1) pis proper so p~t(compact) is compact.
(2) p separates the orbits of G.
(3) There is a map p: V/G — R¥ such that the diagram

vV —2 o RE

7
™ o
P

V/G

commutes and p is a homeomorphism onto its image.

Proof. () Let r(z) = |z|> = (x,z), for an invariant inner product on V.
Then r € R[V]%. By there is a polynomial p € R[R*] such that r(z) =
p(p(x)). If (z,) € V is an unbounded sequence, then r(z,) is unbounded.
Therefore p(p(x,)) is unbounded, and, since p is a polynomial, p(z,) is also
unbounded. For compact K C R¥ then p~!(K) is closed and bounded, thus
compact. So p is proper.

() Choose two different orbits G.x # G.y (z,y € V') and consider the map:

fi .
f:GxUGy — R, Flv) = 0 forvedG.uz,
1 forveGuy.

Both orbits are compact and f is continuous. Therefore, by the Weierstrass
approximation theorem, there is a polynomial p € R[V] such that

lp = fllcavey = sup{lp(z) = f(2)] : 2 € Ga UGy} < 5.

Now we can average p over the group using the Haar measure dg on G from

(14.4)| to get a G-invariant function
q(v) := /Gp(g-v)dg-

Note that since the action of G is linear, ¢ is again a polynomial. For
v € G.x UG.y, we have

| sta0tg— | p(gw)dg.] < [ 1ftg) = plaldg < 55 [ do.
G G G 10 Jg
=f(v)

=1
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Recalling how f was defined, we get
lq(v)| <€ & for v € G.z,
I1—q(v)| < & for v e G.y.

Therefore ¢(G.z) # q(G.y), and since ¢ can be expressed in the Hilbert
generators, we can conclude that p(G.z) # p(G.y).

@) Clearly, p is well defined and continuous for the quotient topology on
V/G. By (@) the mapping p is injective, and by () it is proper, thus closed
by So it is a homeomorphism onto its image. O

7.12. Remark. (1) If f : V — R is in C%(V)%, then f factors over 7
to a continuous map f : V/G — R. By there is a continuous map
f:p(V) = Rgiven by f = fop~!. It has the property f = fop. Since p(V)
is closed, f extends to a continuous function f € C°(R¥) (Tietze-Urysohn).
So for continuous functions we have the assertion that

p*: CORF) = CO(V)“ is surjective.

(2) The subset p(V) C R¥ is a real semialgebraic variety, i.e., it is described
by a finite number of polynomial equations and inequalities. In the complex
case, the image of an algebraic variety under a polynomial map is again
an algebraic variety, meaning it is described by polynomial equations only.
In the real case this is already disproved by the simple polynomial map:
T 22,

7.13. Result. C*-Invariant Theorem. Let G be a compact Lie group, ¢ :
G — O(V) a finite-dimensional representation, and p1, p2, .. ., px generators
for the algebra R[V]E of G-invariant polynomials on V' (this space is finitely
generated as an algebra by . If

p:=1(p1,...,pr): V= RF,
then

p*  C®(RF) — C=(V)¢
is surjective with a continuous linear section.

This theorem is due to Schwarz [204], who showed surjectivity. The arti-
cle [138] extended the result to split surjective (existence of a continuous
section). Later, [18] and [19] generalized this to ‘semiproper real analytic
mappings’ p. For the action of G = {£1} on R! the result is due to [228].
If G = S, acting on R™ by the standard representation, it was shown by
[75]. Tt is easy to see that p*C°(RF) is dense in C>°(V)¥ in the compact
C>-topology. Therefore, Schwarz’s theorem is equivalent to: p*C(R¥) is
closed in C*°(V)%. Further results in this direction were obtained by Luna
who, among other things, generalized the theorem of Schwarz to reductive
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Lie groups losing only the property of the Hilbert generators separating the
orbits.

7.14. Result (Luna’s Theorem [126]). Consider a representation of a
reductive Lie group G on K™ (where K = C,R), and let 0 = (01,...,00) :
K™ — K", where 01, ...,0, generate the algebra K[K™]%. Then the follow-
ing assertions hold:

(1) If K = C, then o* : O(C") = O(C™)% is surjective.

(2) If K =R, then o* : C¥(R") — C¥(R™)% is surjective.

(3) If K =R, then also

o1 C®°(R™) — {f € C®°(R™) : f constant on o~ (y)Vy € R"}

18 surjective.






CHAPTER II11.
Differential Forms and

de Rham Cohomology

8. Vector Bundles

8.1. Vector bundles. Let p: E — M be a smooth mapping between man-
ifolds. By a wector bundle chart on (E,p, M) we mean a pair (U, 1), where
U is an open subset in M and where v is a fiber respecting diffeomorphism
as in the following diagram:

UxV

E|U:=p ' (U)

Here V is a fixed finite-dimensional vector space, called the standard fiber
or the typical fiber, real for the moment.

Two vector bundle charts (Uy, 1) and (Us,1)2) are said to be compatible if
(IR w;l is a fiber linear isomorphism, i.e.,

(1 0¥y ") (2, 0) = (2, ¢12(2)0)

for some smooth mapping 112 : Uy 2 := Uy N Uz — GL(V). The mapping
11,2 is then unique and smooth, and it is called the transition function
between the two vector bundle charts.

A wvector bundle atlas (Uy, Vo )acAa for (E,p, M) is a set of pairwise compat-
ible vector bundle charts (Uy, %) such that (Uy)aca is an open cover of

101
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M. Two vector bundle atlases are called equivalent if their union is again a
vector bundle atlas.

A wector bundle (E,p, M) consists of manifolds E (the total space), M (the
base), and a smooth mapping p : E — M (the projection) together with an
equivalence class of vector bundle atlases: So we must know at least one
vector bundle atlas. The projection p turns out to be a surjective submer-
sion.

8.2. Let us fix a vector bundle (E,p, M) for the moment. On each fiber
E, = p~Y(z) (for x € M) there is a unique structure of a real vector space,
induced from any vector bundle chart (Uy, 1) with x € U,. So 0, € E,, is
a special element and 0 : M — E, 0(x) = 0,, is a smooth mapping which is
called the zero section.

A section u of (E,p, M) is a smooth mapping u : M — E with pou = Idy,.
The support of the section u is the closure of the set {x € M : u(x) # 0,} in
M. The space of all smooth sections of the bundle (E, p, M) will be denoted
by either I'(E) = I'(E,p, M) = I'(E — M). Clearly it is a vector space with
fiberwise addition and scalar multiplication.

If (Ua,¥a)aca is a vector bundle atlas for (E, p, M), then any smooth map-
ping fo : Uy — V (where V is the standard fiber) defines a local section
x> P (@, fo(z)) on Uy. If (ga)aca is a partition of unity subordinated to
(U ), then a global section can be formed by x + > ga(z) - 5, fa()).
So a smooth vector bundle has ‘many’ smooth sections.

8.3. We will now give a formal description of the set of equivalence classes
of vector bundles with fixed base M and fixed standard fiber V.

Let us first fix an open cover (Uy)aea of M. If (E,p, M) is a vector bundle
which admits a vector bundle atlas (Uy, 1) with the given open cover, then
we have 1, o ¢§1(x,v) = (x,¢qp(x)v) for transition functions g : Uss =
Uy NUg — GL(V), which are smooth. This family of transition functions
satisfies

W Vo) - Yy (T) = oy () for each z € Uypy = Uo NUg N U,,
Yaa(z) =€ for all z € U,,.

Condition () is called the cocycle condition and thus we call the family (¢,3)
the cocycle of transition functions for the vector bundle atlas (Uy, 14 ).

Let us suppose now that the same vector bundle (F,p, M) is described by
an equivalent vector bundle atlas (Ua, @) with the same open cover (Uy).
Then the vector bundle charts (Uy, 1o ) and (Ua, o) are compatible for each
a, SO

Pa 0ty (2,0) = (z,Ta()V)
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for some smooth mapping 7, : Uy — GL(V'). But then we have
(2, Ta(2)¥as(2)0) = (Pa 0 U5 ") (@, Yas(x)v)
= (pa 0Py 0 Yo 0P ) (@, 0) = (pa 095" )(2,0)
= (pa o9y w0ty )(x,v) = (v, pap(@)T8(2)0).

So we get

(2) Ta(2)Vap(x) = pap(x)Ta(2x) for all x € Uyp.

We say that the two cocycles (1q5) and (pap) of transition functions over
the cover (Uy,) are cohomologous. The cohomology classes of cocycles (1q3)
over the open cover (U,) (where we identify cohomologous ones) form a set
H'Y((Uy), GL(V)), the first Cech cohomology set of the open cover (U,) with
values in the sheaf C*°( ,GL(V)) =: GL(V).

Now let (W;);cr be an open cover of M that refines (Uy) with W; C Ue(i)s
where € : I — A is some refinement mapping; then for any cocycle (¢,3)
over (Uy) we define the cocycle €*(¢q3) =: (¢4j) by the prescription ¢;; :=
Ye(i)e(j) | Wij. The mapping €* respects the cohomology relations and in-
duces therefore a mapping & : H'((U,), GL(V)) — H'((W;),GL(V)). One
can show that the mapping €* depends on the choice of the refinement map-
ping ¢ only up to cohomology (use 7; = 9.(;) (i) | Wi if € and 7 are two refine-
ment mappings), so we may form the inductive limit h_n)lﬁ Yu,GL(V)) =:
HY(M,GL(V)) over all open covers of M directed by refinement.

Theorem. There is a bijective correspondence between the (nonabelian if
dim(V') > 1) cohomology space H(M,GL(V)) and the set of isomorphism
classes of vector bundles over M with typical fiber V.

Proof. Let (143) be a cocycle of transition functions 9, : Usg — GL(V)
over some open cover (Uy) of M. We consider the disjoint union | |, 4{a} X
Uy x V and the following relation on it: (o, z,v) ~ (8,y,w) if and only if
z =y and Y, (z)v = w.

By the cocycle property () of (143) this is an equivalence relation. The
space of all equivalence classes is denoted by E = VB(13) and it is
equipped with the quotient topology. We put p : E — M, p[(a, z,v)] = =z,
and we define the vector bundle charts (U, ¥qa) by ¢a[(a, z,v)] = (z,v),
Yo 1 p 1 (Uy) =: E | Uy — Uy x V. Then the mapping 1, o wﬁ_l(:r,v) =
Yal(B, z,v)] = Yal(a, z,0a5(2)v)] = (2, ¥ap(zx)v) is smooth; so E becomes
a smooth manifold which is is Hausdorff: Let u # v in Ej; if p(u) # p(v), we
can separate them in M and take the inverse image under p; if p(u) = p(v),
we can separate them in one chart. So (E,p, M) is a vector bundle.

Now suppose that we have two cocycles, (143) over (Uy) and (¢;;) over (V;).
Then there is a common refinement (W) for the two covers (U,) and (V;).
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The construction described a moment ago gives isomorphic vector bundles if
we restrict the cocycle to a finer open cover. So we may assume that (¢3)
and (pqg) are cocycles over the same open cover (Uy,). If the two cocycles
are cohomologous, S0 T4 - Yag = @ap - T3 00 Uyg, then a fiber linear diffeo-
morphism 7 : VB(ag) = VB(pag) is given by oat[(a, z,v)] = (z, 7o (x)v).
By relation () this is well defined, so the vector bundles V B(1,5) and
VB(¢ap) are isomorphic.

Most of the converse direction was already shown in the discussion before the
theorem, and the argument can be easily refined to show also that isomorphic
bundles give cohomologous cocycles. ([

8.4. Remark. If GL(V) is an abelian group (only if V' is of real or com-
plex dimension 1), then H'(M,GL(V)) is a usual cohomology group with
coefficients in the sheaf GL(V) and it can be computed with the methods
of algebraic topology. We will treat the two situations in a moment. If
GL(V) is not abelian, then the situation is rather mysterious: There is no
clear definition for H?(M,GL(V)) for example. So H'(M,GL(V)) is more
a notation than a mathematical concept.

A coarser relation on vector bundles (stable isomorphism) leads to the con-
cept of topological K-theory, which can be handled much better, but is only
a quotient of the real situation.

Example: Real line bundles. As an example we want to determine here
the set of all real line bundles on a smooth manifold M. Let us first consider
the following exact sequence of abelian Lie groups:

0— (R,+) —25 GL(1,R) = (R\ 0,-) =5 Zy — 0. >0

where Zg := Z/27Z is the two element group. This gives rise to an exact
sequence of sheafs with values in abelian groups:

0= C®( ,R) —2,C®( ,GL(1,R)) 2 Zy — 0

where in the end we find the constant sheaf. This induces the following long
exact sequence in cohomology (the Bockstein sequence):

C€XPy

o= 0=H'(M,C™( ,R)) —— H'(M,C>*( ,GL(1,R)))

P HY (M, Zs) 2 H2(M,C°( ,R))=0—....

Here the sheaf C*°( ,R) has 0 cohomology in dimensions > 1 since this is a
fine sheaf, i.e., it admits partitions of unity; see for example [77]. Thus the
pullback p, : H'(M,C>( ,GL(1,R))) — H'(M,Zs) is an isomorphism,
and by theorem a real line bundle E over M is uniquely determined by
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a certain cohomology class in H'(M,Zs), namely the first Stiefel-Whitney
class w1 (F) of this line bundle.

Example: Complex line bundles. As another example we want to deter-
mine here the set of all smooth complex line bundles on a smooth manifold
M. Again we first consider the following exact sequence of abelian Lie
groups:
0221 (C,4) 2%, GL(1,C) = (C\0,-) = 0.
This gives rise to the following exact sequence of sheafs with values in abelian
groups:
07— C® ,C) =22 0> ,GL(1,C)) >0

where in the beginning we find the constant sheaf. This induces the following
long exact sequence in cohomology (the Bockstein sequence):

= 0=HY(M,C™( ,C)) —= H'(M,C*( ,GL(1,0)))
S B, 7) L BA(ML,0( ,C) =05 ...

Again the sheaf C*°( ,R) has 0 cohomology in dimensions > 1 since it
is a fine sheaf. Thus ¢§ : H'(M,C>®( ,GL(1,C))) — H?(M,Z) is an iso-
morphism, and by theorem a complex smooth line bundle F over M
is uniquely determined by a certain cohomology class in H?(M,Z), namely
the first Chern class c1(F) of this line bundle.

8.5. Let (Ua,%q) be a vector bundle atlas for a vector bundle (E,p, M).
Let (ej)le be a basis of the standard fiber V. We consider the section
sj(x) := ¢y (z,ej) for x € U,. Then the s; : U, — E are local sections of
E such that (sj(a:))?:1 is a basis of E, for each x € U,: We say that

s=(S1,-..,5k)

is a local frame field for E over U,.

Now let conversely U C M be an open set and let s; : U — E be local
sections of E such that s = (s1,...,s,) is a local frame field of E over
U. Then s determines a unique vector bundle chart (U,1) of E such that
sj(r) = 9~ (z,¢;), in the following way. We define f: U x R¥ — E | U by
flzvt . o) = E?:l v/sj(z). Then f is smooth, invertible, and a fiber
linear isomorphism, so (U,7) = f~!) is the vector bundle chart promised
above.
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8.6. Let (E,p, M) and (F,q, N) be vector bundles. A vector bundle homo-
morphism ¢ : B — F is a fiber respecting, fiber linear smooth mapping

E-Y.F

hd
M —— N.

So we require that ¢, : By — F(,) is linear. We say that ¢ covers ¢. If ¢
is invertible, it is called a wvector bundle isomorphism.

8.7. A wector subbundle (F,p, M) of a vector bundle (E,p, M) is a vector
bundle and a vector bundle homomorphism 7 : F' — E, which covers Idyy,
such that 7, : F, — E, is a linear embedding for each x € M.

Lemma. Let ¢ : (E,p, M) — (E’,q,N) be a vector bundle homomorphism
such that rank(p, : Ey — E{p(x)) is locally constant in x € M. Then ker ¢,

given by (ker ¢), = ker(p,), is a vector subbundle of (E,p, M).

Proof. This is a local question, so we may assume that both bundles are
trivial: Let E = M xRP and let F' = N x R%; then ¢(z,v) = (¢(x), p(z).v),
where % : M — L(RP,R%). The matrix %(z) has rank k, so by the elimi-
nation procedure we can find p — k linearly independent solutions v;(z) of
the equation @(x).v = 0. The elimination procedure (with the same lines)
gives solutions v;(y) for y near x which are smooth in y, so near = we get a
local frame field v = (v1, ..., vp—y) for ker ¢. By ker ¢ is then a vector

subbundle. O

8.8. Constructions with vector bundles. Let F be a covariant functor
from the category of finite-dimensional vector spaces and linear mappings
into itself, such that F : L(V,W) — L(F(V),F(W)) is smooth. Then F
will be called a smooth functor for shortness sake. Well known examples of
smooth functors are F(V) = A¥(V) (the k-th exterior power), or F(V) =
®" V', and the like.

If (E,p, M) is a vector bundle, described by a vector bundle atlas with cocy-
cle of transition functions ¢ag : Uayg — GL(V'), where (U, ) is an open cover
of M, then we may consider the smooth functions F(¢ag) : © — F(pas(x)),
Uap = GL(F(V)). Since F is a covariant functor, F(¢p.g) satisfies again the
cocycle condition and cohomology of cocycles is respected, so
there exists a unique vector bundle (F(E) := VB(F(gag)),p, M), the value
at the vector bundle (E,p, M) of the canonical extension of the functor F
to the category of vector bundles and their homomorphisms.

If F is a contravariant smooth functor like the duality functor F(V) = V*,
then we have to consider the new cocycle F (go(;ﬁl) instead of F(pag).
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If F is a contra-covariant smooth bifunctor like L(V, W), then the construc-
tion F(VB(Wag), VB(vag)) = VB(]-"(dJ;Bl, ©ap)) describes the induced
canonical vector bundle construction, and similarly in other constructions.

So for vector bundles (E,p, M) and (F,q, M) we have the following vec-
tor bundles with base M: A\*E, E® F, E*, N\E = @50 \"E, E®F,
L(E,F)= E*® F, and so on.

8.9. Pullbacks of vector bundles. Let (E,p, M) be a vector bundle and
let f: N — M be smooth. Then the pullback vector bundle (f*E, f*p, N)
with the same typical fiber and a vector bundle homomorphism

f*E%E

f*pl ; lp

N ——M

is defined as follows. Let E be described by a cocycle (¢,43) of transition
functions over an open cover (U,) of M, E = VB(1¢,3). Then (a3 o f)
is a cocycle of transition functions over the open cover (f~1(U,)) of N
and the bundle is given by f*E := VB(¢as o f). As a manifold we have

[*E = N X(fmp) E in the sense of |(2.17)

The vector bundle f*F has the following universal property: For any vector
bundle (F,gq, P), vector bundle homomorphism ¢ : F' — E and smooth g :
P — N such that fog = ¢, there is a unique vector bundle homomorphism
¢: F — f*E with 1 = g and p*f o ¢ = ¢

F Y
N
q rEX E
!
P2 N—T

8.10. Theorem. Any vector bundle admits a finite vector bundle atlas.

Proof. Let (E,p, M) be the vector bundle in question, where dim M = m.
Let (Uq, %a)aca be a vector bundle atlas. By topological dimension theory,
since M is separable, there exists a refinement of the open cover (Uy,)aca
of the form (Vij)i=1,..m+1;jen, such that Vij; NV, = 0 for j # k; see the
remarks at the end of We define the set W; := ||, Vij (a disjoint
union) and v; [ Vij = ¥ j), where a: {1,...,m+1} x N — A is a refining
map. Then (W, 1;)i=1,..m+1 is a finite vector bundle atlas of E. O
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8.11. Theorem. For any vector bundle (E,p, M) there is a second vector
bundle (F,p, M) such that (E @ F,p,M) is a trivial vector bundle, i.e
isomorphic to M x RN for some N € N.

Proof. Let (U;, ;) be a finite vector bundle atlas for (E,p, M). Let (g;)
be a smooth partition of unity subordinated to the open cover (U;). Let
l; : RF — (RF)" = R¥ x ... x R¥ be the embedding on the i-th factor, where
R is the typical fiber of E. Let us define ¢ : E — M x R™ by

( Zgz ) (i © pry o) (u >),

then ¢ is smooth, fiber hnear, and an embedding on each fiber, so F is a
vector subbundle of M x R™ via 1. Now we define F, = Ex in {z} x R™
with respect to the standard inner product on R?*. Then F' — M is a vector
bundle and E @ F = M x R, O

8.12. The tangent bundle of a vector bundle. Let (E,p, M) be a
vector bundle with fiber addition +g : E X3y E — FE and fiber scalar
multiplication mt : B — E. Then (TE,ng, E), the tangent bundle of
the manifold FE, is 1tself a vector bundle, with fiber addition denoted by
+TE and scalar multiplication denoted by mTE )

If (Uy,Vo: E [ Uy — Uy X V)aea is a vector bundle atlas for E, such that
(Un, uq) is also a manifold atlas for M, then (E | Uy, 1), )aca is an atlas for
the manifold F, where

VPl = (uq X Idy) 0thy : E [ Uy — Uy X V = un(Uy) X V CR™ x V.
Hence the family (T(E | U,),T¢), : T(E | Uy) — T(ua(Uy) x V) =

Ua(Ua) XV XR™ X V)4e4 is the atlas describing the canonical vector bundle
structure of (T'E, wg, E'). The transition functions are in turn:

(Ya 05" (@,0) = (2,9ap(x)v)  for z € U,
(wa 0 uz')(y) = uas(y) fory € us(Uap),
(Ve 0 (¥5) ")y, v) = (wap(y), Yas(uz' (¥)v),
(Tl 0 T(4h) )y, v: €, w) = (wap(y), Yap(uz' (4))v; d(uap) (Y)E,
(d(vhap o uz ) HEV + Yap(uz (y))w).

So we see that for fixed (y,v) the transition functions are linear in (£, w) €
R™ x V. This describes the vector bundle structure of the tangent bundle
(TE, 5, E).

For fixed (y,&) the transition functions of TE are also linear in (v,w) €
V x V. This gives a vector bundle structure on (T'E,Tp, TM). Its fiber
addition will be denoted by T'(+g) : T(FE Xy E) = TE X7y TE — TE,
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since it is the tangent mapping of 4+ 5. Likewise its scalar multiplication will
be denoted by T'(mF). One may say that the second vector bundle structure
on TFE, that one over T'M, is the derivative of the original one on FE.

The space {E€ TE : Tp.2 =0 in TM} = (Tp)~1(0) is denoted by VE and
is called the vertical bundle over E. The local form of a vertical vector Z is
TY.,.E = (y,v;0,w), so the transition function looks like

(Tt 0 T(35) ™)y, v; 0,w) = (uap(y), Yap(uz' (1)v; 0, Yap(ug’ (y)w).

They are linear in (v,w) € V x V for fixed y, so VE is a vector bundle
over M. It coincides with 0},(TE,Tp, TM), the pullback of the bundle
TE — TM over the zero section. We have a canonical isomorphism vlg :
Exy E — VE, called the vertical lift, given by vlg(uy, vy;) := %\O(Um—i-tvgg),
which is fiber linear over M. The local representation of the vertical lift is
(Tg, o vlg o(yy x ¥6) ™) ((y,w), (4, 0)) = (y,u; 0,0).

If (and only if) ¢ : (E,p, M) — (F,q, N) is a vector bundle homomorphism,
then we have vlpo(p Xy p) =Tpovlg : Exyy E— VF CTF. So vl is
a natural transformation between certain functors on the category of vector
bundles and their homomorphisms.

The mapping vprg := pry olel : VE — FE is called the vertical projection.
Note also the relation pry o VlEl =7 | VE.

8.13. The second tangent bundle of a manifold. All of is valid
for the second tangent bundle T2M = TTM of a manifold, but here we have
one more natural structure at our disposal. The canonical flip or involution
kar s T2M — T?M is defined locally by

(T*uo ka0 T2u™) (2, &1, Q) = (2,13, ),

where (U,u) is a chart on M. Clearly this definition is invariant under
changes of charts.
The flip xjs has the following properties:

(1) ky o T?f =T?f o kyy for each f € C°(M, N).
(2)
(3)
(4) Ky} = K.
(5) kar is a linear isomorphism from the bundle (T'TM,T(mar), TM) to

the bundle (TTM, wppr, TM), so it interchanges the two vector bundle
structures on T7T'M.

(6) It is the unique smooth mapping TTM — TTM which satisfies the
equation %%c(t, s) = K}M%%C(t, s) for each ¢ : R? — M.

( )OHM:’/TTM.

TTM O KM = T(?TM)
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All this follows from the local formula given above.

8.14. Lemma. For vector fields X, Y € X(M) we have
(X, Y] =vprypyo(TY o X —kppoTX oY),
TY o X —kppoTX oY =vlpy (Y, [X,Y]).

We will give global proofs of this result later on: the first one is
Proof. We prove this locally, so we may assume that M is open in R™,
X(z) = (z,X(x)), and Y(z) = (z,Y(x)). Then by [(3.4)] we have
(X, Y](z) = (2,dY (z).X (z) — dX (x).Y (x)),
and thus:
(TY o X —kppoTX oY) (z) =TY.(x,X(x)) — kpr o
= (2,Y(2); X(2),dY (2). X () — £ (2, X (2); Y (@),
= (2,Y(2);0,dY (2).X(z) — dX (z).Y (z
vprrpy o(TY o X —kppoTX oY) () =

8.15. Natural vector bundles or vector bundle functors. Let M f,,
denote the category of all m-dimensional smooth manifolds and local dif-
feomorphisms (i.e., immersions) between them. A wvector bundle functor
or natural vector bundle is a functor F' which associates a vector bundle
(F(M),pm, M) to each m-manifold M and a vector bundle homomorphism

Fn) 2L povy

M l iPN
!

M N

to each f : M — N in Mf,,, which covers f and is fiberwise a linear
isomorphism. We also require that for smooth f : R x M — N the mapping
(t,z) — F(fy)(z) is smooth R x F(M) — F(N). We will say that F
maps smoothly parametrized families to smoothly parametrized families.
See [108] for more information on naturality in differential geometry.

Examples. (1) TM, the tangent bundle. This is even a functor on the
category M f of all manifolds and all smooth mappings, not only local dif-
feomorphisms.

(2) T*M, the cotangent bundle, where by the action on morphisms is
given by (T*f), := (T f)~1)* : T M — T )N This functor is defined on
M fp, only.

(3) N*T*M, NT*M = @yog N T*M
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1) Q" T"M @ QTM = T*M @ - @ T*M @ TM @ --- ® TM, where
the action on morphisms involves 7 f~! in the T*M-parts and T'f in the
T M-parts.

(5) F(T'M), where F is any smooth functor on the category of finite-
dimensional vector spaces and linear mappings, as in |(8.8)]

(6) All examples discussed till now are of the following form: For a man-
ifold of dimension m, consider the linear frame bundle GL(R™,TM) =
invJ}(R™, M) (see [(18.11)] and [(21.6)) and a representation of the struc-
ture group p : GL(m,R) — GL(V) on some vector space V. Then the
associated bundle GL(R™,TM) Xgrmr) V is a natural bundle. This can
be generalized to frame bundles of higher order, which is described in .

8.16. Lie derivative. Let F' be a vector bundle functor on M f,, as de-
scribed in Let M be a manifold and let X € X(M) be a vector field
on M. Then the flow Flf( , for fixed t, is a diffeomorphism defined on an
open subset of M, which we do not specify. The mapping

X
Fon ) pon

pPm i \LPM
FIX

M——-M

is then a vector bundle isomorphism, defined over an open subset of M.

We consider a section s € I'(F(M)) of the vector bundle (F(M), par, M)
and we define for t € R

(F1;¥)*s := F(FIX,) 0 s 0 FIX,

a local section of the bundle F(M). For each € M the value ((FL1X)*s)(z) €
F (M) is defined, if ¢ is small enough (depending on z). So in the vector
space F/(M), the expression %|o((F1;¥)*s)(x) makes sense and therefore the
section

Lxs:= %\O(Flix)*s

is globally defined and is an element of I'(F'(M)). It is called the Lie deriv-
ative of s along X.

Lemma. In this situation we have
(1) (FI)*(FLY)*s = (F1;%.,)*s, wherever defined.
(2) %(Flf()*s = (Flf()*ﬁxs = EX(Flf()*s, 50
[Lx, (FIX)*] := Lx o (FIX)* — (FIX)* o Lx = 0, whenever defined.
(3) (FLX)*s = s for all relevant t if and only if Lxs = 0.
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Proof. () is clear. (2) is seen by the following computations:
G (FIY)"s = fo(FIY) " (FI7)*s = Lx (FI7)"s,
H ()" 5)(2) = L lo((FI)*(FLT)"s) ()

= 4| F(FIX)(F(FIX,) 0 s o FLX)(FI¥ (2))
= F(F1%,) L |o(F(FI¥,) 0 s o FLY)(FI* (2))
= ((FI)* Lxs)(x),
since F(FI%X,) : F(M)Flff (@) F(M) is linear.
@) follows from (). O

8.17. Let Fi, F5 be two vector bundle functors on M f,,. Then the (fiber-
wise) tensor product (F} ® Fb)(M) = Fi(M) ® F>(M) is again a vec-
tor bundle functor and for s; € I'(F;(M)) there is a section s; ® sy €
I'((F1 ® F»)(M)), given by the pointwise tensor product.

Lemma. In this situation, for X € X(M) we have
Lx(s1® s2) =Lx51® 82+ 51 @ Lx5s0.
In particular, for f € C°(M) we have Lx(fs) =df(X)s+ f Lxs.
Proof. Using bilinearity of the tensor product, we have
Lx(s1® 83) = Flo(FI)*(s1 @ s2)
= lo(FEY)"s1 ® (FI')"s2)
= %|0(Flix)*81 ® 82+ 51 ® %|0(F1§()*52
=Lxs1®82+ 8 ®Lxse. O

8.18. Let ¢ : Iy — F5 be a linear natural transformation between vector
bundle functors on M f,,. So for each M € M f,, we have a vector bundle
homomorphism ¢y @ F1(M) — Fy(M) covering the identity on M, such
that Fao(f) o popr = on o Fi(f) holds for any f: M — N in M fp,.

Example. A tensor field of type (g) is a smooth section of the natu-
ral bundle @T*M @ Q" TM. For such tensor fields, by the Lie
derivative along any vector field is defined and by it is a deriva-
tion with respect to the tensor product. For functions and vector fields
the Lie derivative was already defined in section This natural bun-
dle admits many natural transformations: Any ‘contraction’ like the trace
T*M @ TM = L(TM,TM) — M x R, but applied just to one specified
factor T* M and another one of type T'M, is a natural transformation. Also,
any ‘permutation of the same kind of factors’ is a natural transformation.
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Lemma. In this situation, for s € I'(Fi(M)) and X € X(M) we have
Lx(pns) = om(Lxs),

Proof. Since ¢, is fiber linear and natural, we can compute as follows:
Lx (e s)(@) = Glo(FI) (o 5)) (@) = Glo(F2(FIY) 0 par 0 s 0 FIY ) ()
— a0 &lo(FL(FIX) 0 50 FIY)(2) = (par Lx5)(a). O

Thus the Lie derivative on tensor fields commutes with any kind of ‘contrac-
tion’ or ‘permutation of the indices’.

8.19. Let F' be a vector bundle functor on M f,, and let X € X(M) be a
vector field. We consider the local vector bundle homomorphism F(FLY) on
F(M). Since F(FI¥) o F(FIY) = F(FIX,) and F(FIy) = Idp(ys), we have
4p(FIX) = L1,F(FIX)o F(FIX) = XF o F(FIY), so we get F(FIY) = FIX",

where X7 = d%|0F(F1‘SX) € X(F(M)) is a vector field on F(M), which is
called the flow prolongation or the natural lift of X to F(M).

Lemma.
(1) XT =kpoTX.
2) [X,Y]F =[x, YT

(3) X (F(M),pp, M) — (TF(M), T(py), TM) is a vector bundle ho-
momorphism for the T (+)-structure.

(4) For s e T(F(M)) and X € X(M) we have
Lxs =vprpano(T'so X —XFos).

(5) Lxs is linear in X and s.

Proof. (D) is an easy computation. The mapping F(FLY) is fiber linear and
this implies (3]).
() is seen as follows:
(Lxs)(x) = glo(F(F1%) 0 s o FIF)(z) in F(M),
= vprpn (L]o(F(FIX,) 0 s 0 FI))(z) in VF(M))
= vprpn (— X" 0 s o Fl (z) + T(F(FI)) 0 T's 0 X ()
= Ver(M)(TS o X —XFo s)(z).
B Lxs is homogeneous of degree 1 in X by formula (), and it is smooth

as a mapping X(M) — I'(F(M)), so it is linear. See [64] or [113] for the
convenient calculus in infinite dimensions.

() Note first that F' induces a smooth mapping between appropriate spaces
of local diffeomorphisms which are infinite-dimensional manifolds; see [113].
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By we have
0 = 8|o(FIY, o FIX, o F1 o FIY),
(X, Y] =3 38;2 lo(F1¥, o FI%, o FI} o FIX)
= 8o I
Applying F' to these curves of local diffeomorphisms, we get
0= lo(FIY, oFIX] oFII"" o FIX"),
XF Y = L0 (F1Y) o FIY o FY " o FIX)
= 10 |, F(F1Y, o FIX, o FIY o FIY)
=0l FEIY) =[x, v]F. O

8.20. Theorem. For any vector bundle functor F' on M fy,, and X,Y €
X(M) we have

[,Cx,ﬁy] = ,CX o ,Cy - ,Cy o ,CX = L[X,Y} : F(F(M)) — F(F(M))
So L:X(M)— EndI'(F(M)) is a Lie algebra homomorphism.
Proof. We need some preparation.

(1) X ovprpp = FloF(FLY) o vprpay
= Lo VDT )oTF(FlX) [VF(M

)
= T(vprpq) © g loTF(FLY) | VE(M
FL1X

)
T(vPrp(an) © Ky wmy o T(LIoF(FLY)) | VE(M)
T(vPrp(ary) © KE(ar) © T(X") [ VF(M).

(2) Sublemma. For any vector bundle (E,p, M) we have
vprg T (vprg) o kg = vprg oI (vprg) = vprgovpryg : VIENTVE — E,
and this is linear for all three vector bundle structures on TTE.

The assertion of this sublemma is local over M, so one may assume that
(E,p, M) is trivial. Then one may carefully write out the action of the three
mappings on a typical element (z,v;0,w;;0,0;0,w") € VITENTVE and get
the result.

Now we can start the actual proof.
E[X’y]s = Ver(M)(Ts o[X,Y] - [X, Y 08) by-
= VDPI'p(ur) o(Tsovpryp o(TY o X —kpyoTX oY)
— VPITR(M) o(TY! o Xt — KF(M) © TXFovHo s)
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= VDI () OVpI‘TF(M)O(TQSOTYOX —kpan 0 T?s0TX oY
—TY o X" os—kpanoTX oY os),
LxLys=Lx(vprpnno(TsoY — Y¥os))
= VDPI'p(ar) O(T(Ver(M)) o(T?soTY T(=) T(YF)oTs)o X
—XFover(M)o(TsoY—YFos))
= vprpar) °T (VPrp(ar)) © (T?s0TY o X T(—) T(Y!) 0 Ts 0 X)
— VDI p(ar) T (VDT p(ary) © KE(0r) oT(XM) o (TsoY =Y 05s)
= vprp(an) 0 vPrrpn © (T?s 0 TY o X = T(Y ) o Tso X
— KE(M) oT(XT) oTsoY + Kp(u) oT(XM)ovT 0s).

Finally we have

[Lx,Ly]s=LxLys— LyLxs
= vprp(an) © vPrrpn © (1?50 TY o X = T(Y ) o Tso X
—kpan o T(XT) o TsoY + kpa o T(XF) oY o)
— VPI'p(ar) © VPYTR(M) OKF(M) © (T?soTY o X T(—) T(YH)oTso X
T(=) kpan o T(XF) o TsoY T(+) kpany o T(XT) o YF 05)
=Lixys- U

9. Differential Forms

9.1. The cotangent bundle of a manifold M is the vector bundle T*M :=
(TM)*, the (real) dual of the tangent bundle.

If (U,u) is a chart on M, then (8%1, e auim) is the associated frame field
over U of TM. Since 2 |o(u?) = du? (;2]2) = 07, we see that (du', ..., du™)

is the dual frame field on T*M over U. It is also called a holonomic frame
field. A section of T*M is also called a 1-form.

9.2. According to [(8.18)| a tensor field of type (Iq’) on a manifold M is a
smooth section of the vector bundle

p times q times

p q
QRrMeRQT*M=TMx - TMT*M®--- @ T*M.

The position of p (up) and ¢ (down) can be explained as follows: If (U, u)
is a chart on M, we have the holonomous frame field

9 9 - el J1 . j
(Wl ®5% @@ wd @ ®du q)ie{1,...,m}P,j6{1,...,m}‘1
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over U of this tensor bundle, and for any ( ) -tensor field A we have

21 .. K3 ]
AU = ZAﬁ f@uq Q- @ dula.

The coefficients have p indices up and ¢ indices down, and they are smooth
functions on U.

From a categorical point of view one should look where the indices of the
frame field are, but this convention here has a long tradition.

9.3. Lemma. Let

O X(M) x -+ x X(M) = X(M)F - T(Q)TM)

be a mapping which is k-linear over C*°(M). Then ® is given by the action
of a (li) -tensor field.

Proof. For simplicity’s sake we put k =1, £ =0, s0 & : X(M) — C*(M)
is a C°°(M)-linear mapping: ®(f.X) = f.®(X). In the general case we
subject each entry to the treatment described below.

Claim 1. If X | U = 0 for some open subset U C M, then we have
(X) | U =0.

Let 2 € U. We choose f € C*°(M) with f(z) =0 and f \ M\ U = 1. Then
fX =X, 50 ®(X)(z) = (f.X)(x) = f(2).B(X)(x) =

Claim 2. If X (z) = 0, then also ®(X)(x) = 0.

Let (U, u) be a chart centered at x, and let V be open withz € V.C V C U.
Then

X|U=) X2 and X'(z)=0.

We choose g € C*°(M) with g | V = 1 and with support contained in U.
Then (¢2.X) | V = X | V and by claim 1 the restriction ®(X) | V depends
only on X | V; thus ¢2.X = Zi(g.Xi)(g.aii) is a decomposition which is
globally defined on M. Therefore we have

O(X)(z) = B(g>.X)(a) = @ <Z<g.xi><g.£i>) (2)
= S (g.X7)(2).0(g.5%) (@) = 0.

So we see that for a general vector field X the value ®(X)(x) depends only
on the value X (x), for each z € M. So there is a linear map ¢, : T, M — R
for each x € M with ®(X)(z) = ¢z (X (x)). Then ¢ : M — T*M is smooth
since |V =3, @(g.aii ) du® in the setting of claim 2. O
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9.4. Definition. A differential form of degree k, or a k-form for short,
is a section of the (natural) vector bundle /\k T*M. The space of all k-
forms will be denoted by QF(M). It may also be viewed as the space of all
skew-symmetric (2)—tensor fields, i.e., (by the space of all mappings

0 X(M) x - x X(M) = X(M)* — C>=(M),
which are k-linear over C*° (M) and are skew-symmetric:
o(Xo1,..., Xop) =signo - (X1, ..., Xg)

for each permutation o € S.
We put Q°(M) := C>°(M). Then the space

dim M

QM) = P k)
k=0

is an algebra with the following product, called the wedge product. For
¢ € QF(M) and ¢ € QY(M) and for X; in X(M) (or in T, M) we put

(90 A w)(le EER) XkJrf)
=ma Y. signo-o(Xot,. o Xor) W (Xo(r)s - - Xo(ore):

UESk+[

This product is defined fiberwise, i.e., (p A1)y = @z A1), for each x € M. It
is also associative, i.e., (p AY) AT =@ A (p AT), and graded commutative,
ie., o Ap = (=1)*4) A @. There are differing conventions for the factor in
the definition of the wedge product: in [192] the factor ﬁ is used. But
then the insertion operator of is no longer a graded derivation.

9.5. If f : N — M is a smooth mapping and ¢ € Q¥(M), then the pullback
f*p € QF(N) is defined for X; € T, N by

(1) (f*(p)x(Xl, cee ,Xk) = gof(x) (Txf.Xl, ‘e ,Txf.Xk).

Then we have f*(p A) = f*o A f*, so f*: Q(M) — Q(N) is an algebra
homomorphism. Moreover we have (g o f)* = f*og* : Q(P) — Q(N) if
g:M — P,and (Idy)* = Idgy-

So M — Q(M) =T(NT*M) is a contravariant functor from the category
M of all manifolds and all smooth mappings into the category of real
graded commutative algebras, whereas M — AT*M is a covariant vector
bundle functor defined only on M f,,, the category of m-dimensional mani-
folds and local diffeomorphisms, for each m separately.
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9.6. The Lie derivative of differential forms. Since M — A" T*M is
a vector bundle functor on M f,, by |(8.16)|for X € X (M) the Lie derivative
of a k-form ¢ along X is defined by

Lxp= %’0(1:‘12){)*90-

Lemma. The Lie derivative has the following properties.
(1) Lx(eAY)=Lxe AN+ @ALx, so Lx is a derivation.
(2) ForY; € X(M) we have
k

(Lx) (Y1, Ye) = X (oY1, V) = > (Y1, [X Y], Yy,
i=1

(3) [Lx, Lyl = Lixy)p-
(4) Z(FL) ¢ = (FIX)* Lxp = Lx((FI*)* ).

Proof. () The mapping Alt : @ T*M — A" T*M, given by
(AILA)(Y1,..., Vi) =3 Y _sign(o) A(Yor, ..., Yop),

is a linear natural transformation in the sense of |(8.18)| and induces an
algebra homomorphism from ;- D(®" T M) onto Q(M). So (@) follows
from |(8.17)| and |(8.18)]

Second, direct proof, using the definition and [(9.5)
Lx( A ) = L0(FIX) (o A1) = Lo ((FIX)*o A (FIX) )
= L1o(FY) o A (FIX) "y + (FIF) @ A S lo(F) "4
=Lxp N+ oA Lxy.

@) Again by [(8.17)| and |(8.18)| we may compute as follows, where Trace is
the full evaluation of the form on all vector fields:

X(o(Y1,...,Y%)) = Lx oTrace(p @Y1 ® - - @ Yy)
= TraceoLx(p @Y1 ® - ®Y})
= Trace(Lxp @ (V1@ @Yy + 9@ (1, V1@ @ LxY; ® - ® Y})).
Now we use LxY; = [X,Y;] from
Second, independent proof:
X(p(V1,- V) = Flo(FI)* (p(V1, ..., Y1)
= & lo((FIF) @) (FI)* Y1, ..., (FI)*Y))

k
= (Lxo)(Y1,. V) + > e(Vi,. o LxYi, ., V).
=1
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@) is a special case of |(8.20) See|(9.9.7)| below for another proof.

k
@ SEE)e=2 (/\ T(F1%,) o T(F1%,)* 0 p 0 F1X © F1§f>

k k
= ATEX)" o &g </\ T(FIX ) opo Flgf) o FI¥

k
= ATEY)* o LxpoFIY = (FI})*Lxep,

GEL)Y = S lo(F) (FIF)Y = Lx(FIY)*p. O
9.7. The insertion operator. For a vector field X € X(M) we define the
insertion operator ix = i(X) : Q¥ (M) — QF1(M) by
(iX(P)(Yly oo 7Yk71) = (p(X, Yl, N 7Yk71)~

Lemma.

(1) ix is a graded derivation of degree —1 of the graded algebra Q(M), so
we have ix(p Ap) =ixp A+ (—1)" 98P0 Adxap.
(2) ix oty +1y otx = 0.

(3) [Lx,iy] == Lx ody —iy o Lx =[x y]-
Proof. () For ¢ € QF(M) and v € QY(M) we have

(ix, (@ A )Xz, X)) = (@ A ) (X1, - Xiep)
= ﬁ Z Sign(g) SO(Xala oo 7Xak)w(Xa(k+1)7 s )Xa(k+€))a

(ix,9 A+ (1) e N ix, ) (X2, Xio)
= m Z Sign(U) QO(Xl) Xo2s- s Xcrk)w(Xo'(kJrl)a B XU(kJrZ))

—1)* )
+ k'((f—)l)' > sign(o) o(Xoz, - -, X))V (X1, Xo gy - - )

Using the skew-symmetry of ¢ and v, we may distribute X; to each position
by adding an appropriate sign. There are k 4+ ¢ summands. Since

L1kt
=D T E@—D! — R

and since we can generate each permutation in Sk, in this way, the result
follows.
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@) (ixive)(Zi,...,Zr—2) =Y, X, Z1,...,Zy)
=—p(X,Y,Z1,...,Z,) = —(iyixp)(Z1, ..., Zk_2).
@) By |(8.17)| and [(8.18)| we have:
Lxiyp = Lx Trace; (Y ® ¢) = Trace; Lx (Y ® )
= Trace; (LxY @ p +Y ®@ Lx¢) = ixy)p +iyvLxe.

See below for another proof. O

9.8. The exterior differential. We want to construct a differential oper-
ator QF(M) — QF+1(M) which is natural. We will show that the simplest
choice will work and (later) that it is essentially unique.

Let U be open in R", and let ¢ € Q*(U) = C=(U, L¥,,(R™,R)). We consider
the derivative Dy € C°(U, L(R", Lk, (R",R))), and we take its canonical

image in C*°(U, Lsfgl(R”, R)). Here we write D for the derivative in order

to distinguish it from the exterior differential, which we define as
de = (k+ 1) Alt Dy,
more explicitly as

(1) (dp)o(Xo,-- -, Xi) = g7 > sign(0) Dep(a) (Xo0) (X, - -, Xok)

—

k
— Z(_l)iDgp(a:)(Xi)(Xo, D, CHD. ¢3 N
=0

where the hat over a symbol means that this is to be omitted and where
X; e R,

Now we pass to an arbitrary manifold M. For a k-form ¢ € QF(M) and
vector fields X; € X(M) we try to replace Do(x)(X;)(Xo,...) in formula
(@) by Lie derivatives. We differentiate

Xi(p(x)(Xo,--.))

= Do(2)(X:)(Xo,... )+ > p(@)(Xo,...,DX;(x)X;,...)
0<j<k,j#i

and insert this expression into formula (1) in order to get (cf.|(3.4)) our
working definition

k

(2) do(Xo,...,Xp) = Z(—l)iXi(ap(Xo, X X))
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This formula gives dy as a (k 4 1)-linear mapping over C*°(M), as a short
computation involving [(3.4)[shows. It is obviously skew-symmetric, so dy is
a (k + 1)-form by [(9.3)] and the operator d : QF(M) — Q¥ (M) is called

the exterior derivative.
If (U,u) is a chart on M, then we have
90 r U = Z spilyn,ikduil /\ te /\ du2k7
1< <ip
where

_ o) Js]
Pi,ip — (p(auil 7 Btk )

An easy computation shows that (2]) leads to
(3) dp 1 U= > deiy i Ndu™ A= Adu',
11 <<t

so that formulas () and (2]) really define the same operator.

9.9. Theorem. The exterior derivative d : QF(M) — QF1(M) has the
following properties:

(1) d(p Ap) = do AN + (—1)48%p A dyp, so d is a graded derivation of
degree 1.

) Lx =ix od+doix for any vector field X.

) d>=dod=0.

) ffod=do f* for any smooth f: N — M.

) Lxod=doLx for any vector field X.

6) [Lx,iy] = Lx oiy —iy o Lx =1xy]. See also .

7) [Lx,Ly] = Lixy) for any two vector fields X, Y.

Remark. In terms of the graded commutator
[Dl, DQ] = D1 e} D2 — (_1)deg(D1)deg(D2)D2 e} D1
for graded homomorphisms and graded derivations (see|(16.1))) the assertions

of this theorem take the following form:

@) Lx =[ix,d.
@) %[d7d] =0.
@) [f*,d =0
@ [Lx,d = 0.

This point of view will be developed in section [(16)| below. The equation
([@) is a special case of |(8.20)
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Proof. () For ¢ € QF(M) and X; € X(M) we have
(Lxop) (X1, Xi) = Xo(p(X1, ..., X))
k
+ 3 (1) ([ Xo, X1, X1, o, Xy, Xp) by [0.6:2)
j=1
(ixode) (X1, ..., Xi) = de(Xo, ..., Xi)
k —~
= (1) Xi(e(Xo, ..., Xi, ..., Xx))

K3

=0
+ 3 ()X, X ), Xo, -, X X X0,

0<i<y
k . —~
(dixgp) (X1, .., Xi) = > (=D Xi((ix,0) (X1, ., Xy o, X))
i=1
+ 3 () (ix,0) (1X0, X5, X1y Xy, Xy, Xa)
1<i<y

k
_ _Z(_l)ix.( (X0, X1, Xir oo, X3))

- Z D o([Xi, X5], X0, X1,y ooy Xay oo Xy oy X).
1<i<y

By summing up, the result follows.

(@) Let ¢ € QP(M) and ¢ € Q¢(M). We prove the result by induction on

p+gq.
p+q=0:d(f-g)=df - g+ [-dg.
Suppose that () is true for p+ g < k. Then for X € X(M) we have by part

@) and (9.7)| and by induction

ix d(pA) =Lx(eAY) —dix(p AY)
=Lxe AN+ ANLxp—d(ixp AN+ (=1)Pp Nixy)
=ixdp ANy +dixp AN+ o Nixdp+pAdixyy —dixe ANy
— (=) lixo Adyp — (=1)Pdp Nixh — o A dixa)
=ix(de N+ (=1)Pp Ady).

Since X is arbitrary, () follows.

@) By (@) the operator d is a graded derivation of degree 1, so d> = %[d, d] is
a graded derivation of degree 2; see It is obviously local: d?(pAv) =
d*(p) A + o Ad(y). Since Q(M) is locally generated as an algebra by
C>(M) and {df : f € C>®(M)}, it suffices to show that d2f = 0 for each
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f€C>®(M) (d*f =0 is a consequence). But this is easy:
P f(X,Y) = Xdf(Y) - Ydf(X) - df([X.Y]) = XY [~ Y X[~ [X,Y]f =0.

@) f*: QM) — Q(N) is an algebra homomorphism by so f*od and
do f* are both graded derivations over f* of degree 1. So if f*od and do f*
agree on ( and on ), then they also agree on ¢ A Y. By the same argument
as in the proof of ([B]) above it suffices to show that they agree on g and dg
for all g € C°°(M). We have

(f*dg)y(Y) = (dg) () (Ty f.Y) = (Tyf-Y)(g) = Y (g0 f)(y) = (df*g)y(Y);
thus also df*dg = ddf*g = 0, and f*ddg = 0.
(ﬂ) dLx =dixd+ddix = dixd+ixdd = Lxd.
([6) We use the graded commutator alluded to in the remarks. Both £x and
iy are graded derivations; thus the graded commutator [Lx,iy] is also a

graded derivation as is i[x y). Thus it suffices to show that they agree on
O-forms g € C*°(M) and on exact 1-forms dg. We have

[Lx,iv]g = Lxiyg —iyLxg = Lx0—iy(dg(X)) = 0=1ixy|9,
[Lx,iy]dg = Lxiydg —iyLxdg = LxLyg —iydLxg
= (XY - YX)g = [X,Y]g = i[xy)dg.
(@) By the (graded) Jacobi identity and by (@) (or lemma we have

[Lx, Ly] = [Lx, [iv,d]] = [[Lx,iy], d] + [iv, [Lx, d]]
= [i[X,y}, d+0= E[X,Y]- [l

9.10. A differential form w € QF(M) is called closed if dw = 0, and it is
called ezact if w = dy for some ¢ € QF~1(M). Since d? = 0, any exact form
is closed. The quotient space

 ker(d: QF (M) — QFFL(M))
HA(M) = im(d : QF1(M) — QF(M))

is called the k-th de Rham cohomology space of M. As a preparation for
our treatment of cohomology we finish with the

Lemma of Poincaré. A closed differential form of degree k > 1 is locally
exact. More precisely: let w € QF(M) with dw = 0. Then for any v € M
there is an open neighborhood U of x in M and a p € Q¥ (U) with dp =
wlU.

Proof. Let (U, u) be a chart on M centered at = such that u(U) = R™. So
we may just assume that M = R™.
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We consider a : R x R™ — R™, given by a( x) = ay(x) = tx. Let I €
X(R™) be the vector field I(z) = z; then a(e!, z) = Fl(z). So for t > 0 we
have

d 1
dtatw = dt (Fllogt)*w = f( logt) Liw

= 1oj(irdw + dijw) = tdajiw.

Note that T (a;) = t.Id. Therefore
(%Of;i[w)m(Xg, - ,Xk) = %(i[w)m(th, - ,th>
= twip(te, tXo, ... 1Xk) = wia (2, tXo, ... tXy).

So if k > 1, the (k — 1)-form 1aji;w is defined and smooth in (t,z) for all
t € R. Clearly ajw = w and agw = 0; thus

1
w=ojw— ogw = / 4 ajwdt
0

1 1
:/ d( ajijw)dt = d </ 1afi1wdt> =dp. O
0 0

10. Integration on Manifolds

10.1. Let U C R™ be an open subset, let dx denote Lebesque measure on
R™ (which depends on the Euclidean structure), let g : U — ¢(U) be a
diffeomorphism onto some other open subset in R”, and let f : g(U) - R
be an integrable continuous function. Then the transformation formula for
multiple integrals reads

/ e dy—/f ))| det dg(z)|dz.

This suggests that the suitable objects for integration on a manifold are sec-
tions of a 1-dimensional vector bundle whose cocycle of transition functions
is given by the absolute value of the Jacobi matrix of the chart changes.
They will be called densities below.

10.2. The volume bundle. Let M be a manifold and let (U,,u,) be
a smooth atlas for it. The wvolume bundle (Vol(M),mpr, M) of M is the
1-dimensional vector bundle (line bundle) which is given by the following
cocycle of transition functions; see

Yap 1 Usp = U NUg = R\ {0} = GL(1,R),

z) = |det d(ug o ug ') (ua ()| = 1 ’
Yap(x) = |detd(ug o uy ™) (ua(x))] |detd(uaougl)(uﬂ(l’))|

Lemma. Vol(M) is a trivial line bundle over M.
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But there is no natural trivialization.

Proof. We choose a positive local section over each U, and we glue them
with a partition of unity. Since positivity is invariant under the transitions,
the resulting global section p is nowhere 0. By w1 is a global frame
field and trivializes Vol(M). O

Definition. Sections of the line bundle Vol(M) are called densities.

10.3. Integral of a density. Let p € I'(Vol(M)) be a density with com-
pact support on the manifold M. We define the integral of the density u as
follows:

Let (Uy,uq) be an atlas on M, and let f, be a partition of unity with
supp(fa) C Uy. Then we put

IS TR ) N A R L

If 1 does not have compact support, we require that > fUa folp| < co. The
series is then absolutely convergent.

Lemma. [, pu is well defined.

Proof. Let (Vj,vg) be another atlas on M, and let (g3) be a partition
of unity with supp(gg) C V3. Let (Ua,%q) be the vector bundle atlas of
Vol(M) induced by the atlas (U, uqa), and let (V3, @) be the one induced by
(V3,v3). By the transformation formula of integrals for the diffeomorphisms
Ug O %—1 :08(Ua N V3) = ua(Ua N V3) we have:

S fan=) (fa o uz )W) Palp(ug (v))) dy
(Ua)
D SO A IR

=52 [ 8 O N )

:Z/(U v>(950051)($)(fa°“§1)(:”)'
aB s «NVp

: wa(,u(vﬁ_l(x)))\ det d(uq o vﬁ_l)(a:)\ dx

> oy 9203 V@ a0 w5 ) @)pau(v5 () do
aB Y vsUalVg

_ O
Eﬁ:/vﬁgﬁu
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Remark. If 4 € I'(Vol(M)) is an arbitrary section and f € C°(M) is a
function with compact support, then we may define the integral of f with
respect to p by [ a f 1 since fpuis a density with compact support. In this
way p defines a Radon measure on M.

For the converse we note first that (C! suffices) diffeomorphisms between
open subsets on R™ map sets of Lebesque measure zero to sets of Lebesque
measure zero. Thus on a manifold we have a well defined notion of sets
of Lebesque measure zero — but no measure. If v is a Radon measure on
M which is absolutely continuous, i.e., the |v|-measure of a set of Lebesque
measure zero is zero, then it is given by a uniquely determined measurable
section of the line bundle Vol. Here a section is called measurable if in any
line bundle chart it is given by a measurable function.

10.4. p-densities. For 0 < p < 1 let Vol?(M) be the line bundle defined
by the cocycle of transition functions

dﬁﬁ : Uaﬂ - R \ {0}7
ns(@) = |detd(uq 0 ugt)(ug(z))|7P.

This is also a trivial line bundle. Its sections are called p-densities. Note

that 1-densities are just densities and that O-densities are functions. If p

is a p-density and v is a ¢-density with p 4+ ¢ < 1, then p.v := p® v is a

p + g-density, i.e., Vol?(M) ® Vol!(M) = Vol?*4(M). Thus the product of
1

two 5-densities with compact support can be integrated, so I (Vol'/2(M))

is a pre-Hilbert space in a natural way.

Distributions on M (in the sense of generalized functions) are elements of
the dual space of the space I'.(Vol(M)) of densities with compact support
equipped with the inductive limit topology — so they contain functions.

10.5. Example. The density of a Riemann metric. Let g be a Rie-
mann metric on a manifold M; see section below. So g is a symmetric
(g) -tensor field such that g, is a positive definite inner product on T, M for
each z € M. If (U,u) is a chart on M, then we have

glU Z gij du’ @ du’
ij=1
where the functions gj%; = g( a?ﬂ" %) form a positive definite symmetric
matrix. So det(g;;) = det((g(a‘zi, %))%_1) > 0. We put

vol(g)" := y/det((g(;2% 525)) 7).
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If (V,v) is another chart, we have

vol(g)" = \/det((g(aii ; %))Tj:l)

= \Jdet (25102 det((g(52, 52))es)
= |detd(vou 1)’ VOl(g) ,

so these local representatives determine a section vol(g) € I'(Vol(M)), which
is called the density or volume of the Riemann metric g. If M is compact,
then [,,vol(g) is called the volume of the Riemann manifold (M, g).

10.6. The orientation bundle. For a manifold M with dim M = m and
an atlas (Uy, uq) for M the line bundle A" T*M is given by the cocycle of
transition functions

pas(r) = det d(ug o ug ") (uq /\d up o uy ") (ua()).

We consider the line bundle Or(M) which is given by the cocycle of transition
functions

Tap () = sign pas(z) = signdet d(ug o uy ') (ua(z)).
Since Tag(z)pas(r) = Yap(z), the cocycle of the volume bundle of |(10.2)

we have
Vol(M ) ® /\ "M

7\ T*M = Or(M) @ Vol(M).

10.7. Definition. A manifold M is called orientable if the orientation
bundle Or(M) is trivial. Obviously this is the case if and only if there
exists an atlas (Uy, uq) for the smooth structure of M such that det d(uq o
ugl)(UB(m’)) > 0 for all x € Uyg.

Since the transition functions of Or(M) take only the values +1 and —1,
there is a well defined notion of a fiberwise absolute value on Or(M), given
by |s(x)| := pra7a(s(z)), where (Uy, 7o) is a vector bundle chart of Or(M)
induced by an atlas for M. If M is orientable, there are two distinguished
global frames for the orientation bundle Or(M ), namely those with absolute
value |s(z)| = 1.

The two normed frames s; and sg of Or(M) will be called the two possible
orientations of the orientable manifold M. We call M an oriented manifold
if one of these two normed frames of Or(M) is specified: We call it 0,y.
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If M is oriented, then Or(M) = M x R with the help of the orientation, so
we have also

7\T*M = Or(M) ® Vol(M) = (M x R) @ Vol(M) = Vol(M).

So an orientation gives us a canonical identification of m-forms and den-
sities. Thus for any m-form w € Q™(M) the integral [,,w is defined by
the isomorphism above as the integral of the associated density; see
If (Uy,uq) is an oriented atlas (i.e., in each induced vector bundle chart
(Uq, 7o) for Or(M) we have 7,(0ps) = 1), then the integral of the m-form w
is given by

= QW 1= a_adl e A du™
/Mw Za:/Uafw Za:/Uafw u A Adu

. Za: /uQ(Ua) falug () w(ug ' (v) dy' A--- Ady™,

where the last integral has to be interpreted as an oriented integral on an
open subset in R™.

10.8. Manifolds with boundary. A manifold with boundary M is a
second countable metrizable topological space together with an equivalence
class of smooth atlases (Uy,uq) which consist of charts with boundary: So
Uq : Uy = un(Uy) is @ homeomorphism from U, onto an open subset of a
half-space

(—00,0] x R™™L = {(z1,...,2m) : 21 <0},

and all chart changes uag : ug(Us N Ug) — ua(Us N Upg) are smooth in
the sense that they are restrictions of smooth mappings defined on open
(in R™) neighborhoods of the respective domains. There is a more intrinsic
treatment of this notion of smoothness by means of Whitney jets, [227],
[221], and for the case of half-spaces and quadrants as here, [205].

We have u,s5(ug(Us NU3) N (0 x R™71)) = 1o (Us NUs) N (0 x R™71) since
interior points (with respect to R™) are mapped to interior points by the
inverse function theorem.

Thus the boundary of M, denoted by 0M, is uniquely given as the set of all
points & € M such that u(x) € 0 x R™~! for one (equivalently any) chart
(U, ug) of M. Obviously the boundary OM is itself a smooth manifold of
dimension m — 1.

A simple example: The closed unit ball B™ = {z € R™ : |z| < 1} is a
manifold with boundary; its boundary is 9B™ = S™~1.

The notions of smooth functions, smooth mappings, tangent bundle (use the
approach [(1.9)| without any change in notation) are analogous to the usual
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ones. If x € 9M, we may distinguish in 7, M tangent vectors pointing into
the interior, pointing into the exterior, and those in 7, (9M).

10.9. Lemma. Let M be a manifold with boundary of dimension m. Then
M is a submanifold with boundary of an m-dimensional manifold M without
boundary.

Proof. Using partitions of unity, we construct a vector field X on M which
points strictly into the interior of M. We may multiply X by a strictly
positive function so that the flow FIX exists for all 0 < ¢t < 2¢ for some
€ > 0. Then Flg( : M — M\ OM is a diffeomorphism onto its image which
embeds M as a submanifold with boundary of M \ 0M. O

10.10. Lemma. Let M be an oriented manifold with boundary. Then there
is a canonical induced orientation on the boundary OM.

Proof. Let (U,,uq) be an oriented atlas for M. Then the chart changes
respect the boundary,

Uap UB(UQB NOM) — ua(Uag NOM).
Thus for 2 € ug(Uag NOM) we have dugp(z) : 0 x R™™1 — 0 x R™™1)

duaﬂ(x):@ 0 - 0>,

where A > 0 since duyg(x)(—e1) is again pointing downwards. So
det dugp(z) = Adet(duag(2)[0 x R™) > 0;

consequently det(duag(z)|0 x R™1) > 0 and the restriction of the atlas
(Uq, uq) is an oriented atlas for oM. O

10.11. Theorem of Stokes. Let M be an m-dimensional oriented man-
ifold with boundary OM. Then for any (m — 1)-form w € Q™Y M) with
compact support on M we have

/dw:/ i*w:/ w,
M oM oM

where i : OM — M is the embedding.

Proof. Clearly dw again has compact support. Let (Uy,us) be an ori-
ented smooth atlas for M and let (f,) be a smooth partition of unity with
supp(fa) C Uy. Then we have ) fow = w and )" d(faw) = dw. Conse-
quently

/M dw = ; . d(fow) and /8Mw = ; - faw.
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It suffices to show that for each v we have

/ d(focw): U faw-

For simplicity’s sake we now omit the index «. The form fw has compact
support in U and we have in turn

m
fw:Zwkdul/\‘-'/\duk--'/\dum,

d(fw) = gwkdu Adub A Adub e A du™

Ui Ow
Z VARGt A A du™,
=1

Since i*du! = 0, we have fw|0U = i*(fw) = widu® A --- A du™, where
i:0U — U is the embedding. Finally we get

" ow
k 1 k m
/ / E 8ukd A Adu

= Z( 1)kt %dul A Adu™

1 U 3uk

i _ ﬁwk
_ -1 k—1 / 1A ... m
= k§:1( ) ) Ik dx” N---ANdx

“ _ &uk -7
—1’“/ ——da® ) dat . dak L da™
+Z( ) (—o0,0] xR™—2 < —00 Ox* ! ! ! !
—/ (w1(0,22%,...,2™) — 0)dz? ... dz™
Rm—l

:/8 (w1 |OU)du? . .. du™ = fw.
U

ou

We used the fundamental theorem of calculus twice,

0 00
%dx =wi(0,2%,...,2™) -0, 8—(*):
oo O

o dz* =0,

which holds since fw has compact support in U. O
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11. De Rham Cohomology

11.1. De Rham cohomology. Let M be a smooth manifold which may
have boundary. We consider the graded algebra Q(M) = @,‘ii:n%M QF (M)
of all differential forms on M. The space Z(M) := {w € Q(M) : dw = 0}
of closed forms is a graded subalgebra of (), i.e., it is a subalgebra and
satisfies Z(M) = @M (QF(M) N Z(M)) = @M Z*(M). The space
B(M) = {dp : ¢ € Q(M)} of exact forms is a graded ideal in Z(M):
B(M) A Z(M) C B(M). This follows directly from the derivation property
d(p A1) = dp A+ (—1)98%p A dip of the exterior derivative.

Definition. The algebra

Z(M)  {we QM) : dw =0}
B(M)  {dp:peQM)}

H*(M) :=

is called the de Rham cohomology algebra of the manifold M. It is graded
by

dim M dim M

ker(d : QF(M QL (M
H*(M) = kEB H'(M) = P im(d:Qk(l(J)WTH Q’“EMS)'
=0

k=0

If f: M — N is a smooth mapping between manifolds, then f*: Q(N) —
Q(M) is a homomorphism of graded algebras byWhiCh satisfies do f* =
f*¥odby Thus f* induces an algebra homomorphism which we again
call f*: H*(N) — H*(M).

11.2. Remark. Since QF(M) = 0 for k > dim M =: m, we have
_ Qm(M)
{do: o e Qr=t(M)}
H¥(M)=0 for k > m,
[ € QM) = C=(M) : df =0}

0
= the space of locally constant functions on M

— RbO(M)7

H™ (M)

H'(M) =

where bo(M) is the number of pathwise connected components of M. We
put by(M) := dimg H*(M) and call it the k-th Betti number of M. If
br(M) < oo for all k, we put
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and call it the Poincaré polynomial of M. The number
X =Y be(M)(=1)F = far(=1)
k=0

is called the Fuler-Poincaré characteristic of M; see also|(13.7)| below.

11.3. Examples. We have H’(R™) = R since it has only one connected
component. We have H*¥(R™) = 0 for & > 0 by the proof of the lemma of

Poincaré |(9.10)

For the 1-dimensional sphere we have H°(S!) = R since it is connected, and
clearly H*(S') =0 for k > 1 by reasons of dimension. Also, we have

we (S 1 dw=0
O e
_ Ql(sh)
C{df s feCx(shY
QNSY ={fadv: feC™(S")}
=~ {f e C™R): f is periodic with period 27},

where di denotes the global coframe of T*St. If f € C*°(R) is periodic with

period 27, then fdt is exact if and only if [ fdt is also 27 periodic, i.e.,

027r f(t)dt = 0. So we have

HI(S!) = {f € C®(R) : f is periodic with period 27} B
- . . 1. . . 2 -
{f € C>(R) : f is periodic with period 27, [;" f dt = 0}

)

where f fo% f dt factors to the isomorphism.

11.4. Lemma. Let f, g : M — N be smooth mappings between man-
ifolds which are C*°-homotopic: There exists h € C°(R x M,N) with
h(0,2) = f(z) and h(1,2) = g(x). Then f and g induce the same map-
ping in cohomology:

ff=g"H(N)— H(M).

Remark. f, g € C°®°(M, N) are called homotopic if there exists a continu-
ous mapping h : [0,1]x M — N with h(0,z) = f(z) and h(1,z) = g(z). This
seemingly looser relation in fact coincides with the relation of C'*°-homotopy.
We sketch a proof of this statement: Let ¢ : R — [0, 1] be a smooth function
with ¢((—o00,1/4]) = 0 and ¢([3/4,00)) = 1, and with ¢ monotone in be-
tween. Then consider h : Rx M — N, given by h(t,z) = h(p(t), ). Now we
may approximate h by smooth functions h:R x M — N without changing
it on (—o0,1/8) x M where it equals f and on (7/8,00) x M where it equals
g. This is done chartwise by convolution with a smooth function with small
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support on R™. See [26] for a careful presentation of the approximation. So
we will use the equivalent concept of homotopic mappings below.

Proof. For w € QF(N) we have h*w € QF(Rx M). We consider the insertion
operator ins; : M — R x M, given by ins;(z) = (¢, ). For ¢ € QF(Rx M) we
then have a smooth curve t — ins} h* in Q¥(M) (this can be made precise
with the help of the calculus in infinite dimensions of [64]). We define
the integral operator I} : Q¥(R x M) — QF(M) by I}(p) := fol ins} ¢ dt.
Looking at this locally on M, one sees that it is well defined, even without
infinite-dimensional calculus. Let T := % € X(R x M) be the unit vector
field in direction R.

We have ins; s = FltT oins, for s, t € R, so
% ins? ¢ = 9|o(F17 oinsy)* = d|oinsi(F1] )*p
= ins} Alo(FI} )*¢ = (insy)"Lre by [(9.6)

We have used that (insy)* : QF(R x M) — QF(M) is linear and continuous
and so one may differentiate through it by the chain rule. This can also be
checked by evaluating at * € M. Then we have in turn

1 1
dlécp:d/o ins;"gpdt:/o d insy @ dt
1
— [insidpdt=tide  by[@)
0

(ins] —insg)p = /01 % insy pdt = /01 insy Lpe dt
= Iy Lre = Iy(dir +ird)p  by[(99)
Now we define the homotopy operator h := I} oipoh* : QF(N) — QF-1(M).
Then we get
g"— f*=(hoins;)* — (hoinsy)* = (ins] — insj) o h*
= (doItoir+I}oirod) oh* =doh—hod,

which implies the desired result since for w € QF (M) with dw = 0 we have
g*'w — ffw = hdw + dhw = dhw. O

11.5. Lemma. If a manifold is decomposed into a disjoint union M =
LI, Mo of open submanifolds, then H*(M) =[], H*(M,) for all k.

Proof. QF(M) is isomorphic to [, Q¥(M,) via ¢ — (¢|My)a. This iso-
morphism commutes with exterior differential d and induces the result. [
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11.6. The setting for the Mayer-Vietoris sequence. Let M be a
smooth manifold, and let U, V' C M be open subsets such that M = U UV.
We consider the following embeddings:

unvy
N
U Vv
N
M.

Lemma. In this situation the sequence
0= QM) 25 QU)a V) 2 oUunv) =0

is exact, where a(w) = (ifw, iy,w) and B(p, V) = jie — jyv. We also have
(d®d)oa=aodanddof =po(dDd).

Proof. We have to show that « is injective, ker 5 = im«, and that
is surjective. The first two assertions are obvious and for the last one we
let {fv, fv} be a partition of unity with supp fy C U and supp fy C V.
For ¢ € QU NV) we consider fyyp € QU NV); note that supp(fyr) is
closed in the set U NV which is open in U, so we may extend fy ¢ by 0 to
vy € QU). Likewise we extend —fyrp by 0 to ¢y € Q(V). Then we have

Blev,ev) = (fu + fv)e=¢. O

Now we are in the situation where we may apply the main theorem of ho-
mological algebra, So we deviate now to develop the basics of homo-
logical algebra.

11.7. The essentials of homological algebra. A graded differential
space (GDS) K = (K, d) is a sequence

1 dnl dn
ey g1 K" Kl

of abelian groups K™ and group homomorphisms d” : K" — K"! such
that d"*' o d® = 0. In our case these are the vector spaces K" = Q"(M)
and the exterior derivative. The group

ker(d" : K" — K1)

im(dn—1: Kn=1 — Kn)

is called the n-th cohomology group of the GDS K. We consider also the
direct sum

H"(K) :=

H*(K):= @ H"(K)

n=—oo
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as a graded group. A homomorphism f : K — L of graded differential spaces
is a sequence of homomorphisms f™ : K™ — L™ such that d"o f* = f*+lod".
It induces a homomorphism

fo=H*(f): H'(K) — H*(L)

and H* has clearly the properties of a functor from the category of graded
differential spaces into the category of graded groups:

H*(ldg) = Idg+(k),

H*(f og) = H*(f) o H"(g).
A graded differential space (K, d) is called a graded differential algebra if
P,, K" is an associative algebra which is graded (so K™.K™ C K"*™), such

that the differential d is a graded derivation: d(x.y) = dz.y + (—1)%&%z.dy.
The cohomology group H*(K,d) of a graded differential algebra is a graded

algebra; see [(11.1)

By a short exact sequence of graded differential spaces we mean a sequence
0K -L-LsM—0

of homomorphisms of graded differential spaces which is degreewise exact:
For each n the sequence 0 - K™ — L™ — M"™ — 0 is exact.

11.8. Theorem. Mayer-Vietoris sequence. Let

0K —-L-LsM—0
be an exact sequence of graded differential spaces. Then there exists a graded
homomorphism § = (6™ : H*(M) — H""Y(K)),ez called the ‘connecting ho-
momorphism’ such that the following is an exact sequence of abelian groups:

e HY M) S HY(K) < HY(L) -2 BN M) 2 HPY(K) — - -

It is called the ‘long exact sequence in cohomology’. Here § is a natural
transformation in the following sense: Let

0—=K L M——=0
|
0—>K' — =L —= M —>0
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be a commutative diagram of homomorphisms of graded differential spaces
with exact lines. Then also the following diagram is commutative:

= BTN (M) e HY(K) s B (L) 2 B (M) — -

m*l k*i Z*i m*l
Ty P

The long exact sequence in cohomology can also be written in the following
way:

=

H*(K) H*(L)
H*(M).

Definition of §. The connecting homomorphism is defined by ‘6 = i~! o

dop~b or 6[pf] = [i~'dl]. This is meant as follows:

n—1 pn71 n—1
L — M —0

dn—l dn—l \L
n " n pn n
0 K L M 0
d”l dn dm J/
n41 n+1
0 Kntl ¢ It P Mt 0
dn+1 l dn+1

0 — K2 I oz,

The following argument is called a diagram chase. Let [m] € H™(M). Then
m € M™ with dm = 0. Since p is surjective, there is £ € L™ with pf = m.
We consider d¢ € L™*! for which we have pd¢ = dpl = dm = 0, so dlf €
kerp = im4; thus there is an element & € K"*! with ik = d¢. We have
idk = dik = dd¢ = 0. Since i is injective, we have dk = 0, so [k] € H"t(K).
Now we put 6[m] := [k] or §[pf] = [i~1d/).

This method of diagram chasing can be used for the whole proof of the
theorem. The reader is advised to do it at least once in his life with fingers
on the diagram above. For the naturality imagine two copies of the diagram
lying above each other with homomorphisms going up.



11. De Rham Cohomology 137

11.9. Five-lemma. Let

a1 a2 a3 Qy

Al A2 A3 A4 A5
wll ¢2l sosl ml Wsi
B, B1 By B2 Bs B3 By Ba B

be a commutative diagram of abelian groups with exact lines. If o1, va, @4,
and 5 are isomorphisms, then also the middle w3 is an isomorphism.

Proof. Diagram chasing in this diagram leads to the result. The chase
becomes simpler if one first replaces the diagram by the following equivalent
one with exact lines:

/

. Qo a3
0 —> Ay/imay —> Ay —> ker ay ——> 0

%J/% sogl wg‘l%
B Bs

0 — By/imf3y =—— B3 —>ker fy —= 0. O

11.10. Theorem. Mayer-Vietoris sequence. Let U and V be open
subsets in a manifold M such that M = U UV. Then there is an exact
sequence

o HYOM) =2 qROY o HY (V) 2 BRUNV) S B (M) > -

which is natural in the triple (M, U, V') in the sense explained in|(11.8), The

homomorphisms o, and By are algebra homomorphisms, but § is not.

Proof. This follows from |(11.6)[ and theorem |(11.8) O

Since we shall need it later, we will give now a detailed description of the
connecting homomorphism §. Let {fy, fy} be a partition of unity with
supp fu C U and supp fy C V. Let w € Q¥(U N V) with dw = 0 so that
[w] € HX(UNV). Then (fy.w, —fr.w) € QF(U) @& QF(V) is mapped to w by
6 and so we have by the description of § in

Slw] = [a M d(fv.w, — frw)] = [a™ (dfy Aw, —dfy Aw)]
= [dfv /\w] = —[de /\w],
where we have used the following fact: fy + fiy = 1 implies that on U NV
we have dfy = —dfy; thus dfy A w = —dfy Aw and off U NV both are 0.

11.11. Axioms for cohomology. The de Rham cohomology is uniquely
determined by the following properties which we have already verified:
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(1) H*( ) is a contravariant functor from the category of smooth mani-
folds and smooth mappings into the category of Z-graded groups and
graded homomorphisms.

(2) H*(point) = R for &k = 0 and H*(point) = 0 for k # 0.
(3) If f and g are C'*°-homotopic, then H*(f) = H*(g).
(4) If M =| |, M, is a disjoint union of open subsets, then
H*(M) =[], H*(Ma).
(5) If U and V are open in M, then there exists a connecting homomor-

phism ¢ : H*(U NV) — H**Y(U U V) which is natural in the triple
(UUV,U,V) such that the following sequence is exact:

s HNUUV) = HY U)o H* (V) -» HYUNV) -5 B (U UV) —- -

There are many other cohomology theories for topological spaces, like sin-
gular cohomology, Cech cohomology, simplicial cohomology, Alexander-Spa-
nier cohomology, etc., which satisfy the above axioms for smooth manifolds
when defined with real coefficients, so they all coincide with the de Rham co-
homology on manifolds. See books on algebraic topology or sheaf theory for
all this and look for the abstract theorem of de Rham in sheaf cohomology.

11.12. Example. If M is contractible (which is equivalent to the seem-
ingly stronger concept of C*°-contractibility; see the remark in, then
HO(M) = R since M is connected, and H*(M) = 0 for k # 0, because the
constant mapping ¢ : M — point — M onto some fixed point of M is
homotopic to Idy, so H*(c) = H*(Idy) = Idg-(ap by But we have

HE(0)

HFE(M) HE(M)

~

HF(point).

More generally, two manifolds M and N are called smoothly homotopy
equivalent if there exist smooth mappings f: M — N and g : N — M such
that g o f is homotopic to Idy; and f o g is homotopic to Idy. If this is the
case, both H*(f) and H*(g) are isomorphisms, since

H*(g) o H*(f) = Idy~(ary and  H'(f) o H*(g) = Idp~(n)-

As an example consider a vector bundle (F,p, M) with zero section Og :
M — E. Then po O = Idy; whereas O o p is homotopic to Idg via
(t,u) — t.u. Thus H*(FE) is isomorphic to H*(M).
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11.13. Example. The cohomology of spheres. For n > 1 we have

R fork=0,

H*(5™) = 0 for1<k<n-1, Hk(SO):{R2 for k=0,
R for k=n, 0 for k> 0.
0 fork>n,

We may say: The cohomology of S™ has two generators as a graded vector
space, one in dimension 0 and one in dimensionn. The Poincaré polynomial
is given by fen(t) =14 t".

Proof. The assertion for SY is obvious, and for S* it was proved in [(11.3)|
so let n > 2. Then HY(S™) = R since it is connected, so let k > 0. Now fix
a north pole a € S, 0 < e < 1, and let

S"={z e R"™: |z|? = (2,2) = 1},

U={zeS":(x,a) > —¢},

V={xeS": (x,a) <e},
so U and V are overlapping northern and southern hemispheres, respectively,
which are diffeomorphic to an open ball and thus smoothly contractible.
Their cohomology is thus described in |(11.12)l Clearly U UV = S™ and
UNV = 8" 1 x (—¢,¢) which is obviously (smoothly) homotopy equivalent

to S"~!. By theorem [(11.10)] we have the following part of the Mayer-
Vietoris sequence

HMU) ® HE (V) — HHU N V) 2= HF1(S7) — HFLU) @ HF1(V)

b e .

where the vertical isomorphisms are from [(T1.12)] Thus H*(S"71) is iso-
morphic to H*+1(S") for k > 0 and n > 2.

Next we look at the initial segment of the Mayer-Vietoris sequence:

0 —= HO(S") —= HOU UV) > HOU N V) o= HY(S") — H\(U LV)

|

From exactness we have: In the lower line « is injective, so dim(ker 5) = 1,
so B is surjective and thus § = 0. This implies that H'(S™) = 0 for n > 2.
Starting from H¥(S') for k > 0 the result now follows by induction on 7.

By looking more closely on the initial segment of the Mayer-Vietoris se-
quence for n = 1 and taking into account the form of § : H°(S%) — H'(S1),
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we could even derive the result for S without using [(11.3)] The reader is
advised to try this. O

11.14. Example. The Stiefel manifold V (k, n; R) of oriented orthonormal
k-frames in R™ (see [(18.5)]) has the following Poincaré polynomial:

For: Fvthm =
l
n=2m, k=21+1,1>0: L+ D]+t
i=1
l .
n:2m—|—1, ]{;:2[7 [ >1: H(1+t4m—47,+3)
i=1

-1
n=2m, k=2, m>1>1: (142" 2@+ )]+

i=1
n=2m+1k=2+1, =1 .
10 (1 + t2m721) H(l + t4m741+3)
= i=1

Since V(n — 1,n;R) = SO(n; R), we get

m—1
fsoemm)(®) = @1+ T+
=1

m

fso@mirm®) =[] +7).

i=1
So the cohomology can be quite complicated. For a proof of these formulas
using the Gysin sequence for sphere bundles, see [80, II].
11.15. Relative de Rham cohomology. Let N C M be a closed sub-
manifold and let
QF (M, N) := {w € QF(M) : i*w = 0},

where ¢ : N — M is the embedding. Since i*od = doi*, we get a graded dif-
ferential subalgebra (2*(M,N),d) of (2*(M),d). Its cohomology, denoted
by H*(M,N), is called the relative de Rham cohomology of the manifold
pair (M, N).

11.16. Lemma. In the setting of|(11.15)|

0— Q (M, N) — Q*(M) —— Q*(N) = 0
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is an exact sequence of differential graded algebras. Thus by |(11.8) we have

the long exact sequence in cohomology
o= HY(M,N) — H*(M) — H*(N) -2 HF (M, N) — ...

which is natural in the manifold pair (M,N). It is called the long exact
cohomology sequence of the pair (M, N).

Proof. We only have to show that i* : Q*(M) — Q*(N) is surjective. So
we have to extend each w € QF(N) to the whole of M. We cover N by
submanifold charts of M with respect to N. These and M \ N cover M.
On each of the submanifold charts one can easily extend the restriction of
w and one can glue all these extensions by a partition of unity which is
subordinated to the cover of M. (|

12. Cohomology with Compact Supports and Poincaré
Duality

12.1. Cohomology with compact supports. Let QF()M) denote the
space of all k-forms with compact support on the manifold M. Since
supp(dw) C supp(w), supp(Lxw) C supp(X) Nsupp(w), and supp(ixw) C
supp(X) N supp(w), all formulas of section [(9)] are also valid in (M) =
@gﬁ)M QF(M). So Qf(M) is an ideal and a differential graded subalgebra
of Q*(M). The cohomology of 2% (M)
_ ker(d : QF(M) — QFFL(M))
imd: QEY (M) — QF(M)

dim M
Hi(M):= P Hi(M)
k=0

H*(M) -

)

is called the de Rham cohomology algebra with compact supports of the man-
ifold M. It has no unit if M is not compact.

12.2. Mappings. If f: M — N is a smooth mapping between manifolds
and if w € QF(N) is a form with compact support, then f*w is a k-form
on M, in general with noncompact support. So €27 is not a functor on the
category of all smooth manifolds and all smooth mappings. But if we restrict
the morphisms suitably, then {2 becomes a functor. There are two ways to
do this:

(1) 7 is a contravariant functor on the category of all smooth manifolds
and proper smooth mappings (f is called proper if f~!(compact set) is
a compact set) by the usual pullback operation.
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(2) QF is a covariant functor on the category of all smooth manifolds and
embeddings of open submanifolds: For i : U < M and w € QF(U) just
extend w by 0 off U to get iww € QE(M) Clearly iy o d = d 0 iy.

12.3. Remarks. (1) If a manifold M is a disjoint union, M = ||, Ma,
then we have obviously H¥(M) = @, HE(M,).

(2) H2(M) is a direct sum of copies of R, one for each compact connected
component of M.

(3) If M is compact, then H¥(M) = H*(M).

12.4. The Mayer-Vietoris sequence with compact supports. Let
M be a smooth manifold, and let U, V C M be open subsets such that
M = U UYV. We consider the following embeddings:

unv

UiU/ \jV\V
N

Theorem. The following sequence of graded differential algebras is exact:
0= QUNV) 25 Q2 (U) @ QE(V) —2 QF (M) — 0,

where fe(w) = ((Ju)ww, (Jv)sw) and ac(p,¥) = (iv)«p — (iv)«p. So by
(11.8)| we have the long exact sequence

coo o HYY(M) 2 HRU N V) = HYNU) @ HY (V) —
= HYM) 2 BN UNV) >
which is natural in the triple (M,U, V). 1t is called the Mayer Vietoris
sequence with compact supports.
The connecting homomorphism 6, : H¥(M) — HETY(U N V) is given by

dell = (B dac ()] = 1B d(fup, —fr o))
=[dfu np TUNV] = —ldfy A [TNV].

Proof. The only part that is not completely obvious is that a. is surjective.
Let {fu, fv'} be a partition of unity with supp(fy) C U and supp(fy) C
V, and let ¢ € QF(M). Then fye € QF(U) and —firo € QF(V) satisfy
ac(fue, —fve) = (fu + fv)e = ¢ O
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12.5. Proper homotopies. A smooth mapping h: Rx M — N is called a
proper homotopy if h=!(compact set) N ([0, 1] x M) is compact. A continuous
homotopy h : [0,1] x M — N is a proper homotopy if and only if it is a
proper mapping.

Lemma. Let f,g: M — N be proper and proper homotopic. Then f* =
g* : HE(N) — HF(M) for all k.

Proof. Recall the proof of lemma

Claim. In the proof of [[11.4)] we have furthermore h : QF(N) — QF~1(M).
Let w € QF(N) and let K; := supp(w), a compact set in N. Then Ko :=
h=Y(K1) N ([0,1] x M) is compact in R x M, and finally K3 := pra(Ks) is
compact in M. If z ¢ K3, then we have

1
(hw)y = ((I§ 0 ip 0 h*)w), = /0 (insy (irh*w)), dt = 0.

The rest of the proof is then again as in |(11.4)] O
12.6. Lemma.

R k=n,
CHEDES S

0 otherwise.
Proof. We embed R™ into its one point compactification R™ U{oco} which is
diffeomorphic to S"; see[(1.2)l The embedding induces the exact sequence

of complexes
0— Q(R") = Q") = 2(5")oc — 0,

where (S™)~ denotes the space of germs at the point co € S™. For germs at
a point the lemma of Poincaré is valid, so we have H?(Q2(5")s) = R
and H¥(Q(S")s) = 0 for k > 0. By theorem there is a long exact
sequence in cohomology whose beginning is:

HY(RY) ~ HO(S™) = HO(US")oe) = HL(RY) = H'(S™) = H'(2(S")c)
0 R R 0

From this we see that 6 = 0 and consequently H!(R") = H'(S™). Another
part of this sequence for k£ > 2 is:

HF1(Q(S™) o) 2> HE(R™) — HF(S") —— H*(Q(S™).0)
[l [l
0 0.

It implies H*(R™) = H*(S") for all k. O
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12.7. Fiber integration. Let M be a manifold, and let pr; : M xR — M.
We define an operator called the fiber integration

/ COF(M x R) — QM)
fiber

as follows. Let ¢ be the coordinate function on R. A differential form with
compact support on M x R is a finite linear combination of two types of
forms:

(1) prie.f(z,t), or for short ¢.f,
(2) pri@ A f(x,t)dt, or for short ¢ A f dt,
where ¢ € Q(M) and f € C(M x R,R). We then put
@ faper P17 2f =0,
@ foperPrieAfdt=¢ [T f( t)dt.
This is well defined since the only relation which we have to satisfy is

pri(pg) A f(z,t)dt = pri g(x) A f(z,t)dt.

Lemma. We have d o fﬁber = fﬁber od. Thus fﬁber induces a linear mapping
in cohomology

(AM);HﬂMxR»ﬁH&%M»

which however is not an algebra homomorphism.

Proof. In case ([l) we have

— _1\k _1\k af
~/ﬁber d(QOf) /ﬁber dsOf - ( 1) /ﬁber QDde - ( 1) /ﬁber Vo at

o
= (—1)’“@ / %dt =0 since f has compact support
—00

= d/ w.f.
fiber

In case ([2]) we get

/ d(go/\fdt):/ dgo/\fdt—l—(—l)k/ o Ndpyr f A dt
fiber fiber

fiber

—do [ 5 a0 [ s o

—0o0

:d(w/:;f( ,t)dt) :d/ﬁbergo/\fdt. 0

In order to find a mapping in the converse direction, we let e = e(t)dt
be a compactly supported 1-form on R with f_oooo e(t)dt = 1. We define
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et QF (M) — QF1(M x R) by e.(p) = ¢ Ae. Then
de (p) =d(pNe) =dpNe+0=e.dp),

so we have an induced mapping in cohomology e, : H¥(M) — HF (M xR).
We have [g, . oex = Idgr ), since

[ etor= [ onet yi=p [~ et

Next we define K : QF(M x R) — Q=1(M x R) by

@ K(e.f) =0,
@) K(pAfdt) = ['_ fdt — . A(t) [ fdt, where A(t) := ['__e(t)dt.

Lemma. Then we have

(3) [ — o/ — (C1)F N do K — K od).
fiber

Proof. We have to check the two cases. In case ([Il) we have

(td=c.o [ s =pf =0,

(doK — Kod)(p.f) =0~ K(dp.f + (—1)fo Adif + (—1)Fp A GLat)
vt (o[ G- gt [ )
= (-t f+o0.

In case ([2) we get

(Id—e*O/ﬁb )((p/\fdt):go/\fdt—w/_ fdt Ne,

(do K — K od)(p A fdt) :d<go/_;fdt—go.A(t)/oo fdt>

—00

— K(dp A fdt+ (=) Lo Adyf Adt)

= (—1)k? <gp/\fdt—g0/\e/ fdt). 0

—00

[e.e]

Corollary. The induced mappings (fﬁber) and e, are inverse to each other

*

and thus isomorphisms between H¥(M x R) and H*=1(M).

Proof. This is clear from the chain homotopy (). (]
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12.8. Second proof of |[(12.6). For k£ < n we have
HFRY) 2 g R > =2 HIRF)

_J0 for k < n,
| HYRY) =R for k =n.

Note that the isomorphism H”(R™) = R is given by integrating the dif-
ferential form with compact support with respect to the standard orien-

tation. This is well defined since by Stokes’s theorem [(10.11)] we have
Jgn dw = [yw =0, so the integral induces a mapping [, : H*(R") = R. O

12.9. Example. We consider the open Mébius strip M in R?; see .
Open means without boundary. Then M is contractible onto S'; in fact M
is the total space of a real line bundle over S'. So from we see that
HY(M)= H*(S') =R for k=0,1 and = 0 for k > 1.

Now we claim that H¥(M) = 0 for all k. For that we cut the Mobius strip
in two pieces which are glued at the end with one turn,

aT Tb
| |®
so that M = UUV where U =2 R?, V =2 R? and U NV = R?UR?, the

disjoint union. We also know that H?(M) = 0 since M is not compact and
connected. Then the Mayer-Vietoris sequence (see|(12.4)]) is given by

a

HA\U) & HAV) — HY (M) —% 120 nv) —2

|
0 ROR

% H2(U) @ HA(V) —= HX(M) — H3(UNV)

RoR 0.

We shall show that the linear mapping (. has rank 2. So we read from
the sequence that H!(M) = 0 and H2(M) = 0. By reasons of dimension
H*(M) =0 for k > 2.

Let ¢, 1 € Q2(U NV) be two forms, supported in the two connected com-
ponents, respectively, with integral 1 in the orientation induced from one
on U. Then [, =1, [;% = 1, but for some orientation on V' we have
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Jiy¢=1and [,1 = —1. So the matrix of the mapping f. in these bases is

(1 1 ), which has rank 2.
1 -1

12.10. Mapping degree for proper mappings. Let f : R — R" be a
smooth proper mapping; then f* : QF(R") — QF(R") is defined and is an
algebra homomorphism. So also the induced mapping in cohomology with
compact supports makes sense and by

H (BY) 1 HY(R)
e |1
e

R =R

a linear mapping R — R, i.e., multiplication by a real number, is defined.
This number deg f is called the mapping degree of f.

12.11. Lemma. The mapping degree of proper mappings has the following
properties:
(1) If f, g : R™ — R"™ are proper, then deg(f o g) = deg(f).deg(g).
(2) If f and g : R™ — R™ are proper homotopic (see , then deg(f) =
deg(g)-
(3) deg(Idgn) =1.
(4) If f : R™ — R"™ is proper and not surjective, then deg(f) = 0.

Proof. Only statement () needs a proof. Since f is proper, f(R") is closed
in R™: For K compact in R” the inverse image K; = f~!(K) is compact, so
f(K1) = f(R")N K is compact, thus closed. By local compactness f(R") is
closed.

Suppose that there exists x € R™\ f(R™); then there is an open neighborhood
U C R*\ f(R™). We choose a bump n-form a on R"™ with support in U
and [« = 1. Then f*a = 0, so deg(f) = 0 since [a] is a generator of
HM(R™). O

12.12. Lemma. For a proper smooth mapping f : R — R" the mapping
degree is an integer; in fact for any regular value y of f we have

deg(f) = Z sign(det(df(x))) € Z.

z€f~1(y)

Proof. By the Morse-Sard theorem, see there exists a regular value

y of f. If f~1(y) = 0, then f is not surjective, so deg(f) = 0 by [(12.11.4)|
and the formula holds. If f~!(y) # 0, then for all z € f~!(y) the tangent

mapping T, f is surjective, thus an isomorphism. By the inverse mapping
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theorem f is locally a diffeomorphism from an open neighborhood of z onto a
neighborhood of 3. Thus f~!(y) is a discrete and compact set, say f~!(y) =
{z1,..., 2} CR™

Now we choose pairwise disjoint open neighborhoods U; of x; and an open
neighborhood V' of y such that f : U; — V is a diffeomorphism for each
i. We choose an n-form a on R"™ with support in V and [a = 1. So
f*a=>",(f|U;)* o and moreover

/ (flU) o« = sign(det(df(a:i)))/ a = sign(det(df (z;))),
U; 14
k
dee(f) = | fra=3 [ (100 =Y sn(@et(df(a)) €7 O

12.13. Example. The last result for a proper smooth mapping f: R — R
can be interpreted as follows: Think of f as parametrizing the path of a car
on an (infinite) street. A regular value of f is then a position on the street
where the car never stops. Wait there and count the directions of the passes
of the car: The sum is the mapping degree, the number of journeys from
—00 to oo. In dimension 1 it can be only —1, 0, or +1 (why?).

12.14. Poincaré duality. Let M be an oriented smooth manifold of di-
mension m without boundary. By Stokes’s theorem the integral
operator [ : QI"(M) — R vanishes on exact forms and induces the cohomo-
logical integral

(1) /: H™(M) — R.

It is surjective (use a bump m-form with small support). The Poincaré
product is the bilinear form

(2) Py HY(M) x H™ % (M) — R,
Ply((al.18) = [ lal A1) = /Maw.

It is well defined since for 8 closed dy A 8 = d(y A B), etc. If j: U - M
is an orientation preserving embedding of an open submanifold, then for
[a] € H¥(M) and for [3] € H**(U) we may compute as follows:

(3) P (7o), [6)) = / (*[a]) A [8] = /U Fanp

*

—/Uj*(aAj*ﬁ)—/j(U)a/\j*ﬁ
_ / a A8 = P(lal, j.18]).
M
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Now we define the Poincaré duality operator
(4) Dy« HE (M) — (Hg" (M),
(8], Dislal) = Pi([al, [8).

For example, we have

DBV = ([ )€ (H®)"
Let M = U UV with U, V open in M; then we have the two Mayer-Vietoris
sequences from |(11.10)| and from |(12.4)]
S HYM) 2 YUY @ HYV) L BN U N V) S B (M) -

H™ F (M)« H" U) @ H" (V) H™ (U N V) Lo gD,

We take dual spaces and dual mappings in the second sequence and we
replace § in the first sequence by (—1)*716 and get the following diagram
which is commutative as we will see in a moment:

()

(-1)k=25 de

Dk
H*(M) = H (M)

(3,75 (@), (v ))"
D¥ @Dk
H*U) & HH(V) —= Hr=RU)* & HP 5 (V)*

Iv—iv (G )«=Gv)«)"

HYUNV) — 29V gmeky A v)*

(~1*1s s
D+l
M

Hk—i—l(M) Hén*(kJFl)(M)*

12.15. Lemma. Diagram|(12.14.5)| commutes.

Proof. The first and the second square from the top commute by |(12.14.3)]
So we have to check that the bottom one commutes. Let [a] € H*(U N'V)
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and [f] € H:%(kﬂ)(M), and let (fy, fi) be a partition of unity which is
subordinated to the open cover (U, V) of M. Then we have

(8], D (—1)"15[a]) = Py ((—1)*"4[al, [8])
= PEF (=1 Ydfy Aal,[8]) by [(TL.10)]

= (-1+! /M dfv Na A B,

(8], 3z Df o)) = (5c[8], Dirvle]) = Py ([, 8c[B])
= Pkoy (o], [dfu A B] = —[dfy AB]) by

:—/ a/\dfv/\ﬁ:—(—l)k/ dfy NangB. O
unv M

12.16. Theorem. Poincaré duality. If M is an oriented manifold of
dimenston m without boundary, then the Poincaré duality mapping

D}« H*(M) — H *(M)*
s a linear isomorphism for each k.

Proof. Step 1. Let O be an i-base for the open sets of M, i.e., O is a basis
containing all finite intersections of sets in O. Let Oy be the set of all open
sets in M which are finite unions of sets in 0. Let Oy be the set of all open
sets in M which are at most countable disjoint unions of sets in . Then
obviously Oy and Oy are again i-bases.

Step 2. Let O be an i-base for M. If Do : H(O) — H.(O)* is an isomor-
phism for all O € O, then it is so also for all O € Oy.

Let U € Of, U = O1U---UO for O; € O. We consider O1 and V =
O2U---UOk. Then O NV = (O NO2)U---U (01 NOy) is again a
union of elements of O since it is an i-base. Now we prove the claim by
induction on k. The case k = 1 is trivial. By induction Dp,, Dy, and
Do,nv are isomorphisms, so Dy is also an isomorphism by the five-lemma

(11.9)[applied to the diagram |(12.14.5)]

Step 3. If O is a basis of open sets in M such that Do is an isomorphism
for all O € O, then it is so also for all O € O.

IfU € Oy, we have U =01 U0 U... =2, O; for O; € O. But then the

diagram

H() 12, 1(0)
Dui lHDoi
H(U)" == (B, He(0i))" == 1[I[:Z, He(0:)"

commutes and implies that Dy is an isomorphism.
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Step 4. If Do is an isomorphism for each O € O where O is an i-base for
the open sets of M, then Dy is an isomorphism for each open set U C M.

Namely, ((Of)s)s contains all open sets of M; then the result follows from
steps 2 and 3. Indeed, given an open U C M, choose compact sets K; C M
with K; C K;11 and U = U;’il K;. Then we choose open sets O; € Oy for
i=1,2,... of U such that O; is compact, Ule O; D K so that the O; also
cover U, Ule 0; D Ui-:ll O;, and O;NOj =0 unless j =i —1or j =1+ 1.
Then let Vi = (J;5¢ O2i+1 and Vo = |J;~ O2; which are elements of (O¢)s,.
Hence U = V1 UV is in ((Oy)s) -
Step 5. Drm : H(R™) — H.(R™)* is an isomorphism.
We have

Hk(Rm) _ {R for k =0, Hf(]Rm) _ {]R for k = m,

0 for k>0, 0 for k # m.

The class [1] is a generator for H°(R™), and [a] is a generator for H™(R™)
where « is any m-form with compact support and | y @ = 1. But then

PR ([1],[a]) = [gm La=1.

Step 6. For each open subset U C R™ the mapping Dy is an isomorphism.
The set {{x € R™ : a’ < 2' < b for all i} : @’ < b’} is an i-base of R™. Each
element O in it is diffecomorphic (with orientation preserved) to R™, so Do
is an isomorphism by step 5. From step 4 the result follows.

Step 7. D) is an isomorphism for each oriented manifold M.

Let O be the set of all open subsets of M which are diffeomorphic to an open
subset of R™, i.e., all charts of a maximal atlas. Then O is an i-base for M,
and Dy is an isomorphism for each O € O. By step 4 the operator Dy is an
isomorphism for each open U in M; thus also Dj; is an isomorphism.  [J

12.17. Corollary. For each oriented manifold M without boundary the
bilinear pairings
Py H (M) x HY (M) — R,
Py HY (M) x HF(M) - R
are not degenerate.
12.18. Corollary. Letj: U — M be the embedding of an open submanifold
of an oriented manifold M of dimension m without boundary. Then of the

following two mappings one is an isomorphism if and only if the other one
18:

§* - H¥(U) « H*(M),
ot HIFHU) — HIH(M).
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Proof. Use P (j*[al, 18)) = Pl ([al, j[8))- 0

12.19. Theorem. Let M be an oriented connected manifold of dimension
m without boundary. Then the integral

/ L H™(M) — R
is an isomorphism. So ker [, = d(QI1(M)) C QI*(M).
Proof. Considering m-forms with small support shows that the integral is

surjective. By Poincaré duality [(12.16)} dimg H™(M)* = dimg H*(M) =1
since M is connected. O

Definition. The uniquely defined cohomology class wys € H'(M) with
integral [,, wy = 1 is called the orientation class of the manifold M.

12.20. Relative cohomology with compact supports. Let M be a
smooth manifold and let N be a closed submanifold. Then the injection
i: N — M is a proper smooth mapping. We consider the spaces

QF(M,N) :={we (M) : w|N =i*w =0}

whose direct sum (Q}(M,N),d) is a graded differential subalgebra of the
graded differential algebra (25(M),d). Its cohomology, HY(M, N), is called
the relative de Rham cohomology with compact supports of the manifold pair
(M, N). The sequence of graded differential algebras

0— QH(M,N) = QM) —— Q*(N) = 0

is exact. This is seen by the same proof as of [(11.16)| with some obvious
changes. Thus by [(11.8)| we have the long exact sequence in cohomology

o= HYM,N) — H¥(M) — H*(N) -2 HF(M,N) — ...

which is natural in the manifold pair (M, N). It is called the long exact
cohomology sequence with compact supports of the pair (M, N).

12.21. Now let M be an oriented smooth manifold of dimension m with
boundary dM. Then M is a closed submanifold of M. Since for w €
Q=1 (M,0M) we have [,,dw = [,,,w = [5,,0 = 0, the integral of m-
forms factors as

QP(M, M) —— QI (M) L, R

7

i J:

H™(M,0M)
to the cohomological integral [, : H*(M,0M) — R.
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Example. Let I = [a,b] be a compact interval; then I = {a,b}. We have
HY(I) =0 since fdt =d fj f(s)ds. The long exact sequence in cohomology
of the pair (I,01) is

0— HO(I,dI) — HO(I) — H(8I) % HY(I,dI) — H'(I) — H(3I)

| H H I | H
0 R R2 0.

1%

R 0

The connecting homomorphism 6 : H°(0I) — H'(I,0I) is given by the
following procedure: Let (f(a), f(b)) € H°(OI), where f € C°°(I). Then

f(a
3@, £0) = laf) = [ 1af) = / af = / F(#)dt = £(b) — f(a).

So the fundamental theorem of calculus can be interpreted as the connecting
homomorphism for the long exact sequence of the relative cohomology for
the pair (1,01).

The general situation. Let M be an oriented smooth manifold with
boundary M. We consider the following piece of the long exact sequence
in cohomology with compact supports of the pair (M, 9M):

H (M) — H"Y(0M) —~ H™(M,0M) — H™(M) — 0

| |t

R R.

The connecting homomorphism is given by

Slw|OM] = [dw]gm(aronn, w € QP (M),

so commutation of the diagram above is equivalent to the validity of Stokes’s
theorem.

13. De Rham Cohomology of Compact Manifolds

13.1. The oriented double cover. Let M be a manifold. We consider
the orientation bundle Or(M) of M which we discussed in and we
consider the subset or(M) := {v € Or(M) : |v| = 1}; see for the
modulus. We shall see shortly that it is a submanifold of the total space
Or(M), that it is orientable, and that mps : or(M) — M is a double cover
of M. The manifold or(M) is called the orientable double cover of M.

We first check that the total space Or(M) of the orientation bundle is ori-
entable. Let (U,,u,) be an atlas for M. Then the orientation bundle is
given by the cocycle of transition functions

Tap(x) = sign pap(x) = signdet d(ug o uy ) (ue ().
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Let (Uq, 7o) be the induced vector bundle atlas for Or(M); see We
consider the mappings

OI‘(M)’UQ To Ua % R uq XId ua(Ua) % R C Rm+1

™M pri

Ua

and we use them as charts for Or(M). The chart changes ug(Uyg) x R —
ta(Uqap) x R are then given by

(y,) = (ua 0 ug™(y), Tap(ug ' (¥))t)
= (uq o ugl(y), sign det d(ug o ug ') ((uq © u/gl)(y))t)
= (uq o ugl(y), sign det d(uq © ugl)(y)t).

The Jacobi matrix of this mapping is

d(ug o ugl)(y) *
0 sign det d(uq o ugl) (y)

which has positive determinant.

Now we let Z := {v € Or(M) : |v| < 1} which is a submanifold with
boundary in Or(M) of the same dimension and thus orientable. Its boundary
0Z coincides with or(M), which is thus orientable.

Next we consider the diffeomorphism ¢ : or(M) — or(M) which is induced
by the multiplication with —1 in Or(M). We have po ¢ = Id and 7/ (z) =
{z,0(2)} for z € or(M) and 7ps(z) = x.

Suppose that the manifold M is connected. Then the oriented double cover
or(M) has at most two connected components, since 7y is a two sheeted
covering map. If or(M) has two components, then ¢ restricts to a diffeo-
morphism between them. The projection 7y, if restricted to one of the
components, becomes invertible, so Or(M) admits a section which vanishes
nowhere; thus M is orientable. So we see that or(M) is connected if and
only if M is not orientable.

The pullback mapping ¢* : Q(or(M)) — Q(or(M)) also satisfies p*op* = Id.
We put

Qi(or(M)) : ={w € Qor(M)) : ¢*w = w},

Q_(or(M)) : ={w € Qor(M)) : p*w = —w}.
For each w € Q(or(M)) we have w = 3 (w+¢*w)+3(w—p*w) € Uy (or(M))®
Q_(or(M)), so Q(or(M)) = Qi (or(M))®Q_(or(M)). Since do p* = ¢*od,
these two subspaces are invariant under d; thus we conclude that

(1) H"(or(M)) = H* (2 (or(M))) & H"(Q- (or(M))).
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Since 7y, @ Q(M) — Q(or(M)) is an embedding with image Q. (or(M)),
we see that the induced mapping 7%, : H¥(M) — H¥(or(M)) is also an
embedding with image H* (2, (or(M))).

13.2. Theorem. For a compact manifold M we have dimgp H*(M) < co.

Proof. Step 1. If M is orientable, we have by Poincaré duality |(12.16)|

1 () 2 () = (k) S

~ ~

! k),
so H*(M) is finite-dimensional since otherwise dim(H*(M))* > dim H*(M).
Step 2. Let M be not orientable. Then from |(13.1)| we see that the oriented

double cover or(M) of M is compact, oriented, and connected, and we have
dim H*(M) = dim H*(Q4 (or(M))) < dim H*(or(M)) < oo. O

13.3. Theorem. Let M be a connected manifold of dimension m. Then

R if M is compact and orientable,

H™(M) = {

0 otherwise.

Proof. If M is compact and orientable, the integral f* :H™(M) — Risan
isomorphism, by

Next let M be compact but not orientable. Then the oriented double cover
or(M) is connected, compact and oriented. Let w € Q" (or(M)) be an m-
form which vanishes nowhere. Then also ¢*w is nowhere zero where ¢ :
or(M) — or(M) is the covering transformation from So p*w = fw
for a function f € C*°(or(M)) which vanishes nowhere. So f > 0 or f < 0.
If f>0, then a :=w+ ¢*w = (1 + f)w is again nowhere 0 and p*a = «,
so a = 7y, for an m-form S on M without zeros. So M is orientable, a
contradiction. Thus f < 0 and ¢ changes the orientation.

The m-form v := w — ¢*w = (1 — f)w has no zeros, so for(M)’y > 0 if we
orient or(M) using w; thus the cohomology class [y] € H™(or(M)) is not
zero. But ¢*y = —y so v € Q_(or(M)); thus H™(Q2_(or(M))) # 0. By
the first part of the proof we have H™(or(M)) = R and from we get
H™(or(M)) = H™(Q—(or(M))), so H™(M) = H™(Q4(or(M))) = 0.
Finally let us suppose that M is not compact. If M is orientable, we have
by Poincaré duality and by that H™(M) = HJ(M)* = 0.
If M is not orientable, then or(M) is connected by and not compact,
so H™(M) = H™(Q4(or(M))) C H™(or(M)) = 0. O
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13.4. Corollary. Let M be a connected manifold which is not orientable.
Then or(M) is orientable and the Poincaré duality pairing of or(M) satisfies

r(M)), (Hy" ") (or(M))) = 0
(M), (HZ'™F)~(or(M))) = 0,
(H™) - (or(M)
(HZF)4 (or(M)

[

k
H+

Q

) (
) (

]
=

*

1

)

(
or(M) HE(
)
)

) )
( r(M) ).

Il

Proof. From we know that or(M) is connected and orientable. So
R = H%or(M)) = H™(or(M))*.

Now we orient or(M) and choose a nonnegative bump m-form w with com-
pact support on or(M) so that for(M)w > 0. From the proof of
we know that the covering transformation ¢ : or(M) — or(M) changes
the orientation, so <p*w is negatively oriented, i.e., fo( )ap*w < 0. Then

w—p*w e Q™ (or(M)) and f (M) (w—p*w) >0, so (Hm) (or(M)) =R and
(H") 4 (or(M)) = 0
Since ¢* is an algebra homomorphism, we have

O (or(M)) A (77F) 4 (ox(M)) € () (or (M),

QF (or(M)) A (@) _ (0r(M)) € (") (or(M)).

From (H[")4(or(M)) = 0 the first two results follows. The last two asser-
tions then follow from this and H*(or(M)) = H* (or(M)) & H* (or(M)) and

the analogous decomposition of H¥(or(M)). O

13.5. Theorem. For the real projective spaces we have

( )

for1 <k <mn,

0
n(RP") R for odd n,
for even n.

Proof. The projection 7 : §™ — RP" is a smooth covering mapping with
two sheets; the covering transformation is the antipodal mapping A : S™ —
S" oz — —x. We put Q4(5") = {w € Q") : A*w = w} and Q_(S") =
{w € Q(S™) : A*'w = —w}. The pullback 7* : QRP") — Q(S") is an
embedding onto Q4 (S™).

Let A be the determinant function on the oriented Euclidean space R,
We identify 7},S™ with {z}* in R"*! and we consider the n-form wgn €



13. De Rham Cohomology of Compact Manifolds 157

Q"(S™) which is given by (wgn)(X1,...,Xn) = Az, X1,...,X;). Then we
have

(A*wsn ) (X1, .. Xn) = (wsn) a@) (Te A X1, ..., Te A X )
= (WS”)—z(_Xla 7_Xn)
= A(—(L‘, —Xl, ey —Xn)

= (-1)"" Az, X1,..., X,)
= (=1)" M wgn)e(X1, ..., Xp).

Since wgn is invariant under the action of the group SO(n + 1,R), it must
be the Riemann volume form, so

— vol(S™ _<n+1)7rn7+1_ (192%1;)' forn:Qk—l,
"WSH_VO( )_W_ _ 2l g =2k — 2
2 1-3:5...(2k—3) = .

Thus [wgn] € H™(S™) is a generator for the cohomology. We have A*wgn =
(_1)n+1w5"7 SO

Q" (S™)  for even n.
Thus H"(RP") = H™"(Q4(S™)) equals H"(S™) = R for odd n and equals 0
for even n.

Since RP" is connected, we have H’(RP") = R. For 1 < k < n we have
HFRPY) = H*(Q.(S™)) € H*(S™) = 0. O

Qn(S™) for odd
anE{ n(S") for odd n,

13.6. Corollary. Let M be a compact manifold. Then for all Betti num-
bers, we have by(M) := dimg H*(M) < oco. If M is compact and orientable
of dimension m, we have b (M) = by,_i(M).

Proof. This follows from |(13.2)| and from Poincaré duality |(12.16) O

13.7. Euler-Poincaré characteristic. If M is compact, then all Betti
numbers are finite, so the Euler-Poincaré characteristic (see also|(11.2)))

dim M

xv =Y (=DFo(M) = far(-1)

k=0
is defined.

Theorem. Let M be a compact and orientable manifold of dimension m.
Then we have:

(1) If m is odd, then xpr = 0.
(2) If m = 2n for odd n, then xp = by, (M) =0 mod (2).
(3) If m = 4k, then xar = bop (M) = signature(PEF) mod (2).
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Proof. From |(13.6) we have by(M) = by,—q(M). Thus the Euler-Poincaré
characteristic is xar = >_;Lo(=1)%g = >, o(=1)%bm—g = (=1)™xar which
implies ().

If m = 2n, we have xp = Zzio(—l)qbq = 22;:01(—1)%(1 + (=1)"by, so
XM = b, mod (2). In general we have for a compact oriented manifold

P (o], [6]) = /

anp=(-1)%m=9 / BAa= (=110 PEa((g], [a]).
M M

For odd n and m = 2n we see that Py, is a skew-symmetric nondegenerate

bilinear form on H™(M), so b, must be even (see or below)
which implies (2]).

@) If m = 4k, then P]%f is a nondegenerate symmetric bilinear form on
H?*(M), an inner product. By the signature of a nondegenerate symmetric
inner product one means the number of positive eigenvalues minus the num-
ber of negative eigenvalues, so the number dim H?*(M), —dim H?*(M)_ =
ay —a_, but since H2*(M), @ H?*(M)_ = H?*(M), we have a; +a_ = by,
S0 ay —a_ = by, — 2a_ = by, mod (2). O

13.8. The mapping degree. Let M and N be smooth compact oriented
manifolds, both of the same dimension m. Then for any smooth mapping
f : M — N there is a real number deg f, called the degree of f, which is
given in the bottom row of the diagram

() 20 gy

r|= |-

R~ R

where the vertical arrows are isomorphisms by [(12.19)| and where deg f is
the linear mapping given by multiplication with that number. So we also
have the defining relation

/f*w:degf/w for all w € Q™(N).
M N

13.9. Lemma. The mapping degree deg has the following properties:
(1) deg(fog) =deg f-degg, and deg(Idy) = 1.
(2) If f, g: M — N are (smoothly) homotopic, then deg f = degg.
(3) If deg f # 0, then f is surjective.
(4)

4 If f: M — M is a diffeomorphism, then deg f = 1 if f respects the
orientation and deg f = —1 if f reverses the orientation.
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Proof. () and (@) are clear. [B]) If f(M) # N, we choose a bump m-form
w on N with support in the open set N \ f(M). Then f*w = 0 so we have
0= [ [fw=degf [yw. Since [y, w # 0, we get deg f = 0.

@) follows either directly from the definition of the integral |(10.7)| or from
(13.11)| below. 0

13.10. Examples on spheres. Let f € O(n + 1,R) and restrict it to
a mapping f : ™ — S™ Then degf = det f. This follows from the
description of the volume form on S™ given in the proof of (13.5)]
Let f, g : S™ — S™ be smooth mappings. If f(z) # —g(x) for all z € S™,
then the mappings f and g are smoothly homotopic: The homotopy moves
f(x) along the shorter arc of the geodesic (big circle) to g(z). So deg f =
degg.
If f(z) # —x for all z € S™, then f is homotopic to Idgn, so deg f = 1.
If f(z) # x forall z € S™, then f is homotopic to —Idgn, so deg f = (—1)"+1,
The hairy ball theorem says that on S™ for even n each vector field vanishes
somewhere. This can be seen as follows. The tangent bundle of the sphere
is

TS™ = {(z,y) € R"™ x R""!: |z|> = 1, (z,y) = 0},
so a vector field without zeros is a mapping = — (x, g(z)) with g(z) Lz; then
f(z) := g(x)/|g(x)| defines a smooth mapping f : S™ — S™ with f(z)Llx
for all . So f(x) # x for all z; thus deg f = (—1)""! = —1. But also
f(z) # —x for all z, so deg f = 1, a contradiction.

Finally we consider the unit circle S* 1 € = R2. Tts volume form is given

by w:=i*(zdy —ydx) = i* xjg;g;“; obviously we have [, zdy — ydx = 27.

Now let f: St — S! be smooth, f(t) = (x(t),y(t)) for 0 <t < 2x. Then

1 *
deg f = 2/ [ (zdy — ydx)
s St
is the winding number about 0 from complex analysis.

13.11. The mapping degree is an integer. Let f : M — N be a
smooth mapping between compact oriented manifolds of dimension m. Let
b € N be a regular value for f which exists by Sard’s theorem; see [(1.18)
Then for each z € f~1(b) the tangent mapping T, f is invertible, so f is a
diffeomorphism near . Thus f~!(b) is a finite set, since M is compact. We
define the mapping ¢ : M — {—1,0,1} by

0 if T, f is not invertible,
e(z) =<1 if T,. f is invertible and respects orientations,

—1 if T, f is invertible and changes orientations.
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13.12. Theorem. In the setting of |(13.11), if b € N is a regular value for
f, then

deg f = Z e(z).
zef~1(b)
In particular deg f is always an integer.

Proof. The proof is the same as for lemma [(12.12)| with obvious changes.
([

14. Lie Groups III. Analysis on Lie Groups

Invariant Integration on Lie Groups

14.1. Invariant differential forms on Lie groups. Let G be a real Lie
group of dimension n with Lie algebra g. Then the tangent bundle of G is
a trivial vector bundle, see so G is orientable. Recall from section
the notation:

i G x G — G, multiplication, u(x,y) = z.y.
fe : G — G, left translation, p,(x) = a.z.
u® : G — G, right translation, p®(z) = z.a.
v:G — G, inversion, v(z) = 1.
e € (G, the unit element.
A differential form w € Q"(G) is called left invariant if
ww=w forall ze€G.

Then w is uniquely determined by its value

We € /n\T*G: /n\g*.

For each determinant function A on g there is a unique left invariant n-form
LA on G which is given by

(1) (LA)IE(le s 7Xn) = A(TI(Mafl)'Xla s 7TIE(M$*1)'XH)7
(La)e = To(pe—1)"A.
Likewise there is a unique right invariant n-form Ra which is given by

(2) (Ra)2(X1, ., X)) = AT (1 )X, Te(p® 1 ).X0).

14.2. Lemma. We have for alla € G

(1) (1)*La = det(Ad(a™"))La,
(2) (ta)" Ra = det(Ad(a))Ra,
(3) (RA)a = det(Ad(a))(La)a-
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Proof. We compute as follows:

(1) La)s(X1, ..o, Xn) = (La)ea(Te (1) X1, - ., To(1%). Xn)
= A(Tea(ti(zay-1) To(1®). X1, - -+, Tra(fi(zay-1) T (1) Xn)
= A(Tu(tg1) Toa(pte ) To (1) X1, s Ta(ptg1) Toala—1)-To (1?). X0)
= A(Tu(pta1)-Te(u)- T (1) X1, oy Ta(ptg1)-To(p®)- T (1g1)-X0)
= AAd(a ™). To(py1) X1, ., Ad(a™ ). T (pp-1)-Xn)
= det(Ad(a ) A(Tu(pty-1). X1, -, Te(pt1). Xon)
= det(Ad(a"))(La)z(X1, ..., Xn),
(1a)* Ra)a(X1, - Xn) = (R )aw (T (pta)- X1, - - To(pta)-Xo)
= A(Top (19 ™) To () X, -+, T (). T (10)-X0)

= A(To(p® ) Tuw(® ) To(ta) X1, - Ta(u® ) Taw(1® ). T p1a). X )
= A(Ta(p® ) Te(pa) To(p® ). X1, oo Talp® ). To(a) To (1™ )-Xn)

1

= AAd(a) To(p® ). X1, ..., Ad(a). Tp(i* ). X0)

= det(Ad(a) A(T (1" ) X1, ..., Tu(u® ). Xn)

= det(Ad(a))(Ra)z(X1,. .., Xn),
det(Ad(a))(La)a(X1, ..., Xn)

= det(Ad(a))A(T, <ua D).X1, - Tapg-1). Xo)

A(Ad(a) Ta(pg-1)-X1, - - -, Ad(a) Ta(ptg-1)-Xn)
= A(Ta(1") Telpta) Talpta-1)- X1, o Ta(u™ ). Te(ta) Talpta-1).- Xn)

1

)T
= A(Tu(p® ). X1, Ta(p® ). X0) = (Ra)a(X1, ..., Xp). O

14.3. Corollary and Definition. The Lie group G admits a bi-invariant
(i.e., left and right invariant) n-form if and only if det(Ad(a)) = 1 for all
a€d.

The Lie group G is called unimodular if | det(Ad(a))| =1 for all a € G.

Note that det(Ad(a)) > 0 if G is connected.
Proof. This is obvious from lemma |(14.2)] O

14.4. Haar measure. We orient the Lie group G by a left invariant n-form
La where n = dim(G). If f € C°(G,R) is a smooth function with compact
support on G, then the integral [, ¢ JLa is defined and we have

Jwanta = [ wisra) = [ ria.
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because p, : G — G is an orientation preserving diffeomorphism of G. Thus
f— fG fLA is a left invariant integration on G, which is also denoted by
fG f(z)drx and which gives rise to a left invariant measure on G, the so-
called left Haar measure. It is unique up to a multiplicative constant, since
dim(A" g*) = 1. In the other notation the left invariance looks like

/ flax)dpz = / f(z)dpz for all f € C°(G,R),a € G.
G G

From lemma |(14.2.1)[ we have

/ ((4)* f)La = det(Ad(a)) / (1) (fLa) = | det(Ad(a))| / fLa,
G G G

since the mapping p® is orientation preserving if and only if det(Ad(a)) > 0.
So a left invariant Haar measure is also a right invariant one if and only if
the Lie group G is unimodular.

14.5. Lemma. Fach compact Lie group is unimodular.

Proof. The mapping deto Ad : G — GL(1,R) is a homomorphism of Lie
groups, so its image is a compact subgroup of GL(1,R). Thus det(Ad(G))
equals {1} or {1,—1}. In both cases we have |det(Ad(a))| = 1 for all
acG. O

Analysis for Mappings between Lie Groups

14.6. Definition. Let G and H be Lie groups with Lie algebras g and b,
respectively, and let f : G — H be a smooth mapping. Then we define the
mapping Df : G — L(g, h) by

Df (@) i= Ty (0! ) ). To f Te(p®) = 6 (). Te ("),
and we call it the right trivialized derivative of f.

14.7. Lemma. The chain rule: For smooth g: K — G and f: G — H we
have

D(fog)(z) = Df(g(x)) o Dg(x).
The product rule: For f,h € C*°(G, H) we have

D(fh)(z) = Df(z) + Ad(f(x))Dh(z).

Proof. We compute as follows:

D(f o g)(w) = T(u/ W) .T,(f 0 g).T. (")
= T( OO Ty (F). Te(p8@).T () Ty (g). Te (1)
= Df(g()).Dg(z),

D(fh)(x) = T(p @MD" T (o (f, 1)) Te (1)
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= T(p @ )T (). Ty 0y oy (T f Te (i), Toh Te (1))

= T(p! @)1, T(W T Teli) + Tty ) Toh T (")
= T(p! )T f T (i) + T (D) T (g0 T (") T b T (%)
= Df(z) + Ad(f(z)).Dh(z). O

14.8. Inverse function theorem. Let f : G — H be smooth and for some
x € Glet Df(x) : g — b be invertible. Then f is a diffeomorphism from a
suitable neighborhood of x in G onto a neighborhood of f(x) in H, and for
the derivative we have D(f~1)(f(x)) = (Df(z))~!

Proof. This follows from the usual inverse function theorem. O

14.9. Lemma. Let f € C°(G,G) and let A € N"™C g* be a determinant
function on g. Then we have for all x € G,

(f*Ra)z = det(Df(2))(Ra)e-

Proof. Let dim G = n. We compute as follows:
(f*RA)2(X1, .. Xn) = (RA) pay (T f X1, .o, T f. X )
= AT YT f.X,, ..
= AT @) T f T (") T (™). X, )
= A(Df (). T(1* ). X1,...)
= det(Df(2))A(T (1" ). X1,...)
=det(Df(x))(Ra)z(X1,...,Xyn). O

14.10. Theorem. Transformation formula for multiple integrals.
Let f : G — G be a diffeomorphism, and let A € /\dlmGg*. Then for any
g € CX(G,R) we have

/ o(f ()] det(Df () |dpz = / 9(y)dry,
G G

where drx s the right Haar measure, given by RA.

Proof. We consider the locally constant function e(z) = signdet(D f(x))
which is 1 on those connected components where f respects the orientation
and is —1 on the other components. Then the integral is the sum of all
integrals over the connected components and we may investigate each one
separately, so let us restrict attention to the component G of the identity.
By a right translation (which does not change the integrals) we may assume
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that f(Go) = Go. So finally let us assume without loss of generality that G
is connected, so that ¢ is constant. Then by lemma we have

/G gRa =< /G (gRa) =€ /G F*(@)1*(Ra)

- / (g0 f)edet(Df)Ra = / (g0 )| det(Df)[Ra. O
G G

14.11. Theorem. Let G be a compact and connected Lie group, and let
feC®@G, Q) and A € N"™C g*. Then we have for g € C(G),

degf/gRA:/(gof)det(Df)RA, or
dee s [ oy = [ o7()det(DS ()

Here deg f, the mapping degree of f, see|(13.8), is an integer.

Proof. From lemma [(14.9)| we have f*Ra = det(Df)Ra. Using this and
the defining relation from - for deg f, we may compute as follows:

degf/gRA_/f (gRa) /f

- / (g0 f)det(Df)Ra. O
G

14.12. Examples. Let G be a compact connected Lie group.

(1) If f=p*:G — G, then D(u*)(x) = Idg. From theorem |(14.11)| we get
Jo9RA = [(g 0 p*)Ra, the right invariance of the right Haar measure.

(2) 1 f = pa s G = G, then D) () = T(u@) " ).T3 (1a) T (%) = Ad(a).
So the last two results give [, gRA = [5(g © pta)| det Ad(a)|Ra which we
already know from |(14.4)|

(3) If f(x) = 22 = p(x,z), we have
Df () = Toa (™) Tyt (Te(s®), Te(s")

= To(u™ ) T (0 ) (To(pta) Te (1) + T (p®). Te ("))
= Ad(z) + Id,.

Let us now suppose that fG RA = 1; then we get

dea(( %) =deal( ) [ Ra = [ der(Tdg-+ Ad(w))dne

/ 9(22) det(Idy + Ad(x))dga — / det(Idy + Ad(x))dpr / o(2)dna.
G G G
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(4) Let f(z) = 2" for k € N, and suppose that [, dgz = 1. Then we claim
that

k—1
D(( (=) =D Ad()).
i=0
This follows from induction, starting from example (3) above, since
D(( )(z) = D(Idg.( ) )()
= D(Idg)(z) + Ad(x).D(( )" N)(x) by [T4.7)

k—2 k—1
= Idg + Ad(2)(Y_ Ad(z')) = > Ad(a").
=0 =0

We conclude that

k—1 .
deg( )k:/Gdet (ZAd(m’)) dre.
=0

If G is abelian, we have deg( )* = k since then Ad(z) = Id,.

(5) Let f(x) = v(z) = 2~!. Then we have Dv(z) = Tp® " Ty Tou* =
— Ad(z~1). Using this, we see that the result in (4) holds also for negative
k if the summation is interpreted in the right way:

0 k-1
D(( ) M) = ) Ad@’)=-) Ad=").
1=0

i=—k+1
Cohomology of Compact Connected Lie Groups

14.13. Let G be a connected Lie group with Lie algebra g. The de Rham co-
homology of G is the cohomology of the graded differential algebra (Q(G), d).
We will investigate now what is contributed by the subcomplex of the left
invariant differential forms.

Definition. A differential form w € Q(G) is called left invariant if piw = w
for all a € G. We denote by Qr,(G) the subspace of all left invariant forms.
Clearly the mapping

L: Ng* = QL(G),
(Lo)a(X1, -5 Xp) = (T (pg-1)-X1, - - o, T(pg-1)-Xp),

is a linear isomorphism. Since u’ od = d o u¥, the space (Qr(G),d) is a
graded differential subalgebra of (Q(G), d).

We shall also need the representation Ad: G — GL(A g*) which is given by
Ad(a) = A(Ad(a=1)*) or
(Ad(a)w)(X1, ..., Xp) = w(Ad(a™Y).X1,...,Ad(a"1).X},).
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14.14. Lemma. (1) Via the isomorphism L : \ g* — QL(G) the exterior
differential d has the following form on ) g*:

dw(X(), ce ,Xk) = Z (—1)i+jw([Xi,Xj],X0, e 7551'7 v )/(:j, N ,Xk),
0<i<j<k
where w € \¥ g* and X; € g.

(2) For X € g we have i(Lx)Q(G) C Qr(G) and L1, QL(G) C QL(G).
Thus we have induced mappings

k k—1
Z‘X : /\g* — /\ 9*7

(iXW)(le---’Xk—l) :w(X,Xl,...,Xk_l);
k k
Lx: No* = N\o",
k

(Lxw)(X1,..., Xp) =Y (-D'w([X, X;], X1,..., Xy, ... Xp).
i=1

(3) These mappings satisfy all the properties from section@ in particular
Lx =1ixod+doix, see
Lxyod=doLx, see
[Lx,Ly] = Lixy), see((9.6.3)]
[Lx,iv] =ixy]s see .

(4) The representation Ad:G — GL(A g*) has derivative T,AdX = L.

Proof. For w € A" g* and X; € g the function
(Lw)I(Lxl (), ... s Lix, (z)) = W(T(Mx—l)'LX1 (),...)
=w(T(pg-1).T (). X1,...)
(X X
is constant in z. This implies already that i(Lx ) (G) C Qr(G) and the
form of ix in (2). Then by |(9.8.2)| we have
(dw)(Xo, “ee ,Xk) = (de)(LXO, ‘e ,LXk)(e)

k
= (1)L, (e)(w(Xo, ... X;, ... X))
i=0

+ Z (_1)i+jw([Xian]7X0) s 7)?1'7 B 'a)?ja .. in)a
0<i<y<k

from which assertion (IJ) follows since the first summand is 0. Similarly we
have
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(EXw)(Xl, . ,Xk) = (»CLXLUJ)(LXN . ,ka)(e)
k
= Lx(e)(@(X1,.... X)) + > _(—-D'w (X, Xi], X1,..., X;, ... Xp).
=1

Again the first summand is 0 and the second result of (2]) follows.
@) This is obvious.
@) For X and X; € g and for w € A" g* we have

(T.Ad. X)w) (X1, ..., Xi) = 0lo(Ad(exp(tX))w) (X1, . .., Xi)
= J|ow(Ad(exp(—tX)).X1,...,Ad(exp(—tX)).Xk)

I
M)~

w(X1, ..., Xi—1, —ad(X) Xy, Xipr, ... Xi)
1

-.
> |l

(_1)Zw([X7 Xi],Xh ‘e ,)?i, .. Xk‘)
=1
(ﬁxw)(Xl, e ,Xk> J

14.15. Lemma of Maschke. Let G be a compact Lie group, and let
0=V 5V, 251350

be an exact sequence of G-modules and module homomorphisms such that
each V; is a complete locally convex vector space, © and p are continuous, and
the representation of G on each V; consists of continuous linear mappings
with g — g.v continuous G — V; for each v € V;. Then also the sequence

. G

0V 5 VF 2=V =0

is evact, where VC := {v € V; : gv = v for all g € G}.
Convenient vector spaces are sufficient for this lemma; see[113].

Proof. We prove first that p© is surjective. Let v3 € V3G C V3. Since
p : Vo — V3 is surjective, there is a vo € Vo with p(vy) = v3. We consider
the element vy := fG x.vodr,x; the integral makes sense since x — x.v9 is a
continuous mapping G — V3, G is compact, and Riemann sums converge in
the locally convex topology of V5. We assume that fG drx = 1. Then we

have
a.U9 = a./ T.09d T = / (ax).vodrx = / T.09d1x = U9
G G G

by the left invariance of the integral, see |(14.4)) where one uses continuous
linear functionals to reduce to the scalar valued case. So @ € V& and since
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p is a G-homomorphism, we get
pO(5) = ple2) = p( | zv2ds)
G

_ /G p(@.vn)diz — / ©.p(vs)dpa

G

= /:U.UgdL$:/ UgdLl’:Ug.
G

Now we prove that the sequence is exact at VQG. Clearly p©oi© = (poi) ]VlG =
0. Suppose conversely that vy € Vi with p®(vg) = p(v2) = 0. Then there is
a vy € V1 with i(v1) = vy. Consider 0; := fG z.v1drx. As above we see that
U1 € VlG and that i% (1) = vo. O

So p© is surjective.

14.16. Theorem (Chevalley, Eilenberg). Let G be a compact connected
Lie group with Lie algebra g. Then we have:

(1) H*(G) = H*(\g",d) =: H*(g).

(2) H*(g) = H*(Ag".d) = (Ng")* ={w e Ng" : Lxw =0 forall X €

g}, the space of all g-invariant forms on g.

The algebra H*(g) = H(A g*,d) is called the Chevalley cohomology of the
Lie algebra g. For the proof we follow [194].

Proof of (). Let Z*(G) = ker(d : Q¥(G) — QFF1(@G)), and let us consider
the following exact sequence of vector spaces:

(3) QFL(G) -Ls ZF(G) — HY(G) — 0.

The group G acts on Q(G) by a +— p’_;; this action commutes with d and
induces thus an action of G on Z*(G) and also on H*(G). On the space
Q(G) we may consider the compact C'*°-topology (uniform convergence on
the compact G, in all derivatives separately, in a fixed set of charts). In
this topology d is continuous, Z*(G) is closed, and the action of G is point-
wise continuous. So the assumptions of the lemma of Maschke are
satisfied and we conclude that the following sequence is also exact:

(4) (@) - ZM@)° - HYNG)E - 0.

Since G is connected, for each a € G we may find a smooth curve ¢ : [0,1] —

G with ¢(0) = e and ¢(1) = a. Then (t,z) — pup-1(z) = c(t) 'z is a
smooth homotopy between Idg and p,-1, so by [(11.4)| the two mappings
induce the same mapping in homology; we have

gy =1d: H*(G) — H*(G) for each a€G.
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Thus H*(G)¢ = H*(G). Moreover Z¥(G)¢ = ker(d : Q§(G) — Q¥(@)),
so from the exact sequence () we may conclude that

ker(d: QK (G) = Q7TN(@) oA
im(d: O 1(G) - 9k (G)) (A d).
Proof of (2). Fromwe have Lx od =do Lx, so byMwe

conclude that Ad( Jod=do Ad( ) : Ag* — Ag* since G is connected.
Thus the sequence

k—1
(5) Ao 5 Z5g*) — BN\ g*.d) 0

is an exact sequence of G-modules and G-homomorphisms, where Z k(g*) =
ker(d : /\k g — /\]€+1 g*). All spaces are finite-dimensional, so the lemma of
Maschke is applicable and we may conclude that also the following
sequence is exact:

H*(G) = HYG)Y =

(6) /\9 ~4 Z8(g)C - HE(N\ g*,d)¢

The space H*(\ g*,d)“ consists of all cohomology classes o with A\(/i(a)a =
« for all a € G. Since G is connected, by these are exactly the «
with Lxa =0 for all X € g. For w € A g* with dw = 0 we have by
that Lxw = ixdw+dixw = dixw, so that Lxa = 0 for all a € Hk(/\g*,d).
Thus we get H¥(A\g*,d) = H*(\g*,d)%. Also we have (A g*)¢ = (A g*)®
so that the exact sequence (@) translates to

(7) H"g) = H*(/\ ¢",d) = H*((\ g")°, ).

Now let w € (AFg*)® = {p : Lxp = Oforall X € g} and consider the
inversion v : G — G. Then we have for w € /\k g and X; € g:

(V" Lo)a(Tolpta) X1, - - ., To(pta)-X5)

= (Lw)q—1 (Tav.Te(pa) X1, - - -, Tav. Te(pa) - Xr,)
= (Lu)o1 (=T (). T(ptg1)-Te(pta)-X1, ...
= (Lu)at (~Te(u® ). X1, oo, ~Te(n® ). Xp)
= (D Fw(Tpe. Tp® " X1, ..., Tua T X3
= (-1)*w(Ad(a). X1, ..., Ad(a).Xy)
= (—DF(Ad(a M w) (X1, ..., Xp)

k
(—DFw(X1,..., X5 since w € (/\g*)g
(_1)k(Lw)a<Te(ﬂa)-X17 s Te(ﬂa)'Xk)-
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So for w € (A* g*)? we have v*L,, = (—1)FL,, and thus also (—1)F+!Lg, =
v*dL, = dv*L, = (—1)*dL,, = (—1)*Lg, which implies dw = 0. Hence we
have d|(A\ g*)? = 0.

From () we now get H¥(g) = HF((A\ ¢*),0) = (A" g*)% as required. O

14.17. Corollary. Let G be a compact connected Lie group. Then its
Poincaré polynomial is given by

falt) = /Gdet(Ad(ﬂc) + tIdg)d .

Proof. Let dim G = n. By|((11.2)|and |(13.6)| we have

n

fa(t) = bp(G)tF =) "b(G)t"F =D dimg H¥(G)t" "
k=0 k=0

k=0

On the other hand we have

/ det(Ad(z) + t1dg)drz = / det(Ad(z™)* + tIdg:)dpa
G G

n k
= [ ) Trace(\ Ad(z™")*)t" Fdrz by [14.19)] below

& k=0
n N k
= Z/ Trace(Ad(z)| /\g*)dLa: k.
k=0"C

If p: G — GL(V) is a finite-dimensional representation of G, then the
operator fG p(x)dpxz : V — V is just a projection onto V&, the space of
fixed points of the representation; see the proof of the lemma of Maschke
The trace of a projection is the dimension of the image. So

N k N k
/G Trace(Ad(a)| /\ g*)dLx = Trace ( /G (Ad(a)| /\ g*)dL:c>

k
= dim(/\ g") = dim H*(G). O

14.18. Let T* = (SY)™ be the n-dimensional torus, and let t* be its Lie
algebra. The Lie bracket is zero since the torus is an abelian group. From

theorem [(14.16)] we have then that H*(T") = (A(t")*)"" = A(t")*, so the

Poincaré polynomial is fn(t) = (1 +¢)".
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14.19. Lemma. Let V be an n-dimensional vector space and let A:V —V
be a linear mapping. Then we have

n k
det(A + tldy) =Y " FTrace(\ A).
k=0

Proof. By /\kA : /\k V > /\kV we mean the mapping v1 A -+ A v —
Avy A -+ N Avg. Let eq,...,e, be a basis of V. By the definition of the
determinant we have

det(A+tldy)(er A+ Nep) = (Aer +ter) A--- A (Aeyp, + tey)

n
=D "N e A Ade Ao AN Aei A Ny,

k=0 1 <<tk

The multivectors (ej, A--- A€, )i <..<i, are a basis of A"V and we can thus
write

(/\A)(eil/\--'/\eik):Aeil/\---/\Aeik: Z Afll z]:ejl c N ey,

J1<<Jk

where (A7) is the matrix of AF A in this basis. We see that

01...0)

61/\"'/\A€i1/\"'/\A€ik /\en_All zke/\ <N ep.

21...2%
Consequently we have

det(A + tIdV)Gl N Nep = Zt” k Z A” Zk Ae,

i1.. zk
k=0 i< <ip

n k
= Zt”_k Trace(/\A) e1N - Aen,
which implies the result. O

15. Extensions of Lie Algebras and Lie Groups

Extension of Lie Algebras

In this section we describe first the theory of semidirect products and central
extensions of Lie algebras, later the more involved theory of general exten-
sions with noncommutative kernels. For the latter we follow the presentation
from [6], with special emphasis on relations with the (algebraic) theory of
covariant exterior derivatives, curvature and the Bianchi identity in differen-
tial geometry (see section [(15.3)). The results are due to [89], [164], [209],
and generalizations for Lie algebroids are in [127]. The analogous result for
Lie super-algebras are available in [7].
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15.1. Extensions. An extension of a Lie algebra g with kernel b is an
exact sequence of homomorphisms of Lie algebras:

0—>hL>eL>g—>O.

(1) This extension is called a semidirect product if we can find a section s :
g — ¢ which is a Lie algebra homomorphism. Then we have a representation
of the Lie algebra a : g — L(b,h) which is given by ax(H) = [s(X), H]
where we suppress the injection 7. It is a representation since ajxy|H =
(s(1X, Y]), H] = [[s(X),s(Y)], H] = [s(X), [s(Y), H]| — [s(¥), [s(X, H)]] =
(axay—ayax)H. This representation takes values in the Lie algebra der(h)
of derivations of b, so a : g — der(h). From the data «, s we can reconstruct
the extension e since on h x g we have [H + s(X),H' + s(X')] = [H,H'] +
(s(X), H] — [s(X'), H] + [X, X'] = [H, B + ax (H') — ax: (H) + [X, X'].
(2) The extension is called a central extension if b or rather i(h) is in the
center of e.

15.2. Describing extensions. Consider any exact sequence of homomor-
phisms of Lie algebras:

0—>b—i+e—3+g—>0.

Consider a linear mapping s : g — ¢ with pos = Idg. Then s induces
mappings

(1) a:g—der(h),  ax(H)=[s(X) H],

2
(2) p:Na—b p(XY) =[s(X),s(Y)] - s([X,Y]),
which are easily seen to satisfy

(3) [ax, ay] — axy] = a'dp(X,Y)7

() > (axp(vi2) - p((X,Y],2)) =0.
cyclic{ XY, Z}

We can completely describe the Lie algebra structure on ¢ = h @ s(g) in
terms of o and p :

(5) [Hi+s(X1), Ha + s(X2)]
= ([H1, Ha] + ax, Hy — ax, H1 + p(X1, X2)) + s[X1, X2

and one can check that formula (Bl gives a Lie algebra structure on h @ s(g)
if o : g — der(h) and p: A® g — b satisfy @3) and (@).
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15.3. Motivation: Lie algebra extensions associated to a principal
bundle. Let 7 : P — M = P/K be a principal bundle with structure group
K see section P is a manifold with a free right action of a Lie group K
and 7 is the projection on the orbit space M = P/K. Denote by g = X(M)
the Lie algebra of the vector fields on M, by ¢ = X(P)X the Lie algebra
of K-invariant vector fields on P and by h = Xy (P)¥ the ideal of the
K-invariant vertical vector fields of e. Geometrically, ¢ is the Lie algebra
of infinitesimal automorphisms of the principal bundle P and § is the ideal
of infinitesimal automorphisms acting trivially on M, i.e., the Lie algebra
of infinitesimal gauge transformations. We have a natural homomorphism
s : ¢ — g with the kernel b, i.e., ¢ is an extension of g by b.

Note that we have additional structures of C*° (M )-modules on g, b, ¢, such
that [X, fY] = f[X,Y] + (mX)fY, where X, Y € ¢, f € C®°(M). In
particular, h is a Lie algebra over C*°(M). The extension

0—=h—>e—g—0

is also an extension of C'*°(M )-modules.

Assume now that the section s : g — ¢ is a homomorphism of C*°(M)-
modules. Then it can be considered as a connection in the principal bundle
7, see section and the h-valued 2-form p as its curvature. In this sense
we interpret the constructions from section as follows in below.
The analogy with differential geometry has also been noticed by [117] and
[118].

15.4. Geometric interpretation. Note that |(15.2.2)| is similar to the
Maurer-Cartan formula for the curvature on principal bundles of differential

geometry [(19.2.3)

p=ds+ %[s, S|,
where for an arbitrary vector space V' the usual Chevalley differential, see

(14.14.2)] is given by

skew \8
do(Xo, ..., X,) = Z(—l)erj(p([Xi,Xj],Xo, o X X X))
1<J
and where for a vector space W and a Lie algebra f the Ng-graded Lie bracket

[ Inon Ly, (Wif), see [19:2]} is given by

[@7¢]A(X17"' p+q ' ZSlgn 0’17"'7XUp)7w(XU(p+1)7“')]f'

Similarly formula |(15.2.3)[ reads as
ad, = da + 3o, ala.
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Thus we view s as a connection in the sense of a horizontal lift of vector
fields on the base of a bundle and « as an induced connection; see |(19.8)]
Namely, for every der(h)-module V' we put

an s L (8 V) = LEL (a3 V),

skew
p

arp(Xo, ..., Xp) = > (—Viax,(¢(Xo, ..., Xi, ..., Xp)).
i=0
Then we have the covariant exterior differential (on the sections of an asso-

ciated vector bundle; see [(19.12)))
(1) Sat Lh (V) = LEL(@: V), dap = app +dop,

skew skew

for which formula|(15.2.4)|1ooks like the Bianchi identity, see|(19.5.6) 0op =

0. Moreover one can prove by direct evaluation that another well known
result from differential geometry holds, namely [(19.5.9), i.e.,

(2) 306a(0) = [psln, € LP . (3:h).

If we change the linear section s to s’ = s + b for linear b : g — b, then we
get,

(3) oy = ax + adg(x),
4) PXY)=p(X)Y)+axb(Y) — ayb(X) — b([X,Y]) + [bX, bY]
— (X, Y) + (5ub)(X,Y) + [bX, bY],
p = p+3ab+ 3[b, b

15.5. Theorem. Let bt and g be Lie algebras.

Then isomorphism classes of extensions of g over b, i.e., short exact se-
quences of Lie algebras 0 — §h — ¢ — g — 0, modulo the equivalence
described by the commutative diagram of Lie algebra homomorphisms

0 b e g 0
|

0 b ¢ g 0,
correspond bijectively to equivalence classes of data of the following form:
(1) a linear mapping « : g — der(h),
(2) a skew-symmetric bilinear mapping p: g X g — b
such that
(3)  lax,ay] —apxy) = ady(x,y),

(4) Z (OéX,O(Y, Z) - p([X,Y], Z)) =0, equivalently, dop = 0.

cyclic
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On the vector space ¢ := h @ g a Lie algebra structure is given by

(5) [Hi+ X1, Hy + Xo)e
= [Hy, Haly + ax, Ho — ax, Hy + p(X1, X2) + [ X1, Xo]g,

and the associated exact sequence is
0obh-—shdg=c—25g-0.

Two data («, p) and (¢, p') are equivalent if there exists a linear mapping
b:g— b such that
(6) ay =ax + adz(x),
(1) P(XY) =p(X,Y) + axb(Y) — ayb(X) = b([X, Y]) + [b(X),b(Y)],
Pl =p+dab—+ 3[b, 0],
the corresponding isomorphism being
e=hdg—ohdg=", H+Xw— H-bX)+X.

Moreover, a datum («, p) corresponds to a split extension (a semidirect prod-
uct) if and only if (a, p) is equivalent to a datum of the form (¢/,0) (then o
is a homomorphism). This is the case if and only if there exists a mapping
b:g— b such that

(8) p=—0ab— 1[b,b].
Proof. Straightforward computations. O

15.6. Corollary ([120]). Let g and b be Lie algebras such that b has
no center. Then isomorphism classes of extensions of g over by correspond
bijectively to Lie homomorphisms

a: g — out(h) = der(h)/ad(h).

Proof. If («,p) is a datum, then the map a : g — der(h)/ad(h) is a Lie
algebra homomorphism by Conversely, let & be given. Choose a
linear lift o : g — der(h) of &. Since & is a Lie algebra homomorphism and
h has no center, there is a uniquely defined skew-symmetric linear mapping

p:gxg— bsuch that [ax,ay] — axy] = ad,(x,y). Condition [(15.5.4)]is
then automatically satisfied. For later use also, we record the simple proof:

> |axe(v.2) = p(IX,Y],2), H]
cyclic X,Y,Z

= > (axlp(v:2), H] = [p(¥. 2),ax H) - [p(1X, Y], 2), H])
cyclic X,Y,Z
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= E (Oéx lay, az] — axayy,z — oy, azlax + oy, zjax
cyclic X,Y,Z

— laxy), az] + a[[X,Y]Z]>H
= Y (lax.lav,az) — lax, apz) - lapxy) az) + agxyiz) H =0.
cyclic X,Y,Z

Thus (a, p) describes an extension by theorem |(15.5)l The rest is clear. [

15.7. Remarks. If h has no center and & : g — out(h) = der(h)/ad(h) is a
given homomorphism, the extension corresponding to & can be constructed
in the following easy way: It is given by the pullback diagram

pro

0 b der(h) Xout () 9 g 0
| l
0 b der(b) T out(h) —=0

where der(h) X o) 9 is the Lie subalgebra
der(h) Xout(p) 8 := {(D, X) € der(h) x g: w(D) = a(X)} C der(h) x g.
We owe this remark to E. Vinberg.

If h has no center and satisfies der(h) = b and if b is normal in a Lie algebra
¢, then ¢ 2 h @ ¢/, since Out(h) = 0.

15.8. Theorem. Let g and b be Lie algebras and let
G+ g — out(h) = der(h)/ ad(h)

be a Lie algebra homomorphism. For a linear lift o : g — der(h) of & choose
e /\29 — b satisfying ([ax, ay] — ajxy)) = ad,x,y)- Then A = Xa, p) =
dap: /\39 — Z(h) is a cocycle for the cochain complex

0« L% (3 Z(9)) = LY (g: Z(b)), 6005 = 0.

skew

The cohomology class [\ € H3(g; Z(h)) depends only on & and not on the
choices of a and p. Then the following are equivalent:

(1) The d5-cohomology class of A vanishes: [\] =0 € H3(g; Z(h)).

(2) There ezists an extension 0 — b — ¢ — g — 0 inducing the homomor-
phism &.

If this is the case, then all extensions 0 — h — ¢ — g — 0 inducing the ho-
momorphism & are parameterized by H*(g,(Z(b),a)), the second Chevalley
cohomology space of g with values in the center Z(h), considered as g-module
via Q.
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Proof. Using once more the computation in the proof of corollary we
see that ad(A(X,Y,Z)) = ad(d.p(X,Y, Z)) = 0 so that \(X,Y,Z) € Z(b).
The Lie algebra out(h) = der(h)/ad(h) acts on the center Z(h); thus Z(h)
is a g-module via @&, and dg is the differential of the Chevalley cohomology.

Using |(15.4.2), we see that
0a) = adap = Ip, pln = —(=1)*2[p, plr = 0,
so that [\] € H3(g; Z(b)).

Let us check next that the cohomology class [A] does not depend on the
choices we made. If we are given a pair («, p) as above and we take another
linear lift o/ : g — der(h), then o'y = ax + ady(x) for some linear b: g — b.
We consider

2
7 Na—b AXY) = p(X,Y) + (6.)(X,Y) + [B(X),b(Y)].

Computations involving only the definitions and the Jacobi identity show
that

[ale a/Y] - Oé,[X,Y] = adp’(X,Y)a )\(O{, p) = 606/) = 50/p, = )‘(O/a p,)a

so that even the cochain did not change. So let us consider for fixed « two
linear mappings

2
p,p /\9 — b, Jax,ay] —axy) =ad,xy) = ady(xy) -

Then p— o =: pu: N9 — Z(b) and Aa, p) — Ma, p') = 6ap — ap’ = dapt.
If there exists an extension inducing @, then for any lift o we may find p as
in |(15.5)[such that A(a, p) = 0. On the other hand, given a pair («, p) as in
(1) such that [A(a, p)] = 0 € H3(g, (Z(h),a)), there exists pu: A\>g — Z(b)
such that dzu = A. But then

ad(p—py(x,y) = adpx,yys  Oalp —p) =0,
so that (a, p — p) satisfies the conditions of |(15.5)[ and thus defines an ex-

tension which induces a.

Finally, suppose that (1) is satisfied, and let us determine how many ex-
tensions there exist which induce @. By we have to determine all
equivalence classes of data (a, p) as in [(15.5)] We may fix the linear lift «
and one mapping p : A? g — b which satisfies [(15.5.3)] and [(15.5.4), and we
have to find all p/ with this property. But then p —p' = p: A°g = Z(h)
and

Sapt = bap —0ap =0—0=0
so that p is a 2-cocycle. We may still pass to equivalent data in the sense
of [(15.5)| using some b : g — h which does not change «, i.e., b: g — Z(h).
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The corresponding p’ is, by [(15.5.7)}, p' = p+ dab+ 1[b,b]n = p+ 65b. Thus
only the cohomology class of u matters. ([l

15.9. Corollary. Let g and by be Lie algebras such that § is abelian. Then
isomorphism classes of extensions of g over by correspond bijectively to the set
of all pairs (e, [p]), where a: g — gl(h) = der(h) is a homomorphism of Lie
algebras and [p] € H%(g,bh) is a Chevalley cohomology class with coefficients
in the g-module b given by a.

Isomorphism classes of central extensions correspond bijectively to elements
[p] € H*(g,R)® b (0 action of g on b).

Proof. This is obvious from theorem [(15.8) O

15.10. An interpretation of the class . Let h and g be Lie algebras
and let a homomorphism @ : g — der(h)/ad(h) be given. We consider the
extension

0 — ad(h) — der(h) — der(h)/ad(h) — 0
and the following diagram, where the bottom right hand square is a pullback

(compare with remark [(15.7)]):

0 0
i
Z(h) 40
) JE >§ \\\\\\\\\\\\\\\\\\\\\\\\\\ —g——0
0 — ad(h) ——— g —L—e g ——0
0 —> ad(h) der(h) — der(h)/ ad(h) — 0.

The left hand vertical column describes h as a central extension of ad(h) with
abelian kernel Z(h) which is moreover killed under the action of g via a; it
is given by a cohomology class [v] € H?(ad(h); Z(h))®. In order to get an
extension e of g with kernel § as in the third row, we have to check that the
cohomology class [v] is in the image of i* : H?(eq; Z(h)) — H?(ad(h); Z(h))®.
It would be interesting to express this in terms of the Hochschild-Serre exact
sequence; see [92].
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Extensions of Groups and Lie Groups

In this section we present a discussion and variants of cohomology results
going back to O. Schreier [201], 202], R. Baer [15], S. Eilenberg and S.
MacLane, [56], G. Hochschild [88), [89], and G. Hochschild and J.-P Serre
[91]. A convenient source for group cohomology is [74]. We have to be

careful when taking sections; see |(15.12)[ for a discussion of this.

15.11. Describing extensions. Let G and N be Lie groups. An eztension
of G over N is an exact sequence of homomorphism of groups:

e—>N—i—>E—}L>G—>e.

Two extensions are defined to be equivalent if there exists a homomorphism
@ fitting commutatively into the diagram

N—>prg-".q
‘|
N> E G

/ p

e

e €.

Note that if such a morphism ¢ exists, then it is an isomorphism.
For a given extension let us choose a section s : G — E of p with s(e) = e.
We may assume that s is smooth on an open e-neighborhood U in G. Then
s defines mappings
a: G — Aut(N), oz (h) = s(z)hs(z) 7!,
f:GxG—=N, fla,y) = s()s(y)s(zy) ™",
which are smooth near e in G and, by the definition of o and by associativity,
have the following properties:
Oz O (yy = conjf(xjy) OQpy,
ax(f(y7 Z))f(%, yZ) = f(xvy)f(xya Z)a
fle,e) = f(z,e) = fle,x) =,
where conj,(n) = hnh~! is conjugation by H, an inner automorphism. We
shall denote by Int(N) C Aut(/N) the normal subgroup of all inner auto-
morphisms in the group of all automorphisms. If we choose another section

s’ : G — E which is smooth near e, then §'(z) = b(x)s(x) for a mapping
b: G — N which is smooth near e in G. We have

Qy = Conjb(a:) Oy,

f(wy) = b(x)aa(b(y)) f (@, y)b(ay) ™.
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The group multiplication on E is then described in terms of a and f by
ms(x).ns(y) = ms(@)ns(z) " s(x)s(y) = mag(n) f(z,y).s(xy),
(ms(x)) ™" = ag 1 (flz,a7h) " m™)s(z7h)
= (az) " H(m ™ f(a, 27 ) s(z )
= fla™h ) taga(mTh) s,

See [(15.12)[ below for the reconstruction of the smooth structure.

15.12 Choosing sections smoothly or reconstructing the smooth
manifold structure. Let

e—)N—i—>E—g—>G—>e

be an exact sequence of smooth homomorphisms of Lie groups. In particular,
FE is a principal fiber bundle over G with structure group N. If we are able
to choose a smooth section s : G — FE of p as in then this is a
trivial fiber bundle, so F =2 N x G as a smooth manifold, and we can use
all constructions of |(15.13)H(15.27)| below to describe Lie group extensions
of G over N which are topologically trivial.

Let us look at the long exact sequence in homotopy:
o= m(G) = m(N) = m(E) = m(G) = mp(N) — ...

We always have mo(N) = 0. So if N is connected and E is simply connected,
then both NV and G are simply connected. Using structure theory of Lie
algebras and Lie groups, one can prove the following (see [90]): If E is
simply connected and N is connected, then there is a closed submanifold M
of E meeting N only in {e} transversally, such that E = N x M. Thus there
exists a global smooth section s : G — FE.

For the topologically nontrivial case, we can find a global section s which is
smooth only on a neighborhood U of e in G which also satisfies U~! = U.

Lemma. Then we can reconstruct the Lie group structure on E from the
extension data (which are all smooth near e on G) and the smooth manifold
structure on N x U 2 U = p~}(U) C E.

Proof. Choose e € V C U open with V™! = V and V.V C U, and let
V :=p~ (V). In the setting of [(15.11)| we then have: o : U — Aut(N) and
f:VxV — N are smooth and the group multiplication is smooth
on V xV — U. We then use (2.V, jiz—1 : 2.V — V),cp as atlas for E. The
chart changes are pi,-1 0 fiz = ft,-1 e (zVNyV)=Vn(zlyV)—
(y_l.x.f/) NV, so they are smooth. The resulting smooth manifold structure
on FE has the property that p: E — G and i : N — E are smooth, and the
group structure maps p and v are smooth also. Moreover F is Hausdorff:
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Either p(z) = p(y) and then we can separate them already in one chart
.V = p~Y(p(x).V), or we can separate them with open sets of the form
p~Y(Uy) and p~1(Us). O

We shall use this lemma in all constructions below without mentioning it.
Note that a homomorphism between Lie groups which is smooth near e is
smooth everywhere.

15.13. Proposition ([201, 202]). Let G and N be Lie groups. We
consider pairs (o, f) of mappings which are smooth near e:

a:G—Aut(N) and f:GxG— N
with the properties

(1) QU © Quy = CONJ p(5.4)) Oy
(2) flese) = f(z,e) = fle,y) = e,
(3) e = au(f(y,2))f(z,y2) f(zy, )7 flz,y) "

Then the following assertions hold:

(4) Ewvery such pair (c, f) defines a Lie group extension of G over N, given
by the set E = N x G, with the group structure

(m, 2).(n,y) = (maz(n)f(z,y), zy),
(n,z) L = (fla™ 2) tag-1(nh), z7h).
Up to isomorphism, every extension of G over N can be so obtained.
(5) Two data (c, f) and (<, ') define equivalent extensions if there exists

a mapping b : G — N (smooth near e) such that

Uy = CONjp(z) O,
(@, y) = b(z)aw(b(y)) f(, y)b(ay) ™.
The induced smooth isomorphism E — E’ between the extensions de-
fined by (o, f) and (o, f') is given by (n,z) — (nb(z)~!, z).
(6) A datum (o, f) describes a splitting extension (a semidirect product) if
and only if it is equivalent to a datum (¢, f'), where f' is constant = e.

This is the case if and only if there exists a map b : G — N (smooth
near e) with

F@,y) = bx)ou (b(y)b(zy) "

Note that for such a pair (¢, f' = e) the map o must be a homomor-
phism and thus is smooth everywhere.

Proof. |(15.11)| and routine calculations. O
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15.14. Remarks. (1) The center Z(N) of N is preserved by all automor-
phisms of N and pointwise fixed by all inner automorphisms, so the Lie
group Aut(N)/Int(NN) acts by automorphisms on Z(N). Every homomor-
phism @ : G — Aut(N)/Int(N) naturally induces a homomorphism G —
Aut(Z(N)) and therefore turns Z(N) into a smooth G-module (Z(N), @).
Condition implies that every extension of G over N induces a
smooth homomorphism & : G — Aut(N)/Int(N), hence defines a G-module
structure on Z(N). Thus we have the following commutative diagram with
exact rows:

e N : E

conj l conj | N l dl

e — Int(N) —= Aut(N) —= Aut(N)/ Int(N) — e.

Note that the commutativity of this diagram yields a surjective homomor-
phism F — T', where I' is the pullback object of the morphisms ¢ and a.
We shall exploit this fact later.

(2) Note that if («, f) is the data of an extension then every lift o/ : G — N
(smooth near e) of & shows up in a data pair (¢, f’) equivalent to («, f).

This is a consequence of [(15.13.5)|

(3) In [15] and [56] a triplet (IV, G, &), where N and G are groups and & is
a homomorphism G' — Aut(N)/Int(N), is usually called an abstract kernel
or kernel for short. The kernel (N, G, &) is said to be extendible if it can be
derived from an extension of G over N.

In the following we want to characterize those smooth homomorphisms &
for which (N, G, &) is an extendible kernel.

15.15. Notation. Let us fix a smooth homomorphism of Lie groups & :
G — Aut(N)/Int(N) and consider all pairs (a, f) consisting of a lift « :
G — Aut(N), x +— ay, of @, and of f: G x G — N which are smooth near
e and satisfy conditions |(15.13.1)and [(15.13.2)f

(1) QU © Qi = CONJ p(.4)) Oy

(2) fle,e) = f(x,e) = fle,x) =€, ae=Idy.

For the sake of brevity, we call such a pair («, f) an a-pair. We write
3) Ay, 2) = aa(F(y, ) @, y2) flay, 2) 7 Fla, )~

for the right side of equation [(15.13.3)l To avoid taking inverses it will be
often convenient to write ([B]) in the equivalent form

@) A, y, 2) (2, y) f (2y, 2) = aa(fy, 2)) f (@, y2).
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Note that the normalization condition |(15.13.2) implies that A is also nor-

malized, i.e.,
(4) Ae,y,z) = Mz, e, 2) = ANz, y,e) =€ for all z,y,z € G.
Two a-pairs (o, f) and (¢, f/) are said to be equivalent if there exists a

mapping b : G — N such that

!/ .
o, = COIlJb(x) oy,

f(@,y) = b(w)aa (b(y)) f (2, y)blzy) "

Following [93], the function f is traditionally called a factor set, and \ is
called the obstruction of («, f) to form an extension. We shall not use this
terminology here.

15.16. Nonabelian cohomology. Let (Z,3) be a smooth G-module, i.e.,
an abelian Lie group with a smooth G-action. The boundary operator of
group cohomology with values in (Z, §) is given by
dp Map,(G*, Z) — Map, (G**1, 2),
(0af) (0,21, - - k) = Bao (f (w1, -, 2p))-fwoxn, w2, . )
—1)k _1)k+1
.f(.’IJ(), T1T2, T3y . .. ,xk) e f(xo, e ,.%'k_ll‘k)( b .f(iL'o, ey wk—l)( b "

where Map, denotes the space of mappings which are smooth near e. This
gives rise to abelian group cohomology; here Z is abelian!

Now we discuss a nonabelian version. Inspired by condition |(15.13.3)| or by
(15.15.3)} for every map o : G — Aut(N) and f : G x G — N which are

smooth near e we consider
baf :GXxGxG— N,
Gaf) (@Y. 2) = au(f(y. 2) f (@, y2) fxy, 2) " fla,y) "
Then §, looks like the nonabelian version of a coboundary — except that

(a) « is not a homomorphism, and that

(b) in comparison with the above traditional definition the order of the two
middle terms of the expression for d, f is reversed.

Likewise assertion |(15.13.6)| suggests to consider for b : G — N (smooth
near e) the ‘nonabelian coboundary’

Sab: G x G — N, (8ab)(z,9) = b(x)am(b(y))b(zy)~ .

Also in this case the terms in the expression on the right hand side do not
follow the traditional order.
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A straightforward computation shows that
dadab(x,y, 2)
— v (b()ary (b(2))b(y2) )bl e (b(y2) ey (b(=)) ~eta (b))~ bla) .
If the image of b is central in N, then this reduces to
000ab(2,y, 2) = agz 0 ay(b(2))ag, (b(2)) .

Thus we cannot expect §,0,b = e in general.

15.17. Remarks. By |(15.13)| an a-pair («, f) is the data of an extension
if and only if the associated map A\ = §,.f is identically = e.

If o/ : G — Aut(N) is another lift (smooth near e) of &, then there exists
amap f': G x G — N (smooth near e) such that (¢, f') is equivalent to

(a, f).

For fixed o the a-pairs (a, f) and (a, f’) are equivalent if and only if there
exists a map b: G — Z(N) which is smooth near e such that

(@, y) = b(x)aw (b(y)) f(, y)b(zy)
that is, the maps f’ and f differ only by the coboundary d5b with respect

to cohomology with values in the G-module (Z(N),@). Since a = o/, the
equation oy = conjy,) ooy, implies conjy,) = id, so b(z) must be central.

15.18. Lemma.
(1) For any a-pair (a, f) the associated A = 0, f takes values in the center
of N.

(2) If the pairs (o, f) and (¢, f') are equivalent, then the associated maps
A and N coincide. In particular, if (o, f) is the data of an extension,
then so is every equivalent pair (o, f').

Proof of (Il). Applying condition |(15.13.1), we find

conj/\(%y,z) = conjaz(f(y7z)) conjf(%yz) conjf(x%z)q conjf(%y)_l

-1, -1 -1 -1
Qgyz O, Oy Ol Oy~ Oy

-1 -1
= QOO0 0 Qg Oy Ol

= Ide
which means that \(x,y, z) must lie in the center of N.
Proof of (2). Let (o/, f’) be equivalent to («, f). Then there exists a map
b:G — N with
(3)  aj=conjyg oz, [f(z,y) = b(x)au(b(y))f (=, y)b(zy) .
By definition we have

N(z,y,2) f' (@, y) f(xy, 2) = &, (f (y, 2)) f (. y2).
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Inserting the identities (B]), the left side of this equation reads

N(x,y,2) - ['(w,y) - [y, 2)
= N(2,y,2) - b(@)ax (b(y)) [ (x,9)blay) " - blzy)awy (b(2)) f (zy, 2)bzy=z) "
= N(2,y,2) - b(a)az (b(y)) f(x, y)awy (b(2)) f (zy, 2)b(zy=) .
Since conj ¢ (g ) Oy = azoay, we have f(x,y)awy(b(2)) = azay(b(2)) f(z,y)
and therefore (using also that \'(x,y, z) is central in N):
N(@,y,2) - f'(2,9) - f'(2y, 2)
= N(z,y,2) - b(2) o (b(y))away (b(2)) f (z,y) f (zy, 2)b(ayz) !
= N(z,y,2) - b(x)az(b(y)ay (b(2))) f(z, y) f (zy, 2)b(ayz) "
= b(x) o (b(y)ay (b(2)))X (2, y, 2) f (2, y) f (xy, 2)b(wyz) "

Similarly, the right side can be transformed into

o (f'(y. 2)) - f'(z,y2)
= conjy(y) @ (b(y)ay (b(2)) f(y, 2)b(y2) ") - b(a)aw (b(y2)) f (x, y2)b(ayz) ™
= () (b(y)ay (b(2)) f(y, 2)b(y2) ~)b(2) " b(2)aa (b(y2)) f (, y2)b(zyz) "
= b(x) g (b(y)ay (b(2)) s (f (y, 2)) f (2, y2)blayz) .
Canceling the term b(z)ay (b(y)ay (b(2))) on the right and the term b(zyz)~!
on the left, we see that A (z,y, z) satisfies
N(z,y,2) f(z,y) f(2y, 2) = aa(f(y, 2)) f (2, y2),
the defining equation for A(z,y, z). Thus A = \. O

15.19. Lemma. Let (a, f) be an a-pair and let A = d,.f.
(1) The map
A:GxGxG— Z(N), (x,y,2) = Az, v, 2),

is a normalized 3-cocycle with respect to d5 cohomology with values in
the G-module (Z(N), &) and is smooth near e.

(2) The cocycles (smooth near e) in the d5 cohomology class [\ of A are
exactly the maps N = 0, f which are induced by an a-pair of the form
(a, f).

(3) An a-pair (o, f') induces the same cocycle X € [\ as («, f) if and only
if f=1Ff"-c, where c: G x G — Z(N), is a 2-cocycle with respect to
da cohomology, normalized by the condition c(x,e) = c(e,y) = e, and
15 smooth near e.
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Proof. (1) In order to show that A is a 3-cocycle, we have to prove that,
for any quadruplet (z,y, z,u) of elements in G,

(0aN)(z,y, z,u)
= a,( My, z,u))AMzy, z,u) Nz, yz, w) Nz, y, 2u) I\ (z,y,2) = e,
or, equivalently, that
az( Ay, z,u) Az, yz, u) A (2, y, 2) = May, z,u)A(z,y, 2u).

By the definition of A and the centrality of the A’s, we have for the right
side R of this equation:

R = gy (f(2,w) f(zy, 2u) f(wyz,u) " fzy, 2) "1 Az, y, 2u)
= agy(f(z,u)) - Ma,y, zu) - 2y, zu) f(yz,u) " flay, 2) 7"
Applying the equation «,, = conj Flay)—1 OOz © 0y, we conclude
Rf(wy, =) f(zyz,u) = fz,y) " away(f(z, ) f (2, y) Az, y, 2u) f (2, zu),
and, by the centrality of R and the \’s,
Rf(z,y)f(zy, z) f(zyz,u) = azoy(f(z,u) - Mz, y, zu) f(z,y) f (zy, zu)
= oy (f (2, w))aw (f(y, 2u)) f (2, yzu) f (zy, zu) " f(2,9) 7 f(2,9) f (2y, 2u)
= azay(f(2,u))ox(f(y, 2u)) f(z, yzu).
For the left side L = a,(A(y, z,u))A(z, yz, u)\(z,y, 2) we see
L =a,( Ay, z,u) - Mz,yz,u) - XNz,y, 2)
= ax(A\(y, z,u)) - M, yz,u) - @ (fy, 2)) f@,y2) f ey, 2) 7 fa,y) "
)+ [y, 2) - Ma,yz,u) f (e, y2) f (wy, 2) 7 f ()~
)+ [y, 2) - aw(fyz, w) f (2, yzu) f(zyz,u) " flz,yz) 7!
S y2) fay, 2) 7 e, y) ™
= ag(ay (f(z, ) f (y, zu) f(yz, )" f(y, 2) 7 f (9, 2) f(yz.w)
[ yzu) feyz, )~ f ey, 2) " f (2,y) 7
= au(ay (f(z,u) f(y, zu)) f(a, y2u) f(xyz,u) " 2y, 2) 7 f (2 y) 7
Thus we conclude that
Lf () (e, 2) Fa2, 1) = g (f(2, 0) £, 20)) f (2, y=)
= Rf(z,y)f(zy,2)f(zyz,u)
and, upon cancellation, L = R. This finishes the proof of ().

|
Q
8
P e
>
—~ o~
=
j\l
<

@) Consider any mapping f' : G x G — N such that (a, f’) is an a-pair.

Then

; : -1, -1
CONJf(gy) = CONJpr(g ) = (Qay) ™ O Qy,
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and therefore the element c(x,y) = f(x,y) " f/(z,y) lies in the center Z(N)
of N. Now

N(z,y, )Mz, y,2) !
= az(f(y, 2)e(y, 2)) f(z, y2)e(w, y2)e(wy, 2) 7 fzy, 2) " e(z,y) 7 fz,y) 7
f( 7y)f(:13y,2’)f($, yz)ilax(f(ya 2)71)

x
= aI(C(ya Z))C(.%‘, yZ)C(fL‘y, Z)ilc(xv y)il = (6076) (LIZ‘, Y, Z)
so that [\] = [\] € H3(G, (Z(N),a)).
Reading the above calculations backwards, we see that, conversely, every
cochain A’ lying in the cohomology class of \ is induced by some pair («, f7).

[B) We have seen in the proof of ([2)) that the cochains A = d,f, X = dof’
induced, respectively, by the a-pairs (a, f) and (a, f’) differ by the cocycle
dac, where c(z,y) = f(x,y) " f (z,y). Thus (a, f) and (o, f') induce the
same cocycle A if and only if dzc vanishes. This implies that the cocycles
in the cohomology class [A] are in 1-1 correspondence to the 2-cocycles with
respect to dz-cohomology. This finishes the proof. ([

15.20. Corollary. The cohomology class of A = o f depends only on &,
not on the particular choice of the a-pair (a, f).

Proof. Suppose that (¢, f') is another @-pair and let \' = 6, f'. By
(15.17)] the pair (o, f') is equivalent to some pair (a, f”). Since by lemma
(15.18.2)|equivalent pairs produce the same \, we have X' = 4§, f”. By lemma
(15.19.2)| dof and &, f" are in the same cohomology class. This proves the
assertion. ([l

Notation. For given & we henceforth write A* for the cohomology class
[\] € H3(G;(Z(N),a)) (smooth near e). By the corollary above this nota-
tion is unambiguous.

15.21. Theorem ([56]). Let G and N be Lie groups and consider a smooth
homomorphism & : G — Aut(N)/Int(N). Then the following assertions
hold:

(1) The homomorphism & is induced by a Lie group extension if and only
if the corresponding cohomology class \* € H*(G,Z(N)) vanishes.

(2) If a is induced by an extension, then all extensions inducing & are
parameterized by H*(G,Z(N)).

(3) The homomorphism & is induced by a splitting extension if and only if
it can be lifted to a (smooth) homomorphism o : G — Aut(N).

Here H*(G, Z(N))) denotes the group cohomology (smooth near e) of G with
values in the G-module (Z(N), &).
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Proof. (1) We know already from|(15.13)|that if (¢, f) is the data associated

with an extension, then \4 = e.

Conversely, if A% is trivial, then by [(15.19)| for any lift o : G — Aut(N) of &
we can find a map f: G x G — N such that (a, f) is a pair with d,f = €;

by [(15.13)| this pair («, f) defines an extension inducing &.

@) By an a-pair («, f) is the data of an extension if and only if
dof = e. By we know that if 0, f = dof’, then f = f' - ¢, where
c:GxG — Z(N) is a 2-cocycle. Furthermore, by two such a-
pairs are equivalent — and thus define equivalent extensions — if and only
if f = f'-c where ¢ is the coboundary ¢ = d5zb for b : G — Z(N). Thus
we see that the extensions inducing & are in 1-1 correspondence with the
elements of H?(G; (Z(N),a)).

@) By we know that if (a, f) is an @-pair inducing a splitting
extension, then there exists amap b : G — N such that the map o/ : G — N,
T > conjy,) oa is a homomorphism, so @& has a homomorphic lift. The
converse is obvious. (]

15.22. Corollary. Let G and N be Lie groups, N abelian. Then isomor-
phism classes of Lie group extensions of G over N correspond bijectively
to the set of pairs (o, [f]) where o : G — Aut(N) is a smooth homomor-
phism and [f] € H?(G; (N, a)) is an element in the second group cohomology
(smooth near e) of G with values in the G-module (N, «).

Proof. Since N is abelian, Int(N) = e and therefore & can be considered
as a homomorphism « : G — Aut(/N). Thus we can form the semidirect
product N x,G, so extensions inducing & exist. Now theoremapplies
and yields the assertion. O

15.23. Corollary ([15]). Let G and N be Lie groups, N without center.
Then isomorphism classes of Lie group extensions correspond bijectively to
smooth group homomorphisms & : G — Aut(N)/Int(N).

Proof. Since Z(N) = e, the cohomologies H3(G; Z(N)) and H?(G; Z(N))
obviously vanish; hence by theorem |(15.21)| every homomorphism & induces
a unique extension.

Conversely, every extension induces some @ : G — Aut(N)/Int(N) by the

construction in |(15.11)] O
Alternative proof of [(15.23). For a given & consider the group

I'={(g9,¢) € G x Aut(N) | p € a(g)}
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which is the pullback object of the diagram
G
|
Aut(N) —— Aut(N)/Int(N).

By assumption, N has no center. Therefore the map N — Aut(N),h —
conj;, is injective and hence the map N — I', h — (e, conj;) is a homo-
morphic injection. Moreover, its image N is the kernel of the quotient map
I' - G, (g9,¢) — g. Thus we have an extension

(1) e N—=I—G—e
of G by N which induces @&. Conversely, let
(2) e N-SE-L2yGe

be an extension inducing &. Then the map ¥ : E — T', x — (p(z), q(z)),
where ¢(z) denotes the automorphism of N induced by conj,, is a homo-
morphism. Thus () and (2] are equivalent extensions. (]

15.24. In the general case this construction runs as follows: Define I and
1 as above. Then every extension

(1) e N-S5E-L2sG>e

gives rise to an extension of I" over the center Z(N) of N:

il Z(N)

(2) e — Z(N) E-2sT e,

where I' operates on Z(N) via z - (g,¢) = ¢(z). These two extensions fit
into the commutative diagram

|
e —= Z(N) sl p-ft-r e
incli P"“ll
i P
e N E G e.

Roughly speaking, F can be regarded both as an extension of G over N
and as an extension of I' over Z(N). It can be shown that if & admits an
extension, then every extension inducing & is obtained in this way.

Note that for a given abstract kernel (N, G, @) there is always an extension
of T over Z(N), but if [\%] € H3(G, Z(N)) is nonzero, then the inclusion
Z(N) — E does not extend to an inclusion N — E.
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15.25. In [56] a pair (K1), with ¢ : G — Aut(K)/Int(K) a homomor-
phism (G being fixed), is called a kernel. As we have seen above, ¥ induces
a homomorphism g : G — Aut(Z(K)). Consider all kernels (K1), with
fixed center C' = Z(K) and fixed restriction 1g. Two such kernels are said
to be similar if they differ only by a kernel coming from a homomorphism.
One of the results in [56] is that the similarity classes of kernels form a group
under a multiplication which is defined using the amalgamated direct prod-
uct of two kernels with C' as amalgamating subgroup and that this group
can be naturally identified with the third cohomology group H3(G, (C,vy)).
In the following we outline the arguments.

15.26. Proposition. Suppose that we are given an abelian group Z, a
homomorphism o : G — Aut(Z) and a normalized 3-cocycle X : G x G x
G — Z. Then there exists a group N containing Z as its center and a
homomorphism & : G — Aut(N)/Int(N) inducing both o® and \.

Proof. Let S be the free group generated by the symbols [z,y] with e #
x € G and e # y € G. For convenience the identity e of F' is identified with
all symbols [z, y] such that either x = e or y = e. The group F' is centerfree
except in the case where G is cyclic of order two. For the moment we set
aside the exceptional case.

We define N to be the direct product F' x Z and, for every g € G, we define
a homomorphism «a, : N — N by the formula
ag([z,y],2) = (lg,2]lgz, yllg. y] ™" Mg, 2, y)ag(2)).

Since X is normalized, we see that a, is the identity. We claim that

(1) QO = CON([g 4] ¢) OCay-

To see this, we apply the left side of this equation to an element ([u,v], z):

azay([u, ], 2) = aq [y, ullyu, o[y, uo] ™, Ay, u, v)aj(2))
= ([z, ylley, ullz, yu] ™ - [z, yul[eyu, o[z, yuo]
[, yuo)[zy, wo] ~Ha, y) 7Y
A, y, w) A, yu, ) Az, y, wv) " g (A(y, u, v))ag, (2))
= Oz y1,) (29, ul[zyu, v]fey, wo] [z, y] 7,
A, y, w)A (2, yu, v)A(z, y, uv) " af (A(y, u, v))ag, (2)).
Since ) is a cocycle, we have
€ = 0o\ (T, Yy, u,v)

= a2 (A(y, u,v)) M@y, u, v) Nz, yu, V)@, y, wv) " A(z, Y, u)
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and therefore

0
x

Thus we find

ay (AMy, u, v)) Nz, yu, v)A(z, ¥y, uv)fl)\(:c,y, u) = Azy, u,v).

agoy([u,v], 2)

= CONj(a,y1,) (2, ul[zyu, v][zy, wo] [z, 4] 71 May, wv)ag, (2))

= conj([,y1,¢) (Qay ([, V]))
which establishes our claim ().
By () we have the equations a,-1 0 a; = conjj-1, and agy 0 a,-1 =
conj, ,-1], S0 every homomorphism oy, x € G, is injective as well as surjec-
tive, hence an automorphism.
If we assume that G is not cyclic of order two, then e x Z is exactly the center
of N and equation (1) defines a homomorphism & : G — Aut(N)/Int(N)
which, by construction, induces both A and a®. O

15.27. An interpretation of the class A\. Let N and G be Lie groups
and let a homomorphism « : G — Aut(N)/Int(N) be given. We consider
the extension

e — Int(N) — Aut(N) — Aut(N)/Int(N) — e

and the following diagram, where the bottom right hand square is a pullback
(compare with the alternative proof of |(15.23)]):

e e
Z(N) Z(N)
v
€ ——> IN o =B -G —c¢
e — Int(N Ey G—e
e e a
pull back

e — Int(N)

Aut(N) — Aut(N)/Int(N) —e.

The left hand vertical column describes N as a central extension of Int(NV)
with abelian kernel Z(N) which is moreover invariant under the action of
G via @; it is given by a cohomology class [v] € H?(N; Z(N))¢. In order
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to get an extension F of G with kernel N as in the third row, we have to
check that the cohomology class [v] is in the image of i* : H?(Eg; Z(N)) —
H?*(N; Z(N))“.



CHAPTER 1V.
Bundles and
Connections

16. Derivations on the Algebra of Differential Forms

16.1. Derivations. In this section let M be a smooth manifold. We
consider the graded commutative algebra

dim M 00
QM) = @ o' = f ok
k=0 k=—o00

of differential forms on M, where we put Q¥(M) = 0 for k < 0 and k >
dim M. We denote by Dery (M) the space of all (graded) derivations of
degree k, i.e., all linear mappings D : Q(M) — Q(M) with D(QY(M)) C
QFH(M) and D(p A ) = D(p) A+ (=1)* @ A D(1)) for ¢ € Q4(M).

Lemma. Then the space Der Q(M) = @, Dery, Q(M) is a graded Lie alge-
bra with the graded commutator [D1, D] := Dy o Dy — (—1)¥1%2Dy 0 Dy as
bracket. This means that the bracket is graded anticommutative and satisfies
the graded Jacobi identity

[D17 DQ] - _(_1)k1k2[D27 Dl]?
[D1, (D2, D3]] = [[D1, Da), Ds] + (=1)***2[ Dy, [Dy, Ds]
(so that ad(Dq) = [Dy, | is itself a derivation of degree ki ).

Proof. Plug in the definition of the graded commutator and compute. [

193
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In section @ we have already met some graded derivations: For a vector
field X on M the derivation ix is of degree —1, Lx is of degree 0, and d is of
degree 1. Note also that the important formula Lx = dix + ¢x d translates
to Lx = [ix,d].

16.2. Algebraic derivations. A derivation D € Der, Q(M) is called alge-
braic if D | Q°(M) = 0. Then D(f.w) = f.D(w) for f € C*(M), so D is of
tensorial character by So D induces a derivation D, € Dery A\ Ti M
for each x € M. It is uniquely determined by its restriction to 1-forms
D |TM = T*M — AFTT*M which we may view as an element K, €
/\kJrl T M @ T,M depending smoothly on z € M. To express this de-
pendence, we write D = ix = i(K), where K € DA™ T*M @ TM) =:
QFFL(M;TM). Note the defining equation: ix(w) = w o K for w € QY (M).
We call Q(M,TM) = @g%M QF(M,TM) the space of all vector valued
differential forms.

Theorem. (1) For K € Q*(M, TM) the formula

(in)(Xl"'ka-‘rﬂ)
= O > signo WK (X1, Xoga1) Xo(er2)s - - )

0ESkK4s

forw € QYM), X; € X(M) (or T,M ) defines an algebraic graded derivation
i € Dery Q(M) and any algebraic derivation is of this form.

(2) By i([K,L]") = lik,iL] we get a bracket [ , " on QL (M, TM)
which defines a graded Lie algebra structure with the grading as indicated,
and for K € Q¥ Y (M, TM), L € Q“*Y(M,TM) we have

K, L] =ixgL — (-1)* K
where ig(w® X) == ig(w)® X.

The bracket [ , | is called the algebraic bracket or the Nijenhuis-Richard-
son bracket; see [178].

Proof. Since A\T;M is the free graded commutative algebra generated
by the vector space T M, any K € QFFY(M,TM) extends to a graded
derivation. By applying it to an exterior product of 1-forms, one can derive
the formula in (Il). The graded commutator of two algebraic derivations is
again algebraic, so the injection 4 : Q*+1(M, T M) — Der,(2(M)) induces a
graded Lie bracket on Q*T(M, T M) whose form can be seen by applying it
to a 1-form. O
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16.3. Lie derivations. The exterior derivative d lies in Der; Q(M). In
view of the formula Lx = [ix,d] = ixd + dix for vector fields X, we
define for K € Q¥(M;TM) the Lie derivative L = L(K) € Dery Q(M) by
L = [lK,d] =igd— (—1)k_1diK.
Then the mapping £ : Q(M,TM) — Der Q(M) is injective, since Lxf =
igdf =df o K for f € C™(M).
Theorem. For any graded derivation D € Dery Q(M) there are unique
K € QF(M;TM) and L € Q1 (M; T M) such that

D=Lkg+1ir.

We have L = 0 if and only if [D,d] = 0. The derivation D is algebraic if
and only if K = 0.
Proof. Let X; € X(M) be vector fields. Then f +— (Df)(Xy,...,X) is a
derivation C*°(M) — C*°(M), so there exists a vector field K (X71,..., X) €
X(M) by |(3.3) such that

(DAY (Xy,..., Xk) = K(X1,..., X)) f =df (K(X1,...,Xk)).
Clearly K (X7, ..., X) is C°°(M)-linear in each X; and alternating, so K is
tensorial by [(9.3)] K € QF(M;TM).
The defining equation for K is Df = df o K = igdf = L f for f € C>°(M).
Thus D — L is an algebraic derivation, so D — Lx = iy, by [(16.2)|for unique
L € QM Y(M; TM).
Since we have [d,d] = 2d?> = 0, by the graded Jacobi identity, we obtain
0 = [ix, [d,d]] = [lir,d],d] + (=1)*"'[d, [ix, d]] = 2[Lk,d]. The mapping
K — [ig,d] = Lk is injective, so the last assertions follow. O

16.4. Applying i(Idry) on a k-fold exterior product of 1-forms, we get
i(Idry)w = kw for w € QF(M). Thus we have L(Idry)w = i(Idpa)dw —
di(Idry)w = (k+ 1)dw — kdw = dw. Thus L(Idry) = d.

16.5. Let K € QF(M;TM) and L € QY(M;TM). Then [[Lx,Lr],d] = 0,
so we have

(LK), L(L)] = L([K, L])
for a uniquely defined [K,L] € Q*(M;TM). This vector valued form
[K, L] is called the Frélicher-Nijenhuis bracket of K and L.

Theorem. The space Q(M;TM) = @(/?;%M QF(M;TM) with its usual
grading is a graded Lie algebra for the Frolicher-Nijenhuis bracket. So we
have

[Ka L] = _(_1)M[L> K]v
(K1, [, Ks]] = [[K1, Ko], K3] + (—=1)"*2[Ky, [Ky, K3]].
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The 1-form Idry € QY(M;TM) is in the center, i.e., [K, Idry] = 0 for all
K. The operator L : (UM;TM),[ , |]) — DerQ(M) is an injective ho-
momorphism of graded Lie algebras. For vector fields the Frélicher-Nijenhuis
bracket coincides with the Lie bracket.

Proof. df o [X,Y] = L([X,Y])f = [Lx,Ly]f. The rest is clear. O

16.6. Lemma. For K € Q¥(M;TM) and L € Q" (M; TM) we have
[Lr,i) = i([K, L]) — (~)*L(iLK), or
[iz, Lx] = L(iLK) — (~1)*i([L, K]).

This generalizes |(9.7.3)]
Proof. For f € C>*(M) we have [ir, Lx|f = ipixdf —0 =ir(df o K) =
df o (i K) = L(iLK)f. So [ir, Lx] — L(irK) is an algebraic derivation.
[[iLvCK}v d] = [iL’ [[’K’d]] - (_1)kz[[’K’ [iL’ dH
=0 — (-D)™L(K, L)) = (-)"[i([L, K]),d].
Since [ ,d] kills the ‘L’s” and is injective on the ‘’s’, the algebraic part of

i, Lx] is (=1)*i([L, K]). O

16.7. Module structure. The space Der Q(M) is a graded module over
the graded algebra Q(M) with the action (w A D) = w A D(g), because
Q(M) is graded commutative.

Theorem. Let the degree of w be q, of ¢ be k, and of 1 be £. Let the other
degrees be as indicated. Then we have:

(1) [wA Dy, Dy] = w A [Dy, Do) — (—1)@Tk0R2 Dy () A Dy
(2) i(wA L) =wAi(L).
(3) WALk =L(wAK)+ (=1)*Li(dw A K).
(4) [wA Ly, Lo) = w A [Ly, Lo) — (—1)a+0=0DE=05(0)w A L.
(5) [wA K1, Ko =wA [K1, K] — (—1)@F0%2 (K w A Ky
+ (=) R dw A i(K)) K.
6) [pXYveY]=pAy®[X,Y]
- (iydap Ay @ X — (—D)*ixdy A p @ Y)

— (dlive nw) @ X — (-1)d(ixp np) 2 Y)
=pAYR X, Y]+ oALxYRY — Ly Ay @ X
+ (—D)* (dp N ixth ®Y +iyp Ady @ X).
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Proof. For (), @), @) write out the definitions. For @) compute i(jw A
Ly, Lo]™). For (B) compute L([w A K1, K3]). For () use (f). O

16.8. Theorem. For K € QF(M;TM) and w € QY(M) the Lie derivative
of w along K is given by the following formula, where the X; are vector fields
on M:

(Lrw) (X1, Xkre)
= o Z signo L(K(Xo1, -, Xok)) @ Xoki1)s - - Xo(hrs))

+ ZSlgHU WK (Xots- s Xok), Xos1))s Xoks2)s- )

1 k—1
g i) = (=)t Z&gnaw Jl,Xag],ng,...),Xg(k+2),...).

Proof. It suffices to consider K = ¢ ® X. Then by [(16.7.3)] we have
Le®X)=9pALx — (—1)*1dp Nix. Now use the global formulas of
section @ to expand this. ([

16.9. Theorem. For K € Q¥(M;TM) and L € Q“(M;TM) we have for
the Frolicher-Nijenhuis bracket [K, L] the following formula, where the X;
are vector fields on M :

[K, L)(X1,..., Xkio)

= ﬁZsigna [K(Xgl,.. . 7X0'k)7L(Xa(k+1)a-'-7Xa(k+£))]

o

-1 .

+m281gn0L([K(XUI7"'7Xak)’XU(k+1)]7Xa(k+2)7-")

_ kZ

G 11)'@ ZSlgDU K([L(Xo1, -, Xot), Xoor1)], Xo(e42), - - -)
_ k 1

(k— 1)114 1 ,Q,ZSIgnO'L alyX ] X037"')7Xa'(k+2)7"')

1)(k—1)¢
k 1), -1 ,2,251gn0K 0'17X ] ng,...),XU(HQ),...).

Proof. It suffices to consider K = ¢ ® X and L = ¢ ® Y; then for [p ®

X, ® Y] we may use |(16.7.6)| and evaluate that at (X1,..., Xpi¢). After
some combinatorial computation we get the right hand side of the above

formula for K =p®@ X and L=9y QY. O

There are more illuminating ways to prove this formula; see [147].
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16.10. Local formulas. In a local chart (U,u) on the manifold M we
pit K |U =Y K.d*®0;, L |U = ZLJBdﬁ®8j, and w | U = > w,d?,
where o = (1 < ag < ag < - < o < dimM) is a form index, d* =
du® A .. A du®k, 9; = i and so on.

Plugging Xj = 0;; into the global formulas[(16.2)} [(16.8)} and [(16.9) we get
the following local formulas:

igw | U= Z 0. akwiak+1...ak+e,l d®,
(K, L) | U = Z( ..ok 1ak+1 Qe
— (_1)(k—1)(z—1)L3) Klja”l akH) d* ® 0;,
Lxw|U = Z( ar oy OiWay iy gy

+( ) (8 K(ZXQ ak+1)wiak+2...ak+4)daa

K L |U Z( at.. Oék Oék+1- O+
_( )kéLZ 8K

a1...0p Qpp1--Oftp
_ J (
kKal Q1% a"‘kLakH Qe
+ (—1)*eL? Do, K d* ® 0;
al...0p—1% [eTAR RYNe AN J°

16.11. Theorem. For K; € QN (M;TM) and L; € Q¥TYM;TM) we
have

(1) [Lx + i, Ly +ina] = £ (1K1, K] + i, Ko — (<10, K)

+i ([LI,LQ]A +[Ky, L] — (—1)kke [KQ,Ll]) .

Each summand of this formula looks like a semidirect product of graded Lie
algebras, but the mappings

i Q(M;TM) — End(Q(M;TM),[ , ),
ad : Q(M;TM) — End(Q(M;TM),[ , 1)

do not take values in the subspaces of graded derivations. We have instead
for K € QF¥(M;TM) and L € QTY(M; TM) the following relations:

(2) iL[K1, K] = [in K1, Ko) + (—=1)[Ky, i Ko,

= (=D ti([Ky, L) K — (—1)®H08i([K, L) Ky )
() K (L, Lo]'] = [[K, L], Lol + (< 1)L, [K, L))"

— ()™M L) K, L] = (~)®FOR [ Ly) K, Ly])
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The algebraic meaning of the relations of this theorem and its consequences
in group theory have been investigated in [150]. The corresponding product
of groups is well known to algebraists under the name Zappa-Szep product.

Proof. Equation (IJ) is an immediate consequence of Equations
@) and @) follow from () by writing out the graded Jacobi identity or as
follows: Consider L£(if,[K7, K»]) and use repeatedly to obtain £ of the
right hand side of ). Then consider i([K,[L1, Lo]"]) and use again
several times to obtain i of the right hand side of (3]). ]

16.12. Corollary (of[(16.9)). For K, L € QY(M;TM) we have

[K,L)(X,Y) = [KX,LY] - [KY,LX] — L(KX,Y] - [KY, X))
— K([LX,Y] - [LY, X]) + (LK + KL)[X,Y].

16.13. Curvature. Let P € Q!'(M; T M) be a fiber projection, i.e., PoP =
P. This is the most general case of a (first order) connection. We may call
ker P the horizontal space and im P the vertical space of the connection. If
P is of constant rank, then both are vector subbundles of T'M. If im P is
some primarily fixed vector subbundle or (tangent bundle of) a foliation,

P can be called a connection for it. Special cases of this will be treated
extensively later on. The following result is immediate from [(16.12)|

Lemma. We have

[P,P] = 2R + 2R,
where R, R € Q*(M;TM) are given by R(X,Y) = P[(Id— P)X, (Id— P)Y]
and R(X,Y) = (Id — P)[PX, PY].
If P has constant rank, then R is the obstruction against integrability of the
horizontal bundle ker P, and R is the obstruction against integrability of the
vertical bundle im P. Thus we call R the curvature and R the cocurvature

of the connection P. We will see later that for a principal fiber bundle R is
just the negative of the usual curvature.

16.14. Lemma (Bianchi identity). If P € Q'(M;TM) is a connection
(fiber projection) with curvature R and cocurvature R, then we have

[P,R+R] =0,
[R,P] =igrR+izR.

Proof. We have [P, P] = 2R + 2R by [(16.13) and [P, [P, P]] = 0 by the
graded Jacobi identity. So the first formula follows. We have 2R = P o

[Pv P] = Z.[P,P]P' ByWG get i[RP][Pv P] = 2[i[P7P]P7 P]_O = 4[R7 P]
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Therefore [R, P] = jijpp[P, P] = i(R+ R)(R+ R) = irR + igR since R
has vertical values and kills vertical vectors, so irR = 0; likewise for R. 0O

16.15. Naturality of the Frolicher-Nijenhuis bracket. Let f: M —
N be a smooth mapping between manifolds. Two vector valued forms K €
QF(M;TM) and K’ € QF(N;TN) are called f-related or f-dependent if for
all X; € T, M we have

(1) K}(x)(Tmf Xy, Tof X)) =T f - Ko (Xq, ..., Xi).
Theorem.
(2) If K and K' as above are f-related, then ik o f* = f*oig : Q(N) —

(3) Ifig o f* | BY(N) = f*oigs | BY(N), then K and K' are f-related,
where B' denotes the space of exact 1-forms.

(4) If K; and K are f-related for j = 1,2, then ik, K2 and ig/ K3 are
f-related, and also [K1, Ks])" and [K', K}]" are f-related.

(5) If K and K' are f-related, then Lk o f* = f*o Ly : Q(N) — Q(M).

(6) If Ligo f* | QUN) = f*o L | Q°(N), then K and K' are f-related.

(7) If K and KJ/ are f-related for j = 1,2, then their Frélicher-Nijenhuis
brackets K1, K2] and [K{, K}] are also f-related.

Proof. () By we have for w € Q9(N) and X; € T, M:
(i ffw)e(X1s o, Xgra-1)
= wram D sien o (fw)e (Ke(Xots -+, Xon), Xo(ht1)s- )

= = 2L S o Wiy (Tof - Ka(Xots ), Tof - Xo(reinys- )

= m Z signowf(x)(K}(m) (Txf . Xgl, ‘e .), Txf . Xg(k+1), - )

= (fMigpw)e(X1, .., Xgpr—1)-
@B)) follows from this computation, since the df, f € C°°(M), separate points.
@) follows from the same computation for Ks instead of w; the result for

the bracket then follows from [(16.2.2)|

() By (@) the algebra homomorphism f* intertwines the operators ix and
ixr, and f* commutes with the exterior derivative d. Thus f* intertwines
the commutators [ix,d] = Lk and [ig/,d] = Lk .

@) For g € Q°(N) we have L f*g = ixdf*g = ix f*dg and f* Ly g =
f*igr dg. By () the result follows.
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(@) The algebra homomorphism f* intertwines Lx; and L'KJ/,, so also their

graded commutators which equal L([K71, K»]) and L([K{, K}]), respectively.
Now use ({@l). O

16.16. Let f : M — N be a local diffecomorphism. Then we can consider
the pullback operator f*: Q(N;TN) — Q(M;TM), given by

(1) (f*K>;E(X17 e 7Xk) = (Tacf)ile(m)(Tmf : le e 7Tacf ' Xk)

Note that this is a special case of the pullback operator for sections of natural
vector bundles in [(8.16), Clearly K and f*K are then f-related.

Theorem. In this situation we have:
(2) f1IK, L] =[f"K, f*L].
(3) frixL =iprf*L.
(4) f*[K, L]" = [f*K, f*L)".
(5) For a vector field X € X(M) and K € Q(M;TM) by|(8.16)| the Lie de-

rivative Lx K = 0|o(FI1X)*K is defined. Then we have LxK = [X, K],
the Frolicher-Nijenhuis bracket.

We may say that the Frolicher-Nijenhuis bracket, [ , ", etc., are natural
bilinear mappings.

Proof. (2) — (@) are obvious from |(16.15)| (&) Obviously Lx is R-linear, so
it suffices to check this formula for K = ¢ ® Y, ¢ € Q(M) and Y € X(M).

But then

Lx(W@Y)=Lxp®Y +9®LxY by[EI7)
=LxY®Y +9®[X,Y]

=X,y ®Y] by[I676)] O

16.17. Remark. At last we mention the best known application of the Fro-
licher-Nijenhuis bracket, which also led to its discovery. A vector valued 1-
form J € QY(M; TM) with JoJ = —Id is called an almost complez structure;
if it exists, dim M is even and J can be viewed as a fiber multiplication with

v—1on TM. By |(16.12)[ we have
[ J(X,)Y)=2([JX,JY] - [X,Y] - JX,JY] - J[JX,Y]).
The vector valued form %[J, J] is also called the Nijenhuis tensor of J. For

it the following result is true:

A manifold M with an almost complex structure J is a complex
manifold (i.e., there exists an atlas for M with holomorphic chart-
change mappings) if and only if [J, J] = 0. See [173].
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17. Fiber Bundles and Connections

17.1. Definition. A (fiber) bundle (E,p, M,S) consists of manifolds F,
M, S, and a smooth mapping p : E — M, furthermore each x € M has an
open neighborhood U such that E | U := p~(U) is diffeomorphic to U x S
via a fiber respecting diffeomorphism:

E|U v UxS
p
U.

The manifold E is called the total space, M is called the base space or basis,
p is a surjective submersion, called the projection, S is called standard fiber,
and (U, 1) as above is called a fiber chart.

A collection of fiber charts (Uy, 1), such that (U,) is an open cover of M,
is called a fiber bundle atlas. If we fix such an atlas, then ¢, o ¢5*1(x, s) =
(x,%ap(x,s)), where a5 : (Us NUg) x S — S is smooth and g(z, ) is a
diffeomorphism of S for each x € U,p := U, N Ug. We may thus consider
the mappings Y3 : Uy — Diff(S) with values in the group Diff(S) of all
diffeomorphisms of S; their differentiability is a subtle question, which will
not be discussed in this book, but see [148]. In either form these mappings
Yap are called the transition functions of the bundle. They satisfy the
cocycle condition: VYag(x) 0y (x) = Vay(x) for x € Uygy and Yaq(z) = Ids
for x € U,. Therefore the collection (1¢,4) is called a cocycle of transition
functions.

Given an open cover (U,) of a manifold M and a cocycle of transition
functions (143), we may construct a fiber bundle (E,p, M, S) in a similar

way as in

17.2. Lemma. Let p : N — M be a surjective submersion (a fibered
manifold) which is proper, so that p~1(K) is compact in N for each compact
K C M, and let M be connected. Then (N,p, M) is a fiber bundle.

Proof. We have to produce a fiber chart at each zyp € M. So let (U,u)
be a chart centered at xg on M such that u(U) = R™. For each x € U let
&:(y) == (Tyu) " u(x); then we have &, € X(U) which depends smoothly on
x € U, such that u(Flfz u~Y(z)) = z + tau(z). Thus each &, is a complete
vector field on U. Since p is a submersion, with the help of a partition
of unity on p~!(U) we may construct vector fields n, € X(p~!(U)) which
depend smoothly on x € U and are p-related to &;: Tp.ny = & o p. Thus
poFlr = Flf”c op by so FIJ is fiber respecting, and since p is proper
and ¢, is complete, 7, has a global flow too. Denote p~!(xg) by S. Then
0 :U xS — p 1 (U), defined by p(z,y) = F1{*(y), is a diffeomorphism and
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is fiber respecting, so (U, ¢~!) is a fiber chart. Since M is connected, the
fibers p~!(z) are all diffeomorphic.

17.3. Let (E,p, M, S) be a fiber bundle; we consider the fiber linear tangent
mapping Tp : TE — T'M and its kernel ker Tp =: V E which is called the
vertical bundle of E. The following is a special case of [(16.13)]

Definition. A connection on the fiber bundle (E, p, M, S) is a vector valued
1-form ® € QY(E;VE) with values in the vertical bundle VE such that
Po® = and Im® = VE; so ® is just a projection TFH — VE.

Then ker @ is of constant rank, so ker ® is a vector subbundle of TE by
it is called the space of horizontal vectors or the horizontal bundle and it is
denoted by HE = ker ®. Clearly TE = HE® VE and T, F = H,E &V, FE
foru e E.

Now we consider the mapping (T'p,ng) : TE — TM xp E. Then by
definition (T'p, 7)™ Oy, u) = VuE, so (T'p,ng) | HE : HE — TM x E
is fiber linear over E and injective, so by reason of dimensions it is a fiber
linear isomorphism: Its inverse is denoted by

C:=((Tp,mp) | HE)™ : TM xy E — HE — TE.

So C : TM xp E — TFE is fiber linear over E and is a right inverse for
(T'p,mg). The mapping C is called the horizontal lift associated to the
connection ®.

Note the formula ®(&,) = &, — C(Tp.&y, u) for &, € T, E. So we can equally
well describe a connection ® by specifying C. Then we call ® the vertical
projection (no confusion with will arise) and x := idpp —® = C o
(T'p, 7g) will be called the horizontal projection.

17.4. Curvature. If & : TE — VE is a connection on the bundle
(E,p, M, S), then as in |(16.13)| the curvature R of ® is given by

2R=[®,®] = [Id — ®,Id — ®] = [x, x] € B*(E;VE).

The cocurvature R vanishes since the vertical bundle V E is integrable. We
have

R(X,Y) = 3[®,®](X,Y) = ®[xX, xY],
so R is an obstruction against integrability of the horizontal subbundle. Note
that for vector fields £,7 € X(M) and their horizontal lifts C¢,Cn € X(F)
we have
Since the vertical bundle V' E' is integrable, by |(16.14)[ we have the Bianchi
identity (@, R] = 0.



204 CHAPTER IV. Bundles and Connections

17.5. Pullback. Let (E,p, M, S) be a fiber bundle and consider a smooth
mapping f : N — M. Since p is a submersion, f and p are transversal in the
sense of and thus the pullback N Xy 7,y F exists. It will be called
the pullback of the fiber bundle E by f and we will denote it by f*E. The
following diagram sets up some further notation for it:

f*ELE

f*/pl ; lp

N —— M.

Proposition. In the situation above we have:

(1) (f*E, f*p, N, S) is again a fiber bundle, and p*f is a fiberwise diffeo-
morphism.

(2) If ® € QY(E;VE) C QYE;TE) is a connection on E, then the vector
valued form f*®, given by (f*®),(X) = Vu(p*f)~L.®.T,(p*f). X for
X e T FE, is a connection on the bundle f*E. The forms f*® and ®
are p* f-related in the sense of [(16.15)|.

(3) The curvatures of f*® and ® are also p* f-related.

Proof. () If (Ua,%q) is a fiber bundle atlas of (E,p, M,S) in the sense

of [(17.1)} then (f~Y(U,), (f*p,pryoths o p*f)) is a fiber bundle atlas for
(f*E, f*p,N,S), by the formal universal properties of a pullback [(2.17)|

Part ([2)) is obvious. Part (B]) follows from (2) and |(16.15.7)| O

17.6. Let us suppose that a connection ® on the bundle (E, p, M, S) has zero
curvature. Then by the horizontal bundle is integrable and gives rise
to the horizontal foliation by Each point u € F lies on a unique leaf
L(u) such that T,L(u) = H,E for each v € L(u). The restriction p | L(u)
is locally a diffeomorphism, but in general it is neither surjective nor is
it a covering onto its image. This is seen by devising suitable horizontal
foliations on the trivial bundle pry : R x St — S or pryR x R — R, like
L(0,t) = {(tan(s — t),s) : s € R}.

17.7. Local description. Let ® be a connection on (E,p, M, S). Let us fix
a fiber bundle atlas (U, ) with transition functions (¢ns), and let us consider
the connection ((1)~1)*® € QY(U, x S;U, x T'S), which may be written
in the form

(Ya) ™) @) (&ymy) = —=T%(&s,y) + 1y for & € T,U, and 1, € TS,

since it reproduces vertical vectors. The I'* are given by

(02, T%(82y y)) := _T(wa)'q)'T(wa)_l-(’fmv 0y>-
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We consider I'* as an element of the space Q(Uy; X(9)), a 1-form on U®
with values in the infinite-dimensional Lie algebra X(.5) of all vector fields on
the standard fiber. The I'* are called the Christoffel forms of the connection
® with respect to the bundle atlas (U, ¥q).

Lemma. The transformation law for the Christoffel forms is

Ty(Wap(z, )T (&, y) = T Yap(@,9) = Te(@ap( ))&
The curvature R of ® satisfies

($a )R = dD® + [, T x(s).

Here dI'® is the exterior derivative of the 1-form I'® € QY (U,; X(S)) with
values in the complete locally convex space X(S). We will later also use the
Lie derivative of it and the usual formulas apply: Consult [I13] for calculus
in infinite-dimensional spaces.

The formula for the curvature is the Maurer-Cartan formula which in this
general setting appears only in the level of local description.

Proof. From (1, o (v5) 1) (@, y) = (2, Yas(x,y)) we get that

T(T/Ja © (wﬁ)il)’(fwa Uy) = (éﬂ»‘v T(x,y)(waﬁ)'(facv Uy))
and thus:

(¢U< (&) = —@(T(v5") (&, 0y))
@(waa1»7%¢@c>w51»<amo )

—®(T (5 ") (&e Tia ) (Yas) (éx 0y)))
¢<IK¢@P><5x,o¢a5¢myﬂ> (T (5") (0, Tyt (&s, 0y)
:=frowa1><0m,Fa<fz,wa5<x,y>)>—-T%¢%f><ox,7&cwa5( ))&

This implies the transformation law.
For the curvature R of ® we have by |(17.4)[and |[(17.5.3)|

(W R((E 0", (€% 1%)
= (W) @(Id— (v ) @) (&, n'), (Id = (') ®)(E%, )]
= (¥ ) O[(EN,T*(€h), (&2, T(%)]
)@ ]
e (

*

= (1)@ ([¢', €7, €' T(¢?) — €T(¢") + [T (&), T*(€%)])
€1, %) + £ (€2) — €2T(€h) + [T(€Y), T*(€)]
:ﬂW&ﬁ + (€N, I(E)]xs). O
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17.8. Theorem (Parallel transport). Let ® be a connection on a bundle
(E,p,M,S) and let ¢ : (a,b) — M be a smooth curve with 0 € (a,b),
c(0) = z.

Then there is a neighborhood U of E, x {0} in E, X (a,b) and a smooth
mapping Pt. : U — E such that:

(1) p(Pt(c, ug, t)) = c(t) if defined, and Pt(c,ug,0) = ug.

(2) @(% Pt(c,ug,t)) = 0 if defined.

(3) Reparameterization invariance: If f : (a',b') — (a,b) is smooth with
0 € (d,b), then Pt(c,uy, f(t)) = Pt(co f,Pt(c,us, £(0)),t) if defined.

(4) U is mazximal for properties () and (2.

(5) In a certain sense Pt depends smoothly also on c.

First proof. In local bundle coordinates @(% Pt(c,us,t)) = 0 is an or-
dinary differential equation of first order, nonlinear, with initial condition
Pt(c, ugz,0) = ug. So there is a maximally defined local solution curve which
is unique. All further properties are consequences of uniqueness.

Second proof. Consider the pullback bundle (¢*E, c*p, (a,b),S) and the
pullback connection ¢*® on it. It has zero curvature, since the horizontal
bundle is 1-dimensional. By the horizontal foliation exists and the
parallel transport just follows a leaf and we may map it back to F, in detail:

Pt(c, ug, t) = p*e((c*p | L(uz)) 7 (1))

Third proof. Consider a fiber bundle atlas (U, %) as in|(17.7)l Then we
have 1a(Pt(c, 5! (2,y),t)) = (c(t),7(y, t)), where

0= ((a")*®) (ge(®), gy, 1) = =T (Ge(t), vy, 1) + Gy t),
so v(y,t) is the integral curve (evolution line) through y € S of the time
dependent vector field T'* (%c(t)) on S. This vector field visibly depends

smoothly on c. Clearly local solutions exist and all properties follow, even
[B). For more detailed information on (&) we refer to [143] or [113]. O

17.9. A connection ® on (F,p, M, S) is called a complete connection if the
parallel transport Pt. along any smooth curve ¢ : (a,b) — M is defined on

the whole of E,(g) x (a,b). The third proof of theorem |(17.8)| shows that on
a fiber bundle with compact standard fiber any connection is complete.

The following is a sufficient condition for a connection ® to be complete:

There exists a fiber bundle atlas (Uy, 1) and complete Riemann
metrics g, on the standard fiber S such that each Christoffel
form I'* € QY (U,,X(9)) takes values in the linear subspace of
ga-bounded vector fields on S.
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This is true because in the third proof of theorem above the time
dependent vector field Fa(%c(t)) on S is go-bounded for compact time in-
tervals. By this vector field is complete. So by continuation the
solution exists globally.

A complete connection is called an Ehresmann connection in [80, I, p. 314],
where the following result is given as an exercise.

Theorem. Fach fiber bundle admits complete connections.

Proof. Let dim M = m. Let (Ua,%q) be a fiber bundle atlas as in [(17.1)]
By topological dimension theory [169] the open cover (U,) of M admits a
refinement such that any m + 2 members have empty intersection; see also
Let (U,) itself have this property. Choose a smooth partition of unity
(fo) subordinated to (Uy). Then the sets Vg, := {z : fo(x) > #ﬁ} Cc U,
still form an open cover of M since Y fo(z) = 1 and at most m + 1 of
the fo(z) can be nonzero. By renaming, assume that each V, is connected.
Then we choose an open cover (W,,) of M such that W, C V.

Now let g; and g3 be complete Riemann metrics on M and S, respectively
(see . For not connected Riemann manifolds complete means that
each connected component is complete. Then g;|U, X g2 is a Riemann
metric on U, x S and we consider the metric g := Y fo¥k(91|Us X g2) on
E. Obviously p: E — M is a Riemann submersion for the metrics g and g¢;:
This means that Typ : (Tu(Ep(u))L,gu) = (TpyM, (91)p(u)) 18 an isometry
for each v € E. We choose now the connection ® : TE — VE as the

orthonormal projection with respect to the Riemann metric g.

Claim. ® is a complete connection on F.

Let ¢ : [0,1] - M be a smooth curve. We choose a partition 0 = ¢ <
t1 < --- <ty = 1 such that ¢([t;,ti+1]) C Va, for suitable «;. It suffices to
show that Pt(c(ti+ ), uc,),t) exists for all 0 < ¢ <41 —t; and all uy,),
for all 4, since then we may piece them together. So we may assume that
¢ :[0,1] — Vg for some . Let us now assume that for = ¢(0) and some
y € S the parallel transport Pt(c,¥q(z,y),t) is defined only for ¢ € [0,t)
for some 0 <t < 1. By the third proof of theorem we have

Pt(c, 5 (z,y), 1) = 5 ' (c(t), (1)),

where 7 : [0,¢') — S is the maximally defined integral curve through y € S of
the time dependent vector field Fa(%c(t), ) on S. We put g, = (¢¥51)*g;
then

(ga)(x,y) = (gl)x X (Z fﬁ(x)w,@a(xv )*92)?;'
B

Since pry : (Vo X S, 90) = (Va, 91|Va) is a Riemann submersion and since
the connection (¢;1)*® is also given by orthonormal projection onto the
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vertical bundle, we get

t/
00 > g-lengthf) (¢) = ga-length(c,v) = /0 (' (1), v (8))lg, dt

= /0 \/|C'(t) 2+ 25 a(c(t) (Wap(e(t), =) *g2) (£ (1), Fy(t)) dt
/ V ale(t) | 57 (1)]go dt > \/7/ FRIGIFR:

So go-length(y) is finite and since the Riemann metric g2 on S is complete,
the limit limy_,p y(t) =: (') exists in S and the integral curve v can be
continued. O

17.10. Holonomy groups and Lie algebras. Let (E,p, M, S) be a fiber
bundle with a complete connection ®, and let us assume that M is connected.
We choose a fixed base point o € M and we identity E,, with the standard
fiber S. For each closed piecewise smooth curve ¢ : [0,1] — M through
xo the parallel transport Pt(c, ,1) =: Pt(c,1) (pieced together over the
smooth parts of ¢) is a diffeomorphism of S. All these diffeomorphisms form
together the group Hol(®,x(), the holonomy group of ® at x, a subgroup
of the diffeomorphism group Diff(S). If we consider only those piecewise
smooth curves which are homotopic to zero, we get a subgroup Holy(®, zy),
called the restricted holonomy group of the connection ® at x.

Now let C : TM X3 E — TFE be the horizontal lifting as in and
let R be the curvature (see of the connection ®. For any z € M
and X, € T, M the horizontal lift C'(X,) := C(X,, ): E, - TE isa
vector field along E,. For X, and Y, € T, M we consider R(CX,,CY,) €
X(E;). Now we choose any piecewise smooth curve ¢ from xy to = and
consider the diffeomorphism Pt(c,t) : S = E;, — E, and the pullback
Pt(c, 1)*R(CX,,CY,) € X(S). Let us denote by hol(®, z() the closed linear
subspace, generated by all these vector fields (for all x € M, X,, Y, € T,M
and curves ¢ from xg to x) in X(S) with respect to the compact C*°-topology,
and let us call it the holonomy Lie algebra of ® at xg.

Lemma. hol(®,zg) is a Lie subalgebra of X(S).

Proof. For X € X(M) we consider the local flow FI’X of the horizontal
lift of X. It restricts to parallel transport along any of the flow lines of X
in M. Then for vector fields on M the expression

Slo(FIT) (FIPY)*(FIEF)“(FIT?)*R(CU, CV) | Bg,
= (FIT)*[CY, (FIEF) (FIT?)* R(CU,CV)] | E
= [(F1¢%) ¢y, (FIS?)*R(CU,CV)| | E
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is in hol(®, z¢), since it is closed in the compact C*°-topology and the de-
rivative can be written as a limit. Thus

[(FISX)*[CY1, CYa], (FIS?)* R(CU, CV)] | Ey, € hol(®, a0)
by the Jacobi identity and
[(FI€%)*Cy1, Ya), (FISZ)*R(CU,CV)] | Ey, € hol(®, x0),
so also their difference
[(FIF%)*R(CY1, CY2), (FIS?)* R(CU, CV)] | By,
is in hol(®, xo). O

17.11. The following theorem is a generalization of the theorem of [174),
175] and [9] on principal connections. The reader who does not know prin-
cipal connections is advised to read parts of sections and first. We
include this result here in order not to disturb the development in section

(19)| later.

Theorem. Let & be a complete connection on the fiber bundle (E,p, M, S)
and let M be connected. Suppose that for some (hence any) xo € M the ho-
lonomy Lie algebra hol(®, xg) is finite-dimensional and consists of complete
vector fields on the fiber E,.

Then there is a principal bundle (P,p, M, G) with finite-dimensional struc-
ture group G, a connection w on it and a smooth action of G on S such
that the Lie algebra g of G equals the holonomy Lie algebra hol(®, xg), the
fiber bundle E is isomorphic to the associated bundle P[S], and ® is the
connection induced by w. The structure group G equals the holonomy group
Hol(®, x). The principle bundle P and its connection w are unique up to
isomorphism.

By a theorem of [186] a finite-dimensional Lie subalgebra of X(E,,) like
hol(®, x() consists of complete vector fields if and only if it is generated by
complete vector fields as a Lie algebra.

Proof. Let us again identify E,, and S. Then g := hol(®,z) is a finite-
dimensional Lie subalgebra of X(.5), and since each vector field in it is com-
plete, there is a finite-dimensional connected Lie group G of diffeomor-
phisms of S with Lie algebra g, by theorem

Claim 1. Gy contains Holy(®, z¢), the restricted holonomy group.

Let f € Holy(®,xzg); then f = Pt(c,1) for a piecewise smooth closed curve
¢ through g, which is nullhomotopic. Since the parallel transport is essen-
tially invariant under reparametrization, we can replace ¢ by co g,
where g is smooth and flat at each corner of c. So we may assume that ¢
itself is smooth. Since ¢ is homotopic to zero, by approximation we may
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assume that there is a smooth homotopy H : R? — M with H1|[0,1] = ¢
and Hyl|[0,1] = zo. Then f; := Pt(H;, 1) is a curve in Holp(®, x¢) which is
smooth as a mapping R x § — S; this can be seen by using the proof of
claim 2 below or as in the proof of We will continue the proof of
claim 1 below.

Claim 2. (%ft) of; ' =:Z isin g for all .

To prove claim 2, we consider the pullback bundle H*E — R? with the
induced connection H*®. It is sufficient to prove claim 2 there. Let X = %
and Y = % be constant vector fields on R2, so [X,Y] = 0. Then Pt(c,s) =

FI¢% |S and so on. We put
fr.s = FICX o FI9Y o FISX 0 FIEY . 5 — S,
so fr.1 = f;. Then we have in the vector space X(5)
(4 Fus) o ik = —(FIEX)CY 4 (FICX P (RIEY y (FIEX)*Cy,

1
(%ft,l) o ftfll :/0 % ((%ft,s) o ftjsl) ds

— / ' (—=(FI¥*Y* [CX, CY] + (FIZX) [0X, (FIFY )*(F1I€F)*CY]
0
—(FICY)*(FIFY) (F199)*[0X, CY)) ds.

Since [X,Y] = 0, we have [CX,CY] = ®[CX,CY]| = R(CX,CY) and
(F)*Y =Y thus

(FIF)*CY = C ((FL9)*Y) + @ ((FIfY)*CY)

t t
=CY +/ LO(FIF*)*CY dt = CY + / O(FIENY [CX,CY] dt
0 0

t t

=Y +/ B(FICY)*R(CX,CY) dt = CY + / (FICX)*R(CX,CY) dt.
0 0

The flows (F1IS%)* and their derivatives Lox = [CX, | do not lead out of

g; thus all parts of the integrand above are in g and so (% fea)o ft}l isin g

for all ¢ and claim 2 follows.

Now claim 1 can be shown as follows. There is a unique smooth curve g(t)
in Gy satisfying T, (u9®)Z; = Zs.g(t) = 4g(t) and g(0) = e; via the action
of Gg on S the curve g(t) is a curve of diffecomorphisms on S, generated by
the time dependent vector field Z;, so g(t) = f; and f = f; is in Gp. So we
get Holy(®, zp) C Gy.

Claim 3. Holy(®, ) equals Gy.

In the proof of claim 1 we have seen that Holg(®, z¢) is a smoothly arcwise
connected subgroup of Gy, so it is a connected Lie subgroup by the theorem
(5.6)l It suffices thus to show that the Lie algebra g of Gy is contained
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in the Lie algebra of Holy(®,zp), and for that it is enough to show that
for each ¢ in a linearly spanning subset of g there is a smooth mapping
f:[=1,1]x S — S such that the associated curve f lies in Holy(®, o) with
J(0) = 0 and f(0) = €.

By definition we may assume £ = Pt(c,1)*R(CX,,CY;) for X, Y, € T, M
and a smooth curve ¢ in M from g to x. We extend X, and Y, to vector
fields X and Y € X(M) with [X,Y] = 0 near . We may also suppose that
Z € X(M) is a vector field which extends ¢/(t) along ¢(t): If ¢ is simple, we
approximate it by an embedding and can consequently extend ¢'(t) to such
a vector field. If ¢ is not simple, we do this for each simple piece of ¢, and
then have several vector fields Z instead of one below. So we have

¢ = (FIY?)*R(CX,CY) = (FI{%)*[CX,CY] since [X,Y](z) =0
= (FIFZ)" L 42 —o(FIZY o FI%X o FITY o FIEY) by [(3.16)

= L&), (FI92 0 F19Y o FICK o FIFY o FIFX 0 FIZ),

where the parallel transport in the last equation first follows ¢ from zg to
x, then follows a small closed parallelogram near x in M (since [X,Y] =0
near x) and then follows ¢ back to xy. This curve is clearly nullhomotopic.

Step 4. Now we make Hol(®, ) into a Lie group which we call G, by taking
Holy(®,z9) = Go as its connected component of the identity. Then the
quotient Hol(®, z¢)/ Holy(®P, o) is a countable group, since the fundamental
group 71 (M) is countable (by Morse theory M is homotopy equivalent to a
countable CW-complex).

Step 5. Construction of a cocycle of transition functions with values in G.
Let (U, uq : Uy — R™) be a locally finite smooth atlas for M such that
each u, @ Uy, — R™ is surjective. Put z, := u;'(0) and choose smooth
curves ¢ : [0,1] — M with ¢, (0) = z¢ and co(1) = z4. For each z € U,
let ¢ : [0,1] — M be the smooth curve t — u_*(t.uq()); then ¢ connects
zq and z and the mapping (x,t) — ¢Z(t) is smooth U, x [0,1] — M. Now
we define a fiber bundle atlas (U, s : E|Usy — Us x S) by 9, (x,5) =
Pt(cZ,1) Pt(ca,1) s. Then ¢, is smooth since Pt(cZ,1) = FIZ*= for a local
vector field X, depending smoothly on z. Let us investigate the transition
functions:

wawgl(a:, s) = (x, Pt(cq,1) ' Pt(c%, 1) ! Pt(cj, 1) Pt(cp, 1) s)
= (l’,Pt(Cﬁ.C%.(Cz)_l.(Ca)_l,4) s)
=: (z,v%qp(x) s), where 15 : Usg — G.

Clearly vgq : Ugq x S — S is smooth, which implies that g, : Ugy — G is
also smooth. (4p) is a cocycle of transition functions and we use it to glue a
principal bundle with structure group G over M which we call (P, p, M, G).
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From its construction it is clear that the associated bundle P[S] = P x¢g S
equals (E,p, M, S).

Step 6. Lifting the connection ® to P.

For this we have to compute the Christoffel symbols of ® with respect to
the atlas of step 5. To do this directly is quite difficult since we have to
differentiate the parallel transport with respect to the curve. Fortunately
there is another way. Let ¢ : [0,1] — U, be a smooth curve. Then we have

Ya(Pt(c, )05 (c(0), 5))
- (c(t),Pt((ca)_l,1)Pt((cg(0))_1,1)Pt(c, £ Pt(cg(o),l)Pt(ca,l)s>
= (c(t),7(t)-s),

where 7 is a smooth curve in the holonomy group G. Let I'® € Q! (U,, X(5))
be the Christoffel symbol of the connection & with respect to the chart
(U, ¥q). From the third proof of theorem |(17.8)| we have

va(Pt(c, )5 (c(0), 5)) = (c(t),7(t, 5)),

where %(t, s) is the integral curve through s of the time dependent vector
field Fa(%c(t)) on S. But then we get

P (ge®)(3(t,5)) = G(ts) = F(v(t).5) = (F(1)-5,
D (ge() = (Fr®) o) € g.
So I'“ takes values in the Lie subalgebra of fundamental vector fields for the
action of G on S. By theorem|(19.9)|below the connection ® is thus induced
by a principal connection w on P. Since by [(19.8)| the principal connection

w has the ‘same’ holonomy group as ® and since this is also the structure
group of P, the principal connection w is irreducible; see |(19.7)| O

18. Principal Fiber Bundles and G-Bundles

18.1. Definition. Let G be a Lie group and let (E,p, M,S) be a fiber
bundle as in A G-bundle structure on the fiber bundle consists of the
following data:

(1) a left action £: G x S — S of the Lie group on the standard fiber,

(2) afiber bundle atlas (Uy, 1) whose transition functions (1) act on S
via the G-action: There is a family of smooth mappings (pag : Uas —
G) which satisfies the cocycle condition as(x)psy () = Yoy (z) for
x € Uppy and @aq () = e, the unit in the group, such that 1,5(z, s) =

Upap(x),s) = pap(x).s.
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A fiber bundle with a G-bundle structure is called a G-bundle. A fiber
bundle atlas as in ([2)) is called a G-atlas and the family (¢43) is also called
a cocycle of transition functions, but now for the G-bundle.

To be more precise, two G-atlases are said to be equivalent (to describe
the same G-bundle) if their union is also a G-atlas. This translates as
follows to the two cocycles of transition functions, where we assume that
the two coverings of M are the same (by passing to the common refinement,
if necessary): (pap) and (¢, 5) are called cohomologous if there is a family
(Ta : Uy — G) such that ¢.p(x) = Ta(a:)_l.@’aﬁ(x).rg(:z) holds for all z €
Uap; compare with

In ([2)) one should specify only an equivalence class of G-bundle structures
or only a cohomology class of cocycles of G-valued transition functions.
The proof of now shows that from any open cover (U,) of M, some
cocycle of transition functions (pag : Usg — G) for it, and a left G-action
on a manifold S, we may construct a G-bundle, which depends only on
the cohomology class of the cocycle. By some abuse of notation we write
(E,p,M,S,QG) for a fiber bundle with specified G-bundle structure.

Examples. The tangent bundle of a manifold M is a fiber bundle with
structure group GL(m). More generally, a vector bundle (E,p, M,V) as
in is a fiber bundle with standard fiber the vector space V and with
GL(V)-structure.

18.2. Definition. A principal (fiber) bundle (P,p, M,G) is a G-bundle
with typical fiber a Lie group G, where the left action of G on G is just the
left translation.

So bywe are given a bundle atlas (Uy, ¢q : P|Uy — Uy X G) such that
we have cpacpgl(m, a) = (x, pag(x).a) for the cocycle of transition functions
(pap : Uap — G). This is now called a principal bundle atlas. Clearly the
principal bundle is uniquely specified by the cohomology class of its cocycle
of transition functions.

Each principal bundle admits a unique right action r : PxG — P, called the
principal right action, given by ¢4 (r(p5 (z,a),g)) = (z,ag). Since left and
right translation on G commute, this is well defined. As in |(6.1)| we write
r(u,g) = u.g when the meaning is clear. The principal right action is visibly
free and for any u, € P, the partial mapping r,, = 7(uy, ):G — P, isa
diffeomorphism onto the fiber through w,, whose inverse is denoted by 7, :
P, — G. These inverses together give a smooth mapping 7: P X3 P — G,
whose local expression is 7(¢, (2, a), o5 (x,b)) = a=1.b. This mapping is
also uniquely determined by the implicit equation r(uy, 7(uy, v;)) = v,; thus
we also have 7(uz.g,u’.g") = g7 .7 (up, ul).g" and 7(ug, uz) = e.
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When considering principal bundles, the reader should think of frame bun-
dles as the foremost examples for this book. They will be treated in |(18.11)
below.

18.3. Lemma. Letp : P — M be a surjective submersion (a fibered
manifold), and let G be a Lie group which acts freely on P such that the
orbits of the action are exactly the fibers p~*(z) of p. Then (P,p, M, Q) is
a principal fiber bundle.

Proof. Let the action be a right one by using the group inversion if nec-
essary. Let s, : Uy, — P be local sections (right inverses) for p : P — M
such that (Uy,) is an open cover of M. Let ¢ ! : U, x G — P|U, be given
by o5 (z,a) = sa(x).a, which is obviously injective with invertible tangent
mapping, so its inverse ¢, : P|U, — U, X G is a fiber respecting diffeomor-
phism. So (Ua, ¢q) is already a fiber bundle atlas. Let 7: P x3y P — G
be given by the implicit equation r(ug, 7(ug,ul)) = ul,, where r is the right

G-action. The mapping 7 is smooth by the implicit function theorem and
clearly we have

T(ux,u;.g) = 7(ug,u,).g and  u(ug) = (z,7(sa(x), uz)).

Thus we have

pay ' (2,9) = alsp(2).9) = (2, 7(sa(2), 55(2).9))
= (z,7(sa(2), s8(x)).9)
and (U, ¢q) is a principal bundle atlas. O

18.4. Remarks. In the proof of 1emmawe have seen that a principal
bundle atlas of a principal fiber bundle (P, p, M,G) is already determined
if we specify a family of smooth sections of P whose domains of definition
cover the base M.

Lemma can serve as an equivalent definition for a principal bundle.
But this is true only if an implicit function theorem is available, so in topol-
ogy or in infinite-dimensional differential geometry one should stick to our
original definition.

From lemma itself it follows that the pullback f*P over a smooth
mapping f : M’ — M is again a principal fiber bundle.

18.5. Homogeneous spaces. Let G be a Lie group with Lie algebra g.
Let K be a closed subgroup of G; then by theorem K is a closed
Lie subgroup whose Lie algebra will be denoted by ¢. By theorem
there is a unique structure of a smooth manifold on the quotient space G/ K
such that the projection p : G — G/K is a submersion, so by the implicit
function theorem p admits local sections.
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Theorem. (G,p,G/K, K) is a principal fiber bundle.

Proof. The group multiplication of G restricts to a free right action p :
G x K — G whose orbits are exactly the fibers of p. By lemma |(18.3)[ the
result follows. O

For the convenience of the reader we discuss now the best known homoge-
neous spaces.

The group SO(n) acts transitively on S"~! c R™. The isotropy group of
the ‘north pole’ (1,0,...,0) is the subgroup

1 0
0 SO(n—-1)
which we identify with SO(n —1). So

Sl = 80(n)/SO(n —1)
and we get a principal fiber bundle
(SO(n),p, 8™ 1, SO(n —1)).
Likewise the follwing are principal fiber bundles:
(O(n),p,$"~",0(n — 1)),
(SU(n),p, $*"~1, SU(n - 1)),
(U(n),p,$*" "1, U(n — 1)),
(Sp(n),p, S, Sp(n —1)).
The Grassmann manifold G(k,n;R) is the space of all k-planes containing

0 in R™. The group O(n) acts transitively on it and the isotropy group of
the k-plane R¥ x {0} is the subgroup

(Oék) O(no— k)) 5

G(k,n;R) = O(n)/O(k) x O(n — k)
is a compact manifold and we get the principal fiber bundle
(O(n),p,G(k,n;R),0(k) x O(n — k)).
Likewise the follwing are principal fiber bundles:
(50(n),p,G(k,n;R), S(O(k) x O(n — k))),
(SO(n),p, G(k,n;R), SO(k) x SO(n — k)),
(U(n),p (knC) U(k) x U(n — k)),
(Sp(n ) G(k,n; H), Sp(k) x Sp(n — k)).

therefore
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The Stiefel manifold V (k,n;R) is the space of all orthonormal k-frames in
R™. Clearly the group O(n) acts transitively on V(k,n; R) and the isotropy
subgroup of (e1,...,ex) is Iy x O(n — k), so

V(k,n;R) =0O(n)/O(n — k)
is a compact manifold, and

(O(n),p, V(ka n; R)v O(?’L - k))

is a principal fiber bundle. But O(k) also acts from the right on V' (k, n; R);
its orbits are exactly the fibers of the projection p : V(k,n;R) — G(k,n; R).
So by lemma |(18.3)| we get a principal fiber bundle

(V(k,n,R), p, G(k,n; R), O(k)).

Indeed we have the following diagram where all arrows are projections of
principal fiber bundles and where the respective structure groups are written
on the arrows:

(1) O(n) — 2 v (s R)
O(k)l lO(k)
V(n—k,n;R) ) G(k,n;R).

The Stiefel manifold V(k,n;R) is also diffeomorphic to the space {A €
L(R¥,R™) : AT.A = I}, i.e., the space of all linear isometries R* — R".
There are furthermore complex and quaternionic versions of Stiefel manifolds
and flag manifolds.

18.6. Homomorphisms. Let x : (P,p, M,G) — (P',p', M',G) be a prin-
cipal fiber bundle homomorphism, i.e., a smooth G-equivariant mapping
X : P — P’. Then obviously the diagram

(1) p—_X.p

| b

M — M

commutes for a uniquely determined smooth mapping x : M — M’. For
each x € M the mapping x, := x|Px : Px — P)ﬁ((z) is G-equivariant and
therefore a diffeomorphism, so diagram (Il is a pullback diagram.

But the most general notion of a homomorphism of principal bundles is
the following. Let ® : G — G’ be a homomorphism of Lie groups. A
mapping x : (P,p, M,G) — (P',p’, M',G’) is called a homomorphism over
® of principal bundles if x : P — P’ is smooth and x(u.g) = x(u).®(g) holds
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in general. Then x is fiber respecting, so diagram (Il) again makes sense,
but it is no longer a pullback diagram in general.

If x covers the identity on the base, it is called a reduction of the structure
group G’ to G for the principal bundle (P’,p', M’ G') — the name comes
from the case when & is the embedding of a subgroup.

By the universal property of the pullback any general homomorphism y of
principal fiber bundles over a group homomorphism can be written as the
composition of a reduction of structure groups and a pullback homomor-
phism as follows, where we also indicate the structure groups:

(2) (P,G) — (X"P,G) — (P, &)
=~

18.7. Associated bundles. Let (P,p, M,G) be a principal bundle and
let £: G xS — S be a left action of the structure group G on a manifold
S. We consider the right action R : (P x S) x G — P x S, given by

R((u,5),9) = (u.g,g~".s).

Theorem. In this situation we have:

(1) The space P xg S of orbits of the action R carries a unique smooth
manifold structure such that the quotient map q: P x S — P xg S is
a submersion.

(2) (P xgS,p, M, S,G) is a G-bundle in a canonical way, where p: P x ¢
S — M is given as in the following diagram, where q, : {u} x S —
(P %G 8)p(u) s a diffeomorphism for each u € P:

(a) PxS—1>PxgS
-
P—2 M
(3) (P xS,q,P xg S,G) is a principal fiber bundle with principal action
R

(4) If (Uq, 0 : PlUy — Uy x G) is a principal bundle atlas with cocycle
of transition functions (pap : Usg — G), then together with the left
action £ : G x S — S this cocycle is also one for the G-bundle (P X¢
S,p, M, S,G).

Notation. (P xgS,p, M, S,G) is called the associated bundle for the action
0:G xS — S. We will also denote it by P[S,¢] or simply P[S] and we
will write p for p if no confusion is possible. We also define the smooth
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mapping 7 = 7% : P xp P[S, €] = S by 7(us,v;) == ¢ ! (vy) which satisfies
7(u, q(u,8)) = 5, q(ug, T(Ug, Vz)) = Vs, and 7(Uz.g,v:) = g~ .7 (U, vz). In
the special situation where S = G and the action is left translation, so that
P[G] = P, this mapping coincides with 7 considered in |(18.2)]

Proof. In the setting of diagram (a) in (2)) the mapping p o pr; is constant
on the R-orbits, so p exists as a mapping. Let (Uy, ¢q : P|lUy — Uy X G)
be a principal bundle atlas with transition functions (¢as : Usg — G). We
define ¥;1 1 Uy x S = 57 (Ua) € P xa S by t51(2,5) = alpz(x,€),5),
which is fiber respecting. For each point in p~!(x) C P xS there is exactly
one s € S such that the orbit corresponding to this point passes through
(oat(z,e),s), namely s = 7 (uy, o5 (2, e))~L.s" if (ug, 8') is the orbit, since
the principal right action is free. Thus v, (2, ):S — p~!(z) is bijective.

Furthermore

7/{571(33, 5) = Q(¢E1(x’ 6), 8)
a(x (@, pap(x).€), 5) = qloy (. €).Pap(x), 5)
q

(¢;1(x, 6)7 90015(‘7;)'8) = w;l(x? 90045(‘%)'8)7

SO wawgl(w,s) = (x,¢ap(x).5). So (Uqa,vq) is a G-atlas for P xg S and
makes it into a smooth manifold and a G-bundle. The defining equation for
1) shows that ¢ is smooth and a submersion and consequently the smooth
structure on P X S is uniquely defined, and p is smooth by the universal
properties of a submersion.

By the definition of 1), the diagram

(5) p U) xS F L o ax s

| o

Yo U, xS

commutes; since its lines are diffeomorphisms, we conclude that ¢, : {u} X
S — pY(p(u)) is a diffeomorphism. So (@), @), and (@) are checked.

@) follows directly from lemma |(18.3)] We give below an explicit chart
construction. We rewrite the last diagram in the following form:

(6) pHUs) x S —=q (V) BELINE VANYe
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Here V,, := p ' (U,) C P x¢ S, and the diffeomorphism ), is given by the
expression A\;1(v;1(x,s),9) = (o5 (z,9),97.5). Then we have

Mg (o (w,9),9) = A5 (05 (2, ppal@).5), 9)
= (¢5'(2,9), 97" ppal®).5)
= (pa " (@, Pap().9), g pap(x) " .5)
=2\ (g (@, 8), pap(2).9),

50 XX (15 (@, 5),9) = (U5 (2, 5), Pas(x).g) and (P x S,4, P xg S, G) is
a principal bundle with structure group G' and the same cocycle (p,3) we
started with. ([

18.8. Corollary. Let (E,p,M,S,G) be a G-bundle, specified by a cocycle
of transition functions (pag) with values in G and a left action £ of G on S.
Then from the cocycle of transition functions we may glue a unique principal
bundle (P,p, M,G) such that E = P|S, /). O

This is the usual way a differential geometer thinks of an associated bundle.
He is given a bundle E and a principal bundle P, and the G-bundle structure
then is described with the help of the mappings 7 and gq.

18.9. Equivariant mappings and associated bundles.

(1) Let (P,p, M, G) be a principal fiber bundle and consider two left actions
of G,0:GxS— Sand V' :GxS — 5. Let furthermore f: S — 5" be a
G-equivariant smooth mapping, so f(g.s) = g.f(s) or f oty ={; o f. Then
Idpx f: PxS — PxS'is equivariant for the actions R : (PxS)xG — PxS
and R : (P x S") x G — P x S and is thus a homomorphism of principal
bundles, so there is an induced mapping

Idx f

(2) PxS P xS
Ql J{q’
P ><GS faxal P XaG S’,

which is fiber respecting over M, and a homomorphism of G-bundles in the

sense of the definition below.

(3) Let x : (P,p, M,G) — (P',p/,M',G) be a principal fiber bundle ho-
momorphism as in Furthermore we consider a smooth left action
{:Gx8S— S. Then y x Idg : P xS — P’ x S is G-equivariant and induces
a mapping x Xg Ids : P xS — P’ X S, which is fiber respecting over M,
fiberwise a diffeomorphism, and again a homomorphism of G-bundles in the

sense of definition |(18.10)| below.
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(4) We consider the situation of () and (2]) at the same time. Given two
associated bundles P[S, (] and P'[S’, (], let

x: (P,p,M,G) = (P',p',M',G)

be a principal fiber bundle homomorphism and let f : S — S’ be a G-
equivariant mapping. Then y x f : P x S — P’ x S’ is clearly G-equivariant
and therefore induces a mapping

X xa [ : P[S, €] = P'[S", ]

which again is a homomorphism of G-bundles.
(5) Let S be a point. Then P[S] = P xS = M. Furthermore let y € S’ be

a fixed point of the action ¢ : G x S’ — S’; then the inclusion i : {y} — S’
is G-equivariant. Thus Idp X 7 induces

Idp Xgi M = P[{y}] — P[Sl],

which is a global section of the associated bundle P[S].

If the action of GG on S is trivial, so g.s = s for all s € S, then the associated
bundle is trivial: P[S] = M x S. For a trivial principal fiber bundle any
associated bundle is trivial.

18.10. Definition. In the situation of a smooth fiber respecting
mapping v : P[S,¢] — P'[S’,¢'] covering a smooth mapping 7 : M —
M’ of the bases is called a homomorphism of G-bundles if the following
conditions are satisfied: P is isomorphic to the pullback ¥*P’, and the local
representations of «y in pullback-related fiber bundle atlases belonging to the
two G-bundles are fiberwise G-equivariant.

Let us describe this in more detail now. Let (U.,v)) be a G-atlas for
P'[S", 0] with cocycle of transition functions (¢],5), belonging to the princi-
pal fiber bundle atlas (U, ¢,,) of (P',p', M’,G). Then the pullback-related
principal fiber bundle atlas (U, = ¥~ 1(U.), pa) for P = 5* P’ as described in
the proof of has the cocycle of transition functions (pas = ¢/, 50 3);
it induces the G-atlas (Uy, %) for P[S,£]. Then (¢!, o~y o9y ') (z,s) =
(F(x),va(z,s)) and yo(z, ) : S — S’ is required to be G-equivariant for
all « and all z € U,,.

Lemma. Let vy : P[S,{] — P'[S", V'] be a homomorphism of G-bundles as in
(18.9). Then there is a homomorphism

X (Pp, M,G) — (P',p,M',G)
of principal bundles and a G-equivariant mapping f : S — S’ such that
v=xxg f:P[S,{ — P'S, 1]
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Proof. The homomorphism x : (P,p, M,G) — (P',p', M',G) of principal
fiber bundles is already determined by the requirement that P = *P’, and
we have ¥ = Y. The G-equivariant mapping f : S — S’ can be read off the
following diagram:

(1) Py P[S] -~

XXMVi lf
S/

P X M PI[S/] —/ S/,

which by the assumptions is seen to be well defined in the right column. [

So a homomorphism of G-bundles is described by the whole triple (x : P —
P f:S — S (G-equivariant),~ : P[S] — P’[S’]), such that diagram (T
commutes.

18.11. Associated vector bundles. Let (P,p, M, G) be a principal fiber
bundle, and consider a representation p : G — GL(V) of G on a finite-
dimensional vector space V. Then P[V,p] is an associated fiber bundle
with structure group G, but also with structure group GL(V), for in the
canonically associated fiber bundle atlas the transition functions also have
values in GL(V'). So by section PV, p| is a vector bundle.

Now let F be a covariant smooth functor from the category of finite-dimen-
sional vector spaces and linear mappings into itself, as considered in section
Then clearly Fop: G — GL(V) — GL(F(V)) is another representa-
tion of G and the associated bundle P[F(V'), F o p] coincides with the vector
bundle F(P[V, p|) constructed with the method of but now it has an
extra G-bundle structure. For contravariant functors F we have to consider
the representation F o p o v, where v(g) = g~'. A similar choice works for
bifunctors. In particular the bifunctor L(V, W) may be applied to two dif-
ferent representations of two structure groups of two principal bundles over
the same base M to construct a vector bundle

L(P[V, pl, P'[V", p]) = (P xas P)[L(V, V'), Lo ((pov) x p)].

If (E,p, M) is a vector bundle with n-dimensional fibers, we may consider
the open subset GL(R", E) C L(M x R", E), a fiber bundle over the base
M, whose fiber over x € M is the space GL(R", E,) of all invertible linear
mappings. Composition from the right by elements of GL(n) gives a free
right action on GL(R"™, E') whose orbits are exactly the fibers, so by lemma
we have a principal fiber bundle (GL(R™, E),p, M,GL(n)). The as-
sociated bundle GL(R"™, E)[R"] for the banal representation of GL(n) on
R™ is isomorphic to the vector bundle (E,p, M) we started with, for the
evaluation mapping ev : GL(R", F) x R® — F is invariant under the right
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action R of GL(n), and locally in the image there are smooth sections to it,
so it factors to a fiber linear diffeomorphism

GL(R", E)[R"] = GL(R"™, E) X1 R" = E.

The principal bundle GL(R™, E) is called the linear frame bundle of E.
Note that local sections of GL(R™, E) are exactly the local frame fields of
the vector bundle E as discussed in |(8.5)]

To illustrate the notion of reduction of structure groups, we consider now
a vector bundle (E,p, M,R"™) equipped with a Riemann metric g, that is,
a section g € C°°(S2E*) such that g, is a positive definite inner product
on FE, for each x € M. Any vector bundle admits Riemann metrics: local
existence is clear and we may glue with the help of a partition of unity on
M, since the positive definite sections form an open convex subset. Now let

s'=(s},...,s,) € C°(GLR", E)|U)

be a local frame field of the bundle E over U C M. Now we may apply the
Gram-Schmidt orthonormalization procedure to the basis (s1(z), ..., s,(x))
of E, for each x € U. Since this procedure is smooth (even real analytic),
we obtain a frame field s = (s1,...,$,) of E over U which is orthonormal
with respect to g. We call it an orthonormal frame field. Now let (Uy) be
an open cover of M with orthonormal frame fields s® = (s{, ..., s%), where
s is defined on U,. We consider the vector bundle charts

(Uay o : BE|Uy — Uy x R™)

given by the orthonormal frame fields:
v (vt = z:sf‘(ac)vZ =: s%(x).v.

For x € Uyp we have s{(z) = Zsf(w)ggaf(x) for C*°-functions gagg :
Usp — R. Since s%(x) and s%(x) are both orthonormal bases of F,, the
matrix gog(x) = (gaﬂg(x)) is an element of O(n,R). We write s® = s°.g3,
for short. Then we have

1[)6_1(% v) =s8(x)w = 5().gap(2).0 = P (2, gap(z).0)

and consequently waw/gl(m,v) = (x, gap(x).v). Sothe (gop : Usp = O(n,R))
are the cocycle of transition functions for the vector bundle atlas (Uy, ¥4 ).
So we have constructed an O(n,R)-structure on E. The corresponding prin-
cipal fiber bundle will be denoted by O(R", (E, g)); it is usually called the
orthonormal frame bundle of E. It is derived from the linear frame bundle
GL(R", E) by reduction of the structure group from GL(n) to O(n). The
phenomenon discussed here plays a prominent role in the theory of classify-
ing Spaces.
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18.12. Sections of associated bundles. Let (P,p, M,G) be a principal

fiber bundle and £ : G x S — S a left action. Let C*(P,S)“ denote the
space of all smooth mappings f : P — S which are G-equivariant in the
sense that f(u.g) = g~ '.f(u) holds for g € G and u € P.

Theorem. The sections of the associated bundle P|S, (] correspond exactly
to the G-equivariant mappings P — S; we have a bijection

= (P, S)¢ = T(P[S]).

This result follows from |(18.9)| and |(18.10)} Since it is very important, we
include a direct proof.

Proof. If f € C®(P,S)%, we construct sy € I'(P[S]) in the following
way: The mapping graph(f) = (Id, f) : P — P x S is G-equivariant, since
(Id, f)(u.g) = (w.g, f(u.g)) = (w.g,97".f(w)) = ((Id, f)(u)).g. So it induces
a smooth section sy € I'(P[S]) as seen from |(18.9)] and the diagram:

(1) P x {point} p— U _pyg
pl lq
M a—
For s € T(P[S]) we define f, € C*®(P,S)% by

fs:=7"0(Idp xprs): P=Pxy M — P xy P[S] = S.
This is G-equivariant since we have by |(18.7)]
fs(ug.g) = 7% (uz.g,5(2)) = g L7 (ua, 5(2)) = g7 fo(ug)-

These constructions are inverse to each other since we have

Foin (@) = 7°(u, s5(p(w)) = 75(u, q(u, f(w)) = f(u),
575 (p(w) = a(u, f5(w) = a(u, 75(u, s(p(w)))) = s(p(w)). O

18.13. Induced representations. Let K be a closed subgroup of a Lie
group G. Let p : K — GL(V) be a representation in a vector space V,
which we assume to be finite-dimensional to begin with. Then we consider
the principal fiber bundle (G, p, G/K, K) and the associated vector bundle
(G[V],p,G/K). The smooth (or even continuous) sections of G[V] corre-
spond exactly to the K-equivariant mappings f : G — V, those satisfying

f(gk) = p(k=1)f(g), by lemma [(18.12)] Each g € G acts as a principal
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bundle homomorphism by left translation:

Hg

G G

| v

G/K > G/K.
So by [(18.9)| we have an induced isomorphism of vector bundles

Id
GXV%GXV

.| Bt

G[V]

al ) |

G/K — 1 G/K

—~a
which gives rise to the representation indyp of G in the space I'(G[V]),
defined by

(indyep)(9)(s) = (g x5 V) 050 fig1 = (g x5 V)u(5):

Now let us assume that the original representation p is unitary, p : K —
U(V) for a complex vector space V with inner product ( , )y. Then v —
|lv]|? = (v,v) is an invariant symmetric homogeneous polynomial V' — R of
degree 2, so it is equivariant where K acts trivially on R. By again we
get an induced mapping G[V] — G[R| = G/K xR, which we can polarize to
a smooth fiberwise Hermitian form ( , )gpy] on the vector bundle G[V].
We may also express this by

<U:cawz>G[V] = <TV(u9:7Um)7TV(Umywx)>V
= (k:_lTV(ux?vx),k_lTV(umwx)>v
= <7‘V(u$.k,Ux),’i'v(ux.k,wx»v

for some u, € G, using the mapping 7V : G xg/p G[V] — V from [(18.7)}
it does not depend on the choice of u,. Still another way to describe the
fiberwise Hermitian form is

(GxV)xg/k (GxV)
J/ !
G[V] Xg/K G[V](\)

i

G/K;

here f((g1,v1), (g2,v2)) := (v1, p(TK(gl, 92))v2)y where we use the mapping
™. G Xg/xk G — K given by 78(g1,92) = 97 *g2 from [(18.2)] From this
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last description it is also clear that each g € G acts as an isometric vector
bundle homomorphism.

Now we consider the natural line bundle Vol'/?(G/K) of all %—densities on
the manifold G/K from [(10.4)] Then for 1-densities y; € ['(Vol'/2(G/M))

and any diffeomorphism f : G/K — G/K the pushforward f.u; is defined
and for those with compact support we have

/G (g = /G L J) = /G o

The Hermitian inner product on G[V] now defines a fiberwise Hermitian
mapping

(GIV]@ VOl 2(G/K)) ¢ (GIV] @ Vol 2(G/K)) Y, violl (G )

and on the space C®°(G[V] ® Vol'/2(G/K)) of all smooth sections with
compact support we have the following Hermitian inner product:

(01,02) 5:/ (01, 02)Gv)-
G/K

For a decomposable section o; = s; ® o; (where s; € I'(G[V]) and where
a; € C2(Vol'/2(G/K))) we may consider (using the equivariant
lifts fs, : G — V, their invariant inner product (fs,, fs,)v : G — C, and its
factorization to (fs,, fs,) : G/K — C. Then

(01,09) := /G/K<fs17fsg>\7 ara.

Obviously the resulting action of the group G on T'(G[V] ® Vol'/?(G/K)) is
unitary with respect to the Hermitian inner product, and it can be extended
to the Hilbert space completion of this space of sections. The resulting
unitary representation is called the induced representation and is denoted
by ind% p.

If the original unitary representation p : K — U(V) is in an infinite-
dimensional Hilbert space V', one can first restrict the representation p to
the subspace of smooth vectors, on which it is differentiable, and repeat the
above construction with some modifications. See [151] for more details on
this infinite-dimensional construction.

18.14. Theorem. Consider a principal fiber bundle (P,p, M,G) and a
closed subgroup K of G. Then the reductions of structure group from G
to K correspond bijectively to the global sections of the associated bundle
P[G/K, ) in a canonical way, where A : G x G/K — G/K is the left action

on the homogeneous space from|(5.11),.
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Proof. By[(18.12)|the section s € I'(P[G/K]) corresponds to an equivariant
mapping f, € C®(P,G/K)%, which is a surjective submersion since the
action A : GxG/K — G/K is transitive. Thus Ps := f; (&) is a submanifold
of P which is stable under the right action of K on P. Furthermore the K-
orbits are exactly the fibers of the mapping p : P — M, so by lemma
we get a principal fiber bundle (Ps,p, M, K). The embedding Ps; — P is
then a reduction of structure groups as required.

If conversely we have a principal fiber bundle (P’,p/, M, K) and a reduction
of structure groups x : P’ — P, then  is an embedding covering the identity
of M and is K-equivariant, so we may view P’ as a fiber subbundle of P
which is stable under the right action of K. Now we consider the mapping
7:Pxy P — G from and restrict it to P x3; P’. Since we have
T(Ug, Vg.k) = T(ug,vz).k for k € K, this restriction induces f : P — G/K
by

Pxy P T G

ok

P=PxyP/K—>G/K,

since P'/K = M; and from 7(uz.g,v;) = g~ .7 (uz, v,) it follows that f is G-
equivariant as required. Finally f~!(&) = {u € P : 7(u, PI’)(U)) CK}=P,
so the two constructions are inverse to each other. O

18.15. The bundle of gauges. If (P,p, M, G) is a principal fiber bundle,
we denote by Aut(P) the group of all G-equivariant diffeomorphisms y :
P — P. Then poyxy = xop for a unique diffeomorphism Y of M, so
there is a group homomorphism from Aut(P) into the group Diff(M) of all
diffeomorphisms of M. The kernel of this homomorphism is called Gau(P),
the group of gauge transformations. So Gau(P) is the space of all y : P — P
which satisfy po x = p and x(u.g) = x(u).g. A vector field £ € X(P)
is an infinitesimal gauge transformation if its flow Flf consists of gauge
transformations, i.e., if £ is vertical and G-invariant, (r9)*¢ = &.

Theorem. The group Gau(P) of gauge transformations is equal to the space
Gau(P) = C*®(P, (G, conj))¥ = I'(P[G, conj]).

The Lie algebra X ert(P)C of infinitesimal gauge transformations is equal to
the space

Xpert(P)Y = C®(P, (g,Ad))Y = T'(P[g, Ad]).

Proof. We use again the mapping 7 : P x)y P — G from |(18.2), For
x € Gau(P) we define f, € C®(P,(G,conj))” by f, := 7o (Id,x). Then



18. Principal Fiber Bundles and G-Bundles 227

Fr(u.g) = 7(u.g,x(u.g)) = g~ .7(u, x(u)).g = conj,—1 fy(u), so fy is indeed
G-equivariant.

If conversely f € O%(P,(G,conj))? is given, we define x; : P — P by
Xf(u) :=u.f(u). It is easy to check that x; is indeed in Gau(P) and that
the two constructions are inverse to each other, namely

xs(ug) = ugf(ug) = ugg™" f(u)g = xs(u)g,
Frr () =79 (u, xp(w) = 7w, u. f(w) = 7 (u, u) f(w) = f(u),
X, (0) = ufy(u) = ur®(u, x(u) = x(u).

(
The isomorphism C*(P, (G, conj))¢ = T'(P[G,conj]) is a special case of

theorem [(18.12)

A vertical vector field £ € Xyert (P) = I'(V P) is given uniquely by a mapping
fe: P — gvia{(u) = Te(ry). fe(u), and it is G-equivariant if and only if

T, (ru)-fe(u) = €(u) = (1)) (w) = T(r7).£(u.g)
= T(r9).Telrug) -felu.g) = T(r9 " oruy).felu.g)
=Te(ry o conjg).fg(u.g) = Te(ry). Adyg . fe(u.g).
The isomorphism C®(P, (g, Ad))¢ = I'(P[g, Ad]) is again a special case of

theorem [(18.12) O

18.16. The tangent bundles of homogeneous spaces. Let GG be a
Lie group and K a closed subgroup, with Lie algebras g and €, respec-
tively. We recall the mapping Adg : G — Autyie(g) from and put
Adgx = Adg|K : K — Autric(g). For X € ¢ and k € K we have
Adg k (k)X = Adg(k)X = Adg (k)X € ¢ so tis an invariant subspace for
the representation Adg i of K in g, and we have the factor representation
Adt : K — GL(g/t). Then

(1) 0—-t—>g—g/t—0
is short exact and K-equivariant.

Now we consider the principal fiber bundle (G, p, G/K, K) and the associ-
ated vector bundles G[g/¢, Adt] and G[¢, Adg].

Theorem. In these circumstances we have

T(G/K) = Gla/t, Add"] = (G xx g/t p,G/K,0/b).
The left action g — T(fig) of G on T(G/K) corresponds to the canonical left
action of G on G xk g/t. Furthermore G[g/t, Adt] ® G[¢, Adk] is a trivial
vector bundle.

Proof. For p : G — G/K we consider the tangent mapping T.p : g —
T:(G/K) which is linear and surjective and induces a linear isomorphism



228 CHAPTER IV. Bundles and Connections

T.p: g/t — T:(G/K). For k € K we have p o conj, :pouko,uk_l =jipop
and consequently T.p o Adg (k) = Tep o Te(conjy,) = Tejix, © Tep. Thus the
isomorphism Tep : g/t — Tz(G/K) is K-equivariant for the representations
Adt and TN : k — Tsfir, where, for the moment, we use the notation
MG x G/K — G/K for the left action.

Let us now consider the associated vector bundle

GT:(G/K),T:N = (G x g T:(G/K),p, G/ K, T:(G/K)),
which is isomorphic to the vector bundle G[g/¢, Ad1], since the representa-
tion spaces are isomorphic. The mapping 1o\ : G x Te(G/K) — T(G/K)
(where T; is the second partial tangent functor) is K-invariant, since
ToA((g, X)k) = ToX(gk, Tefig—1.X) = Thgr.Thig-1.X = Thg.X.

Therefore it induces a mapping 1 as in the following diagram:

(2) G x Ts(G/K)

/\

G xx Ts(G/K) T(G/K)

S,

This mapping v is an isomorphism of vector bundles.

It remains to show the last assertion. The short exact sequence ([l) induces
a sequence of vector bundles over G/K:

G/K x 0 — G[¢, Adg] — Glg, Adg k] — Glg/¢, Adt] — G/K x 0.
This sequence splits fiberwise thus also locally over G/ K, so we get
Glg/t, Adt] @ GJe, Adk] = Glg, Adg k).

We have to show that Gg, Adg k| is a trivial vector bundle. Let ¢ : Gxg —
G % g be given by ¢(g,X) = (¢9,Adg(g)X). Then for k € K we have

o((9, X).k) = p(gk, Adg x (k™) X)
= (gk,Adg(g.k.k~")X) = (gk, Adg(g) X).
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So ¢ is K-equivariant for the ‘joint’ K-action to the ‘on the left’ K-action
and therefore induces a mapping ¢ as in the diagram:

)

(3) Gxg Gxg
| |
G XK g ? G/K x g
K pr;
G/K.
The map @ is a vector bundle isomorphism. O

18.17. Tangent bundles of Grassmann manifolds. From we
know that (V(k,n) = O(n)/O(n — k),p,G(k,n),O0(k)) is a principal fiber
bundle. Using the standard representation of O(k), we consider the asso-
ciated vector bundle (Ej, := V(k,n)[R¥], p, G(k,n)). Recall from the
description of V(k,n) as the space of all linear isometries R¥ — R™; we
get from it the evaluation mapping ev : V(k,n) x R¥ — R™. The mapping
(p, ev) in the diagram

(1) V(k,n) x RF
l (p,ev)
q
E, ==V (k,n) xo@) R — G(k,n) x R™

is O(k)-invariant for the action R and factors therefore to an embedding of
vector bundles ¢ : B, — G(k,n) x R™. So the fiber (Ej)w over the k-plane
W in R” is just the linear subspace W. Note finally that the fiberwise or-
thogonal complement E* of Ej in the trivial vector bundle G(k,n) x R”
with its standard Riemann metric is isomorphic to the universal vector bun-
dle E,,_j over G(n—k,n), where the isomorphism covers the diffeomorphism
G(k,n) — G(n — k,n) given also by the orthogonal complement mapping.

Corollary. The tangent bundle of the Grassmann manifold is

TG(k,n) = L(Ey, Exb).

Proof. We have G(k,n) = O(n)/(O(k) x O(n — k)), so by theorem [(18.16)]

we get

TG(k,n) =0(n) O(k)xé(nik)(so(n)/(so(k) x so(n —k))).
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On the other hand we have V(k,n) = O(n)/O(n — k) and the right action
of O(k) commutes with the right action of O(n — k) on O(n); therefore

V(k,n)[RF] = (O(n)/O(n —k)) x RF =0(n) X RF,
o(k) O(k)xO(n—Fk)
where O(n — k) acts trivially on R¥. We have
L(Ey, Ex) =1L <O(n) X R¥, O(n) X R”"“)
O(k)xO(n—k) O(k)xO(n—k)

=0(n) x  LRYR"F),
O(k)xO(n—Fk)
where O(k) x O(n — k) acts on L(RF,R" %) by (A, B)(C) = B.C.A™'.
Finally, we have an (O(k) x O(n — k))-equivariant linear isomorphism as
follows:

L(R* R"*) = s0(n)/(so(k) x so(n — k)),

s0(n)/(s0(k) x s0(n — k)) = (skew) / <skoew 0 >

skew
0 —AT k mon—k
=3y o ) AcL®RH. O

18.18. Tangent bundles and vertical bundles. Let (E,p, M,S) be a
fiber bundle. The vector subbundle VE = {¢{ € TE : Tp.§ = 0} of TE is
called the vertical bundle and is denoted by (VE, 7, E).

Theorem. Let (P,p, M,G) be a principal fiber bundle with principal right
actionrT : PxG — P. Let{: Gx S — S be a left action. Then the following
assertions hold:

(1) (TP, Tp, TM,TQG) is again a principal fiber bundle with principal right
action Tr : TP x TG — TP, where the structure group TG is the
tangent group of G; see|(6.7)]

(2) The vertical bundle (V P, 7, P,g) of the principal bundle is trivial as a
vector bundle over P: VP = P X g.

(3) The vertical bundle of the principal bundle as bundle over M is again
a principal bundle: (VP,pomw, M,TQG).

(4) The tangent bundle of the associated bundle P[S,{] is given by
T(P[S,¢]) =TP[TS,TY.

(5) The vertical bundle of the associated bundle P[S, /] is given by
V(P[S, 6]) = P[TS, Tge] =P XaG TS.

Proof. Let (Uy, 9o : P|Uy — Uy X G) be a principal fiber bundle atlas with
cocycle of transition functions (pag : Usg — G). Since T is a functor which



19. Principal and Induced Connections 231

respects products, (TUy, Tpq : TP|TU, — TU, x TQG) is again a principal
fiber bundle atlas with cocycle of transition functions (T'p,g : TUss — T'G),
describing the principal fiber bundle (T'P, T'p, TM,TG). The assertion about
the principal action is obvious. So (1] follows. For completeness sake we
include here the transition formula for this atlas in the right trivialization
of TG:

T(pa0 ‘PEI)(&& Te(p?).X) = (&, Te(ﬂwaﬁ(x)'g)-(y%@aﬂ(gx) + Ad(@aﬂ(x))X>)7

where dpa5 € Q' (Uag;g) is the right logarithmic derivative of ¢,g; see

€25
@) The mapping (u, X) = Te(ry). X = T(ye)7 (04, X) is a vector bundle
isomorphism P x g — V' P over P.

@) Obviously T'r : TP x TG — TP is a free right action which acts transi-
tively on the fibers of Tp : TP — TM. Since VP = (Tp)~1(05), the bundle

VP — M is isomorphic to TP|0j; and T'r restricts to a free right action,
which is transitive on the fibers, so by lemma |(18.3)| the result follows.

(@) The transition functions of the fiber bundle P[S,¢] are given by the
expression £ o (pag x Idg) : Ugg x S — G x S — S. Then the transition
functions of T'(P[S, ¢]) are T'({o (pap x Ids)) = Tlo (T x Idrs) : TUqyp X
TS - TG xTS — TS, from which the result follows.

([B)) Vertical vectors in T'(P[S, £]) have local representations (05,7s) € TUqg X
TS. Under the transition functions of T'(P[S,/]) they transform as T'(¢ o

(ap % 1ds)).(0z,m5) = TC.(Op, (2 Ms) = Ty, g(2))-ns = T2l.(pap(T),ns)
and this implies the result O

19. Principal and Induced Connections

19.1. Principal connections. Let (P, p, M, G) be a principal fiber bundle.
Recall from that a (general) connection on P is a fiber projection
® : TP — VP, viewed as a 1-form in Q'(P,TP). Such a connection ®
is called a principal connection if it is G-equivariant for the principal right
action r : P x G — P, so that T'(r9).® = ®.T(r9) and ® is r9-related to
itself, or (r9)*® = ® in the sense of [(16.16)] for all ¢ € G. By theorem
the curvature R = 3.[®, ®| is then also r9-related to itself for all
g€ aq.

Recall from [(18.18.2)| that the vertical bundle of P is trivialized as a vector
bundle over P by the principal action. So
(1) w(Xy) = Te(ry) 1 2(Xy) € 9

and in this way we get a g-valued 1-form w € Q!(P,g), which is called
the (Lie algebra valued) connection form of the connection ®. Recall from
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the fundamental vector field mapping ¢ : g — X(P) for the princi-
pal right action given by (x(u) = Te(r,)X which satisfies T, (r9)(x (u) =
Cad(g-1)x (u.g). The defining equation for w can be written also as ®(Xy) =
CUJ(Xu)(u)'

Lemma. If ® € QY(P,V P) is a principal connection on the principal fiber

bundle (P,p, M,G), then the connection form has the following two proper-
ties:

(2) w reproduces the generators of fundamental vector fields:
w(Cx(u)) =X foral Xeg.
(3) w is G-equivariant, i.e.,
(1) w)(Xu) = w(Tu(r?).Xu) = Ad(g™")-w(Xy)
forall g € G and X, € T,,P. Consequently we have for the Lie deriv-
ative Lyw = —ad(X).w.

Conversely a 1-form w € QY (P, g) satisfying @) defines a connection ® on
P by ®(Xy) = Te(ry).w(Xy), which is a principal connection if and only if
@) is satisfied.

Proof. @) Te(r.)w((x(u)) = ®((x(u)) = (x(u) = Te(ry).X. Since
Te(ry) : g — Vi, P is an isomorphism, the result follows.

@B)) Both directions follow from

Te(rug)'w(Tu(rg)-Xu) = Cw(Tu(rg).Xu)(u.g) = (I)(Tu(rg)'Xu)7

Te(rug)- Ad(gil)'w(Xu) = gAd(gfl).w(Xu)<U’g) = Tu(rg)-CW(Xu)(U)
— T,(r9).8(X,). O

19.2. Curvature. Let ® be a principal connection on the principal fiber
bundle (P, p, M, G) with connection form w € Q'(P, g). We already noted in
[(19.1)| that the curvature R = 1[®, ®] is then also G-equivariant, (r9)*R = R
for all ¢ € G. Since R has vertical values, we may again define a g-valued
2-form

Qe Q*Pyg), QUX,Y,) :=-T.(r.) " .R(Xu,Ya),

which is called the (Lie algebra valued) curvature form of the connection.
We also have

We take the negative sign to get the usual curvature form as in [107] I].

We equip the space Q(P,g) of all g-valued forms on P in a canonical way
with the structure of a graded Lie algebra by
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0, 07(X1, .+, Xpig)

1 .
= Z signo [U(Xo1, -, Xop), O(Xo(pi1)s - - » Xo(pra))ls

or equivalently by
VX, 9Y|r =9 ANI®[X,Y],.
From the latter description it is clear that
d[¥,0], = [dV¥, 0], + (—1)1eY[¥, d6],.
In particular for w € Q'(P, g) we have
@, wn(X,Y) = 20w(X),0(Y)ly.

Theorem. The curvature form € of a principal connection with connection
form w has the following properties:

(1) Q is horizontal, i.e., it kills vertical vectors.

(2) Q is G-equivariant in the following sense: (r9)*Q = Ad(g~1).Q. Con-
sequently L¢, ) = —ad(X).Q.

(3) The Maurer-Cartan formula holds: Q = dw + 1w, w]x.

Proof. () is true for R by For ([2) we compute as follows:
Te(rug)-(r?) Q) ( Xy, Yu) = Te(rug) QUTu(r?). Xy, Tu(r9).Y,)
= —Rug(Tu(r?). Xy, Tu(r9).Yy) = =T (r?).((r?)*R)(Xu, Yu)
= —Tu(r?).R(Xy, Yu) = Tu(r?)-Carx,,v.) (w)
= Cad(g-1).0(Xu,ve) (19) = Te(rug). Ad(g™1). (X, Ya), by [(6:3]}
@) For X € g we have ic, R = 0 by (), and using[(19.1.2)] we get
icy (dw + %[w,w]/\) =iy dw + %[icijw]/\ — %[w,igxw]/\
=Lew~+ [X,wh = —ad(X)w+ ad(X)w = 0.

So the formula holds for vertical vectors, and for horizontal vector fields
&,n e (H(P)) we have

R(fﬂ?) = (I)[f - (1)5’77 - q)n] = (I)[f, 77] = gw([{,n}))

(o + 5o, (€ m) = () — mol€) — (&) +0 = ~w((E ). O

19.3. Lemma. Any principal fiber bundle (P,p, M,G) (with paracompact
basis) admits principal connections.
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Proof. Let (Uy, ¢o : PlUy — Uy X G), be a principal fiber bundle atlas.
Let us define vo (T, (Ex, Tepg- X)) = X for & € T,U, and X € g. Using

lemma [(6.3)} we get
(") 7a) (Tg " (Eos Tettg-X)) = 7a(Tr" Ty (€n, Teng. X))
=0Ty (&, T Tepg. X))
= Ya (T3 (&, Tepign- Ad(R71). X)) = Ad(h 1) .X,
so that v, € QY(P|U,,g) satisfies the requirements of lemma [(19.1)] and
thus is a principal connection on P|U,. Now let (f,) be a smooth partition
of unity on M which is subordinated to the open cover (U,), and let w :=

> o(fa ©0P)Va- Since both requirements of lemma |(19.1)| are invariant under

convex linear combinations, w is a principal connection on P. O

19.4. Local descriptions of principal connections. We consider a
principal fiber bundle (P,p, M,G) with some principal fiber bundle atlas
(Uas 9o : PlUy = Uy x G) and corresponding cocycle (¢qp : Ugg — G) of
transition functions. We consider the sections s, € I'(P|U,) which are given
by va(sa(2)) = (x,€) and satisfy sq.0ap = sg, since we have in turn:

va(58(2)) = Papy' (@, €) = (2, Pap(2)),
s5(2) = 95 (2, e.pap(e)) = 95 (2, €)ap(e) = sa(T)pas().
(1) Let x! € Q1(G, g) be the left logarithmic derivative of the identity, also
called the left Maurer-Cartan form, i.e., k' (1g) := Ty(py-1).ng. We will
use the forms Hflﬂ = pagk € Q1 (Uap, 9).
Let ® = (ow € QY(P,VP) be a principal connection with connection form
w € QY(P,g). We may associate the following local data to the connection:
(2) wo = sa*w € QY (U,,g), the physicists’ version or Cartan moving
frame version of the connection,
(3) the Christoffel forms I'* € QY(U,, X(G)) from [(17.7)] which are given
by (02, 1%z, 9)) = *T(@a)-qlT(S@a)_l(ngOg)v
(4) Yo = (1) w € QY (U, x G, g), the local expressions of w.

Lemma. These local data have the following properties and are related by
the following formulas.
(5) The forms wa € QY (Uq, 8) satisfy the transition formulas
Wa = Ad(@gal)wﬁ + K’,lé’a’

and any set of forms like that with this transition behavior determines
a unique principal connection.

(6) We have va(Ee, Thg-X) = Ya(&e,0g) + X = Ad(g™Nwa (&) + X.
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(7) We have T'*(£z) = — Ry, (¢,), a right invariant vector field, since

Fa(grag) = _Te
=-T,

tg)-Ya &z, Og)

Hg)- Ad(g™ wa (&) = ~T (1 )wa (&s).

Proof. ([{) From the definition of the Christoffel forms we have

(02, T%(6,9)) = —T(¢a)-2.T(a) " (&, 0y)
— T(pa) Tulr 1y )0 T(Pa) (6, 0p) by [T1T]
= —Te(Pa 0 Tyt () )W T () ™" (€, 0)
= —(Ox,T( )w.T(¢a) ™" (&, 04))
— (02, Te(pg)70(82: 0g)), by @),

where we also used goao:p;l(x A1) = Palez (@.00h) = palos(z,gh)) =
(x,gh). This is the first part of (). The second part follows from ().

@) Ya(&a: Thg-X) = Ya(&, Og) + Ya (0, Tpig-X)
= Ya(&r, 0g) +w(T(pa) ™ (02, Tg. X))
= Ya (s 0g) + w(Cx (05! (2, 9)))
= Ya(&z, 0g) + X.
So the first part of () holds. The second part is seen from
Ya(&as 0g) = Ya(€es Te(1?)0e) = (w0 T(pa) ™" 0 T(Idx X %)) (€ Oc)
— (@0 T(r9 063 "))(En 0) = Ad(g™ (T (95 ") (€ 0.)
= Ad(g ) (sa"w) (&) = Ad(g™ " wal&).

() Via () the transition formulas for the w, are easily seen to be equivalent
to the transition formulas for the Christoffel forms in lemma|(17.7)l A direct
proof goes as follows: We have s, (2) = sg(x)pga(r) = 7(s5(2), pgalr)) and
thus

(
(

wa(§x> = W(Tx(sa) &)
= (W o T(ss(2) 050 (@) (12852, 00 (2) + (055 (%), Twppa-Ea))
= w(T(r? ). Ty (sp).&) + W(Tp, () (s y () Te(9a) L)
= Ad(ppa(r) w(Tu(ss) &)
+ W(Tppa (@) (Ts5(2))- T (Bppa (@) © Hopa(e)-1) Lo (Ppa)-€a)
= Ad(ppa(z) wp(&)
+ (Te(Ts5 () (@) -Ka-E)
= Ad(pga(r) M wp(&e) + o). O
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19.5. The covariant derivative. Let (P,p, M,G) be a principal fiber
bundle with principal connection ® = ( o w. We consider the horizontal
projection x = Idprp — ® : TP — HP, cf. which satisfies

xox=x, imx=HP, kerx=VP, xoT(r9)=T(r9)ox

for all g € G.

If W is a finite-dimensional vector space, we consider the mapping x*
Q(P,W) — Q(P,W) which is given by

(X @)u(X1, -5 Xi) = ou(X(X1), -5 x(Xk))-

The mapping x* is a projection onto the subspace of horizontal differential
forms, i.e., the space Qpor(P,W) :={¢p € Q(P,W) :ix1 =0 for X € VP}.
The notion of horizontal form is independent of the choice of a connection.
The projection x* has the following properties: x*(p A1) = x*p Ax* 1 if one
of the two forms has values in R; x* o x* = x*; x* o (r9)* = (r9)* o x* for all
g € G; x*w=0; and x* o L({x) = L(Cx) o x*. They follow easily from the
corresponding properties of x; the last property uses that Flg (X) _ pexptX

We define the covariant exterior derivative d,, : Q¥ (P, W) — Q¥1(P, W) by
prescribing d,, := x* o d.

Theorem. The covariant exterior derivative d,, has the following properties.
(1) du(pAY) = du(P) AX Y+ (—1)48Px* o Ady, () if ¢ or 1 is real valued.
(2) L(Cx)ody =dy,o0L(Cx) for each X € g.

(3) (r9)*ody, =d, o (r9)* for each g € G.

(4) dyop*=dop*=p od: QM,W) — Qpor(P,W).

(5) dow = Q, the curvature form.

(6) d,Q =0, the Bianchi identity.

(7) dyox*—dy, = x"0i(R), where R is the curvature.

(8) dyod, =x*0i(R)od.

(9)

9) Let Quor(P, )¢ be the algebra of all horizontal G-equivariant g-valued
forms, i.e., (r9)* = Ad(g~'). Then for any ¢ € Qpor(P,9)¢
have d, v = di + [w, P]A.

(10) The mapping © + Gy, where Cy(X1,..., Xp)(u) = Cpexy,.xp)(w) (W),
is an isomorphism between Qpor(P,g)¢ and the algebra Qpor(P,V P)%
of all horizontal G-equivariant forms with values in the vertical bundle
VP. Then we have (g, = —[P, (y).

Proof. Parts () through () follow from the properties of x*.



19. Principal and Induced Connections 237

([B) We have
(dww)(&:m) = (X dw)(§,m) = dw(x§E, xn)
= (x§wxn) — (xn)w(x§) — w((x& xnl)

= —w([x& xnl),
_C(Q(£7 77)) = R(fﬂ?) = ‘I’[Xﬁ’xn] = Cw([xf,xn])'

([6) Using we have
dpQ = dyy(dw + 3w, w]p)
= x*ddw + %x*d[w,w]/\
= %X*([dw,w]A — [w,dw]p) = X [dw, w]A
= [x"dw, x*w]r = 0, since x*w = 0.
(@) For ¢ € Q(P,W) we have
(doXx*@)(Xo, -, Xi) = (dx ) (x(Xo), - - -, x(Xk))

= O;k(—l)iX(Xi)((x*w)(X(Xo), () X(X))
+_é:(—1)”j () (D (Xa), x (X)) x(Xo), - -+

:Oggk(—l)’x(x)(w(x(xo), XX, (X))
+_g<1>i+jso<[x<xi>, X(X;5)] = ®[x(Xs), X(X))], X(Xo),

—_—

X (X)), x(XG), )
= (de)(x(X0), - - .- X(Xk)) + (ire) (X(X0), - - -, X (Xk))
= (dw + x"ir)(¢)(Xo, - .., Xp).
®) dudy, = x*dx*d = (x*ir + x*d)d = x*ird holds by ().
@) If we insert one vertical vector field, say (x for X € g, into d,v, we
get 0 by definition. For the right hand side we use i¢, % = 0 and LY =

o (F1$X ) 4y = 8o (r™*PX) x4 = 8o Ad(exp(—t X))t = — ad(X )t to get
iey (dip + [w, YIA) = dedib + digy ) + [ic e w, %] — [wyicy V]
= Lot + [X,0] = —ad(X)d + [X, ] = 0.
Now let all vector fields &; be horizontal; then we get
(dwt0) (o, - -+ &) = (X "dY)(Cos - - -, &) = dY(&o, - - -+ k)
(dip + [w, ¥In) oy - -+, §k) = dp(Eo, - - -5 k)
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So the first formula holds.
(I0) We proceed in a similar manner. Let ¥ be in the space Qf_ (P, V P)% of

hor
all horizontal G-equivariant forms with vertical values. Then for each X € g

we have i, U = 0; furthermore the G-equivariance (r9)*W¥ = ¥ implies that

LoV =[Cx,V]=0by Using formula we have
gy [®, 0] = [igy @, W] = [® g, W] +i([®, Cx )W +i([V, Cx]) @
=[x, U] —0+0+0=0.

Now let all vector fields &; again be horizontal; then from the huge formula
(16.9)| for the Frolicher-Nijenhuis bracket only the following terms in the
third and fifth lines survive:

(@, 9](&1 v Eor) = G signo B(W(Eor, - -, Ene) Enern)

+ m ZSignU ¢<\P<[§Ul7§o’2]75037 ce 7§U(f+l)))'

For f : P — g and horizontal § we have ®[£,(f] = Cep) = Capey: It is
C*°(P)-linear in &; or imagine it in local coordinates. So the last expression
becomes

—C(dwtp (o, - -+ &) = —C(d (8o, - - -, &) = —C((de + [w, P]n) (b0, - - -, Ek))

as required. O

19.6. Theorem. Let (P,p, M,G) be a principal fiber bundle with principal
connection w. Then the parallel transport for the principal connection is
globally defined and G-equivariant.

In detail: For each smooth curve ¢ : R — M there is a smooth mapping
Pt : R x Py — P such that the following hold:

(1) Pt(c,t,u) € Poyy, Pt(c,0) = Idp,,, and w(% Pt(c,t,u)) = 0.

(2) Pt(c,t) : Pyoy — Pepy is G-equivariant, i.e., Pt(c,t,u.g) = Pt(c,t,u).g
holds for all g € G and u € P. Moreover we have Pt(c,t)*((x|P.y)) =
CX‘PC(O) forall X € g.

(3) For any smooth function f:R — R we have
Pt(c, f(t),u) = Pt(co f,t,Pt(c, £(0),u)).

Proof. By the Christoffel forms I'* € Q' (U,, X(G)) of the connec-
tion w with respect to a principal fiber bundle atlas (U,, ¢,) are given by
(&) = Ry, (e,)s S0 they take values in the Lie subalgebra Xg(G) of all
right invariant vector fields on GG, which are bounded with respect to any
right invariant Riemann metric on G. Each right invariant metric on a Lie
group is complete. So the connection is complete by proposition |(23.9)
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Properties (Il) and (3] follow from theorem |(17.8), and (2) is seen as follows:
We have w(% Pt(e,t,u).g) = Ad(g_l)w(% Pt(c,t,u)) = 0, and this implies
Pt(c,t,u).g = Pt(c,t,u.g). For the second assertion we compute for u €
Pc(O):

Pt(c.t)* (Cx|Pagy) () = T Pt(e, ) Cx (Pi(e, t, )
= T Pt(c, t)_1%|0 Pt(e,t,u). exp(sX)
= T Pt(c, t)_1%|0 Pt(e, t,u. exp(sX))
= di|0 Pt(c,t) "' Pt(c, t,u. exp(sX))

S

— d%bu.exp(sX) =(x(u). O

19.7. Holonomy groups. Let (P,p, M, G) be a principal fiber bundle with
principal connection ® = ( ow. We assume that M is connected and we fix
xg € M.

In we defined the holonomy group Hol(®,xo) C Diff(P,,) as the
group of all Pt(c,1) : Py, — Py, for ¢ any piecewise smooth closed loop
through xg. (Reparameterizing ¢ by a function which is flat at each corner
of ¢, we may assume that any c is smooth.) If we consider only those
curves ¢ which are nullhomotopic, we obtain the restricted holonomy group
Holy(®, zp), a normal subgroup.

Now let us fix ug € P,,. The elements 7(ug,Pt(c,1,u9)) € G (for ¢ all
piecewise smooth closed loops through xg) form a subgroup of the structure
group G which is isomorphic to Hol(®, z(); we denote it by Hol(w, ug) and
we call it again the holonomy group of the connection. Considering only
nullhomotopic curves, we get the restricted holonomy group Holy(w,up), a
normal subgroup of Hol(w, ug).

Theorem. Let (P,p, M,G) be a principal fiber bundle with principal con-
nection ® = ( ow. We assume that M is connected and we fix xy € M and
ug € Pxo-
(1) We have an isomorphism Hol(w, ug) — Hol(®, zg) given by
g (u— fg(u) = ug.9.7(ug, u)) with inverse gy := 7(uo, f(ug))  f.
(2) We have Hol(w, ug.g) = conj(g~!) Hol(w, uo) and
Holg(w, ug.g) = conj(g~") Holg(w, uo).
(3) For any curve c with ¢(0) = x¢ we have Hol(w, Pt(c,t,ug)) = Hol(w, ug)
and Holyp(w, Pt(c,t,up)) = Holp(w, ug).
(4) The restricted holonomy group Holy(w, ug) is a connected Lie subgroup

of G. The quotient group Hol(w, ug)/ Holg(w,ug) is at most countable,
so Hol(w,ug) is also a Lie subgroup of G.
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(5) The Lie algebra hol(w,up) C g of Hol(w, ug) is generated by
{QXy,Y,) : Xu, Yy € TyP,u = Pt(c,1,up),c: [0,1] = M,c(0) = zo}
as a vector space. It is isomorphic to the Lie algebra hol(®,xy) we

considered in |(17.10)|

(6) For ug € Py, let P(w,ug) be the set of all Pt(c,t,up) for ¢ any (piece-
wise) smooth curve in M with ¢(0) = xo and fort € R. Then P(w,up)
s a fiber subbundle of P which is invariant under the right action of
Hol(w, ug); so it is itself a principal fiber bundle over M with struc-
ture group Hol(w,up) and we have a reduction of structure group; see
[(18.6)| and |(18.14). The pullback of w to P(w,up) is also a principal
connection form i*w € QY (P(w,up); hol(w, up)).

(7) P is foliated by the leaves P(w,u), u € Py,.

(8) If the curvature Q = 0, then Holp(w,up) = {e} and each P(w,u) is a
covering of M. The leaves P(w,u) are all isomorphic and are associated

to the universal covering of M, which is a principal fiber bundle with
structure group the fundamental group m (M).

In view of assertion (@) a principal connection w is called irreducible if
Hol(w, up) equals the structure group G for some (equivalently: any) ug €
Py,.

Proof. (] follows from the definition of Hol(w, ugp).

(@) This follows from the properties of the mapping 7 from |(18.2)| and from
the G-equivariance of the parallel transport:

T(ug.g9, Pt(c, 1,u9.9)) = 7(ug, Pt(c,1,up).g) = gil.T(uo, Pt(c,1,up)).g.

So via the diffeomorphism 7(ug, ): Py, — G the action of the holonomy
group Hol(®, up) on P, is conjugate to the left translation of Hol(w, ug) on
G.

@) By reparameterizing the curve ¢, we may assume that ¢ = 1, and we
put Pt(c,1,up) =: u;. Then by definition, for an element g € G we have
g € Hol(w, uy) if and only if g = 7(u1,Pt(e, 1,u1)) for some closed smooth
loop e through z; := ¢(1) = p(uy), i.e.,

Pt(c, 1)(uo-9) = Pt(e, 1)(r*(uo)) = r¥(Pt(c, 1)(up)) = urg
= Pt(e, 1)(Pt(c, 1)(ug))

(e,

ug.g = Pt(c, 1)t Pt(e, 1) Pt(c, 1)(ug) = Pt(c.e.c™t, 3)(uo),
where c.e.c™! is the curve traveling along c(t) for 0 <t < 1, along e(t — 1)
for 1 <t < 2, and along ¢(3 —t) for 2 < ¢t < 3. This is equivalent to
g € Hol(w,up). Furthermore e is nullhomotopic if and only if c.e.c™! is

nullhomotopic, so we also have Holy(w, u1) = Holp(w, ugp).
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@) Let ¢ : [0,1] — M be a nullhomotopic curve through x and let h : R? —
M be a smooth homotopy with h;|[0, 1] = ¢ and h(0, s) = h(t,0) = h(t,1) =
xo. We consider the pullback bundle

*h
wpLt_-p
h*pi lp
R2 —" M.
Then for the parallel transport Pt® on P and for the parallel transport Pt" ®
of the pulled back connection we have

Pt (he, 1,u0) = (ph) P2 ((t, ), 1,u0) = (p*h) FIE" "% (¢, up).

So t = 7(ug, Pt®(h, 1,ug)) is a smooth curve in the Lie group G starting
from e, so Holp(w, up) is a smoothly arcwise connected subgroup of G. By
theorem the subgroup Holg(w, up) is a Lie subgroup of G. The quotient
group Hol(w, ug)/ Holp(w, up) is a countable group, since by Morse theory
M is homotopy equivalent to a countable CW-complex, so the fundamental
group 71 (M) is countably generated, thus countable.

([B) Note first that for g € G and X € X(M) we have for the horizontal lift
(r9)*CX = CX, since (r9)*® = & implies T, (r9).H,P = H, 4P and thus
Tu(r).C(X, u) = Tu(r).(Tup| Hu P) (X (p(u)))
= (TugplHuy P) (X (p(w))) = C(X, u.g).
The vector space hol(w) C g is normalized by the subgroup Hol(w, ug)

G since for g = 7(uo, Pt(c,1,up)) (where ¢ is a loop at zp) and for u
Pt(c1,1,up) (where ¢1(0) = xg) we have

Ad(g7HQC(X, u), C(Y,w)) = QTu(r?).C(X, u), Tu(r?).C(Y, u))
=Q(C(X,u.9),C(Y,u.g)) € hol(w),
u.g = Pt(e1,1,u0).g = Pt(c1, 1,up.9) = Pt(c1, 1, Pt(e, 1, up))
= Pt(c1.¢,2,up).

N

We consider now the mapping
€“ s hol(w) — X(Pyy),
% (W) = Cad(r(uo,u)-1)x (1)

It turns out that £5° is related to the right invariant vector field Rx on G
under the diffeomorphism 7(ug, )= (7y4,)" ' : Py, — G, since we have

Tg(ruo)'RX(g) = Tg(ruo)‘Te(:U’g)'X = Tuo (Tg)'Te(ruo)'X
= Ty (r7)¢x (u0) = Cad(g—1)x (10-9) = £¥ (u0-9)-



242 CHAPTER IV. Bundles and Connections

Thus £"0 is the restriction to hol(w) C g of a Lie algebra antihomomorphism
g — X(Py,), and each vector field £5° on P, is complete. The dependence
of £ on wuyg is explained by

Y2 (w) = Cad(r(uog)-1)x () = Cad(r(uo.u)-1) Ad(g)x (U)

= Exa(g)x (W)-
Recall now that the holonomy Lie algebra hol(®, x() is the closed linear span

of all vector fields of the form Pt(c,1)*R(CX,CY), where X,Y € T, M and
¢ is a curve from z( to x. Then we have for u = Pt(c, 1, uq)

R(C(Xa u)a C(Y7 u)) = CQ(C(X,u),C’(Y,u))(u),
R(CX,CY)(ug) =T(r')R(CX,CY)(u) = T(r?)ac(xu).cvu) ()

= Cad(g—1)Q(C(Xu).0(Y) (W9) = €S u),0(v,m)) (1Y)
(Pt(c; 1)*R(CX, CY))(uo.g) =

= T(Pt(c, 1) )Cad(g-1)0(c(xm),.c(va)) (Ptle, 1,u0.9))
= (Pt(c, 1)" Caag—1)(c(xu).c(v,u)) (U0-9)

= CAd(g~1)(C(X),C (Vo)) (U0-9) by

= 55?0(X,u),C(Y,u))(“0-9)-

So £"0 : hol(w) — hol(®,zp) is a linear isomorphic. Since hol(®,zg) is a
Lie subalgebra of X(FPy,) by and £“0 : g — X(P,,) is a Lie algebra
antihomomorphism, hol(w) is a Lie subalgebra of g. Moreover hol(®, z)
consists of complete vector fields and we may apply theorem (only
claim 3) which tells us that the Lie algebra of the Lie group Hol(®,xg) is
hol(®, zp). The diffeomorphism 7(ug, ): Py, — G intertwines the actions
and the infinitesimal actions in the right way.

(6) We define the vector subbundle E C TP by E,, := H,P+T¢(ry). hol(w).
From the proof of () it follows that £}° are sections of E for each X € hol(w);
thus E is a vector bundle. Any vector field n € X(P) with values in E is
a linear combination with coefficients in C°°(P) of horizontal vector fields
CX for X € X(M) and of (z for Z € hol(w). Their Lie brackets are in turn

[CX,CY](u) = ClX,Y](u) + R(CX,CY)(u)
= CIX, Y](u) + Co(c(xu).0(vu) (w) € T(E),
(€2, CX] = Lc,0X = L]o(FIE7)*CX =0,
since (r9)*CX = CX; see step (Bl above. So FE is an integrable subbundle
and induces a foliation by |(3.28.2). Let L(ug) be the leaf of the foliation
through ug. Since for a curve ¢ in M the parallel transport Pt(c,t,ug) is

tangent to the leaf, we have P(w,ug) C L(ug). By definition the holonomy
group Hol(®, x() acts transitively and freely on P(w, ug)NPy,, and by () the
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restricted holonomy group Holy(®, xg) acts transitively on each connected
component of L(ug) N Py, since the vertical part of E is spanned by the
generating vector fields of this action. This is true for any fiber since we may
conjugate the holonomy groups by a suitable parallel transport to each fiber.
Thus P(w,up) = L(ug) and by lemma[(18.3)| the fiber subbundle P(w, z) is
a principal fiber bundle with structure group Hol(w, ug). Since all horizontal
spaces H, P with u € P(w, o) are tangential to P(w, o), the connection ®
restricts to a principal connection on P(w,xg) and we obtain the reduction
we looked for of the structure group.

([@) This is obvious from the proof of (@l).

) If the curvature €2 is everywhere 0, the holonomy Lie algebra is zero,
so P(w,u) is a principal fiber bundle with discrete structure group; thus
p|P(w,u) : P(w,u) — M is a local diffeomorphism, since T}, P(w,u) = H, P
and T'p is invertible on it. By the right action of the structure group we may
translate each local section of p to any point of the fiber, so p is a covering
map. Parallel transport defines a group homomorphism ¢ : m (M, zy) —
Hol(®, up) = Hol(w,ug) (see the proof of @)). Let M be the universal
covering space of M; then from topology one knows that M — M is a
principal fiber bundle with discrete structure group 71 (M, xg). Let w1 (M)
act on Hol(w,ug) by left translation via ¢; then the mapping f : M x
Hol(w, up) — P(w,ug) which is given by f([c],g) = Pt(c,1,up).g is m1(M)-
invariant and thus factors to a mapping

M Xy (1) Hol(w, ug) = M[Hol(w,uo)] — P(w,up)

which is an isomorphism of Hol(w,ug)-bundles since the upper mapping
admits local sections by the curve lifting property of the universal cover. [

19.8. Inducing principal connections on associated bundles. We
consider a principal bundle (P, p, M, G) with principal right action r : P X
G — Pandlet £: G xS — S be a left action of the structure group G on
some manifold S. Then we consider the associated bundle P[S] = PI[S, /] =
P xq S, constructed in Recall from that its tangent and
vertical bundle are given by T'(P[S,¢]) = TP[TS,T¢] = TP xp¢ TS and
V(P[S,{]) = P[TS,Txl) = P x¢ TS.

Let ® = Cow € QYP,TP) be a principal connection on the principal
bundle P. We construct the induced connection ® € Q' (P[S], T(P[S])) by
factorizing as in the following diagram:

TP xTS 2 TP x TS — =~ T(P x S)

]

TP x76 TS —2= TP x76 TS —— T(P x¢ S).
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Let us first check that the top mapping ® x Id is T'G-equivariant. For
g € G and X € g the inverse of T,(14)X in the Lie group T'G is denoted by

(Te(1g) X)L see lemma Furthermore by we have
Tr(§u, Te(pg) X) = Tu(r?)&u + Tr((0p x Lx)(u, g))
= Tu(rg)fu + Tg(ru)(Te(Mg)X)
= Tu(r?)&u + Cx (ug)-

We may compute

(® x Id)(Tr(&u, Te(pg) X ), T
= (®(Tu(r9)u + Cx (ug) )X) " ns))
= (D(Tu(r)€u) + P(Cx (ug)), T((Te(11g) X) ™, 1))
= (Tu(r?)®&u) + Cx (ug), TL((Te(11g) X) ™", s))
= (Tr(® (&), Te(1g) X), T(Te(ng) X) ™", 1s)).
So the mapping ® x Id factors to ® as indicated in the diagram, and we

have ® 0 ® = & from (® x Id) o (& x Id) = ® x Id. The mapping ® is
fiberwise linear, since ® x Id and ¢’ = T'q are. The image of ® is

Py
=
<
ES

~ns))
)1

¢ (VP xTS)=dq (ker(Tp: TP x TS — TM))
=ker(Tp: TP xpg TS — TM) =V (P[S,1)).

Thus @ is a connection on the associated bundle P[S]. We call it the induced
connection.

From the diagram it also follows that the vector valued forms
®xIdeQYP xS,TPxTS)
and @ € QY(P[S], T(P[9)]))
are (¢ : P x S — P|[S])-related. So by we have for the curvatures

Roxrqa = 3[® x Id,® x Id] = 1[®,®] x 0

that they are also g-related, i.e., Tgo (Rp X 0) = Rg o (T'q xpr T'q).
By uniqueness of the solutions of the defining differential equation we also
get that

Ptg(c,t,q(u,s)) = q(Pto(c, t,u), s).
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19.9. Recognizing induced connections. We consider again a princi-
pal fiber bundle (P,p, M,G) and a left action ¢ : G x S — S. Suppose
that we have a connection ¥ € Q' (P[S], T(P[S])) on the associated bundle
P[S] = PIS,/]. Then the following question arises: When is the connection
¥ induced from a principal connection on P? If this is the case, we say that
VU is compatible with the G-structure on P[S]. The answer is given in the
following

Theorem. Let U be a (general) connection on the associated bundle P|S].
Let us suppose that the action £ is infinitesimally effective, i.e., the funda-
mental vector field mapping ¢ : g — X(5) is injective.

Then the connection ¥ is induced from a principal connection w on P if and
only if the following condition is satisfied:

e In some (equivalently: any) fiber bundle atlas (U, o) of P[S] belong-
ing to the G-structure of the associated bundle the Christoffel forms
I'* € QY (Uq, X(9)) have values in the Lie subalgebra X pyna(S) of fun-
damental vector fields for the action £.

Proof. Let (Uy, po : PlUy — U, X G) be a principal fiber bundle atlas for
P. Then by the proof of theorem |(18.7) the induced fiber bundle atlas

(Uqs Yo : P1S)|Ua — Uy % S)

is given by
(1) ?l)gl(l‘as) = CJ(SO;I(% 6),5),
(2) (¢CMOQ)(¢;1('T’9)75) = (.TU,g.S).

Let ® = ¢ ow be a principal connection on P and let ® be the induced
connection on the associated bundle P[S]. By its Christoffel symbols
are given by
(02, TG (xs8)) = —(T(¥a) 0 ® 0 T(105 1)) (&x, 0)
~(T(a) 0 @0 Tqo (T(g") x 1d)) (€, 0e,05) by @
—(T(a) 0 Tq o (® x Id))(T(p5")(&x:0c), 05) by [19.8)
~(T(%a) 0 Tq)(®(T(p5")(€x, 0c)), 0s)
= (T(¢a) o Tq)(T(¢5")(0, TG (Exy €)), 0s) by [(19.4.3)]
= —T(daoqo (¢ x 1d))(0s,wa (&), 0s) by [(19.4.7)]
= —Te(0*)wa(Ez) by @)
= —Cua(x) (5)-

So the condition is necessary.
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Now let us conversely suppose that a connection ¥ on P[S] is given such
that the Christoffel forms I'g, with respect to a fiber bundle atlas of the
G-structure have values in Xy,4(S). Then unique g-valued forms w, €
QY (U,, g) are given by the equation

Iy (6e) = —C(wal(e)),
since the action is infinitesimally effective. From the transition formulas

for the I'g follow the transition formulas|(19.4.5)| for the w®, so that

they give a unique principal connection on P, which by the first part of the
proof induces the given connection ¥ on P[S]. O

19.10. Inducing principal connections on associated vector bun-
dles. Let (P, p, M,G) be a principal fiber bundle and let p : G — GL(W)
be a representation of the structure group G on a finite-dimensional vector
space W. We consider the associated vector bundle (E := P[W, p], p, M, W),

which was treated in some detail in [(18.11)]

TP x TW b 1d TP x TW TP x W x W
\ /
PxW
Tq iq Tq
PxgW=E
/ X
TP xra TW TP xpq TW ——— TE

P
TM.

Recall from |(8.12)| that T'(E) = T'P xpg TW has two vector bundle struc-
tures with the projections
mp:T(E)=TP x7q TW — P xg W = E,
Tpopr, : T(E)=TP xXpqgTW — TM.
Now let ® = (ow € Ql(@ TP) be a principal connection on P. We consider
the induced connection ® € Q'(FE, T(E)) from [(19.8)|

A look at the diagram above shows that the induced connection is linear in
both vector bundle structures. We say that it is a linear connection on the
associated bundle.

Recall now from ((8.12)| the vertical lift vlg : E X3y E — V E, which is an
isomorphism, pr;-mg-fiberwise linear and also pry-T'p-fiberwise linear.
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Now we define the connector K of the linear connection ® by

K :=pryo(vlg) 10o®:TE - VE - Exy E— E.

Lemma. The connector K : TE — E is a vector bundle homomorphism
for both vector bundle structures on TE and satisfies

Kovlg=pry: Exy E—TE — E.

So K is mg-p-fiberwise linear and T'p-p-fiberwise linear.

Proof. This follows from the fiberwise linearity of the components of K
and from its definition. O

19.11. Linear connections. If (E,p, M) is a vector bundle, a connection
U € QYE,TE) such that ¥ : TE — VE — TE is also Tp-Tp-fiberwise
linear is called a linear connection. An easy check with or a direct
construction shows that ¥ is then induced from a unique principal con-
nection on the linear frame bundle GL(R", E) of E (where n is the fiber
dimension of E).

Equivalently, a linear connection may be specified by a connector
K:TE—FE
with the three properties of lemma For then
HE = {& : K(&u) = Op(u)}

is a complement to V E in T'E which is Tp-fiberwise linearly chosen.

19.12. Covariant derivative on vector bundles. Let (E,p, M) be a
vector bundle with a linear connection, given by a connector K : TE — E

with the properties in lemma |(19.10)
For any manifold NV, smooth mapping s : N — E, and vector field X € X(N)
we define the covariant derivative of s along X by

(1) Vxs:=KoTsoX:N—-TN—-TE — E.

If f: N — M is a fixed smooth mapping, let us denote by C'J?O(N, E) the
vector space of all smooth mappings s : N — E with pos = f — they are
called sections of F along f. From the universal property of the pullback
it follows that the vector space C']?O(N , E) is canonically linearly isomorphic
to the space I'(f*E) of sections of the pullback bundle. Then the covariant
derivative may be viewed as a bilinear mapping

(2) V:X(N)x CF(N,E) = CF(N, E).
In particular for f = Idy; we have
V:X(M)xT'(E) - T'(E).
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Lemma. This covariant derivative has the following properties:

(3) Vxs is C°(N)-linear in X € X(N). So for a tangent vector X, €
T, N the mapping Vx, : C'J?O(N, E) — Ej(y) makes sense and we have
(Vxs)(z) = Vxs.

(4) Vxs is R-linear in s € C3°(N, E).

(5) Vx(h.s) = dh(X).s + h.Vxs for h € C*°(N), the derivation property
Of Vx.

(6) For any manifold Q and smooth mapping g : Q — N and Yy € T,,Q we
have Vrgy,s = Vy,(sog). If Y € X(Q) and X € X(N) are g-related,
then we have Vy(sog) = (Vxs)og.

Proof. All these properties follow easily from the definition (). ([

Property (@) is not well understood in some differential geometric literature.

For vector fields X, Y € X(M) and a section s € I'(E) an easy computation
shows that

RE(X, Y)S L= Vvas — VyVXS — V[X,Y]S
= ([Vx,Vy] = Vixy])s
is C°°(M)-linear in X, Y, and s. By the method of |(9.3)| it follows that
RF is a 2-form on M with values in the vector bundle L(E, E), i.e., RF ¢
O?(M,L(E, E)). Tt is called the curvature of the covariant derivative. See

(19.16)| below for the relation to the principal curvature if F is an associated
bundle.

For f: N — M, vector fields X, Y € X(NN) and a section s € C3°(N, E)
along f one may prove that

VxVys—VyVxs—Vixys = (f*R”)(X,Y)s := RE(Tf.X, TfY)s.

19.13. Covariant exterior derivative. Let (E,p, M) be a vector bundle
with a linear connection, given by a connector K : TE — FE.

For a smooth mapping f: N — M let Q(N, f*E) be the vector space of all
forms on N with values in the vector bundle f*FE. We can also view them
as forms on N with values along f in F, but we do not introduce an extra
notation for this.

The graded space Q(N, f*E) is a graded Q(NN)-module via

(QO A é)(Xh v 7Xp+q)
= ﬁ Zsign(a) (P(Xoh ey Xgp)q)(XU(p+1), e ,Xo.(erq)).
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The graded module homomorphisms H : Q(N, f*E) — Q(N, f*E) (so that
H(p A ®) = (—1)deeH-deee, A (D)) are easily seen to coincide with the
mappings p(A) for A € QP(N, f*L(E, E)), which are given by

(H(A)D) (X1, ..., Xpiq)
= S Y sign(0) A(Xo1, -, Xop) (@(Xo(pr1)s - Xo(prg)-

The covariant esterior derivative dy : QP(N, f*E) — QPTY(N, f*E) is de-
fined by (where the X; are vector fields on N)

Lemma. The covariant exterior derivative is well defined and has the fol-
lowing properties.

(1) For s e I'(f*E) = Q°(N, f*E) we have (dys)(X) = Vxs.

(2) dy(p A ®) =dp A D+ (—1)489p A dgd.

(3) For smooth g : @ — N and ® € Q(N, f*E) we have dy(g*®) =
9" (dv®).

(4) dedy® = u(f*RE).

Proof. It suffices to investigate decomposable forms & = ¢ ® s where
e € QP(N) and s € T'(f*E). Then from the definition we have

dy(p®s) =dp @ s+ (—=1)Po Adys.

Since dys € Q' (N, f*E) by [(19.12.3)] the mapping dy is well defined. This
formula also implies (2) immediately. Part (8] follows from [(19.12.6), Part

() is checked as follows:
dydy(p @ s) = dy(dp @ s + (=1)"¢ A dys) by @)
=0+ (—1)2pcp Adydys
= o A u(f*RE)s by the definition of R
W RE)p®s). O
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19.14. Let (P,p, M, G) be a principal fiber bundle and let p : G — GL(W)
be a representation of the structure group G on a finite-dimensional vector
space W.

Theorem. There is a canonical isomorphism from the space of P[W, p|-
valued differential forms on M onto the space of horizontal G-equivariant
W -valued differential forms on P:
¢ Q(M, PIW, pl) = Qpor (P,W) = {p € QP W) s ixp =0
for all X € VP, (r9)*¢ = p(g~") o o for all g € G}.

In particular for W = R with trivial representation we see that

P QM) = Quor(P) = {0 € Quor(P) : (1) "0 = ¢}
18 also an isomorphism. The isomorphism

¢ : Q°(M, P[W]) = D(P[W]) — Q%,.(P,W)¢ = C=(P,W)“

hor

is a special case of the one from|(18.12)|
Proof. Recall the smooth mapping 7¢ : P x; P — G from [(18.2)] with

T‘(U;L«, TG(Uma Ux)) = Uy,
7 (ugg, ug') = g7

TG(um,uz) =e.

uz7ul )‘gla

Let ¢ € QF (P,W)Y, X1,..., Xy € T, P, and X|,...,X] € T,/ P such that

T.p.X; = hlg;p.X{ for each i. For g = 7%(u,u'), so that ug = v/, we then
have:
q(u, pu(X1, - -, Xi) = a(ug, p(g™Hpu(X1,- ., X))
= q(d, ((r*)"@)u(X1, ..., Xi))
= q(u, pug(Tu(r?). X1, ..., Tu(r?). X))
= q(u, pu (X1, .., X})), since T, (r9)X; — X € Vy P.

By this a vector bundle valued form ® € QF(M, P[W]) is uniquely deter-
mined.

For the converse recall the smooth mapping 7V : P x; P[W, p] — W from
(18.7)} which satisfies

TW(u,q(u, w)) = w,
Q(U:L‘aTW(uxavz)) = Vg,

TW(ng, V) = p(g_l)TW(um Uﬂ:)'
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For ® € QF(M, P[W]) we define ¢'® € QF(P, W) as follows. For X; € T,,P
we put
(@ ®)u(X1, .., Xi) = 7V (w, @y (Tup- X1, . .., Tup- X))
Then ¢!® is smooth and horizontal. For g € G we have
() (@ @))u(X1, -, Xi) = (6F®)ug (Tu(r?). X, . Tu(r9). X))

= 7" (ug, @y ug) (Tugp Tu(r9). X1, . ., Tugp. Ty (r7). X))

= p(g )T (u, @y (Tup- X1, - .., Tup. X))

= p(g™NdP)u(X1, ., Xp).

Clearly the two constructions are inverse to each other. ([

19.15. Let (P,p, M, G) be a principal fiber bundle with a principal connec-
tion ® = (ow, and let p : G — GL(W) be a representation of the structure
group G on a finite-dimensional vector space W. We consider the associated
vector bundle (E := P[W, p], p, M, W), the induced connection ® on it and
the corresponding covariant derivative.

Theorem. The covariant exterior derivative d,, from on P and the
covariant exterior derivative for P[W]-valued forms on M are connected by
the mapping ¢* from[(19.14)], as follows:

¢ ody =d,oq": QM,PW]) = Qpor(P, W)Y,

Proof. Let us consider first f € Q) (P,W)% = C*(P,W)%; then f = ¢*s
for s € I'(P[W]) and we have f(u) = 7V (u, s(p(u))) and s(p(v)) = q(u, f(u))
by [(19.14)| and |(18.12) Therefore we have T's.Tp. X, = Tq(Xy, Tf.Xu),
where Tf. X, = (f(u),df(Xy)) € TW = W xW. If x : TP — HP is
the horizontal projection as in we have T's.Tp. X, = Ts.Tp.x. Xy =
Tq(x-Xu, Tf.x-Xu). So we get

(¢*dvs)(Xu) = 7" (u, (dvs)(Tp. X))

= 7" (u, Vrp.x,5) by |(19.13.1)

= 7" (u, K.Ts.Tp.X,) by [(19.12.1)

= TW(’LL K.Tq(x.Xu, Tfx.Xu)) from above

=7 (u, pry . v} Gl D.Tq(x-Xu, TfX-Xu)) by [(19.10)

=7 (u, pry . vl [ w)-Ta.(® x Id)(x.Xu, Tf.x-Xu)) by [(19.8]
TW(u pry . vl P - Tq(0y, T f.x-Xu)) since ®.x =0
=7 (u q.pry . VlPXW (0u, Tf.x. X )) since ¢ is fiber linear
=7 (u, qu, df-x.-Xa)) = (Cdf)(Xa) = (dugs) (Xu)-
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Now we turn to the general case. It suffices to check the formula for a
decomposable P[W]-valued form ¥ = ¢ ® s € QF(M, P[W]), where ¢ €
QF(M) and s € T(P[W]). Then we have

dud’ (Y © 5) = du(p*¢ - 's)
= du(p*¥) - s + (~1)"x*p*Y Adughs by
= Xy - ¢Fs + (—1)kp*1/J A¢idys from above and
=pdY - ¢'s + (-1)'p"Y A dhdys
= ¢ (dp @ s + (=1)*¢ A dys)
= ddy(p ®5). O

19.16. Corollary. In the situation of theorem |(19.15), the curvature
RPWI ¢ Q*(M, L(P[W], PIW])) is related to the Lie algebra valued cur-
vature form Q € Q2 (P, g) by

hor

i PW] __
Grppwpwp B =0 0,

where p' = Top: g — L(W,W) is the derivative of the representation p.

Proof. We use the notation of the proof of theorem|(19.15)l By this theorem
we have for X, Y € T,,P

(Aot $)u(X,Y) = (¢ dvdys)u(X,Y)
= (¢"R"s) (X, Y)
=7W(u, RFVN(T,p. X, Tp.Y)s(p(u)))
= (& py. oy B D (Y ) (o) (w).
On the other hand we have by theorem
(dwduwg®s)u(X,Y) = (X*irdg"s)u(X,Y)
dg*s)u(R(X,Y)) since R is horizontal
dg*s)(—Ca(x.yy(u) by
olats)(FI (w)
o (u. exp(—tQ(X,Y)), s(p(u. exp(—tQX,Y)))))
o (u. exp(—tQ(X, Y)), s(p(w)))
op(exp tQX,Y))m" (u, s(p(w))) by
(X, Y))(¢s)(u). D

—~

—~

—~

QD Q@ Q Q

I
©
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20. Characteristic Classes

20.1. Invariants of Lie algebras. Let G be a Lie group with Lie algebra g;
let @ g* be the tensor algebra over the dual space g*, the graded space of all
multilinear real (or complex) functionals on g. Let S(g*) be the symmetric
algebra over g* which corresponds to the algebra of polynomial functions
on g. The adjoint representation Ad : G — L(g, g) induces representations
Ad* : G - L(Qg", Qg*) and also Ad* : G — L(S(g*),S(g")), which are
both given by Ad*(¢)f = fo(Ad(g7!)®---®Ad(g71)). A tensor f € ® g*
(or a polynomial f € S(g*)) is called an invariant of the Lie algebra if
Ad*(g)f = f for all g € G. If the Lie group G is connected, f is an invariant
if and only if Lxf = 0 for all X € g, where Lx is the restriction of the
Lie derivative to left invariant tensor fields on G, which coincides with the
unique extension of ad(X)* : g* — g* to a derivation on ) g* or S(g*),
respectively. Compare this with the proof of Obviously the space
of all invariants is a graded subalgebra of () g* or S(g*), respectively. The
usual notation for the algebra of invariant polynomials is

1(G) =P I1*G) = S(g")° = P S*(g")°.

k>0 k>0

20.2. The Chern-Weil forms. Let (P, p, M, G) be a principal fiber bundle
with principal connection ® = ( o w and curvature R = ( o . For 3; €
QPi(P,g) and f € S*(g*) € ®" g* we have the differential forms

YL @n Qe ETTIPH(P g - ® ),
fo(r®n - @p ) € QPIFTPE(P),
The exterior derivative of the latter one is clearly given by
d(f o (Y1 @n -+ @n ) = fod(thy @n -+ @A i)
= o (SE (- gy @ @ iy @n e @n )

Let us now consider an invariant polynomial f € I*(G) and the curvature
form Q € Q2_(P,g)¢. Then the 2k-form fo (Q ®, - ® Q) is horizontal

since €2 is horizontal by [(19.2.2) It is also G-invariant since by |(19.2.2)| we

have

(r9)*(f o (2@n - @A Q) = fo ((r)"Q@n -+ @ (19)"Q)
fo(Ad(g M ®A - ®x Ad(g Q)
fo(l®n- ®n Q).

So by theorem [(19.14)| there is a uniquely defined 2k-form cw(f, P,w) €
Ok (M) with p* cw(f, P,w) = fo (Q®n -+ @ Q), which we will call the
Chern-Weil form of f.
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If h: N — M is a smooth mapping, then for the pullback bundle h*P the
Chern-Weil form is given by cw(f, h* P, h*w) = h* cw(f, P,w), which is easily
seen by applying p*.

20.3. Theorem (Chern-Weil homomorphism). In the setting of|(20.2)
we have:

(1) For f € I*(G) the Chern-Weil form cw(f, P,w) is a closed differential
form: dew(f, P,w) = 0. So there is a well defined cohomology class
Cw(f, P) = [ew(f, P,w)] € H* (M), called the characteristic class of
the invariant polynomial f.

(2) The characteristic class Cw(f, P) does not depend on the choice of the
principal connection w.

(3) The mapping Cwp : I*(G) — H?**(M) is a homomorphism of commu-
tative algebras, and it is called the Chern-Weil homomorphism.

(4) If h : N — M is a smooth mapping, then the Chern-Weil homomor-
phism for the pullback bundle h*P is given by

CWh*P =h*o CWP : I*(G) — Hz*(N)

Proof. () Since f € I*(G) is invariant, we have for any X € g
0= 2o Ad(exp(tXo))* f(X1,..., Xk)
= 4o f(Ad(exp(tXo)) X1, - ., Ad(exp(tX0)) X)
- Zf:lf(Xla ) [XOaXi]a v 7Xk)
= Zf:lf([XO?XiLXla cee 75(: cee an:)

This implies that

A(f o (@®n .. ©a )= fo (Th, Q@n @ d@n- @, Q)
=kfo(d2®p @5 Q) +kfo([w, Qs ®@n- @pQ)
=k fo(doQ@) Q@ - ®,Q2) =0 by[19.5.6)

prdew(f, P,w) =dp*cw(f, P,w)
=d(fo (R ®x0)) =0,

and thus dcew(f, P,w) = 0 since p* is injective.

@) Let wo, w1 € Q'(P,g)¢ be two principal connections. Then we consider
the principal bundle (P x R, p x Id, M x R, G) and the principal connection
@O = (1—twy + tw; = (1 —t)(pry)*wo + t(pry)*w1 on it, where ¢ is the

coordinate function on R. Let  be the curvature form of &. Let insg : P —
P x R be the embedding at level s, inss(u) = (u, s). Then we have in turn
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by [(19.2.3)| for s = 0,1

So we get for s = 0,1
p*(inss)* ew(f, P x R,@) = (ins)*(p X Idr)* cw(f, P x R, @)
insg)*(fo (Q®@p --- @5 Q)
fo((insg)* Q@ - @ (inss)*Q)
fo (s ®n - ®n Q)
=p ew(f, P,ws).
Since p* is injective, we get (insg)* cw(f, PxR, @) = cw(f, P,ws) for s = 0,1,

and since insy and ins; are smoothly homotopic, the cohomology classes
coincide.

and are obvious. O
@) @

o

20.4. Local description of characteristic classes. Let (P,p, M,G) be
a principal fiber bundle with a principal connection w € QY(P,g)¢. Let
sq € I'(P|Uy) be a collection of local smooth sections of the bundle such that
(Uy) is an open cover of M. Recall (from the proof of for example)
that then ¢, = (p,7%(sa0p, )) : P|Uy — U,y x G is a principal fiber
bundle atlas with transition functions @.s(x) = 7% (54 (), s5(7)).

Then we consider the physicists’ version from of the connection w
which is described by the forms w, = siw € QY (U,,g). They transform
according to w, = Ad(gogolé)wg + Opq, where Og, = gogolzdcpag if Gis a
matrix group; see lemma This affine transformation law is due to
the fact that w is not horizontal. Let Q = dw + [w,w]s € QF (P, )¢ be

hor
the curvature of w; then we consider again the local forms of the curvature:

Qo 1= s = s} (dw + 3w, w]n)
— d(s5w) + Lstw, shwln
= dwqy + %[wa,wa}/\.

Recall from theorem |(19.14)| that we have an isomorphism
qﬁ : Q(M,P[g,Ad]) - Qhor(Pag)G'
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Then Q, = s/ is the local frame expression of (¢#)~1(Q2) for the induced
chart P[g]|U, — U, X g; thus we have the the simple transformation formula
Qo = Ad(pap)Q2s.

If now f € I¥(G) is an invariant of G, for the Chern-Weil form cw(f, P,w)
we have

CW(f,P,W)|Ua = SZ{(p* CW(f,P,W)) = SZ(fO (Q ®/\ ®/\ Q))
= [o (552 ®n - ®n 5502)
:fo(Qa®/\"'®/\Qa)a

where Qu @5 -+ @p Qo € V¥ (Uy,g® - @ g).

20.5. Characteristic classes for vector bundles. For a real vector
bundle (E,p, M,R"™) the characteristic classes are by definition the charac-
teristic classes of the linear frame bundle (GL(R"™, E),p, M,GL(n,R)). We
write Cw(f,E) := Cw(f,GL(R", E)) for short and likewise for complex
vector bundles.

Let (P,p, M,G) be a principal bundle and let p : G — GL(V) be a repre-
sentation in a finite-dimensional vector space. If w is a principal connection
form on P with curvature form €2, then for the induced covariant derivative
V on the associated vector bundle P[V] and its curvature R”V] we have
¢ RPV] = ' 0 Q by corollary So if the representation p is infinitesi-
mally effective, i.e., if p' : g — L(V, V) is injective, then we see that actually
RPVI € Q*(M, Plg)). If f € I*(G) is an invariant, then we have the induced
mapping

Px(®g) —2  _pxRr

| .
PI®"g) — = M xR,
So the Chern-Weil form can also be written as (omitting P[(p’)~!])
ew(f, P,w) = P[f] o (RFM @, --- @, RFIV]).

Sometimes we will make use of this expression.

All characteristic classes for a trivial vector bundle are zero, since the frame
bundle is then trivial and admits a principal connection with curvature 0.

We will determine the classical bases for the algebra of invariants for the
matrix groups GL(n,R), GL(n,C), O(n,R), SO(n,R), U(n), and we will
discuss the resulting characteristic classes for vector bundles.
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20.6. The characteristic coefficients. . For a matrix A € gl(n,R) =
L(R™,R™) we consider the characteristic coefficients ¢j!(A) which are given
by the implicit equation

(1) det(A + tI) Z (A"
From lemma |(14.19) we have

k k k
P(A) = Trace(/\A : /\R” — /\R”)

The characteristic coefficient ¢} is a homogeneous invariant polynomial of
degree k, since we have

det(Ad(g)A + tT) = det(gAg— " + tI) = det(g(A + tT)g~ ') = det(A + tI).

Lemma. We have

(3 5) =g

J
Proof. We have
A 0

det + thy | = det(A + tL,) det(B + tL,;,)

0 B
= (Z c;;(A)t”—k> > At
k=0 Jj=0
ntm
:Z Z At ;(B) | R O

20.7. Pontryagin classes. Let (E,p, M) be a real vector bundle. Then
the Pontryagin classes are given by

2k
n(E) = (5 ) COw(eliE B) € HAOLR),

po(E) :=1¢€ H'(M;R).

The factor 275/1_—1 makes this class to be an integer class (in H**(M,Z))

and makes several integral formulas (like the Gaufi-Bonnet-Chern formula)
more beautiful. In principle one should always replace the curvature 2 by
o FQ The inhomogeneous cohomology class

= S mlB) € HY (M. R)
k>0
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is called the total Pontryagin class.

Theorem. For the Pontryagin classes we have:

(1) If E1 and E3 are two real vector bundles over a manifold M, then for
the fiberwise direct sum we have

p(E1 @ Ey) = p(E1) A p(Fs) € HY(M,R).
(2) For the pullback of a vector bundle along f: N — M we have

p(f"E) = f*p(E).

(3) For a real vector bundle and an invariant f € I¥(GL(n,R)) for odd
k we have Cw(f,E) = 0. Thus the Pontryagin classes exist only in
dimension 0,4,8,12, .. ..

Proof. (I) If ' € QYGL(R™, E;), gl(n;))“*™) are principal connection
forms for the frame bundles of the two vector bundles, then for local frames
of the two bundles si, € I'(GL(R™, E;|U,), the forms

L0
Wy 1= ("‘81 wi) € Ql(Ua,g[(nl +n2))

are exactly the local expressions of the direct sum connection, and from

lemma |(20.6)| we see that pi(E1 © Eq) = Z?:o p;(E1)pr—;(E2) holds, which
implies the desired result.

() This follows from |(20.3.4)]

@) Choose a fiber Riemann metric g on E, consider the corresponding or-
thonormal frame bundle (O(R", E'),p, M,O(n,R)), and choose a principal
connection w for it. Then the local expression with respect to local orthonor-
mal frame fields s, are skew-symmetric matrices of 1-forms. So the local
curvature forms are also skew-symmetric. As we will show shortly, there
exists a matrix C € O(n,R) such that CAC™! = AT = —A for any real
skew-symmetric matrix; thus CQ,C~' = —Q,. But then

fo(Q®n - ®n )= fo(9aRgs" On - Dn GaQaga’)
fo((=8a) @n -+ @n (=)
=(—1D"fo(Q®@n - ®n Q).
This implies that Cw(f, E) = 0 if k is odd.

Claim. There exists a matrix C' € O(n, R) such that CAC~! = AT for each
real matrix with 0’s on the main diagonal.

Note first that
0 1 a b\ (0 1\ [(d b
1 0/\ec d/\1 0/ \¢ a/°
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Let E;; be the matrix which has 1 in the position (4, j) in the i-th row and j-
th column. Then the (ij)-transposition matrix Pj; = I, — Ej;— Ej;+Eij+Ej;
acts by conjugation on an arbitrary matrix A by exchanging the pair A;;
and Aj; and also exchanging the pair A;; and A;; on the main diagonal. So
the product C' = [[,_, P;; has the required effect on a matrix with zeros on
the main diagonal.

1<J

By the way, Ad(C') acts on the main diagonal via the longest element in the
permutation group, with respect to the canonical system of positive roots

in sl(n):
1 2 ... n—1 n
(n n—1 ... 2 1)' D

20.8. Remarks. (1) If two vector bundles E and F' are stably equivalent,
ie, FE®G (M xR™) = F @ (M xR") for some m and n, then p(E) = p(F).
This follows from [(20.7.1)| and |(20.7.2)|

k

——
(2) If for a vector bundle E for some k the bundle E @ --- @ E@(M x RY)
is trivial, then p(E) = 1 since p(E)* = 1.
(3) Let (E,p, M) be a vector bundle over a compact oriented manifold M.
For j; € Ny we put

)‘jl7~--,jr(E) = /Mp1(E)j1 .. ,pT(E)j'r €R,

where the integral is set to be 0 on each degree which is not equal to dim M.
Then these Pontryagin numbers are indeed integers; see [158]. For example

we have
n 2n+1 2n +1
s trieen = (M) ()

20.9. The trace coefficients. For a matrix A € gl(n,R) = L(R",R") the
trace coefficients are given by
k
———
tr(A) := Trace(A¥) = Trace(A o ... 0 A).

Obviously tr}}! is an invariant polynomial, homogeneous of degree k. To a
direct sum of two matrices A € gl(n) and B € gl(m) it reacts clearly by

nim (A0 A0 n m
trpt <0 B) :Trace(o Bk) = trp(A) + tr(B).

The tensor product (sometimes also called the Kronecker product) of A and
Bis given by AQ B = (A;Blk)(i’k),(j’l)@xm in terms of the canonical bases.
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Since we have Trace(A® B) =}, ; AiBE = Trace(A) Trace(B), we also get

1™ (A ® B) = Trace((A ® B)¥) = Trace(A* ® B¥) = Trace(A*) Trace(B*)
= tr} (A) tr}'(B).

Lemma. The trace coefficients and the characteristic coefficients are con-
nected by the following recursive equation:

k—1

A) = 1> (~1)FI (A g i(A).

Jj=0

Proof. For a matrix A € gl(n) let us denote by C(A) the matrix of the
signed algebraic complements of A (also called the classical adjoint) as in

(4.33)l Then Cramer’s rule reads

(1) A.C(A) =C(A).A=det(A)I,
and the derivative of the determinant is given by
(2) ddet(A)X = Trace(C(A)X).

Note that C'(A) is a homogeneous matrix valued polynomial of degree n — 1
in A. We define now matrix valued polynomials ax(A) by

(3) C(A+ 1) = Zak A)nk-1,

We claim that for A € gl(n) and kK =0,1,...,n — 1 we have
k

(4) ap(A) =Y (1Y e (A)A.

j=0
We prove this in the following way: From () we have
(A+tI)C(A +tl) = det(A + 1)1,
and we insert (3]) and [(20.6.1)| to get in turn

n—1
(A+11)) ap(A)"F 1 = Zc A1
k=0
n

n—1 n—1
> Aap(A Y T ap (AR =Y (AL
k=0 k=0

J=0

We put a_1(A) := 0 =: a,(A) and compare coefficients of t"~* in the last
equation to get the recursion formula

A.ap—1(A) + ap(A) = g (A).I
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which immediately leads to the desired formula (), even for k =0,1,...,n.
If we start this computation with the two factors in (Il reversed, we get

A.ap(A) = ar(A).A. Note that (] for k£ = n is exactly the Caley-Hamilton
equation

0=an(A) =) cp_(A)A.
j=0
We claim that
(5) Trace(ar(A)) = (n — k)cj (A).

We use (@) for the proof:
Jlo(det(A +tI)) = ddet(A + tI)d|o(A + tI) = Trace(C(A + tI)I)

n—1 1l
= Trace (Z ak(A)tnk1> = Z Trace(ak(A))tn*kf%
k=0 s
8!0(det(A + t]I)) = 8|0 (Z CZ(A)tnk>
k=0

= (n—k)cp(Am 1,
k=0

Comparing coefficients leads to the result ().

Now we may prove the lemma itself by the following computation:

(n — k)c}(4) = Trace(ax(4)) by @)
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20.10. The trace classes. Let (E,p, M) be a real vector bundle. Then
the trace classes are given by

1 2k .
(1) tri(E) := <27r\/jl> Cw(trdmE By ¢ H*(M,R).

Between the trace classes and the Pontryagin classes there are the following
relations for k£ > 1
Lkt

2) (E) = 35 X ilE) Mt (),
which follows directly from lemma |(20.9)[ above.
The inhomogeneous cohomology class

— 1
(3) tr(E) = kz_o 20 trg(E) = Cw(Traceoexp, F)

is called the Pontryagin character of E. In the second expression we use the
smooth invariant function Traceoexp : gl(n) — R which is given by

k
Trace(exp(A)) = Trace Z % = Z % Trace(A").
k>0 k>0

Of course one should first take the Taylor series at 0 of Trace o exp and then
take the Chern-Weil class of each homogeneous part separately.

Theorem. Let (E;,p, M) be vector bundles over the same base manifold
M. Then we have:

(4) tr(E1 D Eg) = tr(El) + tI’(EQ).
(5) tr(Fy ® Ea) = tr(Eq) Atr(Es).
(6) tr(g*E) = g*tr(E) for any smooth mapping g : N — M.

Clearly stably equivalent vector bundles have equal Pontryagin characters.

Statements () and (Bl say that one may view the Pontryagin character as
a ring homomorphism from the real K-theory into cohomology,

tr: Kg(M) — HY(M;R).
Statement ([6) says that it is even a natural transformation.

Proof. () This can be proved in the same way as|(20.7.1), but we indicate
another method which will be used also in the proof of (Bl below. Covari-
ant derivatives for Fy and FEs induce a covariant derivative on E; @ Fo by
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V?@EB (s1,82) = (Vf(lsl, V%, s9). For the curvature operators we clearly

have

REY 0
RE1®E: _ pE1 ¢ pE2 < 0 RE2> )

So the result follows from |(20.9)| with the help of |(20.5)

([B) We have an induced covariant derivative on E; ® Es given by V)E(1®E231 ®

= (V)E<151) R 89+51® (V])E(Q s9). Then for the curvatures we get obviously
REW®E(X V) = RFV(X,Y)®Idg, +1dp, ® R¥2(X,Y). The two summands
of the last expression commute, so we get

k
k . .
(REV @ g, + T, & BEPs =3 (F)RE) o (REe 4,
7=0

where the product involved is given as in

(RP op RF)(X1,..., X4) = 5 Y _sign(0) RF (X1, Xo2) 0 RF(Xo3, Xo),

which makes (Q(M,L(E,E)),ox) into a graded associative algebra. The
next computation takes place in a commutative subalgebra of it:
tr(E; ® Fy) = [Traceexp(R™' @ Idg, + Idp, ® RE2)]H(M)
= [Trace(exp( REl) ®n exp(R Do
— [Trace(exp(RE1)) A Trace(exp(RE2))]H(M)
= tr(Eq) A tr(E2).
([6) This is a general fact. O

20.11. The Pfaffian. Let (V, g) be a real Euclidian vector space of dimen-
sion n, with a positive definite inner product g. Then for each p we have an
induced inner product on A” V, see also [(25.11)] which is given by

(Ty AN Nxp,yr A AN yp)g = det(g(@i, y5)ij)-

The inner product g, when viewed as a linear isomorphism g : V. — V*,
induces an isomorphism 3 : /\2 V' — Ly skew(V, V') which is given on decom-
posable forms by B(z Ay)(z) = g(x, 2)y — g(y, z)x. We also have

B7HA) = Aoy € Lyew(VS,V) = {B € L(V",V): BT = B} = /\v
.

where BT :V* v =LV

Now we assume that V is of even dimension n and is oriented. Then there
is a unique element e € A"V which is positive and normed: (e,e), = 1. We
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define the Pfaffian of a skew-symmetric matrix A by:
n/2

PEI(A) = %@,5—%4) A AB YAy, A€ so(nR).

This is a homogeneous polynomial of degree n/2 on so(n,R). Its polarization
is the n/2-linear symmetric functional

Pfg(Alv ceey An/?) = %<6, B_I(Al) ARERIAN B_l(An/Q»Q‘

Lemma. For an even-dimensional oriented Euclidean vector space (V,g)
and skew-symmetric A we have:

(1) For B € L(V,V) we have Pf9(B.A.BT) = det(B)Pf(A) where BT is
the transpose with respect to g.
(2) If U € O(V,g), then Pf9(U.A.UY) = det(U) Pf9(A), so Pf9 is invari-
ant under the adjoint action of SO(V,g).
(3) If X € Lg skew(V,V) =0(V, g), then we have
n/2
prg A, L [XCAL L Aye) =0

(4) Pf(rA) = r"/2 Pf(A) for r € R and thus also Pf(AT) = (—1)"/2 Pf(A).
(5) Pf(A)? = det(A).
(6) We have

n/2

Pf(A) = 2n/2 n/2 Zs1gn )HAJ(2i—1),cr(2i)'
i=1

(7) (91, [57])
=D Aij (=)™ sign(i — ) PE(A(ij. )
1<j
where A(ij,ij) is the matriz obtained from A by deleting the lines and
columns numbered v and j.

Proof. (I)) The transposed B is given by g(Bz, z) = g(x, BT 2). So B(BxA
By) = B.3(zAy).B" and thus 8~ (B.A.B") = A\? BA~'(A). Then we have:

Pf9(B.A.B") = %(e, AB)BHA) A ABTHA))),
_ %det BYAW)e, NOBHA) A ABTHA)

= %det(B)(e,ﬂfl(A) JARERIA ﬁil(A»g
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= det(B) Pf9(A).

@) We have U € O(V, g) if and only if UT = U~!. So this follows from ().
@) This follows from (2l) by differentiation; see the beginning of the proof

of [20:3]

(@) is obvious. The rest is left as an exercise. O

20.12. The Pfaffian class. Let (F,p, M,V) be a vector bundle which is
fiber oriented and of even fiber dimension. If we choose a fiberwise Riemann
metric on F, we in fact reduce the linear frame bundle of F to the oriented
orthonormal one, SO(R™, E). On the Lie algebra o(n,R) of the structure
group SO(n,R) the Pfaffian form Pf of the standard inner product is an
invariant, Pf € I"/2(SO(n,R)). We define the Pfaffian class of the oriented
bundle E by

PE(E) = (27;/1_*1

It does not depend on the choice of the Riemann metric on F, since for any
two fiberwise Riemann metrics g; and g2 on E there is an isometric vector
bundle isomorphism f : (E, g1) — (F, g2) covering the identity of M, which
pulls an SO(n)-connection for (F,gs) to an SO(n)-connection for (F,gj).
So the two Pfaffian classes coincide since then Pf! o(f*No@p - ®n f Q) =
Pf2 O(QQ (SNEREN SN QQ)

n/
) 2CW(Pf, SO(R"™, E)) € H*(M).

Theorem. The Pfaffian class of oriented even-dimensional vector bundles
has the following properties:

(1) Pf(E)? = (71)”/2pn/2(E) where n is the fiber dimension of E.
(2) Pf(E1 & Ey) = Pf(Ey) A Pf(E>).
(3) Pf(¢*E) = g* P{(E) for smooth g : N — M.

Proof. This is left as an exercise for the reader. O

20.13. Chern classes. Let (E,p, M) be a complex vector bundle over
the smooth manifold M. So the structure group is GL(n,C) where n is the
fiber dimension. Recall now the explanation of the characteristic coefficients
cp in and insert complex numbers everywhere. Then we get the
characteristic coefficients ¢ € I*(GL(n,C)), which are just the extensions
of the real ones to the complexification.

We define then the Chern classes by

1) () = (

-1

k
—— ) Cw(c™",E) € H**(M;R).
) OWe™E B) € H¥OLR)
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The total Chern class is again the inhomogeneous cohomology class

dim¢ F
(2) o(E):= Y c(E) e H*(M;R).
k=0

It has the following properties:

(3) o(E) = (1) Fe(B),
(4) C(El ) Eg) = C(El) A C(EQ),
(5) c¢(¢g"FE) =g"c(E) for smooth g: N — M.

One can show (see [158]) that (3]), (@), (&), and the following normalization
determine the total Chern class already completely: The total Chern class
of the canonical complex line bundle over S? (the square root of the tangent
bundle with respect to the tensor product) is 1 + wg2, where wg2 is the
canonical volume form on S? with total volume 1.

Lemma. Then Chern classes are real cohomology classes.

Proof. We choose a Hermitian metric on the complex vector bundle F, i.e.,
we reduce the structure group from GL(n,C) to U(n). Then the curvature
Q2 of a U(n)-principal connection has values in the Lie algebra u(n) of skew-
Hermitian matrices A with A* = —A. But then we have c(—v/—14) € R

since detc(—v/—1A4 + tl) = detc(—v—1A4 4+ tl) = detc(—v—1A +tI). O

20.14. The Chern character. The trace classes of a complex vector bun-
dle are given by

- _71 g dim FE 2k
(1) try,(E) = <2Wﬁ Cw(trd™m P B) e H2%(M,R).

They are also real cohomology classes, and we have tro(F) = dimc¢ E, the
fiber dimension of E, and tr;(E) = ¢1(E). In general we have the following
recursive relation between the Chern classes and the trace classes:

1 k—1
(2) cr(E) = — Y ¢;(E) Atry_;(E),

j=0

which follows directly from lemma The inhomogeneous cohomology
class

(3) ch(E) =" % try(E) € H**(M,R)
k>0

is called the Chern character of the complex vector bundle E. With the
same methods as for the Pontryagin character one can show that the Chern
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character satisfies the following properties:

(4) Ch(E1 D EQ) = Ch(El) + Ch(Eg),
(5) Ch(El (%9 Eg) = Ch(El) VAN Ch(EQ),
(6) ch(g"E) = g* ch(E).

From these it clearly follows that the Chern character can be viewed as a
ring homomorphism from complex K-theory into even cohomology,

ch: K¢(M) — H**(M,R),

which is natural.

Finally we remark that the Pfaffian class of the underlying real vector bundle
of a complex vector bundle E of complex fiber dimension n coincides with
the Chern class ¢, (E). But there is a new class, the Todd class; see below.

20.15. The Todd class. On the vector space gl(n,C) of all complex (n x
n)-matrices we consider the smooth function

,: o (CDF
(1) f(A) :=det¢ Z<k+1)!A .

k=0

It is the unique smooth function which satisfies the functional equation
det(A).f(A) = det(I — exp(—A)).

Clearly f is invariant under Ad(GL(n,C)) and f(0) = 1, so we may consider
the invariant smooth function, defined near 0, Td : gl(n,C) D U — C,
which is given by Td(A) = 1/f(A). It is uniquely defined by the functional
equations
det(A) = Td(A) det(I — exp(—A)),
det(3A) det(exp(1A)) = Td(A) det(sinh(3A)).

The Todd class of a complex vector bundle is then given by

(2) TA(E) = |GL(C", E)[Td] Z( 1 RE>®A,1<;
7 =0 21/ —1

H2*(M,R)
= Cw(Td, E).

The Todd class is a real cohomology class since for A € u(n) we have
Td(—A) = Td(A*) = Td(A). Since Td(0) = 1, the Todd class Td(E) is
an invertible element of H?*(M,R).
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20.16. The Atiyah-Singer index formula (roughly). Let E; be com-
plex vector bundles over a compact manifold M, and let D : I'(E;) — I'(E3)
be an elliptic pseudodifferential operator of order p. Then for appropriate
Sobolev completions D prolongs to a bounded Fredholm operator between
Hilbert spaces D : HYTP(Ey) — HU(Ey). Tts index index(D) is defined as
the dimension of the kernel minus the dimension of the cokernel, which does
not depend on d if it is high enough. The Atiyah-Singer index formula says
that
index(D) = (—1)dmM ch(o(D)) Td(TM ® C),
™

where o(D) is a virtual vector bundle (with compact support) on TM \ 0,
a formal difference of two vector bundles, the so-called symbol bundle of D.

See [21] for a somewhat informal introduction, [208] for a very short in-
troduction, [73] for an analytical treatment using the heat kernel method,
[116] for a recent treatment and the papers by Atiyah and Singer for the
real thing.

Special cases are the Gaufl-Bonnet-Chern formula and the Riemann-Roch-
Hirzebruch formula.

21. Jets

Jet spaces or jet bundles consist of the invariant expressions of Taylor de-
velopments up to a certain order of smooth mappings between manifolds.
Their invention goes back to Ehresmann [53]. We could have treated them
from the beginning and could have mixed them into every chapter, but it is
also fine to have all results collected in one place.

21.1. Contact. Recall that smooth functions f,g : R — R are said to have
contact of order k at 0 if all their values and all derivatives up to order k
coincide.

Lemma. Let f,g: M — N be smooth mappings between smooth manifolds
and let x € M. Then the following conditions are equivalent.

(1) For each smooth curve ¢ : R — M with ¢(0) = x and for each smooth
function h € C*(M) the two functions ho foc and ho go c have
contact of order k at 0.

(2) For each chart (U,u) of M centered at x and each chart (V,v) of N
with f(x) € V the two mappings vo fou ' and vogou™!, defined near
0 in R™, with values in R™, have the same Taylor development up to
order k at 0.
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(3) For some charts (U,u) of M and (V,v) of N withx € U and f(x) € V
we have

||
gy

ou®
X

Hlel

Juc (vog)

xT

for all multiindices o € N§* with 0 < |a| < k.
(4) TFf = TFg, where T* is the k-th iterated tangent bundle functor.

Proof. This is an easy exercise in analysis.

21.2. Definition. If the equivalent conditions of lemma are satisfied,
we say that f and g have the same k-jet at = and we write j*f(z) or j*f
for the resulting equivalence class and call it the k-jet at x of f; = is called
the source of the k-jet, and f(x) is its target.

The space of all k-jets of smooth mappings from M to N is denoted by
JF(M, N). We have the source mapping a : J*(M, N) — M and the target
mapping B : J*(M,N) — N, given by a(j*f(z)) = 2 and B(j*f(z)) =
f(x). We will also write J¥(M,N) := a~1(z), J¥(M,N), = B71(y), and
JE(M,N), = JE(M,N) N J¥(M,N), for the spaces of jets with source z,
target v, and both, respectively. For [ < k we have a canonical surjective
mapping 7} : Jk(M N) — JY(M, N), given by 7Tl( i*f(x)) := j'f(z). This
mapping respects the fibers of a and B and 7§ = (o, 8) : J*(M,N) —
M x N.

21.3. Jets on vector spaces. Now we look at the case M = R™ and
N =R".

Let f:R™ — R" be a smooth mapping. Then by [21.1.3)| the k-jet j* f(x)
of f at x has a canonical representative, namely the Taylor polynomial of
order k of f at x:

fle+y) = flx)+df(z).y + %de(gU)y2 +-- k'dkf(x).yk +o(|y|®)
=: f(x) + Tay; £ (y) + ol|yl")-

Here y* is short for (y,%,...,y), k-times. The ‘Taylor polynomial without
constant’

Tayyf -y = Tayy(y) = df (z).y + %cff(ﬂf)-y2 +o k,d’“f( ).y

is an element of the linear space

@Lsym (R™, R"),
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where Lgym(Rm,Rn) is the vector space of all j-linear symmetric map-
pings R™ x ... x R™ — R", where we silently use the total polarization
of polynomials. Conversely each polynomial p € P¥(m,n) defines a k-jet
J&(y = z + p(x + y)) with arbitrary source z and target z. So we get
canonical identifications J¥(R™ R"), = P¥(m,n) and

JE(R™ R") = R™ x R x P*(m,n).
If U ¢ R™ and V C R™ are open subsets, then clearly J*(U, V) =2 U x V x

P¥(m,n) in the same canonical way.

For later uses we consider now the truncated composition
o : PE(m,n) x P*(p,m) — P*(p,n),

where p e ¢ is just the polynomial p o ¢ without all terms of order > k.
Obviously it is a polynomial, thus a real analytic mapping. Now let U C R™,
V C R™, and W C RP be open subsets and consider the fibered product

JHU V) xy JFW,U) = {(o,7) € JHU, V) x J*(W,U) : a(o) = B(r) }
=U xV x W x P*(m,n) x P¥(p,m).
Then the mapping
v MUV xu JHWLU) = TR V),
V(o 7) =7((a(0), B(0),7), (a(r), B(7), 7)) = (a(7),B(c),0 ® T)
is a real analytic mapping, called the fibered composition of jets.
Let U, U' € R™ and V C R" be open subsets and let g : U' — U be
a smooth diffeomorphism. We define a mapping J*(g,V) : J¥(U,V) —
JEU', V) by J*(g, V) (5% f(x)) = 5*(f 0 g) (97" (x)). Using the canonical rep-
resentation of jets from above, we get J*(g,V)(0) = (o, j*g9(g7(z))) or
T (g, V) (z,y,6) = (g7 (x),y,5 e Taylg“_l(m)g). If g is a CP diffeomorphism,
then J*(g,V) is a CP~* diffeomorphism. If ¢’ : U” — U’ is another diffeo-
morphism, then clearly J*(¢',V) o J¥(g,V) = J¥(go g, V) and J*( ,V)
is a contravariant functor acting on diffeomorphisms between open subsets
of R™. Since the truncated composition & — & e Tay’;_l )9 is linear, the

mapping J¥(g,R") := J*(g,R™)|[JF(U,R") : JF(U,R™) — J;‘Ll(x)(U’,]R") is
also linear.

If more generally g : M’ — M is a diffeomorphism between manifolds, the
same formula as above defines a bijective mapping J*(g, N) : J¥(M, N) —
JE(M',N) and clearly J*( ,N) is a contravariant functor defined on the
category of manifolds and diffeomorphisms.

Now let U C R™, V C R", and W C RP be open subsets and let h: V — W
be a smooth mapping. Then we define J*(U, h) : J*(U, V) — J*(U, W) by
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JE(U,h) (5% f(x)) = 7%(h o f)(x) or equivalently by
JHU, ) (2,y,6) = (2, h(y), Taybh e ).

If h is CP, then J¥(U, h) is CP~F. Clearly J*(U, ) is a covariant functor
acting on smooth mappings between open subsets of finite-dimensional vec-
tor spaces. The mapping J& (U, h)y : JE(U, V), — J*(U, W)y, is linear if
and only if the mapping & — Tay];ho& is linear, i.e., if h is affine or if &k = 1.
If h: N — N'’is a smooth mapping between manifolds, we have by the same
procedure a mapping J*(M,h) : J¥(M,N) — J*¥(M,N’) and J*(M, )
turns out to be a functor on the category of manifolds and smooth mappings.

21.4. The differential group G%,. The k-jets at 0 of diffeomorphisms of
R™ which map 0 to 0 form a group under truncated composition, which will
be denoted by GL*(m,R) or GF, for short, and will be called the differential
group of order k. Clearly an arbitrary O-respecting k-jet o € P¥(m,m) is in
G if and only if its linear part is invertible; thus
k
Gy, = GL"(m,R) = GL(m) ® @ L, (R™, R™) =: GL(m) x Py (m),
j=2

where we put P§(m) = @?22 Llym(R™ R™) for the space of all polyno-
mial mappings without constant and linear term of degree < k. Since
the truncated composition is a polynomial mapping, G,’% is a Lie group,
and the mapping 7le : GF — Gl is a homomorphism of Lie groups, so
ker(7F) = ®§=l+1 Liym(R™ R™) =: PE | (m) is a normal subgroup for all I.
The exact sequence of groups

{e} = Pfi(m) —» GE — GL — {e}
splits if and only if [/ = 1; only then do we have a semidirect product.

21.5. Theorem. For smooth manifolds M and N we have:

(1) J*¥(M, N) is a smooth manifold (it is of class C"~* if M and N are of
class C"); a canonical atlas is given by all charts (J*(U, V), J*(u™1,v)),
where (U,u) is a chart on M and (V,v) is a chart on N.

(2) (J¥(M,N),(a,B), M x N,P¥(m,n),GE x GE) is a fiber bundle with
structure group, where m = dim M, n = dim N, and where (v, x) €
GE x GE acts on o € P*(m,n) by (y,x).0c = xeo ey L.

(3) If f : M — N is a smooth mapping, then j*f : M — J*(M,N) is also
smooth (it is C"~* if f is CT ), sometimes called the k-jet extension of
f. We have aco j*¥f = Idyr and o j*f = f.

(4) If g : M' — M 1is a (C"-)diffeomorphism, then also the induced map-
ping J¥(g, N) : J*(M,N) — J*(M’',N) is a (C"~F-)diffeomorphism.
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5) If h: N — N’ is a (C"-)mapping, then
( 9
JE(M, R) = JE(M,N) — J*(M, N
is a (C"=*-)mapping. We get a covariant functor J*(M, ) from the
category of smooth manifolds and smooth mappings into itself which
maps each of the following classes of mappings into itself: immersions,
embeddings, closed embeddings, submersions, surjective submersions,

fiber bundle projections. Furthermore J¥( | ) is a contra-covariant
bifunctor.

(6) The projections wf : J¥(M,N) — J' (M, N) are smooth and natural,
i.e., they commute with the mappings from @) and ().

(7) (Jk(M,N),ﬂ'lk,JZ(M,N),Pllil(m,n)) are fiber bundles for all l. The
bundle (J*(M,N),w% |, JF=1(M, N),ijym(Rm,R")) is an affine bun-
dle. The first jet space J*(M, N) is a vector bundle, and it is isomor-
phic to the bundle (L(TM,TN), (nyp,7n), M x N). Moreover we have
JHR,N) =TN and J*(M,R)q = T*M.

Proof. We use heavily. Let (U,,uy) be an atlas of M and let (V, v;)
be an atlas of N. Then
gt 0e) s (0, BTy X V) = T (s (U, ve(V2)
is a bijective mapping and the chart change looks like
Jk(u;lava) o Jk(ug_luvu)il — JF(us o u;17va vl
by the functorial properties of J¥( , ). The space J*(M,N) is Haus-

dorff in the identification topology, since it is a fiber bundle and the usual
argument for gluing fiber bundles applies. So () follows.

Now we make this manifold atlas into a fiber bundle by using as charts
(UW X Vo) 2 JE(M, N U, x Vi = Uy x Vi x PH(m, n)),
Q;Z)('y,s) (U) = (OZ(O'), B(U)v Jg(g) (u';l’ UE)B(O')) .

We then get as transition functions
Vi)Yo (@9, 0) = (2, T (1 (us 0 13t ve 00, 1)(3))
= (z,y, Tayﬁy(y) (veov,l)eGe Tayﬁv(x)(u(; ouyt)),
and (2) follows.

@), ), and (@) are obvious from [(21.3), mainly by the functorial properties
of JE( 1, ).

@) It is clear from [(21.3)] that J*(M,h) is a smooth mapping. The rest
follows by looking at special chart representations of h and the induced
chart representations for J*(M, h).
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It remains to show (7]) and here we concentrate on the affine bundle. Let
a1 +a € GL(n) x P¥(n,n), o + o, € P Y(m,n) @ Lfym(Rm,R”), and
by + b € GL(m) x P¥(m,m); then the only term of degree k containing oy,
in (a+ay)e (o +oy)e(b+by)is aj ooy, 0bl, which depends linearly on oy.
To this the degree k components of compositions of the lower order terms of
o with the higher order terms of a and b are added, and these may be quite
arbitrary. So an affine bundle results.

We have JY(M,N) = L(TM,TN) since both bundles have the same tran-
sition functions. Finally we have J}(R,N) = L(ToR,TN) = TN, and
JYM,R)g = L(TM, TyR) = T*M. a

21.6. Frame bundles and natural bundles. Let M be a manifold of
dimension m. We consider the jet bundle J§ (R™, M) = L(ToR™,TM) and

the open subset ian& (R™, M) of all invertible jets. This is visibly equal to
the linear frame bundle of TM as treated in |(18.11)

Note that a mapping f : R™ — M is locally invertible near 0 if and only
if j1£(0) is invertible. A jet o will be called invertible if its order 1 part
(o) € JHR™, M) is invertible. Let us now consider the open subset
invJE(R™, M) C JE(R™, M) of all invertible jets and let us denote it by
P¥M. Then by [(18.2)] we have a principal fiber bundle (P¥M, 7y, M, GE))
which is called the k-th order frame bundle of the manifold M. Its principal
right action r can be described in several ways: by the fiber composition of
jets:

r =~ invJF(R™, R™) x invJ§(R™, M) = Gk x P*M — P*M
or by the functorial property of the jet bundle:

r3*900) = im)Jé“(g, M)

for a local diffeomorphism g : R™, 0 — R™, 0.
If h: M — M’ is a local diffeomorphism, the induced mapping J§(R™, h)
maps the open subset P¥M into P*M’. By the second description of the
principal right action this induced mapping is a homomorphism of princi-
pal fiber bundles which we will denote by P*(h) : P*M — P*M’'. Thus
P* becomes a covariant functor from the category M f,, of m-dimensional
manifolds and local diffeomorphisms into the category of all principal fiber
bundles with structure group G¥, over m-dimensional manifolds and homo-
morphisms of principal fiber bundles covering local diffeomorphisms.
If we are given any smooth left action ¢ : Gﬁl x S — § on some manifold

S, the associated bundle construction from theorem |(18.7) gives us a fiber
bundle P*M([S,¢] = P*M Xqr S over M for each m-dimensional mani-

fold M:; by [(18.9.3)] this describes a functor P¥( )[S, /] from the category
Mf,, into the category of all fiber bundles over m-dimensional manifolds
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with standard fiber S and G¥ -structure, and homomorphisms of fiber bun-
dles covering local diffeomorphisms. These bundles are also called natural
bundles or geometric objects.

21.7. Theorem. If (E,p, M, S) is a fiber bundle, let us denote by J*(E) —
M the space of all k-jets of sections of E. Then we have:

(1) J*(E) is a closed submanifold of J*(M, E).

(2) The first jet bundle J'(E) — M x E is an affine subbundle of the
vector bundle JY(M, E) = L(TM,TE); in fact we have J'(E) = {0 €
L(TM,TE) . TpO g = IdTM }

(3) (JM(E),nF_ |, JF"Y(E)) is an affine bundle.

(4) If (E,p, M) is a vector bundle, then (J*(E),a, M) is also a vector

bundle. If ¢ : E — E’ is a homomorphism of vector bundles covering
the identity, then J*(p) is of the same kind.

Proof. (Il) By[(21.5.5)|the mapping J*(M, p) is a submersion; thus J*(E) =
JE(M,p)~1(j*(Idyr)) is a submanifold. Part (@) is clear. Parts (@) and (@)
are seen by looking at appropriate canonical charts. O



CHAPTER V.
Riemann Manifolds

22. Pseudo-Riemann Metrics and Covariant Derivatives

22.1. Riemann metrics. Let M be a smooth manifold of dimension m.
A Riemann metric g on M is a symmetric (g)—tensor field such that g, :
T.M x T,M — R is a positive definite inner product for each x € M. A
pseudo-Riemann metric g on M is a symmetric (g)—tensor field such that
gz is nondegenerate, i.e., g, : TeM — T M is bijective for each x € M. If
(U,u) is a chart on M, then we have

m
glU = Z 9(6(22‘7 %) dut @ dul =: Zgijdui @ du .
1,j=0 ,J

Here (g;j(x)) is a symmetric invertible (m x m)-matrix for each x € M, pos-
itive definite in the case of a Riemann metric; thus (g;;) : U — Matgym (m x
m). In the case of a pseudo-Riemann metric, the matrix (g;;) has p positive
eigenvalues and ¢ negative ones; (p, q) is called the signature of the metric
and ¢ = m — p is called the index of the metric; both are locally constant
on M and we shall always assume that it is constant on M.

Lemma. One each manifold M there exist many Riemann metrics. But
there need not exist a pseudo-Riemann metric of some given signature.

Proof. Let (U,,u,) be an atlas on M with a subordinated partition of
unity (fa). Choose smooth mappings (g;) from Uy, to the convex cone of
all positive definite symmetric (m x m)-matrices for each a and put g =

Yo ta Zij giaj dul, ® d.

275
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For example, on any even-dimensional sphere S?" there does not exist a
pseudo-Riemann metric g of signature (1,2n — 1): Otherwise there would
exist a line subbundle L C T'S? with g(v,v) > 0 for 0 # v € L. But since
the Euler characteristic x(S?") = 2, such a line subbundle of the tangent
bundle cannot exist; see [80] I, p. 399]. O

22.2. Length and energy of a curve. Let ¢ : [a,b] — M be a smooth
curve. In the Riemann case the length of the curve c is then given by

b b
L) = [ g(e(enc0) e = [ 1 o)y at.

In both cases the energy of the curve c is given by

b
EYe) = b [ o). ¢ty

In the Riemann case we have by the Cauchy-Schwarz inequality

Lh()? = (/b 1],.1 dt)2 < /ab (¢[2dt.(b — a) = 2(b — a) EY(c).

For piecewise smooth curves the length and the energy are defined by taking
it for the smooth pieces and then by summing up over all the pieces. In the
pseudo-Riemann case for the length one has to distinguish different classes of
curves according to the sign of g(c/(t), ¢/ (t)) (the sign then should be assumed
constant) and by taking an appropriate sign before taking the root. These
leads to the concept of ‘time-like’ curves (with speed less than the speed of
light) and ‘space-like’ curves (travelling faster than light).

The length is invariant under reparameterizations of the curve:
Lieo )= | glleo 1Y), (o 7Y ()2
= [ o), rodum)
= [ oo san o
= [Cote@. = i)

The energy is not invariant under reparameterizations.

22.3. Theorem (First variational formula). Let g be a pseudo-Riemann
metric on an open subset U C R™. Let v : [a,b] x (—e,e) — U be a smooth
variation of the curve ¢ = v( ,0) : [a,b] — U. Let r(t) = %\ov(t, s) =
T(tjo)fy.(O, 1) e T.yU be the variational vector field along c.
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Then we have:

Zlo(BL( 5)) = /ab(—g<c<t>>< (1), (1))
— dgle(t))( () (¢ (1), (1))
+ 3dg(e(0) (rH)( (1), € (1))) dt
+ 9(e) (¢ (), 7(8)) — gle(a))(€'(a), r(@)).

Proof. We have the Taylor expansion y(t, s) = y(t,0) + s vs(t,0) + O(s?) =
c(t) + sr(t) + O(s?) where the remainder O(s?) = s2R(s,t) is smooth and
uniformly bounded in t. We plug this into the energy and take also the
Taylor expansion of g as follows:

b 1 b
EY( o) =4 [ a5 (e, 9) (e, )
b
=1 [ 9(et®) +51(0) + O(2) (¢(0) + 51'(0) + O(s2),

() +sr'(t) + 0(32)) dt

b
+ %8/ g'(c))(r())(¢ (1), ¢ (1)) dt + O(s?).
Thus for the derivative we get, using partial integration:
ZI0ES(( os) =lm L (EL( ,9) = B2 ,0))
b b
= %/ g’(C(t))(T(t))(C'(t),C/(t))dt+/ g(e(®))(c'(t),7'(t)) dt
b
— 1 [ @O0, 0)dt + g 0.0
b
= [ (@@, re) + gle) (). rv)) de
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b
= / (*g(C(t))(C”(t),r(t))*g'(@(t))(C’(t))(C’(t),T(t))

+ 59/ () (r(®))( (1), c’(t))) dt
+ g(e(d) (¢ (b), (b)) — g(c(a)) (¢ (a),r(a)). O

22.4. Christoffel symbols and geodesics. On a pseudo-Riemann mani-
fold (M, g), by theorem|(22.3), we have %IOEZ('y( ,s)) = 0 for all variations
« of the curve ¢ with fixed end points (r(a) = r(b) = 0) in a chart (U,u) if
and only if the integral in theorem |(22.3)| vanishes. This is the case if and
only if we have in w(U) C R™:
gle@®)(" (1), )= 39'(c(t)( ) ®),d(?))
ACONCIONCIINE
g @)@ ().

For z € u(U) and X,Y, Z € R™ we consider the polarized version of the last
equation:

9(x)(T(X,Y), Z) :%gl($)(Z)(X, Y)

(1)
which is a well defined smooth mapping

T:u(U) — L2 (R™;R™).

sym

Back on U C M we have in coordinates
_ i 0 ) _ ol o) i J
Lz(X,Y) =T, (ZXzau“ZY]W> = er(ﬁ 2 ) XY

_ZFU )XY =) TH () XY 5
1,5,k

where the Ffj : U — R are smooth functions, which are called the Christof-
fel symbols in the chart (U,u). Attention: Most of the literature uses the
negative of the Christoffel symbols.

Lemma. If glU = >, gijdu’ ® du? and if (g;j)* = (¢") denotes the
inverse matriz, then we have

1 dgij  Ogqi;  0g;
2) rh =S g (S - S 2,

2 l ou! out  Ow
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Proof. We have
o] J\ k 0 0 _ el a el
3 Ehous = 3ot ) = (Pt ) = o0 ). 0

el
- 29 (8ul)(8ui’w
1 99ij 19915

1 .
— 2 09ul 2 Out 2 0ud *

5]
N—
|
N[
Q\
—~
o
N~—
—
Q
=N
o
gl
S—
|
N[ =
Q
-
—~
g
3
o
N—
—~
gl
lo
S~—

Let ¢ : [a,b] — M be a smooth curve in the pseudo-Riemann manifold
(M, g). The curve c is called a geodesic on M if in each chart (U, ) for the
Christoffel symbols of this chart we have

3) () = Tery (' (1), € (1))

The reason for this name is: If the energy EP of (each piece of) the curve
is minimal under all variations with fixed end points, then by |(22.3)| the
integral

b
/ 0o (" (1) = Tagy (€ (1), (1)), 7(8)) dt = 0

for each vector field r along ¢ with r(a) = r(b) = 0. This implies (3]). Thus
(local) infima of the energy functional E are geodesics, and more generally
any curve on which the energy functional E? has vanishing derivative (with
respect to local variations with constant ends) is called a geodesic.

Finally we should compute how the Christoffel symbols react to a chart
change. Since this is easily done and since we will see soon that the Christof-
fel symbols indeed are coordinate expressions of an entity which belongs to
the second tangent bundle TTM, we leave this exercise to the interested
reader.

22.5. Covariant derivatives. Let (M, g) be a pseudo-Riemann manifold.
A covariant derivative on M is a mapping V : X(M) x X(M) — X(M),
denoted by (X,Y) — VxY, which satisfies the following conditions:

(1) VxY is C®°(N)-linear in X € X(M), ie.,, Vi x+px,Y = iV, Y +
f2Vx,Y. So for a tangent vector X, € T,M the mapping Vy,
X(M) — T M makes sense and we have (Vxs)(z) = Vx(y)s.

(2) VxV is Relinear in Y € X(M).
(3) Vx(f.Y)=df(X).Y+fVxY for f € C>°(M), the derivation property
of Vx.

The covariant derivative V is called symmetric or torsion-free if moreover
the following holds:

(4) VxY —Vy X = [X,Y].
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The covariant derivative V is called compatible with the pseudo-Riemann
metric if we have:

(5) X(9(Y,2)) =g(VxY,Z) +g(Y,VxZ) for all X,Y,Z € X(M).
Compare with [(19.12)] where we treat the covariant derivative on vector
bundles.

Theorem. On any pseudo-Riemann manifold (M, g) there exists a unique
torsion-free covariant derivative V.= V9 which is compatible with the metric
g. In a chart (U,u) we have

o) k 0
(6) Vv 0 Bui — _Zrijauk’
Bul k

where the I‘fj are the Christoffel symbols from |(22.4)|

This unique covariant derivative is called the Levi-Civita covariant deriva-
tive.

Proof. We write the cyclic permutations of property (Bl equipped with the
signs +, 4+, —:

X(9(Y,2))

Y(9(Z, X))

—Z(9(X,Y))

g(VYZ,X> +g(Za VYX)7

We add these three equations and use the torsion-free property (@) to get
=g9(VxY+Vy X, Z2)+9(VxZ -VzX,Y)+g(VyZ —VzY, X)

which we rewrite as an implicit defining equation for VxY:

(7) 29(VxY,2) = X(g(Y,2)) +Y(9(Z, X)) - Z(9(X,Y))

This by () uniquely determined bilinear mapping (X,Y) — VxY indeed
satisfies ({I)—(&l), which is tedious but easy to check. The final assertion of
the theorem follows by using (l) once more:

20(V o 37 3ur) = 25 95 7)) + 5 (9 300)) — 5r (95 57)
'LLZ

= -2 T}gu, by [2242) O
k
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22.6. Geodesic structures and sprays. By|(22.5.6)[and [(22.4.3)| we see
that a smooth curve ¢ : (a,b) — (M, g) is a geodesic in a pseudo-Riemann
manifold if Vs, = 0, in a sense which we will make precise later in
when we discuss how we can apply V to vector fields which are only defined
along curves or mappings. In each chart (U, u) this is an ordinary differential
equation

k) = ST ) L) L)), o= (hensem)
dtQC _i,j ij\C dtc I ) c=(c,...,c"),

which is of second order, linear in the second derivative, quadratic in the first
derivative, and in general completely nonlinear in ¢(¢) itself. By the theorem
of Picard-Lindelof for ordinary differential equations there exists a unique
solution for each given initial condition ¢(tg), ¢ (to), depending smoothly on
the initial conditions. Thus we may piece together the local solutions and
get a geodesic structure in the following sense: A geodesic structure on a
manifold M is a smooth mapping geo : TM xR D U — M, where U is an
open neighborhood of TM x {0} in TM x R, which satisfies the following:

(1) geo(X;)(0) =z and J|p geo(X;)(t) = X,.
(2) geo(t.X,)(s) = geo(X,)(t.s).

(3) geolgeo(X,) (5))(t) = geo(Xa)(t + 5).

(4) UN(X; xR) ={X,} x interval .

One could also require that U be maximal with respect to all these proper-
ties. But we shall not elaborate on this since we will reduce everything to
the geodesic vector field shortly.

If we are given a geodesic structure geo : U — M as above, then the mapping
(X,t) = geo(X)'(t) = % geo(X)(t) e TM
is the flow for the vector field S € X(T'M) which is given by
S(X) = o2 geo(X) (1) € T2M,
since we have

G o1 8eo(X) (1) = Filo gy geo

ot
= 5(§ geo(X)(
geo(X)'(0) = X.

The smooth vector field S € X(TM) is called the geodesic spray of the
geodesic structure.
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Recall now the chart structure on the second tangent bundle 72M and the
canonical flip mapping ky : T?°M — T?M from [(8.12)] and [(8.13)} Let
(U,u) be a chart on M and let ¢, (t) = u(geo(Tu ' (z,y))(t)) € U. Then

we have

Tu(geo(Tu™" (x,y)) () =

( (
T?u(geo(Tu™" (x,y))" (1) = (¢ ,y)( )s ) ()3
(5) T*u.S(Tu™ (z,y)) = T*ul(geo(Tu"" (z,y))"(0
(

Property () of the geodesic structure implies in turn

Claty) (8) = Clay)(ts),
C/(LB ty) (S) C(a: y) (tS),
o) (0) = ¢, (0,

S(x, ty) = t*5(x,y),

so that S(x, ):R™ — R™ is homogenous of degree 2. By polarizing or
taking the second derivative with respect to y, we get

S(z,y) =Tu(y,y), for T:u(U)— L%, (R™R™),

sym
Luly. 2) = 5(S(z,y + 2) = S(z,y) - S(, 2)).

If the geodesic structure is induced by a pseudo-Riemann metric on M, then
we have seen that

C/(,x,y) (t) = FC(I’y) (t) (C/(g:,y) (t)7 c,(z7y) (t))

for the Christoffel symbols in the chart (U,w). Thus the geodesic spray is
given in terms of the Christoffel symbols by

(6) T*u(S(Tu™ (2, y))) = (2,4;9. Ta(y, ))-
22.7. The geodesic exponential mapping. Let M be a smooth manifold
and let S € X(T'M) be a vector field with the following properties:

(1) mrar oS = Idgas; S is a vector field.
(2) T(mpr) o S =Idras; S is a ‘differential equation of second order’.

(3) Let mM : TM — TM and mtTM T2M —> T?M be the scalar multi-
plications. Then S omM = T(mM)om]™ o S.

A vector field with these properties is called a spray.
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Theorem. Given a spray S € X(TM) on a manifold M, we can write
geo(X)(t) := mp(FI2(X)). Then this is a geodesic structure on M in the

sense of.
If we put exp(X) := mp(FI7 (X)) = geo(X)(1), then

exp: TM DV =M

is a smooth mapping, defined on an open neighborhood V' of the zero section
in TM, which is called the exponential mapping of the spray S and which
has the following properties:

(4) To, (exp | T, M) = Idp,ar (via Ty, (T M) = T, M ). Thus by the inverse
function theorem exp, = exp|T,M : V, — W, is a diffeomorphism
from an open neighborhood V,, of 05 in T'M onto an open neighborhood
W, of x in M. The chart (W,,exp, ') is called a Riemann normal
coordinate system at x.

(5) geo(X)(t) = exp(t.X).
(6) The mapping
(mar,exp) : TM DV — M x M

is a diffeomorphism from an open neighborhood V of the zero section
i TM onto an open neighborhood of the diagonal in M x M.

Proof. By properties (Il) and (2)) the local expression of the spray S is given

by (2,9) = (2,4:9, 5(z, ), as in [ZZ65] By @ we have
(z, ty; ty, S(x, ty)) = T(mM).mi™ (v, y;y,S(z,y)) = (z, ty; ty, S (2, ),
so that S(z,ty) = t2S(z,y) as in[(22.6)]

(7) We have FI7(s.X) = s.FI5,(X) if one side exists, by uniqueness of
solutions of differential equations:
G55 FIS4(X) = §mi FIZ,(X) = T(m}") § FIZ,(X)
= T2 ).m IV S(FIS,(X)) D S(s. FIE (X)),
5. F19(X) = s.X, thus 5. FIS,(X) = FI? (5.X).

We check that geo = my; o F1¥ is a geodesic structure, i.e., [(22.6.1)}{(22.6.4)]
hold:

geo(Xz)(0) = mu (FI7 (Xa)) = mnr (Xa) = 2,
0o geo(X)(t) = lomar (FI} (X)) = T(mar) 0o FIY (X)

2 =

=T(mm)S(Xy) = X,
geo(s.X,)(t) = ma (F19(s.X,)) = mar(s. FI2,(X,)), see above,
= geo(X,) (5.,
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w(FI (Z57 FIS (X))

mr (F1 (T (mar) S(FIS (X))
mu(FIF (FIS(X2))) by @)

= ﬂM(Flf+s(Xm)) = geo(X,)(t + s).

Let us investigate the exponential mapping. For € > 0 let X, be so small
that (1X,,¢) is in the domain of definition of the flow F1%. Then

geo( 55 geo(Xz)(5))(1)

Il
3

exp, (X,) = mu(FIf (X,)) = mar (FIf (2.2.X,))
=mu(e. FI2(1.X,)) = (FIZ(1.X,)), by [@).

We check the properties of the exponential mapping. The tangent mapping
satifies:

(21) To, (exp,). Xy = O]o exp, (0, + t.X;)
= Olomar (FI7 (. X))
= Oloma (t. FIJ (Xz))
= dlomu (FI (X2)), by @)
= T(ma)8)o(FI (X)) = T(mar) (S(Xa)) = X
Moreover we have:
@ exp, (£.Xz) = mr (FIF (1.X,)
= mu(t. FI7 (X))
= 7 (FI7 (X2)) = geo(X.)(t)-
@ By @) we have Ty, (mar, exp) = (19 2 thus (w7, exp) is a local dif-

feomorphism. Again by (@) the mapping (7, exp) is injective on a small
neighborhood of the zero section. ([l

22.8. Linear connections and connectors. Let M be a smooth man-
ifold. A smooth mapping C : TM xy TM — T?>M is called a linear
connection or horizontal lift on M if it has the following properties:

(1) (T(mar)s mrar) o C = Iy rm-

(2) C( ,Xy): T, M — Tx,(TM) is linear; this is the first vector bundle
structure on T2M treated in [(8.13)]

(3) C(Xy, ):TeM — T(mp)~Y(X,) is linear; this is the second vector
bundle structure on T2M treated in [(8.13)|

The connection C' is called symmetric or torsion-free if moreover the follow-
ing property holds:
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(4) kppoC = Coflip: TM xp TM — T?M, where rpy : T>M — T?M is
the canonical flip mapping treated in

From the properties ([I)-(3]) it follows that for a chart (U, uq) on M the
mapping C is given by
(5> (Tz(ua)oco (T(ua)_l XMT(ua)_l)) ((33, y)v (.I', Z)) = (.I', Z5Y, Fg(yu Z)),
where the Christoffel symbol I'S(y,z) € R™ (m = dim(M)) is smooth in
x € uq(Uy) and is bilinear in (y, z) € R™ xR™. For the sake of completeness
let us also note the transformation rule of the Christoffel symbols which

follows now directly from the chart change of the second tangent bundle in
[(8.12)l and |(8.13) The chart change on M

UaB = Uq O ugl cug(Ua NUB) = ua(Us N Ug)

induces the following tranformation of the Christoffel symbols:

(6) T2 oy (d(tas) @)y, d(tta) (2)2)

= d(uap) ()T7(y, 2) + d*(uag) (@) (y, 2)-
We have seen in|(22.6.6)|that a spray .S on a manifold determines symmetric
Christoffel symbols and thus a symmetric connection C. If the spray S is
induced by a pseudo-Riemann metric g on M, then the Christoffel symbols
are the same as we found by determining the singular curves of the energy
in|(22.4)l The promised geometric description of the Christoffel symbols is

([B), which also explains their transformation behavior under chart changes:
They belong to the vertical part of the second tangent bundle.

Consider now a linear connection C' : TM x 3 TM — T?>M. For ¢ € T?M
we have

§ = C(T(mar) & mraa(§)) € V(TM) = T(mar) "' (0)
which is an element of the vertical bundle, since
T(mar)(§ — C(T(mar)-& mraa(§))) = T(mar)-§ — T(mar).£ =0
by (@). Thus we may define the connector K : T>M — TM by
(1) K(€) =vprra (€ — O(T(mar) & mrm(€))),  where & € T?M,
where the vertical projection vpry,, was defined in |(8.12)] In coordinates
induced by a chart on M we have
(8) K(z,y;a,b) = vpr(z,y;0,b — T'z(a,y)) = (z,b — T'z(a,y)).
Obviously the connector K has the following three properties:
(9) We have
Kovlpy =pry : TM xpy TM — TM
where vlra(Xz, Yz) = 0)o(Xy + tYy) is the vertical lift introduced in
5.12)
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(10) The mapping K : TTM — TM is linear for the (first) vector bundle
structure on 7wy : TTM — TM.

(11) The mapping K : TTM — TM is linear for the (second) vector bundle
structure on T'(mpy) : TTM — TM.

A connector, defined as a mapping satisfying (@)—(LI]), is equivalent to a
connection, since one can reconstruct it (which is most easily checked in a
chart) by

C( ,X,) = (T(mu)| ker(K : Tx,(TM) — T,M))™ L.

The connecter K is associated to a symmetric connection if and only if
K o kpyy = K. The connector treated here is a special case of the one in

(19.11]

22.9. Covariant derivatives, revisited. We describe here the passage
from a linear connection C' : TM x5 TM — T?M and its associated con-
nector K : T?M — TM to the covariant derivative. In the more general
setting of vector bundles this is treated in Namely, for any manifold
N, a smooth mapping s : N — T'M (a vector field along f := 7 0 s) and
a vector field X € X(NN) we define

(1) Vxs:=KoTsoX:N TN = T*M —TM
which is again a vector field along f:
T°M
Ts
K
TN ™
x| M
N y M
N ! M.

If f: N — M is a fixed smooth mapping, let us denote by C}’O(N, TM) =
I(f*TM) the vector space of all smooth mappings s : N — TM with
w08 = f — vector fields along f. Then the covariant derivative may be
viewed as a bilinear mapping

(2) V:iX(N)x CF¥ (N, TM) — C (N, TM).

In particular for f = Idy; we have V : X(M) x X(M) — X(M) as in |(22.5)|
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Lemma. This covariant derivative has the following properties:

(3) Vxsis C®(N)-linear in X € X(N). So for a tangent vector X, € T, N
the mapping Vx, : CJ?O(N, TM) — Ty M makes sense and we have
(Vxs)(@) = Vxs.

(4) Vxs is R-linear in s € C3°(N, TM).

(5) Vx(h.s) = dh(X).s + h.Vxs for h € C>®(N); this is the derivation
property of Vx.

(6) For any manifold Q and smooth mapping g : Q — N and Z, € T,,Q we
have Vrg.z,5 =Vz,(sog). If Z € X(Q) and X € X(N) are g-related,
then we have Vz(sog) = (Vxs)og,

T2M
T (sog)
K
Ts
TQ TN TM
Tg

A X /TM
Q J N/ ™™
0 g N / M.

(7) In charts on N and M, for s(z) = (f(x),5(x)) and X(z) = (z, X (z))
we have (Vxs)(z) = (f(x),ds(z). X (z) — T,y (5(x), df (z)X(2))).
(8) The connection is symmetric if and only if VxY — Vy X = [X,|Y].

Proof. All these properties follow easily from the definition (). O

Remark. Property (@) is not well understood in some differential geometric
literature. It is the reason why in the beginning of[(22.6)| we wrote Vy,¢/ =0
for the geodesic equation and not V¢ = 0 which one finds in the literature.

22.10. Torsion. Let V be a general covariant derivative on a manifold M.
Then the torsion is given by

(1) Tor(X,Y):=VxY — VyX — [X,Y], X,Y € X(M).

It is skew-symmetric and C*°(M)-linear in X,Y € X(M) and is thus a 2-
form with values in TM: Tor € Q2(M;TM) = T(A\*T*M @ T M), since we
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have
Tor(f.X,Y)=VixY - Vy(f.X)-[fX,)Y]
=fVxY -Y(f).X - fVy(X)- fIX, Y]+ Y(f)X
= f.Tor(X,Y).

Locally on a chart (U,u) we have

(2) Tor|U = Z Tor(aul , am) ® du' @ du’
7-7

_Z(v 6 %—V 8 8u1 _[521781”}) ®du ®du]

—Z ~TE 4+ Th)du' @ dud @ 50

——kadu /\alu]®8 = 2ZI‘ du’ /\du]®a

1<j

We may add an arbitrary form T € Q?(M;TM) to a given covariant de-
rivative and we get a new covariant derivative with the same spray and ge-
odesic structure, since the symmetrization of the Christoffel symbols stays
the same.

Lemma. Let K : TTM — M be the connector of the covariant derivative
V, and let X,Y € X(M). Then the torsion is given by

(3) Tor(X,Y) = (K o ka — K)o TX 0 Y.

If moreover f: N — M is smooth and U,V € X(N), then we get also

(4)  Tor(TLU,TFV)=Vi(TfoV)—Vy(TfoU)—Tfo[U,V]
=(Koky —K)oTTfoTUoV.

Proof. By|(22.9.1)] |(8.14)| (or [(8.19))), and |(22.8.9)| we have
Tor(X,Y)=VxY - VyX — [X,Y]
=KoTYoX—-—KoTXoY — KovlpyoY,[X,Y]),
Kovlpy oY, [X,Y])=Ko(TYoX —kpyoTXoY)
=KoTYoX—-—KogpyoTXoY.

Similarly we get
Kovlpyo(TfoV,Tfo[UV])=KoTTfovlpyo(V,[U,V])
=KoTTfo(TVoU—knyoTUoV)
=KoTTfoTVoU—-KokyoTTfoTUoV,
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and also
Vo(TfoV)—=Vy(TfolU)—-Tfo[X,Y]
=KoTTfoTVoU—-KoTTfoTUoV
— Kovlpyo(TfoV,Tfo[U,V])
=(Koky —K)oTTfoTUoV.

The rest will be proved locally, so let us assume now that A is open in R™
and U(z) = (z,U(z)), etc. Then by [(22.8.8)| we have

(TTfoTUoV)(x)
=TT f(z,U(2); V(2),dU(2)V (z ))
= (f(2), df (x).U(x);df (2).V(x),d* f(x)(V (2), U(2)) + df (x).dU (z).V (z))
and also
(Kokpyy — K)oTTfoTU o V)(x)
= (f(x),df(2)(V(2),U(x)) + df (2).dU(z).V (z)
— Ty (df (2).U (), df (x).V (2)))
— (f(2), & f(2)(V(2),U(x)) + df ().dU (2).V (z)
— Ty (df (2).V (@), df (2).U(2)))
= (f(@), ~T ) (df (2).U(2), df (x).V (z))
+ oy (df (2).V(2), df (2).U(2)))
=Tor(TfoU,TfoV)(x). O

22.11. The space of all covariant derivatives. If V? and V! are two
covariant derivatives on a manifold M, then Vﬁ(Y - Vg(Y turns out to be
C>®(M)-linear in X,Y € X(M) and is thus a ( )-tensor field on M; see
(22.10)l Conversely, one may add an arbitrary ( ) tensor field A to a given
covariant derivative and get a new covariant derivative. Thus the space
of all covariant derivatives is an affine space with modeling vector space
NT*M @T*M @ TM).

22.12. The covariant derivative of tensor fields. Let V be covariant
derivative on a manifold M, and let X € X(M). Then the Vx can be
extended uniquely to an operator Vx on the space of all tensor fields on M
with the following properties:

(1) For f € C>*°(M) we have Vx f = X(f) = df (X).

(2) Vx respects the spaces of (2 )-tenor fields.
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(3) Vx(A® B) = (VxA) ® B+ A® (VxB), a derivation with respect to
the tensor product.

(4) Vx commutes with any kind of contraction C' (i.e., any trace; see
(8.18))): So for w € QY(M) and Y € X(M) we have

Vx(w(Y)) = (Vxw)(Y) + w(VyY).

The correct way to understand this is to use the concepts of |(19.9)H(19.12);
Recognize the linear connection as induced from a principal connection on
the linear frame bundle GL(R™,T'M) and induce it then to all vector bun-
dles associated to the representations of the structure group GL(m,R) in
all tensor spaces. Contractions are then equivariant mappings and thus in-
tertwine the induced covariant derivatives, which is most clearly seen from

(19.15]

Nevertheless, we discuss here the traditional proof, since it helps in actual
computations. For w € QY(M) and Y € X(M) and the total contraction C
we have

Vx(w(Y)) =Vx(ClwaY))
=C(Vxw®Y +waVyxY)
= (Vxw)(Y) + w(VxY),

(Vxw)(Y) = Vx(w(Y)) —w(VxY),

which is easily seen (as in|(22.10)]) to be C°°(M)-linear in Y. Thus Vxw is
again a 1-form.

For a (Z)—tensor field A we choose X; € X(M) and w’ € Q'(M) and arrive
(similarly using again the total contraction) at

(VxA)(X1,..., Xgwh oo wP) = X(A(Xq, .., Xgywhy oo wP))
—A(VXXl,...,Xq,wl,...,wp)—---—A(Xl,...,VXXq,wl,...,wp)
— A(X1,..., X, Vxwh, oo wP) — = A(X, ., Xy wh L Vixw?).

This expression is again C°°(M)-linear in each entry X; or w’ and defines

thus the (Z)—tensor field Vx A. Obviously Vx is a derivation with respect
to the tensor product of fields and commutes with all contractions.

For the sake of completeness we also list the local expression

v a_duﬂ'—Z(v

du? ) (2% )duF
out ) out

auz

= Z(B?ﬂéf du/ (V ))du = Zszdu

BuZ
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from which one can easily derive the expression for an arbitrary tensor field:

Vv a.A: (v 3‘A>(65i15”'7881q)du]1 7dujp)duil®”'®8zp

- <azi<A<asm--,dufp>>—Aw >

_ _ J 11
A(aun""’ g du p))du Q- ® g7
8u’
_ _717 7]17 7]1) k? .]17 k
= (Al A T AL T
k.j2,....dp J1 Jiyensdp—1,k Jp i1 o)
7A117 7111 F — A'le 7Zq F du ® ® 6ujq'

23. Geometry of Geodesics

23.1. Geodesics. On a pseudo-Riemann manifold (M, g) we have a geo-
desic structure which is described by the flow of the geodesic spray on T'M.
The geodesic with initial value X, € T, M is denoted by ¢t — exp(t.X;)
in terms of the pseudo-Riemann exponential mapping exp and exp, =
exp |T, M. We recall the properties of the geodesics which we will use.

(1) exp, : ToM D Uy — M is defined on a maximal ‘radial’ open zero
neighborhood U, in T,M. Here radial means that for X, € V, we
also have [0,1].X, C V.. This follows from the flow properties since

exp, = myg(FI5 T, M) by [227]
(2) To, (exp |Tx M) = Idg, ar; thus O|p exp, (t.Xz) = Xg. See|(22.7.4)
(3) exp(s.(% exp(t.X))) = exp((t + s)X). See

(4) t — g(% exp(t.X), %exp(t.X)) is constant in ¢: for c¢(t) = exp(t.X)
we have 9ig(c, ') = 2¢9(Vy,c/,) = 0. Thus in the Riemann case the

length ]% exp(t.X)|y = \/g(% exp(t.X), % exp(t.X)) is also constant.

If for a geodesic ¢ the (by (@) constant |¢/(t)|q is 1, we say that c is param-
eterized by arc-length.

23.2. Lemma (GauBl). Let (M,g) be a Riemann manifold. For x € M
let € > 0 be so small that exp, : Dy(e) :={X € T,M : | X|, <e} = Misa
diffeomorphism on its image. Then in exp, (D (g)) the geodesic rays starting

from z are all orthogonal to the ‘geodesic spheres’ {exp,(X) : |X|, =k} =
exp, (k.S(TyM,q)) fork < e.

On pseudo-Riemann manifolds this result holds too, with the following adap-
tation: Since the unit spheres in (7, M, g,) are hyperboloids, they are not
small and may not lie in the domain of definition of the geodesic exponential
mapping; the result only holds in this domain.



292 CHAPTER V. Riemann Manifolds

Proof. exp,(k.S(T;M, g)) is a submanifold of M since exp, is a diffeomor-
phism on D,(e). Let s — wv(s) be a smooth curve in kS(T,M,g) C T, M,
and let v(t, s) := exp,(t.v(s)). Then ~ is a variation of the geodesic v(¢,0) =
exp, (t.v(0)) =: ¢(t). In the energy of the geodesic t — 7(t, s) the integrand

is constant by ((23.1.4)|

1
BROC o) =4 [ athaes) gotes)
= %g(ahﬂ/(t, s),0ov(t,s)) dt
= k2

Comparing this with the first variational formula ie.,

1
Fslo(Eg (( 78)))2/0 0dt + g(e(1))(' (1), Flov(1,5)) = g(c(0))(¢(0),0),

we get 0 = g(c(1))(d(1), %|0’y(1,s)), where %\O'y(l,s) is an arbitrary tan-
gent vector of exp, (kS(T,M,g)). O

23.3. Corollary. Let (M,g) be a Riemann manifold, x € M, and € > 0 be
such that exp, : Dy(e) :={X € T, M : |X|, < e} = M is a diffeomorphism
on its image. Let ¢ : [a,b] — exp,(Dxz(¢))\ {z} be a piecewise smooth curve,
so that c(t) = exp, (u(t).v(t)) where 0 < u(t) < e and |v(t)|q, = 1.

Then for the length we have L2(c) > |u(b)—u(a)| with equality if and only if u
s monotone and v is constant, so that c is a radial geodesic, reparameterized
by u.

On pseudo-Riemann manifolds this result holds only for in the domain of
definition of the geodesic exponential mapping and only for curves with
positive velocity vectors (time-like curves).

Proof. We may assume that ¢ is smooth by treating each smooth piece of
c separately. Let a(u,t) := exp,(u.v(t)). Then

c(t) = a(u(t), ),
Gre(t) = Ga(u(t), ). () + G (u(t), 1),
|g%‘gz = [v(t)]g, = 1,
0= g(g—g, %—?), by lemma [(23.2)]

Putting this together, we get
2
12 =g(c,c) = g(Feu/ + 92,924/ + 92)

= P22 + 2202 = P | B > o
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with equality if and only if \%—‘f\g = 0; thus %—? = 0 and v(t) = constant. So
finally:
b b b
L) = [ lde> [z | [ @] = ut) - o)
with equality if and only if u is monotone and v is constant. O

23.4. Corollary. Let (M, g) be a Riemann manifold. Lete : M — R-q be a
continuous function such that for V.= {X, € TyM : |X,| < e(z) for all x €
M} the mapping (7, exp) : TM D V - W C M x M is a diffeomor-
phism from the open neighborhood V of the zero section in TM onto an
open neighborhood W of the diagonal in M x M, as shown in .

Then for each (x,y) € W there exists a unique geodesic ¢ in M which
connects x and y and has minimal length: For each piecewise smooth curve
v from x to y we have L(vy) > L(c) with equality if and only if v is a
reparameterization of c.

Proof. The set V N T,M = D,(e(z)) satisfies the condition of corol-
lary For X, = exp,'(y) = ((mar,exp)|V) " (z,y) the geodesic
t — c(t) = exp,(t.X;) leads from = to y. Let § > 0 be small. Then ¢
contains a segment which connects the geodesic spheres exp,(0.5(T, M, g))
and exp, (| Xz|g,.S(TeM, g)). By corollary the length of this segment
is > |X;|y — 0 with equality if and only if this segment is radial, thus a
reparameterization of ¢. Since this holds for all § > 0, the result follows. [

23.5. The geodesic distance. On a Riemann manifold (M, g) there is a
natural topological metric defined by

dist?(z, y)
:= inf {L{(c) : ¢: [0,1] = M piecewise smooth, ¢(0) = z,¢(1) =y},

which we call the geodesic distance (since ‘metric’ is heavily used). We either
assume that M is connected or we take the distance of points in different
connected components as oo.

Lemma. On a Riemann manifold (M, g) the geodesic distance is a topolog-
ical metric which generates the topology of M. For e, > 0 small enough the
open ball

By(ez) ={y € M : dist?(x,y) < e}
has the property that any two points in it can be connected by a geodesic of
minimal length.

Proof. This follows by [(23.3)[and |(23.4)l The triangle inequality is easy to
check since we admit piecewise smooth curves. O
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23.6. Theorem (Hopf-Rinov). For a Riemann manifold (M, g) the fol-
lowing assertions are equivalent:

(1) (M,dist?) is a complete metrical space (Cauchy sequences converge).

(2) Each closed subset of M which is bounded for the geodesic distance is
compact.

(3) Any geodesic is mazimally definable on the whole of R.
(4) exp : TM — M is defined on the whole of TM.

(5) There exists a point x such that exp, : TyM — M is defined on the
whole of T, M, in each connected component of M.

If these equivalent conditions are satisfied, then (M, g) is called a complete
Riemann manifold. In this case we even have:

(6) On a complete connected Riemann manifold any two points can be con-
nected by a geodesic of minimal length.

Condition (6)) does not imply the other conditions: Consider an open convex
in R™.

Proof. ([2) = () is obvious.

(I) = @) Let ¢ be a maximally defined geodesic, parametrized by arc-
length. If ¢ is defined on the interval (a,b) and if b < oo, say, then by the
definition of the distance the sequence ¢(b— %) is a Cauchy sequence;
thus by (@), limy e c(b — L) =: ¢(b) exists in M. For m,n large enough
(c(b—21),c(b— 1)) € W where W is the open neighborhood of the diagonal
in M x M from thus the segment of ¢ between ¢(b— 1) and ¢(b— 1)
is of minimal length: dist?(c(b — 1),¢(b— 1)) = |2 — L|. By continuity
dist?(c(b — 2),c(b)) = |%|. Now let us apply corollary with center
c(b): In expp) (Depy(€)) the curve ¢+ c(b+1) is a piecewise smooth curve
of minimal length; thus by[(23.3)]a radial geodesic. Thus lim;_,, ¢/(t) =: ¢/(b)
exists and t +— exp)((t — b)c’(b)) equals c(t) for ¢t < b and prolongs the
geodesic ¢ for t > b.

B) = (@) is obvious.

@) = (@) is obvious.

[B) = (@) for special points, in each connected component separately. In
detail: Let x,y be in one connected component of M where z is the special
point with exp, : T, M — M defined on the whole of T, M. We shall prove
that x can be connected to y by a geodesic of minimal length.

Let distY(x,y) = r > 0. Consider the compact set S := exp, (0.S(T, M, g)) C
exp, (T, M) for 0 < 6 < r so small that exp, is a diffeomorphism on {X €
TpM : |X|g < 26}. There exists a unit vector X, € S(T,M, g,) such that
z = exp,(0X,) has the property that dist?(z,y) = min{dist?(s,y) : s € S}.
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(7) Claim. The curve c(t) = exp, (t.X,) satisfies the condition
*) dist?(c(t),y) =r —t
for all 0 <t <r. It will take some effort to prove this claim.

Since any piecewise smooth curve from x to y hits S (its initial segment does
so in the diffeomorphic preimage in T, M), we have

r=dist!(z,y) = ing(distg(x, s) +distd(s,y)) = ing(d + dist?(s, y))
sE se
= 0+ mindist?(s, y) = J + dist?(z,y),
se
distd(z,y) =r —0;  thus (*) holds for t = 4.

) Claim. If (*) holds for ¢t € [d,r], then it also holds for all ¢ with
<t/ <t, since we have:
dist?(c(t'),y) < dist?(c(t), c(t)) + distd(c(t),y) <t —t' +r—t=r -1,

r = dist?(z,y) < distd(z, c(t')) + dist?(c(t'), y),
dist?(c(t'),y) > r — distd(z,c(t')) >r -t = claim (§).
Now let g = sup{t € [§,7] : (*) holds for t}. By continuity (*) is then also
valid for tg. Assume for contradiction that tg < r.

(8
5

Let S’ be the geodesic sphere with (small) radius ¢’ centered at c(to), and
let 2’ € S’ be a point with minimal distance to y:

As above we see that

r—to 2 dist(c(to),y) = inf (distd(c(to), s') + dist? (s, y))

s'eS’
= ¢ + dist(, y),
(**) dist?(2',y) = (r — to) — ¢,

dist?(z, 2') = dist?(z, y) — dist9 (2, y)
:T—(T—t0)+5/:t0+(5l.

We consider now the piecewise smooth curve ¢ which initially follows ¢ from
x to ¢(tp) and then the minimal geodesic from c(ty) to 2/, parameterized
by arc-length. We just checked that the curve ¢ has minimal length to + d’.
Thus each piece of ¢ has also minimal length, in particular the piece between
¢(t1) and ¢(t2), where t; < tg < to. Since we may choose these two points
near to each other, ¢ is a minimal geodesic between them by Thus ¢
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equals ¢, 2/ = c(to + 0), distd(c(to + 0'),y) = distd(z',y) = r — (&' + to) by
(**), and (*) holds for to + ¢’ also, which contradicts the maximality of ¢y
for the validity of (*). Thus the assumption ¢y < r is wrong and claim (7))
follows.

Finally, by claim (@) we have distY(c(r),y) = r —r = 0; thus c(t) =
exp, (t.X,) is a geodesic from z to y of length r = dist?(z, y), thus of minimal
length, so (@) for the special points follows.

M) = (@), by the foregoing proof, since then any point is special.

B) = @) Let A C M be closed and bounded for the geodesic distance.
Suppose that A has diameter » < co. Then A is completely contained in
one connected component of M, by Let = be the special point in this
connected component with exp, defined on the whole of T, M. Take y € A.

By (6]) for the special point x (which follows from ([H)), there exists a geodesic
from = to y of minimal length dist?(z,y) =: s < oo, and each point z of A
can be connected to x by a geodesic of minimal length

dist?(x, z) < dist?(z,y) + dist?(y, z) < r + s.

Thus the compact set (as continuous image of a compact ball) exp,{X, €
TpM : | X4|g <7+ s} contains A. Since A is closed, it is compact too. O

23.7. Conformal metrics. Two Riemann metrics g1 and g» on a manifold
M are called conformal if there exists a smooth nowhere vanishing function
f with ga = f2.g1. Then g; and go have the same angles, but not the same
lengths. A local diffeomorphism ¢ : (M, g1) — (Mo, g2) is called conformal
if ¢*gs is conformal to g;.

As an example, which also explains the name, we mention that any holo-
morphic mapping with nonvanishing derivative between open domains in C
is conformal for the Fuclidean inner product. This is clear from the polar
decomposition ¢'(z) = |¢(2)]e?* & () of the derivative.

As another, not unrelated, example we note that the stereographic projection
from is a conformal mapping:

pi(S"\ {ah g = {a o @), ug(e) = S

To see this, take X € T,,S™ C T,R""!, so that (X, z) = 0. Then we get:

duy (2)X = (1—{z,a))(X— <(1 a)a ,)a>)<X ) (z—(z,a)a)

&
— (17((1 (z,a))X + (X, a)x — (x,a)a),
<dU+(l’)X, dU+({L‘)Y> = W<X>Y 7)2 (gsn)z(X7Y)'
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23.8. Theorem (Nomizu-Ozeki, Morrow). Let (M,g) be a connected
Riemann manifold. Then we have:

(1) There exist complete Riemann metrics on M which are conformal to g
and are equal to g on any given compact subset of M.

(2) There also exist Riemann metrics on M such that M has finite diam-
eter which are conformal to g and are equal to g on any given compact

subset of M. If M is not compact, then by|(23.6.2)| a Riemann metric

for which M has finite diameter is not complete.

Thus the sets of all complete Riemann metrics and of all Riemann metrics
with bounded diameter are both dense in the compact C*°-topology on the
space of all Riemann metrics.

Proof of (Il). For z € M let
r(x) :=sup{r: B;(r) = {y € M : distY(x,y) < r} is compact in M}.

If r(z) = oo for one x, then g is a complete metric by Since exp,
is a diffeomorphism near 0., r(x) > 0 for all z. We assume that r(z) < oo
for all z.

Claim. |r(z) — r(y)| < dist(z,y); thus r : M — R is continuous, since:
For small € > 0 the set By(r(z) — ¢€) is compact, distY(z,z) < dist?(z,y) +
dist?(y, ) implies that By (r(x) — e —dist?(z,y)) C By(r(xz) —¢) is compact,
and thus r(y) > r(x) — distY(z,y) — € and r(z) — r(y) < distY(z,y). Now
interchange x and y.

By a partition of unity argument we now construct a smooth function f €
C*®(M,Rsq) with f(z) > ( j- Consider the Riemann metric g = f?g.

Claim. B,(3) := {y € M : dist¥(z,y) < 1} C By(37(2)); thus it is
compact.
Suppose y ¢ Bm(%r(m)) For any piecewise smooth curve ¢ from z to y we

have
1
_/ 1 (B)] dt > T(;)

1 9(c
0= [ felonictolyde = fetea)) [ Iy ar> -2

for some tg € [0, 1], by the mean value theorem of integral calculus. More-
over,

[r(c(to)) —r(z)

| < dist?(c(to), @) < L9(c) =: L,
r(elto)) <

r(z) + L,
] L L 1
Lie)> —— > 2 _ =
@ 2 T 23 " 3



298 CHAPTER V. Riemann Manifolds

so y ¢ By(}) either.

Claim. (M, g) is a complete Riemann manifold.

Let X € T, M with [X[; = 1. Then exp?(t.X) is defined for || < § < 1.
But also expg(s.%]t:i1/5 expd(t.X)) is defined for |s| < 1 which equals
exp?((£1 + s)X), and so on. Thus exp?(t.X) is defined for all ¢t € R, and
by [(23.6.4)| the metric g is complete.

Claim. We may choose f in such a way that f = 1 on a neighborhood of
any given compact set K C M.

Let C' = max{% :x € K} + 1. By a partition of unity argument we
construct a smooth function f with f = 1 on a neighborhood of K and
Cf(x) > ﬁ for all . By the arguments above, C?f2g is then a complete
metric; thus so is f2g.

Proof of (2). Let g be a complete Riemann metric on M. We choose
x € M, a smooth function h with h(y) > dist?(x,y), and we consider the
Riemann metric g, = e‘zh(y)gy. By [(23.6.6)| for any y € M there exists

a minimal g-geodesic ¢ from x to y, parameterized by arc-length. Then
h(c(s)) > distd(x, c(s)) = s for all s < dist?(z,y) =: L. But then

L L 00
LI(c) = / e~ M) (s)|, ds < / e *lds < / e *ds =1,
0 0 0

so that M has diameter 1 for the Riemann metric g. We may also obtain
that § = ¢ on a compact set as above. O

23.9. Proposition. Let (M,g) be a complete Riemann manifold. Let
X € X(M) be a vector field which is bounded with respect to g, | X|y < C.

Then X is a complete vector field; it admits a global flow.

Proof. The flow of X is given by the differential equation %FItX (x) =
X (FIX(x)) with initial value FIX (z) = z. Suppose that ¢(t) = FLX(z) is
defined on (a,b) and that b < oo, say. Then

b—1/m
dist (c(b — 1/n), c(b — 1/m)) < LU}/ (c) = / (1)), dt
b—1/n

b—1/m b—1/m
_/ |X(c(t))ygdtg/ Cdt = C.(1 — 1) 5,
b—1/n b—1/n

so that ¢(b — 1/n) is a Cauchy sequence in the complete metrical space M
and the limit ¢(b) = lim, oo ¢(b — 1/n) exists. But then we may continue
the flow beyond b by F1 (FI)¥ (v)) = F1;, ,. O
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23.10. Problem (Unsolved until May 2, 2008, to the author’s knowledge).
Let X be a complete vector field on a manifold M. Does there exist a com-
plete Riemann metric g on M such that the vector field X is bounded with
respect to g?

The only inroad towards this problem is the following:
Proposition ([76]). Let X be a complete vector field on a connected man-
ifold M. Then there exists a complete Riemann metric g on the manifold

M xR such that the vector field X x 0, € X(M x R) is bounded with respect
to g.

Proof. Since FIX*%(z, s) = (FIX(z), s + t), the vector field X x &, is also
complete. It is nowhere 0.

Choose a smooth proper function f; on M; for example, if a smooth function
f1 satisfies f1(z) > dist?(zp,x) for a complete Riemann metric g on M, then

f1 is proper by |(23.6.2)|

For a Riemann metric g on M we consider the Riemann metric § on the
product M x R which equals g, on T, M = T, M x 0y = T, 4)(M x {t}) and
satisfies

(X X Olg=1 and  guun((X x ) (z,t), T (M x {t})) = 0.
We will also use the fiberwise g-orthogonal projections
pry T(M xR)—-TM x0 and
pry : T(M xR) — R.(X x 9) =R.

The smooth function fa(z,s) = f1(F1¥,(x)) + s satisfies the following and is
thus still proper:

(Lxxo,f2)(,5) = Olo fa(FI} % (x, 5))
= 0o f2(FI}* (z),s + 1)
= 0o (SL(FIX_,(FIX (2))) + s + 1)
= Ao fi(FIZ(2)) +1=1.

By a partition of unity argument we construct another smooth function
f3: M x R — R which satisfies

f3(.73,8)2 > max{\Y(f2)|2 1Y € T(z,s)(M X {3})7 |Y‘§ = 1} :
Finally we define a Riemann metric g on M x R by
9(z,t) (Y> Z) = f3($7 t)Q g(ac,t) (prM(Y)a pI‘M(Z)) +Ppry (Y) ’ er(Z)
for Y, Z € T(y (M x R), which satisfies | X x Oy = 1.
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Claim. g is a complete Riemann metric on M x R.
Let ¢ be a piecewise smooth curve parameterized by g-arc-length. Then

|dlg =1, thusalso [pry(c)]y <1, [pryx(c) <1,
Gifa(c(t)) = dfa(¢' (1))
= (pry(c (t)>)(f2) pr(c ( )(f2),
pr (¢ (t)) () ‘ pry (c(t))
| pras(¢(2))]g [ prx (¢(2))lg

_ |t pru(€®)
[ fa(e(®)) IprM(c’(t))yg(fQ) +1Lxxo,f2] <2

by the definition of g and the properties of f3 and fo. Thus

Fa(e() — Fale(0))] < / 12 fy(elt))] dt < 2t
Since this holds for every such ¢, we conclude that
|f2(2) = fa(y)] < 2dist? (2, )
and thus each closed and dist?-bounded set is contained in some
{ye M xR :dist(z,y) < R} C f3 ' ([fo(x) — &, fo(x) + &)

which is compact since fy is proper. So (M x R, g) is a complete Riemann

manifold by |(23.6.2)] O

|G f2(c(1))] < (f2)

24. Parallel Transport and Curvature

24.1. Parallel transport. Let (M,V) be a manifold with a covariant
derivative, as treated in|(22.7)| The pair (M, V) is also sometimes called an
affine manifold.

A vector field Y : N — T'M along a smooth mapping f =mp oY : N - M
is called parallel if VxY = 0 for any vector field X € X(N).

If Y : R — TM is a vector field along a given curve c=mp;0Y : R — M,
then

VoY =KoTY 09, =0
takes the following form in a local chart, by
KoTY 00, = K(&(t),Y(t);(t),Y'(t))
= (e(t), Y'(t) = Tary (Y (1), € (1))

This is a linear ordinary differential equation of first order for Y (since ¢ is
given). Thus for every initial value Y (¢y) for ¢y € R the parallel vector field
Y along c is uniquely determined for the whole parameter space R.
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We formalize this by defining the parallel transport along the curve ¢ : R —
M as

Pt(c,t) : Tc(O)M — Tc(t)M, Pt(c,t).Y(0) = Y (1),
where Y is any parallel vector field along c¢. Note that we treat this notion

for principal bundles in |(19.6)| and for general fiber bundles in [(17.8)] This
is a special case here.

Theorem. On an affine manifold (M,V) the parallel transport has the
following properties:

(1) Pt(c,t) : TooyM — ToyM is a linear isomorphism for each t € R and
each curve c: R — M.
(2) For smooth f : R — R we have Pt(c, f(t)) = Pt(co f,t) Pt(c, f(0)); the

reparameterization invariance.

(3) Pt(c,t)"t =Pt(c( +t), ).

(4) If the covariant derivative is compatible with a pseudo-Riemann metric
g on M, then Pt(c,t) is isometric, i.e.,

9e(t) (Pt(c, t) X, Pt(c, t)Y) = Gc(0) (X,Y).

Proof. ([l follows from the linearity of the differential equation.

@) See also |(17.8)l Let X be parallel along ¢, V5, X = 0 or X(t) =
Pt(c,t) X (0). Then we have by [(22.7.6)|

Va(Xo ) =VrnraX =VpmaX = 1VoX=0;
thus Xof is also a parallel vector field along co f, with initial value X (f(0)) =
Pt(c, £(0))X(0). So
Pt(c, f(£))X(0) = X(f(t)) = Pt(co f,t) Pt(c, f(0)) X(0).

@) follows from (2).

@) Let X and Y be parallel vector fields along ¢, i.e., V5, X = 0, etc. Then

Og(X(¢),Y (1) = 9(Va, X(1), Y (t) + 9(X(t), Vo, Y (t)) = 0;

thus g(X(t),Y (t)) is constant in ¢. O

24.2. Flows and parallel transports. Let X € X(M) be a vector field
on an affine manifold (M, V). Let C : TM x; TM — T?M be the linear
connection for the covariant derivative V; see The horizontal lift of
the vector field X is then given by C(X, )€ X(T'M) which is mps-related
to X: T(my) o C(X, )= Xomy A flowline FI® )(Y,) is then a
smooth curve in T'M whose tangent vector is everywhere horizontal, so the
curve is parallel, and WM(FItC(X’ )(Yx)) = FIX (x) by Thus

(1) Pt(FIX, 1) = FI9% )
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Proposition. For vector fields X,Y € X(M) we have:
VxY = 0p(FISY oy o FIY)
) = 0o PH(FI*, —t) o Y o FI¥
=: 0]o PY(FI*,1)"Y,

and more generally,

(3) % Pt(FlX, —t)oY o Flg( — % Pt(F]X’ 0H*Y
= Pt(F1*,1)*VxY
= Pt(FI*, —t) o VxY o FIf
= Vx (Pt(FI¥X, 1)*Y).

(4) The local vector bundle isomorphism Pt(F1X,t) over FIX induces vector
bundle isomorphisms Pt®(F1X ) on all tensor bundles @F TM @ @1 T*M
over FIX. For each tensor field A we have

@) VxA=0|gPt®FIX, —t) o Ao FIX = 9|y Pt®(FIX, ¢)* A.
@) 2 PtO(FLI*, )" A= Pt®(F1¥,¢)*Vx A = Pt(FI¥, —t) o Vx A o FI¥
= Vx (Pt®(FI¥, 1) A).

Proof. (2l We compute
RIS (Y (FIY (2)))
= —C (X, I D (FF @))) + TEGE)olo(y (FIY ()
=-C(X(x),Y(2)+TY.X(x)
=TY.X(z) — C(T(rm).TY. X (x), 7o (TY. X (2)))
= (Idp2,s —(horizontal projection))TY. X (x)
=vl(Y(z), KTY. X (x)) = vl(Y(x),(VxY)(x)).

The vertical lift disappears if we identify the tangent space to the fiber T, M
with the fiber.

[B) We did this several times already; see |(3.13)] |(8.16), and |(9.6)f
2 P(FLY, 1)Y= £lo (PH(FIY, —t) o Pt(FI¥, —s) 0 Y o FIX o FLY)
= Pt(FI¥, —t) o Lo (Pt(F1*, —s) o Y o FI)) o FI¥
= Pt(FI¥, —t) o (VxY) o FI¥ = Pt(FIX,1)*VxY,
2 P(FLY, )Y = &0 Pt(FI¥, s)* Pt(FI¥, 1)*Y = Vx (Pt(FI¥,)*Y).

(@) For a tensor A with foot point FI¥(z) let us define Pt®(FI¥,¢)* A with
foot point x by
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(PtE(F1%, ) A)(X1,..., X, w!, . wP)
= A(Pt(F1¥, 1) X1, ..., Pt(F1¥, £) X, Pt(FIX, —t)*w!, ... PH(F1¥, —t)*wP).
Thus Pt®(FI1X,t) is fiberwise an algebra homomorphism of the tensor alge-
bra which commutes with all contractions. Thus 8|o Pt®(F1¥,¢)* becomes a
derivation on the algebra of all tensor fields which commutes with contrac-

tions and equals Vx on vector fields. Thus by |(22.12)|it coincides with Vx
on all tensor fields. This implies (2I).

@) can be proved in the same way as (). O

24.3. Curvature. Let (M, V) be an affine manifold. The curvature of the
covariant derivative V is given by

(1) R(X,Y)Z =VxVyZ - VyVxZ —Vxy|Z
= ([Vx,Vy] = Vxy)Z,
for XY, Z € X(M).

A straightforward computation shows that R(X,Y)Z is C°°(M)-linear in
each entry; thus R is a (é)—tensor field on M.

In a local chart (U,u) we have (where 0; = %):

Xlp=)_ X0, Ylg=> Yo,  Zlu=Y Z,
RX,Y)(2D)|v =) X'YIZ"R(8;,;)(0)
=: (Z Ré,j’k du® @ dv! ® du® ® 8l> (X,Y,2),
> R0 = R(9:,0))(9)
= V.V, 0k — Vo,V,0, — 0
= Vo, (= > _T740m) = Vo, (= > T71.0m)
== 0T 0m = D T55Vo,0m + > L 0T 50m + > T3V, 0m
== o0+ TN 0+ 0Tt 0 — > THT: 0.

We can collect all local formulas here, also from|(22.9.7)|or[(22.5.6)|and from

(22.4.2)|in the case of a Levi-Civita connection (where X = (z, X), etc.):
Vo0 =—Y Tl
T =35> 9" (0igi; — Oigi; — 9i9u),
(2) Rijp =01+ 0,1, + Z TP T, — Z I
R(X,7)Z = —dU(z)(X)(V, Z) + dT(2)(V)(X, 2)
+ (X, To(Y, 2)) - o (Y, T2(X, Z)).
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24.4. Theorem. Let V be a covariant derivative on a manifold M, with
torsion Tor; see|(22.10)| Then the curvature R has the following properties,
where X, Y, Z, U € X(M):

(1) R(X,Y)Z = —R(Y,X)Z.
2 Y RxY)Z=Y ((VX Tor)(Y, Z) + Tor(Tor(X, Y), Z)),
cyclic cyclic

algebraic Bianchi identity.
(3) Z <(VXR)(Y,Z) + R(Tor(X,Y), Z)) =0, Bianchi identity.
cyclic

If the connection V is torsion-free, we have:

@ Z R(X,Y)Z =0, algebraic Bianchi identity.
cyclic
@n Z (VxR)(Y,Z) =0, Bianchi identity.
cyclic
X?{Y,Z

If V is the (torsion-free) Levi-Civita connection of a pseudo-Riemann metric
g, then we have moreover:

(4> g(R(Xv Y)27 U) :g(R(Z, U)X7Y>>
(5) g(R(X,Y)Z,U)=—g(R(X,Y)U, Z).

Proof. (2l) The extension of Vx to tensor fields was treated in |(22.12)]
6) (Vx Tor)(Y,Z) = Vx(Tor(Y, Z)) — Tor(VyY, Z) — Tor(Y, Vx Z).
From the definition of the torsion:
Tor(Tor(X,Y),Z) = Tor(VxY — Vy X — [X,Y], Z)
= Tor(VxY, Z) + Tor(Z,Vy X) — Tor([X,Y], Z).
These combine to

>~ Tor(Tor(X,Y), Z)

cyclic
=3 <VX(Tor(Y, 7)) — (Vx Tor)(Y, Z) — Tor(|X, Y], Z))
cyclic
and then
3 ((VX Tor)(Y, Z) + Tor(Tor(X, Y), Z))
cyclic

-y (VX(Tor(Y, 7)) — Tor(|X, Y], Z))

cyclic
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= Z (VXVyZ— VXVZY - VX[Yv Z]

cyclic

— VixyZ + V2[X, Y]+ [[X, V], Z])

=3 (vxvyz VY — V[Xy]Z) - 3 R(X,Y)Z

cyclic cyclic

@B) We have

> R(Tor(X,Y),Z)= > R(VxY —VyX - [X,Y],Z)
cyclic cyclic
= > (R(VxY.2)+ R(Z VyX) - R(X,Y].2))

cyclic

and
> (VxR)(Y, Z)
cyclic
= > (VxR(Y,2) - R(VxY,Z) = R(Y,VxZ) = R(Y,Z)Vx)

cyclic

which combines to
> ((VxR)(Y,2) + R(Tox(X,Y), 7))
cyclic
= Y (VxR(Y, 2) - R(Y, 2)Vx — R(X,Y], 2))
cyclic

= Z (VXVsz — VxVzVy = VxVyyz

cyclic

- VyVzVx +VzVyVx + Viy 2/ Vx
= Vixy|Vz+VzVixy + Vixy).z ) =0.
() It suffices to prove g(R(X,Y)Z,Z) = 0:

0=Lo(9(Z,2))
= (XY -YX-[X,Y))g(Z Z)
= 2Xg(Vy Z, Z) — 2Yg(Vx 2, Z) — 29(V x 1% Z)
=29(VxVyZ,Z2)+29(VyZ,VxZ)
—29(VyVxZ,2) —29(VxZ,VyZ) —29(Vixyv|Z, Z)
=29((VxVy = VyVx = Vixy))Z,Z) = 29(R(X,Y)Z, Z).



306 CHAPTER V. Riemann Manifolds

@) is an algebraic consequence of (), (), and (B). Take (@) four times,
cyclically permuted, with different signs:

9(R(X,Y)Z,U) + g(R(Y, Z)X,U) + g(R(Z, X)Y,U) = 0,
g(RY,Z2)U,X)+g(R(Z,U)Y,X)+g(R(U,Y)Z,X) =0,
9(R(Z.U)X,Y) - g(R(U, X)2,Y) — g(R(X, Z)U,Y) = 0,
g(R(U,X)Y,Z) —g(R(X,Y)U,Z) — g(R(Y,U)X, Z) =0.
Add these:

29(R(X,Y)Z,U) — 29(R(Z,U)X,Y) =0. O

24.5. Theorem. Let K : TTM — TM be the connector of the covariant
derivative V on M. If s : N — TM is a vector field along f := mpr 05 :
N — M, then we have for vector fields X, Y € X(N)
VvaS — Vyvxs — V[X,Y]s
=(KoTKokpy —KoTK)oTTsoTX oY
=Ro(TfoX,TfoY)s:N—TM,
where R € Q?(M; L(TM,TM)) is the curvature.

Proof. Recall from|(22.9)|that Vxs = KoTso X. For A,B € Tz(TM) we
have

Vi (K(A), K(B)) = 0¢lo(K(A) + tK(B)) = 00K (A +tB)
=TK o0|o(A+tB) =TK ovlirrnsmpy, o) (A, B).
We use then and some obvious commutation relations:
VxVys—=VyVxs—Vixy)s
=KoT(KoTsoY)oX —KoT(KoTsoX)oY —KoTso[X,Y],
KoTso[X,Y]=Kovlpyo(KoTsoY,KoTso[X,Y]) by|[22.8.9)
=KoTKovlpryo(TsoY,Tso [X,Y])
=KoTKoTTsovlpyo(Y,[X,Y])
=KoTKoTTso(TYoX —kyoTXoY) by[814)
=KoTKoTTsoTY oX —KoTKoTTsokyoTXoY.
Now we sum up and use TT'soky = kppr o TT's to get the first result. If in

particular we choose f = Idj; so that XY, s are vector fields on M, then
we get the curvature R.

To see that in the general case (K o TK okgp — KoTK)oTTsoTX oY
coincides with R(T'f o X,Tf oY)s, we have to write out the expression
(TTsoTX oY)(x) € TTTM in canonical charts induced from charts of
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N and M. There we have X(z) = (z,X(x)), Y(z) = (x,Y(2)), and also
s(z) = (f(z),5(x)). So we get:

(ITTsoTX oY)(z) =TTs(x,X(2);Y(x),dX (2)Y (z))
(1) :(f(x),g(;,;) () X(2),ds(x).X (2); df ().Y (2), d5(x).Y (2),
2f(@)(Y (2), X (2)) + df (2).dX (2).Y (),
25(2)(Y (), X (2)) + ds(@ )-dX(x)Y(ﬂf))-
Recall which said K(z,y;a,b) = (2,b — Tx(a,y)). Differentiating
this, we get
TK(x,y,a,b;¢,n, 0, 5)

= (b= Tala,9);€ 8 — dU(@)(€)(a,y) = Tale,) = Tula,m) ).

Thus

(KoTKokpry — KoTK)(x,y,a,b;&,n,a, )
= (KoTK)(z,y,&m50,b,a, 8) = (K o TK)(x,y,a,b;,m,c, 5)
= K (2,1 = Ta(&,y);0,8 — dT(2)(a) (§, y) — Ta(e,y) — Ta(€, b))
— K (2,b—Tq(a,y):&, 8 — dL(z)()(a,y) — Ta(a,y) — La(a,n))
= (z,—dl'(z)(a)(&,y)
(2) +dU(2)(€)(a,y) + Tula, Tu(€,9)) = Tu(€, Tula,y))) -
Now we insert (I]) into (2) and get

(KoTKokpy —KoTK)oTTsoTX oY =Ro(TfoX,TfoY)s. O

24.6. Curvature and integrability of the horizontal bundle. What
is it that the curvature is measuring? We give several answers; one of them
is the following, which is intimately related to [(16.13)} [(17.4)} |(19.2)]

Let C : TM x); TM — T?M be the linear connection corresponding to a
covariant derivative V. For X € X(M) we denoted by C(X, )€ X(T'M)
the horizontal lift of the vector field X.

Lemma. In this situation we have for X, Y € X(M) and Z € TM

Proof. We compute locally, in charts induced by a chart (U,u) on M. A
global proof can be found in |(17.4)| for general fiber bundles and in |(19.2)
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for principal fiber bundles; see also |(19.16)l Writing X (z) = (z, X(z)),
Y(x) = (z,Y(x)), and Z = (2, Z), we have
= (z (

Z; X (x)

~
8

>
&
SI

= (2, 7Y (). X (2), —dX (2).Y (2),
I (dY (z).X(z) —dX(z).Y(2),2)
+dl(2)(X (2))(Y (2), Z) — dL(2) (Y (2))(X (2), Z)
T (Y (), Tu(X (2 ¥(2),2)))
)

The horizontal lift mapping C'(X, ) is a section of the horizontal bundle
C(TM, ) C T(T'M), and any section is of that form. If the curvature
vanishes, then by the theorem of Frobenius the horizontal bundle is
integrable and we get the leaves of the horizontal foliation.

Lemma. Let M be a manifold and let V be a flat covariant derivative on
M (with vanishing curvature). Let H C TM be a leaf of the horizontal
foliation. Then wyr|g : H — M is a covering map.

Proof. Since T(my|g) = T(mar)|C(TM, ) is fiberwise a linear isomor-
phism, 7y : H — M is a local diffeomorphism. For x € M we use a chart
(Uyu: U — u(U) = R™) of M centered at x and let X € (mpr|m) ().
Consider

s:U — H, s(u™(z)) = Pt(u"(t — t.2),1).X.

Then 7y o s = Idy and s(U) C H is diffeomorphic to U, the branch
of H through X over U. Since X € (my|p)~'(z) was arbitrary, the set
(mar]e)~H(U) is the disjoint union of open subsets which are all diffeomor-
phic via mps to U. Thus mps : H — M is a covering map. ([
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24.7. Theorem. Let (M,g) be a pseudo-Riemann manifold with vanish-
ing curvature. Then M is locally isometric to R™ with the standard inner
product of the same signature: For each x € M there exists a chart (U,u)
centered at x such that g|U =u*( , ).

Proof. Choose an orthonormal basis X (z), ..., Xmn(x) of (T M, g;); this
means g,(X;(x), X;(z)) = 1:0;5, where n = diag(1,...,1,-1,...,-1) is
the standard inner product of signature (p,q). Since the curvature R van-
ishes, we may consider the horizontal foliation of Let H; denote
the horizontal leaf through X;(z) and define X; : U — TM by X; =
(mmlm,)™ : U — H; C TM, where U is a suitable (simply connected)
neighborhood of x in M. Since X; o ¢ is horizontal in TM for any curve
cin U, we have VxX; = 0 for any X € X(M) for the Levi-Civita covari-
ant derivative of g. Vector fields X; with this property are called Killing
fields. Moreover X (g9(X;, X;)) = 9(VxXi, X;) + 9(X;, VxX;) = 0; thus
9(Xi, X;) = constant = g(X;(z), X;(z)) = nidi; and X;,..., X; is an or-
thonormal frame on U. Since V has no torsion, we have

0= TOI"(XZ',X]') == VXZ'X]' - vXin - [XZ,XJ] == [XZ,XJ]

By theorem |(3.17)| there exists a chart (U,u) on M centered at x such
that X; = %, e, Tu.X;(x) = (u(x),e;) for the standard basis e; of R™.
Thus Tw maps an orthonormal frame on U to an orthonormal frame on

u(U) € R™, and u is an isometry. O

24.8. Sectional curvature. Let (M, g) be a Riemann manifold, let P, C
T.M be a 2-dimensional linear subspace of T, M, and let X,,Y, be an or-
thonormal basis of P,. Then the number

is called the sectional curvature of this subspace. That k(P,) does not
depend on the choice of the orthonormal basis is shown by the following
lemma.

For pseudo-Riemann manifolds one can define the sectional curvature only
for those subspaces P, on which g, is nondegenerate. This notion is rarely
used in general relativity.
Lemma.
(2) Let A= (A;) be a real (2 x 2)-matriz and let Xy, Xo € T, M. Then for
X! = AlX; + A%2X5 we have

g(R(X1, X5) X1, X5) = det(A)? g(R(X1, X2) X1, X2).
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(3) Let X', Y’ be linearly independent in P, C T, M; then
g(RX"YNX" Y
|X’|2]Y’|2 _ g(X’, Y/)Q'

k(Pa:) =

Proof. () Since g(R(X;, X;) Xy, X;) =0 for i = j or k = [, we have
g(R(XT, X)X, X3) = Y AL A AT Apg(R(X;, X;) X, X))
= g(R(X1, X2) X1, X2)
(AJAGALAS — AJATATA, — ATAJALAG + ATA AT A)
= g(R(X1, X2) X1, Xo) (A1 A3 — A347)°. O

@) Let X,Y be an orthonormal basis of Py, let X' = A1X + A2Y and
let Y/ = ALX + A2Y. Then det(A4)? equals the area? of the parallelogram
spanned by X’ and Y’ which is | X'|?|Y’|? — g(X’,Y")2. Now use (). O

24.9. Computing the sectional curvature. Let g : U — S*(R™) be a
pseudo-Riemann metric in an open subset of R™. Then for X,Y € T,R™
we have:

2R.(X,Y,X,Y) = 2g.(Rs(X,Y)X,Y)
— 20g(2)(X,Y) (Y. X) + d®g(2)(X, X)(Y,Y) + dg(2) (¥, V) (X, X)
—29(I(Y, X), T'(X,Y)) + 29(T'(X, X),T'(Y,Y)).

Proof. The Christoffels I' : U x R™ x R™ — R™ are given by
(1) 292(Te(Y, 2),U) = dg(x)(U)(Y, Z) —dg(z)(Y)(Z,U) —dg(z)(2)(U,Y),
and the curvature is given in terms of the Christoffels is
R(X,Y)Z = (VxVy —VyVx —Vixy))Z
(2) =—dI'(X)(YV,2)+dl(Y)(X,Z2) + (X, T(Y, 2)) - T(Y,T'(X, Z)).
We differentiate ([II) once more:

2dg(z)(X) (T2 (Y, 2),U) + 295 (dT'(2)(X)(Y, 2),U)
(3) =+dg(x)(X,U)(Y,Z) — d*g(z)(X,Y)(Z,U) - d*g(z)(X, Z)(U,Y).

Let us compute the combination from (2]), using (3):

= 292 (U (2)(X)(Y, Z), U) + 29 (dl' () (Y)(X, Z) U)
= 2dg(x)(X)(To(Y, 2),U) — 2dg(x)(Y)(Te(X, Z), U)
— d?g(2)(X, U)(Y, Z)+d2 (@)(X,Y)(Z, U)er2 (2)(X, 2)(U,Y)
+dg(2)(Y,U)(X, Z) = d*g(2)(Y, X)(Z,U) = d*g(2)(Y, Z)(U, X)
= 2dg(z)(X) (T2 (Y, 2), )—2d9(x)(Y)( +(X,2),U)
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— d*g(2)(X,U)(Y, Z) + d°g(2)(X, Z)(U,Y)
+d%g(2) (Y, U)(X, Z) — d*g(2)(Y, Z)(U, X).
Thus we have
2R, (X,Y, Z,U) := 29, (R:(X,Y)Z,U)
- 2g(—d1“(X)(Y, Z) +d0(Y)(X, Z) + T(X,D(Y, Z)) — D(Y,T(X, Z)), U)
— 2dg(w) (X)(Ta(Y. 2), U) — 2dg(a)(¥ ) (L (X, Z),U)
— dg(x)(X,U)(Y, Z) + d2 9(x)(X, 2)(U,Y)
+d*g(x) (Y, U)(X, Z) — d*g(2)(Y, Z)(U, X)
+29(I'(X, (Y, 2)),U) - 29(F(Y I'(X, 2)),U)
and for the sectional curvature we get
(4) 2R,(X,Y, X,Y) =2, (R, (X, Y)X,Y)
= 2dg(x)(X)(T2(Y, X),Y) = 2dg(2)(Y) (T2 (X, X),Y)
—2d%g(2) (X, Y)(Y, X) 4+ d°g(z)(X, X)(Y,Y) + d®g(z) (Y, Y) (X, X)
+29(N(X,I(Y, X)), Y) = 29(T(Y, T'(X, X)), Y).
Let us check how skew-symmetric the Christoffels are. From (II) we get

29:(Le(Y, Z),U) 4 29:(Z, T4 (Y, U)) = 292 (T (Y, 2),U) + 29.(I'(Y, U), Z)
= +dg(z)(U)(Y, Z) — dg(x)(Y)(Z,U) — dg(x)(Z)(U,Y)
+ dg(@)(2)(Y, U) — dg(x)(Y)(U, Z) — dg()(U)(Z,Y)
= —2dg(z)(Y)(Z,U).
Thus
2dg(z)(Y)(I'(X,V),U) = =29(D(Y, (X, V)),U) = 29(I'(X, V), [(Y, U)).
Using this in (@), we get finally
(5) 2R,(X,Y, X,Y) = 2g2(Ro(X,V)X,Y)
=—-29(I'(X,T(V,X)),Y) —29(I'(Y, X), T'(X,Y))
+29(T(Y, T(X, X)),Y) + 29(T'(X, X), (Y, Y))
= 22g(w)(X, Y)Y, X) + dg(x) (X, X)(V, Y) + dg(x)(Y, V)(X, X)
+29(I'(X, (Y, X)), Y) = 29(I'(Y, (X, X)), Y)
—2d%g(2)(X, Y)(Y, X) + d*g(x) (X, X)(Y,Y) + d*g(2)(Y, Y ) (X, X)
—29(0(Y, X),I(X,Y)) + 29(I'(X, X),[(Y,Y)). [
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25. Computing with Adapted Frames and Examples

25.1. Frames. We recall that a local frame or frame field s on an open
subset U of a pseudo-Riemann manifold (M, g) of dimension m is an m-
tuple s1,..., 8, of vector fields on U such that si(z),...,s,(z) is a basis
of the tangent space T, M for each x € U. Note that then s is a local
section of the linear frame bundle GL(R™,TM) — M, a principal fiber
bundle, as we treat it in We view s(x) = (s1(x),...,sm(z)) as
a linear isomorphism s(z) : R™ — T,M. The frame field s is called an
orthonormal frame if si(z),..., sy (x) is an orthonormal basis of (T, M, g.)
for each € U. By this we mean that g,(X;(z), X;(z)) = 1:0i;, where
n = diag(1,...,1,—1,...,—1) is the standard inner product of signature
(p,q =m —p).

If (U,u) is a chart on M, then %, ce %im is a frame field on U. Out of this
we can easily build one which contains no isotropic vectors (i.e., ones with
g(X,X) = 0) and order them in such a way that the fields with g(X, X) > 0
are at the beginning. Using the Gram-Schmidt orthonormalization proce-
dure, we can change this frame field then into an orthonormal one on a
possibly smaller open set U. Thus there always exist orthonormal frame
fields.

If s =(s1,...,8m) and &' = (s},...,s,) are two frame fields on U,V C M,
respectively, then on U NV we have

s'=sh, s = > thg, si(x) =3, Sj(x)hg(x)a
h=(h):UNV — GL(m,R).

25.2. Connection forms. If s is a local frame on an open subset U in a
manifold M and if V is a covariant derivative on M, we put
(1) Vxsi=73_; sj.wg(X), Vxs=sw(X), Vs=suw,

w= (wi) c Q'(U,gl(m)), the connection form of V.
We saw this construction in already.
Proposition. We have:

(2) If Y =3 s;u? € X(U), then
VY =3 sk(D; wfuj + du®) = s.w.u + s.du.

(3) Let s and s’ = s.h be two local frames on U; then the connection forms
w,w’ € QYU, gl(m)) are related by

h.w' = dh + w.h.
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(4) If s is a local orthonormal frame for a Riemann metric g which is
respected by V, then
J_ i

w; = —wj,

w = (W) € QY (U, s0(m)).

If s is a local orthonormal frame for a pseudo-Riemann metric g which
is respected by V and if n;; = g(s;,s;5) = diag(1,...,1,-1,...,—1) is
the standard inner product matriz of the same signature (p,q), then

njjw! = —nawh, w=(w!) € Q' (U,s0(p,q)).

Proof. We use direct computations.

(|2D VxY = VX(ZJ' sjuj) = Zj(VXSj)uj + Zj st(uj)
=2k Sk 2j Wf(X)Uj + >k seduF (X).
(83) Vs =s.w =s.hu,

Vs =V(s.h) = (Vs).h + s.dh = s.w.h + s.dh.
() It suffices to prove the second assertion. We differentiate the constant
mij = 9(si, 5):
0= X(9(ss,55)) = 9(Vxsi,55) + g(si, Vxsj)
= g(3= skwi (X), 55) + g(si, 3 spwf (X))
=3 9(sk: 5w (X) + 3 g(si, sp)wh (X) = mjw! (X) + niiwl(X). O

25.3. Curvature forms. Let s be a local frame on U, and let V be a
covariant derivative with curvature R. We write

R(X,Y)s = (R(X,Y)s1,...,R(X,Y)sm).
Then we have
(1) st:Zsk.(dwf—{—Zwlk/\w;), Rs = s.(dw + w A w),
where w A w = (Y wi A w;“); € Q%(U, gl(m)), since
R(X,Y)s =VxVys—VyVxs — Vix,ys
= VX( w(Y)) = Vy(s.w(X)) - sw([X,Y])
X(w(Y)) +s.w(X)w(Y) = 5.Y(w(X)) = s.w(Y)w(X) - sw(X,Y])
= S-(X(W(Y)) —Y(w(X)) = w([X,Y]) + w(X).w(Y) - w(Y).w(X))
=s.(dw+wAw)(X,Y).

We thus get the curvature matriz
(2) Q=dw+wAwe Q*U,gl(m)),

and we note its defining equation R.s = s.1).
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Proposition.

(3) If s and s’ = s.h are two local frames, then the curvature matrices are
related by

h.Q = Q.h.
(4) The second Bianchi identity becomes
dA+wAQ—-QAw=0.

(5) If s is a local orthonormal frame for a Riemann metric g which is
respected by V, then

Ol = 0, = (Q) e (U, so(m)).

If s is a local orthonormal frame for a pseudo-Riemann metric g which
is respected by V and if n;; = g(s;,s;) = diag(1,...,1,—-1,...,—1) is
the standard inner product matriz of the same signature (p,q), then

0 = —nuQh, Q= () € Q*(U,s0(p, q)).

Proof. (8] Since R is a tensor field, we have s.h.Q' = .Y = Rs’ = Rs.h =
5.Q.h.

A second, direct proof goes as follows. By [(25.2.3)| we have h.w’ = w.h + dh;
thus

h.Q = h.(dw' + W' AW")
= hd(h tw.h+h"tdh) + (wh+dh) A (R w.h+ hL.dh)
= h.(=h~Ldh.h) ANw.h + h.h7 dw.h — h.h™tw A dh
+ h.(=h~t.dh.h"Y) Adh + h.h~t.ddh
+wAhh w+wAhh ™ dh+dh.h ™ Aw.h + dh. R A dh
=dw.h +wAw.h=%Q.h.
@) dQ = d(dwtwAw) = 0+dwAw—wAdw = (dwtwAw) A\w—wA(dw+wAw).
([B) We prove only the second case.
Ny = njjdwl + 37, nj0h AWk = —Ndw} — 32, ek A wf
= —midw;- +> niiw}“ Awh = —nii(dw;- + Y wi A wf) = —771'1'9;-- O

25.4. Coframes. For a local frame s = (s1,...,$y,) on U C M we consider
the dual coframe

Ul

, o GQl(U),

Q
I
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which forms the dual basis of TFM for each z € U; it satisfies (07, s;) =
ol(sj) = (5; If s’ = s.h is another local frame, then its dual coframe is given
by
(1) o =hto, o=, (hh)iak,
since

(i (h™ D", 85 = S (W15 (o, 1) by = 6.
Let s be a local frame on U, and let V be a covariant derivative. We define

the torsion form © by

(2) Tor = 5.0, Tor(X,Y)=:>_.

i50/(X,Y), ©ecQ*(URM).

Proposition.

(3) If s and s’ = s.h are two local frames, then the torsion forms of a
covariant derivative are related by

©' =h"le.
(4) If s is a local frame with dual coframe o, then for a covariant deriv-

ative with connection form w € QY(U, gl(m)) and torsion form © €

Q2(U,R™) we have
do=-wNhNo+0O, do'=-3,uwiAnok+6l
(5) The algebraic Bianchi identity for a covariant derivative takes the fol-
lowing form:
dO+wNO=QA0, dOF+ 3, wFrel=3,0F Aol
Proof. (3)) Since Tor is a tensor field, we have 5.0 = Tor = §'©’ = 5.h.0’;
thus 1.0’ = © and ©' = h=1.0.
@) For X € X(U) we have X = >_.s;.0'(X), for short X = s.o(X). Then
VxY =Vx(s.0(Y)) =(Vxs).oY)+s.X(o(Y))
=s.w(X).o(Y)+s.X(c(Y)),
5.0(X,Y) = Tor(X,Y) = VxV — Vy X — [X,Y]
=sw(X).oY)+s.X(0Y)) —swl).o(X)—sY(c(X)) —s.o([X,Y])
=s.(w(X).oY)—w¥)o(X)+ X(c(Y)) = Y(o(X)) —o([X,Y]))
=s.(wAo(X)+do)(X,Y).
Direct proof of (8):
O =w Ao +do’ = (h twh+htdh) AR o +d(h o)
=h'wAo+h N dhAR T o —hThdhoh T o+ hT do
=h ' (wAo+do)=h"t0.
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B dO=dlwho+do)=dwANoc—wAdo+0
=(dwt+wAw)No—wA(wAo+do)=QANoc—-—wAO. O

25.5. Resumé of computing with adapted frames. Let (M,g) be
a Riemann manifold, let s be an orthonormal local frame on U with dual
coframe o, and let V be the Levi-Civita covariant derivative. Then we have:

(1) gluv =20 ®0'.

2) Vs =s.w, w;- = —wf, so w € QY (U, s0(m)).

3) do+wAo=0,dot +>,w Aok =0.

4) Rs =50, Q =dw+wAw e Q*U,s0(m)), Q; = dw} + > wh /\wf,
5) QAo =0, >, QA o® =0, the first Bianchi identity.

(6) dY+wAQ—QAw=dQ+ [w, Qs =0, the second Bianchi identity.

(
(
(
(

For a pseudo-Riemann manifold (M, g) we consider standard inner product
matriz n;; = g(si,s5) = diag(1,...,1,—1,...,—1) of the same signature
(p,q). Then we have instead:

@) g=>>nioc' ©a'.
@) njjw] = —nawi; thus w = (w]) € Q'(U, s0(p, q)).
@) ;i = —niQ; thus Q = () € Q*(U, s0(p, q))-

25.6. Interpretation in terms of the orthonormal frame bundle.
For a pseudo-Riemann manifold (M, g) of dimension m we consider the
orthonormal frame bundle

O(M)=OR™,TM) = M.

Its fiber O(M), consists of all linear isometries (R™,n) — (T, M, g) where 7
is the standard inner product with the same signature as g. It is a principal
bundle with structure group O(p, q) (acting by composition from the right),
and it has one further structure, the soldering form which encodes the fact
that the associated bundle O(M) Xy q) R™ is the tangent bundle. The
soldering form is described as follows: Let s = (s1,...,8m) € O(M), be an
orthonormal frame of T,, M with orthonormal coframe (dual basis)

1
s

os=1| |, ol e TFM.

m
S

g

o
The soldering form is then given as (with a slight abuse of notation):

o€ QYO(M),R™),
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U;(TS(WM)ES)
0s(Es) = 05(T(mm).Es) = e R™.
o (Ts(mar).Es)
For h € O(p, q) we have
(M) 0)s(Zs) = o5 n(T(r").Es) = hLos(T(mar). T(r")Z) = hLo4(E).

So o is O(p, q)-equivariant and horizontal: It kills vertical tangent vec-
tors. By o induces a differential form on M with values in the
associated bundle O(M) Xg(,q) R™; it is a vector bundle isomorphism
TM — O(M) Xo@pq R™. If s is a local orthonormal frame, i.e., a local
section of O(M), then s*o = o, the dual coframe.

For the description of the principal connection form w on O(M) inducing
the Levi-Civita connection V on M we fix an open cover (Uy), of M and
local orthonormal frames s, : Uy, — O(M). Then o, = s,*0 are the
dual coframes, and by the connection form w, € Q' (U,,0(p,q)) is
determined by do, + wa A 0o = 0. The local frames s, induce a principal
fiber bundle atlas

(Ua; pa : O(M)|u, — Ua x O(p, q)), Paltz) = (m, (5a|x)71'ux)~

For X € o(p, q) the fundamental vector field for the principal right action is
given by (x(uz) = O¢lous 0 exp(tX) = vl(uy, u,.X) in terms of the vertical

lift vl from

The local expression v, = (¢, 1) *w € Q1 (U, xO(p, q), 0(p, q)) of the principal
connection w is given by [(19.4.6), where &, € T, M, h € O(p,q), and X €

0(p,q). Thus we have:
W(T (") (e, T(1n)-X)) = Ya(€e, T(pn)-X)
= Ya (&, 0n) + X = Ad(h_l)wa(gr) + X
=h 7 wa(&).h + X,

25.7. Example: The sphere S? C R3. We consider the parameterization
(leaving out one longitude):
f:(0,27) x (=7, ) — R3,
cos ¢ cosv
flp,9) = [ siny cos?d |,
sin 1

g = f*(metric) = f*(3, da' ® da*)

3

3
=) dff @ df’ = cos® ¥ dp @ d + I @ dV. T
i=1
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From this we can read off the orthonormal coframe and then the orthonormal
frame:

o 1 0
1_ 2 _ =73 = B
o =d¥, o°=cosddp, S1 = 99’ 52 cost) Oy’

We compute do' = 0 and do? = —sin® d A dp = —tand o' A 0%, For the

connection forms we have w] = w? = 0 by skew-symmetry. The off-diagonal

terms we compute from ((25.5.3)| i.e., do +w Ao = 0:
—do' =04+ wine?=0 = ws = c(p, V)02,

—do? =winoc' +0=tand o' Ao? = wi=tand o® =sind dp,

_ 0 sin ¥ dy
Y=\ —sing dp 0 '

For the curvature forms we have again Q} = Q% = 0 by skew-symmetry, and
then we may compute the curvature:

Qb = dwd + Wi Awd + wh Awd =d(sin® dp) = cosV dI Adp = ot Ao,

0 ol A o2
Q_(—01/\02 0 )

For the sectional curvature we get

k(S?) = —g(R(s1, s2)s1, 52) = —g(> 1 sk (51, 82), 52)
= —g(sa(—0t A o?)(s1,82),52) = 1.

25.8. Example: The Poincaré upper half-plane.
This is the set H2 = {(z,y) € R? : y > 0} with metric ds* = y%(d:v2 + dy?)
or

1 1 1 1
g=—dr® —dr + —dy ® —dy,
Yy Yy Yy Yy

which is conformal with the standard inner product.
The curvature. The orthonormal coframe and frame are then, by|(25.5.1);

1 1 0 3}
1 2
e —d = 7d = R = .
o y Z, O Y Y, S1 yax 82 yay
We have do' = d(%dm) = Ldr Ndy = o' Ao? and do? = 0. The connection
forms we compute from |(25.5.3)} i.e, do +w Ao = 0:

—do' =04+ wi Ao? = ! A o?,

1

—do? =wine +0=0 = ws = —o' = —yldz,

o — 0 —o!
“\el 0 )
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For the curvature forms we get

Q) = dwd + w0 Awd +wd Awd =d(—ylde) = —o' Ao?,

O 0 —ot A o?
~ \+olAo? 0 ’

For the sectional curvature we get
k(HY) = —g(R(s1,82)s1,52) = —g(3 5521 (s1, 52), 52)
= —g(so(ot A o?)(s1,52),50) = —1.
The geodesics. For deriving the geodesic equation let:

(=) (1) = a'(t) :J’ig ?i/é:is y—ls =: (s0¢).u
“”“(mw>’ (® <y%ﬂ> yVor Ty ey = y STy T e

The geodesic equation is then

Vo, =V, ((soc)u) =s.w(c)u+ s.du(d)

0 w;(a)) (y> ((2)’)
— S 78 ! + S ’S !
(s1,52) (_w%(d) 0 v (s1,52) y
_ i&g B x/ylg—’_ m//y_x/ylg—’— y//y_y&g 0
y 0y y Ox y Oz y oy

{a:”y — 22"y =0,

72 + y//y . y/2 - 0.

To see the shape of the geodesics, we first investigate z(¢) = constant. Then
y"y — 4% = 0 has a unique solution for each initial value y(0),%'(0); thus
the verticals ¢ — (Cozs(";;mt) are geodesics. If 2/(t) = 0 for a single ¢, then it
is for all ¢ since then the geodesic is already vertical. If 2/(t) # 0, we claim
that the geodesics a]r/eE upper half-circles with center M (t¢) on the z-axis:

(x(t)) y/(i))

y(t) ‘(t t !
y,( ) =tana(t) = @ =q= y—g/,
a'(t) y(t)
/ / /
yy _rx+yy
M) =otZr=—"2r"
/ / /
z(t) M) M (t) = <3:x+,yy> _ -0
x
Thus M (t) = M, a constant. Moreover,
7avE 2 2 y'y ? 2
> (O) =(z—M) +y—<$/ +y,

) (O - () +) =m0

G
(
(

)
d | [z(t)
dt<yt)
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Thus the geodesics are half-circles as asserted. Note that this violates Eu-
clid’s parallel axiom: We have a non-Euclidean geometry.

Isometries and the Poincaré upper half-plane as symmetric space.
The projective action of the Lie group SL(2,R) on CP!, viewed in the
projective chart C > z +— [z : 1], preserves the upper half-plane: A matrix
(¢8) acts by [z:1] = [az+b:cz +d] = [ : 1]. Moreover for z = z + iy

cd cztd
the expression
az+b (az+0b)(cz+d)
cz+d lez + dJ?
ac(z® +y?) + (ad +bc)x +db . (ad —be)y
T (@t (@2 (@t it (@)

has imaginary part > 0 if and only if y > 0. We denote the action by
m : SL(2,R) x H¥ — H?2, so that m(25%)(z) = Zjis Transformations of
this form are called a fractional linear transformations or Mobius transfor-

mations.

(1) SL(2,R) acts transitively on H?2, since m(\é27 f;\\g)(z) =+ zy The
isotropy group fixing i is SO(2) C SL(2), since i = %+t — bdtacki jf 454

ci+d —  c24d?
only if ecd + ac = 0 and ¢® + d?> = 1. Thus

H? = SL(2,R)/SO(2,R).

Any Mobius transformation by an element of SL(2) is an isometry:

A:=(2%) € SL(2,R),

ma(z) — m (,)_az+b_az’+b_ B z—2
A AT d e vd " (ez+d)(c2 +d)’
1 z—27 1

(ma)'(2) = Zl,lglz 2— 2 (cz+d)(cd +d) (cz+d)?

ma(z) = ma(2) = v/ (ma) (2)/(ma) (/) (z = &),
always for the same branch of \/(m4)(z). Expressing the metric in the

complex variable, we then have

1 1
9= ;(dﬁ +dy®) = Tm()2 Re(dz.dz),
(ma)*g = (ma)” <Im(1z)2 Re(dz.d2)>
- W Re((ma)'(2)dz.(ma) (2)dz)

— Im((ma) () 2lez + d| 4 Re(dz.dz) = Imgz)2 Re(dz.dz),
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since

Im((ma)(2))|cz + d|* = %(mA(z) —ma(2))|ez + dJ?

1 zZ—Z
- — d? =1 )
et dzrag ¢ Td =M@

(2) For further use we note the Mobius transformations

mi=m(§7):z—z+r, rekR,
):zr—H“.z, r € Ry,

-1 -z —z+iy
s TRER T @y

We can now use these three isometries to determine again the form of all
geodesics in H2. For this note that: If the fized point set (H2)™ = {z €
H? :m(z) = z} of an isometry m is a connected 1-dimensional submanifold,
then this is the image of a geodesic, since for any vector X, € TZH?|r tangent
to the fixed point set we have m(exp(tX)) = exp(tT.m.X) = exp(tX). We
first use the isometry ¢ (z,y) = (—z,y) which is not a M6bius transformation
since it reverses the orientation. Its fixed point set is the vertical line {(0, y) :
y > 0} which thus is a geodesic. The image under m; is then the geodesic
{(r,y) : y > 0}. The fixed point set of the isometry 1 o mg is the upper half
of the unit circle, which thus is a geodesic. By applying m; and mo, we may
map it to any upper half-circle with center in the real axis.

(3) The group SL(2,R) acts isometrically doubly transitively on H2: Any
two pairs of points with the same geodesic distance can be mapped to each
other by a Mobius transformation. For A = (‘; fl) in the isotropy group
SO(2) of i we have m/,(i) = m; it double covers the unit circle in
T;(H?). Thus SL(2,R) acts transitively on the set of all unit tangent vectors
in H i, and a shortest geodesic from 21 to zo can thus be mapped by a Moébius
transformation to a shortest geodesic of the same length from 2§ to z).

(4) H_2~_ is a complete Riemann manifold, and the geodesic distance is given
by

21— 2
dist(z1, z2) = 2artanh L

21— 22

The shortest curve from iy; to iys is obviously on the vertical line since for
z(t) = z(t) + iy(t) the length

! 1 / 2 / 2
L(c)—/o VPO P de
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is minimal for z/(¢t) = 0; thus z(¢f) = constant. By the invariance under
reparameterizations of the length we have

NPT ¥2 1
dist(ign, i) = | [ | = log e ~ log | = |log(2).
Y1

From the formulas in (I}) we see that the double ratio |2=22| is invariant
under SL(2,R) since:

21—Z2

ma(z1) —ma(z)| _ | Tardicatd | _ |21 — 22
ma(21) —ma(2)| | GEdeara| T2

On the vertical geodesic we have

Y1 1 Y1 _1 Y1
| B 1] (R | (Rl biesCh)
iy + iy2 Up 1] o)y q| | e2lles(DI . —3llos(R)]

= tanh(3 dist(iy1, iy2)).
Since SL(2,R) acts isometrically doubly transitively by (Bl and since both
sides are invariant, the result follows.
(5) The geodesic exponential mapping. We have exp;(ti) = e'.i since by (@)
we have dist (i, e!i) = log % =t. Now let X € T;(H?) with |X| = 1. In (@)
we saw that there exists ¢ with

7

m(g?ﬁg Cglsnsf) ()i = (isinp + cosg)? ==X,
m  arg(X)
== —0 Z
12 1 9 + T4,

. t . _ .
expi(tX) _ m(cosgp —smgo)(eti) _ Cos p.e".1 s @

sing cosp

sinp.eti + cosp

(6) Hyperbolic area of a geodesic polygon. By [(10.5) the Riemann metric
g= y%(alnv2 + dy?) has density vol(g) = /det g;jdx dy = y%dx dy; thus:

VJ@HZ/MAWZ/d@ﬁ
B < P Yy P \¥

d
7 L
or Y oP

since each geodesic is part of a circle

z—a= reia, a € R.  On it we have
dr  d(rcos@+a) —rsinfdd
Y rsin 6 rsin 6

The integral is thus the total increase of the tangent angle. For a simply
connected polygon the total increase of the tangent angle is 27 if we also
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add the exterior angles at the corners: [, d0+Y, 8; = >, i+, Bi = 2.
We change to the inner angles v; = m — 3; and get:

‘wﬁﬂpp:u/dﬁ:%+§:@:olzm§:w
op i i
This is a particular instance of the theorem of Gaufl-Bonnet.

25.9. The 3-sphere S3. We use the parameterization of S C R* given

by
cosp cosv cosT 0 < < 2m,
flp,9,7) = | sinp cos? cosT |, -5 <9< 3,
sint cosT —5<T7<7%
sinT

We write fi = Opf ! etc. Then the induced metric is given by:

g =(f, f) = LA+ R+ B+ A = cos® 9 cos® 7,

gi2="{(f1,f2) =0,  g13=0, gm=cos’T,  ga3=0, gg3=1.
g =cos? 9 cos’ T dp @ dp + cos® 1 d @ di) + dr ® dr.

ol = cost cosT dey, 0% = cosT dV, o® = dr.

dot = —sin® cosT d Adp — cos? sinT dr A dp,

do? = —sinT dr A d9, do® = 0.
Now we use the first structure equation ie,do+wAo=0:

dot = -0 — was A o? —w% A o3 =sin® cost dp A dd + costd sinT do A dr,
do® = —w? Aol —0—w? Ao =sinT di Adr,

do® = —w No' —w3 Ao® —0=0.

—wi AcosT dz?—w?l,/\dT:sinqSl cosT do Ad¥ + cost sinT dp Adr,
—wiAcost cosT dp — w3 Adr = sinT dV A dr,

—w? Acos® cosT dp — wi AcosT di) = 0.

w3 = —cos ¥ sinT dep,
w3 = —sinT dd,
wi = —sind dp,
0 —sind dp —cos¥ sinT dp
w= sin ¥ dy 0 —sinT dv

cost sinT dp sinT dv 0
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From this we can compute the curvature:

QF = dws + 040+ wi Aws
= —cost dy Adp —cos¥ sinT dp AsinT d
=cos? cos’ T dp AdY =o' A2,
Q3 =dwi +0+ w3 Aw; +0
=sind sinT d¥ Adp — cost cosT dr A dyp + sind dp Asint di
=cos¥ cosT dp Adr =o' A o3,
Q% =dw?+wiAwi+040
= —cosTdr ANdY+0

=cosT d Adr = % A o®,

0 ol ANe? ol A3 ol
Q=|-ctrno? 0 a?Nad | = o2 | A(eh, 0% 0%).
—ol A3 =0 Ao 0 o3

Another representation of the 3-sphere with radius 1/vk. The in-
duced metric is given by

1
g:E(COS219 cos27'dg0®d<p—}—cos27'd19®d19+d7'®d7'),

where 0 < ¢ < 2w, —5 < ¥ < §, and —§ < 7 < 5. Now we introduce the
coordinate function r by cos? 7 = k2, more precisely by

k

ﬁCOST for 0<7<3,

1 s
———COST for —IT<7<0
T:{ \/7 2 ' 0<|7"’<ka

Then sign 7 cosT = \/Er; thus —sign7 sint dr = \/%dr, and since sin? 7 =

1 —cos’T =1— k7?2, we finally get
(1—kr?)dr @ dr =sin® 7 dr @ dr = kdr @ dr.

Furthermore we replace ¥ by 9 + 5. Then the metric becomes:

1
g=— sin%kﬂd«p@@ﬁkﬂdﬁ@dzﬂLdr@dr
k 1 — kr?

1
(1) = mdr@dr—i—r? d9 @ d + r? sin? ¥ dy ®dp, where

0<p<2m, 0<d<m, 0<|rl<

==
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25.10. The Robertson-Walker metric in general relativity. This is
the metric of signature (+ — ——) of the form

g:dt®dt—R(t)2< dr®dr+r2dﬁ®dﬁ+r2sinzﬁdgo@dgp)

1
1 — kr?
1
forO<ep<2m, 0<d<m 0<]|rl<—,
@ ] 7
=p"®@p’—pl@p' - p*®p® —p’ @ p’,
R
p° = dt, pt = =dr, where w:=+/1—kr2,
w
p? = Rrdv, p® = Rr sind d.
The differential of the coframe is:

dp’ =0,
R R

dp' = —dt Adr = =p° A pl,
w R

dp2:ertAdﬁ+RdrAd?9:%po/\p2—|—%pl/\p2,

dp® = Rr sind d Adp + R sin® dr A do + Rr cos® dd A de

cotan? o = 4
——p Ap°.
Rr PP

Nowweusedp—&—w/\p:O,in»:—wf for 1 <i,j <3, w;':o, and w

R 0 3 wo g 3
= — VAN ‘l‘iﬁ VAN
z(']_u’(i):

dpoz—w(l)/\pl—ngpQ—wg/\pS:O,

R
dpl:—w(l)/\po—w%/\pQ—wé/\p?’:Epo/\pl,

dp® = —wf A p® —wi Ap! —wi A p® = %pOAPQJr%leﬁ
dp?’:—wg/\po—w{’/\pl—w%/\p2
cotand o v

Rr
This is a linear system of equations with a unique solution for the w; Guided
bywe assume that w is a multiple of p!, etc., and we get the solutions

R 0 3 woq 3
=—=p ANp"+—=—p Ap°+
pAp p-Ap

R, R R :
wézﬁplzadr, wgzﬁpQ:erﬁ,
wg’:%pB:Rr sin ¥ dep, w%:%pzzwdﬁ,

w . cotan )

w? = Ep?’ = w sin dy, wh = T p> = cos ¥ dip.
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From these we can compute the curvature 2-forms, using |(25.5.5), that is,
Q=dw+wAw:

R R

Q =—2p' Ap', QG = —50" A,
R k+ R?

B =—20 Ao, Qf = =3P Ao,
—k + R? k+ R?

U = ———5—p" Ap, Q= =5 Ao

25.11. The Hodge *-operator. Let (M, g) be an oriented pseudo-Rie-
mann manifold of signature (p,q). Viewing g : TM — T*M, we let g~ :
T*M — TM denote the dual bundle metric on T*M. Then g~! induces a
symmetric nondegenerate bundle metric

k k k
Ng ' \NT*M - \TM
on the bundle /\k T*M of k-forms which is given by

9T @1 A A A Ag) = det(g7 (i ) j=1)s @ity € QY(M).

Let ni; = g(ss,s;5) = diag(1,...,1,—1,...,—1) be the standard inner prod-
uct matrix of the same signature (p,q), and let s = (s1,...,8,) be an
orthonormal frame on U C M with orthonormal coframe o = (01,...,0m)

as in[(25.5)| so that g = >, miio! ® o; then for ¢*, 9% € QF(M) we have

g Mk k) = Z O (Sivs -y S W (8405 -y 85090 L pindk,
i1 <o <ip,
J1<<Jk
Note that g~ (et A~  Ao™ 0t Ao Ao™) = (—1)2.
If M is also oriented, then the volume form vol(g) from [(10.5)| agrees with
the positively oriented m-form of length +1. We have vol(g) = o' A---Ao™
if the frame s = (s1,...,sy,) is positively oriented.

We shall use the following notation:
Ifl=(1 < - <ig) and I' = (ji < -+ < jm—x) are the ordered tuples
with INI" =0 and TUI' = {1,...,m}, then we put o/ := o A --- A o'k,

Exercise. The k-forms o for all I as above of length k give an orthonormal
basis of g~! on QF(U). The signature of g=! on A¥T*M is

(P+ (pu q, k)v P_ (p7 q, k)) = (Z;?:O,j even (klij) (g)) Z?:O,j odd (/gl_]]> (;1)) .



25. Computing with Adapted Frames and Examples 327

On an oriented pseudo-Riemann manifold (M, g) of dimension m and signa-
ture (p, q) we have the Hodge isomorphism x with its elementary properties:

k m—k

«: NT*M — N\ T*M,
(1) ) Kps, o, X)) vol(g) = @ A g(Xir1) A= A g(Xim),

PE NPT = g7 (k" ™) vol(g),

g " ) = (1) 797 (", 00,

x xph = (—1)km—R)+a b

(+") AP = (sF) A .
In the local orthonormal frame we get
(*O'I)(Sjl, sS4, ) vol(g) = ol A g(s ) N Ng(sj, )

=0l Ag(sj)) N ANg(sj, ) =0  Anjjol A Ay odm=k

7 . 1...m r
*0© = sign I I Mg -+ Mm—rJm—-29 -

To get a geometric interpretation of *¢”*, we consider
i(X) (+0") (Xt - - o Xin) vol(g) = (x0") (X, Xgs2, -, Xim) vol(g)

= O" N g(X) A g(Xip2) A=+ A g(Xim)

= #(¢" A g(X))(Xps2,- -, Xin) vol(g)
so that
(2) i(X)(x0") = (" A g(X)),

(X tixe® =0}19 = {Y iy (x¢") = 0}.

25.12. Relations to vector analysis. We consider an oriented pseudo-
Riemann manifold (M, g) of signature (p,q). For functions f € C*°(M,R)

and vector fields X € X(M) we have the following operations, gradient and
divergence, and their elementary properties:

aradd(f) = g~V o df € X(M),

g(X) €QIM),  xg(X) = (~1)%ix vol(g),
cdf = #g(grad? (1)) = (—1)igraan( vol(9),
div?(X).vol(g) = (—1)?dix vol(g) = d * g(X),
grad?(f - h) = f-grad?(h) + h - grad?(f),
divI(f - X) = fdivI(X) + (—1)9df (X),
grad?(f)|u = 2=, misi(f) - si,

div?(X) = Trace(VX).

~— o~



328 CHAPTER V. Riemann Manifolds

Some authors take the negative of our definition of the divergence, so that
later the Laplace-Beltrami operator Af = (—div?) grad?(f) is positive def-
inite on any oriented Riemann manifold.

25.13. In dimension three. On an oriented 3-dimensional pseudo-Rie-
mann manifold we have another operator on vector fields, curl, given by

* g(curlg(X)) = (_1)qicurlg(X) VOl(g) = dg(X)7
curld(X) = (—1)7g~" + dg(X),
and from d? = 0 we have curl’ grad? = 0 and divY curly = 0.

On the oriented Euclidean space R? we have
e} 0,
grad(f) = Jl ot + agg;% + T;faa%?ﬂ
_ (ox3 0X? 0 ox! 0x3 e} 9X2 ox! o)
curl(X) = (W_W>W+<W_W>W+(W_W> prt
. o 1 o 2 o 3

div(X) = &5 + 25 4 9%
Note also that curl(f - X) = f - rot(X) + grad(f) x X where x denotes the
vector product in R3.

25.14. The Maxwell equations. Let U C R? be an open set in the
oriented FEuclidean 3-space. We will later assume that the first cohomology
vanishes: H(U) = 0. We consider three time dependent vector fields and a
function,

E:U xR —R3 the electric field,

B:U xR —R?  the magnetic field,

J:U xR —R3  the current field,

p:UXR—=R, the density function of the electric charge.

Then the Mazwell equations are (where ¢ is the speed of light)

1d
curl(E) = —E%B, div(B) =0,
1 a7
curl(B) = f%E + —J, div(E) = 4mp.

Now let 7 be the standard positive definite inner product on R3. From
(25.13)[ we see that the Maxwell equations can be written as

xdn(E) = —=—n(B), d* n(B) =0,

*dn(B) = g*n(E) + 777(J), d* n(E) = 4mp - vol(n).
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Now we assume that H*(U) = 0. Since d x n(B) = 0, we have
xn(B) =dA for a function A, the magnetic potential.

Then the first Maxwell equation can be written as

1d
dinE)+-—A)=0.
(n5y+ 2 54)
Using again H'(U) = 0, there exists a function ® : U x R — R, called the
electric potential, such that

1d
E)=—-2A—qd.
n(E) o

Starting from the magnetic and electric potentials A, ® : U x R — R, the
electric and magnetic fields are given by

1d
Ey=—-—A—dd B) = xdA
n(E)=-—— , - n(B) = #dA,
where all terms are viewed as time dependent functions of forms on R3.
Then the first row of the Maxwell equations is automatically satisfied. The

second row then looks like

1 d? 1d 4 d
A—f—dCI)—f—IT](J), (xdx A) — AP = 4mp.

—HrdxdAd=—Gos AT c odi

26. Riemann Immersions and Submersions

26.1. Riemann submanifolds and isometric immersions. Let (M, )
be a Riemann manifold of dimension m+p, and let M —— M be a manifold

of dimension m with an immersion ¢. Let g := i*g be the induced Riemann
metric on M. Let V be the Levi-Civita covariant derivative on M, and let V
be the Levi-Civita covariant derivative on M. We denote by Tt = TM* :=
{X € Ty,yM,z € M,g(X,Ti(T,;M)) = 0} the normal bundle (over M) of
the immersion ¢ or the immersed submanifold M.

Let X,Y € X(M). We may regard T4i.Y as vector field with values in TM
defined along i and thus consider Vx (T4.Y) : M — i*TM.

Lemma. Gauf}’s formula. If X,Y € X(M), then
Vx(TiY)—TioVyxY =: S(X,Y)

is normal to M, and S : TM xp TM — Tit is a symmetric tensor field,
which is called the second fundamental form or the shape form of M.

Proof. For X,Y,Z € X(M) and a suitable open set U C M we may choose
an open subset U C M with i(U) closed in U such that ¢ : U — U is an
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embedding, and then extensions X,Y,Z € X(U) with X o iy = Ti.X|y,
etc. By [(22.5.7)| we have

&
<
>

=
Il

B
Qr
=)

Composing this formula with i|y, we get on U

29(Vx(Ti.Y),Ti.2) = X(9(Y, Z)) + Y (9(2, X)) — Z(9(X,Y))
=29(VxY, Z),
again by |(22.5.7)l Since this holds for all Z € X(U), the orthonormal pro-
jection of VxY to TM is just VxY. Thus S(X,Y) := Vx(Ti.Y)-Ti.VxY
is a section of Tit, and it is symmetric in X,Y since
S(X,Y)=Vx(Ti.Y) —TioVxY = (VgY)oi—TioVxY
= (Vg X +[X,Y])oi —Ti.(VyX +[X,Y]) = S(Y, X).

For f € C°°(M) we have
S(fX,Y)= va(Ti.Y) —TioVyixy
= fVx(TiY) — fTioVxY = fS(X,Y),

and S(X, fY) = fS(X,Y) follows by symmetry. O

26.2. Corollary. Let c: [a,b] — M be a smooth curve. Then we have
Vo, (Ti.c) =Vg,(ioc) =TioVy,cd + ().
Consequently c is a geodesic in M if and only if
Va(ioc) =8(d,d) e Tit,

i.e., the acceleration of i o c in M is orthogonal to M.

Leti: M — M be an isometric immersion. Then the following conditions
are equivalent:

(1) Any geodesic in M which starts in i(M) in a direction tangent to i(M)

stays in i(M); it is then a geodesic in i(M). We calli : M — M a
totally geodesic immersion.

(2) The second fundamental form S of i : M — M vanishes. O



26. Riemann Immersions and Submersions 331

26.3. In the setting of [(26.1)] we now investigate V x¢ where X € X(M) and
where ¢ € T'(Ti1) is a normal field. We split it into tangential and normal
components:

(1) Vxé=—Ti.Le(X) + Vxé € X(M) @ T(Tit) (Weingarten formula).
Proposition.
(2) The mapping (£, X) — Le(X) is C°°(M)-bilinear; thus L : Tit x

TM — TM is a tensor field, called the Weingarten mapping or shape oper-
ator and we have:

9(Le(X),Y) = g(S(X,Y),€), €eD(Tit),X,Y € X(M).

By the symmetry of S, L¢ : TM — TM is a symmetric endomorphism with
respect to g, i.e., g(Le(X),Y) = g(X, Le(Y)).

(3) The mapping (X,€) — V£ is a covariant derivative in the normal
bundle Ti+ — M which respects the metric g* := g|Ti+ xpr Tit; i.e.,

VL X(M) x T(Tit) — T(Tit)  is R-bilinear,
Vixé=fVx&  Vx(f& =df(X).£+ VxE,
X(g (& m) =g (Vx&n) + 975, Vxn).

Note that there does not exist torsion for V= .
Proof. The mapping (£, X) + L¢(X) is obviously R-bilinear. Moreover,
—Ti.Le(f.X) + Vixé = Vixt = fVx&=—f(Ti.Le(X)) + f.VxE
which implies
Le(f.X) = fLe(X), Vixé=fVxE.
Furthermore,
~Ti.Lpe(X) + VE(£.) = Vx(f6) = df(X).£ + [.Vx¢
— —F(Ti.Le(X)) + (df(X).£ + £.V%€)
implies
Lpg(X) = fLe(X), Vx(££) = df(X).£ + f.VxE

For the rest we enlarge X,Y € X(M) and &,n € T(Tit) locally to vector
fields X,Y,€&,7 on M. Then we have:

X(gH(&m) =X @& ) ei=(9(Vx&n) + (& Vgn)oi
9(Vx&n) + g€, Vxn)

9(=Ti.Le(X) + V& n) + §(€, —Ti-Ly(X) + Vxn)
g (Vx&n) + g (& Vxn),

(VY. &) +3(Y, Vo).

X(3(Y,¢))
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Pull this back to M:
0=X(g(Y,€) = g(Vx(Ti.Y),&) + g(Ti.Y,VxE)
= g(Ti.VxY + S(X,Y),&) + g(Ti.Y, ~Ti.L¢(X) + Vx€)
= g (5(X,Y),8) +g(Y,—Le(X)). O

26.4. Theorem. Let (M,g) SRR (M, §) be an isometric immersion of

Riemann manifolds with Riemann curvatures R and R, respectively. Then
we have:

(1) For X; € X(M) or Ty M we have (GaufS’s equation, theorema egregium)
G(R(T%.X1,Ti.X5)(Ti.X3), Ti.X4) = g(R(X1, X2) X3, X4)
+ g1 (S(X1, X3), S(X2, X4)) — g7 (S(X2, X3), S(X1, X1)).
(2) The tangential part of R(X1, X2)X3 is given by:
(R(Ti.X1,Ti.X5)(Ti.X3)) "
= R(X1, X2) X3 + Lg(x,,x3)(X2) — Lg(x,,x4)(X1)-
(3) The normal part of R(X1, X2)X3 is (Codazzi-Mainardi equation,):
(R(Ti.X1,Ti.Xo)(Ti.X3))*
— (V%l@T*M@T*MS) (Xo, X3) — (V%l@T*M@T*MS) (X1, X3).
(4) The tangential and the normal parts of R(Ti.X1,Ti.X2)¢ (where € is
a normal field along i) are given by:
(R(Ti.X1,Ti.X)€) "
= i (VR T TN L) — (VT T L (x)),
(R(Ti.X1,Ti.Xo)€)*
= RV (X1, X2)€ + S(Le(X1), X2) — S(Le(X2), X1).
Proof. Every € M has an open neighborhood U such that i : U — M is
an embedding. Since the assertions are local, we may thus assume that ¢ is

an embedding, and we may suppress ¢ in the following proof. For the proof
we need vector fields X; € X(M). We start from the Gaufl formula |(26.1)|

Vx, (Vx,X3) = Vx, (Vx, X3 + S(Xa, X3))
=Vx,Vx, X3+ 5(X1,Vx,X3) + vxls(Xg,Xg),
vxz(?xng) =Vx,Vx, X3+ 5(X2,Vx, X3) + ?XQS(Xl,Xg),
Vixy, % X3 = Vix, x5 X3 + S([X1, Xa], X3)
= Vix, x2) X3 + S(Vx, X2, X3) = S(Vx, X1, X3).



26. Riemann Immersions and Submersions 333

Inserting this, we get for the part which is tangent to M:
G(R(X1,X2)X3,Xy) = §(Vx, Vx, X3 — Vi, Vx, X3 — Vix, x,1 X3, X4)
=9(Vx,Vx, X3 = Vx,Vx, X3 — Vix, x,) X3, X4)
+g(S(X1,Vx,X3) — S(X2,Vx, X3) — S([X1,X2], X3),X4) ( =0)
+9(Vx,5(X2, X3) — Vx,8(X1, X3), X4)
= g(R(X1, X2) X3, X4)
+9(S(X1, X3), S(Xa, X4)) — g7 (S(X2, X3), S(X1, X4)),

where we also used [(26.3.1)[ and [(26.3.2)| in:

3(Vx,5(Xs, X3), X4) = §(Vx, S(X2, X3) — Lg(x,,x5)(X1), X1)
=0—g-(S(X1, X4),5(Xa, X3)).

So (1) and (@) follow. For equation (B)) we have to compute the normal
components of the + — — sum of the first three equations in this proof:

(R(X1, X9)X3)+
— 0+ S(X1,Vx, X3) + (Vx, S(Xa, X3)) " — 0 — §(Xo, Vi, X3)
— (Vx,8(X1, X3)) " — 0 — 8(Vx, Xa, X3) + S(Vx, X1, X3)
= (Vx,5(X2,X3) — S(Vx, Xo, X3) — S(X2,Vx, X3))
— (Vx,5(X1, X3) — S(Vx, X1, X3) — S(X1,Vx,X3))
= (VST MET M G) (X, X3) — (Vi ST METMG) (X, X;3).

For the proof of ({]) we start from the Weingarten formula [(26.3.1) and use
(26.1)]

Vx,(Vx,8) = Vi, (Vx, € — Le(X2))
= VX, Vi€ — Loy ¢(X1) = Vi, (Le(X2)) = S(X1, Le(X2)),
Vi (Vxi) = V, Vx,€ = Lyy ((Xo) = Vi (Le(X1)) = (X, Le(X1)),
Vixy,x:0€ = V[lxl,xg]f — Le([X1, X2])
= Vix, x00§ — Le(Vx, X2) + Le(Vx, X1).
Inserting this, we get for the tangential part:
(R(X1, X2)€) " = Loy ¢(X2) = Loy ((X1)
+ Vi, (Le(X1)) — Le(Vx, X1) — Vi, (Le(X2)) + Le(Vx, X2)

TM(Ti+)*@T* M TM(Ti+)*T* M
= (VRMETEVETM ) (Xp) 4 (Vi T My (X),
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For the normal part we get:
(R(X1, X2)6)" = V¥, Vi,€ — V%, Vx,& — Vix, x,06

26.5. Hypersurfaces. Let i : (M,g) — (M,g) be an isometrically em-
bedded hypersurface, so that dim(M) = dim(M) + 1. Let v be a local unit
normal field along M, i.e., v € T(Ti*+|U) with |v|; = 1. There are two
choices for v.

Theorem. In this situation we have:

(1) Vxv € TM for all X € TM.
or X,Y € we have etngarten equation):
2) For X, Y € X(M h |44
g(vxlj, Y) = —g(% vXYV) = —gL(y,S(X,Y)).

(3) g(le/: Y) = g(vY%X)'

(4) If we put s(X,Y) := g+ (v, S(X,Y)), then s is called the classical second
fundamental form and the Weingarten equation ([2) takes the following
form:

g(vXVa Y) = _S(Xa Y)
or hypersurfaces the Codazzi-Mainardi equation takes the following
5) For h fi he Cod M d kes the foll
form:

9(R(X1, X2)X3,v) = (Vx,5)(Xa, X3) — (Vx,5)(X1, X3).

Proof. () Since 1 = g(v,v), we get 0 = X(g(v,v)) = 2g(Vxv,v); thus
Vxv is tangent to M.

@) Since 0 = g(v,Y), we get 0 = X(g(v,Y)) = g(Vxv,Y) +g(v,VxY) and
thus g(Vxv,Y) = —g(v,VxY) = —g(v, VxY +S(X,Y)) = —g(v, S(X,Y)).
@) follows from () and symmetry of S(X,Y). () is a reformulation.

([B) We put ourselves back into the proof of |(26.4.3)] and use S(X,Y) =
s(X,Y).v and the fact that s € I'(S*T*M|U) is a (;)-tensor field so that

V x s makes sense. We have
Vx, (8(X2, X3)) = Vi, (s(X2, X3).v) = X1(s(X2, X3).v + s(X2, X3).Vx,v
and Vx,v is tangential to M by (I). Thus the normal part is:
(Vi) (S(X2, X3))) ™ = Xi(s(X2, X3)).v
= (VXls)(XQ, X3).V + S(VXlXQ, Xg).u + S(XQ, VX1X3).I/.
Now we put this into the formula of the proof of |(26.4.3);
(R(X1, X2)Xs)" = S(X1, Vi, Xs) + (Vax, (S(Xa, X3))) " — (X2, Vx, X3)

0
2
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- (?XQ(S(XMX:;)))L — S(Vx, X2, X3) + S(Vx, X1, X3)
= ((Vx,5)(X2, X3) — (Vx,8)(X1, X3))v. O

26.6. Remark (Theorema egregium proper). Let M be a surface in
R3; then R = 0 and by [(26.4.1)| we have for X,Y € T, M:

0= (R(X,YV)X,Y) = (R(X,Y)X,Y) + s(X, X).5(Y,Y) — s(Y, X).5(X,Y).
Let us now choose a local coordinate system (U, (x,y)) on M and put
g=1"( , )=Fdrdr+ Fdr®dy+ Fdy®dz+ Gdy ® dy,

s=:ldr@dr+mdr@dy+mdy ®dr+ndy R dy,

then K = Gauf’s curvature = sectional curvature
— (R(0s,0y)0:,0y) _ 5(0,0).5(3y, By) — (0, Oy)?
|0212|0y[> — (0, 0y)? EG - F?
In —m?
" EG-F?

which is Gauf}’s formula for his curvature in his notation.

26.7. Adapted frames for isometric embeddings. All the following
also hold for immersions. For notational simplicity we stick with embed-
dings. Let e : (M,g) — (M,g) be an isometric embedding of Riemann
manifolds, and let dim(M) = m + p and dim(M) = m. An adapted or-
thonormal frame 3 = (31,...,8m+p) is an orthonormal frame for M over
U C M such that for U = UN M C M the fields s = 81|v, ..., 5m = 5m|v
are tangent to M. Thus s = (s1,...,S) is an orthonormal frame for M

over U. The orthonormal coframe

5.1

Qi
Il
Il

)

s
for M over U dual to 5 is then given by 5'(5;) = 6. We recall from [(25.5)
) g=>ded,

|

@, @W=-@
— = _ m+p ~7 A =k _
do+wNo=0, do'+3 ;" Papnot =0,
R5=3590, Q=do+oAwecQU,so(m+p)),
AT T mAD 7 A
Q%—d}+ =1 WE/\wj,
QNG =0, YTPOr Agh =0, first Bianchi identity,
AU+ 0AQ - QNG =d02+ 0,9, =0, second Bianchi identity.
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Likewise, the orthonormal coframe o = (!, ..., am)—r for M over U dual to
s is then given by o'(s;) = 5; Recall again from [(25.5)
(2) g = Z?;l Ui ® Ji?

A . )

Vs=sw, wj=-w, soweQ (Us0(m)),

dr+who=0, do'+>7 Wi Ack=0,

Rs =59, Q=dw+wAwec QU so(m)),

Q; = dw;- + > WZ A w;?,

QAo =0, Y7 ,Qi Aok =0, first Bianchi identity,

AU+ wAQ—QAw=dQ+ [w, Qs =0, second Bianchi identity.
Obviously we have 5i|U = o', more precisely e*6! = o¢, fori = 1,...,m,
and e*6' = 0 for7=m+1,...,m + p. We want to compute e*@. From
do’ +Zm+pw ATk =0 we get

(3) do'=— %njlp e* Wk A e ok = — Siefwi Aok fori=1,...,m,
0=-— g:lpew A e*gF =S efw Aok form+1<7
Since also e*@j = —e*w/, the forms 6*51; for 1 <4, 5 < m satisfy the defining

equations for w thus we have:

(4) wj =e" w],

for 1 <4,5 <m.

Since §(Vxsi,sj) = cDg(X) = wf- (X) = 9(Vxsi,s;5) for X € X(M), equation
(@) also expresses the fact that the tangential part (? Xsi)T = Vxs;.

Next we want to investigate the forms e*@jé —e w] for 1 <4 < m and
m+ 1 <7<m+ p. We shall need the following result

(5) Lemma (E. Cartan). For U open in M™TP let XL, ... X" € QY(U) be
everywhere linearly independent, and consider 1-forms i, ..., pum € QYU)
such that >~ pi A X = 0. Then there exist unique smooth functions fij €

C>(U) satisfying i = 372 fyyN and fi; = fji.

Proof. Near each point we may find A *1, ... AN*P such that A!,... \"*P
are everywhere linearly independent; thus they form a coframe. Then there
exist unique f;; such that p; = Zmﬂo fizM. But we have

m m m—+p B
0= Y mAXN=D "> fz AN
i=1 i=1 k=1

m  m+p

= Z (fik—flci))\k/\kivLZ Z Fin AF AN

1<k<i<m i=1 k=m+1
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Since the AF A X for k < 7 are linearly independent, we conclude that

fix=frifor1<ik<mand fz; =0for 1 <i<m<k<m+np.

By @) we have 0 = > ;" e*@ZAak fort =m+1...m+p. We use now lemma

O

([B) to see that there exist unique functions 32;]‘ e C®WU) for 1 <j,k<m

andz=m+1,...,m+ p with:
m
(6) e*wy, = Zszjaj, Skj = Sik-

This is equivalent to the Weingarten formula |(26.3.1)|
Since §(V,,s5,55) = ©(sk) = (°07)(sx) = by, we have by [26.1)

m—+p B m-+p B
(7) S(sisi)= Y GRUNEW)(s:) = Y (5lU)si.
k=m+1 k=m+1

Let us now investigate the second structure equation Q = dw + Z e 1

cT);:“. We look first at indices 1 < 7,7 < m and restrict it to M:

m m-—+p
e*Qé- = de*@é + Z @i A e*@f + Z e* @k A e*wéC
k=1 k=m+1
m-—+p B
—dw —i—Zwk/\w + Z ewk/\ewk
k=m-+1
m-+p m-+p m -
(8) e*Qé-zQé-—f— Z ewk/\ew Z Z f?
k=m+1 —m411,n=1

This is equivalent to the Gaufl equation 26.4.1

ot
“k

A

Then we look at the indices 1 < j < m <7 < m + p and restrict the second

structure equation to M:

m m-+p
*Q}:de*o_J;—i-Ze /\ew + Z ewk/\ewk
k=m+1
m m-+p
_ i —E x—k
9) = ; Z e*wy, A w—i— Z ey N ety
k=1 =m+1

which is equivalent to the Codazzi-Mainardi equation. In the case of a hy-

persurface this takes the simpler form:

*Qm—H — de* m+1 + Ze*wzn—i-l



338 CHAPTER V. Riemann Manifolds

26.8. Resumé of computing with adapted frames for submani-
folds. Let e : (M,g) — (M,g) be an isometric embedding between Rie-
mann manifolds. Let § = (51,...,5,,4p) be an orthonormal local frame on
M over U C M with connection 1-form & = (&%) € Q'(U,so(m + p)) and
curvature 2-form Q = (Q}) € Q*(U,s0(m + p)), such that the s; := 5]|U
form a local orthonormal frame s = (s1,...,sy,) of TM over U = U N M,
with connection 1-form w = (w;) € QYU,s0(m)) and curvature 2-form
Q= (Q}) € Q*(U,s0(m)). Let

5.m+p m

be the dual coframes. Using the ranges of indices 1 < 4,5, k,I < m and
m+1 <77,k <m+ p, we then have:

e*st =o', e*a' =0,

*—10 __ 1 *—7 __ 7 -k T __

€ w; =Wy, € Wj _ZkSmSJkU ’ ik = Sk

*At _ Ol  x—i * — E m—+p m k k 1 n

eV =05+, gt Netw ; Zk m+1Zl7n:18ilSjna Ao,
m+p

e’ —de*wl—l—g e* /\w + E ewk/\ew
=m+1

26.9. Definitions. Let p : E — B be a submersion of smooth manifolds,
that is, Tp : TE — TB is surjective. Then

V =V(p) =V(E) :=ker(Tp)

is called the vertical subbundle of E. If E is a Riemann manifold with metric
g, then we can go on to define the horizontal subbundle of E:

Hor = Hor(p) = Hor(E) = Hor(E, g) := V(p)*.
If both (E,gr) and (B, gp) are Riemann manifolds, then we will call p a
Riemann submersion if
Typ : Hor(p)y = Ty B
is an isometric isomorphism for all x € F.
Examples. For any two Riemann manifolds M, N, the projection pri :
M x N — M is a Riemann submersion. Here the Riemann metric on the
product M x N is given by
gmxN(Xar + XN, Y + YN) := gu (Xor, Yar) + gy (XN, Y)

using T(M x N) = TM & TN. In particular, R™*" — R™ with the usual
metric, or pro : ™ x RT — R are Riemann submersions.
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26.10. Definition. Let p : E — B be a Riemann submersion. A vector
field X € X(F) is called:

o vertical if X (x) € Vy(p) for all = (i.e., if Tp.X(z) = 0),

o horizontal if X (x) € Horz(p) for all z (i.e., if X(z) L Vi(p)),

e projectable if there is an 7 € X(B), such that Tp.X =nop,

e hasic if it is horizontal and projectable.

Any vector field Y € X(F) can be uniquely decomposed as
Yy =Yyver 4 Yhor

into its vertical and horizontal components. The orthogonal projection
¢ : TE — V(E) with respect to the Riemann metric is a (generalized)
connection on the bundle (F,p, B) in the sense of and defines a local
parallel transport over each curve in B (denoted by Pt®(c,.)) as well as the
horizontal lift of tangent vectors:

C:TBxpE —FE, (Xm@)'—)yve,

where Y, € Hore(p) with T,p.Y. = X3. This map also gives us an isomor-
phism Cy : X(B) — Xpasic(F) between the vector fields on B and the basic
vector fields.

26.11. Lemma. Consider a Riemann submersion p : (E,gr) — (B, gB)
with connection ® : TE — V(p) and ¢ : [0,1] — B, a geodesic. Then we
have:

(1) The length is preserved by lifting curves horizontally:
Li(c) = LE(Pt®(c, ., u)),

where u € Eg) is the starting point of the parallel transport. Also the
energy is preserved, Eb(c) = E5(Pt®(c, ., u)).

(2) Pt®(c,.,u) L Eqy for all t.

(3) If ¢ is a geodesic of minimal length in B, then we have

Lé(Ptq)(C, o u)) = dist (Ec(O)a Ec(l)) .

(4) If ¢ is a geodesic in B, then t — Pt®(c,t,u) is a geodesic in E.

(5) For wector fields £,m € X(B) and the corresponding horizontal lifts
C(£),C(n) € X(E), we have

(Ve Cm)"r = C(VEn).
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Proof. () Since d; Pt®(c, s, u) is a horizontal vector and by the property
of p as Riemann submersion, we have

i 1
LE(Pt®(c,.,u)) = / gE (05 Pt*(c, s,u), 0 Pt®(c, s.u)) * ds
0

:/0 93(6’(8),0’(8))%618 = Lg(c),

t
EL(Pt®(c,.,u)) = ;/ g (Os Pt®(c, s,u), s Pt%(c, s.u)) ds = Ej(c).
0

() This is due to our choice of ® as orthogonal projection onto the vertical
bundle in terms of the given metric on E. By this choice, the parallel
transport is the unique horizontal curve covering ¢, so it is orthogonal to
each fiber E,q it meets.

([B) Consider a (piecewise) smooth curve e : [0,1] — E from E,q) to E.);
then poe is a (piecewise) smooth curve from ¢(0) to ¢(1). Since ¢ is a minimal
geodesic, we have Lj(c) < Ly(p o e). Furthermore, we can decompose the
vectors tangent to e into horizontal and vertical components and use the fact
that Tp is an isometry on horizontal vectors to show that Lj(e) > Li(poe):

/ |€ Ver )h0r|gEdt
h ! 1
& /0 ‘el(t) Or‘gEdt - /0 [(po e)/(t)’gMdt = Ly(poe).

Now with (II) we can conclude that for all (piecewise) smooth curves e from
E. ) to Ec1) we have:

Li(e) = Ly(poe) = Li(c) = Ly(Pt®(c, ., v));

thus L(lj(Ptq)(C, . u)) = dist (Ec(())? Ec(l)) .

() This is a consequence of (3]) and the observation from [(22.4)| that every
curve which minimizes length or energy locally is a geodesic.

[B) Since ge(C(£),C(n)) = gs(&§,n) o p and since C(§) is p-related to £ and
C(n) is p-related to n, we get that [C(£),C(n)] is p-related to [, n]. We can
then apply the implicit equation [(22.5.7)| for the covariant derivative twice:
25((VE e, C)™, C(0) = 295(VE e Cl), C(0))

= C(§)(ge(Cn),C(Q))) + C(n)(9e(C(C),C(§))) — C(O)(ge(C(§), C(n))
— gu(C(&),[C(n), C(O]) + gr(C(n), [C(C), C(&)]) + gr(C(C), [C(&), C(n)])

= (&(gp(n, Q) +n(9p(¢,€)) — Clgn(&n))
—gB(& . ¢) + 980, ¢, €]) + 98(C, (&) op = 29B(VEn, () o
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Since this holds for any ¢ € X(B), we conclude
(VéeCm)t = C(Ven). O

26.12. Corollary. Consider a Riemann submersion p : E — B, and let
c:[0,1] = E be a geodesic in E with the property ¢ (to) L Epy)) for some
to. Then ¢ (t) L Epy) for allt € [0,1] and poc is a geodesic in B.

Proof. Consider the curve f : t — expf(c(to))(tTc(tO)p.c'(tg)). It is a geo-
desic in B and therefore lifts to a geodesic e(t) = Pt®(f,t — to,c(tg)) in E
by Also e(to) = c(to) and €(to) = C(T4,)p- (o), c(ta)) = c'(to)
since ¢/(tg) L Ep(c(t,)) is horizontal. But geodesics are uniquely determined
by their starting point and starting vector. Therefore e = ¢; thus e is or-
thogonal to each fiber it meets by and it projects onto the geodesic
fin B. O

26.13. Corollary. Let p: E — B be a Riemann submersion. If Hor(E) is
integrable, then:

(1) Ewvery leaf is totally geodesic in the sense of [(26.2)|.
(2) For each leaf L the restriction p : L — B is a local isometry.

Proof. () follows from corollary |(26.12)| while (2) is just a direct conse-
quence of the definitions. O

26.14. Remark. Ifp: £ — B is a Riemann submersion, then Hor(E)|g, =
Nor(Ep) for all b € B and p defines a global parallelism as follows. A section
0 € C*°(Nor(Ep)) is called p-parallel if Tep.o(e) = v € TpB is the same
point for all e € E}. There is also a second parallelism. It is given by the
induced covariant derivative: A section v € C°°(Nor(Ep)) is called parallel
if VNorg = 0. The p-parallelism is always flat and with trivial holonomy
which is not generally true for VN, Yet we will see later on that if Hor(E)
is integrable, then the two parallelisms coincide.

26.15. Definition. A Riemann submersion p: E — B is called integrable
if Hor(E) = (ker T'p)* is an integrable distribution.

26.16. Structure theory of Riemann submersions. Let p: (F, g¥) —
(B, g”) be a Riemann submersion. We consider first the second fundamental
form S : TE, x g, TE, — Hor(E) of the submanifold Ej := p~1(b) in E.
By SEb is given as:

SEb (Xver,yver) - V)E(veryver - V)E‘(Ii,eryver — V)E(veryver - (v%veryver)
(1) - (vaerYVer)hOI‘ = (v?{veryver)hor .

ver
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The covariant derivative on the normal bundle Nor(Ey) = Hor(E)|g, — Ep
is given by the Weingarten formula as the corresponding projection:

VN s %(Ey) x T'(Nor(Ep)) — I'(Nor(Ey)),
(2) VY1 = (VR Yhoryhor,
Yet in the decomposition

ver + hor
V)E(Y - (vf{‘ver_;’_xhor (Yver + Yhor))

we can find two more tensor fields (besides S), the so-called O’Neill tensor
fields (see [181]):

X,Y € X(E),
(3> 71()(7 Y) = (vaerYVer)hOI‘ 4 <v§veryhor>ver’
(4) A(X, Y) p— <V)E(h0th0r>V6r n (V)E(horyver)hor'

Each of these four terms making up A and T is a tensor field by itself —
the first one restricting to S on Ep. They are combined as two tensors in
just this way because of the results below.

Theorem ([181]). For horizontal vectors X,Y,Z, H € Hor(p), we have
95 (Re(XY)Z, H) = gy (R} (Tup. X, Tup.Y ) Top. Z, T, H)

p(x
+2¢1 (A(X,Y), A(Z, H)) — g5 (A(Y, Z), A(X, H))
(5) — 92 (A(Z, X), A(Y, H)).

Proof. Since this is of tensorial character, we can assume that X,Y, Z, U
are basic local vector fields which are horizontal lifts of commuting vector
fields £,1,(,x € X(B); so X = C(£),Y =C(n),Z = C((),H = C(x) (see
(26.10)) and all Lie brackets [¢,n], etc., on B vanish. Note first that for a
vertical field V' = V" we have

VIC(€) = ViV = [V.C(€)] =0
since V' is projectable to 0. But then
0=3Vg"(X,X) = g"(VyX, X)
=g"(VXV.X) = 0-¢"(V, VX X)
= ¢"(V, A(X, X))

and since A(X, X) is vertical for horizontal X, this implies A(X, X) = 0.
Thus A(X,Y) = —A(Y, X) for basic fields X,Y".
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Then [X,Y] = [C(£),C(n)] is vertical since it projects to [{,n] = 0, and
moreover

[X,Y]=VxY —VyX = (VxY)' — (Vy X))
(6) = A(X,Y) — A(Y, X) = 2A(X,Y),
ViZ = Vixype (Z2') = T([X, Y™, 2" + A([X, Y], 2"
= 2T(A(X,Y), Z) + 2A(A(X,Y), Z).
By we have
VYZ =AY, Z) + (V3 2)'" = A(Y, Z) + C(VF(),
VEVYZ = VR(A(Y, 2)) + Vi (C(V50)
= A(X, A(Y, 2)) + (VR(A(Y, 2)))" + C(VEV () + AX, C(V, Q).
Combining, we get
RP(X,Y)Z =VYVYZ - VRVYZ = Vixy/Z
= A(X, A(Y, Z)) + (VR (A(Y, 2))) + C(VEV]O) + AX, C(V7())
— A(Y, A(X, Z)) = (VE(A(X, 2)))*" = C(V; VEQ) — A(Y, C(VEC))
—2T(A(X,Y), Z) — 2A(A(X,Y), Z)
= C(VEV) (= V7VEC = Vi 0)
+ A(X,A(Y, 2)) — A(Y, A(X, Z)) — 2A(A(X,Y), Z)
+A(X,C(VFQ) = A(Y,C(VEQ)) — 2T(A(X,Y), Z)
+ (VR(A(Y, 2))" — (VE(A(X, 2))""

using [£,n] = 0, where the first two lines are horizontal and the last two lines
are vertical. Take the inner product in £/ with the horizontal H and use

g (A(X,A(Y, 2)), H) = g"(Vx(A(Y, 2)*"), H) = g"(A(Y, 2)*", Vx H)

= g"(A(Y, 2)"", (Vx H)*") = g"(A(Y, 2), A(X, H))
to get the desired formula. O
26.17. Corollary. Let p : E — B be a Riemann submersion between

manifolds with connections, and consider horizontal vectors X,Y,Z, H €
Hor(p),. Then the sectional curvature expression becomes

g5 (RE(X,Y)X,Y)
= g]ﬁl‘) (RB (Tprg Tpr)Tpr, TpY) + % H [X’ }7] ’UerH;E

for basic horizontal extensions X,Y of X,Y .
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Proof. Again we extend everything to basic horizontal vector fields pro-
jecting to fields on B. From a slight generalization of [(26.16.6)] we have
[X, Y]V = 2A(X,Y) in this case. By theorem |(26.16) we have

9P (R(X,Y)X,Y) = ¢®(RP(&,m)¢,n) + 397 (A(X,Y), A(X,Y))
= g% (RP (&, m)&,n) + 31X, Y™

Note that the last expression gives another formula in the case where X,Y
are horizontal and project to commuting fields. ]

26.18. Riemann submersions via local frames. Let p : (F,gg) —
(B, gp) be a Riemann submersion. Choose for an open neighborhood U in
E an orthonormal frame field s = (s1,...,8m.x) € D(TE|U)™* in such a
way that s1,. .., sy, are vertical and $,,41, ..., S;m1k are basic (horizontal and
projectable). That way, if we project S;11, .- -, Smik onto TB|p(U), we get
another orthonormal frame field, 5 = (8,41, .,8msk) € C¥(TB|p(U))*,
since p, as Riemann submersion, is isometric on horizontal vectors. The
indices will always run in the domain indicated:

1<ij,k<m, m+1<abé<m+k, 1<ABC<m+k.

The orthonormal coframe dual to s is given by

0.1

JA(SB) = 6@, o= : € QI(U)mH“.

0.m+k

Analogously, we have the orthonormal coframe 5% € Q! (p(U)) on p(U) C B,
with 5%(5;) = 7. It is related to o® by p*a® = 0. By we have on
(UCE,gg)

gely = a0t @0,

VPs=sw where wh=-wf so weQ (U so(n+k)),

do+wANo=0, ie., dJA—l-ECCUé/\O'C:O,

Rs =50 where Q=dw+wAweQ(U,so(n+k)),

or QA = dwip + S pwh AW,
QANoc=0 or >~ Qé Ao® =0, the first Bianchi identity,
dQ+wAQ—QAw=dQ+ [w, Qs =0, the second Bianchi identity,

and similarly on (p(U) C B, g?) with bars on all forms.

For the following it will be faster to rederive some results than compiling
them from|(26.7)land |(26.8), We start by pulling back the structure equation
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do+w Ao =0 from B to E via p*:
0=p* (d&a + @A 55)
= dp*a® + 3 (p*@f) A (p*a’) = do® + 3o (p*wf) Aol
The a-part of the structure equation on E, do® + 37 wf A P+ wiAct =0,
combines with this to give
(1) Z(p*d)g‘)/\ai’:Zw%/\al_’—&—Zw?/\ai.
The left hand side of this equation contains no o’ A g% or o’ Ao?-terms. Let

us write out wg and w? in this basis:

wd = —wg =Y qlot+ Y blot, wl=—wi =" a?l—)a5 +> Tfjaj.
This gives us for the right hand side of ({)):
gl ot A o+ bot A o+ a%ai’ No'+ 3 rdol Aot
= ¢l oA ol + So(0% — a%)at A ob + 52l =18l Aot
So we have found af; = b, and r{; = r%; or, in other words, wf (s5) = wf(s;)

and w(s;j) = wi(s;). That is, wi(sa) = w§(s;), and this just means that

the horizontal part of [s4, s;] is 0, or [s4, s;] is always vertical:
(2) 0= sawi(s4) — X sawi(si) = (Vsu8i — Vi,54)" = [s4, 5"

Now we consider again the second fundamental form S : TE}, x e, TEy —
Hor(E) of the submanifold Ej, := p~!(b) in E. By|[(26.1), S is given as:
SEb (Xver7yver) —VE. . Vv — Vfgcryver —vE. . yve _ (VEveerer)Ver
- (vaeryver)hor
= (V)E‘(ver(z Sio-i (Yver)))hor
(Z(V)E(ver Si)O'i(Yver) + Z Sid(ai(Yver)).X"er)hor
— (Z sAwZ{Ll(Xver)ai(Yver))hor 10= Z S&w?(Xver)o_i(Yver)
=Y r% (sa®o! @ a’) (XV,YVT),
So
> sa0®(ST) =Yl sa @0’ @ o
Note that r?j = 7'?1' from above corresponds to symmetry of S. The covariant

derivative on the normal bundle Nor(Ey) = Hor(E)|g, — Ej is given by the
Weingarten formula |(26.3)| as the corresponding projection:

VR X(By) x T(Nor(Ey)) — I'(Nor(Ep)),

hor

wNor yhor — (&, yhoryhor _ (V}“}m (Z 550 B(Yhor)))
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= (S(V5ursp)o? (V)™ 5 syb(yhor) X
= Sawg(Xver)O_l_)(Yhor) +y SBdO_E(Yhor)'Xver
=Y W ®0'® o (Xver yhory 4 S g0 @ dof(Yher)(Xver),
yNoryhor _ 5~ (bgiaz’)(yhor)ai i do.&(yhor)) ® sz.
We consider now the O’Neill tensor fields from
XY € X(E),

AX,Y) = (VB Y1) 4 (VE, )™

= (Vi (C530%(Y))) " + (Ve (O si0(Y)))
=3 5wk (XM ol (Y) 4+ 0 + 3 saw? (X))o (V) + 0
=3 8i(—a%)o*(X)o™(Y) + 3 saao®(X)o' (V)

(3) :Za%(oI;@Gi@s@—Jg®aa®si)(X,Y).

hor

ver

Analogously:
T=Yr40'®c" ®@sa—0! ®"®@s).

If Hor(E) is integrable, then every leaf L is totally geodesic by [(26.13.1)]
and the sg|; are a local orthonormal frame field on L. The leaf L is totally

geodesic if and only if its second fundamental form which is given by

SL (Xhor’ Yhor) = (V)E(hor Yhor)ver

vanishes. So it is a necessary condition for the integrability of Hor(E) that
SL =0, that is,

0= S"(sa,85) = (V,55)"" = X siwl(sa) = 3 si(—al)o(sa) = — 3 sial.

This is equivalent to the condition af = 0 for all & or to A = 0.

Let us now prove the converse: If A vanishes, then the horizontal distribution
on F is integrable. In this case, we have 0 = A(sg, s5) = (V£ 53)¥" + 0, as
well as 0 = A(s3, sa) = ( fgs@)"er + 0. Therefore, [sg, s3] = VE s5 — Vgsa is
horizontal, and the horizontal distribution is integrable.

26.19. Theorem. Let p : E — B be a Riemann submersion; then the
following conditions are equivalent:

(1) p is integrable (that is, Hor(p) is integrable).
(2) Every p-parallel normal field along Ey, is VN -parallel.
(3) The O’Neill tensor A is zero.

Proof. We already saw ([Il) < (3] above.
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B) = (@) Take sz for a p-parallel normal field X along Ej. The condition
A = 0 implies A(sg,s;) = 0+ (Vs,5:)"" = 0. Recall that, as we showed in
(26.18.2)| above, [s;, sg is vertical. Therefore,

VSNiOrSﬁ = (stisﬁ)hor — ([Sia 3&] + stasi)hor —0.

Since for any e € Ej, Tep]Norb( B,) is an isometric isomorphism, a p-parallel
normal field X along Fj is determined completely by the equation X (e) =
ST X9%e)sz(e). Therefore it is always a linear combination of the s; with
constant coeflicients and we are done.

@ = @) By @), VY”ss = (VEsa)" = 0. Therefore, as above, we
have that ([s;, sa] + VEsphor = 04 (VEs;)hor = A(sa,s;) = 0. Thus
o A(sg,8;) = al;, = 0, so A vanishes completely. O

27. Jacobi Fields

27.1. Jacobi fields. Let (M, V) be a manifold with covariant derivative
V, with curvature R and torsion Tor. Let us consider a smooth mapping
v : (—&,e)x[0,1] — M such that ¢ — (s, t) is a geodesic for each s € (—¢,¢);
we call this a 1-parameter variation through geodesics. Let us write 05y =: 7/
and 0yy =: % in the following. Our aim is to investigate the variation vector

field a$|0 7(87 ) = 7,(07 )
We first note that by [(22.10.4)[ we have

Vo.y = Vo, (T7.0r) = V,(Tv.05) + T7.[0s, 0¢] + Tor(Ty.0s, T7.0r)
(1) = Va7 + Tor(v,4).
We have V¥ = V,(0ry) = 0 since y(s, ) is a geodesic for each s. Thus
by using [(24.5)] we get

0=Vo,Vo5 = R(T7.05,T7.0t)Y + V., Vo, ¥ + Vo, 007

(2) = R(’)/a ’7)7 + vatvat/y, + Vo, Tor(’yla 7)

Inserting s = 0, along the geodesic ¢ = (0, ) we get the Jacobi differential
equation for the variation vector field Y = dq/oy =+/(0, ):

(3) | 0= R(Y,¢)é + Vi, VY + V, Tor(Y, ). |

This is a linear differential equation of second order for vector fields Y along
the fixed geodesic ¢ : [0,1] — M. Thus for any ty € [0,1] and any initial
values (Y (to), (Va,)(to)) € Ty M x Tepy)M there exists a unique global
solution Y of ([B) along c¢. These solutions are called Jacobi fields along c;
they form a 2m-dimensional vector space.
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27.2. The Jacobi flow. Consider a linear connector K : TTM — M
on the tangent bundle with its corresponding horizontal lift mapping C :
TM xp TM — TTM (see [(22.8)), its spray S : TM — TTM given by
S(X) :=C(X, X) (see[(22.7)) and its covariant derivative VxY = KoTYoX

(see [(22.9)).

Theorem ([155]). Let S : TM — TTM be a spray on a manifold M.
Then kppp o TS : TTM — TTTM is a vector field. Consider a flow line
J(t) = FI7 T8 (J(0))

of this field. Then we have:

e c:=my ompy ©J is a geodesic on M,

e ¢ =m0 J is the velocity field of c,

o Y :=T(mp) o J is a Jacobi field along c,

o Y = ko J is the velocity field of Y,

o Vy,Y = KokyolJ is the covariant derivative of Y.
The Jacobi equation is given by:

0=V, Vs,Y + R(Y,é)é+ Vy, Tor(Y, ¢)
=KoTKoTSolJ.

This implies that in a canonical chart induced from a chart on M the curve

J(t) is given by ‘
(c(t), c(t); Y'(1), Y (1)).

Proof. Consider a curve s — X (s) in TM. Then each t — m,(FI¥(X (s)))
is a geodesic in M, and in the variable s it is a variation through geodesics.
Thus Y (t) := 0s|omas (F1¥(X (s))) is a Jacobi field along the geodesic ¢(t) :=
7 (FI2 (X (0))) by and each Jacobi field is of this form, for a suit-
able curve X(s); see below. We consider now the curve J(t) :=

ds|o F12(X (s)) in TTM. Then by we have
O J (t) = 8,05|0 F12 (X (5)) = krarOs)08y F12(X () = krards|oS(FIY (X (s)))
= (s 0 TS)(@slo FIY (X (5))) = (sras © TS)(J (1)),
so that J(t) is a flow line of the vector field kppy o TS : TTM — TTTM.
Moreover using the properties of x from and of S from we get
TrarJ(t) = Trar-0slo FI (X (5)) = Oslomas (FIF (X (s))) = Y (8),
T J(t) = ¢(t), the geodesic,
QY (t) = 8, Tmpr.0slo FI7 (X () = 8,0s|0mar (F1¥ (X (5)))
= kar0s|00imar (F12(X (5))) = kar0slodimas (F12 (X (s)))
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= kg OsloTmar.00 F1F (X (5)) = karOslo(Tmar o S) FIF (X (s))
— rudlo FIS (X (5)) = rag I (8),
VoY =Ko00,Y =Kogkpol.
Finally let us express the Jacobi equation|(27.1.3)l For the sake of shortness
we write v(s, ) := mp(FI7 (X (s))):
Vo, VoY + R(Y,¢)é+ Vy, Tor(Y, ¢)
= V5, Ve, T7.0s + R(T7.05, T7.0))T~.0; + Vo, Tor(T.0s, T.0;)
+ (K.TK.kpy — K.TK).TT(T7.8;).T9,.0,

Note that for example for the term in the second summand we have
TTTy.TT0,.T0s.0r = T(T(0¢y).0s).0r = 010504y
= 0.k ). 0.0sy = Thpp.0¢.04.057
which at s = 0 equals Tk uY. Using this, we get for the Jacobi equation at
s =0:
Va,VaY + R(Y,¢)é+ Vy, Tor(Y, ¢)
= (KTK+ KTK.krpy Thy— KTK Tiy+ KTK Ty — KTK).0,0,Y
= KTK.krn Thy.000Y = KTK. k.0 = KTK.TS.J,
where we used 0;0,Y = Oi(kpr.J) = ThpyOrJ = Thyr.krpr.TS.J. Finally

the validity of the Jacobi equation 0 = K.TK.T'S.J follows trivially from
KoS= OTM‘ (]

Note that the system of Jacobi fields depends only on the geodesic structure,
thus on the spray induced by the given covariant derivative. So we may
assume that the covariant derivative is torsion-free without loss; we do this
from now on.

27.3. Fermi charts. Let (M, g) be a Riemann manifold. Let ¢ : (—2¢,1 +
2e) — M be a geodesic (for ¢ > 0). We define the Fermi chart along c as
follows.

Since ¢([—¢, 1 + ¢]) is compact in M, there exists p > 0 such that
By (p) :={X € Tygyc:={Y € TyM : g(Y,¢(0)) = 0},|X], < p},
(1) expoPt(e, ):(—¢,1+¢)x Br(0)(p) — M,
(t7 X) = CXPe(t) (Pt(cv t)X)

is everywhere defined.
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Since its tangent mapping along (—¢,1 + ¢) x {0},
Tro(expoPt(c, )): R x Tyge— To(t)M = T (c([0,1])) x Typye,
(5,Y) = s.c/(t) + Pt(c, 1),

is a linear isomorphism, we may assume (by choosing p smaller if necessary

using [(22.7.6)) that the mapping expoPt(c, ) in () is a diffeomorphism

onto its image. Its inverse,
(2) Ucp = (expoPt(c, ) ':U.,— (—&,1+¢) x Bjio)(p),
Usp i= (expoPtlc, ))((~e,1+2) x Blo(p)),

is called the Fermi chart along c. Its importance is due to the following
result.

27.4. Lemma. Let X be a vector field along the geodesic c. For the Fermi
chart along ¢ put Ty (ue,,) "X (t) =: (¢, X(t)). Then we have

Teitye,p-(Va, X ) (1) = (t, X'(1)).

So in the Fermi chart the covariant derivative Vy, along c is just the ordinary
derivative. More is true: The Christoffel symbol in the Fermi chart vanishes
along (—e,1+4¢€) x {0}.

The last statement is a generalization of the property of Riemann normal
coordinates exp, ! that the Christoffel symbol vanishes at 0; see [(22.7)

Proof. In terms of the Christoffel symbol of the Fermi chart the geodesic
equation is given by ¢”’(t) = Tz (¢'(t),(t)); see But in the Fermi
chart the geodesic c is given by wu.,(c(t)) = (t,0), so the geodesic equation
becomes 0 = T'z1)((1,0), (1,0)) = Tz (¢'(t), € (t)). For Yo € TCJ(‘O)C the par-
allel vector field Y (¢) = Pt(c, t)Yp is represented by (t,0;0,Y)) in the Fermi
chart; thus we get 0 = T'z;)(¢'(t), Yp). The geodesic s + exp, 4 (s. Pt(c,t).Y)

for Y € TCJ(‘O)C is represented by s+ (t,s.Y’) in the Fermi chart. The corre-

sponding geodesic equation is 0 = g—;(t, 5.Y) =T 5v)(Y,Y). By symmetry
of I'; ) these facts imply that I'; gy = 0. Finally,

Tuc,-(Vo, X)(t) = X'(t) — T10)(€'(t), X (1)) = X'(¢). O

27.5. Let (M™,g) be a Riemann manifold, and let ¢ : [0,1] — M be a
geodesic which might be constant. Let us denote by J. the 2m-dimensional
real vector space of all Jacobi fields along ¢, i.e., all vector fields Y along ¢
satisfying

Va, VoY + R(Y,¢)e = 0.
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Theorem.
(1) The vector space J. is canonically isomorphic to the vector space Ty M %

TynyM via J. Y — (Y (1), (Va,Y)(t)), for each t € [0,1].
(2) The vector space J. carries a canonical symplectic structure (see|(20.4)|):
we(Y,Z) =g(Y(t),(Vs,2)(t)) —g(Z(t),(Vs,Y)(t)) = constant in t.

(3) Now let ¢ # 0. Then J. splits naturally into the direct sum J, =
jCT D ch. Here jCT 1s the 2-dimensional w.-nondegenerate subspace of all
Jacobi fields which are tangent to c. All these are of the form t — (a+tb)c (t)
for (a,b) € R2. Also, J is the (2m — 2)-dimensional w.-nondegenerate
subspace consisting of all Jacobi fields Y satisfying g(Y (t),c'(t)) =0 for all
t. Moreover, w.(J.", J-) = 0.

(4) Each Jacobi field Y € J. is the variation vector field of a 1-parameter
variation of ¢ through geodesics, and conversely.

(5) Let J2 be the m-dimensional vector space consisting of all Jacobi fields
Y with Y(0) = 0. Then w.(J2,J2) = 0, so J? is a Lagrangian subspace

(see((20.4)]).

Proof. First let ¢/(t) = 0 so ¢(t) = ¢(0). Then Y (t) € Ty(g)M for all . The
Jacobi equation becomes V;V;Y =Y" so Y (t) = A+tB for A, B € T () M.

Then (), ), and () hold.
Let us now assume that ¢ # 0. Part () follows from
@) For Y, Z € J. consider:
we(Y, Z)(t) = g(Y(1), (V,2)(1)) — g(Z(t), (Va,Y )(1)),
Owe(Y,Z) = g(Vo,Y, Vo, Z) + 9(Y, V5, Vo, Z)
—9(V8,2,V5,Y) —9g(Z,Vy,V5Y)
= —9(Y,R(Z,d)d) + g(Z, R(Y,))
=—g(R(Z,J),Y)+ g(R(Y,d), Z)
=g(R(Z,)Y,d) - g(R(Y,d)Z,c) =0,

where we used ((24.4.4)| and |(24.4.5)l Thus w.(Y, Z)(¢) is constant in t.
Also it is the standard symplectic structure (see |(20.5)) on T,y M x Ty M

induced by g« via ().

@) We have ¢’ # 0. In the Fermi chart (Uc,p, u.,) along ¢ we have ¢ = eq,
the first unit vector, and the Jacobi equation becomes

(6) YeJ. < Y't)+ R(Y,er1)e; = 0.
Consider first a Jacobi field Y (t) = f(¢).c/(¢) which is tangential to ¢/. From
[6l) we get

0= Y”(t) + R(Y(t), 61)61 = f”(t).el -+ f(t).R(el, 61)61 = f”(t).el
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so that f(t) = a+1tb for a,b € R. Let g(t) = o’ +tb'. We use the symplectic
structure at t = 0 to get w.(f.c/,9.¢/) = g(a.c,b.d') — g(d'.d,b.d) = (ab —
a’b)|c’|?, a multiple of the canonical symplectic structure on R2.

For an arbitrary Y € J. we can then write Y = Y; 4+ Y5 uniquely where
Y, € ch is tangent to ¢’ and where Y5 is in the w.-orthogonal complement
to J.| in J.:

0= WC(Clv Yé) = g(cla VatY2) - g(vatcl> YQ) = g(cla VatYVQ) = vatY2J-Cl7
0=w(t.d,Ys) =g(t.d,Vy,Ya) —g(c,Ys) = —g(,Y2) = YalC(.
Conversely, Yo 19¢ implies 0 = 9yg(c/, Y2) = g(c/, Vg, Y2) so that Yz € Jt
and J; equals the we-orthogonal complement of 7,". By symplectic linear
algebra the latter space is w.-nondegenerate.

@) for ¢ # 0 and ¢ = 0. Let Y € J. be a Jacobi field. Consider b(s) :=
expe(0)(8-Y(0)). We look for a vector field X along b such that (V, X)(0) =
Vi, Y (0). We try X (s) := Pt(b,s)(¢(0) + 5.(Vs,Y)(0)), then
X'(0) = 0so (Pt(b, 5)(¢(0) + 5.(V5,Y)(0)))

= 0slo (Pt(b, 5)(¢(0)) + T(Pt(b, 0))0s|o (¢(0) + 5.(V5,Y)(0))

= C(1'(0),¢(0)) 4 vlrar(¢(0), (Va,Y)(0))  using
Now we put (s, t) 1= expys)(t.X(s)); then v(0,t) = exp,q)(t.X(0)) =
expq(g)(t.¢(0)) = c(t). Obviously, v is a 1-parameter variation of ¢ through

geodesics; thus the variation vector field Z(t) = 0s)o (s, t) is a Jacobi vector
field. We have

Z(0) = 0slov(s,0) = Oslo expys)(Op(s)) = Islo b(s) = Y (0),
(Vo,Z)(0) = Vi, (T7.05) |s=0,t=0
= Vo, (T7.0)|s=04=0 by |[(22.10.4)| or [(27.1.1)|
= Va, (Otlo expp(s)(t-X(5)))|s=0 = Vo, X |s=0
= K (0slo X(5)) = K(C(¥'(0),¢(0)) +V1(é(0), (Va,Y)(0)))
=0+ (Vy,Y)(0).
Thus Z =Y by ().
([B) follows from ([Il) and symplectic linear algebra; see |(20.5)] O

27.6. Lemma. Let ¢ be a geodesic with ¢ # 0 in a Riemann manifold
(M, g) and let Y € J? be a Jacobi field along ¢ with Y (0) = 0. Then we

have

Y (t) = Ty 40y (expe(o)) V1(£.¢(0), .(V, Y )(0)).
Proof. Let us step back into the proof of |(27.5.4)l There we had
b(s) = expe(g) (.Y (0)) = ¢(0),
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X (s) = Pt(c, 5)(¢(0) +5.(V5,Y)(0)) = ¢(0 ) 5.(Va,Y)(0),

Y(t) = Oslov(s,t) = Oslo expy(s)(1-X(5)) = Ty.¢(0) (€xXPe(0))Dslo ma X ()
= T.¢(0) (€xD(0))-T'(m4) Os]o (€(0) + ( Y)(O))
= T.¢(0) (€xP(0))- T (me). v1(¢(0), (Vat )(0))
= T.(0) (€xP(0))- v1(£.¢(0), £.(V,Y)(0)). O

27.7. Corollary. On a Riemann manifold (M, g) consider exp, : T, M —
M. Then for X € T, M the kernel of Tx(exp,) : Tx(T:M) — Texp (x)M
is isomorphic to the linear space consisting of all Jacobi fields Y € J? for
c(t) = exp | (tX) which satisfy Y(0) =0 and Y(1) = 0.

Proof. By |(27.6)] Y (t) = Tix(exp,). vI(tX,t(Vs,Y)(0)) is a Jacobi field
with ¥(0) = 0. But then 0 = Y (1) = Tx(exp,) vl(X, (V5,Y)(0)) holds if
and only if (V5,Y)(0) € ker(Tx (exp,)). O

27.8. Let (M, g) and (M, §) be two Riemann manifolds of the same dimen-
sion. Let ¢ : [0,1] — M and é: [0,1] — M be two geodesics of the same
length. We choose a linear isometry Iy : (Te0)M, ge0)) — (Té(o)M,gg(O))
and define the linear isometries:

I == Bu(Et) o Io o Pt(e, )" : Ty M — Ty .

Lemma. IfY is a vector field along c, then t — (LY)(t) = LY (t) is a
vector field along ¢ and we have Vg,(I.Y) = 1.(Vy,Y) so that Vy, o I, =
I* o V@t .

Proof. We use Fermi charts (with the minimum of the two p’s)

Ue,

M>U,., L > (—,1+¢) x Bcl(o)(p)
Id Xlol linear

~ Uz 1

M > Uz, (=&, 1+¢€) x By (p)-

By construction of the Fermi charts we have (1.Y')(t) = T(ug; o (Id x1Ip) o
Uep).Y (). Thus

Vo (LY)(t) = Vo, (T (ug ) o (Id xIp) 0 e ).Y)(t)
= T(uzp) 'O ((Id xIo) 0 T(uc,p).Y (t)) by
= T(uz,p) " (1d xIp).0T (uc,p).Y (t)
= T(uzp) *.(Id xIn).T(ucp).(Va,Y)(t) by

= L(VaY)(t). O
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27.9. Jacobi operators. On a Riemann manifold (M, g) with curvature
R we consider for each vector field X € X(M) the corresponding Jacobi op-
erator Rx : TM — TM which is given by Rx(Y) = R(Y, X)X. It turns out
that each Rx is a self-adjoint endomorphism, g(Rx (Y, Z)) = g(Y, Rx(Z)),
since we have g(R(Y,X)X,Z) = g(R(X,2)Y,X) = g(R(Z,X)X,Y) by
|(24.4.4)| and |(24.4.5)l One can reconstruct the curvature R from the family
of Jacobi operators Rx by polarization and the properties from

27.10 Theorem (E. Cartan). Let (M,g) and (M,§) be Riemann mani-
folds of the same dimension. Let x € M, & € M, and ¢ > 0 be such that
exp, : Bo, () = M and exp; : Bo,(€) — M are both diffeomorphisms onto
their images. Let I : (T, M, g,) — (TiM,gi) be a linear isometry. Then
the following hold:

The mapping ® := exp; ol o(exp, | Bo, (€)' : By(¢) — By, () — Bo.(g) —
Bz (e) is a diffeomorphism which maps radial geodesics to radial geodesics.
The tangent mapping T'® maps Jacobi fields Y along radial geodesics with

Y (0) =0 to Jacobi fields Y along radial geodesics with Y (0) = 0.

Suppose that moreover for all radial geodesics ¢ in By(¢) and their images
¢ = ® o c the property

(1) It e} Ré(t) - Ré(t) o} It

holds where Iy : Topy M — Té(t)M is defined in|(27.8). Then ® is an isome-
try. Conversely, if ® is an isometry, then () holds.

Proof. It is clear that ® maps radial geodesics in B,(¢) C M to radial
geodesics in Bz (g) C M. Any Jacobi field Y along a radial geodesic ¢ can be
written as variation vector field Y (t) = 9s|oy(s,t) where (s, ) is a radial
geodesic for all s and v(0,t) = ¢(t). Then T®.Y(t) = T®.0s|ov(s,t) =
Oslo (Pv(s,t)), and any ®v(s, ) is a radial geodesic in Bz(g). Thus T®.Y
is a Jacobi field along the radial geodesic ® o ¢ with 7'®.Y(0) = 0. This
proves the first assertion.

Now let Y be a Jacobi field along the radial geodesic ¢ with Y (0) = 0. Then
the Jacobi equation 0 = V5, VY + R:(Y) holds. Consider (L.Y)(t) =
I, Y(t). By and (1) we then have
VaVa (LY) + R:(LY) = I.(Vy,Va,Y + R:Y) = 0.

Thus 1Y is again a Jacobi field along the radial geodesic ¢ with (1,Y)(0) =
0. Since also Vg, (LY)(0) = L (V5,Y)(0) = I (Va,Y)(0) = T®.(V,Y)(0),
we get I,Y = T®.Y. Since the vectors Y (t) for Jacobi fields Y along c
with Y(0) = 0 span T, M by we may conclude that T, ® = I :
TeyM — Té(t)M is an isometry. The converse statement is obvious since
an isometry intertwines the curvatures. O
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27.11. Conjugate points. Let c¢: [0,a] — M be a geodesic on a Riemann
manifold (M, g) with ¢(0) = z. A parameter ty € [0,a] or its image c(tg) €
c([0,a]) is called a conjugate point for x = ¢(0) on ¢(]0,a]) if the tangent
mapping
Thoe(0)(€xDy) = Thoe(o)(TeM) — ToyM

is not an isomorphism. Then ty > 0. The multiplicity of the conjugate point
is the dimension of the kernel of T} 4)(exp,) which equals the dimension of
the subspace of all Jacobi fields Y along ¢ with Y (0) = 0 and Y (t9) = 0, by
(27.7)]

27.12. Example. Let M = p-S™ C RM+1 the sphere of radius p >
0. Then any geodesic ¢ with |¢| = 1 satisfies c(pr) = —c(0), so —c(0) is
conjugate to ¢(0) along ¢ with multiplicity m — 1.

27.13. Lemma. Let c: [0,a] — M be a geodesic in a Riemann manifold
(M, g). Then the vector 0y(t.¢(0))|i=t, = Vv1(to.¢(0),¢(0)) € Ty .600)(Teo)yM)
is orthogonal to the kernel ker(Ty ¢ (0)(€xPe(o))), for any to € [0, a].

Proof. If ¢(tp) is not a conjugate point to x = ¢(0) of ¢, this is clearly true. If
it is, let Y be the Jacobi field along ¢ with Y(0) = 0 and (V,Y)(0) = X #0
where vl(to.¢(0), X) € ker(T} ¢0)(exp,)). Then we have

Thoe(0) (expy) v1(t0.¢(0), X) = Y (to) = 0.

Let &(t) = (t — to)¢(0) € J.7, a tangential Jacobi field along c. By [(27.5.2))
applied for ¢t = 0 and for t — ¢y we get
we(e,Y) = g(&(0), (Va,)Y (0)) = g(Y(0), (V,Y)(0)) = g(to.¢(0), X) — 0
= 9(&(to), (Va,)Y (t0)) — 9(Y (t0), (Va,Y)(t0)) = 0.
Thus t9.9(¢(0), X) = 0 and since ¢y > 0, we get X 1¢(0). O

We can extract more information about the Jacobi field Y from this proof.
We showed that then (V5,Y)(0)L9¢(0). We use this in the following appli-

cation of |(27.5.2)| for ¢ = 0: Now

Together with w.(¢,Y) = 0 from the proof this says that Y € J:-, so by
(27.5.3)] Y (t)L9¢(t) for all ¢.

Let us denote by jCJ"O = jCL N jco the space of all Jacobi fields Y with

Y(0) = 0 and Y (t)L9¢(t) for all t. Then the dimension of the kernel of
T}yé(0)(exp,) equals the dimension of the space of all Y € T which satisfy
Y (tp) = 0.

Thus, if ¢(0) and ¢(ty) are conjugate, then there are 1-parameter variations
of ¢ through geodesics which all start at ¢(0) and end at c(tg), at least
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infinitesimally in the variation parameter. For this reason conjugate points
are also called focal points. We will strengthen this later on.

27.14. The Hessian of the energy alias second variation formulas.
Let (M, g) be a Riemann manifold. Let ¢ : [0,a] — M be a geodesic with
c(0) = z and c¢(a) = y. A smooth variation of ¢ with fixed ends is a
smooth mapping F' : (—¢,¢) x [0,a] — M with F(0,t) = ¢(t), F(s,0) = =z,
and F(s,a) = y. The variation vector field for F' is the vector field X =
Oslo F(s, ) along ¢, with X(0) =0 and X (a) = 0.

The space C*(([0,al,0,a), (M,z,y)) of all smooth curves v : [0,a] — M
with ¢(0) = z and ¢(a) = y is an infinite-dimensional smooth manifold
modeled on Fréchet spaces. See [113] for a thorough account of this. The
tangent space T,.(C*°((]0, a],0, a), (M, z,y))) at the geodesic ¢ of this infinite-
dimensional manifold consists of all variation vector fields along ¢ as above.
We consider again the energy as a smooth function

E:C™(([0.a],0,0),(M,z.y) 5B,  E(7)=} /0 R

Let now F' be a variation with fixed ends of the geodesic ¢. Then we have:

D E(F(s, ))=1 /0 Dsg(O0F, 0,F) dt — /0 o(Vo,00F, 0,F) dt

= / 9(Vo,0.F,0,F)dt, by[(22.10.4) or [27.1.1)}
0

Therefore,

dt

s=0

(s, )= [ (o(VaVadF.0F) +9(VadiF. Vo,00F))

— [ (s(VaVa oL 0F) + g(RO.F.OF)O.F,0F)
0

+g(Vat85F,Vat85F))‘ (dt by[2Z5) and [22:10.1]

s=

dt

s=0

— [ (s(Vad.F.Va0.F) + o(RO.F.OF)0.F.0F))
0

+ / (Q(VatvasasF, OLF)|s=0 + 9(Va,0sF|s=0, VatatF|s=o)) dt.
0 H/_/
Vg, ¢=0
The last summand equals foa 019(Vy,0sF, 0, F)|s—o dt which vanishes since
we have a variation with fixed ends and thus (Vg,0sF)(s,0) = 0 and also
(Vo,0sF)(s,a) = 0. Recall X = 0s|p F, a vector field along ¢ with X (0) =0
and X (a) = 0. Thus

EEEX.X) = BB, )= [ " (9(V0,X, Vo, X) H9(R(X. &)X, &) di.
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If we polarize this, we get the Hessian of the energy at a geodesic ¢ as follows
(the boundary terms vanish since X, Y vanish at the ends 0 and a):

AE(e)(X) = /0 (Vo X, &) di = /0 " (X, Vo) dt =0,
1) PEOX.Y)= / (Vo X, VoY) - g(Re(X),Y)) dt,

(2) d’E(c)(X,Y) = — / ’ 9(Vo,Va, X + Re(X),Y) dt.
0

We see that among all vector fields X along ¢ with X (0) =0 and X(a) =0
those which satisfy d?E(c)(X,Y) = 0 for all Y are exactly the Jacobi fields.

We shall need a slight generalization. Let X, Y be continuous vector fields
along ¢ which are smooth on [t;, t;+1] for 0 = tg < t1 < --- < t;, = a, and
which vanish at 0 and a. These are tangent vectors at ¢ to the smooth
manifold of all curves from z to y which are piecewise smooth in the same
manner. Then we take the following formula as a definition, which can be
motivated by the computations above (with considerable care). We will just
need that d2FE(c), to be defined below, is continuous in the natural uniform
C?-topology on the space of piecewise smooth vector fields.

PE(e)(X,Y) = /0 ’ (9(Va, X, Va,Y) + g(R(X, &)Y, &) dt

k—1 tiv1
- /t T (9(Ta X, VoY) + g(ROX, Y, ) dt
.
= Z/t (3t9(V8tX7 Y) - g(vatvatX7 Y) - g(R(X’ C)Ca Y)) dt
=0 "
3) = [ 9(VaVaX + R(X),Y)dt
0
k-1
+ Z(g((vﬁtX)(ti+1_)v Y(tiv1)) — 9((Va, X)(ti+), Y(t¢+1)))-
i=0

27.15. Theorem. Let (M, g) be a Riemann manifold and let ¢ : [0,a] — M
be a geodesic with ¢(0) = x and c(a) = y.

(1) If Tyeqo)(expy) = Tyeo)(TeM) — ToyM is an isomorphism for all t €
[0,a], then for any smooth curve e from x to y which is near enough to c
the length L(e) > L(c) with equality if and only if e is a reparameterization
of c. Moreover, d*E(c)(X,X) > 0 for each smooth vector field X along c
which vanishes at the ends.

(2) If there are conjugate points c(0), c(t1) along ¢ with 0 < t1 < a, then
there exists a smooth vector field X along ¢ with X(0) =0 and X(a) =0
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such that d*E(c)(X,X) < 0. Thus for any smooth variation F of ¢ with
OsloF (s, )= X the curve F(s, ) from x toy is shorter than c¢ for all
0<|s| <e.

Proof. () Since Tye(0)(exp,) : Tie0)(TeM) — TeyM is an isomorphism, for
each t € [0,a] there exist an open neighborhood U(t.¢(0)) C T, M of t¢(0)
such that exp,, |U(t.¢(0)) is a diffeomorphism onto its image. Since [0, a].¢(0)
is compact in T M, there exists an ¢ > 0 such that U(¢.¢(0)) D By () for
all t.

Now let e : [0,a] — M be a smooth curve with e(0) = z and e(a) = y which is
near ¢ in the sense that there exists a subdivision 0 =ty <t1 < --- <t =a
with e([t;, tiy1]) C exp,(Bye0)(€)). We put:
€:[0,a] — T, M, ('A'Q"""A
é(t) == (expy | Bre(o) (€)) T (elt)), T € [ti, tisa]-

Then € is smooth, é(0) = 0, é(a) = a.¢(0), and exp,(é(t)) = e
consider the polar representation é(t) = r(t).o(t) in T,,M where (¢
and r(t) = |é(t)|. Let r = |é(a)| = a|¢(0)|. Then we put:

A X XOSAKAN

V(s,t) = exp,(r-t.p(s))

which implies

eft) = 1(1, ") = exp, (r(D)-p(1),  é(0) = (e, ") + Dy (t, ") ™,
Note that V,0;y = 0 since v(s, ) is a geodesic. From
9:9(057,0¢7) = 9(V 5,057, 9y) + 9(0s7, V5,0¢7)
= 9(Va,0¢,0¢y) + 0 by
= %asg((?t'y,(‘?t'y) = %8s|3t7(57 )|2 = %857“2|<P(5)|2 = %357“2 =0

we get that 9(887(37 t)a 8{}/(3) t)) = 9(887(37 0)7 atf)/(& O)) = g<07 TSD(S)) = 0.
Thus

(3) Gy (s,t) (83’7(87 t)a at7(87 t)) =0 forall s,t.
By Pythagoras

. . . “(1)[?
(0)2 = 1003t "D)2 + 0y (r, ") 270

r

, RO
= (6, )2 + o) DT > Jooy

with equality if and only if Osvy(t, @) =0, i.e., ©(t) is constant in ¢t. So

r

(4)
L(e) =/0 ()] dt z/o |#(t)] dt Z/o () dt = r(a) — r(0) = r = L(c)
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with equality if and only if 7#(¢) > 0 and ¢(t) is constant, i.e., e is a repa-
rameterization of c.

Note that ([B]) and (@) generalize Gau}’s lemma|(23.2)[and its corollary

to more general assumptions.

Now consider a vector field X along ¢ with X(0) = 0 and X(a) = 0 and
let F': (—¢,e) x [0,a] = M be a smooth variation of ¢ with F(s,0) = z
F(s,a) =y, and 0| F' = X. We have

a a 2
2B (F(s, a—/ 0, F |2 dt - / 12dt2(/ lﬁtFlg.ldt>
0 0

() )’ >L() by @)

/| \gdt :|c'(0)|2. 2:/0a|c'(0)|2dt-a:2E(c).a.

Since c is a geodesic, we have 9s|o E(F(s, )) =0 and therefore we also get
d*E(c)(X, X) = 0o E(F(s, ))>0.

@) Let ¢(0), c(t1) be conjugate points along ¢ with 0 < t; < a. By
there exists a Jacobi field Y # 0 along ¢ with Y(0) = 0 and Y (¢;) = 0.
Choose 0 < ty < t1 < t2 < a and a vector field Z along ¢ with Z|[0,tg] = 0,
Z|[ta,a] = 0, and Z(t1) = —(V,Y)(t1) # 0 (since Y # 0). Let Y be the
continuous piecewise smooth vector field along ¢ which is given by Y[[0,¢1] =
Y|[0,#1] and Y|[t1,a] = 0. Then Y + nZ is a continuous piecewise smooth
vector field along ¢ which is broken at ¢; and vanishes at 0 and at a. Then
we have

PE() (Y +nZ,Y +nZ) = dE(c)(Y,Y)+n*d*E(c)(Z, Z)+2n d*E(c) (Y, Z)

and by [(22.12.3)|
~ ~ 31
PE(C)Y,V) = - / 9(Va, VoY + Re(Y),Y)
0

a

9(V5, V5,0 + R:(0),0)

t1

—i—g((VatY)(tl—),O) - g((VatY)((H—),O)
+9((Va,Y)(a—),0) — g((Va,Y)(t:1+),0) = 0,

dQE(c)(Y,Z) = —/(; 1 g(Vath)tY + R@(Y),Z)

—/ 9(V5,Vy,0+ R:(0), Z)

t1

+9((Va,Y)(t1—), Z(t1)) — 9((V5,Y)(0+),0)
+9((Va,Y)(a=),0) = g((Va,0)(t:1+), Z(t1))
=9((Va,Y)(t1), Z(t1)) = —9((Va,Y)(t1), (Vo,Y)(t1))
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= —|(Va,Y)(t1)]2 <0,
PE(c)(Y +1Z,Y +nZ) =0’ d*E(c)(Z,Z) — 2n|(Va,Y ) (t1)[2-

The last expression will be negative for 1 small enough. Since d2E(c) is
continuous in the C2-topology for continuous piecewise smooth vector fields
along ¢, we can approximate Y + nZ by a smooth vector field X vanishing
at the ends such that we still have d?E(c)(X, X) < 0.

Finally, let F': (—¢,¢) x [0,a] — M be any smooth variation of ¢ with fixed
ends and Jg|oF = X. Consider the Taylor expansion

E(F(s, ))=E(c)+sdE(c)(X) + Sd>E(c)(X, X) + s°h(s)

where h(s) = fol (1;u)28§E(F(v, ) |v=us du. Since dE(c)(X) = 0, this

implies E(F (s, )) < E(c) for s # 0 small enough. Using both halves of
(@), this implies L(F(s, ))? <2E(F(s, ))a <2E(c)a= L(c)>. O

27.16. Theorem. Let (M,g) be a Riemann manifold with sectional cur-
vature k > ko > 0. Then for any geodesic ¢ in M the distance between two
conjugate points along ¢ is < ﬁ.

Proof. Let ¢ : [0,a] - M be a geodesic with |¢| = 1 such that c(a) is
the first point which is conjugate to ¢(0) along c¢. We choose a parallel unit
vector field Z along ¢, Z(t) = Pt(c,t).Z(0), |Z(0)|y = 1, Z(t)L9¢(t), so that
V,Z = 0. Consider f € C*([0,a],R) with f(0) =0 and f(a) =0, and let
0 < b < a. By[(27.15.1)| we have d?Ej(c)(fZ, fZ) > 0. By[(27.14.1)] we have

b
PEYc)(fZ, 1 Z) = /0 (9(Vo.(f2). Vo (1 2)) - 9(R(fZ,8)é, 1 7)) dt

b b
:/ (f’2—f2k:(Y/\c'))dt§/ (f* — ko) dt

0 0
since Y, ¢ form an orthonormal basis. Now we choose f(t) = sin(7tb) so that

JUfrdt =12 and [} f*dt = T Thus

O</b(f’2—f2k)dt—7r2—bk
=/, 0)at = o = 570

which implies b < Th Since this holds for all b < a, we get a < T

27.17. Corollary (Myers, 1935). Let M be a complete connected Rie-

mann manifold with sectional curvature k > kg > 0. Then the diameter of
M is bounded:

diam(M) := sup{dist(z,y) : z,y € M} <

O

s
Vo

Thus M is compact and each covering space of M is also compact, so the
the fundamental group w1 (M) is finite.
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Proof. By any two points z,y € M can be connected by a geodesic
c of minimal length. Assume for contradiction that dist(z,y) > \ﬁ’ then by
m there exists an interior point z on the geodesic ¢ which is conjugate
to x. By m (27.15.2)| there exist smooth curves in M from x to y which are
shorter than ¢, contrary to the minimality of c. O

27.18. Theorem. Let M be a connected complete Riemann manifold with
sectional curvature k < 0. Then exp, : T,M — M 1is a covering mapping
for each x € M. If M s also simply connected, then exp, : TyM — M s a
diffeomorphism.

This result is due to [81] for surfaces and to [33] in the general case.

Proof. Let ¢ : [0,00) — M be a geodesic with ¢(0) = z. If ¢(a) is a point
conjugate to ¢(0) along ¢, then by [(27.11)| and |(27.7)| there exists a Jacobi
field Y # 0 along ¢ with Y(0) = 0 and Y(a) = 0. By we have
Y (t)L9¢(t) for all t. Now use [(27.14.2)| and |(27.14.1)| to get

d’E(c)(Y,Y) = — /ag(VatVatY + R:(Y),Y) dt =0,
0
PE()(Y,Y) = /0 (0o Y.V, Y) — g(RY, )6, Y)) dt

= /Oa(\vatylf; — k(Y Ae)([YPe)* — (Y, ¢))) dt >0,

a contradiction Thus there are no conjugate points. Thus the surjective

(by [(23.6) mappmg exp, : 1M — M is a local diffeomorphism by m
Lemma )| below then finishes the proof.

27.19. A smooth mapping f : (M, g) — (M, g) between Riemann manifolds
is called distance increasing if f*g > g; in detail, gy (Tof X, Tpf.X) >
9z(X, X) for all X € T, M, all x € M.

Lemma. Let (M, g) be a connected complete Riemann manifold. If a smooth
mapping f : (M,g) — (M, g) is surjective and distance increasing, then f
1S @ COVEring mapping.

Proof. Obviously, f is locally injective; thus T, f is injective for all x
and dim(M) < dim(M). Since f is surjective, dim(M) > dim(M) by the
theorem of Sard [(1.18) E

For each curve c: [0,1] — M we have

/|c|gdt</ 1€/ jg dt = Lyeg(c);

thus disty(z,y) < disty«g(z,y) for z,y € M. So (M,dists«5) is a complete
metric space and (M, f*g) is a complete Riemann manifold also. Without
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loss we may thus assume that g = f*g, so that f is a local isometry. Then
(M = f(M),g) is also complete.

For fixed Z € M let » > 0 such that exp; : Bo,(2r) — Bz(2r) C M is
a diffeomorphism. Let f~1(z) = {x1,22,...}. For each i the following
diagram commutes:

exp,,

Ty, M <— By, (2r) —% By, (2r) > M
Tzifl Tzifl fi lf
Ty M < By, (2r) —2> By(2r) > M.

We claim (which finishes the proof):
(1) f: Bg;(2r) — Bz(2r) is a diffeomorphism for each i,
(2) f7H(Bx(r) = U; Ba, (r),
(3) By, (1)U By, (r) =0 for i # j.
(@) From the diagram we conclude that exp, is injective and f is surjective.

Since exp,, : Bo, (r) — By(r) is also surjective (by completeness), f :
By, (r) — Bgz(r) is injective too and thus a diffeomorphism.

@) From the diagram (with 2r replaced by r) we see that f~1(Bz(r)) 2
By, (r) for all i. If conversely y € f~1(Bz(r)), let ¢ : [0,s] — Bz(r) be
the minimal geodesic from f(y) to # in M where s = disty(f(y),z). Let

¢ be the geodesic in M which starts at y and satisfies Ty, f.c'(0) = &(0).
Since f is an infinitesimal isometry, f o ¢ = ¢ and thus f(c(s)) = z. So
c(s) = x; for some i. Since disty(y,z;) < s <r, we have y € By, (r). Thus
FH(Bs(r)) € U; Ba, (7).

@) If y € By, (1)U By, (r), then z; € By, (2r) and by () we get x; = x;. O

27.20. Lemma ([106]). If M is a connected complete Riemann manifold
without conjugate points, then exp,, : TpM — M is a covering mapping.

Proof. Since (M, g) is complete and connected, exp, : T,M — M is sur-
jective; and it is also a local diffeomorphism by since M has no
conjugate points. We will construct a complete Riemann metric § on T, M
such that exp, : (T, M, g) — (M, g) is distance increasing. By this
finishes the proof.

Define the continuous function h : T, M — R+ by

h(X) = sup{r : |T'x(exp,). £|gexp 0 2 7‘]§|3x for all £ € T, M}

= min{|TX(epr).§\gexpz(X) D€lg, =1}

= 1/\/0perator norm(Tx (exp,) ™! : Toyp (x)M — T M).
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We use polar coordinates ¢ : R~ x S™1 — T, M \ {0,} given by ¢(r,9) =
.9 and express the metric by ¢*(g,) = dr? + r2¢g° where ¢° is the metric
on the sphere. Now we choose an even smooth function f : R — R which
satisfies 0 < f(r(X)) < h(X). Consider the Riemann metric § = dr? +
r2 f(r) on T, M.

For every R > 0 we have
B) (R) = {X € T,M : disty(X,0,) < R} C {X € T,M : r(X) < R}
which is compact; thus (7, M, g) is complete.

It remains to check that exp, : (T, M,g) — (M,g) is distance increasing.
Let £ € Tx(Tp;M). If X = 0,, then Tp, (exp,).{ = &, so exp, is distance
increasing at 0, since f(0) < 1.

So let X # 0,. Then & = & + & where dr(£2) = 0; thus & tangent to the
sphere through X, and & L& (with respect to both g, and gx). Then
€15, = lelg, +ealg,, 1653 = 1&al3+ 1603, 1€l = €l = |dr(&)] = ldrE)].

By variant|(27.15.3)|of Gauf’s lemma the vector T'x (exp,).&1 € Texp, (x)M is
tangent to the geodesic t — exp, (¢.X) in (M, g) and Tx(exp,).£2 is normal

to it. Thus |TX(epr).51]g = ‘gl‘g = ’fﬂg and
| Tx (exp,) &7 = [Tx (exp,)-&1l2 + [Tx (exp,).L2l2 = 1] + [Tx (exp,) Lo,
| Tx (exp,) £]7 — [€12 = |Tx (exp,).Lal; — €23

In order to show that |Tx (exp,).£|g > |£|5, we can thus assume that £ = &
is normal to the ray t — ¢.X. But for these £ we have |§]f] = f(r(X))€2,
by construction of § and

| Tx (exp, ) £l; > h(X) €[5, > F(r(X)) €], = I€15.
So exp,, : (TxM,g) — (M, g) is distance increasing. O






CHAPTER VI.
Isometric Group

Actions or Riemann
(G-Manifolds

In this chapter, a Riemann or pseudo-Riemann metric will usually be called
v since ¢ is usually a group element.

28. Isometries, Homogeneous Manifolds, and Symmetric
Spaces

28.1. The group of isometries. Let (M,~) be a connected pseudo-Rie-
mann manifold. Recall that a diffeomorphism ¢ : M — M is an isometry
if

Py =17
A vector field £ € X(M) is called a Killing vector field if its flow Flf consists of
local isometries. By |(8.16.3)| this is the case if and only if the Lie derivative

satisfies L¢y = 0. By the space of all Killing vector fields is a Lie
algebra.

Theorem. The space X(M,v) = {{ € X(M) : Ley = 0} of all Killing
vector fields on a pseudo-Riemann manifold (M,~) is a finite-dimensional
Lie algebra of dimension at most m? +m where m = dim(M).

The subspace of all complete Killing fields & (see is also a finite-
dimensional Lie algebra.

365
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The group Isom(M,~) of all isometries of (M,~) is a Lie group with Lie
algebra the algebra of all complete Killing fields. It acts smoothly on M. The
Lie group topology equals the pointwise open topology and also the compact
open toplogy in the Riemann case.

Proof. Any Killing vector field ¢ is a Jacobi field along each geodesic since
its flow Flf deforms geodesics through geodesics; see Let us fix a
point x9g € M. By the field £ is then uniquely determined by its
value &(x¢) and by its covariant derivative T,,M > X +— Vx¢& € T,,M:
First we know & on expy,(Uy,) for a 0-neighborhood U,,, and each point
x € M can be connected to zg by a curve consisting of geodesic arcs. Thus
the dimension of the Lie algebra X(M,v) = {£ € X(M) : L¢y = 0} of all
Killing vector fields is at most m? + m if dim(M) = m.

We now use theorem |(6.5)f Let G be a simply connected Lie group with Lie
algebra X(M,~y). Then there is a smooth local action G x M D U M.

Let H be the subgroup of G consisting of all ¢ € G with ¢, defined on
the whole of M. Let g C X(M,~) be the vector space of all £ such that
exp(t§) € H for all t. By the space g is a Lie subalgebra of X(M, ),
and g consists of complete vector fields. By theorem again, there is a
Lie group Isomg(M, ) consisting of diffeomorphisms of M which implements
the infinitesimal action of the Lie algebra g on M. This is the connected
component of the isometry group Isom(M, 7). Therefore the isometry group
is a Lie group.

Obviously, the pointwise open topology on Isom(M, ) equals the topology
as a Lie group. In the Riemann case, Isom(M,~y) consists of equicontinuous
mappings (namely isometries) for the Riemann distance function on M; thus
the pointwise open topology equals the compact open topology. [l

28.2. Invariant covariant derivatives on homogeneous spaces. Let
G be a Lie group and H a closed subgroup with Lie algebras g and b,
respectively. Let £ : G x G/H be the left action of G on the homogeneous
space G/H with notation {,(z) = ¢*(g) = ¢(g,z) = g.x for g € G,z € G/H.
Let ¢ : g — X(G/H) be the corresponding infinitesimal action, called the
fundamental vector field mapping. It is a Lie algebra antihomomorphism.
Let p : G — G/H be the projection, p(e) = o € G/H. Then T,p : g —
T,(G/H) factors to a linear isomorphism p : g/bh — T,(G/H) which is
equivariant under Ad : H — Aut(g/h) (induced from the adjoint action)
and h — Tl € GL(To(G/H)). We shall also use T¢(Ad) =: ad : h —
L(g/b,9/h).

Let V be a G-invariant linear connection for T(G/H), and let {,n € X(G/H).
Recall its properties: V : X(G/H) x X(G/H) — X(G/H) is R-bilinear,
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Vien = f.Ven, and Ve(fn) = df(§).n + f.Ven. The Nomizu operator
N¢: X(G/H) — X(G/H) is defined by
(1) Nen := Ven — [€, 1],
Then N¢(f.n) = f.N¢n, so N is tensorial, N¢ : TG/H — TG/H. Moreover,
Nyen = f.Nen+df(n).£. Now G-invariance for V means e;_l(w;ge;n) =
Ven so that Veelyn = €V en implies
Neselgn = Vaselgn — [6€, 0gn] = L5V en — Gg[€,m] = LGNen.
Let us apply this for a fundamental vector field ¢ = (x:
T(lg—1)o(Neyn)oly = Ly (Neyn) = Nescy (Lgm) = NCAd<g—1>x (T'(Ly-1)omoly).
We evaluate this at the origin 0 € G/H:
T(ly=1)-(Nexmlgrr = Ney -1, - (Lorr (Lg=1) mlgrr),
(2)  Nexlgn = TO(gg)‘NCAd@q)XIO‘TQH(EQ*) TynG/H — TynG/H.
Let us now define
(3)  @:g—L(g/ba/h) by @x(Y +bh) =0 "Ne|op.(Y +h).
We have Cz(gH) = To(ly)-Caa(g—1)zlo, and for h € H we have Tp(¢).p =
Ad(h).p. Using (2) we obtain:
by = ﬁil.NCX |O.ﬁ = ﬁil'To(gh)'Ng“Ad(h,l)X |O.To(€h—1).ﬁ
= Ad(h) D .Ney o1y i o D-AA(RTY) = Ad(R). @ qg—1)x - Ad(h ).

= h=1)x

(4) | Paamyx =Ad(h).©x.Ad(h™"), heH Xeg.

If X € b, then (x(0) =050 (Nexn)lo = Veg,n = [Cx:mllo = 0 = [Cxynlfo
which depends only on (o) since (x(0) = 0 so [(x, f-n]lo = f(0).[{x,n]lo +
df ((x|o)-m(0). Thus for X € b:

(I)X(Y + []) = p_l'NCX |0'T?'(Y + b) = T)_I‘NCX IO'Tep'Y = p_l‘NCX |O(gY|0)
(5) =—p [x, &llo =P ' (xylo = ad(X) (Y + b).

Theorem. G-invariant linear connections V on a homogeneous space G/ H
correspond bijectively to H-homomorphisms ® : g — L(g/b,g/h) such that
Ox = ad(X) for X € b. If one such homomorphism exists, then the space
of all G-invariant linear connections on G/H is an affine space modeled on
Homy (©%(g/b), 8/b)-

The torsion of V corresponds to the linear mapping /\2 g/b — g/b which is
induced by

(X,Y) = ox (Y +b) — Py (X +b) + ([X, Y]+ ).
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The curvature of V corresponds to the mapping /\2 g/b — L(g/b,g/bh) which
is induced by

(X,Y) = @x 0dy — Dy 0o Py + Px vy

Proof. Just unravel all computations from before backwards. Note that

(chéy)|gH = (Nex )l + [Cxs Crllgm

(Eg) NCAd< |o gH( —1) CY|9H C[XY]|gH
To(lg)-Ne, o, —1)x’0 Cadg-1vlo — To(lg) T (bg—1)-Cx,v)lgm
= To(lg) P-Paq(-11x (Ad g ™Y +b) = To(ly)-Caage-1)x.y]lo
(6) =Ty (ly)-P-(Paagg-1)x (Ad(g™)Y +b)
[

— ([Ad(g™ )XAd( HY]+1)). O

28.3. Invariant pseudo-Riemann metrics on homogenous spaces.
Let G be a Lie group and let H be a closed subgroup. A G-invariant
pseudo-Riemann metric v on G/H (if it exists) is uniquely determined by
the H-invariant nondegenerate bilinear form +, on T,G/H, and this in turn
is determined by the Ad(H )-invariant bilinear form B = p*v, on g/b, if it
exists. Suppose that such a nondegenerate bilinear form exists. Then

Vo (&) = (Lg-17)gm(§, 1) = Yo(T (Lg=1).&, T (Ly=1).m).
For fundamental vector fields we get:
ot (G (gH), Gy (9H)) = 30T (y1).Cx (9H), T(0y1).Cy (gH))
= B(Ad(g™")X +b,Ad(g" )Y +1b),
d(Ad ov)|y(Te(11g) X) = Ad(v(g))-(ad or") (T,v. To(pg). X)
= Ad(g™"). ad(Ad(g).X),
dB((Adov).X + b, (Adov).X + b)|s(Te(pg).-Z)
—2B(Ad(¢g71).ad(Ad(9).2).X + b, Ad(g"HX + b)
—2B(Ad(g7").[Ad(9).Z, X] + b, Ad(g" )X +b)
= —2B([Z,Ad(g™").X] + b,Ad(g7)X + 1),
dy(Cx,Cx)(Cz(gH)) = dy(Cx, Cx)lgrr (To(Ly)-Cadrg-1)z(0))
= dy(Cx, Cx)lgu (Tp-Te(pg)- Ad(gil)-Z)
= dB((Adov).X + b, (Adov).X +b)|g(Te(ug). Ad(g™)Z)
= —2B([Ad(g™1)Z,Ad(g™").X] + b, Ad(g™ )X +b)
= —B(Ad(g™")[Z, X] + b, Ad(g™)X +b).
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On the other hand we have for a G-invariant linear connection on G/H

corresponding to ® : g — L(g/h, g/h) as in |(28.2.3)

29(Ve, Cx, Cx)lgir = 2B(Paa(g-1)z(Adg~' X + )
— ([Ad(g~")Z,Ad(g~")X] +b),Ad(g )X +b).

Collecting, we get

dy(Cx, Cx)(Cz(9H)) = 2v(V¢,Cx, Cx) g
=2B(®pq(y-1)z(Adg ' X +b),Ad(g")X + )

so that the connection
(1) V respects v <= B(®z(X +h),Y +h) +B(X +bh,2z(Y +bh)) =0.

The Levi-Civita connection V is uniquely determined by the pseudo-metric
~. We now derive a formula for ® corresponding to the connection V directly
from B. V is torsion-free iff

0=2x(Y +bh) -y (X +b)+ ([X,Y]+b) forall X,Y € g.

Consider the symmetric bilinear form B : g x g — g/b x g/b B Ron g.

Then torsion-freeness corresponds to

B(X,Y],2) = =B(®x(Y +b),Z+b) + B(®y(X +b),Z+b).

We permute this cyclically:

+B([X,Y],Z) = —B(®x(Y +h),Z +b) + B(dy(X +),Z +b),
+B([Y, Z],X) = =B(®y(Z +b), X + ) + B(®z(Y + ), X +b),

—B([Z2, X],Y) = +B(®z(X +1),Y +b) = B(®x(Z +1),Y +b).
We add, using (I):
(2) —B([X,Y),2) - B([Y, 2], X) + B([Z,X],Y) = 2B(®y(Z +h), X +h).
Tt remains to check that the trilinear expression
(X,Y,Z)— —B([X,Y],Z) — B([Y, 2], X) + B([Z, X],Y)

factors to g/b x g x g/b — R. If X is in b, then the second term vanishes
and the first term cancels with the third one since B is Ad(h)-invariant.
Similarly for Z € h. So (2] defines a mapping ® which in turn gives rise to
the Levi-Civita connection V.
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28.4. Pseudo-Riemann locally symmetric spaces. Let (M,v) be a
connected pseudo-Riemann manifold. For x € M let U, be an open neigh-
borhood of x in M and let By, be an open absolutely convex 0-neighborhood
in T, M such that exp, : By, — U, is a diffeomorphism. We consider the
exponential mapping

X’Y
T.M > By, —> U, C M

and the local geodesic symmetry
sz 1 Uy = Uy, Sw(exp;(X)) = exp’a}:l(_X)'

Note that T, (s;) = —Id on T, M. The pseudo-Riemann manifold (M, ) is
called a pseudo-Riemann locally symmetric space if each local symmetry s,
is a local isometry, i.e., sty =7.

Proposition. A pseudo-Riemann manifold (M,~y) is locally symmetric if
and only if its curvature is parallel: VRY = 0.

Proof. If (M,~) is locally symmetric, we have st (VR) = (s*V)(s*R) =
VR, but (s5(VR)), = (—1)>(VR), so that (VR), = 0 for all z € M. If
conversely VR = 0, then R is constant under parallel transport. Thus by
theorem each local symmetry is an isometry. ([

28.5. Symmetric spaces. A connected (pseudo-)Riemann manifold (M, )
is called a (pseudo-)Riemann symmetric space if for each x € M the local
symmetry extends to a globally defined isometry s, : M — M. Let us
choose a point o € M which we call the origin.

(1) An isometry f on (M,~) which is involutive (f* = 1d) and has x as iso-
lated fized point equals s,, by considering the linear involution T} f: Among
the possible eigenvalues 1 only —1 is admissible since x is a locally isolated
fixed point.

(2) (M,~) is a geodesically complete Riemann manifold.

Namely, let ¢ : (a,b) — M be a geodesic. Then S¢(r) maps the geodesic to it-
self (suitably reparameterized) and thus prolongs c (if ¢ is not the midpoint).
So any geodesic is extendable to R and by (M, ) is a complete Rie-
mann manifold.

(3) The group Isom(M,~) of all isometries of M acts transitively on M. In
the Riemann case, by for any point z € M there exists a geodesic
c:[0,1] = M with ¢(0) = o0 and ¢(1) = x. But then s.(1/9)(0) = x. So every
point of M lies in the orbit through o. In the pseudo-Riemann case where
the Hopf-Rinov theorem does not hold, we can choose a piecewise
smooth curve ¢ from o to x which consists of geodesic segments. Then we
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can apply the reflections s, with respect to the midpoint of each geodesic
segment, iteratively, to map o to x.

(4) The group G := Isom(M,~) of isometries of M is a Lie group and the
action £ : G x M — M 1is smooth. This is an immediate consequence of
theorem |(28.1)]

(5) The mapping s : M x M — M given by (z,y) — Sz(y) is smooth. This
is obvious.

(6) Let 0 : G — G be given by o(¢) = s, 0 pos,. Let H = G, be the
isotropy group of the origin o. Then o is an involutive automorphism of G
and we have G = {g € G : 0(g9) = g} 2 H O G§. Namely, for g € H we
have

(80090 5,)(expl(t.X)) = (so0¢g)(expl(—t.X)) = so(expl(—t.Tpg.X))
= exp)(t.To9.X) = g(exp}(t.X))

so that o(g) = g near o and thus everywhere, since g is an isometry. The Lie
algebra of G7 is g° , the space of all & € g = X(M,~) such that o’(¢) = £.
But if £ = 0/(§) = T's,0£ 0 8o, then at o we have £(0) = Ty,(s,).£(0) = —£(0)
so that & vanishes at o. But then exp¥(t¢) = Flf has o as fixed point.

(7) For xz,y € M we have sy o sy = {4 for some g € G. Choose g,g, € G
with g,.0 = x and gy.0 = y. Then

Sz =4y, OSOOEQ;I, sy =Ly, osooﬁggl,
SIOSyZEgZOSOOEQ—I oﬂgyosooﬁgﬂ
z y

={g, o (5o oég;ggy 0 8p) © Bg;1
={¢, ol , _ ol -1 =/ - ~1.
92~ Yo(gztgy) ~ Tyt T Tgwo(gn tgy).gy !

(8) Since ¢’ : g — g is an involutive automorphism of g = X(M, ), we can
decompose g into the +1 eigenspaces of ¢’ and obtain

g=X(M,y)=bem, [h,bCh, [pm/Cm [mm]Ch,

which is called a reductive decomposition of g. Note that this decomposition
is invariant under ad(H) acting on g.

(9) Let p: G — M = G/H be the submersion p(g) = g.o = £(g,0) = £°(g).
Then T,p : g — T, M induces a linear isomorphism p’ := Top|y : m — T,M
which is equivariant for the action of H = G, on m via ad and on T,M
via h — Tolp. The bilinear form B := (p’)*v, on m is nondegenerate and
ad(H )-invariant. We identify m = g/h = T, M and make use of From
now on let X, X; € b, Y,Y; € m. If B is an H-invariant inner product on
m, we have B(adx Y1,Y2) + B(Y1,adx Y2) = 0. We extend B to a bilinear
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form B on g which has b as its kernel. Equation [[28.3.1)] then becomes
B(®xY1,Ys) = —1B([Ys, X, Y1) — 3B([X, 1], Y2) + 3 B([Y1, Y2, X)
= _B(adX }/LYZ))
B(®yY1,Ys) = —3B([Y2,Y], Y1) — 3B([Y,Y1], Y2) + 3 B([Y1,Y2],Y) = 0,
Oy yYr = —adx Y.

Note that the G-invariant connection on the symmetric space M = G/H is
prescribed by ® uniquely and is independent of the choice of the metric ~.
From theorem [(28.2)[ we conclude that the curvature operator is given by

R(Y1,Y2)Ys = @y, . Dy, . Y3 — Oy, . Dy, . Y5 + Plyy v, Y3 = —[[Y1, Ya], Y3].
(10) Geodesics emanating from o are given by
expM(t.pY) = pexp®(tY)), Y em.
The fundamental vector field (y € X(M) is
v (£y(0)) = To(tg)-Caa(g—1yy (0) by [(6.:2.2]]
= To(ly) Te(€%)ad(g™")Y = To (). ad(g )Y
By for g = exp(tY’) we have

v(y CY’exp(tY).o = To(eexp(tY))'ﬁ'(q)Ad(exp(ftY))Y(Ad(exp(_ty))y + b)
— ([Ad(exp(~tY))Y, Ad(exp(~tY))Y] + b))

= o(gexp(tY))-Tj-(q)Y(Y) - ([Y7 Y] + h)) = 0.

~— —

So (y is parallel along the flowline Flgy (0) = exp(tY').o and thus exp(tY).o
is a geodesic in M.

(11) We consider now a geodesically complete connected submanifold N of
M. Without loss we assume that o € N. If N is totally geodesic, then N is
itself a symmetric space with group of isometries G' = Ng(N) = {g € G :
l4y(N) C N} and isotropy group G, = H N G’. For z € N the submanifolds
N and s;(N) are both totally geodesic with the same tangent space at z;
thus s,(N) = N. For g € G’ we have ;5 = so0ly08, : N = N, so
o(g) € G'. Finally, G’ acts transitively on N: For z € N choose a piecewise
geodesic in N from o to z. For each geodesic piece ¢ : [0,1] — N the
mMapping Sq(3/4) © Sc(1/4) is in G’ by (@) and maps ¢(0) to c(1).

(12) There is a bijective correspondence between

e totally geodesic connected geodesically complete submanfolds N of M
containing o and

o linear subspaces n C m with [[n,n],n] C n.
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The correspondence is given by n = (T.p|wm) Y (T,N). The submanifold N is
flat if and only if [[n,n],n] = 0. Given N, then by (IIl) we have N = G'/H’
where H' = GNH, and o € Aut(g) respects the Lie subalgebra g’ = Lie(G’).
Thus g’ = ' &n C hdm are compatible reductive decompositions and thus
[n,n] C b and [h',n] C n.

Conversely, given n C m with [[n,n],n] C n, we put §’ := [n,n] C b’ and
¢ = b’ ®n. This is a Lie subalgebra of g. Let G’ be the connected Lie
subgroup of G with Lie algebra §’. Then G'.0o = ¢(G’,0) is a connected
geodesically complete submanifold of M which is a symmetric space and
thus totally geodesic in M by (I0).

This ends our very short treatment of symmetric spaces. From here on it
becomes quite algebraic, and there are many good books on this subject; [82]
is the standard reference. The theory of homogeneous manifolds however is
best understood by using Cartan connections; for this see the book [32].

29. Riemann G-Manifolds

29.1. Preliminaries. Let (M, ) be a Riemann G-manifold. If ¢ : M — M
is an isometric diffeomorphism, then

(1) p(expM(tX)) = exp%x) (tT,p.X). This is due to the fact that isome-
tries map geodesics to geodesics, and the starting vector of the geodesic
t = @(expM(t.X)) is Tpp.X.

(2) If o(z) = z, then, in the chart (U, (exp})~1), ¢ is a linear isometry
(where U, is a neighborhood of = so small that (exp?)~!: U, — T,M
is a diffeomorphism onto a neighborhood of 0 in T, M):

P(X) : = (exp}’) ™ o oexpy! (X)
= (exp ) LexpM (T,0.X) = T X.
(3) M¥ :={x € M : p(x) ==z} is a totally geodesic submanifold of M :
If we choose X € T, (M¢), then, since T,¢.X = X and by (l), we have
plexpy! (X)) = expy! (Topt X) = expy’ (EX).
So the geodesic through x with starting vector X stays in M®.

(4) If H is a set of isometries, then M = {x € M : p(x) = x for all ¢ €
H} is also a totally geodesic submanifold in M.

29.2. Definition. Let M be a proper Riemann G-manifold, z € M. The
normal bundle to the orbit G.x is defined as
Nor(G.z) == T(G.z)*.

Let Nor.(G.z) = {X € Nor(G.z) : | X||y < €}, and choose r > 0 small
enough for exp, : T,M 2 B,(0,) — M to be a diffeomorphism onto its
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image and for exp, (B,(0;)) N G.x to have only one component. Then, since
the action of G is isometric, exp defines a diffeomorphism from Nor, /5(G.7)
onto an open neighborhood of G.z, so exp(Nor, 5(G.x)) =: U, )5(G.7) is a
tubular neighborhood of G.x. We define the normal slice at x by

Sy = exp,(Nor, o(G.2)y).

29.3. Lemma. Under these conditions we have that
(1) Sg.:r: = 9.5z,

(2) Sg is a slice at x.

Proof. ([l Since G acts isometrically and by
Sg.e = expy , (Tuly(Nor, )5(G.x))s) = Ly exp, (Nor, 5(G.x)y) = 9.5

@) The mapping r : G.S; — G.zx given by eXpy , X — g.z defines a smooth
equivariant retraction (note that S, and S, are disjoint if x # y). O

29.4. Isotropy representation. Let M be a G-manifold and x € M; then
the representation of the isotropy group

Gy — GL(T, M), g— Tyl,,

is called the isotropy representation. If M is a Riemann G-manifold, then the
isotropy representation is orthogonal and T,(G.z) is an invariant subspace
under G,. So T,(G.x)* is also invariant, and

Gy — (Norg(G.x)), g Tyly,

is called the slice representation.

29.5. Example. Let M = G be a compact Lie group with a bi-invariant
metric. Then G x G acts on G by (g1, 92).9 := glgggl, making G' a Riemann
(G x G)-space. The isotropy group of e is (G x G). = {(g9,9) : g € G},
and the isotropy representation coincides with the adjoint representation of
G = (GxG)eong=T.(G).

29.6. Example. Let G/K be a semisimple symmetric space (K compact)
and let g = £ + m be the corresponding reductive decomposition of the Lie
algebra g; see . Then T.(G/K) = g/ = m, and the isotropy subgroup
of G at e is K. The isotropy representation is AdILQG : K — (m). The slices
are points since the action is transitive.

29.7. Lemma. Let M be a proper Riemann G-manifold, © € M. Then the
following three statements are equivalent:

(1) x is a regular point.

(2) The slice representation at x is trivial.

(3) Gy = Gy for ally € S, for a sufficiently small slice S,.
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Proof. Clearly, () <= @@). To see @) = (), let S; be a small slice at
. Then U := G.S is an open neighborhood of G.z in M, and for all g.s € U

we have Gy = gGsg~' = gGrg . Therefore G.x is a principal orbit. The
converse is true by |(6.16.3)| since G is compact. O

29.8. Definition. Let M be a Riemann G-manifold and G.x some or-
bit; then a smooth section w of the normal bundle Nor(G.z) is called an
equivariant normal field if

Ty (4y).u(y) = u(g.y) forally e G.x,g € G.

29.9. Corollary. Let M be a proper Riemann G-manifold and x a reg-
ular point. If X € Nory(G.x), then X(g.x) := Ty({y).X is a well defined
equivariant normal field along G.x in M.

Proof. If g.x = h.xz, then h™'g € G, = Ty(lp-—14).X = X, since the slice
representation is trivial by Now by the chain rule, T,(¢4).X =
T,(£y).X. Therefore X is a well defined, smooth section of Nor(G.z). It is
equivariant by definition. O

29.10. Corollary. Let M be a Riemann G-manifold, G.x a principal orbit,
and (ui,...,uy) an orthonormal basis of Nory(G.x). By corollary |(29.9)|

each u; defines an equivariant normal field 4;. So (uq,...,uy) is a global
equivariant orthonormal frame field for Nor(G.x), and Nor(G.x) is a trivial
bundle. O

This follows also from the tubular neighborhood description G.S; = G X¢g,
Sy, where S; is a normal slice at « with trivial G -action; see|(29.7)

29.11. Orbits as Riemann submanifolds. Let (M,7) be a Riemann
G-manifold and u an equivariant normal field along an orbit G.zy. Consid-
ering this orbit as a Riemann submanifold, we recall from the second
fundamental form S € T'(S?T*(G.z0) ® Nor(G.zp)) and from the
Weingarten mapping or shape operator L, : T(G.xg) — T(G.zp) along the
normal field, which are related by

YN (Lyz)(Xe), Ya) = 7(S(Xa, Ya), u(z)), Xu,Ye € Tp(G.20), 7 € G.20.

Its eigenvalues are called the main curvatures of G.xzg along u. Since v and
the submanifold G > x(y are G-invariant, the second fundamental form S is
G-equivariant. Since u is an equivariant normal form, the shape operator
L,, along u is also G-equivariant.
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29.12. Lemma. Let u be an equivariant normal field along an orbit G.x;
then

(1) Lu(g.x) = Tm(gg)'Lu(x)'Tg-I(gg*1)7
(2) the main curvatures of G.x along u are all constant,
(3) {expM(u(y)) : y € G.x} is another G-orbit.

Proof. (1) was already proved in |(29.11) above. This implies (2]) since the

eigenvalues are invariant under conjugation.
@) {expM(u(y)) : y € G.x} = G.exp™ (u(x)), since
g.exp™ (u(z)) = exp™ (T4,.u(z)) = exp™ (u(g.z)). O

29.13. Example. Let N"(c) be the simply connected space form with
constant sectional curvature ¢, that is,

S™, sphere with radius %, if ¢ >0,
N™(c) =< R", if c=0,
H™ hyperbolic sphere with radius ﬁ, if ¢ < 0.

Let G be a closed subgroup of Isom(N™(c)). If P is a G-orbit, then so is the
subset {exp(u(x)) : € P} for any equivariant normal field u along P. For
instance:

(1) If G = SO(n) C Isom(R™), then the G-orbits are the spheres with
center 0. A radial vector field with constant length on each sphere,
u(z) := f(|z|).z, defines an equivariant normal field on each orbit.
Clearly its flow carries orbits to orbits.

(2) Another example is the subgroup of Isom(R"™) consisting only of affine
translations in directions corresponding to a linear subspace V' C R".
Here the orbits of GG are then affine planes parallel to V. An equivariant
normal field on an orbit is a constant vector field orthogonal to V.

29.14. Theorem. Let M be a proper G-manifold; then the set of all reqular
points M, is open and dense in M. In particular, there is always a principal
orbit type.

Proof. Suppose € M;cs. By |(6.27)[there is a slice S at z, and by |(6.16.3)|

S can be chosen small enough for all orbits through S to be principal as
well. Therefore G.S is an open neighborhood of x in M, which itself is
open by

To see that M, is dense, let U C M be open, x € U, and S be a slice
at x. Now choose a y € G.S NU for which the isotropy group G, has
minimal dimension and the smallest number of connected components for
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this dimension in all of G.SNU. Let S, be a slice at y; then G.S, NG.SNU
is open, and for any z € G.S, N G.S NU we have z € ¢g.5y = Sy, SO
G, C Gygy = gGyg_l. By choice of y, this implies G, = gGyg_1 for all
z2€ G.SyNG.SNU, and G.y is a principal orbit. O

29.15. Theorem. Let M be a proper G-manifold and x € M. Then there
is a G-invariant neighborhood U of x in which only finitely many orbit types
oceur.

Proof. By theorem there is a G-invariant Riemann metric on M.
Let S be the normal slice at . Then § is again a Riemann manifold, and
the compact group G, acts isometrically on S. In|(6.16.4)| we saw that if
G:.s1 and G;.s3 have the same orbit type in S, then G.s; and G.sy have
the same orbit type in M. So the number of G-orbit types in G.S can be
no more than the number of G -orbit types in S. Therefore it is sufficient
to consider the case where GG is a compact Lie group. Let us now prove
the assertion under this added assumption. We carry out induction on the
dimension of M.

For n = 0 there is nothing to prove. Suppose the assertion is proved for
dim M < n. Again, it will do to find a slice S at  with only a finite num-
ber of G -orbit types. If dim S < dim M, this follows from the induction
hypothesis. Now suppose dim.S = n. The slice S is equivariantly diffeo-
morphic (by exp”) to an open ball in T, M under the slice representation.
Since the slice representation is orthogonal, it restricts to a G -action on
each sphere 7.8"~! in this ball. By the induction hypothesis, locally, S»*
has only finitely many G-orbit types. Since S™~! is compact, it has only
finitely many orbit types globally. The orbit types are the same on all
spheres 7.5"~! (r > 0), since = > %:z: is G-equivariant. Therefore, S has

only finitely many orbit types: those of S”~! and the 0-orbit. O

29.16. Theorem. If M is a proper G-manifold, then the set Mpny/G of all
singular G-orbits does not locally disconnect the orbit space M /G (that is,
to every point in M /G the connected neighborhoods remain connected even
after removal of all singular orbits).

Proof. As in the previous theorem, we will reduce the statement to an
assertion about the slice representation. By theorem there is a G-
invariant Riemann metric on M. Let S be the normal slice at . Then S
is again a Riemann manifold, and the compact group G, acts isometrically
on S. A principal G -orbit is the restriction of a principal G-orbit, since
G;.s is principal means that all orbits in a sufficiently small neighborhood
of G;.s have the same orbit type as the orbit G,.s; see Therefore,
by the corresponding orbits in G.U are also of the same type, and
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G.s is principal as well. So there are ‘fewer’ singular G-orbits in G.S than
there are singular G -orbits in S. Now cover M with tubular neighborhoods
like G.S,, and recall that G.S,/G = S, /G, by This together with
the above argument shows us that it will suffice to prove the statement for
the slice action. Furthermore, as in the proof of theorem [(29.15)| we can
restrict our considerations to the slice representation. So we have reduced
the statement to the following:

If V is a real, n-dimensional vector space and G a compact Lie group acting
on V, then the set Viing/G of all singular G-orbits does not locally discon-
nect the orbit space V/G (that is, to every point in V/G the connected
neighborhoods remain connected even after removal of all singular orbits).

We will prove this by induction on the dimension n of V. For n = 1,

e., V.= R, the only nontrivial choice for G is O(1) = Zy. In this case,
R/G = [0,00) and Rgine/G = {0}. Clearly, {0} does not locally disconnect
[0,00), and we can proceed to the general case.

Suppose the assertion is proved for all dimensions smaller than n. Now
for G C O(n) we consider the induced action on the invariant submanifold
S™=1. For any = € S~ ! we can apply the induction hypothesis to the slice
representation Gy — (Norg(G.z)). This implies for the Gg-action on S, that
Sy/Gr = G.S;/G is not locally disconnected after removing all its singular
points. As above, we can again cover S"~! with tubular neighborhoods like
G.S;, and we see that all of S"~!/G is not locally disconnected by its singular
orbits. Now we need to verify that the orbit space of the unit ball D" is
not locally disconnected by its singular orbits. Since scalar multiplication
is a G-equivariant diffeomorphism, the singular orbits in V' (not including
{0}) project radially onto singular orbits in S?~!. So if we view the ball D"
as cone over S"! and denote the cone construction by cone(S"~!), then

n n—1 .
Dg,, = cone(Sg,,, ). Furthermore, we have a homeomorphism

cone(S" 1) /G — cone(S" /@),  G.[x,t] > [G.x, 1],
since (G preserves the ‘radius’ t. Therefore

D" /G = (cone(S" 1)) /G = cone(S" /@),
s1ng/G = cone(S” 1)/G = cone(S” /G

sing sing

Since S;ngl /G does not locally disconnect S"~1/G, we also see that

cone(S" "1 /@) = Dge/ G

sing

does not locally disconnect cone(S"~1/G) = D"/G. O
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29.17. Corollary. Let M be a connected proper G-manifold; then:

(1) M/G is connected.
(2) M has precisely one principal orbit type.

Proof. (1) Since M is connected and the quotient map = : M — M/G is
continuous, its image M /G is connected as well.

(2) By the theorem we have that M/G \ Ming/G = M;eg/G is
connected. On the other hand by the orbits of a certain principal
orbit type form an open subset of M /G, in particular of M;cs/G. Therefore
if there were more than one principal orbit type, these orbit types would

partition M,e./G into disjoint nonempty open subsets contradicting the fact
that M,eg/G is connected. O

29.18. Corollary. Let M be a connected, proper G-manifold of dimension
n and let k be the least number of connected components of all isotropy groups
of dimension m := inf{dim G,|x € M}. Then the following two assertions
are equivalent:

(1) G.xg is a principal orbit.
(2) The isotropy group G, has dimension m and k connected components.

If furthermore G is connected and simply connected, these conditions are
again equivalent to:

(3) The orbit G.xy has dimension n —m and for the order of the funda-
mental group we have |1 (G.xg)| = k.

Proof. Recall that we proved the existence of a principal orbit in
just by taking a G, as described above. The other direction of the proof
follows from corollary Since there is only one principal orbit type,
this must be it.

If moreover GG is connected and simply connected, we look at the fibration

Gzy — G — G/Gy, = G.xo and at the following portion of its long exact
homotopy sequence:

0= 7T1(G) — 7T1(G.x0) — 7T0(G$O) — 7T0(G) =0

from which we see that |71 (G.zo)| = k if and only if the isotropy group Gy,
has k connected components. O

29.19. Theorem ([198]). Let 7 : G — O(V) be an orthogonal, real,
finite-dimensional representation of a compact Lie group G. Let p1,...,pi €
R[V]E be homogeneous generators for the algebra R[V]® of invariant poly-
nomials on V. For v € V, let Nor,(G.v) := T,(G.v)* be the normal space
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to the orbit at v, and let Nor,(G.v)% be the subspace of those vectors which
are invariant under the isotropy group G,.

Then grad pi(v), ..., grad pi(v) span Nor,(G.v)%" as a real vector space.

Proof. Clearly each grad p;(v) € Nor,(G.v)%. In the following we will
identify G with its image 7(G) C O(V). Its Lie algebra is then a subalgebra
of o(V') and can be realized as a Lie algebra consisting of skew-symmetric
matrices. Let v € V, and let S, be the normal slice at v which is chosen
so small that the projection of the tubular neighborhood (see PG
G.Sy — G.v from the diagram

G x S, & Gxg, Sy —T" G.S,
p PG.v
G/G, T G.v

ot

has the property that for any w € G.S, the point pg,(w) € G.v is the
unique point in the orbit G.v which minimizes the distance between w and
the orbit G.v.

Choose n € Nor,(G.v)% so small that 2 := v +n € S,. So pg..(z) = v.
For the isotropy groups we have G, C G, by But we have also
Gy, € Gy,NG, € Gy, so that G, = G,. Let S, be the normal slice at
x which we also choose so small that pg, : G.S, — G.r has the same
minimizing property as pg. above, but so large that v € G.S, (choose n
smaller if necessary). We also have pg,(v) = x since for the Euclidean
distance in V' we have

|v — x| = min |g.v — z| since v = pg ()
geG
=min |h.g.v —h.x| foralhed
geG

1 1

=minlv—g .z by choosing h = g~ .

geG
For w € G.S, we consider the local, smooth, G-invariant function
dist(w, G.J:)2 = dis‘c(w,pG.x(w))2 = (w — pg.z(w),w — pg..(w))
= <w7w> + <pG.m(w)apG.x(w)> - 2<wapG.r(w)>
= <w,w) + <ZL‘,$> - 2<wapG.x(w)>'

Its derivative with respect to w is

(1) d(dist( ,G.2)*)(w)y = 2(w,y) — 2(y, pe.o(w)) — 2{w, dpc..(w)y).
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We shall show below that
(2) (v,dpg.o(v)y) =0 forally €V,

so that the derivative at v is given by

(3) d(dist( ,G.x)*)(v)y = 2(v,y) —2(y,pa.2(v)) = 2(v —z,y) = —2(n,y).

Now choose a smooth G -invariant function f : S, — R with compact
support which equals 1 in an open ball around x and extend it smoothly
(see the diagram above, but for S;) to G.S; and then to the whole of V.
We assume that f is still equal to 1 in a neighborhood of v. Then g =
f.dist( ,G.z)?is a smooth G-invariant function on V which coincides with
dist( ,G.z)? near v. By the theorem of Schwarz there is a smooth
function h € C°(R* R) such that g = h o p, where p = (p1,...,px) : V —
R¥. Then we have finally by (3)

—2n = grad(dist( ,G.z)%)(v) = grad g(v)
" on
= grad(hop)(v) = > oy, (P(0) rad pi(v),

i=1

which proves the result.

It remains to check equation (2). Since T,V = T,(G.v) & Nor,(G.v), the
normal space Nor,(G.x) = kerdpg.,(v) is still transversal to T,(G.v) if n
is small enough; so it remains to show that (v, dpg..(v).X.v) = 0 for each
X € g. Since r = pg,(v), we have [v — z|> = mingeq [v — g.z|?, and thus
the derivative of g — (v — g.x,v — g.z) at e vanishes: For all X € g we have

4) 0=2(—Xz,v—2)=2(Xz x)—2(X2,0) =0—-2(X.2,0),

since the action of X on V is skew-symmetric. Now we consider the equation
PG (gv) = g.pc..(v) and differentiate it with respect to g at e € G in the
direction X € g to obtain in turn

dpg..(v).Xv=Xpg.(v) = Xz,
(v,dpg.z(v).Xv) = (v,X.z) =0, by (4). O

29.20. Lemma. Let w: G — O(V) be an orthogonal representation. Let
w e (V)Y be an invariant differential form on V which is horizontal in
the sense that iyw, = 0 if w is tangent to the orbit G.x. Let v € V and let
w € T,V be orthogonal to the space NorU(G.v)Gg of those orthogonal vectors
which are invariant under the connected component GO of the isotropy group

Gy. Then iyw, = 0.
Proof. We consider the orthogonal decomposition

T,V = T,(G.v) ® W & Nor,(G.v)°".
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We may assume that w € W since i,w, = 0 for u € T,,(G.v).

We claim that each w € W is a linear combination of elements of the form
X for u € W and X € g, := ker(dn( )v). Since GO is compact, the
representation space W has no fixed point other than zero and is completely
reducible under GO and thus also under its Lie algebra g,, and we may
treat each irreducible component separately or assume that W is irreducible.
Then g, (W) is an invariant subspace which is not 0. So it agrees with W,
and the claim follows.

So we may assume that w = X.u for v € W. But then

v

(v+ tu, Xu=nX.(v+ 2u)) €T, +%U(G.(v + Lu))
satisfies 1x ywyty/n = 0 by horizontality and thus we have

LWy = LX.yWy = hran iX.uwv+u/n =0. O

29.21. G-manifold with a single orbit type as fiber bundle. Let
(M,~) be a proper Riemann G-manifold and suppose that M has only one
orbit type (see 6.11), (H). We then want to study the quotient map = :
M — M/G. Let us first consider the orbit space M/G. Choose z € M
and let S; denote the normal slice at . Then by we have G, C
G, for all y € S;. Since G, must additionally be conjugate to G, and both
are compact, they must be the same by So Gz = G, and therefore
G, acts trivially on S, (this can also be seen as a special case of .
From it follows that 7(S,) = S;/G, = Sz, and with we
have that G.S, is isomorphic to G/G, x S;. Therefore, for any = € M,
(m(Sz),exp; ! |s,) can serve as a chart for M/G:

M~<~—8,

MG < 7(S,) == S,/Ga.

To make an atlas out of these charts, we have to check whether they are
compatible — which is obvious. By[(6.29)| M /G is Hausdorff, and therefore
it is a smooth manifold.

Now let us study the smooth submersion 7 : M — M/G. We want to find
a Riemann metric on M /G which will make 7 a Riemann submersion.

Claim. For X,,Y, € Hor,(n) = Nor,(G.x), the following inner product is
well defined:

Vo(a) (T X, TTYz) 1= 7u(Xa, Yoo



29. Riemann G-Manifolds 383

Proof. Choose X_,,Y,, € Horg,(r) such that T'r.X;, = Tm.X, and
Tn.Y,, = T7.Y,. Then we see that X/, = T'(¢,)X, by the following argu-
mentation: Clearly T'r(X,—T(¢,).X,) = 0, so the difference X, —T({y). X,
is vertical. The map ¢4 leaves G.x invariant; consequently, 7', maps vertical
vectors to vertical vectors and since it is an isometry, it also maps horizontal
vectors to horizontal vectors. Therefore X}, —T'(¢,).X, is horizontal as well

as vertical and must be zero.

Now we can conclude, that

’Ygx(X;xa Yg,x) = Yga (T (lg) Xa, T(Lg)Yz) = Y (X, Ya). O

So we have found a Riemann metric 4 on M /G which makes 7 a Riemann
submersion.

Let us finally try to understand in which sense 7 : M — M/G is an as-
sociated bundle. Let x € M be such that G, = H. By the set
MY ={x € M:gx=ux forall g€ H} is a geodesically complete subman-
ifold of M. It is Ng(H )-invariant, and the restriction 7 : M¥ — M/G is a
smooth submersion since for each y € M# the slice Sy is also contained in
MM, The fiber of m: M — M/G is a free Ng(H)/H-orbit: If n(z) = 7 (y)
and G, = H = Gy, then g € Ng(H). So m : MH — M/G is a princi-
pal Ng(H)/H-bundle, and M is the associated bundle with fiber G/H as
follows:
M7 x G/H
l z,[g))—g.x

M X gy n G/ ——— M

|

M/G ——— M/G.

29.22. Another fiber bundle construction. Let M again be a proper
Riemann G-manifold with only one orbit type. Then we can ‘partition’ M
into the totally geodesic submanifolds

MoHe™ = {x €M :ghg 'z =xforal hc H}

where H = G, (xo € M arbitrary) is fixed and g varies. This is not a proper
partitioning in the sense that if g # e commutes with H, for instance, then
M9H9™ = MeHe™  We want to find out just which g give the same sets
M9HI™
Claim.

/—1

M99~ — ppo'He ~— gN(H)=g¢N(H)
where N(H) denotes the normalizer of H in G.

1
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Proof. First let us show the following identity:
N(H)={geG:gM")C M"}.
(C) Let n € N(H) and y € M. Then n.y is H-invariant:
hn.y = nn " thn.y = n(n"thn).y = n.y.

(D) gMH" C M implies that hg.y = g.y, or equivalently g~'hg.y = v,
for any y € M and h € H. Recall at this point that H = Gy, for
some xg € M. Therefore, we have g 'hg.xzg = o and consequently
g thge G, =H.

Using this characterization for N(H) and the identity
g{ge G:gM" C M"y={ge G:gM" C gM"},
we can convert the right hand side of our equality, gN(H) = ¢'N(H), to the
following:
{acG:aMP Cg My ={acG:aM? C g M}
In particular, this is the case if
g. M = ¢ M7

In fact, let us show that the two equations are equivalent. Suppose indirectly
that g.y ¢ ¢’.M* for some y € M. Then a = g has the property .M ¢
g M7 so{acG:aM? CgM?}y#{acG:aM™ C g . MH}.

So far we have shown that gN(H) = ¢'N(H) & g.M" = ¢ . MH". To
complete the proof, it only remains to check whether

1

MIHT™ — g M.

This is easily done (as well as plausible, since it strongly resembles the ‘dual’
notion Gy, = G, 1):
Y€ M9HTT ghgly=y forallhe H
< hgly=g¢gly foralhe H
— glye MH
— yegM? O

Claim. The map 7 : M — G/N(H) defined by M9H9™" 5 2 s g.N(H) is
a fiber bundle with typical fiber M*.
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Proof. To prove this, let us consider the following diagram:

G x M1 d

|

G XN(H) MH

|

G/N(H).

M

Here we use the restricted action ¢ : N(H) x MH — M" to associate to
the principal bundle G — G/N(H) the bundle G[M* (] = G Xy () M?
It remains to show that £ is a diffeomorphism, since then 7 has the desired
fiber bundle structure. The map ¢ is smooth, since £ o ¢ = £ is smooth and
¢ is a submersion. Now let us show that /£ is bijective.

(1) { is surjective: Since H is the only orbit type, for every z € M there
is a g € G, such that Gy = gHg™ ', which implies 2 € M9H9™' = gMH C
(G x M™). So / is surjective and, by the commutativity of the diagram, so
is 0.

(2) £ is injective: Suppose l(a,z) = a.x = b.y = £(b,y), for some a,b €
G, z,y € M. Then b='ax = y € MY implies hb~la.xz = y = b la.x
which implies again (b~'a)"'hb~'a.x = x. Since there is only one orbit type
and all isotropy groups are compact, we know that z € MY = H = G, (by
(6.12)). So (b~'a)"'hb~la is again in H, and b~'a € N(H). In this case,
q(a,x) = [a,z] = [bb_la,:n] = [b, b_la.:r] = [b,y] = q(b,y).

The inverse map ¢! is smooth, since £ is a submersion. So / is a diffeomor-
phism and 7 a fiber bundle with typical fiber M. O

29.23. Construction for more than one orbit type. Let (H) be one
particular orbit type (H = G,). To reduce the case at hand to the previous
one, we must partition the points in M into sets with common orbit type:

Claim. For a proper Riemann G-manifold, the space M) as defined above
is a smooth G-invariant submanifold.

Proof. The set My is of course G-invariant as a collection of orbits of
a certain type. We only have to prove that it is a smooth submanifold.
Take any x in Mg (then, without loss, H = G), and let S; be a slice at
x. Consider the tubular neighborhood G.S = G x g S, (see . Then
the orbits of type (H) in G.S are just those orbits that meet S, in S
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(where SH shall denote the fixed point set of H in S,). Or, equivalently,
(G XH Sx)(H) =G XH Sf:

(©) l9,8] € (G xm Se) )y = 95 €G-Sy = gHg™ ' = Gs C H = Gy =
H=scSH =g,s]€GxySH.

(2) [9,8] € G xgSE = se SH = H C Gy, but since s € S, we have
Gs C Gy = H by|(6.16.2)} therefore Gs = H and [g, 5] € (G Xy Sz)(m)-

Now, let S; = exp,(Nor,(G.x)) be the normal slice at z. That is, r is chosen
so small that exp, is a diffcomorphism on Nor,(G.xz) =: V. Notice that V/
is not only diffeomorphic to S,, but G-equivariantly so, if we let G act on
Nor,(G.x) via the slice representation. Since the slice action is orthogonal,
in particular linear, the set of points fixed by the action of H is a linear
subspace of Nor,(G.x) and its intersection with V', a “linear” submanifold.
Therefore S is also a submanifold of S,. Now consider the diagram

¢ M

G x SH

GXHSE

The map ¢ is well defined, injective and smooth, since p is a submersion and
¢ is smooth. Furthermore, p is open, and so is ¢. Just consider any open
set of the form U x W in G x SH. Then ¢(U x W) is the union of all sets
£,(W) for w € U. Since ¢, is a diffeomorphism, each one of these is open,

so /(U x W) is open as well. Therefore, i must be open, and so i is an
embedding and G.S 2 G xy S is an embedded submanifold of M. [

Let (H) be one particular orbit type (H = G); then M is again a closed,
totally geodesic submanifold of M; see|(29.1.3)]

Claim. {z € M : G, = H} is an open submanifold of M*™.

For one orbit type, x € MY implied H = G, and thus {z € M : G, =
H} = M*H . For more than one orbit type, M is not necessarily contained in
M py. Therefore, it is necessary to study {zr € M : G, = H} = MHQM(H).

Proof. In we saw that N(H) is the largest subgroup of G acting on
M*H Tt induces a proper N(H)/H-action on M. Now, {x € M : G, = H}
is the set of all points in M with trivial isotropy group with respect to this
action. So by it is simply the set of all regular points. Therefore, by
{r € M : G, = H} is an open, dense submanifold of M. O

Now, Mgy can be turned into a fiber bundle over G /N (H) with typical fiber
{r € M : G, = H} just as before. On the other hand, Mg is a fiber bundle
over M(p)/G with typical fiber G/H. The partition of M into submanifolds
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My and that of M/G into the different orbit types is locally finite by
(29.15)l So M and M/G are in a sense stratified, and 7 : M — M/G is a
stratified Riemann submersion (see also [40]).

29.24. Remark. Let M be a connected Riemann G-manifold and (H) the
principal orbit type, then we saw in |(29.23)| that 7 : Mgy — Mgy /G is a
Riemann submersion. Now we can prove:

Claim. For xz € My = Mgy a vector field § € T'(Nor(G.x)) is w-parallel if
and only if € is G-equivariant.

Proof. (<= ) If{(g.x) = Tply.6(x), then Ty ,m.8(g.x) = Ty amoTly.E(x) =
T,m.&(x) for all g € G. Therefore ¢ is m-parallel.

(=) The tangent vectors &(g.x) and T;¢,¢(x) are both in Nory ,(G.x), and
since ¢ is m-parallel, we have T, ,7.£(g.2) = Tpm.£(x) = Tyam o Typly.&(x).
So &(g.x) and T,ly.£(x) both have the same image under Ty ,7. Because
Ty.»m restricted to Norg ,(G.z) is an isomorphism, £(g.x) = Tp4y.&(x). O

30. Polar Actions

In this chapter, let (M, ) always denote a connected, complete Riemann G-
manifold, and assume that the action of G on M is effective and isometric.

30.1. Lemma. Consider X € g, the Lie algebra of G, (x, the as-
sociated fundamental vector field to X, and ¢, a geodesic in M. Then

v(d'(t),Cx(c(t))) is constant in t.

This is an example of a momentum mapping if we lift the whole situation to
the symplectic manifold T*M and identify this with T M via 7. See section

(34)

Proof. Let V be the Levi-Civita covariant derivative on M. Then

875"7(0/@)7 CX (C(t))) = ’Y(Vatcl(t)7 CX(c(t))) + ’Y(Cl(t% Vat (CX o C)) .
Since ¢ is a geodesic, Vy,d(t) = 0, and so is the entire first summand. So it
remains to show that v(c/(t), Vg, (Cx o ¢)) vanishes as well.

Let s1, ..., be alocal orthonormal frame field on an open neighborhood U
of ¢(t), and let o', ..., 0™ be the orthonormal coframe. Then v = > ¢! ® o',
Let us use the notation

(xlo =) siX7,
VCX‘U =: ZXiij ®0’i.
Then we have

Vo (Cx o¢) = D X7 (e(t))sj(e(t))o’ (¢ (2)).
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So
Y(d (), Vo, ({x 0c)) =D o/ (d(t)o? (Va,(Cx 0 0))
= ng c(t)o? (' (t)o (¢ (¢)).

If we now show that Xij + X; = 0, then v(d/(t), Vg, (Cx o ¢)) will be zero,
and the proof will be complete. Since the action of G is isometric, (x is a
Killing vector field; that is, £¢,v = 0. So we have

Zﬁcxai Qo' + Zai ®£<X0i =0.

Now we must try to express ngai in terms of Xg . For this, recall the
structure equation: do® + wa Aol = 0. We have

Logo' =icedo’ +d(icyo') = —ic, (Y wiAo!) +d(o" ((x))
= —igy Y wi Aol +dXT =" wh X =Y wi((x)o? + dX".
Since
Vixlo =V X7) =D siwh X0+ si0dX' =Y Xis; @07,
we can replace Zw}.X I by S in»aj — dX*. Therefore,
Lot = Y (Xjo? ~ wj(Cx)o?) = T(X] — wh(Cx))or
Now, let us insert this into 0 = L, v:
0= ZECXUi ® o'+ Zai ® Leyo!
= (X] —wi(¢x))od @ o' + > (X] — wi((x))o' @ o7
=Y (Xj+ X))ol @0’ = > (wi(¢x) + w! ({x))o? @ o
= Z:(X]Z +Xg)aj ®a" —0
since w(Y) is skew-symmetric. This implies X;: + Xg = 0, and we are
done. (]
30.2. Definition. For any x in M, we define:
E(z) := exp](Nory(G.x)) C M,
Ereg(z) := E(x) N M ey

In a neighborhood of x, E(x) is a manifold; globally, it can intersect itself.

30.3. Lemma. Let v € M,.,, then:
(1) g.E(x) = E(9.%), g-Ereg() = Ereg(g-7).
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(2) For X, € Nor(G.x) the geodesic ¢ : t — exp(t.X) is orthogonal to
every orbit it meets.

(3) If G is compact, then E(x) meets every orbit in M.

Proof. ([Il) This is a direct consequence of |(29.1.1)|
g-exp, (t.X) = expy . (t.Tuly. X).

() By choice of starting vector X, the geodesic ¢ is orthogonal to the orbit
G.zx, which it meets at ¢ = 0. Therefore it intersects every orbit it meets

orthogonally, by lemma

@) For arbitrary x,y € M, we will prove that E(z) intersects G.y. Since G
is compact, by continuity of ¢Y : G — M, the orbit G.y is compact as well.
Therefore we can choose g € G in such a way that dist(z, G.y) = dist(z, g.y).
Let ¢(t) := exp,(t.X,) be a minimal geodesic connecting x = ¢(0) with
g.y = ¢(1). We now have to show that X, € Nory(G.z): Take a point
p = ¢(t) on the geodesic very close to g.y — close enough so that exp,, is
a diffeomorphism into a neighborhood U, of p containing g.y (it shall have
domain V' C T,M ). In this situation Gauf’s lemma states that all
geodesics through p are orthogonal to the geodesic spheres: expp(k:.Smfl)
(where S™~1 .= {X, € T,M : v(X,, X,) = 1}, and k > 0 is small enough
for k£.5™~1 C V to hold). From this it can be concluded that c is orthogonal
to G.y: Take the smallest geodesic sphere around p touching G.y. By the
minimality of ¢, ¢ must leave the geodesic sphere at a touching point, and by
Gauf’s lemma, it must leave at a right angle to the geodesic sphere. Clearly,
the touching point is just g.y = ¢(1), and there ¢ also meets G.y at a right
angle. By (2), ¢ encloses a right angle with every other orbit it meets as well.
In particular, ¢ starts orthogonally to G.x. Therefore, X, is in Nor,(G.x),
and g.y = ¢(1) € E(x). O

30.4. Remark. Let x € M be a regular point and S, the normal slice at
x. If S, is orthogonal to every orbit it meets, then so are all g.S, (g € G
arbitrary). So the submanifolds ¢.S, can be considered as leaves of the
horizontal foliation (local solutions of the horizontal distribution — which
has constant rank in a neighborhood of a regular point), and the Riemann
submersion 7 : Mg — M:eg/G is integrable. Since this is not always the
case (the horizontal distribution is not generally integrable), it must also be
false, in general, that the normal slice is orthogonal to every orbit it meets.
But it does always meet orbits transversally.

Example. Consider the isometric action of the circle group S on C x C (as
real vector spaces) defined by e’.(z1, z2) := (e%.21, €".25). Then p = (0,1) is
a regular point: G, = {1}. The subspace Nor,(S'.p) of T,,C x C takes on the
following form: Nor,(S'.p) = ((1,0), (i,0), (0,1))g = C x R. Therefore, we
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get £(0,1) = {(u,1 + ) :u € C,r € R}. In particular, y = (1,1) € E(0,1),
but Sty = {(e®, ) : t € R} is not orthogonal to F(0,1). Its tangent space,
T,(S*.y) = R.(i,4), is not orthogonal to C x R.

30.5. Definition. A connected closed complete submanifold ¥ C M is
called a section for the G-action, and the action is called a polar action if:

(1) X meets every orbit, or equivalently, G.X = M.

(2) Where ¥ meets an orbit, it meets it orthogonally: For z € ¥ we have
T,% C Nor,(G.x); equivalently, for z € 3, X € g we have (x(z) L T, 2.

If 3 is a section, then so is g.% for all g in G. Since G.X = M, there is a
section through every point in M. We say that M admits sections.

The notion of a section was introduced in [216}, 217] and in slightly different
form in [189, 190]. The case of linear representations was considered in
[23], [36], and then in [38] where representations admitting sections were
called polar representations (see and where all polar representations
of connected Lie groups were completely classified. Also, [35] considered
Riemann manifolds admitting flat sections. We follow here the notion of
[189].

30.6. Examples. For the standard action of O(n) on R™ the orbits are
spheres, and every line through 0 is a section.

If G is a compact, connected Lie group with bi-invariant metric, then conj :
G x G — G, conj,(h) = ghg™! is an isometric action on G. The orbits are
just the conjugacy classes of elements.

Proposition. FEvery mazimal torus H of a compact connected Lie group G
15 a section.

A torus is a product of circle groups, or equivalently, a compact connected
abelian Lie group; a maximal torus of a compact Lie group is a toral sub-
group which is not properly contained in any larger toral subgroup.

Proof. We check conj(G).H = G: This states that any g € G can
be found in some subgroup which is conjugate to H, g € aHa~!. This is
equivalent to ga € aH or gaH = aH. So the claim now presents itself as a
fixed point problem: Does the map ¢, : G/H — G/H : aH — gaH have a
fixed point? It is solved in the following way:
The fixed point theorem of Lefschetz [215] 11.6.2, p. 297] says that a
smooth mapping f : M — M from a connected compact manifold to itself
has no fixed point if and only if

dim M

> (—1)' Trace(H'(f) : H'(M) — H'(M)) = 0.

i=0
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Since G is connected, /4 is homotopic to the identity, so

dim G/H ‘ . A A

> (—1) Trace(H'({,) : H'(G/H) — H'(G/H))

=0

dim G/H ' . dim G/H ' .

= Y (=1)fTrace(H'(Id)) = > (-1)'dim H(G/H) = x(G/H),
=0 =0

the Euler characteristic of G/H. This is given by the following theorem [182],
Sec. 13, Theorem 2, p. 217): If G is a connected compact Lie group and H
is a connected compact subgroup, then the Euler characteristic x(G/H) > 0.
Moreover x(G/H) > 0 if and only if the rank of G equals the rank of H. In
the case when x(G/H) > 0, then x(G/H) = [Wg|/|Wx|, the quotient of the
respective Weyl groups.

Since the Weyl group of a torus is trivial, in our case we have x(G/H) =
|We| > 0, and thus there exists a fixed point.

Now we show that holds, h € H, X € g = (x(h) L Tp,H: We have
Cx(h) = Ohlo exp(tX)hexp(—tX) = Top" X — Topup X.
Now choose Y € hh. Then we have Toup.Y € T H, and
Vi (Topin.Y, Top X — Topip. X) = 7.(Y, Ad(R).X — X)
= %e(Y, Ad(h).X) = 7e(Y, X)
= Ye(Ad(h).Y, Ad(h).X) = 7(Y,X) =0

by the right, left, and therefore Ad-invariance of v and by the commutativity
of H. O

30.7. Example. Let G be a compact semisimple Lie group acting on its
Lie algebra by the adjoint action Ad : G x g — g. Then every Cartan
subalgebra h of g is a section.

Proof. Every element of a semisimple Lie algebra g is contained in a Cartan
subalgebra, and any two Cartan subalgebras are conjugated by an element
g € G, since G is compact. This is a consequence of above, since the
subgroup in G corresponding to a Cartan subalgebra is a maximal torus.
Thus every Adg-orbit meets the Cartan subalgebra §. It meets orthogonally
with respect to the Cartan-Killing form B: Let Hy,Hs € h and X € g.
Then 0:|o Ad(exp(tX)).H1 = ad(X)H; is a typical vector tangent to the
orbit through H; € b, and Hs is tangent to h. Then

B(ad(X)Hy, Hy) = B([X, H1], Hy) = B(X, [Hy, Hs]) = 0

since b is commutative. [l
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30.8. Example. In|(7.1)| we showed that for the O(n)-action on S(n) by
conjugation the space X of all diagonal matrices is a section.

Similarly, when the SU(n) act on the Hermitian matrices by conjugation,
the (real) diagonal matrices turn out to be a section.

30.9. Definition. The principal horizontal distribution on a Riemann
G-manifold M is the horizontal distribution on 7 : Myeg — Myeg/G.

Theorem. If a connected, complete Riemann G-manifold M has a section
X, then:

(1) The principal horizontal distribution is integrable.

(2) Every connected component of ¥, is a leaf for the principal horizontal
distribution.

(3) If L is the leaf of Hor(M,eq) through x € Myeq, then w|r, : L — Myey/G
18 an 1sometric covering map.

(4) X is totally geodesic.

(5) Ewvery regular point x € M is contained in a unique section E(xr) =
expa (Nor, (G.x)).

(6) A G-equivariant normal field along a principal orbit is parallel in terms
of the induced covariant derivative VN,

Proof. (I) The submanifolds g.X,es of M;ee are integral manifolds to the
horizontal distribution, since they are orthogonal to each orbit and by an
argument of dimension.

@) is clear. (@) is @) follows from |(26.13.1)]

@) For x € M choose g € G such that g.z € XNG.x; then g~1.¥ is a section
through z. By @) and @) we have E(z) € g~'.X. The converse can be
seen as follows: Let y € ¢g~1.3 and choose a minimal geodesic from x to y.
By the argument given in the proof of this geodesic is orthogonal
to the orbit through x and thus lies in E(z). So y € E(x).

([6) See|(26.19)| and recall that by |(29.24)| a normal field is G-equivariant if

and only if it is m-parallel, where 7 : M — M /G is the orbit map. U

30.10. Remark. The converse of [(30.9.1)|is not true. Namely, an integral
manifold of Hor(M,e.) is not, in general, a section.

Example. Consider the Lie group G = S! x {1}, and let it act on M :=
S1 x S! by translation. Let ¢ = (1,0) denote the fundamental vector field
of the action, and choose any 7 € Lie(S! x S') = R x R which generates a
1-parameter subgroup ¢ which is dense in S! x S! (irrational ascent). Now,
endow S! x S! with a Riemann metric making ¢ and 1 an orthonormal frame
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field. Any section of M would then have to be a coset of ¢, and therefore
dense. This contradicts the assumption that a section is a closed embedded
submanifold.

30.11. Example. If (G/H,o) is a symmetric space, then the totally ge-
odesic connected submanifolds N of G/H through e € G/H correspond
exactly to the linear subspaces

T.N=nCm:=T.G/H={X €g:0'(X)=-X}
which fulfill [[n, n],n] C n; see|(28.5.12)

This implies that a locally totally geodesic submanifold of a simply con-
nected symmetric space can be extended uniquely to a complete, totally
geodesic submanifold. Here we mean by locally geodesic submanifold that a
geodesic can leave the submanifold only at its “boundary”. In other words,
the second fundamental form must be zero.

30.12. Corollary. Let M = G/H be a simply connected, complete sym-
metric space, and let K C G be a Lie subgroup. Then the action of K on
G/H admits sections if and only if Hor(M,e) is integrable. In particular, if
the principal K-orbits have codimension 1, there exist sections.

30.13. Theorem. Consider any Riemann G-manifold M. Then the fol-
lowing statements are equivalent.

(1) Hor(Mye,) is integrable.
(2) Each G-equivariant normal field along a principal orbit is VN -parallel.

(3) For x € My, S the normal slice at x and X € g and s € S arbitrary,
Cx(s) L Tg(S).

Proof. The equivalence of () and (2]) is a direct consequence of and
remark Furthermore, suppose (II); then there is an integral subman-
ifold H of the horizontal distribution going through z. The submanifold H
is totally geodesic by and so S = exp,(Nor,(G.z)) is contained
in H. Therefore, [B) holds: The fundamental vector field (x is tangent
to the orbit G.s and so it is perpendicular to the horizontal distribution
and to T5(S). Now if we suppose (), then S is an integral submanifold of
Hor(M,eg), and () holds. O

30.14. Remark. We already saw in|(29.10)|that Nor G.z is a trivial bundle.
Now we even have a parallel global frame field. So the normal bundle to a
regular orbit is flat.
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30.15. Corollary. Consider an orthogonal representation p : G — O(V)
Let x € V be any regular point and % the linear subspace of V' that is orthog-
onal to the orbit through x. Then the following statements are equivalent:

(1) V admits sections.

(2) X is a section.

(3) Forally € ¥ and X € g we have (x(y) L X.

Proof. (B)) implies that the horizontal bundle is integrable (See (30.13))).
In this case |(30.11) implies (). Also, () implies (2 by [(30.9.5), and (IZI)

obviously implies (3]).

30.16. Definition. An orthogonal representation of G is called a polar
representation if it admits sections.

Corollary. Let G C O(V) be a polar representation of a compact Lie group,
and let v € V' be a reqular point. Then

Yi={weV:w) C )}
is the section through v, where (g(w) := {(x(w): X € g} C V.

Proof. Since (4(v) = T,(G.v) and by |(30.15)] a section through v is given
by ¥/ := (g(v)t. If z € ¥, then (4(2) C (E’) , which in our case implies
that (4(2) C (4(v). So z € 3.

Conversely, suppose z is a regular point in ¥. Consider the section "
Cy(2)* through z. Then, since (4(2) C (4(v), we also have that ¥ = (4(v)*
(y(2)t = X". Therefore ¥ = ¥" and, in particular, z € .

Om

30.17. Lemma. Let G C O(V) be an orthogonal representation of a
compact Lie group. Then for every v € V the normal space to the orbit
Nor, := Nor,(G.v) = T,(G.v)*

meets every orbit.

Proof. Let w € V and consider f : G — R, f(g) = (g.w,v). Let go
be a critical point, e.g., a minimum on the compact group G; then 0 =
df (90).(X.90) = (X.go.w,v) = —(go.w, X.v) for all X € g. Thus gp.w €
Nor,(G.v). O

30.18. Lemma. Let G C O(V) be an orthogonal representation of a
compact Lie group. For any regular vg € V the following assertions are
equivalent:

(1) For any v € Vyeq there exists g € G with g.T,(G.v) = Ty, (G.vg).
(2) Nory, (G.vg) = Ty (G.vg)™* is a section.
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Proof. (1) = ([2)) Let g C o(V) be the Lie algebra of G. Consider the linear
subspace
A :={v € Nor,, (G.vg) : (g.v, Nor,, (G.vp)) = 0}

of Nory,(G.vg) C V. If (@) does not hold, then A C Nor,,(G.vp), and then
dim(G.A) < dim(V'). So there exists w € Vieg \ G.A, and by lemma |(30.17)]
we may assume that w € Nor,,(G.v9). By (d) there exists ¢ € G with
g.Nor,(G.w) = Nory,(G.vg). This means Norg,,(G.w) = Nor,,(G.v9), a
contradiction to g.w ¢ A.

@) = () For any w € Vjeg there exists g € G with g.w € Nor,,(G.vp),

by |(3.18)l But then g.Nor,(G.w) = Norg,(G.w) = Nor,,(G.vg), so (1)
holds. g

30.19. Theorem. If G C O(V) is a polar representation, then for any
v € V with a section ¥ C Nor,(G.v), the isotropy representation G, C
O(Nor,(G.v)) is also polar with the same section ¥ C Nor,(G.v).

Conversely, if there exists some v € V' such that the isotropy representation
G, C O(Nor,(G.v)) is polar with section . C Nor,(G.v), then also G C
O(V) is polar with the same section ¥ C V.

Proof. Let G C O(V) be polar with section ¥, and let v € ¥ and w €
Ereg =N V}eg-
Claim. Then V = X@®g,.wdg.v is an orthogonal direct sum decomposition.

Namely, we have (g.X, ¥) = 0 so that
v W, §.v) = (W, g. gv-v) — (W, |go, g .v) = 0.
(gv-w, g.v) = (w, 9. go-v) — (W, [g0, 8] .v)
0 Cg

Since w is in V;eg, we have the orthogonal direct sum V' = X @ g.w, so that
dim(V) = dim(X) + dim(g) — dim(gy); and also we have (gy)w = gu. Thus
we get
dim(X & gy.w @ g.v) = dim(X) + dim(g,) — dim((gy)w) + dim(g) — dim(g,)

= dim(X) + dim(g,) — dim(gy) + dim(g) — dim(g,)

= dim(V)
and the claim follows.

But then we see from the claim that Nor, = X & g,.w is an orthogonal
decomposition and that |(30.18.1)| holds, so that G, C Nor, is polar with
section X.

Conversely, if G, C Nor, is polar with section >, we get the orthogonal
decomposition Nor,(G.v) = ¥ ® g,.% of Nor,(G.v). This implies (¥, g.2) =
0. By lemma we have G.Nor, = V. By polarity we have G,.X =
Nor,; thus finally G.X = V. So G € O(V) is polar. O
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30.20. Theorem. Let G be connected and G C O(V = Vi & Va) be a polar
reducible representation, which is decomposed as V = Vi ® Vo as G-module.
Then we have:

(1) Both G-modules Vi and Va are polar, and any section X of V' is of the
form X =31 ® X for sections X; in V;.

(2) Consider the connected subgroups
Gr:={9€G:g|¥2 =0}’  Go:={geG:g|¥ =0}’

Then G = G1.Go, and G1 X Gy acts on 'V = Vi & Vo componentwise
by (g1,92)(v1 + v2) = g1.v1 + g2.v2, with the same orbits as G: G.v =
(G x G2).v for any v.

Proof. Let v = vi +v2 € ENViege CV =V ® Vo, Then V = X @ g.v;
thus v; = s; + X;.v for s; € ¥; and X; € g. But then s; € ¥, NV; =: ¥; and
Vi=(2NV;) ® g.v; and the assertion (1) follows.

Moreover Nor,, = (g.v1)* = X1 @ V5, and by theorem the action of
G, on this space is polar with section 21 @®X9. Thus we have g,, = g2 := g5,
and g,, acts only on V2 and vanishes on Vi and we get Vo = X9 @ gy, 02 =
Yo @ g.ve. Similarly g,, = g1 := gx, and g,, acts only on V; and vanishes
on Va, and Vi = X1 @ gy,v1 = X1 @ g.v1. Thus g = g1 + g2 and consequently
G = G1.G2 = G3.G1 by compactness of G;. For any g € G we have g =
91-92 = g5.g} for gi, g} € G;. For u = uy +ug € V3 & Vo = V we then have
g-(u1 + u2) = g1.92.u1 + gh.g.u2 = g1.u1 + gh.ug; thus G.u C (G1 x Ga).u.
Since both orbits have the same dimension, G.u is open in (G x G2).u; since
all groups are compact and connected, the orbits coincide. O

30.21. The generalized Weyl group of a section. Consider a complete
Riemann G-manifold M which admits sections. For any closed subset S of
M we define the largest subgroup of G which induces an action on S:

N(S):={g€G:L,(S) =5}
and the subgroup consisting of all g € G which act trivially on S:
Z(S) ={g€G:Ly(s) =s, forall s e S}

Then, since S is closed, N(S) is closed, hence a Lie subgroup of G. The
centralizer Z(S) = (),cgGs is closed as well and is a normal subgroup of
N(S). Therefore, N(S)/Z(S) is a Lie group, and it acts on S effectively.

If we take for S a section X, then the above constructed group is called the
generalized Weyl group of ¥ and is denoted by

W(X) = NEX)/2(%).
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For any regular point « € 3, G, acts trivially on the normal slice S, at =
(by [29.7)). Since ¥ = exp, Norgy(G.z) by Sz is an open subset of
¥, and we see that G, acts trivially on all of ¥. So we have G, C Z(¥). On
the other hand, Z(X) C G, is obvious; therefore

Z(X) =Gy for x € ¥ N Mieg.

Now, since Z(X) is a normal subgroup of N(X), we have N(X) C N(G,)
where the second N stands for the normalizer in G. So we have

W(¥) C N(Gy)/Gy for x € ¥ N Myeg.

30.22. Proposition. Let M be a proper Riemann G-manifold and let
Y be a section; then the associated Weyl group W(X) is discrete. If ¥/ is
a different section, then there is an isomorphism W(X) — W(X') induced
by an inner automorphism of G. It is uniquely determined up to an inner
automorphism of W(X).

Proof. Take a regular point « € ¥ and consider the normal slice S,. Then
Sy C X is open. Therefore, any g in N(X) close to the identity element
maps x back into S, . By the element g then lies in G, = Z(X). So
Z (%) is an open subset of N(X), and the quotient W (X) is discrete.

If ¥/ is another section, then ¥’ = ¢.% where g € G is uniquely determined
up to N(X). Clearly, conj, : G — G induces isomorphisms

conj, :N(E) — N(¥),
2(2) — Z(2),

and therefore it factors to an isomorphism W (%) =, W (). O

30.23. Example. Any finite group is a generalized Weyl group in the
appropriate setting. That is, to an arbitrary finite group W we will now
construct a setting in which it occurs as a Weyl group. Let G be a compact
Lie group and H a closed subgroup such that W C N(H)/H (this is always
possible since any finite group can be regarded as a subgroup of O(V) =: G
so we need only choose H = {e}). Next, take a smooth manifold ¥ on which
W acts effectively. Consider the inverse image of W under the quotient map
m: N(H) - N(H)/H, K :== 7=}(W). Then the action of W induces a
K-action on X as well. The smooth manifold M := G xg X has a left G-
action. Let —B denote the G-invariant Riemann metric on G induced by
the Cartan-Killing form on the semisimple part and any inner product on
the center, and let 7s be a W-invariant Riemann metric on ¥. Then the
Riemann metric —B X vy on G X ¥ induces a G-invariant Riemann metric
on the quotient space G X i 3. With this, G X i 3 is a Riemann G-manifold,
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and if ¢ : G x ¥ — G X ¥ is the quotient map, then g({e} x X) = ¥ meets
every G-orbit orthogonally. So it is a section. The largest subgroup of G
acting on ¥ is K and the largest one acting trivially on ¥ is H. Therefore,
W(X) = K/H = W is the Weyl group associated to the section X.

30.24. Theorem. Let M be a proper Riemann G-manifold with sections.
Then, for any x € M, the slice representation G, — O(Nor,(G.x)) is a polar
representation. If 3 is a section through x in M, then T, is a section in
Nor,(G.x) for the slice representation. Furthermore,

W(T,%) = W(S),.

Proof. Clearly T, C Nor,(G.z). We begin by showing that it has the
right codimension. Take a { € Nor,(G.x) close to 0,; then (G,)¢ = Gy for
y = expa &, since exp, is a Gz-equivariant diffeomorphism in a neighborhood
of 0;. So G2.£ = G /(Gy)¢ = G2 /Gy. Let us now calculate the codimension
of G.€ in Nory(G.x):

dim(Nor,(G.z)) — dim(G5.£) = dim(Nor,(G.z)) — dim(G;) + dim(Gy)
= dim(Nor,(G.z)) + dim(G/G,) — (dim G — dim(Gy)) = codimp (G.y).

=dim M =dim G/G,

Since regular points form a dense subset, we can choose £ € T,.3 regular by
assuming that y = exp,(X) is regular in . Then y is regular as well and
we get

codimyey, (G.0) (G-§) = codimyy (G.y) = dim X = dim(7, ).

So T,% is a linear subspace of Nor, G.x with the right codimension for a
section. Therefore, if we show that 7,3 is orthogonal to each orbit it meets,
then it is already the entire orthogonal complement of a regular orbit, and
by corollary we know that it meets every orbit.

Denote the G-action on M by ¢ : G — Isom(M). If £ € T, X is arbitrary,
then it remains to prove that for all n € T3 and X € g,:

e, €219 (€)) = 0.

To do this, choose a smooth 1-parameter family n(t) € Toxp(te)2 such that
n(0) = n and Vy,n = 0. Since ¥ is a section in M, we know for each single
t that

Yesxp(ie) (Cx (exp (t€)), n(t)) = 0.

If we differentiate this equation, we get

0 = 8slo(Ck (exp™(s6)),m(s)) = v(Va, (i (exp? (), n(0)).
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So it remains to show that Vg, (% (exp?(s€)) is the fundamental vector field
of X at & for the slice representation:

Vo, (exp?(s€)) = VeCx = K 0Tk &

= K o T(0t|0lexpe (1x))-Oslo expy(s)

= K.0; ’0'8t logexpG(tX) (expg(sg))

= K'K’M'at‘o'as |U€expG(tX) (eXpZ(Sf))

= K'ﬁM-at‘O'T(gexpG(tXﬂ(5)'
Here, K denotes the connector and x,; the canonical flip between the two
structures of TT'M, and we use the identity K o x = K, which is a conse-
quence of the symmetry of the Levi-Civita connection. The argument of K

in the last expression is vertical already since X € g,. Therefore we can
replace K by the vertical projection and get

Vo, (5 (exp7(5€)) = vPr 9tlo T (bexpoix))-€ = o197 ().

So C};MGI (&) intersects T, orthogonally, and therefore 7,3 is a section.

Now consider Ng, (T(X)) = {9 € Gy : Tp({y). TxX = T,X}. Clearly,
Na(2)NGz C N, (Tz(X)). On the other hand, any g € Ng, (T(X)) leaves
Y. invariant as the following argument shows.

For any regular y € ¥ we have ¥ = exp, Nor(G.y). Therefore x = exp,n
for a suitable n € T, %, and conversely, y can be written as y = exp, £ for
§ = =01 exp,(tn) € TuX. Now g.y = g.exp, § = exp,, T{y.§ lies in ¥, since
Tpl4.€ lies in T 2. So g maps all regular points in 3 back into 3. Since
these form a dense subset and since ¢, is continuous, we get g € Ng(X).

We have now shown that
Ng,(TxX) = Na(¥) N G,
Analogous arguments used on Zg, (T,X) give
Z6, (%) = Za(%),
and we see that

We, (T:X) = (N(X)NGe)/Z(X) = W(E).. O

30.25. Corollary. Let M be a Riemann G-manifold admitting sections
and let x € M. Then for any section 3 through x we have

No1rx(G.:L')G2 cT,x,
where GY is the connected component of the isotropy group G, at x.

Proof. By theorem |(30.24)| the tangent space T, X is a section for the slice
representation G — O(Nory(G.x)). Let £ € T, X be a regular vector for the
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slice representation. By corollary [(30.16)| we have T,X = {n € Nor,(G.z) :
Cao (M) C G, (§)}. Since NOl"gc(G-HU)G consists of all 7 in Nor,(G.x) with
Cg. (1) = 0, the result follows. 0

30.26. Corollary. Let M be a proper Riemann G-manifold admitting
sections and let x € M. Then G, acts transitively on the set of all sections
through x.

Proof. Consider two arbitrary sections ¥; and ¥y through = and a normal
slice S, at x. By theorem T, % is a section for the slice representa-
tion. Since exp, can be restricted to a Gz-equivariant diffeomorphism onto
Sz, XoN.S; is a section for the G -action on S,. Next, choose a regular point
y € ¥1NS,. Its G -orbit meets the section Yo N S,, that is, we can find a
g € Gy such that g.y € ¥5. Now X9 and g¢.3; are both sections containing
the regular point g.y. Therefore they are equal. O

30.27. Corollary. Let M be a proper G-manifold with sections, let 3 be a
section of M and let x € X. Then
GrzNX=W(X).zx.

Proof. The inclusion (D) is clear. Now we have
yeGaxNY <= y=g.aecXforsomegecd.

Take this g and consider the section ¥/ := ¢.X. Then ¥ and X’ are both
sections through y, and by there is a ¢’ € Gy, which carries ¥’ back
into ¥. Now ¢'¢g.X = X, that is, ¢'g € N(X), and ¢'g.x = ¢y = y. So
ye NE)zx=W(X).x. O

30.28. Corollary. If M is a proper G-manifold with section %, then the
inclusion of X3 into M induces a homeomorphism j between the orbit spaces:

¥ : M

o

S/W(E) 2 M/G

(but it does not necessarily preserve orbit types; see remark|(6.17)|).

Proof. By the preceding corollary there is a one to one correspondence
between the G-orbits in M and the W (G)-orbits in X, so j is well defined
and bijective. Since j o my = mjs o4 and 7y is open, j is continuous.

Consider any open set U C ¥/W(X). We now have to show that
i (U) = Grgt(U)
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is an open subset of M (since then j(U) is open and j~! is continuous).

Take any = € 7, j(U). We assume = € ¥ (otherwise it can be replaced by
a suitable g.x € ¥). So x € 7y, (U). Let S, be a normal slice at x; then
>N S, is a submanifold of S, of dimension dim Y. In S;, = has arbitrarily
small G -invariant neighborhoods, since the slice action is orthogonal and
Sy is G-equivariantly diffeomorphic to an open ball in Nor,(G.z). Let V, be
such an open neighborhood of z, small enough for V; "% to be contained in
Ts, L(U). Then V, is again a slice; therefore G.V, is open in M by
Now we have to check whether G.V, is really a subset of 7T]T/[1 j(U). Using

corollary ((30.26)] we get
G.(VoNnE)=GG(VoNE)=G.(VoNG.E) =GV,

Therefore, G.V, C G.rg;'(U) = 7, 5(U) where it is an open neighborhood
of 2. So m,j(U) is an open subset of M, j(U) is open in M/G, and j~! is

continuous. O

30.29. Corollary. Let M be a proper Riemann G-manifold and > C M
a section with Weyl group W. Then the inclusion ¢ : ¥ — M induces an
isomorphism

cO(M)¢ s ooV,

Proof. By corollary [(30.27)] we see that every f € C°(X)" has a unique
G-equivariant extension f onto V. If we consider once more the diagram

5 : M

Wzi Wnyi

S/W(E) L~ M/G,

we see that f factors over 7y, to a map f € CY(X/W (X)), and since j is a
homeomorphism by |(30.28), we get for the G-invariant extension f of f:

f=fojtomy e M)C. O

30.30. Theorem ([189, 4.12] or [220], theorem D]). Let G — GL(V)
be a polar representation of a compact Lie group G, with section ¥ and
generalized Weyl group W = W (X).

Then the algebra R[V]S of G-invariant polynomials on V is isomorphic to
the algebra R[X)W of W-invariant polynomials on the section ¥, via the
restriction mapping f — f|s.
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Remark. This seemingly very algebraic theorem is actually a consequence
of the geometry of the orbits. This already becomes evident in the case of a
degree 1 homogeneous polynomial. To see that the G-invariant extension of
p € B[X]}” to V is again a polynomial (and again of degree 1), we we must
assume the following convexity result of Terng.

Under the conditions of the theorem, for every regular orbit G.x the orthog-
onal projection onto ¥, pr(G.x), is contained in the convex hull of G.z N'X
(this is a finite subset of ¥ by [(30.27)| since G is compact and W(X) is
discrete).

Let us make this assumption. Denote by p the unique G-invariant extension
of p; then clearly p is homogeneous. Now, notice that for any orbit G.x, p is
constant on the convex hull of G.x N X =: {g1.x,g2., ..., gr.x}. Just take
any s = »_ A\;g;.x with > A\; = 1; then

p(s) =Y Aiplgix) = p(gr) Y Ai = plg1.).

With this and with our assumption we can show that for regular points
u,v € M, p(u+v) = p(u) + p(v). Suppose without loss of generality that
u+ v € X; then

p(u+wv) = p(pr(u) + pr(v)) = p(pr(u)) + p(pr(v)).

At this point, the convexity theorem asserts that pr(u) and pr(v) can be
written as convex combinations of elements of G.uNY and G.v NY, respec-
tively. If we fix an arbitrary g, (resp. ¢,) in G such that g,.u (resp. g,.v)
lie in ¥, then by the above argument we get

p(pr(u)) =p(gu-u) and  p(pr(v)) = p(gv-v).
So we have
p(u+v) = p(gu-u) + p(go.v) = p(u) + p(v),

and p is linear on Vieg. Since the regular points are a dense subset of V' and
since p is continuous by p is linear altogether.

A proof of the convexity theorem can be found in [219] or again in [190), pp.
168-170]. For a proof of theorem we refer to [220]. In both sources
the assertions are shown for the more general case where the principal orbits
are replaced by isoparametric submanifolds (i.e., submanifolds of a space
form with flat normal bundle and whose principal curvatures along any
parallel normal field are constant; compare |(29.12)[ and [(30.14)). To any
isoparametric submanifold there is a singular foliation which generalizes the
orbit foliation of a polar action but retains many of its fascinating properties.

In connection with the example we studied in [(7.1)] the convexity theorem
from above yields the following classical result of [203]:
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Let M C S(n) be the subset of all symmetric matrices with fixed distinct
eigenvalues ay, ..., a, and pr: S(n) — R" defined by

pr(xlj) = ($117 .TQQ, e 7xnn),

then pr(M) is contained in the convex hull of the permutation group orbit
Sp.a through a = (ai,...,ay).

30.31. Theorem. Let M be a proper Riemann G-manifold with section %
and Weyl group W. Then the inclusion i : ¥ — M induces an isomorphism

C=(M)E s ()W),

Proof. Clearly f € C°°(M)® implies i* f € C°°(Z)". By [(30.29)] we know
that every f € C°(X)" has a unique continuous G invariant extension f.
We now have to show that f € C(M)C.

Let us take an € M and show that fis smooth at z. Actually, we can
assume x € X, because if f is smooth at z, then fo£,-1 is smooth at g.x,

SO f is smooth at g.x as well. Now let S, denote a normal slice at . Then
we have

G Xq, Sy G xS,

Since in the above diagram [ is an isomorphism and ¢ a submersion, it is
sufficient to show that f |5, opry, or equivalently, that f |5, is smooth at z. Let
B C T,S, be aball around 0, such that B = S, and T, >NB = ¥XN.S,. Then,
by theorem the G -action on S, is basically a polar representation
(up to diffeomorphism). So it remains to show the following:

Claim. If ¥ is a section of a polar representation G, — O(V') with Weyl
group Wy and f is a smooth Wy-invariant function on ¥, then f extends to
a smooth G -invariant function f on V.

In order to show this, let p1,...,pr be a system of homogeneous Hilbert
generators for R[X]"=. Then, by Schwarz’s theorem [(7.13) there is an

f' € C=(R¥) such that f = f o (p1,...,px). By theorem [(30.30)] each p;
extends to a polynomial p; € R[V]%+. Therefore we get that

f::fIO(ﬁ1,...,ﬁk):V—>]R

is a smooth G -invariant extension of f. O
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30.32. Basic differential forms. Our next aim is to show that pull-
back along the embedding ¥ — M induces an isomorphism Q) (M )¢ =
QP ()W) for each p, where a differential form w on M is called horizontal
if it kills each vector tangent to some orbit. For each point x in M, the slice
representation of the isotropy group G, on the normal space T, (G.z)* to
the tangent space to the orbit through z is a polar representation. The first
step is to show that the result holds for polar representations. This is done
in theorem The method used there is inspired by [212]. Then the

general result is proven, following [154, 156].

As usual, for a Lie group G we denote by g its Lie algebra, the multiplication
by p: G xG — G; for g € G let ug, 9 : G — G denote the left and right
translation. Let £/ : G x M — M be a left action of the Lie group G on
a smooth manifold M. We consider the partial mappings ¢, : M — M
for g € G and ¢* : G — M for x € M and the fundamental vector field
mapping ¢ : g — X(M) given by (x(z) = Te(¢*)X. Since /¢ is a left action,
the negative —( is a Lie algebra homomorphism.

A differential form ¢ € QP(M) is called G-invariant if (¢4)*¢ = ¢ for all
g € G and horizontal if ¢ kills each vector tangent to a G-orbit: i¢, ¢ = 0 for
all X € g. We denote by QP (M)Y the space of all horizontal G-invariant
p-forms on M. They are also called basic forms.

30.33. Lemma. Under the eaterior differential, the space Quor(M)C of
basic forms is a subcomplex of Q(M).

The cohomology of the complex (Qo (M), d) is called the basic cohomology
of the G-manifold M.

Proof. If ¢ € Qo (M), then the exterior derivative di is clearly G-
invariant. For X € g we have

Z'gxdtp = iCXdQO + digxgo = [’CXQO =0,

so dy is also horizontal. ([

30.34. Lemma. Let f, g : M — N be smooth G-equivariant mappings
between G-manifolds which are G-equivariantly C°°-homotopic: R x M s
again a G-manifold (with the action on M only), and there ezists a G-equi-
variant h € C°(R x M, N) with h(0,z) = f(z) and h(1,z) = g(z).

Then f and g induce the same mapping in basic cohomology:

f* = g* : Hbasic(N) — Hbasic(M)-

Proof. We recall the proof of (11.4)| where we showed this without G. For
w e QF (N)Y we have h*w € QF (R x M)% since h is equivariant. The
insertion operator ins; : M — R x M, given by ins;(z) = (¢,z), is also
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equivariant. The integral operator I&(gp) = fol insf ¢ dt commutes with the
insertion of fundamental vector fields and with the G-action, so it induces
an operator I} : QF (R x M) — QF (M)%. Let T := % € X(Rx M)
be the unit vector field in direction R. Thus the homotopy operator h :=
Loipoh* : QF (N)Y — QF-1(M) is well defined, and from the proof of

we conclude that it still satisfies
g"— f*=(hoins;)" — (hoinsp)"
= (ins] —insj) o h*
=(dolIjoir+Ijoirod)oh*
=doh—nhod,

which implies the desired result since for w € QF (M)% with dw = 0 we
have g*w — f*w = hdw + dhw = dhw. O

30.35. Basic lemma of Poincaré ([I11]). Let ¢ : G x M — M be a
proper G-manifold. For k > 0 let w € QF (M)® be a basic k-form on M
with dw = 0 in a G-invariant neighborhood of an orbit G.x. Then there

exists a basic form ¢ € QZ;:(M)G such that dw = ¢ in a G-invariant
neighborhood of G.x.

Proof. By|(6.30)| we may assume that M is a Riemann G-manifold. Let S,
be a slice with center o which is diffeomorphic to a small ball in T,(G.z)*+ C
T.M and thus contractible.

We denote again by ¢ : G, x S, — S, the induced action of the isotropy
group G, on the slice. Then dw = 0 on the G-invariant neighborhood G.S;
which is G-equivariantly diffeomorphic to the associated bundle G' x¢g, Sy

by |(6.18)} The quotient mapping
q:GxS; = Gxg, Sz

is the projection of a principal G, bundle by for the right action
R"g,y) = (gh,h~1.y), and it is equivariant for the left G-action (acting on
G alone). Thus ¢*w is still G-horizontal and G-invariant on G x S, and
thus ¢*w is of the form prg_« for a unique form a on S,. Moreover ¢*w is
also horizontal and invariant for the right G -action by So ais a
G -basic form on S;.

Now S, is G -equivariantly diffeomorphic to a ball in a vector space where
G acts linearly and isometrically. This ball is G -equivariantly contractible
to 0 via v — rw, r € [0,1]. Thus the basic cohomology of Hf . (S)
vanishes for k& > 0, and there exists a G,-basic form g € QF~1(S,)¢ with

hor
df = a. Then prg S is Gy-basic and G-basic on G x Sz, so it induces a
form ¢ € Qﬁ;l(G X, S¢)¢ which satisfies di) = w. O
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30.36. Theorem. For a proper G-manifold M the basic cohomology
£ (M) coincides with the real cohomology of the Hausdorff orbit space

basic .
M/G in the sense of Cech or in the sense of singular cohomology.

Sketch of proof. On the category of proper G-manifolds and smooth
G-equivariant mappings the basic cohomology satisfies the axioms for coho-
mology listed in|(11.11) We proved all but the Mayer-Vietoris property, for
which the proof|(11.10)| applies without any change. Pushing these proper-
ties down to the orbit spaces, they suffice to prove that basic cohomology
equals singular or Cech cohomology of the orbit space with real coefficients,
via the abstract theorem of de Rham in sheaf theory. (|

30.37. Theorem ([154, 156]). Let M x G — M be a proper isometric
right action of a Lie group G on a smooth Riemann manifold M, which
admits a section 2.

Then the restriction of differential forms induces an isomorphism

Qp

hor

(M)© =, Qr(2)V e

between the space of horizontal G-invariant differential forms on M and the
space of all differential forms on X which are invariant under the action of
the generalized Weyl group W (X) of the section 3.

Proof of injectivity in Let i : ¥ — M be the embedding of the
section. It clearly induces a linear mapping i* : QF (M)% — QP(Z)W®)
which is injective by the following argument: Let w € Q) (M )¢ with i*w =
0. For z € X we have ixw, = 0 for X € T,X since *w = 0 and also for
X € T,(G.z) since w is horizontal. Let x € ¥ N M;es be a regular point;
then 7T,¥ = (T(G.x))* and so w, = 0. This holds along the whole orbit
through z since w is G-invariant. Thus ou|Mreg = 0, and since M, is dense

in M, w=0. ([

So it remains to show that ¢* is surjective. This will be done in |(30.44)
below.

30.38. Lemma. Let £ € V* be a linear functional on a finite-dimensional
vector space V, and let f € C°(V,R) be a smooth function which vanishes
on the kernel of £, so that fl{=1(0) = 0. Then there is a unique smooth
function g such that f = £.g.

Proof. Choose coordinates z', ..., 2" on V such that £ = 2'. Then we have
f(0,22,...,2™) = 0 and therefore

1
f(xl,...,x”):/ o f(tet, 2%, ... x")dt.a' = g(zt,... 2"zt O
0



30. Polar Actions 407

30.39. Question. Let G — GL(V) be a representation of a compact Lie
group in a finite-dimensional vector space V. Let

p=(p1,...,pm):V—=>R"

be the polynomial mapping whose components p; are a minimal set of homo-
geneous generators for the algebra R[V] of invariant polynomials.

We consider the pullback homomorphism p* : QP(R™) — QP(V). Is it sur-
jective onto the space Q’;LOT(V)G of G-invariant horizontal smooth p-forms
onV?

See remark |(30.41)| for a class of representations where the answer is yes.

In general the answer is no. A counterexample is the following: Let the
cyclic group Z,, = Z/nZ of order n, viewed as the group of n-th roots of
unity, act on C = R? by complex multiplication. A generating system of
polynomials consists of p1 = |z|%, p2 = Re(z"), p3 = Im(2"). But then each
dp; vanishes at 0 and there is no chance of having the horizontal invariant
volume form dz A dy in p*Q(R3).

30.40. Theorem ([154, 156]). Let G — GL(V) be a polar representation
of a compact Lie group G, with section Y and generalized Weyl group W =
W (X). Then the pullback to ¥ of differential forms induces an isomorphism

F (V)G = ar(m)Ve),

hor
According to [38| remark after proposition 6], for any polar representation
of a connected Lie group the generalized Weyl group W (X) is a reflection
group. This theorem is true for polynomial differential forms and also for
real analytic differential forms, by essentially the same proof.

Proof. Let ¢ : ¥ — V be the embedding. It is proved in that the
restriction i* : QF (V)¢ — QP(2)W(©) is injective, so it remains to prove
surjectivity.

Let us first suppose that W = W (X) is generated by reflections (a reflection
group or Coxeter group). Let p1,...,p, be a minimal set of homogeneous
generators of the algebra R[X]" of W-invariant polynomials on ¥. Then
this is a set of algebraically independent polynomials, n = dim ¥, and their

degrees dy, ..., d, are uniquely determined up to order. We even have (see
[95])

(1) dy...d, = |W|, the order of W,
(2) di+---+dy, =n+ N, where N is the number of reflections in W,
)

(3) T (1 + (di — 1)t) = ap + a1t + - - - + ant™, where a; is the number of
elements in W whose fixed point set has dimension n — i.
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Let us consider the mapping p = (p1,...,pn) : ¥ — R™ and its Jacobian
J(x) = det(dp(z)). Let x',..., 2™ be coordinate functions in . Then for
each 0 € W we have

Jdzt A ANdzt =dpy A ANdpy = o (dpy A -+ Adpy)

= (Joo)o*(dz' A--- A dz™)

= (Joo)det(o)(dz' A--- Adz™),
(4) Joo =det(c™)J
If J(x) # 0, then in a neighborhood of = the mapping p is a diffeomorphism
by the inverse function theorem, so that the 1-forms dp, . .., dp, are a local
coframe there. Since the generators p1, ..., p, are algebraically independent
over R, J # 0. Since J is a polynomial of degree (dy —1)+---+(d,—1) = N

(see (2)), the set U = X\ J~1(0) is open and dense in ¥, and dpy,...,dp,
form a coframe on U.

Now let (04)a=1,..n be the set of reflections in W, with reflection hyper-
planes H,. Let £, € ¥* be a linear functional with H, = ¢=(0). If z € H,,
we have J(z) = det(oq)J (0q.2) = —J(z), so that J|H, = 0 for each «, and
by lemma |(30.38)| we have

(5) J:c.él...éN.

Since J is a polynomial of degree N, ¢ must be a constant. Repeating the
last argument for an arbitrary function g and using (5), we get:

(6) If g € C°°(%,R) satisfies g o 0 = det(c~!)g for each ¢ € W, we have
g=Jhfor he C®(2,R)W.
(7) Claim. Let w € QP(X)". Then we have
W= Z wjl---jpdpjl NN dpjp’
J1<-<Jp
where wj, . j, € C>(Z,R)W.

Since dpq, . ..,dp, form a coframe on the W-invariant dense open set U =
{z : J(x) # 0}, we have

wlU=">"" g1 jpdpp|UN-- Ndp;, |U
J1<-<Jp
for gj,..;, € C*°(U,R). Since w and all dp; are W-invariant, we may replace
Gji..gp DY
w
ﬁ Z gjl---jp SEZRS COO(U7 R) )
oceW

or assume without loss that g;,..;, € C*(U, R)W.
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Let us choose now a form index i1 < --- < i) with
{ipt1 < <inp={L....n}\ {ir < - <ip}.

Then for some sign € = +1 we have

wlU ANdpi, .y N+ Ndpi, = €.9iy..0,-dp1 N -+ Ndpy,

= 5.91-1,,,ip.,].dx1 A Ada™,

(8) wAdpi, . N Ndp;, = s.kilmz-pdacl A ANdz"
for a function k;,..;, € C°°(%,R). Thus
9) kiy..i,|U = giy..i,-J|U.

Since w and all dp; are W-invariant, by (8) we get k;,.;, 00 = det(c1)k;, i,
for each o € W. But then by (6) we have k;,.;, = wi,. ,.J for unique
Wiy € C=(Z,R)Y, and (9) then implies Wiy..ip|U = Giy...i,, SO that the
claim (7) follows since U is dense.

Now we may finish the proof of the theorem in the case where W = W (X)
is a reflection group. Let ¢ : ¥ — V be the embedding. By theorem
the algebra R[V]“ of G-invariant polynomials on V is isomorphic
to the algebra R[X]" of W-invariant polynomials on the section ¥, via
the restriction mapping i*. Choose polynomials ji,..., 5, € R[V]® with
pioi = p; for all i. Put p = (p1,...,pn) : V. — R™ In the setting of
claim (7), use Schwarz’s theorem to find Ay, 5, € C°(R™, R) with
hiy,...i, © p = wiy,...i, and consider

D= (hjjy0P)dps A Adpy,,

J1<<Jp

which is in Q) (V)¢ and satisfies & = w.
(V)& — b

P (X)W is surjective in the case where

s ik - OP
Thus the mapping ¢* : {0

W =W (X) is a reflection group.

Now we treat the general case. Let Gy be the connected component of G.
From |(30.15.3)| one concludes: A subspace ¥ of V' is a section for G if and
only if it is a section for Go. Thus p is a polar representation for G if and
only if it is a polar representation for Gy.

The generalized Weyl groups of ¥ with respect to G and to Gy are related
by

W(Go) = Ngo(X)/Za,(3) € W(G) = Na(X)/Za (),
since Zq(X) N Ng, () = Zg, (2).
Let w € QX)W ¢ Qp(2)W(Go), Since Gy is connected, the generalized
Weyl group W (Gy) is generated by reflections (a Coxeter group) by [38|
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remark after proposition 6]. Thus by the first part of the proof
QP

hor

(V)& — ()"
is an isomorphism, and we get ¢ € Q) (M )0 with i* = w. Let us consider

V= / “pdg e O (V)C,

where dg denotes Haar measure on G. In order to show that i*y = w, it
suffices to check that i*¢g*¢ = w for each g € G. Now ¢(X) is again a section
of G, thus also of Gg. Since any two sections are related by an element of
the group, there exists h € Gy such that hg(X) = X. Then hg € Ng(X) and
we denote by [hg] the coset in W(G), and we may compute as follows:

(i*9©)a /\Tz )./P\Tg./p\Ti
= (h* ) g(a)- /\Tg. /\Tz', since o € QP (M)
:cphg(x).;\T(hg).;\Ti Pilhgl(x /\Tz /\T ([hg))
= Pilhgl( x)./p\Ti./p\T ((hg)) = (i @) hg) () ./\T [hg])

= Wihg)(x /\T [hg]) = [hg]"w =w. O

30.41. Remark. The proof of theorem |(30.40)| shows that the answer to
question [(30.39)|is yes for the representations treated in|(30.40)}

30.42. Corollary. Let p : G — O(V,( , )) be an orthogonal polar
representation of a compact Lie group G, with section ¥ and generalized
Weyl group W = W(X). Let B C V be an open ball centered at 0.

Then the restriction of differential forms induces an isomorphism

QP

hor

(B)¢ = Q?(sn B)W®).

Proof. Check the proof of or use the following argument. Suppose
that B = {v € V : |v| < 1} and consider a smooth diffeomorphism f :
[0,1) — [0,00) with f(t) = ¢ near 0. Then g(v) := (‘| ‘Dv is a G-equivariant
diffeomorphism B — V' and by |(30.40) m )| we get

—1y\* ~ *
(B)¢ Ll qr (V)¢ = arm)V ) L grmn BV O

QP

hor
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30.43. Let us assume that we are in the situation of the main theorem
for the rest of this section. For x € M let S, be a (normal) slice and
G the isotropy group, which acts on the slice. Then G.S; is open in M and
G-equivariantly diffeomorphic to the associated bundle G — G/G, via

G xSy —21> G xg, Sy —>G.S,

L)

G/G, G.z,

where r is the projection of a tubular neighborhood. Since ¢ : G x S, —
G X@, Sy is a principal G,-bundle with principal right action (g,s).h =
(gh, h~!.s), we have an isomorphism ¢* : Q(G' %@, Sz) = Qa, —hor (G X Sz)=.
Since q is also G-equivariant for the left G-actions, the isomorphism ¢* maps
the subalgebra QF (G.S;)¢ = QF (G x¢, S:)¢ of QG x¢, S;) to the
subalgebra Q’ém_h o 1r(SJv)Gﬂ” of Qa, —hor(G x Sz)%. So we have proved:

R

Lemma. In this situation there is a canonical isomorphism

Qp (GSCE)G = ng*hor(sm)GI

hor

which is given by pullback along the embedding Sy — G.S,.

30.44. Rest of the proof of theorem |(30.37). Let us consider w €
Q)W) We want to construct a form @ € QF (M)% with i*® = w.
This will finish the proof of theorem |(30.40)|

Choose x € ¥ and an open ball B, with center 0 in T, M such that the
Riemann exponential mapping exp, : T, M — M is a diffeomorphism on B,.
We consider now the compact isotropy group G, and the slice representation
pr : Gy — O(V,), where V, = Nor,(G.z) = (T,(G.x))* C T, M is the
normal space to the orbit. This is a polar representation with section 1.3,
and its generalized Weyl group is given by W(T,X) = Ng(X)NGy/Zg(2) =
W(X)z (see|(30.24)). Then exp, : By NV, — Sg is a diffeomorphism onto
a slice and exp, : B NT,¥ — ¥, C X is a diffeomorphism onto an open
neighborhood ¥, of x in the section X.

Let us now consider the pullback (exp |B,; NT,X)*w € QP (B, N TIZ)W(TIE).
By corollary there exists a unique form ¢ € Qgrhor(Bw N V)G
such that i*¢® = (exp|By N TX)*w, where i, is the embedding. Then we
have

((exp B NVe) 1) wg® € Q8 | (Sp)%*

and by lemma this form corresponds uniquely to a differential form
w® € W (G.S;)¢ which satisfies (i|2;)*w” = w|¥,, since the exponential
mapping commutes with the respective restriction mappings. Now the in-
tersection G.S; N ¥ is the disjoint union of all the open sets w;(X%;) where
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we pick one w; in each left coset of the subgroup W(X), in W(X). If we
choose g; € Ng(X) projecting on wj for all j, then
(i|w;(Be)) w® = (by; 0i|Xz 0 wj_l)*wx

= (wj’l)*(ﬂzx)*é;fjwm

= (w; ) (1|Z0) " = (w; )" (w|Za) = wlw;(Za),
so that (i1|G.S; NX)*w” = w|G.S; NX. We can do this for each point z € X.
Using the method of |(6.28)| and [(6.30), we may find a sequence of points
(n)nen in X such that the m(X,, ) form a locally finite open cover of the
orbit space M/G = ¥ /W (X) and a smooth partition of unity f, consisting

of G-invariant functions with supp(f,) C G.S;,. Then @ = ) fow™ €
QP (M) has the required property i*& = w. O

hor




CHAPTER VII.
Symplectic and Poisson
Geometry

31. Symplectic Geometry and Classical Mechanics

31.1. Motivation. A particle with mass m > 0 moves in a potential V' (q)
along a curve ¢(t) in R? in such a way that Newton’s second law is satisfied:
md(t) = —grad V(q(t)). Let us consider the the quantity p; := m - ¢’ as
an independent variable. It is called the i-th momentum. Let us define the
energy function (as the sum of the kinetic and potential energy) by

1 m|g|?
E(q,p) = %Ipl2 +Vi(g) = |2‘ +V(q)-

Then mg(t) = — grad V(q(t)) is equivalent to
i _ OF
q = Tpi’
plzigigv i:172737

which are Hamilton’s equations of motion. In order to study this equation
for a general energy function E(q,p), we consider the matrix

(0 s
J_<]IR3 0)

Then the equation is equivalent to u(t) = J-grad E(u(t)), where u = (¢, p) €
RS, In complex notation, where 2! = ¢’ + /—1p;, this is equivalent to

i oE
2t = —2v-155.

413
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Consider the Hamiltonian vector field Hg = J - grad E/ associated to the

energy function E; then we have u(t) = Hg(u(t)), so the orbit of the par-

ticle with initial position and momentum (qo,po) = up is given by u(t) =
Hg

Flt (UO)

Let us now consider the symplectic structure

3

wlz,y) =Y (@'y* —a¥y) = (x| Jy) for z,y € RS,
=1

Then the Hamiltonian vector field Hg is given by
w(Hg(u),v) = (Hg|Jv) = (J grad E(u)|Jv)
= (J" J grad E(u)|v) = (grad E(u)|v) = dE(u)v.
The Hamiltonian vector field is therefore the ‘gradient’ of E with respect to

the symplectic structure w; we write Hg = grad” E.
How does this equation react to coordinate transformations? So let f :
R? x R? — R3 x R? be a (local) diffeomorphism. We consider the energy
Eo f and put u = f(w). Then
w(grad®(E o f)(w),v) = d(E o f)(w)v = dE(f (w)).df (w)v

= w(grad” E(f(w)), df (w)v)

= w(df (w) df (w) ™" grad® E(f(w)), df (w)v)

= w(df (w) (f* grad® E)(w), df (w)v)

= (fw)((f" grad® E)(w), v).
So we see that f* grad” F' = grad”(Eof) if and only if f*w = w, i.e., df (w) €
Sp(3,R) for all w. Such diffeomorphisms are called symplectomorphisms. By

(3.14)| we have

Fl{* grad“ E _ fil o Fl;grad‘*’ E Of

in general.

31.2. Lemma (E. Cartan). Let V be a real finite-dimensional vector
space, and let w € /\2 V* be a 2-form on V. Consider the linear mapping
WV = V* given by (0(v), w) = w(v,w).

If w # 0, then the rank of the linear mapping w : V. — V* is 2p, and there
exist linearly independent I*,. .. 12" € V* which form a basis of 0(V) C V*

such that w = Y% _, 12R=L A 126 Furthermore, 12 can be chosen arbitrarily
in w(V)\ 0.
Proof. Let v1,...,v, be a basis of V and let v',... v™ be the dual basis of

V*. Then w = ZKjw(vi,vj)vi AVl =: D i<y i v Avd. Since w # 0, not all
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a;; = 0. Suppose that ai2 # 0. Put

It = L<,Z)(v1) = Li(vl)w —z (v1 (Z aij v /\v]>

a a a
12 12 12 i<j

2= w(vg) = i(ve)w = i(v2) (Z aij VA vj) = —apv' + i ag; vl
i<j j=3
So, 11,12, v3,...,v™ is still a basis of V*. Put w; := w — I A%, Then
Gy W1 = Gy w — Gy IEA T2 1Y N 12 = agol' — 0 — apal! =0,
lpW] = Gy — g lP A2 IV NG 12 =12 =124+ 0=0.
So the 2-form wy is in the subalgebra of A V* generated by v3, v*, ... v If

wi; =0, then w = I A%, If wy # 0, we can repeat the procedure and get the
form of w.

If ] = @(v) € w(V) C V* is arbitrary but # 0, there is some w € V with
(I,w) = w(v,w) # 0. Choose a basis v1,...,v, of V with v; = w and vy = v.
Then 2 = i(v9)w = i(v)w = L. O

31.3. Corollary. Let w € N> V* and let 2p = rank(w : V — V*).
Then p is the mazimal number k such that w™ = w A - Aw # 0.

Proof. By [(31.2)] we have w? = plI! A2 A--- A 1% and W 2P =0, O

31.4. Symplectic vector spaces. A symplectic form on a vector space
Vis a 2-form w € /\2 V* such that @ : V' — V* is an isomorphism. Then
dim(V) = 2n and there is a basis I1,...,1*" of V* such that w = Y1, I' A

"7, by [(31.2)

For a linear subspace W C V we define the symplectic orthogonal by W<+ =
Wt = {v €V : w(w,v) =0 forallw € W}; which coincides with the
annihilator (or polar) o(W)° ={v e V : (0(w),v) =0 for all w € W} in V.

Lemma. For linear subspaces W, W1, Wy C V' we have:
(1) Wt =w.
(2) dim(W) + dim(W+) = dim(V) = 2n.
(3) (W) =W° and (W) = (WL)° in V*.
(4) For two linear subspace Wl, Wa C V we have Wy C Wy < Wit D Wit
(Win WQ) Wl + W2 , and (W7 + WQ) W1 N W2 .
(5) dim(W1 NWs) — dim(Wi- N Wist) = dim Wy + dim Wy — 2n.
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Proof. ([Il) — (@) are obvious, using duality and the annihilator. (&) can be
seen as follows. By (@) we have

dim(Wy N Wa)* = dim(Wi- + W3H)
= dim(Wit) + dim(W5h) — dim(Wi- N0 W3H),
dim (W1 N Wy) = 2n — dim(W; N Wa)* by @)
= 2n — dim(Wih) — dim(W3h) + dim(Wit N W)
= dim(W7) + dim(Ws) — 2n + dim(Wi- nW3H). O

A linear subspace W C V is called:

isotropic if wWCcwt = dim(W) < n,
coisotropic if wowt = dim(W) > n,
Lagrangian if w=wt = dim(W) = n,
symplectic if wWnwt=0 = dim(WW) = even

31.5. Example. Let W be a vector space with dual W*. Then (W xW*, w)
is a symplectic vector space where w((v,v*), (w,w*)) = (w*,v) — (v*, w).
Choose a basis wi,...,w, of W = W** and let w',...,w™ be the dual
basis. Then w = Y, w® A w;. The two subspaces W x 0 and 0 x W* are
Lagrangian.

Consider now a symplectic vector space (V,w) and suppose that Wy, Wy C V
are two Lagrangian subspaces such that WiNWs = 0. Thenw : Wi xWs — R
is a duality pairing, so we may identify Wy with W} via w. Then (V,w) is
isomorphic to Wi x W7 with the symplectic structure described above.

31.6. Let R?® = R™ x (R")* with the standard symplectic structure w from

(31.5)l Recall from |(4.7)| the Lie group Sp(n,R) of symplectic automor-
phisms of (R?",w),

Sp(n,R) = {A € L(R*",R*™): ATJA=J}, where J= < ]? Hﬂé) .
g

Let (| ) be the standard inner product on R?" and let R>"* = /—1TR" &
R™ = C", where the scalar multiplication by /—1 is given by J(z) =(").
Then we have:

w () = o) - ) = ()
()

(%)) =(¢)

7))
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Since J2 = —Ip2n we have J € Sp(n,R), and since J' = —J = J~! we
also have J € O(2n,R). We consider now the Hermitian inner product
h:C" x C" — C given by

B ) - = (ulo) + VT, ) = (ulo) + V=T (ulTo),
h(v,u) = (v|u) + V=1(v|Ju) = (u|v) + V=1(J "v|u)
= (ulv) = vV=1(ulJv) = h(u,v),
h(Ju,v) = (Julv) + vV=1(JulJv) = V=1((u|J " Jv) — V=1(u|J "v))
= V=1((uv) + vV=1w(u,v)) = vV—=1h(u,v).

Lemma. The subgroups Sp(n,R), O(2n,R), and U(n) of GL(2n,R) acting
on R?™ = C" are related by

O(2n,R)NGL(n,C) = Sp(n,R)NGL(n,C) = Sp(n,R) N O(2n,R) = U(n).

Proof. For A € GL(2n,R) (and all u,v € R*") we have in turn
h(Au, Av) = h(u,v) AeU(n),

{ (AulAv) = (ulv) (real part)

(Au, Av) = w(u,v) (imagin. part)} &4 €0@nR)NSp(n,R),

{(Auﬁv):jgu\v) } A €0(2n,R)NGL(n,C),
JA=AJ
{(AuIJAv) = (Au|AJv) = (u|Jv) } &A € Sp(n,R)NGL(n,C). O

31.7. The Lagrange-Grassmann manifold. Let L(R?*" w) = L(2n)
denote the space of all Lagrangian linear subspaces of R?"; we call it the
Lagrange-Grassmann manifold. 1t is a subset of the Grassmann manifold

G(n,2n;R); see|(18.5)]
In the situation of [(31.6)] we consider a linear subspace W C (R?*",w) of

dimension n. Then we have:

W is a Lagrangian subspace
s wW=0 < ( |J( )W=0
< J(W) is orthogonal to W with respect to (| ) = Re(h).
Thus the group O(2n,R) N GL(n,C) = U(n) acts transitively on the La-
grange-Grassmann manifold L(2n). The isotropy group of the Lagrangian

subspace R™ x 0 is the subgroup O(n,R) C U(n) consisting of all unitary
matrices with all entries real. So L(2n) = U(n)/O(n,R) by |(5.11)] which
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is a compact homogenous space and a smooth manifold. The dimension of
L(2n) is given by

dim L(2n) = dim U(n) — dim O(n,R) = (n + 2n(n2—1)) o n(nz—l) — n(n2+1).

Which choices did we make in this construction? Starting with a general
symplectic vector space (V,w), we first choose a basic Lagrangian subspace
L (= R™ x 0), and then we identify V/L with L* via w. Next we chose a
positive inner product on L, transport it to L* via w and extend it to L x L*
by putting L and L* orthogonal to each other. All these possible choices are
homotopic to each other.

Finally we consider detc = det : U(n) — S' € C. Then det(O(n)) = {#1}.
So det? : U(n) — S' and detz( (n)) ={1}. For U € U(n) and A € O(n,R)
we have det?(UA) = det?(U )detQ(A) = det?(U), so this factors to a well
defined smooth mapping det? : U(n)/O(n) = L(2n) — S'.

Claim. The group SU(n) acts (from the left) transitively on each fiber of
det? : L(2n) = U(n)/O(n) — S'.

Namely, for Uy,Uy € U(n) with det?(U;) = det?(Us) we get det(U;) =
+det(Us). There exists A € O(n) such that det(U;) = det(Us.A); thus
Ui (UgA)~t € SU(n) and Uy (UzA)"1U2AO(n) = U; O(n). The claim is
proved.

Now SU(n) is simply connected and each fiber of det? : U(n)/O(n) — S* is
diffeomorphic to SU(n)/SO(n) which again is simply connected by the exact
homotopy sequence of the fibration SO(n) — SU(n) — SU(n)/SO(N),

— (0 =m(SU(n))) = m(SU(n)/SO(n)) = (mo(SO(n)) =0) — - .
Now we consider the fibration SU(n)/SO(n) — L(2n) — S*; from its exact
homotopy sequence
— 0 =m(SU(n)/SO(n)) — m(L(2n)) — 71(S*) = mo(SU(n)/SO(n)) =
we conclude that 71(L(2n)) = 71(S') = Z. Also (by the Hurewicz homo-
morphism) we have H!(L(2n),Z) = Z and thus H!(L(2n),R) = R.

Let ZW%JS = xdy ydx| 1 € QY(SY) be a generator of H'(S',Z). Then
the pullback (det? ) (detQ)*wy vl ¢ O1(L(2n)) is a generator of

\/7 2my/~1
H'(L(2n)). Its cohomology class is called the Maslov class.

31.8. Symplectic manifolds and their submanifolds. A symplectic
manifold (M,w) is a manifold M together with a 2-form w € Q?(M) such
that dw = 0 and w, € /\2 T M is a symplectic structure on T, M for each
x € M. So dim(M) is even; dim(M) = 2n, say. Moreover, w\" = WA+ Aw
is a volume form on M (nowhere zero) called the Liouville volume, which
fixes also an orientation of M.
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Among the submanifolds N of M we can single out those whose tangent

spaces 1. N have special relations to the symplectic structure w, on T, M as
listed in|(31.4)f Thus a submanifold N of M is called:

isotropic if T,N CT,N*“! foreach z € N = dim(N)
coisotropic  if  TpN D Ty N“® for each z € N = dim(N)
Lagrangian  if TN = T,N** for ecach x € N = dim(N)
symplectic  if T,NNT,N*t =0 foreach z € N = dim(N) = even,

IN

n,

\Y]

n,

where for a linear subspace W C T, N its symplectic orthogonal is given by
Wel ={X € TuM : w,(X,Y)=0forall Y € W}, as in

31.9. The cotangent bundle. Consider the manifold M = T*(@Q, where
Q@ is a manifold. Recall that for any smooth f :  — P which is locally
a diffeomorphism we get a homomorphism of vector bundles T* f : T*Q —
T*P covering f by T f = (Tof)"Y)* : T7Q — T}"(Z)P.

There is a canonical 1-form ¥ = ¥g € QYT*Q), called the Liouville form,
which is given by

(X)) = (mr-(X), T(m)(X)), X e T(T*Q),

where we used the projections (and their local forms):

TLT*/ (T* )\"f yq,p;ﬁ,n)&(mj
(¢,p) (¢,€)
\ / N ) %

For a chart ¢ = (ql,...,q”) : U — R™ on @ and its induced (cotan-
gent) chart T*q : T*U — R™ x (R™)*, where T7q = (T,q~1)*, we con-
sider the ‘momentum coordinates’ p; := (I""q( ),e;) : T*U — R. Then
(%, ...,q%p1,...,pn) : T*U — R™ x (R™)* are the canonically induced
coordinates on the cotangent bundle. In these coordinates we have

9o = (Va(:Z)dd + Vo(:%)dp:) = sz dg' +0,
i=1
since 9o (z2) = Urn (g, p; €i,0) = (p, e5) = pi.
Now we define the canonical symplectic structure wg = w € O%(T*Q) by

n
wq = —dig tocally Z dq' A dp;.
=1
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Note that w(a‘?]i) = dp; and w(a%) = —dqg'.

Lemma. The 1-form 9¢ € QY(T*Q) has the following universal property
and is uniquely determined by it:

Any 1-form ¢ € QY(Q) is a smooth section ¢ : Q — T*Q and for the pullback
we have *¥g = ¢ € Q). Moreover, p*wg = —dp € 0*(Q).

The 1-form Yq is natural in Q € Mf,: For every local diffeomorphism
f:Q — P the local diffeomorphism T* f : T*Q — T* P satisfies (T* f)*dp =
Vg, and a fortiori (T* f)*wp = wq.

In this sense ¥¢ is a universal 1-form, or a universal connection, and wg
is the universal curvature, for R'-principal bundles over Q). Compare with

section [(19)]

Proof. For a 1-form ¢ € Q'(Q) we have

(") (Xz) = (VQ)p, (Top-Xa) = 02(Tp,mq Tup- Xy)
= 0z(Tu(mq 0 ). Xz) = pu(Xy).

Thus ¢*Yg = ¢. Clearly this equation describes ¥¢g uniquely. For w we
have p*wg = —p*dig = —dp*Ig = —dyp.
For a local diffeomorphism f: Q — P, for « € TQ, and for X, € T, (T Q)
we compute as follows:
(T f)"0p)a(Xa) = (Vp)r+£.a(Ta(T* ). Xa) = (T*f.)(T(wp). T(T" f). Xa)

=(aoTuf )T (rpoT*f).Xy) = aTuf LT(f omg) Xa

=o(T(mq). Xa) =V0(Xa). O

31.10. Lemma. Let ¢ : T*Q — T*P be a (globally defined) local diffeo-
morphism such that ¢*9p = Yg. Then there exists a local diffeomorphism
f:Q — P such that o =T f.

Proof. Let {g = —w ' odg € X(T*Q) be the so-called Liouville vector
field:

T(T*Q) (1"Q).

TQ
Then locally {o = >0, pia%i. Its flow is given by FlfQ(a) =e
p*Jp = Yg, we also have that the Liouville vector fields {g and £p are ¢-
dependent. Since {g = 0 exactly at the zero section, we have ¢(0g) C Op,
so there is a smooth mapping f: @ — P with Opo f = po0g : Q — T*P.
By |(3.14)| we have ¢ o FlfQ = Flfp op, so the image of ¢ of the closure

t . Since
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of a flow line of {g is contained in the closure of a flow line of {p. For
oz € T;Q the closure of the flow line is [0,00).cc; and ¢(0;) = 0 (,); thus
©([0,00).00) C T,y P, and g is fiber respecting: mpop = fomg : T°Q — P.
Finally, for X, € To(T*Q) we have
a(Tomq-Xa) = Vo(Xa) = (¢70pP)(Xa) = (VP)p(a)(Tap-Xa)
= (p()(Ty(o)mp-Ta- Xa) = (p(a))(Ta(mp 0 ). Xo)
= (@) (Ta(f 0 7Q)-Xa) = (p())(Tf Tomq-Xa),
thus o= SO(O‘) © TﬂQ(a)fa
SO(O‘) = @o TﬂQ(a)f_l = (Tﬂ'Q(Oc)f_l)*(a) = T*f(a) O

31.11. Time dependent vector fields. Let f; be a smooth curve of
diffeomorphisms on a manifold M locally defined for each ¢, with fy = Idyy,
as in|(3.6)l We define two time dependent vector fields

G(x) = (Tef) " 5 i), ml@) = (G ().
Then T'(f;).& = %ft =m0 ft, so & and n; are fi-related.

Lemma. In this situation, for w € QF(M) we have:

(1) ig, fiw= flipw
(2) §ffw= fiLpw= L fiw
Proof. () is by computation:
(ig, fi W)a(Xoy .o, Xi) = (ff w)a(&t(x), X2, ..., Xi)
= wft(x) (Txft.ét(l‘), T;Eft.XQ, e 7Txft-Xk)
= w, () (e (fe()), T fr- X, T fr- X))
= (ft* Un, w)e(Xa, ..., Xg).

@) We put 7 € X(R x M), 7i(t,z) = (0, ne(z)). We recall from |(3.30)| the
evolution operator for n;:

OT:RxRxM— M, Ho] (x)=mn(d](x), @I.(x)=u,
which satisfies
(t, @), (@) = FII_(s,2), @, =0}, 00, (x).
Since f; satisfies % ft =mofiand fo = Ifi M, we may conclude that f; = (I)ZO’
or (¢, fi(z)) = F1}(0,z), so f; = pryoFl] oinsg. Thus
2 fiw = & (pryoF1] oinsg)*w = ins§ & (FI)* prjw

= ins(F1])* Ly pri w.
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For time independent vector fields X; on M we have, using

(Lapraw)(0 x Xq,...,0x Xk‘)|(t,x) =7((praw)(0 x Xy, ... ))\(m)
— iP5 w) (0 x Xq, ..o, [7,0 x Xg], ..o, 0 X Xg)](4,0)
= (O (@) (W(X1, ., Xpp)) = 2 w(Xn, o s X, X e
= (Lp,w)z(X1,..., Xk).
This implies for X; € T, M
(%ft*w)x(Xl,.. X3) = (insg(F17)* Lypriw)e(Xy, ..., Xg)
= ((F1)* L5 pr w) (0,2)(0 x X1,...,0 x Xp)
= (Lapraw) e, fo(2)) (0t X Tofr- X1, .., 0p X Tty Xg)
— (L) o) (Tefe- X1, -, Tt X)
=(f/ Emw) (X1, Xg),

which proves the first part of (2]). The second part now follows by using (II):

D frw=fiLpw = fi(diy, +in,d)w = d ff inw+ f; indw
= digt ft*w + ’L'& ft* dw = di& ft*w + igt dft*w = ﬁgt ft* w. O

31.12. Surfaces. Let M be an orientable 2-dimensional manifold. Let
w € Q2(M) be a volume form on M. Then dw = 0, so (M, w) is a symplectic
manifold. There are not many different symplectic structures on M if M is
compact, since we have:

31.13. Theorem (J. Moser). Let M be a connected compact oriented
manifold. Let wo,w; € QMM (M) be two volume forms (both > 0).

If fM wy = fM w1, then there is a diffeomorphism f : M — M such that
ffwi = wp.

Proof. Put w; := wy + t(w1 — wp) for ¢ € [0,1]; then each w; is a volume
form on M since these form a convex set.

We look for a curve of diffeomorphisms ¢ — f; with ffw: = wp; then
%(ft*wt) = 0. Since [, (w1 —wo) = 0, we have [w; —wo] = 0 € H™(M),
so w1 — wp = dy for some 1 € Q™ L(M). Put n := (%ft) o f{1; then by

(31.11)[ we have:

i h * * * *
2N (frw) = fiLpwi + [ Gwe = fi (Lywe + w1 — wo),

0
0"E" Lywr + w1 —wo = dig,wp + ipdwy + dip = dip,wp + dip.

We can choose 7; uniquely by i,,w; = —%, since w; is nondegenerate for
all t. Then the evolution operator f; = ®, exists for t € [0,1] since M is
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compact, by [(3.30). We have, using [(31.11.2)
%(ft*wt) = ft*(ﬁmwt + dl[)) = ft*(dimwt + dw) = Oa

so ffw; = constant = wy. O

31.14. Coadjoint orbits of a Lie group. Let G be a Lie group with
Lie algebra g and dual space g*, and consider the adjoint representation
Ad : G — GL(g). The coadjoint representation Ad* : G — GL(g*) is then
given by Ad*(g)a := aoAd(g!) = Ad(g7!)* (). For a € g* we consider the
coadjoint orbit G.a« C g* which is diffeomorphic to the homogenous space
G/G, where G, is the isotropy group {g € G : Ad*(g)a = a} at a.

As in for X € g we consider the fundamental vector field (x =
—ad(X)* € X(g*) of the coadjoint action. For any Y € g we consider
the linear function evy : g* — R. The Lie derivative of the fundamental
vector field (x on the function evy is then given by

(1) L¢y evy = —devyoad(X)" = —evyoad(X)" =evyx), X,Y €g.
Note that the tangent space to the orbit is T3(G.o0) = {(x(B) : X € g}.
Now we define the symplectic structure on the orbit O = G.«a by

(2) (WO)Q(CX7<Y) :Ot([X,Y]) = <04, [X7YD7 acg’, X,Yeg,

wo(Cx,Cy) = evix,y] -

Theorem (Kirillov, Kostant, Souriau). If G is a Lie group, then any
coadjoint orbit O C g* carries a canonical symplectic structure wo which is
invariant under the coadjoint action of G.

Proof. First we claim that for X € gwe have X € g, ={Z € g: (z(a) =0}
if and only if a([X, ])= (wo)a((x, )=0. Indeed, for Y € g we have
(0, [X, Y]) = (o, Do Ad(exp(tX))Y) = Olo(ar, Ad(exp(tX))Y)
= 0|p(Ad*(exp(—tX))a,Y) = —((x(a),Y) = 0.

This shows that wo as defined in ([2) is well defined and also nondegenerate
along each orbit.

Now we show that dwo = 0, using (2):
(dwo)(Cx:CriCz) = Y Cxwolr,Cz) — Y wol[Cx, ¢yl ¢z)

cyclic cyclic
= Z Cx eVy,z] — Z wo(C-[x,y],¢z) (now use ()
cyclic cyclic

- Z eViy,z].x] T Z ev(x,y],z) =0 by Jacobi.

cyclic cyclic
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Finally we show that wp is G-invariant: For g € G we have

((Ad*(9))"wo)a(Cx (@), Gy ()

wo) ad*(g)a(T(Ad"(9))Cx (@), (Ad*( ))-Cy ()

wo) ad*(g)a(Cad(g)x (Ad™(9)a), Caa()y (Ad"(9)ar)), by [(6.2.2]]

Ad*(g)a)([Ad(g) X, Ad(9)Y])
Y]

= (
= (
= (
= (@0 Ad(g™"))(Ad(9)[X, Y]) = a([X, Y]) = (wo)a(Cx,¢y). O
31.15. Theorem (Darboux). Let (M,w) be a symplectic manifold of
dimension 2n. Then for each x € M there exists a chart (U,u) of M centered
at x such that w|U = 3", du’ Adu™t?. So each symplectic manifold is locally
symplectomorphic to a cotangent bundle.

Proof. Take any chart (U,u : U — u(U) C R?") centered at z. Choose
linear coordinates on R?" in such a way that w, = Y., du’ A du™"|,
at z only. Then wy = w|U and w1 = Y ;" du® A du™t? are two symplectic
structures on the open set U C M which agree at . Put wy := wo—+t(w1—wp).
By making U smaller if necessary, we may assume that w; is a symplectic
structure for all ¢ € [0, 1].

We want to find a curve of diffeomorphisms f; near  with fy = Id such that
fi(x) =z and f;w; = wp. Then %ft*wt = %wo = 0. We may assume that U
is contractible; thus H?(U) = 0, so d(wi —wg) = 0 implies that w; —wg = dip
for some 1 € QY(U). By adding a constant form (in the chart on U), we
may assume that 1, = 0. So we get for the time dependent vector field
m=2frof ", using [BL.IL.2)
0= %ft*wt = fi (L we + %Wt) = fi(diy, wp + iy, dwy + w1 — wo)
= f7 d(in, we + ).

We can now prescribe 7; uniquely by i,, w; = —, since w; is nondegenerate
on x. Moreover n;(z) = 0 since ¥, = 0. On a small neighborhood of x

the left evolution operator f; of n; exists for all ¢t € [0,1], and then clearly
2 (ffw) =0, s0 fiw, = w for all ¢ € [0,1]. O

31.16. Relative Poincaré lemma. Let M be a smooth manifold, let
N C M be a submanifold, and let k > 0. Let w be a closed (k + 1)-form on
M which vanishes when pulled back to N. Then there exists a k-form ¢ on
an open neighborhood U of N in M such that dp = w|U and ¢ = 0 along
N. If moreover w = 0 along N (on N\* TM|N ), then we may choose ¢ such
that the first derivatives of v vanish on N.

Proof. By restricting to a tubular neighborhood of IV in M, we may assume
that p: M =: E — N is a smooth vector bundle and that i : N — E is
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the zero section of the bundle. We consider © : R x E — FE, given by
w(t,z) = pue(x) = ta; then py = Idg and pop = iop: E - N — E. Let
¢ € X(FE) be the vertical vector field {(z) = vl(z,x) = O|o(x + tx); then
Flf = let. So locally for ¢ near (0, 1] we have

)'w = L(FI},, )" Lew by [BLIL) or [8.16)]

d _ dmé
ﬁﬂrw - E(Fllogt

= 4 (igdw + digw) = dpficw.
For x € F and X1,..., X € T, F we may compute

(Fuiew)e(X1, ..., Xi) = +(iew)io(Tope- X1, . . ., Toptr- Xp)
= Lo (E(tw), Top- X1, - . ., Top. Xr)
= wm(vl(tx, iL‘), Tm,ut.Xl, e ,Tx,ut.Xk).

So if £ > 0, the k-form %ufigw is defined and smooth in (¢, z) for all ¢ near
[0,1] and describes a smooth curve in Q¥(E). Note that for z € N = 0 we
have (}puficw), = 0, and if w = 0 along N, then }ujicw vanishes of second
order along NN. Since pgw = p*i*w = 0 and pjw = w, we have

1
w = piw — ppw = /O Guwdt

1 1
= / d($pfiew)dt = d </ 1,uzkz'5wdt> =: dp.
0 0

If x € N, we have ¢, = 0, and also the last claim is obvious from the explicit
form of ¢. O

31.17. Lemma. Let M be a smooth finite-dimensional manifold, let N C
M be a submanifold, and let wy and wy be symplectic forms on M which are
equal along N (on N> TM|N ).

Then there exists a diffeomorphism f : U — V between two open neigh-
borhoods U and V' of N in M which satisfies fIN = Idy, Tf[(TM|N) =
Idran, and f*wi = wo.

Proof. Let w; = wp + t(w1 — wp) for t € [0, 1]. Since the restrictions of wy
and w; to A2TM|N are equal, there is an open neighborhood U of N in M
such that w; is a symplectic form on Uy, for all ¢ € [0,1]. Ifi: N — M is the
inclusion, we also have i*(w1 — wp) = 0, and by assumption d(w; — wg) = 0.
Thus by lemma there is a smaller open neighborhood Us of IV such
that wy|Us — wo|Usz = dy for some ¢ € QY (Us) with ¢, = 0 for z € N, such
that also all first derivatives of ¢ vanish along N.

Let us now consider the time dependent vector field X; := —(w;) "' o given
by ix,w: = ¢, which vanishes together with all first derivatives along N. Let
ft be the curve of local diffeomorphisms with % fr = Xio fy; then fi| N = Idy
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and T f;|(TM|N) = Id. There is a smaller open neighborhood U of N such
that f; is defined on U for all ¢ € [0, 1]. Then by [(31.11)| we have

2 (frw) = fiLx,wi+ [ Gwr = fi (dix,w + w1 — wp)
= fi (=dp + w1 —wp) =0,

so fiwy is constant in ¢, equals fjwo = wo, and finally f{wi = wp as required.
O

31.18. Lemma (Ehresmann). Let (V,w) be a symplectic vector space of
real dimension 2n, and let g be a nondegenerate symmetric bilinear form on
V.Let K:=§tow:V = V* =V so that g(Kv,w) = w(v,w).

Then K € GL(V) and the following properties are equivalent:

(1) K? = —1dy, so K is a complex structure.
(2) w(Kv, Kw) = w(v,w), so K € Sp(V,w).
(3) 9(Kv, Kw) = g(v,w), so K € O(V,g).

If these conditions are satisfied, any subpair of the triple w, g, J is said to
be compatible.

Proof. Starting from the definition, we have in turn:

9(Kv,w) = (GK (v),w) = (§§~ @(v), w) = (@(v),w) = w(v, w),
w(Kv, Kw) = g(K*v, Kw) = g(Kw, K*v) = w(w, K*v) = —w(K?v,w),
g(K?v,w) = w(Kv,w) = —w(w, Kv) = —g(Kw, Kv) = —g(Kv, Kw).

The second line shows that () < (@), and the third line shows that (1) <
@).

31.19. Lemma (Polar decomposition of w). Let (V,g) be a Euclidean
real vector space (positive definite). Let w be a symplectic structure on V,
let A =g ltow € GL(V), and let A = BJ be the polar decomposition
from . Then A is g-skew-symmetric, J is a complex structure, and
the nondegenerate symmetric inner product gi(v,w) = w(v, Jw) is positive
definite.

Proof. We have g(Av,w) = w(v,w) = —w(w,v) = —g(Aw,v) = —g(v, Aw);
thus AT = —A. This has the consequence (see the proof of that B =
exp(3 log(AAT)) = exp(2 log(—A?)) commutes with A; thus also J = B~*A
commutes with A and thus with B. Since B = B, we get J ! = J' =
(B7'A)T = AT(B™Y)T = ~AB™' = —B7'A = —J; thus J is a complex

structure. Moreover, we have

w(Jv, Jw) = g(AJv, Jw) = g(JAv, Jw) = g(Av,w) = w(v, w);
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thus by the symplectic form w and the complex structure J are
compatible, and the symmetric (by bilinear form g; defined by
g1(v,w) = w(v, Jw) is positive definite: g1(v,v) = w(v, Jv) = g(Av, Jv) =
g(BJwv, Jv) > 0 since B is positive definite. O

31.20. Relative Darboux theorem (Weinstein). Let (M,w) be a sym-
plectic manifold, and let L C M be a Lagrangian submanifold.

Then there exist a tubular neighborhood U of L in M, an open neigborhood
V' of the zero section O, in T*L and a symplectomorphism

(T*L,wr) D (V,wr) == (U,w|U) C (M,w)

such that po QO : L -V — M is the embedding L C M.

Moreover, suppose that for the Lagrangian subbundle T'L in the symplectic
vector bundle TM|L — L we are given a complementary Lagrangian sub-
bundle E — L; then the symplectomorphism ¢ may be chosen in such a way
that Ty, Vo, (T*L) = Ey,) for x € L.

Here V(T™*L) denotes the vertical bundle in the tangent bundle of T*L.

Proof. The tangent bundle TL — L is a Lagrangian subbundle of the
symplectic vector bundle TM|L — L.

Claim. There exists a Lagrangian complementary vector bundle E — L in
the symplectic vector bundle T M|L. Namely, we choose a fiberwise Riemann
metric g in the vector bundle TM|L — L and consider the vector bundle
homomorphism A = §~'& : TM|L — T*M|L — TM|L and its polar de-
composition A = BJ with respect to g as explained in Then J is a
fiberwise complex structure, and g (u, v) := w(u, Jv) defines again a positive
definite fiberwise Riemann metric. Since g;(J , ) = w( , ) vanishes
on TL, the Lagrangian subbundle £ = JTL C TM|L is g;-orthogonal to
TL, thus a complement.

We may use either the constructed or the given Lagrangian complement to
TL in what follows.

The symplectic structure w induces a duality pairing between the vector
bundles E and T'L; thus we may identify (I'M|L)/TL = E — L with the
cotangent bundle T*L by (X,,0(Yz)) = w(Xg,Yy) forz € L, X, € T, L and
Y, € E,.

Let ¢ := expfow™! : T*L — M where exp9 is any geodesic exponential
mapping on T'M restricted to EZ. Then ¢ is a diffeomorphism from a neigh-
borhood V' of the zero section in T*L to a tubular neighborhood U of L in
M, which equals the embedding of L along the zero section.

Let us consider the pullback ¥*w and compare it with wy, on V. For 0, € 0,
we have Ty, V = T, L @ T;L = T,L & E,. The linear subspace T,L is
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Lagrangian for both wy and ¥*w since L is a Lagrange submanifold. The
linear subspace Ty L is Lagrangian for wy, and it is also Lagrangian for ¢¥*w
since F was a Lagrangian bundle. Both (wr,)o, and (*w)o, induce the same
duality between T, L and T’} L since the identification E, = T} L was via wy.
Thus wy, equals ¥*w along the zero section.

Finally, by lemma the identity of the zero section extends to a dif-
feomorphism p on a neighborhood with p*¥*w = wyr. The diffeomorphism
© = 1 o p then satisfies the theorem. O

31.21. The Poisson bracket. Let (M,w) be a symplectic manifold. For
f € C>®(M) the Hamiltonian vector field or symplectic gradient Hy =
grad”(f) € X(M) is defined by any of the following equivalent prescrip-
tions:

(1)  i(Hpw=4df, Hy=w'df, w(H;X)=X(f)for X € TM.
For two functions f,g € C°°(M) we define their Poisson bracket {f, g} by
(2) {f, 9} = i(Hy)i(Hg)w = w(Hy, Hy)
= Hy(g) = L, g = dg(Hy) € C(M).
Let us furthermore put
(3) X(M,w) ={X e X(M): Lxw=0}

and call this the space of locally Hamiltonian vector fields or w-respecting
vector fields.

Theorem. Let (M,w) be a symplectic manifold.

Then (C*(M),{ , }) is a Lie algebra which also satisfies {f,gh} =
{f.gth+ g{f. L}, i.e., ady = {f, } is a derivation of (C>(M),-).
Moreover, there is an exact sequence of Lie algebras and Lie algebra homo-
morphisms

0 — = HOM) —2~ 0o (M) 2% (M, w) > H' (M) —— 0

0 {1 [ ] 0

where the brackets are written under the spaces, where a is the embedding
of the space of all locally constant functions, and where v(X) = [ixw] €
HY(M).

The whole situation behaves invariantly (resp. equivariantly) under pullback
by symplectomorphisms ¢ : M — M : For example o*{f,g} = {©*f, v*g},
@ (Hy) = Hyep, and *y(X) = v(¢*X). Consequently for X € X(M,w) we
have Lx{f,9} ={Lxf,9} +{f, Lxg} and v(LxY) = 0.
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Proof. The operator H takes values in X(M,w) since

EHw:indw+dinw:0+ddf:0.

f

The mapping H is a Lie algebra homomorphism, i.e., H({f,g}) = [Hy, Hy),
since by and |(9.7)| we have

iH{fghw = df, 9} = dly,g= Ly, dg —0= Ly, ig,w — g, Lu,w
= [Layin,|w =i, m,)w-
The sequence is exact at H°(M) since the embedding a of the locally con-

stant functions is injective.

The sequence is exact at C°°(M): For a locally constant function ¢ we have
H.=wlde=w"1'0=0. If Hf =@ 'df =0 for f € C>®(M), then df =0,
so f is locally constant.

The sequence is exact at X(M,w): For X € X(M,w) we have dixw =
dixw +ixdw = Lxw = 0; thus v(X) = [ixw] € H'(M) is well defined. For
f € C®(M) we have y(Hy) = [ig,w] = [df] =0 € HY(M). If X € X(M,w)
with v(X) = [ixw] = 0 € HY(M), then ixw = df for some f € Q°(M) =
C*(M), but then X = Hy.

The sequence is exact at H'(M): The mapping v is surjective since for
¢ € QY (M) with dp = 0 we may consider X := &~ 1p € X(M) which satisfies
Lxw=ixdw+dixw=0+dp =0 and v(X) = [ixw] = [p] € HY(M).

The Poisson bracket { , }isa Lie bracket and {f,gh} = {f,g}h+g{f, h}:

{f,9} =w(Hy, Hy) = —w(Hy, Hy)
={9. f},
{fdo,h}y =Ly, Luh =Ly, Luylh+ Lo, Luh
=L, g h+ {9, {f,h}}
= Ly ph+1{9.{f h}}
={f 95, h} +{9,{f, h}},
{fi9h} = Ly, (gh) = L, (9)h + gLu, ()
={f,9}h+g{f. h}.
All mappings in the sequence are Lie algebra homomorphisms: For local

constants {c1,c2} = Heca = 0. We already checked for H. For XY €
X(M,w) we have

ix,yw = [L£x,iy]w = Lxiyw — iy Lxw = dixiyw + ixdiyw — 0 = dixiyw;

thus 7([X,Y]) = [ixyjw] = 0 € H(M).
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Let us now transform the situation by a symplectomorphism ¢ : M — M
via pullback. Then

PYlw=w & [Tp)owoTp=w
= Hyp = d)_ldgo*f = dz_l(go*df)
= (T ow ™ o (Te™)*) o (Tp)* o df o)
=(Te ' ow ! odf o) =¢*(Hy),
o {f,9} = ¢ (dg(Hy)) = (¢*dg)(¢"Hy) = d(*g)(Hprp) = {0" [, ¢ g}

For the assertions about the Lie derivative apply Lx = 9|o(FL*)*. O
31.22. Basic example. In the situation of |(31.1), where M = T*R" with
w=wrn = —dIgn = Y 1, dg* A dp;, we have
w: T(T*Rn) — T*(T*Rn), (Ij(aqz) = dpi, d)(apz) = —dqi,
-1 - —1 0 i 0 of 0 of o
Hf:w df:w (Zz(a—(}fldqz_i_a—zid]h)) :ZZ 8]51- Fra aqfi 8pi>’
of 0 of 0
{f,9y=Hpg= Zz'(a;i o~ aﬁ,-)v
{pi,pj} =0, {d',d’}=0, {q¢' pj}=-5

31.23. Kepler’s laws: Elementary approach. Here we give an elemen-
tary approach to the derivation of Kepler’s laws.

Let us choose the orthonormal coordinate system in the oriented Euclidean
space R? with standard inner product ( | ) and vector product ¢ x ¢’ in
such a way that the sun with mass M is at 0 € R®. A planet now moves in
a force field F' on an orbit ¢(t) according to Newton’s law:

(1) F(q(t)) = mg(t).

(2) If the force field is centripetal, F(q) = —f(q)q for f > 0, then the
angular momentum q(t) x ¢(t) = J is a constant vector, since

Hgxq)=dxd+gxi=0+Lf(q)gxqg=0.

Thus the planet moves in the plane orthogonal to the angular momentum
vector J and we may choose coordinates such that this is the plane ¢* = 0.
Let z = ¢' 4 i¢® = re'?; then

0 ) q! q' 0
J:(O):zxz: q2 X (22 :(1.202'1)’
J 0 0 7'°—q*q

j=q¢"¢® — ¢t =Im(z.2) = Im(re ¥ (7' + irpe'®))

= Im(ri + ir?p) = r2p.
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(3) Thus in a centripetal force field area is swept out at a constant rate
j =12 (2nd law of Kepler, 1602, published 1606), since

w(t2) rrip) e(t2)
Area(ty,ta) =/ / rdrdp = / %T(W)de
w(t1) JO w(t1)

/t2
t1

Now we specify the force field. According to Newton’s law of gravity the
sun acts on a planet of mass m at the point 0 # g € R? by the force

Mm

r(p(0)*(t) dt = §(t2 — t1).

N[ =

(4) F(q) = *qu = —grad U(q),
Mm
U(Q) = - W?

where G = (6.67428 £ 0.00067) - 10~ m3 kg=! 572 is the gravitational con-
stant and U is the gravitational potential. We consider now the energy
function (compare with along the orbit as the sum of the kinetic and
the potential energies

) B(t) = Tlg()P + Ua(t) = e

a2 — g2

which is constant along the orbit, since
O E(t) = m(G(t)]q(t)) + (grad U(q(t))]4(t)) = 0.
We have in the coordinates specified above for the velocity v = |¢|
v? = |d|* = Re(22) = Re((e™™ — irge ") (1" +irpe'?)) = i 4 r?¢?.

We look now for a solution in the form r = (). From (@) we have ¢ = j/r?

so that
2 2 2.2 d ? 2 2.2 d 2 j2 j2
V=17 + r SO — <> gp + r SO — <> i + 7

Plugging into the conservation of energy (Hl), we get

dr\? ;% | 5° 1
<dgp> oy + i ZGM@ = = constant,
1 (dr)® 2GM 1 1
rd \ de J gz or() r
Excluding the catastrophe of the planet falling into the sun, we may assume
that r is never 0 and substitute

1 du 1 dr

u(p) = ) % = —72%
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into (@) to obtain
2 272 2 2
du =l+72unfu2=G.M 1+ 7 - ufiG. ;
dp 52 ;2 34 G2ZM?2 ;2

du\? &2 1\? 52 ~v72
(7) (ds@) = P — <'LL — p) 5 where pi= GW’ g = 1 + W
are parameters suitable to describe conic sections.

If ¢ =0, then (3—3)2 =—(u— %)2 so that both sides have to be zero: v =1/p
or 7 = p = constant and the planet moves on a circle.

If € > 0, then () becomes
du \/52 < 1 > 2 du
— ==z |uv—= or dy= ,
de p p 2 1

now use w = uU — —

Vi (3)

pw
now use 2 —= —

_/ dw _p/ dw
Viemer S iy :

/ dz in(2) . (pw) . pu — 1
= | ——— = arcsin(z) = arcsin [ — ) = arcsin .
V1—22

€ €
This implies

—1 1 i C
sin(go—i—C’):pu , u= +esin(p + ),
€ p
L P
u 14esin(fe+C)
We choose the parameter C' such that the minimal distance £~ of the

1+4e
planet from the sun (its perihel) is attained at ¢ = 0 so that sin(C) =1 or

C = 7/2; then sin(¢ + 7/2) = cos(y) and the planetary orbit is described
by the equation

b
8 = >0 > 0.
(8) " 1+ecosep’ p » €2

Equation (8l) describes a conic section in polar coordinates with one focal
point at 0. We have:

e q circle for e =0,

e an ellipse for 0 <e < 1,

e a parabola for e =1,

o the left branch of a hyperbola for e > 1.
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For the ellipse with the right hand focal point at 0:

(rcos p + e)? N r?sin? ¢
a? b2
(6% — a®)r? cos® ¢

+ 2b%r\/a? — b2 cos ¢

+a?r? bt =0.

=1,

Solving for cos ¢, we get

—2b%rva2 — b2 £ \/4b4r2(a? — b2) + 4(a2 — b2)r2(a?r? — b?)

cosp = —2(a? — b?)r?
B —2b%re + 2r2ea B b2 " a
a —2r2e2 Cre e’
b2
— =cosp * g,
re e
b2
. b2 _ b2 =

e(cosp£2)  e2(£l+ Scosyp) - +1+ £cosp
Put p = b?/a and 0 < e = /1 —b2/a? = e/a < 1 and note that r > 0 to
obtain the desired equation (), i.e.,
_ p
r=-———.
1+ecose

For the parabola with focal point at 0:

p
@ = =2(q - 5) = ~2pq1 + 1,
r2(1 — cos? p) = —2prcos ¢ + p,
7"20052(;7 — 2p7‘cosgo+p2 —r? = 0,

2pr + \/4p2r2 —4r2(p? — r?)

cosp = 572
+
_PET_P oy
T T
P > 0.

r=-—
1+ cose
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For the hyperbola with left hand focal point at 0:
(1 — 6)2 2
a2

e=vVa?+ b2,
2

rcosp —e)?  rZsin®o .
a? b2 ’

b?r? cos? ¢ — 2b2rmcos %)

+ a?b® +b* — a®r3(1 — cos® ) = a?b?,
(b% + a®)r? cos® ¢

— 2b2rmcosg0 +bt —a%r? =0.

=1,

Solving again for cos ¢, we get

2627V a2 + b2 & \/4b4r2(a? + b2) — 4(a? + b2)r2(bt — a?r2)
2(a® + b?)r?

cosp =

2b%re + 2r2ea
2r2e2

Put p = b?/a and € = \/1 + b2/a? = e/a > 1 and note that r > 0 to obtain

. . . _ p
the desired equation ), i.e., r = -t o

(Kepler’s 3rd law) If T is the orbital period of a planet on an elliptic orbit
with magjor half-axis a, then:

22 B (27)?
a3  GM

is a constant depending only on the mass of the sun and not on the planet.

Let a and b be the major and minor half-axes of an elliptic planetary orbit
with period T'. The area of this ellipse is abm. But by (B) this area equals
abr = jT/2. In (@) we had p = j2/(GM), and for an ellipse we have
p = b%/a; thus we get

J 3/2,1/2 32 J 2ma®/? T _ (27)°

§T—ab7r—a/p/7r—a/\/cm7r, T—\/CW, B

31.24. Kepler’s laws II: The 2-body system. Here we start to treat
the 2-body system with methods like Poisson brackets, etc., as explained in
So the symplectic manifold (the phase space) is T*(R3 \ {0}) with
symplectic form w = wps = —dips = E?:l dq Ndp;. As inwe use the
canonical coordinates ¢* on R? and p; := m - ¢* on the cotangent fiber. The
Hamiltonian function of the system is the energy from written in
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these coordinates:

1 1 Mm 1 Mm
1) E = |p|? = g = ¢ S
(1) E(g,p) = 5 [pI"+U(a) = 5~ Ip| il 5 D :

V2_(q')?
The Hamiltonian vector field is then given by
3 3
OE 0 OF 0 1 o0 GMm ;0
Hp=S (&=L 2 9\ N (=p L -2 9
E ;(8@ d¢  og 3pi) ;(mp ag g ! api)

The flow lines of this vector field can be expressed in terms of elliptic func-
tions. Briefed by |(31.23.2)] we consider the 3 components of the vector
product J(g,p) = ¢ X p and we may compute that

Jh=ps — *po, TP =—d'ps+Pp1, TP =q'pa— ¢?p,
{E,J}=0, {JLIJOA=-J

We shall later interpret (J*,.J?, J?) as a momentum mapping.

32. Completely Integrable Hamiltonian Systems

32.1. Introduction. The pioneers of analytical mechanics, Euler, La-
grange, Jacobi, Kowalewska, ..., were deeply interested in completely inte-
grable systems, of which they discovered many examples: the motion of a
rigid body with a fixed point in the three classical cases (the Euler-Lagrange,
Euler-Poisot, and Kowalewska cases), Kepler’s system, the motion of a
massive point in the gravitational field created by fixed attracting points,
geodesics on an ellipsoid, etc. To analyze such systems, Jacobi developed a
method which now bears his name, based on a search for a complete integral
of the first order partial differential equation associated with the Hamitonian
system under consideration, called the Hamilton-Jacobi equation. Later it
turned out, with many contributions by Poincaré, that complete integrabil-
ity is very exceptional: A small perturbation of the Hamiltonian function
can destroy it. Thus this topic fell into disrespect.

Later Kolmogorov, Arnold, and Moser showed that certain qualitative prop-
erties of completely integrable systems persist after perturbation: certain
invariant tori on which the quasi-periodic motion of the nonperturbed, com-
pletely integrable system takes place survive the perturbation.

More recently it has been shown that certain nonlinear partial differential
equations such as the Korteweg-de Vries equation u; + 3u,u + auge, = 0 or
the Camassa-Holm equation u; — Utpe = Upze U + 2Ugy .Uy — 3Uz.u may be
regarded as infinite-dimensional ordinary differential equations which have
many properties of completely integrable Hamiltonian systems. This started
new, very active research in completely integrable systems. See [68), [69] for
an overview.
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32.2. Completely integrable systems. Let (M, w) be a symplectic man-
ifold with dim(M) = 2n with a Hamiltonian function h € C*°(M).

(1) The Hamiltonian system (M, w, h) is called completely integrable if there
are n functions f1,..., f, € C°°(M) which

e are pairwise in involution: {f;, f;} = 0 for all ¢, 7,
e are first integrals of the system: {h, f;} = 0 for all 1,

e are nondegenerate: their differentials are linearly independent on a
dense open subset of M.

We shall keep this notation throughout this section.

(2) The n + 1 functions h, fi,..., fr, € C°°(M) are pairwise in involution.
At each point x € M the Hamiltonian fields Hy(z), Hy, (x), ..., Hy, () span
an isotropic subset of T, M which has dimension < n; thus they are linearly
dependent. On the dense open subset U C M where the differentials df;
are linearly independent, dh(x) is a linear combination of df; (z), ..., df,(z).
Thus each x € U has an open neighborhood V- C U such that h|V = ho
(f1,-- s fu)|V for a smooth local function on R™. To see this, note that the
Hy, span an integrable distribution of constant rank in U whose leaves are
given by the connected components of the sets described by the equations
fi = ¢, ¢; constant, for ¢ = 1,...,n of maximal rank. Since {h, f;} = 0,
the function h is constant along each leaf and thus factors locally over the
mapping f := (f1,...,fn) : U = f(U) C R™. The Hamiltonian vector field
Hj, is then a linear combination of the Hamiltonian fields Hy,,

Hy = o (dh v—l( e ) df) = Zaf (Froees fu) Hy

afz

whose coefficients (%(fl, ..., fn) depend only on the first integrals fi,..., fp.
The f; are constant along the flow lines of Hj, since {h, f;} = 0 implies
(FLITy* f; = fi and (FLI)*H f; = Hy,. This last argument also shows that
a trajectory of Hj intersecting U is completely contained in U. Therefore
these coeflicients g—}‘i( fi,.-., fn) are constant along each trajectory of Hp,
which is contained in U.

(3) The Hamiltonian vector fields Hy,,...,Hy, span a smooth integrable
distribution of nonconstant rank on M according to|(3.28)} since [Hy,, Hy,] =

Hs, ry =0and (Flflf" )*Hy, = Hy,, so the dimension of the span is constant
along each flow. Thus we have a foliation of jumping dimension on M: Each
point of M lies in an initial submanifold which is an integral manifold for
the distribution spanned by the Hy,. Each trajectory of Hj, or of any Hy, is
completely contained in one of these leaves. The restriction of this foliation
to the open set U is a foliation of U by Lagrangian submanifolds, whose
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leaves are defined by the equations f; = ¢;, i = 1,...,n, where the ¢; are
constants.

32.3. Lemma ([10]). Let R?"* = R™ x R™ be the standard symplectic vector
space with standard basis e; such that w = > €' A e Let W C R?" be
a Lagrangian subspace.

Then there is a partition {1, ... ,n} = IUJ such that the Lagrangian subspace
U of R?" spanned by the e; fori € I and the e,y for j € J is a complement
to W in R?".

Proof. Let k = dim(W N (R™ x 0)). If K = n, we may take I = . If k < n,
there exist n—k elements e;,,...,e; , of the basiseq,..., e, of R” x0 which
span a complement U’ of W N (R™ x 0) in R™ x 0. Put I = {i1,...,%n_k}
and let J be the complement. Let U” be the span of the e, ; for j € J, and
let U = U’ @ U"”. Then U is a Lagrangian subspace. We have

R"x0=(WN(R"x0))aU', WNR"x0)CcW, U =UNR"x0)CU.

Thus R" x 0 ¢ W 4+ U. Since R" x 0, W, U are Lagrangian, by
we have WNU = Wt nU+ = (W +U)t c (R* x 0) = R" x 0; thus
WnNnU=WnNR"x0)NUNR"*x0)=WnNR"*"x0)NU"=0, and U
is a complement of W. O

32.4. Lemma. Let (M,w) be a symplectic manifold of dimension 2n, and
let x € M. Suppose that 2n smooth functions u',... u", fi,..., fa are given
near x, that their differentials are linearly independent, and that they satisfy
the following properties:

o The submanifold defined by the equations u' = u'(x) fori=1,...,n is
Lagrangian.
o The functions fi,..., fn are pairwise in involution: {f;, f;} =0 for all
i,7.
Then on an open neighborhood U of x in M we may determine n other
smooth functions g1, ..., gn such that

n
wlU =" df; Adgi.
=1
The determination of g; uses exclusively the operations of integration, elim-
ination (solving linear equations), and partial differentiation.

Proof. Without loss we may assume that u’(xz) = 0 for all i. There ex-
ists a contractible open neighborhood U of z in M such that (u, f) :=
(ul,...,u™ f1,..., fn) is a chart defined on U and such that each diffeo-
morphism ¥ (u, f) := (tu, f) is defined on the whole of U for ¢ near [0, 1]
and maps U into itself. Since 1y maps U onto the Lagrange submanifold
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N :={yeU:u(y) =0fori=1,...,n} we have ¢jw = 0. Using the
homotopy invariance |(11.4), we have

w|U = fw = Pw + d h(w) — h(dw) = 0 + d h(w) + 0
where h(w) = fol ins} ig,¢*w dt is from the proof of

Since fi1,..., fn are pairwise in involution and have linearly independent dif-
ferentials, w|U belongs to the ideal in Q*(U) generated by dfi, ..., df,. This
is a pointwise property. At y € U the tangent vectors Hy (y),..., Hy, (y)
span a Lagrangian vector subspace L of T, M with annihilator L° C T/M
spanned by df1(y),...,dfn(y). Choose a complementary Lagrangian sub-
space W C T, M; see the proof of Let a1,...,an € Ty M be a basis
of the annihilator W°. Then w, = 371", wija; A df;(y) since w vanishes on
L, on W, and induces a duality between L and W.

From the form of h(w) above we then see that h(w) also belongs to this
ideal, since v} f; = f; for all i. Namely,

Z / ins; g, U (wiai) ) df dt = Zgj df;

,j=1
for smooth functions g;. Finally we remark that the determination of the
components of w in the chart (u, f) uses partial differentiations and elim-
inations, whereas the calculation of the components of h(w) uses integra-
tion. U

32.5. Lemma. Let (M,w) be a symplectic manifold of dimension 2n. We
assume that the following data are known on an open subset U of M :

e a canonical system of local coordinates (q*,...,q", p1,...,pn) on U such
that the symplectic form is given by w|U = Y1 | dq* A dp;,

e smooth functions fi,. .., fn which are pairwise in involution, { f;, f;} =
0 for all i,j, and whose differentials are linearly independent.

Then each x € U admits an open neighborhood V- C U on which we can
determine other smooth functions g1, ..., g such that

n
wly = dfi A dg:
The determination of g; uses exclusively the operations of integration, elim-
ination (use of the implicit function theorem), and partial differentiation.

Proof. If the functions ¢',...,q", f1,..., f, have linearly independent dif-
ferentials at a point « € U, the result follows from In the general case
consider the Lagrangian subspace L C T,;M spanned by Hy, (z), ..., Hy, (x).
By lemma there exists a partition {1,...,n} = I U J such that the
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Langrangian subspace W C T, M spanned by H(z) for i € I and H, ()
for j € J is complementary to L. Now the result follows from lemma |(32.4)
by calling u*, k = 1,...,n, the functions ¢* for i € I and pjforjeJ. O

32.6. Proposition. Let (M,w,h) be a Hamiltonian system on a symplectic
manifold of dimension 2n. We assume that the following data are known on
an open subset U of M :

e a canonical system of local coordinates (q*,...,q", p1,...,pn) on U such
that the symplectic form is given by w|U = Y1 | dq" A dp;,

e a family f = (f1,...,fn) of smooth first integrals for the Hamilton-
ian function h which are pairwise in involution, i.e., {h, f;} = 0 and
{fi, f;} =0 for alli, j, and whose differentials are linearly independent.

Then for each x € U the integral curve of Hy, passing through x can be deter-
mined locally by using exclusively the operations of integration, elimination,
and partial differentiation.

Proof. By lemma there exists an open neighborhood V of x in U
and functions g¢1,...,g, € C°°(V) such that w|V = >, dfi A dg;. The
determination uses only integration, partial differentiation, and elimination.
We may choose V' so small that (f,g) := (f1,..., fn,91,---,9n) is a chart
on V with values in a cube in R?".

We have already seen in [(32.2.2)| that h|V = ho(f,g) where h = ho(f,g)™*
is a smooth function on the cube which does not depend on the g;. In fact

h may be determined by elimination since h is constant on the leaves of the
foliation given by f; = ¢;, ¢; constant.

The differential equation for the trajectories of Hp in V' is given by
oh : oh

= =0 = k=1,.
fk agk ) gk afk b ) ) n’
thus the integral curve Flf{ "(x) is given by
Fe(FL (@) = fi(@),
oh k=1,...,n. O

gk(qu”(w))==9k($)—-t502(f(w)%

32.7. Proposition. Let (M,w,h) be a Hamiltonian system with dim(M) =
2n and let f = (f1,..., fn) be a family first integrals of h which are pairwise
in involution, {h, f;} = 0 and {f;, f;} = 0 for all i,j. Suppose that all
Hamiltonian vector fields Hy, are complete. Then we have:

(1) The vector fields Hy, are the infinitesimal generators of a smooth ac-
tion £ : R™ x M — M whose orbits are the isotropic leaves of the
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foliation with jumping dimension described in |(32.2.3)| and which can
be described by

H H
f(tl,“.,tn)(fv) = (Fltlfl ©...0 Fltnfn)(x)-

Each orbit is invariant under the flow of Hy,.

(2) (Liouwville’s theorem) If a € f(M) C R™ is a regular value of f and
if N C f~Y(a) is a connected component, then N is a Lagrangian
submanifold and is an orbit of the action of R™ which acts transitively
and locally freely on N: For any point x € N the isotopy subgroup
(R™")y :={t € R" : ly(x) = x} is a discrete subgroup of R™. Thus it is
a lattice Zle 2w Zv; generated by k = rank(R™), linearly independent
vectors 2mwv; € R™. The orbit N is diffeomorphic to the quotient group
R™/(R™), = TF x R"*, a product of the k-dimensional torus by an
(n — k)-dimensional vector space.

Moreover, there exist constants (w1,...,w,) € R™ such that the flow
of the Hamiltonian h on N 1is given by Flf{h = Litwr,...twy)- If we use
coordinates (b mod 2w, ..., by mod 27w, bgiq,...,b,) corresponding to

the diffeomorphic description N = TF x R % the flow of h is given by

F17% (b, mod 2r, ... b, mod 2, byyy, . . ., by)
= (by +tcg mod 2m, ..., by + tcp mod 27, b1 + tekyt, ..., by + tey)

for constant ¢; = w;/|v;| for i < k and ¢; = wj for j > k. If N is
compact so that k = n, this is called a quasi-periodic flow.

Proof. The action £ is well defined since the complete vector fields Hy,
commute; see the proof of Or we conclude the action directly from
theorem The rest of this theorem follows already from or it
is obvious. The form of discrete subgroups of R™ is proved in the next
lemma. O

32.8. Lemma. Let G be a discrete subgroup of R™. Then G is the lattice
Zle Zv; generated by 0 < k = rank(G) < n linearly independent vectors
v; € R™,

Proof. We use the standard Euclidean structure of R”. If G # 0, there is
0 # v € G. Let vy be the point in Rv NG which is nearest to 0 but nonzero.
Then GNRv = Zv;: If there were w € G in one of the intervals (m, m+1)vy,
then w — mv; € Rv; would be nonzero and closer to 0 than vq.

If G # Zv1, there exists v € G\ Rv;. We will show that there exists a point
v9 in G with minimal distance to the line Rv; but not in the line. Suppose
that the orthogonal projection prg,, (v) of v onto Ru; lies in the interval
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P = [m,m + 1]v; for m € Z, consider the cylinder
C={z¢ pr@1 (P) : dist(z, P) < dist(v, P)}

and choose a point vy € G \ Ru; in this cylinder nearest to P. Then vy has
minimal distance to Rv; in G\ (Rvy) since any other point in G with smaller
distance can be shifted into the cylinder C' by adding some suitable muws.

Then Zv, + Zwvy forms a lattice in the plane Rv; 4+ Rvy which is partitioned
into parallelograms @ = {ajv1+agve : m; < a; < m;+1} for m; € Z. If there
is a point w € G in one of these parallelograms @), then a suitable translate
w — njv; — ngvg would be nearer to Ru; than ve. Thus G N (Rv; 4+ Rug) =

Zvy + Zvs.

If there is a point of G outside this plane, we may find as above a point
vg of G with minimal distance to the plane, and by covering the 3-space
Rv; + Rus + Rus with parallelepipeds, we may show as above that G N
(Rvy + Rvg + Rus) = Zvy + Zvy + Zvs, and so on. O

33. Poisson Manifolds

33.1. Poisson manifolds. A Poisson structure on a smooth manifold M

is a Lie bracket { , } on the vector space of smooth functions C'*°(M)
also satisfying
(1) {f.gh}y ={f,9}h+g{f. h}.

This means that for each f € C°°(M) the mapping ady = {f, } is a
derivation of (C*°(M),-), so by [(3.3) there exists a unique vector field
H(f) = Hf € X(M) such that {f,h} = Hy(h) = dh(Hy) holds for each
h € C>*(M). We also have H(fg) = f Hy + g Hy since

Hyg(h) ={fg,h} = f{g. h} +9{f, h} = (f Hg + g Hy)(h).
Thus there exists a unique tensor field P € I'(A?TM) such that
(2) {f,9} = Hy(g) = P(df,dg) = (df Ndg, P).

The choice of sign is motivated by the following. If w is a symplectic form

on M, we consider, using
w:TM — T*M, (W(X),Y) =w(X,Y),
P=o :T"M 5 TM, (4, P(¢)) = Plp,¥),
Hp =o~'(df) = P(df),  in,w=df,
{f,9} = Hy(g) = in, dg = ip,in,w = w(Hg, Hy)
= (dg, Hy) = (dg. P(df)) = P(df dg) = 5(df A dg, P).
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33.2. Proposition. Schouten-Nijenhuis bracket. Let M be a smooth
manifold. We consider the space T'(NTM) of multivector fields on M.
This space carries a graded Lie bracket for the grading F(/\*H TM),* =
—1,0,1,2,..., called the Schouten-Nijenhuis bracket, which is given by

(1) [Xl/\”'/\Xp,Yl/\"'/\Y]
_Z H‘JX“}/]/\XI/\ B(\i"'/\Xp/\Yl/\'“f/\}""/\Kp

(2) [f, ]Z—Z(df) :

where ©(df) is the insertion operator /\kTM — /\k_lTM, the adjoint of
df AC ) NT*M — NPT M

Let U e T(AN“TM), V e T(N'TM), W e T(ANYTM), and f € C°(M,R).
Then we have:

(3) U, V] = —(-n« VeV, o).

(4) U, [V, W]] = [0, V], W] + (=) DD v (U, w)).

(5) [U,VAW] = [U,V]AW + (=1)@Dy A U, W].

(6) (X, U] = LxU.

(7) Let P € T(A>TM). Then the product {f,g} = $(df Adg, P) on C>=(M)

satisfies the Jacobi identity if and only if [P, P] = 0.
Proof. The bilinear mapping AT(TM) x A'T(TM) — AT M)
given by (@) factors over \"I(T'M) — /\]éoo(M)I‘(TM) = T'(A"T'M) since
we may easily compute that
[Xl/\---/\Xp,Yl/\---/\ij/\--'/\Y;]] :f[Xl/\“'/\Xp,Yl/\"‘/\Yq]
+ (—DPudf)(Xi A ANXp) AYT AN,
So the bracket [ , ] : T(AF'TM) x D(A"'TM) — DA 1TM) is

a well defined operation. Properties [B)—(@) have to be checked by direct
computations.

Property (@) can be seen as follows: We have
(8) 2{f:9}2<df/\dg7 > <dgv (df) > _<dgv [f7P]>:[gv [f7P]]

Now a straightforward computation involving the graded Jacobi identity and
the graded skew-symmetry of the Schouten-Nijenhuis bracket gives

[, g, [f, [P, P]Il = =8({f, {9, h}} + {g,{h, F}} + {h. {F, 9}})-
Since [h, [g, [f, [P, P]]]] = (df A dg A dh, [P, P]), the result follows. O

In [200] there is an expression for (—1)%~1[U, V] in terms of covariant deriva-
tives which does not depend on the covariant derivative, and in [176] it is
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found that it satisfied the graded Jacobi identity. In [124] the relation of the
Schouten-Nijenhuis bracket to Poisson manifolds was spelled out. See also
[222], [147] for the version presented here and [223] for more information.

Let us point out here that the skew-symmetric Schouten-Nijenhuis bracket
has a symmetric counterpart. It is an ordinary (non-graded) Lie bracket ex-
tending the Lie bracket from the space of vector fields to the space I'(\/ T'M)
of symmetric multivector fields. It satisfies [X, f] = Lx f for X € X(M) and

[Xl\/"'\/Xp,Yl\/"‘\/Y;]]

:Z[Xi’yﬂVXl\/"'X\i“’\/Xp\/Yl\/"'i/\j"'\/Yq-
i,
A symmetric multivector field on M can be viewed as a smooth function
on T*M which is a homogeneous polynomial on each fiber. The symmetric
Schouten-Nijenhuis bracket is then just the restriction of the canonical Pois-
son bracket on C*°(T*M) to the subalgebra of these fiberwise polynomial
functions.

33.3. Hamiltonian vector fields for Poisson structures. Let (M, P)
be a Poisson manifold. As usual we denote by P : T*M — TM the asso-
ciated skew-symmetric homomorphism of vector bundles. Let X(M, P) :=
{X € X(M) : LxP = 0} be the Lie algebra of infinitesimal automorphisms
of the Poisson structure. For f € C*°(M) we define the Hamiltonian vector

field by
(1) grad”(f) = Hy = P(df) = —[f, P] = —[P, f] € (M),

and we recall the relation between Poisson structure and Poisson bracket,
[(33.1.2)| and |(33.2.8)]

{f.9} = Hy(9) = P(df,dg) = 3(df Adg, P) = [g,[f, P]].

Lemma. The Hamiltonian vector field mapping takes values in X(M, P)
and is a Lie algebra homomorphism

(COO(M)a{ ) }P)

H=erd” (M, P).
Proof. For f € C°°(M) we have:
0=L[f, [P, P] =, P, Pl = [P[f, Pl] = 2[[f. P, P,
Li,P = [Hy, Pl = —[lf, P, P] = 0.
For f,g € C*(M) we get
[Hf?Hg] = Hf7P]7[gaPH = [g,[[ﬁPLPH - [[ga [f,P]],P]
:[ga_ﬁHfP]_[{f7g}7P}:O+H<{fag}) O
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33.4. Theorem. Let (M, P) be a Poisson manifold. Then P(T*M) C TM

is an integrable smooth distribution (with jumping dimension) in the sense

of [(3.23). On each leaf L (which is an initial submanifold of M by|(3.25)

the Poisson structure P induces the inverse of a symplectic structure on L.
One says that the Poisson manifold M is stratified into symplectic leaves.

Proof. We use theorem [(3.28) Consider the set
V= {P(df) = Hy = ~[f, P] : f € C®(M)} C X(P(T*M))

of sections of the distribution. The set V spans the distribution since through
each point in T*M we may find a form df. The set V is involutive since
[Hy, Hy] = H{y gy Finally we have to check that the dimension of P(T*M)
is constant along flow lines of vector fields in V), i.e., of vector fields H:

P=(FL)P=TF")oPo(TFI)* since Ly, P =0
— dim P(T* u; M) = constant in ¢.
Fl, 7 (x)

So all assumptions of theorem are satisfied and thus the distribution
P(T*M) is integrable.

Now let L be a leaf of the distribution P(7* M), a maximal integral manifold.
The 2-vector field P|L is tangent to L, since a local smooth function f on
M is constant along each leaf if and only if P(df) = —df o P : T*M — R
vanishes. Therefore, P|L : T*L — TL is an injective homomorphism of
vector bundles of the same fiber dimension and is thus an isomorphism.
Then &y, := (P|L)~! : TL — T*L defines a 2-form w; € Q*(L) which
is nondegenerate. It remains to check that wy is closed. For each z € L
there exists an open neighborhood U C M and functions f,g,h € C*(U)
such that the vector fields Hy = P(df)|L, Hy, and Hj, on L take arbitrary
prescribed values in T, L at x € L. Thus dwy = 0 € Q3(L) results from the
following computation:

wr(Hy, Hy) = (in,wr)(Hy) = wr(Hy)(Hy)
=df(Hy) ={9, [}
dwr(Hy, Hg, Hp) = Hp(wr(Hg, Hp)) + Hy(wr (Hp, Hy))
+ Hp(wr(Hy, Hy)) — wir([Hy, Hyl, Hp)
—wi([Hy, Hp], Hy) — wi([Hp, Hy], Hy)
= {{h, g}, f} +{{f,n}, 9} + {{g, [}, 1}
—{h{f.9}} = {f- {9, n}} — {9, {h, f}} =0. O
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33.5. Proposition. Poisson morphisms. Let (M, P;) and (M, Py) be
two Poisson manifolds. A smooth mapping ¢ : M1 — Ms is called a Poisson
morphism if any of the following equivalent conditions is satisfied:

(1) For all f,g € C*(Mz) we have *{f,g}2 ={¢"f,¢"g}1-
(2) For all f € C*°(Mz) the Hamiltonian vector fields H}g*f € X(My, Pr)
and szc € X(My, Py) are @-related.

(3) We have N*Tg o P = Pyow: My — N> TMs.
(4) For each x € My we have
Typo (pl)x © (szo)* = (P2)<p(ac) : T;(m)M2 — T@(m)MZ-
Proof. For x € M; we have

{e* fr9*ghi(z) = (P1)2(d(f 0 @)|asd(g o ©)|a)

= (P1)2(df | () To: gl () T
2

= 3(PD)a- \(Tu0)" (df lo(o) A gl ()

2
e {f.g}t2(x) = {f, g}a(0(®)) = (P2) p(a) (df | p(x)> A9 p(a))-

This shows that (Il) and (B]) are equivalent since df (y) meets each point of
T*Ms. [B) and (@) are obviously equivalent.

@) and (4) are equivalent since we have
Tx‘P-H;*f(x) = T:L"QD-(Pl)m-d(f o)z = Tw@'(Pl)m(Tx‘P)*-df|gp(ac)>

33.6. Proposition. Let (M1, P1), (M, P2), and (Ms, P3) be Poisson man-
ifolds and let ¢ : M1 — Mo and v : Ms — M3 be smooth mappings.

(1) If ¢ and ) are Poisson morphisms, then also ¥ o ¢ is a Poisson mor-
phism.

(2) If ¢ and ) o ¢ are Poisson morphisms and if ¢ is surjective, then
also ¥ is a Poisson morphism. In particular, if ¢ is Poisson and a
diffeomorphism, then also o~ is Poisson.

Proof. Part ([I]) follows from|(33.5.1)| say. For (2) we use|(33.5.3)|as follows:
2 2
N\TeoPi=Pyop and NT(hop)oP=Psorpogp

2 2 T 2
imply /\TWoPyop=\Tpo NpoPi=/\T(op)oP=Psorop,
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which implies the result since ¢ is surjective. (]

33.7. Example and theorem. For a Lie algebra g there is a canonical
Poisson structure P on the dual g*, given by the dual of the Lie bracket:

2 2
J:Ne—9 P=—[ , ":9°=> ¢,
{f,9}) = (a,[dg(a),df (a)])  for f,g € CF(g"),a € g".

The symplectic leaves are exactly the connected components of coadjoint or-
bits with their symplectic structures from|(31.14)|.

Proof. We check directly the properties|(33.1)|of a Poisson structure. Skew
symmetry is clear. The derivation property |(33.1.1)] is:

{f.gh}(a) = (e, [h(e)dg(e) + g(a)dh(c), df (@)])
= (o, [dg(a), df (@)]) h(a) + g(a)(ev, [dh(e), df (@)])
= ({/f,9}h + g{f. h}) ().
For the Jacobi identity |(33.1.1)[ we compute
(8,d{g. h}|a) = (B, [dh(a), dg(a)]) + (o, [*h(a) (B, ), dg()])
+ (o, [dh(a), d*g(@)(8, )])
= (8, [dh(a), dg()]) — ((adag(a)) @, d*h(a) (B, )
+ ((adgn(a)) e, & ( )(B, )
= (8. [dh(a), dg(@)]) — d*h(a) (B, (adge(a)) @)
+ d*g()(8, (addh(a))*a)
and we use this to obtain
{£{g,h}} (@) = (a, [d{g, h}(a),df (a)])
= {a, [[dh(a), dg(a)), df (a)]) — (o, [*h(@)( , (adgg(a)) "), df (a)])
+{a, [d®g(a)(, (adan(a)) @), df (@)])
= (@, [[dh(a), dg(@)], df ()]) — d*h(a) ((adgp(a))* v, (adgg(a)) ")
+ d*g(@)((adgr(a))* o (adgp(a)) ).
The cyclic sum over the last expression vanishes. Comparing with
and we see that the symplectic leaves are exactly the coadjoint
orbits, since
(Hy(a),dg(a)) = Hp(g)la = {f, g}(a) = (a, [dg(a), df (a)])
—((adgs(a)) v, dg(av)),
Hy(a) = —(adgp(a))
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The symplectic structure on an orbit O = Ad(G)*« is the same as in
which was given by wo(Cx,Cy) = ev[x,y] where (x = —ad(X)* is the fun-
damental vector field of the (left) adjoint action. But then devy ((x(a)) =
—(ad(X)*a,Y) = (o, [Y, X]) = wo((y, x) so that on the orbit the Hamil-
tonian vector field is given by Hey, = (y = —ad(Y)* = —ad(devy(a))*, as
for the Poisson structure above. g

33.8. Theorem. Poisson reduction. Let (M, P) be a Poisson manifold
and let v : M x G — M be the right action of a Lie group on M such that
each 9 : M — M 1is a Poisson morphism. Let us suppose that the orbit
space M /G is a smooth manifold such that the projection p : M — M/G is
a submersion.

Then there exists a unique Poisson structure P on M/G such that p :
(M,P) — (M/G, P) is a Poisson morphism.

The quotient M /G is a smooth manifold if the action is proper and all orbits
of G are of the same type: All isotropy groups G, are conjugate in G. See
29.21)

Proof. We work with Poisson brackets. A function f € C°°(M) is of the
form f = fop for f € C®°(M/G) if and only if f is G-invariant. Thus
p*: C®(M/G) — C*°(M) is an algebra isomorphism onto the subalgebra
C>®(M)% of G-invariant functions. If f,h € C*(M) are G-invariant, then

so is {f,h} since (r9)*{f,h} = {(r9), (r9)*h} = {f,h} by [(33.5)] for all
g € G. So C*®(M)% is a subalgebra for the Poisson bracket which we may
regard as a Poisson bracket on C*°(M/G). O

33.9. Poisson cohomology. Let (M, P) be a Poisson manifold. We con-
sider the mapping
k—1 k
op:=[P, ]:T(/\ TM)—>T(\TM)

which satisfies dp o dp = 0 since [P, [P,U]] = [[P, P],U] + (-=1)1[P, [P, U]
by the graded Jacobi identity. Thus we define the Poisson cohomology by
_ ker(dp : D(A"TM) — D(A" TM))

im(6p : DN TM) = T(N*TM))

(1) Hllgoisson(M) :
The direct sum
dim(M)
H;’oisson(M) = @ Hllgoisson(M)
k=0
is a graded commutative algebra via U AV since im(dp) is an ideal in ker(dp)
by [(33.2.5)} The degree 0 part of Poisson cohomology is given by

(2) Hpgison(M) = {f € O%(M) : Hy = {f, } =0},
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i.e., the vector space of all functions which are constant along each symplec-
tic leaf of the Poisson structure, since [P, f| = [f, P] = —u(df)P = —P(df) =

—Hy = —{f, } by|(33.2.2)} [(33.2.8)] and |(33.1.2)l The degree 1 part of
Poisson cohomology is given by

{XeX(M):[P,X]=—-LxP =0}
{[P,f]: f € Cx(M)}
(3) B X(M,P)
{Hy: feC>)}
Thus we get the following refinement of lemma There ezists an exact
sequence of homomorphisms of Lie algebras:

Hfl’oisson (M) =

0— HO,. . (M) -2~ c=(M) 2= x(M, P) > H}

Poisson
grad?

0 {1} [ ] [ ]

where the brackets are written under the spaces, where « is the embedding
of the space of all functions which are constant on all symplectic leaves, and
where 7 is the quotient mapping from (§). The bracket on Hy .. . (M) is
induced by the Lie bracket on X(M, P) since {Hy : f € C*°(M)} is an ideal:

[Hy, X] = [=[f, P, X] = =[f, [P, X]] = [P, [f, X]] = 0+ [X(f), P] = —Hxy)-
33.10. Lemma ([67], [130]). Let (M, P) be a Poisson manifold.
Then there exists a Lie bracket { , }': QY M) x QY (M) — QY (M) which
s given by
(1) {%w}l = Lp) = Lpyype — d(P(e,4))
oV = Lpy® = dip,) ¥
It is the unique R-bilinear skew—symmetme bracket satisfying
(2) {df.dg}! = d{f.g} for f.g € C=(M),
(3) {o. f0} = Ho oY + Lo (DY for o, € QH(M).

Furthermore P, : QY (M) — X(M) is a homomorphism of Lie algebras:

(4) P({g,0}") = [P(¢), P(¥)] for ¢, € Q' (M).

The coboundary operator of Poisson cohomology has a similar form in terms
of the bracket { , }' as the exterior derivative has in terms of the usual
Lie bracket. Namely, for U € T(AN*TM) and o, ..., o € Q*(M) we have

k

(5> (_1>k<6PU)(900a B on) = Z(_l)lﬁP(q}Z)(U(@Oa SO ()/O\’h B (pk))
1=0

+Z H_JU {(/77,,(/7]} @07"'7¢\i7"'a@7'-'a()0k)'
1<J

(M> - O?

Poisson
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Proof. ([l is skew-symmetric R-bilinear and satisfies (2l) and (B]) since by

We have
{df,dg}' = Lpapdg — Lpggydf — d(P(df,dg)) = dLp,g — dLp, f — d{f, g}
= d{f,g}
{@, FOY = Lp) (F1) - we — d(fP(e, )
= ﬁp y () + fﬁp J () = [Lpye — o(P()) df
- P(so,l/)) df — fd(P(e,))
= f{o 0} + L) (v

So an R-bilinear and skew-symmetric operation satisfying (2)) and (B)) exists.
It is uniquely determined since from (B]) we see that is local in ¢, i.e., if
Y|U = 0 for some open U, then also {p,y}!|U = 0 by using appropriate
bump functions. By skew-symmetry it is also local in ¢. But locally each 1-
form is a linear combination of expressions f df’. Thus (2) and (B]) determine
the bracket { , }! uniquely. By locality it suffices to check condition ()
for 1-forms f df’ only:

P({fdf'.gdg'}') = P(fg{df'.dg'} + f Hy/(9) dg' — g Hy(f) df')
= fgP({f',q'}) + f Hy(g) P(dg') — g Hy (f) P(df’)
= fgHp gy + [ Hp(g) P(dg') — g Hy ( ) P(df")
= fglHy, Hy]+ f Hy/(9) Hy — g Hy (f) Hypr
= [fHp,gHy] = [P(fdf'), P(gdg")]-

Now we can check the Jacobi identity. Again it suffices to do this for 1-forms
fdf’. We shall use:

{fdf,gdg'}' = fg{df',dg'}' + f Hy(g)dg' — g Hy (f) df’
= fgd{f'.g'y+ f{f g} dd —g{d. f}df

in order to compute

({rdf'.gdg}' hdl'}' = {fgd{f'.g'} + F{f' g} dg' — glg', f}df' hdh'}’
={fgd{f", g’y hah'} + {f{f", g} dg', hdh'} —{g{g, f} df',hdn'}!
= fghd{{f",g'}, '} + fo{{ /', '}, h} dh' — h{l’, fg} d{f', ¢’}

+ A gthd{g W'} + f{f gHg' Y dh' — h{W, f{f', 9}} dg’

—glg’, fYha{f h'} — g{d', FH ', h} dl' + {W . g{q. f}} df’
= fghd{{f",g'}, '} + (fo{f' . {g' h}} dh' — fo{g'{f', h}} dh')

+ (—gh{l', fYa{f',g'y = fr{n’, g} d{f', 4'})
+hf{f gy d{d W'} + f{f' g}y’ n} al’
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+ (=10 fH S gy dg' — RN A S, 9}} dg)
—hglg', fHa{f",n'}t — gld', fHf' 1} d'
+ ({1, gH{d', FYdf" + gh{h' {d', F1} df).
The cyclic sum over these expressions vanishes by using once the Jacobi
identity for the Poisson bracket and many pairwise cancellations.

It remains to check formula (B for the coboundary operator of Poisson
cohomology. We use induction on k. For k = 0 we have

(6pf)(dg) = Lu,f = {9, f} = —Lu,;9 = —H(dg) = [P, f](dg).

For k = 1 we have

(0pX)(df,dg) = L1, (X (dg)) — L, (X (df)) — X ({df, dg}")
= Ln,;(X(dg)) — L, (X(df)) — X(d{f, g}),
[P, X|(df ,dg) = —(Lx P)(df , dg)
= —Lx(P(df,dg)) + P(Lxdf,dg) + P(df,Lxdg)
= —X(d{g, f}) +{9, X(df)} + {X(dg). f}
= —(X(d{f,9}) — Ln,(X(df)) — Lu,;(X(dg)))
= —(6pX)(df, dg).
Finally we note that the algebraic consequences of the definition of dp are
the same as for the exterior derivative d; in particular, we have 0p(UAV) =
(6pU) ANV 4+ (=1)"*U A (6pV). So formula (B) now follows since both sides

are graded derivations and agree on the generators of T'(A\* T'M), namely
on C*°(M) and on X(M). O

33.11. Remark: The Koszul bracket. Lemmahas the following
generalization which we present without proof. For a Poisson field P €
(A TM), the insertion operator ip : QF(M) — QF=2(M) is the adjoint of
multiplication by P:
p—2
(ipp, Uy = (p.PANU) for p € QP(M) and U € I‘(/\ TM).

Then 0p := [ip,d] = ipod — doip is the Poisson homology operator of
Koszul and satisfies dp o dp = 0.

Result ([112]). Let (M, P) be a Poisson manifold. On the exterior algebra
QY (M) of differential forms,
{p. 9} = (=1P(Bp(p A ) = Bp(0) A — (=1)Pp A Op(¥))

defines a graded Lie bracket, called the Koszul bracket. It satisfies the Leibniz
rule

{o, 0 AT} = {p 0} AT+ (=1)P D9y A {, 7}
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where ¢ € P (M), Y € QI(M), and 7 € Q(M). The exterior derivative is a
derivation of the bracket
d{p, v} = {dp, ¥} + (=P o, dy}.

On the space QY (M) of 1-forms this bracket coincides with the Lie bracket

from lemma|(33.10)| Moreover, the algebra homomorphism (for the wedge
product)

AP : QM) »T(\TM)

is a homomorphism of graded Lie algebras from the Koszul bracket into the
Schouten-Nijenhuis bracket.

33.12. The graded Poisson bracket for differential forms. We con-
sider a Poisson manifold (M, P). Recall Q(M;TM) =T'(A*T*M ®TM), the
space of tangent bundle valued differential forms on M, equipped with the
Frolicher-Nijenhuis bracket [ , |; see[(16.5) Recall for K € QF(M;TM)
the graded Lie derivative Lx € Dery Q(M) from |(16.3)| and the graded al-
gebraic derivative ix € Derg_1 Q(M) from |(16.2)]
We first extend P : T*M — TM to a linear mapping

P:Q(M)— QM;TM)
of degree —1 by P|Q°(M) = 0, and for ¢; € Q'(M) by

k

P(Lpl/\---/\gok):Z(—l)’;lgpl/\...cﬁi---/\gpk@]b(@i).
i=1

This extension is an (M )-bimodule valued graded derivation of degree —1,
i.e., for ¢ € QP(M) and ¢ € QI(M) we have:

P(p A1) = P(p) AN+ (=1)Pp A P(y).
Then we have the Hamiltonian mapping:

H = grad” : Q(M) — Q(M;TM), H(¥) = P(dv).

Result ([79]). The Poisson bracket on C*°(M) = Q°(M) extends to a
graded Lie bracket { , } on the space Q(M) of all differential forms which
s given by
{p. ¥} : = Lu,+ dﬁpwﬂ/)
= Up(ap)d¥ + dip(,dip — (‘qudip(w)d%
such that the Hamiltonian mapping

H:(QM),{ , })—= QM;TM),[ , )
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is a Lie algebra homomorphism into the Frélicher-Nijenhuis bracket. More-
over we have

{fa¢}:£wa fOTfGCOO(M)v

d{p, b} ={dp, v} = (=1)"{p, d)}.
Thus Z(M) = ker(d : Q(M) — Q(M)) is a commutative Lie ideal. Exterior
derivative d : (Q*(M),{ , }) — (UL (M),{ , }) is a Lie algebra
homomorphism into the Koszul bracket from|(33.11)] But this bracket does

not act as a derivation for the exterior product; there is no extension of the
Poisson bracket doing this and mapping to the Koszul bracket via d.

In [145], for the case of symplectic manifolds, it was shown that the Pois-
son bracket on C*(M) = Q°(M) extends to a graded Lie bracket on the
space Q(M)/B(M) of differential forms modulo exact forms such that the
Hamiltonian mapping H is a homomorphism of Lie algebras. This bracket
was given by the quotient modulo B(M) of either i(Hy)dy or Lg(,)1. The
first bracket is graded anticommutative, the second satisfies one form of the
graded Jacobi identity, and the two differ by something exact. See also
[161] and [30]. Later Grabowski in [79] found the correct expression for the
bracket on Q(M). See also [109] for a still more general view on this.

33.13. Dirac structures — a common generalization of symplectic
and Poisson structures ([37], [29], [28]). Let M be a smooth manifold
of dimension m. By a Dirac structure on M we mean a vector subbundle
D CTM xp T*M with the following two properties:

(1) Each fiber D, is maximally isotropic with respect to the metric of
signature (m,m) on TM x; T*M given by
(X, a), (X', d)))4 = a(X') + o/(X).
So D is of fiber dimension m.

(2) The space of sections of D is closed under the non-skew-symmetric
version of the Courant bracket

[(X’ a)v (Xl,O/)] = ([X7 X,]a Lxa — iX/da)'
If (X, @) and (X', o) are sections of D, then ixo’ = —ix/« by isotropy;
thus Lxo' —ixda = ixdo’ + %d(ixo/ —ixa) —ixrda so the Courant
bracket is skew-symmetric on I'(D).
Natural examples of Dirac structures are the following:
(3) Symplectic structures w on M, where D = D¥ = {(X,w(X)): X €e TM}
is just the graph of @ : TM — T*M.
More generally, for a 2-form w on M the graph D¥ of & : TM — T*M is a
Dirac structure if and only if dw = 0 (a presymplectic structure); these are
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precisely the Dirac structures D with TM N D = {0}. Namely,
(X, 0(X)), (Y,o(Y)y = w(X,Y) +w(Y, X) =0,
[(X, in), (Y, iyw)} = ([X, Y}, ﬁX’iyw - iydixw)
= ([X7 Y}v i[X,Y]w)'

(4) Poisson structures P on M where D = D = {(P(a),a) : o € T*M}
is the graph of P : T*M — T M; these are precisely the Dirac structures D
which are transversal to 7% M. Namely,

(P(a), @), (P(B),B))+ = P(a, B) + P(B, ) = 0,

[(P(a), ), (P(B), B)] = ([P(e), P(B)], L p(a)B — ip(g)dar)
= (P({e, 8}"). {a, B}!),  using[(33.10)]

Given a Dirac structure D on M, we consider its range R(D) = prpy (D) =
{X € TM : (X,a) € D for some a € T*M}. There is a skew-symmetric
2-form ©p on R(D) which is given by ©p(X, X') = a(X’) where a € T*M
is such that (X,a) € D. The range R(D) is an integrable distribution
of nonconstant rank in the sense of so M is foliated into maximal
integral submanifolds L of R(D) of varying dimensions, which are all initial
submanifolds. The form ©p induces a closed 2-form on each leaf L and
(L,©p) is thus a presymplectic manifold (©p might be degenerate on some
L). If the Dirac structure corresponds to a Poisson structure, then the
(L,Op) are exactly the symplectic leaves of the Poisson structure.

The main advantage of Dirac structures is that one can apply arbitrary
pushforwards and pullbacks to them. So if f : N — M is a smooth mapping
and Dy is a Dirac structure on M, then the pullback is defined by f*Djys =
{(X,f*a) e TNXxNT*N : (T'f.X,) € Dps}. Likewise the pushforward of a
Dirac structure Dy on N is given by f,Dy = {(Tf.X,a) € TM xp T*M :
(X, f*a) € Dy}. If D = D¥ for a closed 2-form w on M, then f*(D¥) =
DI _If Py and Py, are Poisson structures on N and M, respectively, which
are f-related, then f,DN = D/*PN = DPum

34. Hamiltonian Group Actions and Momentum Mappings

34.1. Symplectic and Hamiltonian group actions. Let us suppose
that a Lie group G acts from the right on a symplectic manifold (M,w) by
r: M x G — M in a way which respects w, so that each transformation r9
is a symplectomorphism. This is called a symplectic group action. Let us
list some immediate consequences:

(1) The space C®(M)C of G-invariant smooth functions is a Lie subalgebra
for the Poisson bracket, since (r9)*{f,h} = {(r9)*f, (r9)*h} = {f, h} holds
for each g € G and f,h € C™(M)°.
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(2) For x € M the pullback of w to the orbit .G is a closed 2-form of
constant rank and is invariant under the action of G on the orbit. Note
first that the orbit is an initial submanifold by Ifi:2.G — M is the
embedding of the orbit, then r90i = ior?, so that i*w = i*(r9)*w = (r9)*i*w
holds for each g € G and thus ¢*w is invariant. Since G acts transitively on
the orbit, i*w has constant rank (as a mapping T'(z.G) — T™*(x.G)).

(3) By the fundamental vector field mapping ¢ : g — X(M,w), given
by (x(z) = Te(r(z, ))X for X € g and x € M, is a homomorphism
of Lie algebras, where g is the Lie algebra of G. (For a left action we
get an antihomomorphism of Lie algebras; see . Moreover, ¢ takes
values in X(M,w). Let us consider again the exact sequence of Lie algebra

homomorphisms from |(31.21)]

0——= HO(M) —%= c>(M) —> 2(M,w) —= HY (M) — 0.

<
,4
J

9

One can lift ¢ to a linear mapping j : g — C°°(M) if and only if yo ¢ = 0.
In this case the action of G is called a Hamiltonian group action, and the
linear mapping j : g — C*°(M) is called a generalized Hamiltonian function
for the group action. It is unique up to addition of a mapping « o 7 for
g — HO(M).

(4) If HY (M) = 0, then any symplectic action on (M,w) is a Hamiltonian
action. If not and v o ( # 0, we may either (a) lift w to the universal
cover of M for which the first cohomology then wvanishes, and try to lift
the group action also (where we might have to enlarge the group by the
discrete group of deck transformations), or (b) replace g by its Lie subalgebra
ker(y o () C g and consider the corresponding Lie subgroup G; in both cases
we get a Hamiltonian action.

(5) If the Lie algebra g is equal to its commutator subalgebra [g,g] (i.e., to
the linear span of all [X,Y] for X,Y € g), then any infinitesimal symplectic
action ¢ : g — X(M,w) is a Hamiltonian action, since then any Z € g can
be written as Z = ), [X;,Y;] so that (7 = > [(x;,{y;] € im(grad®”) since
v : X(M,w) — HY(M) is a homomorphism into the zero Lie bracket.

34.2. Lemma. Momentum mappings. For an infinitesimal symplectic
action, i.e., a homomorphism ¢ : g — X(M,w) of Lie algebras, we can find a
linear lift j : g — C°°(M) if and only if there exists a mapping J : M — g*
such that

Hiyxy=C(x foral X €g.
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Proof. Namely, for y € M we have
J:M =g (J(y),X)=j(X)(y) eR, j:g—=CT(M). O

The mapping J : M — g* is called the momentum mapping for the in-

finitesimal action ¢ : g — X(M,w). This holds even for a Poisson mani-

fold (M, P) (see section |(33)) and an infinitesimal action of a Lie algebra

¢ : g — X(M,P) by Poisson morphisms. Let us note again the relations

between the generalized Hamiltonian j and the momentum mapping J:
J:M—g", j:g—>C®M), (:9—X(M,P),

(1) (J, X) = j(X) € CF(M), H](X):C(X)v Xeg,

where (, ) is the duality pairing.

34.3. Basic properties of the momentum mapping. Consider a Ha-
miltonian right action r : M x G — M of a Lie group G on a symplectic
manifold M, let j : g — C°°(M) be a generalized Hamiltonian and let
J : M — g be the associated momentum mapping.

(1) For x € M, the transposed mapping of dJ(x) : TyM — g* is
dJ(x)" :g—=T:M,  dJ(z)" =, 0,
since for £ € T, M and X € g we have
(dJ(§), X) = (igdJ, X) = igd{J, X) = igicyw = (0z(Cx (%)), €)-

(2) The image dJ(TpM) of dJ(x) : TyM — g* is the annihilator g3 of the
isotropy Lie algeba g, := {X € g: (x(x) = 0} in g*, since the annihilator
of the image is the kernel of the transposed mapping,

im(dJ(z))° = ker(dJ(x)") = ker(@, o ¢) = ker(ev, o) = go.

(3) The kernel of dJ(z) is the symplectic orthogonal (T,(x.G))* C T, M,
since for the annihilator of the kernel we have
ker(dJ(z))° = im(dJ(z) ") = im(@g 0 ¢) = {@a((x () : X € g}
= Wz (Ty(2.G)).
(4) For each x € M the rank of dJ(x) : TyM — g* equals the dimension of

the orbit x.G, i.e., the codimension in g of the isotropy Lie algebra g,. This
follows from () since

rank(dJ(z)) = codimy, pr(ker dJ(x)) = dim(ker(dJ(x))°) = dim(T,(z.G)).
(5) The momentum mapping J : M — g* is a submersion at x € M if and

only if the isotropy group G is discrete.

(6) If G is connected, x € M is a fized point for the G-action if and only if
x is a critical point of J, i.e., dJ(x) = 0.
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(7) Suppose that all orbits of the G-action on M have the same dimension.
Then J : M — g* is of constant rank. Moreover, the distribution F of all
symplectic orthogonals to the tangent spaces to all orbits is then an inte-
grable distribution of constant rank and its leaves are exactly the connected
components of the fibers of J. Namely, the rank of J is constant by (3.
For each € M the subset J~!(J(z)) is then a submanifold by and
by using (B) we see that J~1(J(z)) is a maximal integral submanifold of F
through x.

A direct proof that the distribution F is integrable is as follows: It has
constant rank and is involutive, since for £ € X(M) we have { € X(F) if and
only if igic, w = —w({,(x) =0 for all X € g. For {,n € X(F) and X € g we
have
Uemicxw = [Ley inlicyw = Leiyicyw — inLeicyw

=0 — iyledic,w — ipdigic,w = 0.
(8) (E. Noether’s theorem) Let h € C*°(M) be a Hamiltonian function which
is invariant under the Hamiltonian G action. Then the momentum mapping
J : M — g is constant on each trajectory of the Hamiltonian vector field
Hy,. Namely,

4(JoFI™ X) = (dJ o L FI'" X) = (dJ(H}) o FI{™, X)
= (im,d(J, X)) o FI{" = {h, (J, X)} o FI{"*
= —{(J,X),h} o FI{* = —(L¢y h) o FIITH = 0.

E. Noether’s theorem admits the following generalization.

34.4. Theorem (Marsden and Weinstein). Let G; and G2 be two
Lie groups which act by Hamiltonian actions 1 and ro on the symplectic
manifold (M,w), with momentum mappings J1 and Jo, respectively. We
assume that Jo is Gy-invariant, i.e., Jo is constant along all G1-orbits and
that Go is connected.

Then Jy is constant on the Go-orbits and the two actions commute.
Proof. Let (' : g; — X(M,w) be the two infinitesimal actions. Then for
X1 € g1 and X3 € go we have

= {(J2, X2), (J1, X1)} = —{(J1, X1), (J2, X2)}

== _Z<§1d<J2,X2> == _Ecg{l <J2,X2> == O
since Js is constant along each Gi-orbit. Since G5 is assumed to be con-

nected, Ji is also constant along each Gs-orbit. We also saw that each
Poisson bracket {(Jz, Xa), (J1, X1)} vanishes; by Hj, x,) = (%, we conclude
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that [C)IQ,C)Q(Q] = 0 for all X; € g; which implies the result if also Gy is
connected. In the general case we can argue as follows:

()" Ry = () Hygy xpy = () (@71 d( o, X2))
= (") ) d((r ) o, Xo) = @7 (o, Xa) = Hig, x) = (k-

. tX . . .
Thus 7{* commutes with each r5™® (tX2) and thus with each r§?, since Gog is

connected. O

34.5. Remark. The classical first integrals of mechanical systems can be
derived by Noether’s theorem, where the group G is the group of isometries
of Euclidean 3-space R3, the semidirect product R3 x SO(3). Let (M,w, h)
be a Hamiltonian mechanical system consisting of several rigid bodies mov-
ing in physical 3-space. Then the Hamiltonian function is the sum of the
kinetic energy and the potential energy. This system is said to be free if
the Hamiltonian function h describing the movement of the system is in-
variant under the group of isometries acting on R? and its induced action
on phase space M C T*(R3). This action is Hamiltonian since for the
motion group G we have [g,g] = g, by Equivalently, the action
is free if there is no potential. Then there exists a momentum mapping
J=(J;,Ja) : M — (R3 x 50(3))* = (R3)* x s0(3)*. Its component J; is the
momentum mapping for the action of the translation group and is called
the linear momentum; the component J, is the momentum mapping for the
action of the rotation group and is called the angular momentum.

The momentum map is essentially due to Lie [125, pp. 300-343]. The
modern notion is due to [110], [213], and [105]. Also, [133], [123] and [135]
are convenient references, and [135] has a large and updated bibliography.
The momentum map has a strong tendency to have convexr image and is
important for representation theory; see [105] and [172]. Recently, there
has also been a proposal for a group valued momentum mapping; see [3].

34.6. Strongly Hamiltonian group actions. Suppose that we have a
Hamiltonian action M x G — M on the symplectic manifold (M,w), and
consider a generalized Hamiltonian j : g — C°°(M), which is unique up to
addition of oo 7 for some 7 : g — H°(M):

0—= HO (M) —%= c=>(M) —L> 2(M,w) —= HY (M) — 0.

g
We want to investigate whether we can change j into a homomorphism of
Lie algebras.
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(1) The map g > X, Y — {jX,jY} —j([X,Y]) =: 3(X,Y) takes values in
ker(H) = im(«) since

H{jX,jY}) = H(j([X,Y])) = [Hjx, Hjy] = {ix,y] = [Cx,Cv] — (x,y] = 0.

Moreover, 7 : /\2 g — HY(M) is a cocycle for the Chevalley cohomology of

the Lie algebra g, as explained in
dj(X7Y7 Z) == Z j([X7Y]vZ) == Z ({]([va])7]Z} *]([[X7Y]vz]))

cyclic cyclic
cyclic
cyclic

by the Jacobi identity and since 7(X,Y) € H°(M) which equals the center
of the Poisson algebra. Recall that the linear mapping j : g — C*°(M) was
unique up to addition of a mapping a o 7 for 7 : g — H°(M). But

JHTXY)={({+7)X, G+ 7)Y} =+ 7)(X,Y])
={iX,jY} +0—-4(X,Y]) = 7([X,Y]) = (7+d7)(X,Y).
Thus, if v o ¢ = 0, there is a unique Chevalley cohomology class ¢ = [7] €
H2 (g, HO(M)).
(2) The cohomology class ¢ = [7] is automatically zero if H?(g, HO(M)) =

H?(g) ® H°(M) = 0. This is the case for semisimple g, by the Whitehead
lemmas; see [83] p. 249].

(3) The cohomology class ¢ = [7] is automatically zero if the symplectic
structure w on M is exact, w = —d¥ for ¥ € Q' (M), and L9 = 0 for each
X € g: Then we may use j(X) = i¢c, ¥ = ¥((x), since i(H;x)w = d(jX) =
dic ¥ = LoV — ¢ dV = 0 + i¢ w implies Hjx = (x. For this choice of j
we have
IXY) ={jX,jY} = (X, Y]) = ‘CHJ'X (JY) - iC([X’Y])ﬁ
= Loxioy W =iy o)V = LexieeV = [Loxriee [V = —iey Loy =0

(4) The condition of (3] holds if M = T*Q is a cotantent bundle and if
¢:9— X(T"Q,wq) is induced by o : g — X(Q) in the sense that its flow is
given by Flgx = T*(FIJ*) = T(F175)*. Namely, by [(31.9)] we have:

Leg = 0)o(FIF¥) dg = lo(T*(FI7¥))* g = 0.

Let us note here for further use that the j is given by the following formula:
For p, € T;Q) we have:

J(X)(pq) = 9(Cx (pg)) = (=@ (Cx (pg)), T(7Q) (Cx (Pg))) = (Pg: 0x (q))-
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(5) An example where the cohomology class ¢ = [7] € H?(g, H*(M)) does
not vanish: Let g = (R%,[ , ] = 0) with coordinates a,b. Let M = T*R
with coordinates ¢,p, and let w = dg A dp. Let ((qp) = a0y + b9p. A lift is
given by j(a,b)(q,p) = ap — bq. Then

J((a1,b1), (az,b2)) = {j(a1,b1),j(az,b2)} — j(0) = {a1p — b1q, asp — baq}
= —a1by + agb;.

(6) For a symplectic group action r : M x G — M of a Lie group G on a

symplectic manifold M, let us suppose that the cohomology class f =[] €
H?(g, HY(M)) from [(34.1.1)| vanishes. Then there exists 7 € L(g, H'(M))
with dr = 7, i.e.,

dr(X,Y) = —7([X,Y]) = J(X,Y) = {j X, 5V} = j([X,Y]),

F—7XY) ={({ - 71)X, (G -7V} = (G - ) (X, Y])
= UX Y3+ 05X, Y]) + 7([X, Y]) = 0,

so that j — 7 : g — C°°(M) is a homomorphism of Lie algebras. Then the
action of G is called a strongly Hamiltonian group action and the homomor-
phism j — 7 : g — C*(M) is called the associated infinitesimal strongly
Hamultonian action.

34.7. Theorem. The momentum mapping J : M — g* for an infinites-
imal strongly Hamiltonian action j : g — C°(M) on a Poisson manifold
(M, PM) has the following properties:

(1) J is mﬁnitesz’mally equivariant: For each X € g the Hamiltonian vector
fields Hj xy = (x € X(M, P) and ad(X)* : g* — g* are J-related.

(2) Jisa Pozsson morphism J : (M, PM) — (g*, P9") into the canonical
Poisson structure on g* from|(33.7)|

(3) The momentum mapping for a strongly Hamiltonian action of a con-
nected Lie group G on a Poisson manifold is G-equivariant: J(x.g) =

Ad(g)*.J(z).

); differentiat-

Proof. () By definition [(34.2.1)] we have (J(z), X) = j(X)(z
—dj(X) € Q1 (M).

ing this, we get (dJ(2)(€), X) = d(j(X)) (&) or d(J, X)
Then we have
(dJ(Cx),Y) =dj(Y)(Cx) = Hjx)(i(Y))
={i(X),i(Y)} =j[X, Y],
(ad(X)* o JY) = (J,ad(X)Y) = (J,[X,Y]),
dJ.(x =ad(X)* o J.
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@) We have to show that A?dJ(z).PM = P (J(z)), according to[(33.5.3)}
<P9*0J,X/\Y> =2(J,[X,Y]) by
ZJ[X Y] ={3(X),5(Y)},

</2\dJ(a;).PM,X/\Y </\dJ *(X AY), PM)
= (dJ ( )X AdJ(x)"Y, PM)
= (PM,d(J, X) Nd(J,Y)) ()
= <PM,dJ( )Adj(Y)) (@) = 2{j(X),j(Y)} ().

@) is an immediate consequence of (). O

34.8. Equivariance of momentum mappings. Let J : M — g* be a
momentum mapping for a Hamiltonian right group action r : M x G — M
on a symplectic manifold (M,w). We do not assume here that the lift
j:g— C®(M) given by j(X) = (J,X) is a Lie algebra homomorphism.
Recall that for the fundamental vector field mapping ¢ : g — X(M,w) we
have (x = Hj(x) = Hjx). We also assume that M is connected; otherwise
one has to treat each connected component separately.

For X € g and g € G we have (compare with the proof of
(r9)"Cx = (r9) " Hyyxy = (r9)* (@7 d(J, X))
= (((r9)y w1 d{(r9)* ], X) = 0™ d(J 019, X) = H{jopa x),
(M) Cx =T(r7 ) olx o9 = Caax by [6:3:2)
= Hipadg)x) = Hiad(g)1.x)-

So we conclude that (J or9 — Ad(g)*J, X) € HY(M) is a constant function
on M (which we assumed to be connected) for every X € g and we get a
smooth mapping

(1) J:G — g,
J(g) :=Jor9 —Ad(g)* oJ = J(z.9) — Ad(g)*J(x) € g* for each z € M,
which satisfies for g1, 92 € G and each z € M
(2) J(gog1) = J(x.9091) — Ad(gog1)*J ()
= J((2.90)-91) — Ad(g1)" Ad(g0)"J (2)
= J((z.90)-91) — Ad(g1)"J (x.90) + Ad(g1)"(J(x.g0) — Ad(g0)"J (x))
= J(g1) + Ad(g1)" T (90) = J(g1) + J(g0). Ad(g1)-

This equation says that J : G — g* is a smooth 1-cocycle with values in the
right G-module g* for the smooth group cohomology which is given by the
following coboundary operator, which for completeness sake we write for a
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G-bimodule V, i.e., a vector space V with a linear left action A\ : GXV — V
and a linear right action p: V x G — V which commute:

(3) CHG,V):=C®(GF=Gx...xG, V), CUG, V)=V, k>0,

§:CHG, V) = CH(G,Y),
k

5¢(907 o 7g/€) = gO'(I)(gla cee 7gk) + Z(_l)l(b(gOa ey 9i—2,9i—1Gi - - - 7gk)
i=1

+ (—1)]”1(1)(90, e ,gk,l).gk.

It is easy to check that 6 0§ = 0. As noted in|(15.16), the group cohomology
is defined by
ker(5 Ck(G,V) — CHL(G, V)

im(§ : Ck=1(G,V) = CF(G,V)) "

HMG;V) =

Since for v € V = C%G,V) we have dv(gy) = go.v — v.go, it follows that
HY(G, V) ={v eV :gv=nuvg}=Zy(G). Asmooth mapping ®: G — V
is a cocycle d® = 0 if and only if ®(gog1) = 90-P(91) + ®(90).91, i.e., Pis a
‘derivation’.

In our case V' = g* with trivial left G-action (each g € G acts by the identity)
and right action Ad( )*. Any other moment mapping J' : M — g* is of the
form J' = J + « for constant « € g* since M is connected. The associated
group cocycle is then

J+alg) = J(x.g) +a—Ad(g) (J(z) +a) = J(9) + a — a.Ad(g)
(4) = (J +da)(g),
so that the group cohomology class 7 = [J] € H' (G, g*) of the Hamiltonian
G-action does not depend on the choice of the momentum mapping.

(5) The differential d.J(e) : g — g* at e € G of the group cocycle J : G — gx
satisfies

(dJ(e)X,Y) = j(X,Y),

where j, given by j(X,Y) = {j(X),5(Y)} — j([X,Y]), is the Lie algebra
cocycle from since
{3(X),5(Y)}(z) = Hjx)(G(Y)) (@) = i(H g.x)(2))d(J, Y)

= (dJ((x(x)),Y) = lo(J (33 exp(tX)),Y)

= 0lo(Ad(exp(tX))"J (z) + J (exp(tX)),Y)

= (ad(X)"J(z) +dJ(e )(X), Y) = (J(2),ad(X)Y) + (dJ(e)(X),Y)

= J[X,Y](x) + (dJ(e)(X),Y).
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(6) If the group cohomology class T of the Hamiltonian group action vanishes,
then there exists a G-equivariant momentum mapping J : M — g*, i.e

J(z.g) = Ad(g)"J ().

Namely, let the group cohomology class be given by 7 = [J] € HY(G, g*).
Then J = da for some constant o € g*. Then J; = J — « is a G-equivariant
momentum mapping since Ji(r.g) = J(z.9) —a = Ad(g)*J(z) + J(9) —a =
Ad(g)"J () + da(g) — o = Ad(g)"J(z) — Ad(g9)"a = Ad(g)"J1(z).

For X, Y € g and g € G we have

(7) (J(9),[X,Y]) = =J(X,Y) + 7(Ad(9) X, Ad(g)Y).

To see this, we use the cocycle property J(gog1) = J(g1) + Ad(g1)*J(g0)
from part ([2)) to get

dJ(g)(T(1?)X) = o (exp(tX)g) = dlo(J(g) + Ad(g)* J(exp(tX)))
= Ad(g)*dJ(e) X,
(J(9), [X,Y]) = 0lo(J(9), Ad(exp(tX))Y) = d|o(Ad(exp(tX))* T (9),Y)
= 0|o(J(gexp(tX)) — J(exp(tX)),Y)
= (DloJ(gexp(tX)g~'g) — aIoj(exp(tX)),Y>
= (0]oJ (exp(t Ad(g)X)g) — dJ(e)X,Y)
= (Ad(g)*dJ(e) Ad(g)X — dJ(e)X,Y)
= J(Ad(g9)X,Ad(9)Y) — J(X,Y).

/(g
(9
I(g
(

34.9. Theorem. Let J: M — g* be a momentum mapping for a Hamil-
tonian right group action r: M x G — M on a connected symplectic man-
ifold (M,w) with group 1-cocycle J : G — g* and Lie algebra 2-cocycle
7: /\2g — R. Then we have:

(1) There is a unique affine right action of G on g* with linear part the
coadjoint action,

a? —aJ a— Ad(g)*a + J(g),
such that J : M — g* is G-equivariant.

(2) There is a Poisson structure on g*, given by

{fh}3(a) = (o, [df (), dh(@)]g) + J(df (), dh(a)),

which is invariant under the affine G-action aj from ({l) and has the
property that the momentum mapping J : (M,w) — (g*,{ , };) isa
Poisson morphism. The symplectic leaves of this Poisson structure are
exactly the orbits under the connected component Go of e for the affine
action in ().
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Proof. (1) By [(34.8.1)] J is G-equivariant. It remains to check that we
have a right action:
a®a” (a) = a®(Ad(g1)"a + J (g1))
= Ad(g2)" Ad(g1) e + Ad(g2)" T (g1) + J(g2)
= Ad(g192)"a + J(9192)

= a’'"%q, by |(34.8.2)]

@) Let X1,..., X, be a basis of g with dual basis ¢!, ..., " of g*. Then we
have in terms of the structure constants of the Lie algebra g

[X;, X,] chxk,

[ 1= QZC ® (€ NE),
ijk
PY =, =13 ex)ng,
ijk

7=13> 758N,
]

-1 X + 2ZJZJ§’A£J g a/\g

ijk

Let us now compute the Schouten bracket. We note that [P9", P$'] = 0
since this is a Poisson structure, and [7, 7] = 0 since it is a constant 2-vector
field on the vector space g*. Then

[PY PY] =[P +7,P +]

= [PY, PY] +2[PY, ] + [5,]]

=0+ 2[PY, 7] +0

=13 o gim([6 @ Xe, €1 A€ AE™ — [€ @ Xy €7 A ET NE
ijklm

— €, €1 A (€0 Xa) AE"+[E1,EM A (€ © Xi) AE)

=13 (oA AT E nE NE —0+0)
ijklm

= G € AENE™ = ~2d] = 0.

ijkm

which is zero since 7 is a Lie algebra cocycle. Thus Pjg is a Poisson structure.
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X
The Poisson structure P]g is invariant under the affine action since

{foa?;hoa}z(a) = (a, [df (a?(a)).T(a?), dh(a?(a)).T(a?)])

+J(df (a? (@) T(a%), dh(a?(@)). T (a))

= (o, [df (a”(a)). Ad(g)", dh(a?(@)). Ad(g)"])
+J(df (a?(a)). Ad(g)", dh(a?()). Ad(g)")

= (a, Ad(g)[df (a”(a)), dh(a®(a))]) + 2(Ad(g)df (a*(ex)), Ad(g)dh(a’(a)))

= (Ad(9)"a, [df (a’(e)), dh(a®())]) + (J(9), [df (a’(ex)), dh(a (@))])
+3(df (a?(a)), dh(a(a))), by [34.8.7)]

= (a’(a), [df (a?(a)), dh(a?(@))]) + 7(df (a” (@), dh(a?(a)))

= {f,9}3(a? ().

To see that the momentum mapping J : (M,w) — (g*,Pjg*) is a Poisson
morphism, we have to show that A?dJ(z).P¥(z) = P]—Q*(J(:c)) e Ng*

for x € M, according to |(33.5.3). Recall from the definition |(34.2.1)| that
(J, X) = j(X); thus also (dJ(x), X) = dj(X)(z) : T,M — R.

(N\dJ(2).P? (), X NY) = (P¥ /\dJ (X AY))
= (P¥(z),dJ(2)" X NdJ(2)"Y) = (P¥(x),d(J, X) Nd(J,Y))
= (P¥(2), dj(X) Ndj(V)) = 2{j(X),i(Y)}w
=27(X,Y) + 2j([X, Y])(2) by [(34.6.1)]
= 2(J(2), [X, Y]>+ 27(X,Y)
= (P¥(J(2)), X AY).

It remains to investigate the symplectic leaves of the Poisson structure Pjg*.
The fundamental vector fields for the twisted right action a; is given by

¢ (@) = 9o(Ad(exp(tX))*a + J(exp(tX))) = ad(X)*a + dJ (e) X

This fundamental vector field is also the Hamiltonian vector field for the
function evy : g* — R since

(3) HL,  (f)(@) = {evx, f;(a) = (o, [X, df ()]) + 2(X, df (a))
= (ad(X) e, df (a)) + (dJ () X, df (a))
= (Y (f)(a).
Hamiltonian vector fields of linear functions suffice to span the integrable

distribution with jumping dimension which generates the symplectic leaves.
Thus the symplectic leaves are exactly the orbits of the Gg-action ay. [
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34.10. Corollary (Kostant, Souriau). Let J : M — g* be a momentum
mapping for a transitive Hamiltonian right group action r : M x G — M
on a connected symplectic manifold (M,w) with group 1-cocycle J : G — g*
and Lie algebra 2-cocycle 7 : /\2 g— R.

Then the image J(M) of the momentum mapping is an orbit O of the affine
action ay of G on g* for which J is equivariant, and the map J : M — O
is locally a symplectomorphism and a covering mapping of O.

Proof. Since G acts transitively on M and J is G-equivariant, J(M) = O
is an orbit for the twisted action a; of G on g*. Since M is connected, O is
connected and is thus a symplectic leaf of the twisted Poisson structure P]—g*
for which J : M — g* is a Poisson mapping. Along O the Poisson structure
is symplectic and its pullback via J equals w; thus T,J : T,M — Tj,)O
is invertible for each x € M and J is a local diffeomorphism. Since J is
equivariant, it is diffeomorphic to a mapping M = G /G, — G/G j(,) and is
thus a covering mapping. O

34.11. Let us suppose that for some symplectic infinitesimal action of a Lie
algebra ¢ : g — X(M,w) the cohomology class ¢ = [7] € H?(g, H(M)) does
not vanish. Then we replace the Lie algebra g by the central extension, see

section [(15)]
0— H'M)—=g—g—0

which is defined by ¢ = [J] in the following way: § = H°(M) x g with bracket
[(a, X),(b,Y)] = (3(X,Y),[X,Y]). This satisfies the Jacobi identity since
) (b,

[[(a, X), (0, Y)], (¢, Z)] = [(3(X,Y), [X,Y]), (c, Z)]
= (j([vaLZ)?HX?YLZ])

and the cyclic sum of this expression vanishes. The map j; : § — C*°(M),
given by ji(a, X) = j(X) + a, fits into the diagram

0—— HO M) —%> 0°(M) s x(M,w) > H' (M) —>0

SN

00— HO(M) 0

and is a homomorphism of Lie algebras since
jl([(aa X)a (b7Y)]) = ]1(j(X7 Y)a [Xv Y]) = ]([Xv Y]) +j(X’ Y)
= (X, Y]) + {jX,jY} - j([X,Y])
={jX,jY} ={jX +a,jY +b}
- {jl(a7X>7j1(b7 Y)}
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In this case we can consider the momentum mapping
Jii M g = (H(M) x g)",
(J1(x), (a, X)) = ji(a, X)(x)
=Jj(X)(z) +a,
Hiwx)=Cx, €M, Xeg, acH (M),

which has all the properties of theorem
Let us describe this in more detail. Property says that for all
(a, X) € HY(M) x g the vector fields H;(y), = (x € X(M) and ad(a, X)* €
X(g*) are Ji-related. We have
(ad(a, X)*(a,£),(0,Y)) = (e, €), [(a, X) (b, Y)])
= ((a,€), O(X,Y), [X,Y]))
= aj(X,Y) + (& [X, Y])
= aJ(X,Y) + (ad(X)"¢,Y)
= ((0,a3(X, ) +ad(X)"¢), (b, Y)),
ad(a, X)*(a, &) = (0,a7(X, )+ ad(X)*¢).
This is related to formula which describes the infinitesimal twisted
right action corresponding to the twisted group action of
The Poisson bracket on g* = (HY(M) x g)* = H°(M)* x g* is given by

{fa h}ﬁ* (av f) = <(a7 5)7 [(dlf(av 5)7 dgf(Oé, 5))7 (dlh(a7 f)a th(Oé, 5))]>
= <(aa g)? (]—(de(a7 g)a d2h(av E))7 [de(av 6)’ th(aa 5)]»
= Oéj(de(Oé, g)a dgh(Oé, 5)) + <£> [dgf(Oé, g)a th(Oé, g)])

which for a = 1 and connected M is the twisted Poisson bracket in ((34.9.2)]
We may continue and derive all properties of |(34.9)| for a connected Lie
group from here, with some interpretation.

34.12. Symplectic reduction. Let J: M — g* be a momentum mapping
for a Hamiltonian right group action r : M x G — M on a connected
symplectic manifold (M,w) with group 1-cocycle .J : G — g* and Lie algebra
2-cocycle 7: /\2 g— R.

(1) ([22]) A point o € J(M) C g* is called a weakly regular value for J
if J-Ya) C M is a submanifold such that for each x € J~'(a) we have
T,J Y (a) = ker(T,J).

This is the case if « is a regular value for J, or if J is of constant rank in a
neighborhood of J~!(a), by Let us fix a weakly regular value o € g*
of J for the following. The submanifold J~!(«) C M then has the following
properties:
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(2) For a weakly regular value o of J, the submanifold J~'(a) is invariant
under the action of the isotropy group Go = {g € G : ag—(a) = a}. The
dimension of the the isotropy group G, of x € J~'(a) does not depend on
r € J71(a) and is given by

dim(G,) = dim(G) — dim(M) + dim(J ().

Namely, J : M — g* is equivariant for these actions by [(34.9.1)l Thus
J~1(a) is invariant under G, and G, C G,. For each z € J '(a), by
(34.3.4)] we have im(dJ(z)) = g2 C g*. Since T,(J (a)) = ker(dJ(x)), we
get

dim (T, M) = dim(TJ " (a)) + rank(dJ (z)),
dim(G;) = dim(G) — dim(z.G)
= dim(G) — dim(g;)
= dim(G) — rank(dJ(z))
= dim(G) — dim(M) + dim(J ().

(3) At any x € J~Y(a) the kernel of the pullback w? @) of the symplectic
form w equals T,,(x.G,) and its rank is constant and is given by

rank(w‘]il(a)) = 2dim(J Y(a)) + dim(a?(a)) — dim(M).
Namely, T,.J ' (a) = ker(d.J(x)) implies

ker(w‘]_l(a)) T, (J (@) N T (J (@)™
= T(J () Nker(dJ(z))*t
(J(
(

=T.(J () NTy(z.G),  by[3433)
=Ty (2.Gy),
rank(w? (@) = dim(J " (a)) — dim(z.Ga)

dim(J () — dim(Gy) + dim(Gy)
dim(J () — dim(Gy) + dim(G) — dim(M) + dim(J 1 (a)) by @)
2dim(J ! (a)) + dim(a$ () — dim(M).

(G
(e

(4) If « is a regular value of J : M — g*, the action of G on M is locally free
in a neighborhood of every point x € J~1(a), by[(34.3.5)], i.e., the isotropy

group Gy is discrete.

This follows from codimy;(J~!(a)) = dim(g) — dim(G).
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34.13. Theorem. Weakly regular symplectic reduction. Consider a
momentum mapping J : M — g* for a Hamiltonian right group action r :
M xG — M on a connected symplectic manifold (M,w) with group 1-cocycle
J : G — g* and Lie algebra 2-cocycle 7 : /\29 — R. Let a € J(M) C g* be
a weakly regular value of J.

Then the pullback 2-form w’™ (@ ¢ O2(J () of w is of constant rank,
invariant under the action of G, and the leaves of the foliation described
by its kernel are the orbits of the action of the connected component GO of
the isotropy group Go = {g € G : a%(a) = a} in Ja).

If moreover the orbit space M, = J~*(a)/GY is a smooth manifold, then
there exists a unique symplectic form w® on it such that for the canonical
projection w : J~Y(a) = Mgy we have mw® = w’ (@),

Let h € C®(M)% be a Hamiltonian function on M which is G-invariant;
then h|J~Y(a) factors to h € C>®°(M,) with how = h|J (a). The Hamil-
tonian vector field grad” (h) = Hy, is tangent to J~ () and the vector fields
Hp|J~ () and Hj are w-related. Thus their trajectories are mapped onto
each other:

m(F1™ (2)) = FI (m(x)).
In this case we call (M, = J~1(a)/G%,w®) the reduced symplectic manifold.

Proof. By the 2-form w’ (@ € Q2(J1(a)) is of constant rank
and the foliation corresponding to its kernel is given by the orbits of the unit
component GY of the isotropy group G,. Let us now suppose that the orbit
space My = J~1(a)/GY is a smooth manifold. Since the 2-form w’ (@) is
GY-invariant and horizontal for the projection

7 J N a) = T Ha)/GY = M,

it factors to a smooth 2-form w® € Q2(M,,) which is closed and nondegen-
erate since we just factored out its kernel. Thus (M,,w®) is a symplectic

J=Ha)

manifold and 7*w® = w by construction.

Now let h € C*°(M) be a Hamiltonian function which is invariant under
G. By E. Noether’s theorem the momentum mapping J is constant
along each trajectory of the Hamiltonian vector field Hp; thus Hy, is tangent
to J7'(a) and Gu-invariant on J~!(a). Let h € C®(M,) be the factored
function with hom = h, and consider Hy, € X(M,,w®). Then for x € J~!(a)
we have

(Tom)* (i by, (1)) = G, ()T 0™ = dD(z) = (Tp)* (dh(n(2))).
Since (T,m)* : Ty Mo — T (J 7' (e)) is injective, we see that iz, r g, (;)w® =

dh(m(x)) and hence T,7.Hy(x) = Hj(n(z)). Thus Hp|J '(a) and Hj are
m-related and the remaining assertions follow from |(3.14) 0
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34.14. Proposition. Constant rank symplectic reduction. Consider
a momentum mapping J : M — g* for a Hamiltonian right group action
r: M xG — M on a connected symplectic manifold (M,w) with group
1-cocycle J : G — g* and Lie algebra 2-cocycle 7 : /\29 — R. Let G be
connected. Let o € J(M) C g* be such that J has constant rank in a
neighborhood of J~'(a). We consider the orbit a.G = a?(a) cg".

(1) J Y a.G) C M is an initial G-invariant submanifold.

(2) The smooth map J~1(a) x G — J Y (a.G), (x,g) — .9 factors to a
diffeomorphism J~1(a) xg, G = J 1(a.G).

(3) Lett: JH(.G) = M be the inclusion. Then t*w—1*J*w’ is closed, of
constant rank and G-invariant. The leaves of the foliation described by
its kernel are the orbits of the G-action restricted to J '(a.G). Here

w’ is the symplectic structure on the affine orbit a.G from theorem

(31.9.2),
(4) If Mo := JY(a.G)/G is a manifold, then v*w — 1*J*w’ factors to a

symplectic form wMe-¢ on M, o which is thus characterized by

Vw=mrwMac 4 (Jo L)*wj
where 7w : J7(a.G) — M,,.q is the projection.
(5) The orbit spaces J~'(a)/Gy and M, are homeomorphic, and they
are symplectomorphic if one of the orbit spaces is a manifold.
(6) Let h € C°(M)Y be a G-invariant Hamiltonian function on M. Then
h|J Y (a.G) factors to h € C®°(M,) with hon = h|J Y(a.G). The
Hamiltonian vector field grad“ (f) = Hy, is tangent to J 1 (a.G) and the

vector fields Hy,|J 1 (.G) and H;, are w-related. Thus their trajectories
are mapped onto each other:

7(FI/"™ (2)) = FL*(n(x)).

Proof. (I) Let o € J(M) C g* be such that J is of constant rank on a
neighborhood of J~!(a). Let a.G = a?(a) be the orbit though o under the
twisted coadjoint action. Then J~!(a.G) = J~!(a).G by the G-equivariance
of J. Thus the dimension of the isotropy group G, of a point = € J~!(a.G)
does not depend on z and is given by It remains to show that the
inverse image J~!(a.G) is an initial submanifold which is invariant under

G.

If « is a regular value for J, then J is a submersion on an open neighborhood
of J7}(a.G) and J~!(a.G) is an initial submanifold by lemma

Under the weaker assumption that J is of constant rank on a neighborhood of
J 71 (), we will construct an initial submanifold chart as in[(2.13.1)] centered
at each z € J~!(a.G). Using a suitable transformation in G, we may assume
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without loss that * € J~(a). We shall use the method of the proof of

theorem [(3.25)

Let m = dim(M), n = dim(g), r = rank(dJ(z)), p = m — r = dim(J " («))
and k = dim(a.G) <1 = dim(z.G). Using that g, C g, we choose a basis
X1q,..., X, of g such that

° Cg;l (a),..., Cg;k(a) is a basis of T,,(.G) and Xj41,. .., X, is a basis of
the isotropy algebra g,
. C)J‘(/Il (2),... ,C%(a:) is a basis of T;(x.G) and Xjy1,...,X, is a basis of

the isotropy algebra g,.

By the constant rank theorem |(1.13)| there exists a chart (U,u) on M cen-
tered at x and a chart (V,v) on g* centered at o such that

voJou t:u(U) — v(V)
has the following form:
(..., 2™) — (xl,...,mk,xkﬂ,...,mT,O,...,O),

and we may also assume that

. Cg(l(a), .. .,Cg(k(a), %]a, e a%l\a is a basis of T, (g*),
° (%(x), .. ,C%(x), #\x, ey Buim‘w is a basis of T, (M).

Then the mapping

*
g
X,

&
f(yl,...,y"):(l*ﬂly1 o---oFlyf’“ ov 1)(0,...,O,yk‘H,...,y")

is a diffeomorphism from a neighborhood of 0 in R onto a neighborhood of
« in g*. Let (V,0) be the chart f~!, suitably restricted. We have

E* 4‘9*
B€aG (Flj’fl o...0 Flyfk)(ﬁ) €a.G

for all 4 and all y',...,y* for which both expressions make sense. So we
have

ft .y € a.G <= f(0,...,0,4*, ... y") € a.G,
and consequently a.GNV is the disjoint union of countably many connected

sets of the form {f € V : (¢*1(B),...,9™(B)) = constant}, since o.G is
second countable.

Now let us consider the situation on M. Since J !(a) is G,-invariant,
exactly the vectors (%Hl(ac), . ,C%(:):) are tangent to 7.G,, C J (). The

mapping

M M
glat, ... 2™ = (Fli)fl o---oFlif’“ ou 1(0,...,0,z8 L . 2™

i
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is a diffeomorphisms from a neighborhood of 0 in R™ onto a neighborhood
of z in M. Let (U, a) be the chart g—!, suitably restricted. By G-invariance

of J we have
M

M
(Jog)(z!,...,a™) = (JoFli)fl o'--oFlifk ou 1) (0,...,0,zF L 2™

*

g* ¢
= (Fli)flo---oFl TFovtovo Jou 1)(0,...,0,28 L a™)
x

g" g*
= (Fli)fl 0. oFlifk ov™1)(0,...,0,2¥ . 2",0,...,0)

= f(zb, ... 2k 2F 2T 0,...,0)
and thus
gz, ., 2™) e T Ha.G)
= (Jog)(z',...,a™) = f(z', ... 2% . 2",0,...,0) € .G
— f(Ogw, 2", ... 2", Ogn—r) € a.G.

Consequently, (J ' (a.G)) N T is the disjoint union of countably many con-
nected sets of the form {z € U : (@*+(z),..., 4" (z)) = constant}, since
.G is second countable. We have proved now that J!(a.G) is an initial
submanifold or M.

@) The induced map J ! (a)xg, G — J 1 (a.G), [(x, g)] — x.g is a bijective
submersion, and thus a diffeomorphism.

@) Let z € J () and X,Y € g. Then

(1) (w)elCx (@), () = wHyx (2), Hyy (2))
=—{jX,j¥}z)  by[BL21]]
= —{evX,eVy}j(a) by [(34.9.2)]

— (Y (0),(7 (o)) by [BTO3]

where w” is the symplectic structure from [(34.9.2)] on the affine orbit a.G.
Let &1,& € TJ Y a.G). By [@) we may (nonuniquely) decompose &; as

&=+ Cx, (2) € T Ha) + Ty(2.G), where i = 1,2. By[(34.3.3) and (@)

we have
(Fwa(ér,2) = wl @ () + (T W) (Cx, (), (o)
where we also use the notation from theorem Thus
ker (t*w — L*J*wj)m =T,(x.G) + ker w‘xjil(a) =T,(x.G)

by|(34.12.3)l Therefore, t*w—1*J *w’ is closed, G-invariant and the leaves of
the foliation described by its kernel coincide with the orbits of the G-action.

By [(34.12.2)[ this form is also of constant rank.
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() follows immediately from (3]).

) By (@) the orbit spaces in question are homeomorphic and diffeomorphic
if one of them is a manifold. In the latter case they are also symplectomor-
phic because of the formula in ().

(6) Hamiltonian reduction follows similarly as in theorem |(34.13)} O

34.15. Example: Coadjoint orbits. Let G be a Lie group acting upon
itself by inversion of left multiplication, i.e., z.g = g~ 'x. Consider T*G with
its canonical symplectic structure wg from The cotangent lifted ac-
tion by G on T*G = G x g* (trivialized via left multiplication) is given by
(r,0).9 = (97 'z,a). According to this action is strongly Hamilton-
ian with momentum mapping given by

(J(2,a), X) = {a,Cx (2)) = (- Ad*(@7").a, X)

where X € g. The G action is free whence all points of g* are regular
values for J. Let O C g* be a coadjoint orbit. Then J~}(O) = G x (—O)
and t*wg — (J o 1)*wp is basic with respect to the projection J~1(0) —
J7H0)/G = —0. (Here + : J71(O) — G x g* is the inclusion and wg is
the coadjoint orbit symplectic form from ) The reduced symplectic
space is thus given by (=0, —wp) = (O, wo).

If we consider the action by G on itself given by right multiplication, we see
that (O, —wo) is the symplectic reduction of (T*G,wg).

34.16. Example of a symplectic reduction: The space of Hermitian
matrices. Let G = SU(n) act on the space H(n) of complex Hermitian
(n X n)-matrices by conjugation, where the inner product is given by the
(always real) trace Tr(AB). We also consider the linear subspace ¥ C H(n)
of all diagonal matrices; they have real entries. For each Hermitian matrix A
there exists a unitary matrix g such that gAg~! is diagonal with eigenvalues
decreasing in size. Thus a fundamental domain (we will call it a chamber)
for the group action is here given by the quadrant C' C ¥ consisting of all
real diagonal matrices with eigenvalues A1 > Ao > --- > \,. There are n