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ABsTRACT. Let CIM] be a (local) Denjoy—Carleman class of Beurling or
Roumieu type, where the weight sequence M = (M) is log-convex
and has moderate growth. We prove that the groups Diffl’j’[M](]R")7

DiffwMlr(R), Dits}) ] (R"), and DI DIMI(R™) of C1M)-diffeomorphisms

on R” which differ from the identity by a mapping in BIM] (global Denjoy—

Carleman), WIM1:? (Sobolev-Denjoy—Carleman), S%%] (Gelfand—Shilov), or

pIM] (Denjoy—Carleman with compact support) are CM]_regular Lie groups.

As an application we use the R-transform to show that the Hunter—Saxton
[M]
(L]
DIM] Here we find some surprising groups with continuous left translations
and CIM] right translations (called half-Lie groups), which, however, also ad-
mit R-transforms.

PDE on the real line is well-posed in any of the classes WMl S and

1. INTRODUCTION

In this article we introduce a multitude of groups of C'!™I-diffeomorphisms on
R” and prove that all of them are C[Ml-regular Lie groups.

Recall that a C°-mapping f is C1M} if for each compact set K there exists
p > 0 such that the set

(k)
{W x e K, ke N}
is bounded, where M = (M) is a positive sequence. In this way we get the so-called
Denjoy-Carleman classes of Roumieu type CtM}. If we replace the existential by a
universal quantifier we obtain the Denjoy—Carleman classes of Beurling type C'*).
We will denote by CIM! either of them, and write O for 3 or V. In this paper we
shall refer to C™! as local Denjoy—Carleman classes, for reasons which will become

apparent instantly.

In [13], [15], and [14] we extended the class C!M] to mappings between admissible
(that is convenient) locally convex spaces and proved that C [(M] then forms a carte-
sian closed category, i.e., CIM(E x F,G) = CIM(E,CIMI(F,@)), provided that
M = (Mjy) is log-convex and has moderate growth. Furthermore, we showed that
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the CMI_diffeomorphisms of a compact manifold form a C[Ml-regular Lie group.
This theory goes by the name convenient setting; see Section [3| for a very short
presentation of the results used in this paper.

In the present paper we apply the theory developed in [I3], [15], and [14] in
order to prove that various sets of C™I-diffeomorphisms of R” form C[Ml-regular
Lie groups. We denote by Diff A(R™) the set of all mappings Id+f : R® — R",
where inf,cgn det(I, + df (z)) > 0 and f € A, for any of the following classes A of
test functions:

e Global Denjoy—Carleman classes

M) (Rm) — % (R ; ap 10l
BMI(R )—{fEC' (R ).Dp>0;;1£" ol a1 <oo}.

e Sobolev—Denjoy—Carleman classes

0% f|l Lr(rn
W[MLP(RR) — {f c COO(R’N,) . Dp >0 sup || f”L (R™)

—_— < oo}, 1<p<oo.
aetn plol ol Mjy

e Gelfand—Shilov classes

[M] rpny o (mny . ||(1 + |m|)p8af||L°°(R")
Siy @) = {7 e C*®"):0p>0 SR el plall Ly M o}
aeN™

e Denjoy—Carleman functions with compact support

DMI(R") = cMI(R™) N DR") = BM(R™) N D(R™).

We require that M = (Mj,) is log-convex and has moderate growth, and that
CcM) 5 C¥ in the Beurling case. These assumptions guarantee (and are partly
necessary for) the validity of basic results like stability under composition, inverse
mapping theorem, solvability of ODEs, and cartesian closedness in the class C'!M]
which are essential for our analysis. Note that DIMI(R") is trivial unless M = (M)
is non-quasianalytic.

For the sequence L = (Lj) we just assume Ly > 1 for all k. Note that DM C
S FLV?, see Proposition and hence S%] is certainly non-trivial if M = (M) is
non-quasianalytic.

The following is our main theorem.

1.1. Theorem. Let M = (My) be log-conver and have moderate growth; in the
Beurling case we also assume CM) > v, Assume that L = (L) satisfies Ly, > 1

for all k. Let 1 <p < q < oo. Then Diff BIMI(R™), Diff wIMlr(R?), DiffSFLV][] (R™),

and Diff DIMI(R™) are C'™M]-regular Lie groups. We have the following C'™] injec-
tive group homomorphisms

Diff DM (R™)—Diff S| (R p—Diff W M» (R )—Diff W M4 (R )—Diff BM (R™).

Each group in this diagram is normal in the groups on its right.

For the precise meaning of CM-regular we refer to Section
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The classical case, i.e., without predescribed [M]-growth was recently proved in
[18]: The groups of diffeomorphisms

Diff D(R") > DiffS(R") > Diff W >*?(R") > Diff B(R")

are C'°°-regular Lie groups. The arrows in the diagram describe C'*° injective group
homomorphisms, and each group is a normal subgroup of the groups on its right.

In [6] the parameterization Id +f for f € D(R™)™ was used as global chart for
Diff D(R™) for the first time. In the paper [26] it was shown that Diff S(F) and
Diff B(E) are C*°-regular Lie groups, where E is a Banach space; also the case of
other systems of weight functions on E was treated. The method of proof of [26] is
iterative in the degree of differentiability.

We want to point out here that the conclusions of Theorem [I.1] carry over to the

groups Diff BIMI(E) and DiffSFLV? (E) for a Banach space E instead of R™ with some
obvious changes in notation in the proofs given below and replacing Lemma|3.4| by a
Neumann series argument. The definition of the spaces BIM(E, F) and S% (E,F)
along with their basic topological properties are given in full generality for Ba-
nach spaces F and F. We wanted to give a uniform proof for all cases; since
Diff wMP(R™) and Diff DIMI(R™) do not make sense on an infinite dimensional
Banach space, the main arguments in this paper are done only for £ = R™. More-
over, there are exponential laws available for the spaces A treated in this paper; we
do not need them here, so relegated them to another paper [16].

The paper is organized as follows. We collect preliminaries on weight sequences
and on Faa di Bruno’s formula in Section 2l In Section Bl we review the convenient
setting of local Denjoy—Carleman classes. We introduce the classes of test functions
alluded to above and discuss some aspects of their topology in Section [d, and we
explain their relative inclusions in Section[5] In Section [ we collect some results on
composition of test functions for use in later sections. We characterize CMl-plots,
i.e., C!Ml_mappings defined in open subsets of Banach spaces, in spaces of test
functions in Section [7} this is crucial for proving Theorem see Subsection [3.2
We show that Diff A(R™) is a group with respect to composition in Section (8] and
that composition and inversion are C™! in Section |§| and Section Regularity
is shown in Section The proof of Theorem is completed in Section by
proving the assertions on normality. In Section [13| we show that Theorem fails

if we only require local [M]-estimates: left translation is not C™) on DiffBl(é\f )(R),

where B(R) := COD(R) N B(R).

loc

Section [T4] is devoted to the Hunter—Saxton PDE on the real line, which corre-
sponds to the geodesic equation on an extension of certain diffeomorphism groups
on the real line for the right invariant weak Riemannian metric induced by the weak
inner product (X,Y) . := [ X'(x) Y'(x) dz on the Lie algebra. Using the results
of the preceding sections, the R-transform from [2] carries over to 1-dimensional
extensions of many of the groups Diff A(R) and we obtain, that the Hunter—Saxton
equation is well-posed in the corresponding space A(R). In Section [15| we find the
surprising result that the corresponding extensions of groups modeled on WM:» (R)
or on WIMLP(R) N L (R) for 1 < p < oo which are needed for the R-transform to
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work are only topological groups with C!™! right translations; we call them half-
Lie groups. The applications in Section [14]to the Hunter—Saxton equation were the
motivation for us to check whether groups like Diff A(R") were C!Ml-regular Lie
groups. An analogous R-transform for the homogeneous H'-metric on the space of
plane immersed curves modulo translations was developed in [I]. An R-transform
for several homogeneous H2-metrics is in [3]. Also in these cases Denjoy-Carleman
regularity for the corresponding geodesic equations can be proved (although this is
not stated).

We expect that all our results carry over to the framework of ultradifferentiable
classes in the sense of [5], where the growth is controlled by a weight function w
instead of a sequence M = (My). In fact, both, the weight sequence and the weight
function approach, are subsumed under a more general notion of ultradifferentiable
class defined via weight matrices for which the necessary tools of convenient calculus
were developed in [24], see also [2T] and [22].

Notation. We use N = N5y U {0}. For each multiindex o = (ay,...,a,) € N,
we write a! = oq!-- !, la] = a1 + - + ayp, and 9% = 9l°l )9z ... 9o, We
write f®) (x) = d* f(x) for the k-th order Fréchet derivative of f at z and f(®)(z) =
0% f(x) for partial derivatives.

For locally convex spaces E let Z(FE) denote the set of all closed absolutely
convex bounded subsets B C E. For B € #A(FE) we denote by Ep the linear
span of B equipped with the Minkowski functional ||z||g = inf{\ > 0 : z € AB}.
If F is a convenient vector space, then Ep is a Banach space. The collection of
compact subsets K C U is denoted by £ (U). In a Banach space E we denote by
B, (z) :={y € E: ||z — y|| < r} the open ball with center x and radius r.

We denote by E* (resp. E’) the dual space of continuous (resp. bounded) linear
functionals. L(E4,..., Ey; F) is the space of k-linear bounded mappings E; X - - - X
E, — F;if E; = E for all i, we also write L¥(E; F). If E and F are Banach spaces,
then || || zx(z;r) denotes the operator norm on L*(E; F).

The symbol O stands for a quantifier V or 3. It is always tied to some space of
[M]-ultradifferentiable functions and should be interpreted as O := V if [M] = (M)
and O := 3 if [M] = {M}. Statements that involve more than one [M] symbol
must not be interpreted by mixing (M) and {M}.

2. PRELIMINARIES
2.1. Weight sequences. Let M = (My) = (Mg)g=0,1,.. denote a sequence of
positive numbers. We shall always assume that My =1 < M;.

We say that M = (M) is log-convex if k — log M}, is convex, or equivalently,
if
(1) M? < My 1My, keN.
If M = (My,) is log-convex, then M = (M) has the following properties:
(2) M = (My,) is weakly log-convex, i.e., k! M}, is log-convex,
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(3) (M;)/* is non-decreasing,
(4) M]Mk < Mj+k, for 5,k € N,
(5) M{ My, > M; My, -+~ M,,, for a; € Nsg, a1+ +a; =k,

(6) MY My, > My My M, for ki € N, Y ik =n, Y ki =k;
i=1 i=1

cf. [14] or [21], and [4, Prop 4.4] for ().
We say that M = (M},) is derivation closed if

M1\ *
7 sup ( ) < 00,
@) keNso \ My
and that M = (M}) has moderate growth if

M'+k ﬁ
8 sup ( J ) < 0.
® jkeNso N Mj My,

Obviously, implies (7). If M = (My,) is derivation closed, then also k! M}, is
derivation closed and we have
9 k4 ) My, <CI*HD EIM, fork,jeN

J

for some constant C > 1.

A weakly log-convex sequence M = (M) is called quasianalytic if

oo

(10) > (kM) THE = o0,

k=1
and non-quasianalytic otherwise. It is called strongly non-quasianalytic if

My M,
11 su < 00.
() PN 2 T D

We refer to [13], [I5], [14], or [21] for a detailed exposition of the connection between
these conditions on M = (M}) and the properties of CIM].

2.2. Faa di Bruno’s formula. Let f € C*(R™,R) and g € C>*(R",R™). We
have, cf. [, Prop 4.3], for all v € N*\ {0},

I(fog)x) _ al  (0°f)(g(x)) (0% g(a)\kr  %g(x)\ke
(1) ~! _Zkllmkg! ol ( 61! ) ( 80! ) ’
where o = k1 + - - - + k¢ and the sum is taken over all sets {d1,...,d,} of £ distinct
elements of N\ {0} and all ordered ¢-tuples (ki,...,k;) € (N?\{0})¢, £ =1,2,...,
such that v = Zle |ki]ds.

The conclusion of the following lemma will be used several times.

Lemma. Let M = (My) satisfy (2.16) and let A > 0. Then there are positive
constants B,C' depending only on AMy, m, and n, and C — 0 as A — 0 such that

a!
_ Yl kal | pplkel 11
> k:1!~-~kg!A Mg Ml - Ml < B,

where the sum is as above.
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Proof. Inequality 1 ED implies MMM‘& “ Ml‘f‘z“ < Ml‘o‘lMM7 see [, Cor 4.5],
and hence
a!
la| [F1 | kel la]
Z k;1!~-~k;g!A Mo Mis, - Mg, < Z kl AMl) My

Now the assertion follows from the fact that h, = 3 kl!‘fjke!(AMl)‘o‘| are the
coefficients of a convergent power series ZWEN" hyx?, see [, Lem 4.8]. Its domain
of convergence increases as A — 0. O

We will also use Faa di Bruno’s formula for Fréchet derivatives of mappings
between Banach spaces: for k > 1,

(2)
(f o )( )2 i (m)(m) (aj)(x)
gk! _bym<; EXN: ﬁf( (())o(gall X"'xgaj! ):
al—ﬁ“—i-aj:k

where sym denotes symmetrization of multilinear mappings.

Occasionally, we shall use formula for mappings g : U x R® — U x R™ and
f:UXxR"™ — R™ defined on a product U x R™, where U is open in a Banach space.
If we write 87 = 6?063/ for multiindices v = (70,7) = (Yo, 71+ -,7n) € N7,
where 9]° are iterated total derivatives with respect to u € U and 95 " are partial
derivatives with respect to z € R", see Convention then formula remains
true up to symmetrization on the right-hand side.

3. REVIEW OF LOCAL DENJOY—CARLEMAN CLASSES

3.1. Local Denjoy—Carleman classes on Banach spaces. Let E, F' be Banach
spaces, U C E open. We define the local Denjoy—Carleman classes

cMy, Fy .= {f € C¥(U,F):VK € #(U) Op>0: |[f|}, < oo}
where (for any subset K C U)

1F1M = sup 1F®) (@) 2k ()
Kor T e PrEIM, .
rzeK
See [14, 4.2] for the locally convex structure of these spaces. The elements of
CM)(U, F) are said to be of Beurling type; those of C1*} (U, F') of Roumieu type.
If My, = 1, for all k, then CM)(R) = C™) (R, R) consists of the restrictions of the
real and imaginary parts of all entire functions, while C{™}(R) coincides with the
ring C¥(R) of real analytic functions.

3.2. Convenient setting of local Denjoy—Carleman classes. The classes C'M]
can be extended to convenient vector spaces, and they then form cartesian closed
categories if the weight sequence M = (M}) has some regularity properties: This
has been developed in [13], [15], and [T4].

Hypothesis. From now on we assume that the weight sequence M = (Mj) has
the following properties, cf. Subsection
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(1) 1= M() < Mk < Mk+1 for all k.
(2) M is log-convex.
(3) M has moderate growth.

In the Beurling case CIM = CM) we also require that

(4) C¥ C CM)_ or equivalently M,i/k — 00 or My41/My — .

A locally convex space E is called convenient if it is ¢>>-complete, i.e., the
following equivalent conditions hold:

e Acwrve c: R— FisC*® ifandonly if f o ¢: R — R is C* for all £ € E*.
e Any Mackey—Cauchy sequence converges in F.
e Ep is a Banach space for all B € #(E).

We equip E with the c¢*°-topology, i.e., the final topology with respect to any of
the following sets of mappings:

e C*([R,E).
e The Mackey-convergent sequences in F.
e The injections ip : Eg — E, where B € Z(F).

For convenient vector spaces E and F' and ¢*°-open U C FE we define:
oMy, F) .= {f € O®(U,F):WIB:lo foipe C[M](UB,R)},

where £ € F*, B € #(E), and Up := iz (U). We equip CIM(U, F) with the initial
locally convex structure induced by all linear mappings
[M] MUY :
ci(U,F)y - — 7 C™MY(Ug,R), fr—Llo foig.
Then CIM(U, F) is a convenient vector space.

The class of all CI™]-mapping between convenient vector spaces forms a cartesian
closed category:

Theorem (CMl-exponential law, [14] 5.2]). For convenient vector spaces E, F,G
and c*-open subsets U C E, V CF,

cMU x v,G) = cM(u,c™M(v,q))

is a linear C™1_diffeomorphism.

The proof of this theorem (and convenient calculus in general) work uni-
formly over all classes CM] including the class of real analytic mappings as
cv = Ll } The real analytic convenient setting was first developed in a
different approach in [10].

A mapping f between ¢®-open subsets of convenient vector spaces is C™) if and
only if it respects C!™]-(Banach) plots, i.e., C!™]-mappings defined on open balls

in Banach spaces. Actually, it is enough that f takes CZEM]—plots to CM_plots.
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By C’IEM] we denote the respective classes defined by boundedness conditions:
MU, F) = {f € C®(U,F) : VB VK Op>0: 3 (f) is bounded in F}

where B € #(FE), K € ' (Ug), and (for each subset K C Ug)

F® (@) (o1, vk)
(5) ZKo(f) :={ pkk!IMk u :keN,meK,HviHEgl}.

In general, C£M](U, F) ¢ ¢™M(U, F) and there is no C’lgM]—exponential law, but:

Lemma ([14, 4.4, 4.5]). We have CZEM](U7 F) = CMI(U, F) in any of the following
situations:

e The Beurling case [M] = (M).

e F and F are Banach spaces.

o There exists a Baire vector space topology on the dual F* for which ev, is
continuous for all x € F'.

In special cases C1M}-regularity can be tested along curves:

e For non-quasianalytic M = (M), the mapping f is C1M? if it maps C1M}-
curves to CtMt_curves, by [13].

e For certain quasianalytic M = (M), the mapping f is C{M} if it maps
C{N} _curves to C1V}-curves, for all non-quasianalytic log-convex N = (Ng)
which are larger than M = (My), by [15]. Real analytic functions are not
among these classes.

On open sets in Banach spaces, CM]-vector fields have C™]-flows, and between
Banach spaces, the C!™] implicit function theorem holds, see [I4, 9.2], [27], and
[28].

For M = (M},) and N = (Ni) we have

cMccolVl o M=<N & 3Cp>0Vk: M, <Cp*N,
cM=—cNl & Ma~N = M=<NandN=<M
ctMcc®™) o M<aN & Vp>03C>0Vk: M, <CpFN,

In particular, C* C CIM} & H(C") C CM)(U) YU C R" & hika% > 0 and
1
cv cCcWM) & lim M} = oo.

3.3. Groups of C¥ or CM! diffeomorphisms on a compact manifold. Every
compact C'! manifold A carries a unique C'-diffeomorphic real analytic structure.
Let Diff”(A) be the real analytic regular Lie group of all real analytic diffeomor-
phisms of A, with the real analytic structure described in [I0, 8.11], see also [IT],
theorem 43.4].

For every M = (Mj}) the group Diff!M] (A) of CIMI_diffeomorphisms of A is a
regular CMl_group (but not better), by [13, 6.5], [15}, 5.6], and [14 9.8].
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4. CLASSES OF TEST FUNCTIONS

In the following let E, F' be Banach spaces, and let U C E be open. Later on
in this paper we shall only be concerned with the case that E and F are finite
dimensional, but treating the general case at this point does not complicate the
presentation and will be useful for reference in other papers.

In this section M = (My) and L = (Ly) are any positive sequences.

4.1. Smooth functions with globally bounded derivatives. Consider
B(U,F):={f € C®(W,F):||f|¥ < o for all k € N},

where

k
A1 = sup 1P @) 24 (2

with its natural Fréchet topology.

4.2. Rapidly decreasing Schwartz functions. Consider
S(E,F):={fe€C®(E,F): Hf||%)’q) < oo for all p,q € N},
where

£ = sup(L + 2]/ 9 (@)]| ca(or
rxeF

with its natural Fréchet topology.

4.3. Global Denjoy—Carleman classes. Let p > 0. Consider the Banach space
BY (U, F):={fe€C®UF):|flIt}, < oo},

where
Hf(k)(x)nﬁk(E;F)

M . _
||fHU,p : ilelll\)l pkk'Mk
zeU
We define the Fréchet space
BM\(U,F) := @é B%”(U, F)
ne

and

BMYU, F) = lim B (U, F)
neN

which is a compactly regular (LB)-space and thus (¢*°-)complete, webbed, and
(ultra-)bornological; see Lemma [4.9] below.
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4.4. Gelfand—Shilov classes. Let 0 > 0. Consider the Banach space
S (B, F):={feC®E,F):|fl

é](\,/[ < oo}.

with the norm

LM _ (1 + [|2[)P | £ D (@)]| o )
1fl&s = sup .
’ p,q%N oPtaplg! L,M,
xre
We define the Fréchet space

SiH (B, F) = lim §}', (B, F)

n

E

and

M .
SV, F) =l S}, (B, F)
neN

which is a compactly regular (LB)-space and thus (¢*°-)complete, webbed, and
(ultra-)bornological; see Lemma [4.9| below.

4.5. Smooth functions with globally p-integrable derivatives. In this con-
text we assume that E and F' are finite dimensional. For p € [1, 00], consider the
space

WP(R™, R) = WP(R™) = (| WEP(R™)
keN
={f € C®R™) : | £ Lo@m) < o0 for all & € N™}

with its natural Fréchet topology (cf. [25] p. 199]), and set

WeoP(R™, R") := (W*P(R™,R))".
The most important case is p = 2:

W2(R™,R") = H*(R™,R").

Note that W->°(R™ R™) = B(R™,R™), so henceforth we restrict ourselves to the
case p € [1,00).

4.6. Sobolev—Denjoy—Carleman classes. Let p € [1,00) and p > 0. Consider
the Banach space

WMP(R™ R) := {f € C(R™) : ||f|F7, < oo},
where ()
ILFN e (mm
Hf|£f;?”g = sup P(R™)

aEN™ olal ‘Ot“ M|a‘ '
We define the Fréchet space
wP(R™ R) = li

n

=

wirP(R™, R)

1
n

|

m
Z

and
Wb (R™ R) = lim WP (R™, R)
neN
which is a compactly regular (LB)-space and thus (¢*°-)complete, webbed, and
(ultra-)bornological; see Lemma [4.9 below. We set

wMlr(rm R .= (WIMLP(R™, R))™.
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4.7. Smooth functions with compact support. We denote by D(R™) =
D(R™,R) the nuclear (LF)-space of smooth functions on R™ with compact support,
and set

D(R™,R") := (D(R™,R))".

4.8. Denjoy—Carleman functions with compact support. We define
DIMI(R™) .= CMI(R™) N D(R™) = BM(R™) N D(R™)

which is non-trivial only if M = (M) is non-quasianalytic. We equip DIMI(R™)
with the following topology,

D[M] (Rm) _ %n D%/[] (Rm)

Kex (Rm)
where
M m . m
D" (R™) := lim D}, (R™)
LeEN
DR (R™) = lim DY ,(R™)
LeEN
and

DK ,(R™) = {f € C*R™) :supp f C K, | fI¥, = |flI&5 , < o0}

is a Banach space. Then D) (R™) is a (LFS)-space and DIM}H(R™) is a Silva
space, see [7], and both are hence complete and convenient. Alternatively one may
consider the topology induced by the inclusion in the diagonal of CIM](R™) x D(R™)
or BIMI(R™) x D(R™) which are bornologically equivalent to the former topologies.
We set

pM(®™,R™) = (DIM(R™, R))".

4.9. Lemma. The inductive limits defining B} (U, F), S}%}(E,F), and
W{M}’p(R‘],R) are compactly reqular.

Proof. Tt suffices by [19, Satz 1] to verify condition (M) of [23]: There exists
a sequence of increasing O-neighborhoods U,, C BM (U, F) (resp. Sé‘/{n(E,F), or
WMp(Rf R)), such that for each n there exists an m > n for which the topologies
of B (U, F) (resp. S%k(E, F), or W,iw’p(Rf,R)) and of BM (U, F) (resp. S%m(E, F),
or WMp (R R)) coincide on U, for all k > m.

Let us write || ||, for either || |, || I3, or || [[ze%. For o' > o we have

Ifllor < Ifllo- So consider the e-balls UZ(f) := {g : |lg — fllo < e} in BM(U, F)
(resp. S%G(E,F), or WM» (R R)). It suffices to show that for o > 0, 0 = 20,
oy > 01, >0, and f € U7 := U7 (0) there exists § > 0 such that Ug>(f) N U7 C
Uz (f).
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Case A c {BIM S E/I}} }. We prove this for S E/[}}, however the following arguments

also give a proof for BIM} if we set p = 0, take the supremum over z € U, and
agree that Lo = 1. Since f € UY we have

LI = sup (1 -+ )17 @)ooy < plalo™ 1Ly M, for all p.g.
TE

Let 2%\, <sandd:=¢ (Q)Nil- Let g € U (f) NUY, ie.,

lgll <pq'0”+qL M, and
llg — f|| ) < SplqlobtiL,M, for all p,q.
Then
1
lg = FIZY < g2 + £ E < 2plglo™ 9L, , = 2plglo? "L, =L

<eplglo?L,M, forp+q>N
and
lg — FIL? < 8plgloh L, M, < eplglol ™ L,M, for p+q< N,

which proves the statement.

Case A = W{MbP, The same arguments work for W{M}br: For N and § as above,
feUy and g € Ug?(f) NUY give

1F oy < laf!o?* Mjq  and
||9(a)||LP(R€) < |04|!U‘a|Mla\ and
19“) = £l orey < Slall o Miq  for all a,
and hence

||9(a) - f(a)”Lp(]R@) HQ(Q)HLP(RL’) + Hf(a)HLP(Rf) <2 ‘a|!0|a‘M|a|

o
g «
- Qlalﬁ ||t Moy < 50‘1 | la|! My, for |a] > N,
19 = Fllnqae) < 505" 0t Miay < 20l jalt Miaj,  for fa] < N,

as required. ([

IN

5. INCLUSIONS

Let M = (My) and L = (L) be any positive sequences, where L, > 1 for all k.
5.1. Proposition. Let E, F be Banach spaces. We have the following inclusions.
S(E,F) B(E, F) C>(E,F)

| -

E,F)>— CM}(E
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In the next diagram we omit the source R™ and the target R™, i.e., we write A
instead of AR™,R™). Let 1 < p < q < oo. For the inclusions marked by * we
assume that M = (My) is derivation closed.

D S WP > WWoed B c*>

I R A S

piMy o gtMy ypMYp o *  ppiMla o * o giMY o oM}

L L ]

DM) >_>5%) s WMp (Mg o BM) o (M)

All inclusions are continuous. If the target is R (or C) then all spaces are algebras,
provided that M = (My,) is weakly log-convex, and each space in

DR™) = S(R™) = WO (R™) s WXI(R™) >~ BR™)

is a B(R™)-module, and thus an ideal in each space on its right, likewise each space
mn

m M m m m m
'D[M](R )HS%L]](R )>—>W[M]’p(R )>—>W[M]’q(R )>—>B[M](R )
is a BMI(R™)-module, and thus an ideal in each space on its right.

Proof. The first diagram is evident. So are the vertical arrows in the second dia-
gram. The inclusion S(R™,R") — WP (R™, R™) follows from

(1)

«a m «a d.’E 5
/ | £ da :/ (14 |z])Pem+D)| £ )|pW < (C||f||§$+1 \al))p’

where C' > 0 is a constant depending only on m and p. The inclusion
WeoP(R™ R™) »— B(R™,R"™) follows from the Sobolev inequality

(2) sup. [f@)| < Cllfllwre,  k=1F]+1,

where C is a constant depending only on p and m. For p < ¢ we have, by 7
1—

(3) 1fllze < NI ELE"E < ClF lwrens

for a constant C' depending only on p, ¢, and m, and hence WP(R™ R") —
Weoo2(R™ R™).

By , we have

Su Hf(a)”w <C su w <Co.m+1 (m+1)'L ||fHL,M
actin o1 [all Mig| = aetin o1l |al M| — FEmt1 | g oo

which implies the inclusion S{}{/(R™, R") — WM»(R™ R"). If f € DIMI(R™, R")
and supp f C B,(0), then

(L + =) IIF 9 (@)l| cagrmizn) < (1+r)? IF 9 (@) ca@mipn)

p.qeN oPtaplg! L,M, T pgen oPplL, odq! M,
z€B,(0) z€B,-(0)
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< Clo,7) | fllgm o
and thus the inclusion DIMI(R™, R™) »— S%] (R™,R™).

Finally, let us consider the inclusions WIMlp(R™ R"™) s WIMLa(R™ R™) and
wMlp(R™ R"™) — BIMI(R™ R™). By allowing ¢ = oo, we can handle them simul-
taneously. By and , we have

1Fllze < CUFOllyrn =C 3 17z,

1BI<k

and, thus, using (Jo| 4 |B])! Mo 115 < APIC@HIBD a1 M, for some A > 1 from
(2.1]19), we obtain

s <€ 2 A
<C s ZS m— ||J;|aiﬁ|,)6”|)L:)M|a+|ﬂl AIBIal+18D) 18]
(@+B)||
=0 18I<k (U/A’“)“'“Iﬁf(T; +|L5|)!Mal+|ﬁ "
< C sup max (a/Ak)a|+|I/ﬂf((T;BiL|L;|)! M43, wgkgﬂl
<C sp Ml N, e
for a constant C' depending only on m, p, ¢, and o. O

Remark. The fact that D is dense in W°>? (but not in B) and (2]) imply that each
element of WP must tend to 0 at infinity together with all its iterated partial
derivatives.

6. COMPOSITION OF TEST FUNCTIONS

In this section we collect results on composition of test functions that will be
needed later on. Let M = (M}) and L = (Lj) be any positive sequences, where
Ly > 1 for all k.

In general, B and BM! are stable under composition, but Wo», WiMle S
S %%], D, and DM! are not. The following example shows that the “Oth derivative”
of the composite f o g may not have the required decay properties at infinity, since

g is globally bounded.

Example. Let f,g € D(R,R) be such that f|j_; ;) = 1 and |[g| < 1. The composite
fog=T1isnotinU,,. WP(R,R), and hence neither in D(R,R) nor in
S(R,R). -
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We want to ask that a mapping is of class B or B! but only from the first
derivative onwards. For E, F' Banach spaces, U C F open, we set

By(U, F) := {f e C=(U,F) : ||fI* < o for all k € Nzl},

f(k) ("T)HL"(E‘F)
BM\(U, F) .= C=(U,F):0p >0 | ; .
M@ F)={rec>w,r):0p> i3 < oo}

We choose the subscript 2 in order to be consistent with Section where the
subscript 1 is reserved for a different meaning.

6.1. Theorem. Let M = (My) be log-convex. Let E,F,G be Banach spaces, and
letUCFE andV C F be open. Then:

FEBV,G), geBy(U,V) = f o g B(U,G),
fFeBMv,@), geBM (U, V)= fogeBMU,QG).

Remark. In particular, f o g is B or BIM! if f and g are B or BIMI, respectively.
Proof. Let A € {B,BMI},

Case A = B. By Faa di Bruno’s formula for Banach spaces (2.2}f2)), we find

I(f © 9)W(@)llr () -

k!
(1) 1FD (9@ imey ty 1990 @)l cos (m:m)
SIS e pp 162l
i1 aend, i=1 ’
O¢1+"'+Olj=k
Taking the supremum over x € U, we deduce
(4) (o)
K [l llgll
17 o gl < YD R TT G <oe
J [eY i
for each k > 1. For k = 0 we have
0 0
1f o gll < I < oo.
Case A = BM], By () and by (2.1][5)), we find
I(f © 9)® (@)l 2x(50) -
k! M, -
} 15D (@)l eimey P 19 @)l e ;)
J ) 5
= ZMl Z JIM; H ;! M,,
j=1 a€eNL i=1 ¢
ar+-+a;=k
k k-1 j—1 k k—1
< MiCyCypsply Y j 1) MpsCoP ™ = MiCrCopspy(L+ MipsCo)*.

Jj=1

This clearly implies the Roumieu case A = B{M}, For the Beurling case A = B,
given p > 0, let ¢ > 0 be such that p = /o + o and set p;, := /o and py =
(CyMy)~'\/o. Then | f o g||AU‘{p < 00. O
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6.2. Theorem. Let M = (My) be log-convex. If g : R* — R™ is a C-
diffeomorphism satisfying inf,crn | det dg(z)| > 0, then we have the following im-
plications:

f e WePR" R"), g€ By(R",R") = f o g € W*P(R",R"),
fe W[M],p(R7L7R'IL>7 ge BéM](Rn,R") — foge W[M]’p(Rn,Rn).

Proof. By assumption,
(1) )
| oD@l = [ 10 N0 e <€ 10 wp

for a constant C' depending only on g.

Assume that f € WP and g € By. By Faa di Bruno’s formula (2.2}f1)), each
partial derivative 97(f o g) of f o g with |y| > 1 is p-integrable over R™, using
and the fact that LP(R™) is a L>°(R"™)-module.

Now assume that f € WM and ¢ € BQM]. We use Faa di Bruno’s formula
(2.2l1) in order to see that

(2) Op>03D >0V >1:107(f o g)llLe@n) < Dol |y]! M.
Indeed, using and |a|!/a! < nl®l, we may infer from (2.21)) that

107(f © g)llzr@n) <oy a! ||6"‘f||m<w)
’Y' kl al

. (Ww)’“ (Ha‘sg\lw)’“
51' 5@'

a k
<O g CrmCap ) upg) Moy MU IS

and we may conclude (2| @, by Lemma This implies that fog € W[M]’p(R", R™),
since we already know that f o g € LP(R™). O

6.3. Theorem. Let M = (M) be log-convex. If g : R® — R™ is a C-
diffeomorphism satisfying lim gy g(x) — 2 = 0, we have the following implica-
tions:

feSMR™"R"), g€ By(R",R") = f o g € S(R",R"),
Feshil® g, ge BME® R = f o g € SHI®R" R").

Proof. By assumption, there is a constant C' > 0 so that
1+ ||
1+g(z)| —
for all . Thus, if f € S, then
(1) (L+ [z])P10% )(g())| < CP(L+ [g(x))P[(90° f)(g(x))]

is bounded in z for all p and a. Hence, if g € B, Faa di Bruno’s formula (2.2)12)
implies that f o g € S.
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Now assume that f € S %] and g € BéM]. We use Faa di Bruno’s formula 1 i
in order to see that

(2) Op>03D>0VpeNV|y|>1VreR":
(1+[))?107(f o g)(x)| < DpP* M pliy|! L, M.
Indeed, using we may infer from (2.241)) that
(L+ [z])P107(f ° g)(=)]

plAy!
» ol (L4 |g(@))P[0°f) (g(@)] (107 g(z)|\F 0% g ()] \ ke
¢ Zkl!---ke! : plal ’ ( 5?! ) ( 53! )

a! o k k
< (Cpy)’Ly Y Bl Rl Cr(nCypy)'® (npy)"! M\a|M|I511“ - 'M|‘5,f“

and we may conclude (2)), by Lemma Thus foge S %] (R™,R™), since we

already know that f o g € S(R™,R"). O

7. CIMl_pLOTS IN SPACES OF TEST FUNCTIONS
In this section we characterize C[™l-plots in BMI(R™), WIMl»(R"), S{%] (R™),
and DIMI(R™). We assume that M = (M) satisfies Hypothesis and that L =
(Ly) satisfies L > 1 for all k.

Since BIM}(R™), WiMbr(R™), S%%}(R") are compactly regular (LB)-spaces, by
Lemma and DM} (R™) is even a Silva space, the respective dual spaces can be
equipped with the Baire topology of a countable limit of Banach spaces. Hence the
sets of C'ZEM]—plots and of C™Ml_plots in each of these spaces coincides, by Lemma
(3-285)-

7.1. Lemma. Let E be a Banach space, and let U C E be open. For a function
f € CMI(U x R™) consider the following conditions:

(CB)

k Ha
VK e %(U) Dp > O: Sup |8u8$f(u7$)(vl?"'7vk)|

< o0
keN,aent PRI (k4 o)) Mo

(u,x)EK XR™
lv;lle<1
(CW)
1/p
(I]R" |61’fa?f(uv$)(vl7 R 7vk)|p dl’)
VK e #(U)Op>0: sup < 0.
@) cena PRl ([l Mg
ueK
lville<1
(CS)

(1 + |=))™|050g f (u, ) (v1, - ., vp)|
VK e (U)Qp>0: sup yz
@) komeN,aen®  pPHEFIlm(k 4 |a)! Ly My g
(u,z) €K XR™
llv;lle<1

< 00.

(CD)
VK € #(U) 3L € #(R") Yu € K : supp f(u, ) C L.
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Then
M, BM @) = MU, BIM(R™))
={fV:fe CMIU x R™) satisfies cB)}.
Gy, Wi () = MU, W (R))
={fV:fe CMIU x R™) satisfies )},
MW, st ) = M, s R)
={fV:fe CMI(U x R™) satisfies €3},
e, pM(®) = M (U, DMI(R™))
= {fv fe C[M](U x R™) satisfies }
Proof. Let A € {BIM WwMlp S[ DMy If fV e oMU, A(R™)), then f €

CMI(U x R™), by the C[M]—exponentlal law (Theorem and by Proposition
and conversely, if f € CIM(U x R™), then fV € CIMI(U, CIMI(R™)).

Case A € {B[M],W[M]’p,sm]}. If fVe CIEM](U,A(R”)) then for each K € ¢ (U)
Op1, p2 > 0 the set Z]I‘{/{pl(fv) is bounded in B (R™), W -P(R™), or S%m( DR
respectively, since BIM}H(R™), W{Mbr(R"), S}]LW}} (R™) are compactly regular (LB)-

space, by Lemma That is
okox f e
(1) sup ‘ ( )(Ula ,Uk)|

n ||
kEN,aeN k! a|! My, M,
Feaen, pi s k! al la]

lv;lle<1
(Jen

< 00,

Ok f(u, ) (v, .., vg) P da) /?

(2) sup \al 00, oOr
keIZIgI%N" 1 Po k! |O(|!MkM‘a|
llvjlle<1
1+ |z))™|0kos f Vlyeony U
5 wp | U 0RO )l
kmeN,aeN” ok py E'm! ||t Ly, My M,
(u,z)EK XR™
llv;llE<1
which implies (CB]), (CW)), or , respectively.
Conversely, suppose that f satisfies , , or l ). It follows that for

each K € ¢ (U) Opy, p2 > 0 so that the supremum in ([2)), or (3)) is finite, since
M = (M) has moderate growth (2.I][).

Case A = DM, First we show that (CD) is equivalent to the following condition.
VK € #(U)3L e #(R")Vu e K :supp f(u, ) C L, and

/ ke f(u, |
(cD) Op>0VaeN': sup 1 wfg;s\)}mw,m .
(u,x'?g?(XL P ' b

Let us prove the non-trivial direction (CD|) = (CD’). Fix K € #(U). Then there
exists L € # (R™) so that supp f(u, ) C L for all u € K. Since f € CIM(U x R™),
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Op > 03C > 0so that, forall k e N, a € N*, (u,z) € K X L,
10502 f (o, )| () < Co™ 1 (k4 ) Miy g < O™k ol My Mo,
for Op; > 0, as M has moderate growth (2.1}18), thus (CD’)).

Now we prove the assertions of the lemma. If fV € C,EM](U,D[M] (R™)), then
VK € 2 (U) Op > 0 the set Z%p(fv) is bounded in DIMI(R™). There exists
L € #(R™) so that Z%p(fv) is bounded in D(L). Hence f satisfies (CD).

Suppose that f satisfies and thus . We will show that fY €
MU, D(RM)), ie., VK € K(U) Op > 0 the set T (fV) is bounded in D(R™).
Condition guarantees, for given K € K(U), the existence of L € # (R") and
Op > 0 so that for all & € N™ the set

) (u 0502 f (u,x
{ag(W)(x) - p’“lj(Mk) +k €N, (u,2) erL}

is bounded. That is, 33! (f) is bounded in D(L) and hence also in D(R™). [
8. GROUPS OF DIFFEOMORPHISMS ON R"

In this section we assume that M = (My) satisfies Hypothesis and that
L = (Ly) satisfies Ly, > 1 for all k.

We define
Diff BR") := {F =1Id+f: f € B(R",R"), inf, det (L, + df (z)) > 0}
Diff W P(R") := {F = Id+f : f € WP(R",R"), det(L, + df) > 0}
Diff S(R") := {F =Id+f : f € S(R",R"), det(L,, + df) > 0}

Diff D(R™) := {F =1d +f : f € D(R",R"),det(L, + df) > 0}

and the ultradifferentiable versions

Diff BM(R") := {F =1d +f : f € BM(R",R"), inf det(I, +df (x)) > 0}
TeR™

Dif WMP(R") .= {F =1d+f : f € WIMIP(R", R™), det (L, + df) > 0}
Diff S|y (R™) i= {F =Td+f : f € SPI(R", R"), det(I, + df) > 0}
):

(
(
(
(

Dif DM(R™) := {F =1d+f : f € DM/(R",R"™), det(L, + df) > 0}

Let A € {B, WW,S,D,BWJ,W[MLP,SFL”]],D[Ml}. Then Diff A(R") is a mani-
fold modelled on the convenient vector space A(R™,R™) with global chart {f €
A(R™,R") : infyepn det(I, 4+ df (z)) > 0} 3 f — Id+f.

Note that for A € {W>P S, D, W[M]’p,S%], DIMI} the condition det (T, 4df) >
0 implies inf,egn det(L, + df (x)) > 0, since a function f € W°P(R"™, R™) tends to
0 at co together with all its partial derivatives.

8.1. Theorem. DiffB(R"™), Diff W>>*(R"), DiffS(R™), and Dif D(R™) are C*°-
regular Lie groups.
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Proof. All this was proved in [I8] with one exception: for Diff W °?(R™) only the
case p = 2 was considered. For p # 2 the proof is just the same. ([

Our goal is to show a corresponding result for the above groups of ultra-
differentiable diffeomorphisms, i.e., Theorem [I.I] From now on we treat only

A (B0, wiMp, T DMy,

8.2. Lemma. Each clement of DiffBM|(R"), DiffWiM»(R"), DiftS{; T (R"), or
Diff DIMI(R™) is a CMI-diffeomorphism of R™.

Proof. An element F' in any of the sets in question is also an element of Diff B(R™),
and thus a C°°-diffeomorphism of R™, by Theorem [8.1] (see [I8, Proof of 3.8]). The
C™] inverse function theorem implies that F is a C'!™-diffeomorphism. O

Before we show that Diff A(R™) are groups with respect to composition, let us
state two lemmas.

8.3. Lemma (|27, p. 201]). Let M = (M) be log-convex and let A,C,p > 0. For
N € N5 define

N .
pPIM
Pn(t) :==CA E - t/, teR.
—~
‘7_
Then there exist ¢; so that the function gn(s) = > o, ¢;s* satisfies

(1) gn(s) = As+9Yn(gn(s)),  for smalls € R,

and

0 <ic; < AUA(CA+1)p)*M;_y, fori=2,...,N.

8.4. Lemma. Let A : R™ — R" be a linear invertible mapping. Then |A7Y|| <
[det Al | A",

Proof. Using the polar decomposition of the matrix A we have A = UP for
an orthogonal matrix U and a positive semidefinite Hermitian matrix P =
Vdiag(s1,...,8,)V*. Then |[A7Y|| = |P7UY = |P7Y = (min;s;)"! and
|det A| = det P = s189 -+ -5, < (min; s;)(max; s;)" "1 = [|A7L]| 71| A" L. O
8.5. Proposition. Diff BM(R"), Diff W#(R"), DiffS [} (R") and Diff DM (R")
are groups with respect to composition.

Proof. Let A € {B[M]7W[M}’p,S%],D[M]}-

(a). Claim. If F = Id+f and G = Id+g are elements of Dift A(R™), then so is
FoQgG.

‘We have
(Id+f) o (Id+g))(z) = 2 + g(x) + f(z 4+ g(x)), and
() inf det((L, + df (z + g(2))) (I + dg(x))) > 0.
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We must check that h(x) := f(z + g(z)) is in AR™,R"™) if f,g € AR",R").
This follows from Theorem for A = BIM! from Theorem for A = WMlp,
and from Theorem for A = S%], since z — z + g(z) is in BgM] (R™,R™), by

Proposition In the Case A = DM h ¢ CIMI(R® R™) clearly has compact
support. The proof of Claim @ is complete.

(b). Claim. If F =Id+f € Diff A(R"), then G = 1d +g := F~! € Diff A(R").

By Lemma F~! exists as an element of C[MI(R™ R™). The identity
(2) (Id+g) o (Id+f) =1d <= f(z)+g(z+ f(z)) =0
implies, together with Lemma[8.4] (and using [|A||~* < [|A7Y])),

det (I, +dg(z + f(2))) = det(L, +df (2)) ™" 2 |[L, + df (z)]| "
which is bounded away from 0. It remains to show that g € A(R™ R™).

To this end we fix a € R™ and set b = F(a) and T = F'(a)~! = G'(b). Defining

(3) p:=1d-T o F,
we have
(4) G=T+¢poG.

Case A = BIM}, This proof is inspired by [27]. Since f € BIM}(R™ R") and since
M = (Mjy,) is derivation closed, there exist constants C, p > 0 so that

1£5) (@) ck (mnmy < Cp* 1k — 1)! My—y for @ € R", k € N3y
and thus
o™ (@)l 2 gy < CIT | c@nmmyp™ (k= 1! My for z € R", k € Nxo.
Since inf,ern det(I, + df (z)) > 0 and by Lemma [8.4]
A= sup |F'(z) Y| c@nmny = sup [|(In + df () cnmny < 00

zERN zERM

Define ¥ and gn as in Lemma Then
IG' ()| crirny = [1F'(@) "l c@nipny = 1T || crnimny < A=giy(0)  and
lo® (@)llcx@niany < UR(0), 2< k<N,

Applying Faa di Bruno’s formula (2.2}f2)) to (4]) and to (8.3ll1)) we can deduce induc-
tively that |G (b)[| ck gnmny < gj\lf (0), for 2 < k < N, in fact,

(5)

1G™) (b M cx mnny <Z Z ,a,H@U) ||£J(R"]R")HHG(%) b))l o mrimny

j>2 aGNJ i=1
Za7_k
I ML L) 1 T
= . BT RS § B0
j=2 aeNL g i=1
a1+ +Oéj:k}

k
= gJ(V)(O)v
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note that ¢'(a) = 0 and ¥}, (0) = 0. Thus
g™ B oy = 1G® )| cx(rrieny < g (0) = Kl e
< A(AA(CA +1)p)* 1k — 1)! My,

1
< —— (4A(CA+1)p)*K! M,
_4M1(C’A+1)p( (CA+1)p)"k! My,

As N was arbitrary, we have g € BIM}(R™ R"); that g and g") are globally
bounded follows e.g. from Theorem

Case A = BM), Consider
1
Ly == Hmsguﬂgl ”f(k)(z)”Lk(]R";]R")-

Then L<1M and since My11/M}, — oo there exists a log-convex sequence N = (Ng)
satisfying Ni41/Nk — oo and such that L < N < M, by [8, Lemma 6]; the proof
of [8, Lemma 6] shows that, if M = (M},) is derivation closed, then we may find
a derivation closed N = (Nj) with the above properties. Thus, f € B{N}(R”,R”)
and, by the Roumieu case, g € BV} (R™,R") C BM)(R™ R™).

Note that in this step of the proof N = (Nj) need not have moderate growth.

Case A = WIMP, Since f = (f1,...,[n) € WIMP(R™ R"), we have Op > 0
3C > 0 so that

||fi(a)||Lp(Rn) < Cp‘o‘||oz|! My, foraeN' i=1,...,n,
and thus, as ¢(@)(z) = —T(f()(z)) if |a| > 2, by (3),
|\<p§a)||Lp(Rn) < Dpl®l|a)! My foraeN" |a|>2,i=1,...,n,

for D := C||T| z(&n;rn). We know from Proposition and from Case A = BIMI
above that g € BIMI(R™ R™) and hence G € BgM (R™,R™). Moreover, G is a
diffeomorphism on R™ satisfying inf, det dG(x) > 0. Thus, applying Theorem
to (@), we may conclude that g € WM»(R", R"). (Note that we know by Theorem
[B1] that g and all its iterated partial derivatives are p-integrable, and so if the
growth conditions defining WIM? and so if the growth conditions defining WMl»
hold from some order of derivation onwards, then they also hold for all lower orders
of derivation.)

Case A = S{%}. This is analogous to the Case A = WMl», Here f € S%] (R™,R™)
implies Op > 0 3C > 0so that forallpe N, a e N*, i=1,...,n, z € R",

(1+ 2P| £ ()] < CprHlel plla|t LM 4,
and, as () (z) = =T (f¥)(x)) if |a| > 2,
(1+ [2))P el (2)| < DpP*1el plaf! LM, 4,

forallp e N, a € N, |af > 2,4 =1,...,n, 2 € R, and D := C||T||zmnrn)-
Again Proposition and Case A = BMl imply g € BM(R",R") and hence
G € BgM] (R™,R™). Moreover, G = Id+g is a diffeomorphism on R" satisfying
G(z) —x — 0 as |z| = oo, since we already know that g € S, by Theorem (8.1

Thus, applying Theorem to , we may conclude that g € S {%] (R™, R™).
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Case A =DM, By (), we have supp g = supp f, and thus g € DIMI(R", R).
This finishes the proof of Claim @ and thus of the proposition. (]

9. COMPOSITION

We assume that M = (M},) satisfies Hypothesis [3.2| and that L = (Lj) satisfies
Ly > 1 for all k.

For simplicity we shall employ the following notational convention in this section.

9.1. Convention. We write 87 = 8;’0827/ for multiindices v = (v0,7) =
(Y0, V15 -+ -»¥n) € N where 9]° are iterated total derivatives with respect to

u in a Banach space E and 0] " are partial derivatives with respect to x € R™.
9.2. Theorem. Composition is CMl on DiffBM(R™), DiffWwMlr(R"),
DiftS}; T (R") and Diff DMI(R™), i.e

comp : Diff BIM/(R™) x Diff BIM/(R™) — Diff BIM(R™),

comp : Diff WMIP(R™) x Diff wiMl»(R™) — Diffw[Ml»(R™),

comp : Diff S} (R™) x Diff S} (R™) — DiffS[)] (R™),

comp : Diff DIMI(R™) x Diff DMI(R™) — Diff DIMI(R™),

comp(F,G) :=F o G,

are C™M_mappings.

Proof. 1t suffices to prove that comp maps C’IEM]—plots to C™Ml_plots; see Subsection
By Lemma it is enough to consider U 5 u +— Id+f(u, ) and U 3> u —
Id +g(u, ), where U is open in some Banach space E and f,g € CIM(U x R*,R")
satisfy |-D , or C’D, and to check that h(u,x) = f(u,z + g(u, z))
(cf. 1-|Ii satisfies (CB| , or CD, respectively. That h € C'[M](U X

]R” ,R™) follows from the fact that C'"™! is stable under composition.

Let us define ¢ = (1, ¢2) by setting
) p1(u,z) :==u and @a2(u,x) =2+ g(u,z) such that
h=f o .
Since g = (g1, - .-, gn) satisfies ., - or , we may conclude that
VK € 2 (U) Oo > 0 3D > 0 such that, for all ue K, and all z € R™,
10°01(u, )| 230 () < DM [8]! M5 V6 € NF™,
@) 0% 2,2 oo smry < Do 011 My
Vép € N, 6" € N* \ {0} and Véy € N>q,46" € N”,

where we apply Convention Here we use (the proof of) Proposition for

instance, in the case A = WMlp,

sup |8‘sgi(u,x)(v1,...,v50)\ <D sup Haégi(u’ )(Ulv"',vtso)”Lp(R")
SeNl+n oldl |o]! M|§| T senttn ol |o]! M‘g‘ '
z€R™
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Case A = BM], We already know from Theorem [8.1] that for all K € # (U),
a € NiHn,

sup [ 0%h(u, )| zoo (Brm) < 0O
(u,z)€ K XR"

Let K € #(U) be fixed. Then, since f = (f1,..., fn) satisfies (CB)), we have
Op > 03C > 0 such that, forallt=1,...,n, all u € K, and all x € R™,

3) 10° Filat,2) oo () < Cpl®! o]t Moy Vo € NYF™,

Faa di Bruno’s formula ([2.2/11)), 7 and then give, foralli=1,...,n, u € K,
r € R", and v € N+ \ {0},

107 hi(u, z)|| 270 (2:r)

~!
25 al 0% fi(u,  + g(u, @) || oo (m:R)
kil-- k! ol
% (851¢1(u’ x)”[,éll)(E;E))kll o (”aéewl(ua x)”ﬁ‘seo(E;E))k“
o1! 0!
(e i (10t ez
o1! O!
al [F1] kel
<> T Gl 1) D)l (n + 1)o) 7 Mo M5 - Mt

where o = k1 + - - - + k¢ and the sum is taken over all sets {d1,...,0,} of £ distinct
elements in N'*7 \ {0} and all ordered /-tuples (ki,...,k¢) € (NIT7\ {0})¢, ¢ =
1,2,..., such that v = |k; |61+ - - +|k¢|6,. By Lemma[2.2] we conclude that Or > 0
3B > 0 such that

107 h(u, )| Lo
~!
Thus h satisfies (CBJ).

Case A = WIMlP, We already know from Theorem that for all K € # (U),
i=1,...,n, a € NIt

sup / |0%h;(u, ) (v1, ..., Va,)|F do < 00.
uek,||lvjl[ <1 /R

Let K € #(U) be fixed. Then, since f = (f1,..., fn) satisfies (CW]), we have
Op > 0 3C > 0 such that, for all i = 1,...,n, all v € K, and all v; € F with
lvjlle <1,

(4) 10% fi(w, )(v1, -+, Vag) | o(eny < Cpl*Mal! My Vo € NP

Since z — @a(u,z) = = + g(u,z) is a diffeomorphism on R™ satisfying
inf, det dyo(u, x) > 0, we have, for all 4, u, and v;,

[ 1@ ) s ) o,
= [ 1@ n) e v

EEY) < Brhl M, VY(u,z) € K xR", v € N'"*"\ {0}.

p dy _
| det dypa(u, 7))

<Clo) [ 10" ) (wn.e v P s
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cf. (6.21). Faa di Bruno’s formula (2.2}f1)), , and (4)) then give, foralli =1,....n,

ue K, v; € B with [|o;]|p <1, and y € N'T"\ {0},
Ha’yhl(?h )('Ula cee 7U’Yo)||Lp(Rn)

~!
al 10 fi(u, )(v1,. .., Va)llLerm)
<C(9,p) ) , 7+ sup
2 ful - kel oy e <t al
( \\561@1(U7$)||c510(E;E))’“11 ( ||(96’“7801(U79C)||c<5zo(13;E))’W1
x | sup -+ | sup
u,T (51' w,x (5['
\\351802(U7x)||5510(E;Rn) k12 H35E<P2(U’I)Hﬁeo(E;Rn) ke
x(”’ 5! ) "'(S“p 5! )
u,T 1- u,r .

a! o 1
< C0.0) Y g O+ 1D0) (1)) My M- a5

where the sum is as in Case A = BIM]. By Lemma we conclude that Or > 0
3B > 0 such that

||a’yh1(ua )(vla s aU’YO)”Lp(R")
~!
foralli=1,...,n,u € K, v; € E with |jvj||g <1, and v € N'*" \ {0}. Thus h
satisfies (C'W)).

Case A =S {LM]] We already know from Theorem that for all K € J#(U),
peN, o e NH?

< Bril My,

sup (14 [2)P[|0%h(u, z)|| zoo (mirn) < 00.
(u,x)EK XR™
Let K € #(U) be fixed. Then, since f = (f1,..., fn) satisfies (CS|), we have
Op > 0 3C > 0 such that, foralli = 1,...,n, p € N, a € N'*" 4 € K, and
xz eR?,

(5) (1 + [2)P 0% fi(u, @) || oo (mm) < CPPT pllafl L M)y
That g satisfies (C'S]) implies that there exists C(g) > 0 so that
1+ |z _ 1+ ||

= C
T+ fpa(w )] T+ fet g =
for all (u,z) € K x R™. Faa di Bruno’s formula (2.21)), , and then give, for
(u,z) € K x R", p € N, and v € N+ \ {0},
(1 + [z)P 107 hi (u, )| 270 (E3R)
phAy!

Q.
<CO" Y
y (851‘:01(u71')||£510(E;E))kll (||35"<P1(U,17)||mo(E;E)>’f“

(L A+ [ (u, )|)P10% f (u, @2(u, 2))[| oo (i)
- k! pla!

0! !
y (“661902(”7 $)||£510(E;R"))k12 o (Haéz@z(% m)“L%(E;Rn) )kt’?
51! 5@'

< (COPPLy Y ey Clln+ D)D) ((n+ 0o Mg -l
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where the sum is as above. By Lemma [2.2] we conclude that (7 > 0 3B such that
(1 + [2))P[|07hi(w, )| 70 (2
plAy!
foralli=1,...,n, (u,z) € K x R", p € N, and v € N'*7 \ {0}. Thus h satisfies
(€S

Case A = DM, Since f and g satisfy (CD)), there are Ky, K, € # (R") so that
supp f(u, ) € Ky and supp g(u, ) C K, for all u € U. Then

supp h(u, ) C U (Id+g(u, ) 1K) = Kp,
uelU
where Kj, C R™ is compact, since {J,c;(Id+g(u, )) "' (Ky) is bounded. Indeed,
suppose that there exist sequences uy € U and xp € R™ so that x; — oo and

xk + g(uk, k) € Ky. Then there is a subsequence xy, ¢ K, and thus xy, € Ky,
contradicting unboundedness. So h satisfies condition (CD)). O

) < Brpthl L,M,,,

10. INVERSION
We assume that M = (M},) satisfies Hypothesis and that L = (L) satisfies

L > 1 for all k.
10.1. Theorem. Inversion is CMl  on DiffBIM(R"), DiffiwIMlr(R"),
DiftS};T(R") and Diff DMI(R™), i.e

inv : Diff BM(R™) — Diff BM(R™),

inv : DiffwMlr(R") — Diffw Mlp(R™),

inv : DifftSP(R™) — DiFSPI(R™),

(L] [L]
inv : Diff DM (R™) — Diff DM (R™),
inv(F) :=F~!,

are C™MI_mappings.

Proof. 1t suffices to prove that inv maps C’ZEM}—plots to CMl_plots; see Subsection
By Lemmal[7.1] it is enough to consider U 3w+ Id +f(u, ), where U is open

in some Banach space E and f € CIMI(U x R",R") satisfies (CB), cW), (CS
CE), [CW

or (CD), and to check that g defined by (Id+f)~! = Id +g satisfies
(CS), or 7 respectively. Since g satisfies the implicit equation

(1) (Id+f) o Id+g) =1d <= g(u,z)+ f(u,z+g(u,x)) =0

we already know that ¢ is CIM] by the C™! implicit function theorem; see Subsec-
tion

Fix K € # (U) and let us introduce some notation. We consider the mappings
f:UxR"xR" - R", flu,z,y):=y+ f(u,z+y), and
F:UxR"XxR" > UxR"xR", F(u,z,y):=(u,z f(uz,vy)).
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Then F is a global CM]-diffeomorphism with inverse
G:UxR"xR" U xR"xR", G(u,z,y) = (u,z,y + g(u,z +y)).
We shall abbreviate
H=ExR"xR" V. =UxR"xR", and L:=K xR"xR".
Fix po = (ug, 0, y0) € L, and set go = F(pg) and T = F'(pg) ~! = G'(qp). Defining

(2) » = Idv —T o F,
we have
(3) G=T+¢poG.

Case A = BIM}, Since f € CIMH(U x R™, R?) satisfies (CB) and since M = (M)
is derivation closed, there exist constants C,p > 0 so that

(4) 105 05.f (u, )| £kt (5 ey < Cp" T (k4 £ = 1) My s

for (u,r) € K x R™ and (k, /) € N2\ {0}; here d; and 9, denote total derivatives.
Thus

||8f8§8§”f(u, z,Y) ||l cosem (B Rn jrmny < ||(8f8§+mf)(u, T+ Y)|l coerm (mmmn)
< OpFHEm L b4 m — D) My pym1

for all p = (u,z,y) € K x R™ x R"™ and k,¢,m € N with k + ¢+ m > 2. In view of
, we then find

(5) ||80(h)(P)||Lh(H;H) < CIT|lgea,myp" " (h—1)! My—y, Vp € L, h € Nxs;
possibly with different constants C, p > 0. We have

ldgxge 0
a(%r)f(uv xz, y) L, + 82]c(u7 T + y)

F'(p) =F'(u,2,y) =

and hence

Idgxrn 0
(I + 02f (w, 2 + ) ' Oumf(u, 2, y) (I + O f(u,z +y)) ™!
It follows that

F'(p)~' =

(6) A= sup [F'(p) ™| (i) < o0,
peEL

since inf(y z)exxre det(l, + daf(u,x)) > 0 and by Lemma and since
Otu,o)f(u, 2, y) = O1f (u, x +y) + 02 f (u, 2 + ) is bounded for p € L.

Define ¥ and gy as in Lemma [8.3] Then
IG" (qo)l cea:m1) = ¥ (p0) =l ey = T || ey < A= giy(0)  and
o™ (po)llen oy < ¥57(0), 2<h <N,

by (B). Applying Faa di Bruno’s formula (2.2]2) to and (8.3l1)) we can deduce
inductively (cf. (8.5/[5)) that, for 2 < h < N,
1

hopm
4M1(CA+1)p(4A(CA+1)p) h! Mj,.

IG™ (qo)l| e (rrary < 98(0) = Bl ey, <



28 ANDREAS KRIEGL, PETER W. MICHOR, AND ARMIN RAINER

Since N and (ug,xo) € K x R™ were arbitrary, this implies that g satisfies (CB));
we know from Theorem that ¢ and ¢V are bounded on K x R".

Case A = BM), This follow from the Roumieu case. More precisely, the proof of
Proposition Case A = BM) applied to

1
Ly := 7 sup || %) (u, )| cr (B xRn R
Pua)ekxrn

provides a log-convex derivation closed sequence N = (Ny) satisfying Ngy1/Np —
oo and L < N < M. So f satisfies the Roumieu type estimate for M = (My)
replaced by N = (Ng), and the arguments presented in “Case A = BMY  which
only require that N = (Nj) be log-convex and derivation closed, imply that g
satisfies the Roumieu version of (CB|) for N = (Ny). Thanks to N < M, g also
satisfies the Beurling version of for M = (My).

Case A € {W[M]’p78%]}. We may infer from Proposition and from Case

A = BIMI that g satisfies (CB). Let us define ¢ = (1, ¢2) by setting
p1(u,x):=u and  @s(u,x) :=z+ g(u,v)

such that becomes

(7) g=—foe

We are now in the situation of (9.2lf1) (for h = —g). The proof of Theorem [9.2
Case A € {W[M]vp,S%]}, (applied to instead of ([9.2}l1))) shows that g satisfies

(CW) or (CS)), respectively.

Case A = DMI, The identity implies that supp f(u, ) C suppg(u, ), and so f
satisfies (CD). O

11. REGULARITY

We assume that M = (M) satisfies Hypothesis and that L = (Ly) satisfies
Ly > 1 for all k.

Following [14], see also [12] and [IT, 38.4], a C!M]-Lie group G with Lie algebra
g =T.G is called C!™-regular if the following holds:

e For each CMl-curve X € CIMI(R,g) there exists a C™Ml-curve g €
CM(R, G) whose right logarithmic derivative is X, i.e.,

9(0)  =e
Brg(t) = To(psM)X(t) = X (t)-9(t)

The curve g is uniquely determined by its initial value g(0), if it exists.
e Put evoli(X) = g(1), where g is the unique solution required above. Then
evol, : CIMI(R, g) — G is required to be C!M] also.
11.1. Theorem. DiffBM|(R"), Diff W M»(R"), Diff S} (R"), and Diff DM (R")
are C™M_regular.
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Proof. Let A € {BM wiM» S DM Let R 5t X(t, ) be a CIM-curve
in the Lie algebra X¥4(R") = A(R",R"). By Lemma we can assume that
X € CIMI(R x R™,R") and satisfies (CB), (CW)), (CS)), or (CD)). The evolution of

this time dependent vector field is the function given by the ODE
Evol(X)(t,x) = = + f(t,z),

(1) Oh(x+ f(t,2) = fi(t,x) = X (t,x + [f(t, 7)),
{f(O, x) =0.

Consider the autonomous vector field (1, X)(¢,z) = (1,X(¢,z)) on R x R™ and

its flow t — FI) given by 0, FII"(s,2) = (1, X)(FI{") (s, 2)) with initial

condition Fl(()l’X)(s,x) = (s,x). This flow is complete since (1,X) is bounded.

Then (t, Evol(X)(t, z)) = (t,z+ f(t,2)) = FI{"%)(0,2) and (0, Evol(X)(t)~!(z)) =

1Y (¢, ).

We have to show the following;:

e f(t, ) € A(R",R") for each t € R
ot f(t, ) € AR",R") is CM]
o X s fis CM

Case A = BMl In this case X satisfies (CB). Thus (1,X) satisfies on
(a,b) x R™ for each bounded interval (a,b). By [28], see also [9], its flow F1(1%)
satisfies on (a,b)xR", and thus t — f(t, ) € BM(R” R") is C!M] by Lemma
In order to prove that

CMIR, X (R™)) 3 X — Evol(X)(1, ) € Diff BM(R™)

is M1 we consider a CMl-plot X in CIMI(R, Xz (R™)), i.e., (u,t) — X(u,t, ) €
CMI(U xR, Xz1a1 (R™)). Then we can argue as before. Since (0, Evol(X)(t)~*(z)) =
Flggx)(t, x), we also have that inf,ecgn det(9, Evol(X)(¢,z)) > 0.

Case A € {W[M]’p,SULVI]}. By Case A = Bl and Proposition we already
know that f satisfies . By we are in the situation of (9.2}f1). The proof of
Theorem implies that f; satisfies or , respectively. Since we know
from Theoremﬁthat If(t, )l|Le@ny or sup, (14 |z|)P|f(t, z)| are bounded locally
in ¢ (and since M = (M},) is increasing), we may conclude that f satisfies or

(CS)), respectively. Then we can finish the proof as in Case A = BIM],

Case A = DM, Since X satisfies (CD)), for each C' > 0 there exists r > 0 so that
supp X (¢, ) € B,(0) for all 0 < t < C, where B,(0) C R™ denotes the closed ball
of radius r centered at 0. For 0 <t < C we consider

(2) () < / (5, 2)|ds = / X(s,2 + f(s,2))] ds.

It follows that, for (¢t,z) € [0,C] x R™, we have |f(¢t,x)] < tB, where B =
max{| X (¢t,z)| : (t,x) € [0,C] x R"}, and hence if |z| > r + tB then f(t,x) = 0,
by ([2). Similarly for negative ¢t. That means that f satisfies (CD]), and thus
t e f(t, ) € DIMI(R" R") is CIM] by Lemma We may finish the proof as in
Case A = BM], O
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12. END OF PROOF OF THEOREM [ 1]

We assume that M = (Mj}) satisfies Hypothesis and that L = (L) satisfies
Ly > 1 for all k.

Theorems and imply that DiffDIMI(R"), DIH‘S{LM]] (R™),
Diff wMlp(R™), and Diff BIM(R™) are CM]-regular Lie groups.

That, for 1 <p < gq,

Diff DM (R™)—Dift ST (R™)—Diff M2 (R —Dift W M9 (R™)—Diff BM (R™)

are C!M injective group homomorphisms follows from Proposition and the fact
that a linear mapping between convenient vector spaces is C!M! if and only if it is
bounded, see [14] 8.3].

It remains to show that each group in the above diagram is a normal subgroup of
the groups on its right. It suffices to show that each group is a normal subgroup in
Diff BIMI(R™). So let Id +¢ € Diff BIM(R™) and (Id +¢)~! = Id +f € Diff BIMI(R™),
which implies g(z) + f(z + g(z)) = 0. Then, for Id +h € Diff BIMI(R"),

((Id+g)~" o (Id+h) o (Id+9))(z) = ((Id+f) o (Id+h) o (Id+g))(z)
=z +g(x) + h(z+g(x) + f(z + g(x) + h(z + g(2)))
(1) =z+hz+g@)+ flz+g(@) + hlz +g(x) = flz+g(2))

1
=+ h(z+g(x)) + / df (z + g(x) + th(z + g(2))) (h(z + g(x))) dt.
0
Assume that h € WIMLP(R? R™) or h € SFL\{] (R™,R™). Then z — h(z+g(x)) is
in WIMLp(R™ R™) or in S%] (R™, R™), by Theoremor Theorem respectively,
which implies the assertion, since [0,1] x R™ 3 (¢, 2) — df (z + g(z) + th(xz + g(z)))
is BIMI,

If h has compact support, then so does . The proof of Theoremis complete.

13. ComposITION 1S NoT CM) ON lefB(M)( R)

loc

We define
BIM] (R™) := cM] (R™) N B(R")

loc

and

Ditt B (R") := {F =1d+f : f e BN (R", R"), inf det(L, +df(x)) > 0}.

loc loc

On Bloc (R™) we consider the topology induced by its inclusion in the diagonal of
CIMI(R™) x B(R™).

We assume that M = (M) satisfies Hypothesis
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13.1. Lemma. Let U be open in a Banach space E. For f € CM(U xR") consider
the following condition:
(CBIOC) .
|0:0% f (u, ) (v1, ..., vE)
VK e 2 (U) DO 0 Vaa e N : r
SHWTp>ovacrs qp  BETa

(u,z)€ K XR™
llvjlle<1

< 00.

Then

C,EM](U, BI[C])VCI](R")) C{fV:fe CMIU x R™) satisfies (CBwd) }
C C[M](U,B[M] (R™)).

loc

In the Beurling case CM = CM) the inclusions are equalities.

Proof. 1f f¥ € M (U, BM(R)), then f € (U x R™), by the CM)-exponential

law (Theorem [3.2), and for each K € ¢ (U) Op > 0 the set E%p(fv) is bounded
B(R™), i.e., f satisfies (C'Bjoc)). This shows the first inclusion.

If f e CIM(U x R™), then f¥ € CIMI(U, CIMI(R™)), by the CMl-exponential
law. That f satisfies (CBjoc)) means that f € C’ZEM](U, B(R™)). The second inclusion
follows.

Equality in the Beurling case follows from Lemma |3.2 O

13.2. Example. Let M = (Mj},) be strongly non-quasianalytic and assume
M1 /My, 7 oo. Assume that CcM) 5 G3/2 where G := CIEY"} for s > 1,
denotes the Gevrey class of order s. For instance, we may take M}, := (k!)*~! for
any s > 3/2.

By [20] there exists a sequence of functions y; € D) (R) so that

AM, AM,
JA: su C |- ,
PP Xk = My Mk+1}
Xg)(o): ik
V(@) H(p)*
Vp>03C(p), H(p) : v X @ L2k
P (P, H(p) : lIxrllz,, SUp i, S () Fat,
zER
We define
HE = 2k\/HMk.

Then, as My < My, we have
st — e > 2PVEI M, (2VE+1—1) > 1,

in particular, j; ' co. By Stirling’s formula, k! < k* < eFk!, and hence

pe \YE 2
(k!Mk> o (\/H)l/k —0

I 1/k 2k
(1) k(k!]\]j[k> = (RO — 00
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as k — oo. Let us set

F@) =" pexn(Ak(z — ), z€R.

k>0
We have
FO @) < (AR il (Ak(z — )|
k
. H(p)* ’
< g(Ak)J,uk MC(P)PJJ!MJ'

g j(QH(P))k
= C(p)(Ap) J!szk:k v

< C(p,§)(Ap)j'M; < oo,

for some constant CN'(p7 j) depending on p and j. On each compact subset of R
the sum in the definition of f is finite, since the support of the kth summand is
. . . M
contained in [pg — #}6’11, pk + M%‘.’“ﬂ ]. It follows that f is an element of B )(R).

loc
On the other hand

(2) FO(g) = " (ARY px P (Ak (i — i) = (Ag) py,
k

since |p; — | > 1 unless j = k.

Let us set
1
go(x) := exp(—(x? + ?)), xz € R\ {0}, go(0):=0.
Then go belongs to the Gevrey class G3/ 2(R). Consequently,

gt ) ==t + go(t)go(x) € G¥*(R?).
Moreover g satisfies (CBioc)). Indeed, if p > 1 or p = 0 and k > 2, then for all
compact I C R and all p > 0,
k
oFoeg(t, )| _ las” ()llg ()]
pkk‘”w;c pkk‘!Mk

and the right-hand side is globally bounded in z € R. (The cases Oig(t,z) =
1+ g4(t)go(x) and g(t, ) =t + go(t)go(z) are easy.) Note that

<C(p)lg”(x)] Vel keN,

1 k=1

6fg(O,x) = {0 KA1

The function
h(t,x) == f(z + g(t,z)) € CMD(R?).

satisfies

) . iz £ 07 g(0,x ;
oo =1y, > HETIHERE - o
>1 a0 T =l v
it tap=j
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and thus, by (2)) and (),
/R0, )N (1S9 () [\ M/ (b \MI
3 ) =) T =4i(Gar)
®) M, M, W) 7

as j — oo.

13.3. Theorem. Left translation is not CM) on lefBlOC (R).

Proof. This follows, in view of (8.5/l1) and Lemma [13.1} from (13.2}f3)) with the

above choices for f and g; by multiplying f and g by a suitable constant we can
achieve that inf, 0, f(t,z) > —1 and inf, 0,¢(¢,x) > —1 for all ¢. O

13.4. Theorem. Right translation is C!M] on DiffBl[ﬁ] (R™).

Proof. Let U be open in a Banach space E and let f € CIM(U xR™, R") satisfy con-

dition and inf,cgn det(I,+df (u,x)) > 0 for allue U. Letg € BIOC (R™,R™)
with inf,ern det(l, + dg(z)) > 0. In view of (8.5}|1) and Lemma it suffices to
show that h(u,x) := f(u,z + g(x)) satisfies condition (CBiod). By Faa di Bruno’s
formula , for ke N, e N>y, ue U,z €R"”, and p(x) :=z + g(z),

Hafaéh(uvx)”uk’f)(E,Rn;Rn) < Z Z ”(afa%f)(ua@(x))”U’CJ)(E,R";]R")
4 - 4!
izl aeN,
041+~~-+OL]‘:£

x H () (2 w(n«w B
i=1 ail 7

and hence, since f satisfies (CBoc)),
VK € #(U)Op>0Vj € N>y HCKpj>OVkeN\7(u x) € K xR":

kol i
||8182h(u7$)||£<’€‘@)(E7]R";R” < é,z Z CKpJ H SUp, ||€0( )||£a (R™;R™)

ke
p k. Mk ]>1 OtEN]
a4 +a,—€
= C(K,p,¢,9),
that means
||8{“8§h(u, x)HLUM)(E R7;R™)
VK € 2 (U) Op >0Vl eN>: ——— < 0.
vt 2 PRRLM, >
(u,z) €K XR™
One easily checks that this holds also for ¢ = 0. Thus h satisfies condition (C'Bjc)-

d

14. EXTENSIONS OVER Diff A(R) AND DENJOY-CARLEMAN SOLUTIONS OF THE
HUNTER-SAXTON EQUATION ON THE REAL LINE

In this section we carry over the main results of the paper [2] to the classes
of diffeomorphism groups Diff A(R) and show that the Hunter—-Saxton equation is

well-posed for all A € {W[M]’l,Sm],D[M]}. We again assume that M = (M)
satisfies Hypothesis and that L = (Ly) satisfies Ly > 1 for all k.
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14.1. Extending the function spaces A(R). For A € {W[M]’l,S%],D[M]} we
consider the space A2(R) := {f € C*[R) : f € AR)} of antiderivatives of
functions in A(R). Since A(R) C L*(R) the limits f(£o00) := lim, 1o f(z) exist;
thus f — (f', f(—o0)) is a linear isomorphism A2(R) — A(R) x R which we use
to describe the convenient vector space structure on 45(R). We consider the exact
sequence

(ev_oo,eVeo)

R2

Ao(R) € As(R)

where Ap(R) := ker(ev_oo,eve). We also consider the closed linear subspace
Ai(R) := ker(ev_o) = {f € A2(R) : f(—o0) = 0} of antiderivatives of the form
v [T g(y)dy for g € AR). For A = SFLV? or = DM we have Ay = A. For

A =WMLL we have WM (R) # WMIL(R).

14.2. The corresponding group extensions. For A € {W[M]’l,S{%],D[M]} we
consider the groups

Diff 4;(R) = {Id+f : f € Ai(R), f' > —1}, i=10,0,1,2.

Theorem. The groups DiffDIMI(R), DifpM/(R), Dii DM (R), DiﬁS{%](R),
oM oM . . M],1 . M],1
DiftSy T (R), DiffSH T, (R), DifwA(R), Dif i (R), Difw M (R),
Difsz[M]’l(R), are all C™M]_regular Lie groups. We have the following injective

C™] group homomorphisms:

Diff WIML1(R)

)

Diff DM (R) > Diff S|} (R) —— Diff """ ()

| J “

Diﬁ'DgM] (R) - > DiffS{%]l (R) - > Difle[M]’l (R)

| J “

Diff D} (R) = Diff S, (R) == Diff Wi (R) = Diff BIM)(R)

FEach group is a normal subgroup in any other in which it is contained, in particular
in Diff BM(R). Moreover, the columns of the following diagram are C'™) exten-
sions. They are splitting extensions (semidirect products) if and only if the weight
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sequence M = (My) is non-quasianalytic.

Diff DIM)(R) >—— Diff S| (R) —— Diff " (R)

| £ |

Diff DM (R) = Dift S}, (R) —— Diff ;" (R)

i i i(shiftz,Shiftr)

R? R? R?
The extensions Shift,. : Diff A1 (R) — R are always splitting.

Proof. That the groups Diff DM (R), DiffS[}] (R), Diff WML (R), and Diff B (R)
are C™Ml_regular Lie groups is proved above. The proof there can be adapted to
the cases DiffWi[M]’l(R) for i = 0,1, 2, replacing (CW) by

Iz |0koS f (u, x)(v1, - .., vi)| do

VK e #Z(U)Odp>0: sup < 00,
©) e kEN,a€Ns P““ (k+a)!Mk+a
u€EK
llvjllz<1
‘65']6(“’ _OO)(Uh ) Uk)|

su < oQ.

keN,upeK pF k! M,

llvillz<1

The shift homomorphisms are given by Shift,(Id+f) = f(—oc0) and

Shift,.(Id+f) = f(oo). If M = (M) is non-quasianalytic we choose functions
fe and f, in A3(R) with

{1 for x < -1 {O for x <0

fel@) = 0 forxz >0, frlw) = 1 forx>1

and consider the vector fields X, = f;0, and X,. = f,.0, which commute, [X,, X,| =
0. A splitting CM] section s : R? — Diff Ay(R) of (Shift,, Shift,) is given by
s(a,b) = Fli(’Z o Fli(“. If M = (Mjy) is quasianalytic, then any homomorphic
section s gives rise to two commuting flows and corresponding vector fields as
above, so that fof, — f;fr = 0. But then the rational function f,/f, has vanishing
derivative, so that the two vector fields are proportional. Thus there does not exist
a homomorphic section in the quasianalytic case. We always find a homomorphic
CM] section for Shift,. : Diff A; (R) — R alone, using 0 # f > 0 in S ( ) and the

vector field [ f(y) dy 0, which is contained in all spaces A;(R).

(2]

That the extended groups Diff 4;(R) for A € {S (M) pim] } are Lie groups is
easily seen using a smooth section, cf. [I7, 15.12]. And that they are regular is

proved in [I1l 38.6]. That each group is normal in the largest one is also proved
above. (I

14.3. The homogeneous H' Riemannian metric on Diff4;(R) and its
geodesics. We choose A € {WIM1 S%},D[M]}. We consider the following weak
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right invariant Riemannian metric on Diff A(R) and on Diff 4;(R); it is called the
homogeneous H'-metric or the H'-metric.

Gw(X op,Yop)=(X oY o 90>H1 = Gu(X,Y) Z/X/(x)Y/(x)dx.
R

This is well defined since A C WIM1:2 by Proposition This Riemannian metric
has the following property:

e [2, Section 4.2] For A € {W[M]*l,S%],D[M]} the geodesic equation for this
weak Riemannian metric on Diff A; (R) is the Hunter—Saxton equation

1 xT
u= (oo w= et [ ()
1 2

Equivalently, w;, = —utg, — Sl

But the covariant derivative and, in particular, the geodesic equation does not exist
on the closed subgroup Diff A(R).

14.4. The R-transform as an isometry onto a flat space. [2], Section 4.3] Let
AR, Rs_3) ={f € AR) : f(x) > —2} and consider the R-mapping given by
" Diff 4 (R) = A(R,R>_2) C A(R,R)
. P = 2 ((gol)l/Q - 1) )

That R has values in A(R) and is CM! is seen as follows: As in [2, Section 4.3] we
write o = Id+f with f € A;(R) and conclude that R(p) = f' + F(f')f’, where
F : R._; — R is a real analytic function satisfying F'(0) = 0. The assumption
f' > —1 and the fact that f’ € A(R) vanishes at +oo imply —1+¢ < f'(z) < C for
constants &, C > 0 independent of . Thus, we may conclude that F(f’) € BIM(R),
by (the proof of) Theorem since for F, being real analytic, the required [M]-
estimates hold on the interval [~1 + &, C] (thanks to our assumption C* C C[M]),

The statement then follows, since A(R) is a BIMI(R)-module. That R is CM] is
now a consequence of Theorem 9.2

The R-map is invertible with polynomial inverse

A(R,Rx_3) — Diff4; (R)

A fyH(xHHi/; (V(y) +49(y)) dy ).

e The pull-back of the flat L2-metric via R is the H'-metric on Diff 4 (R), i.e.,
R*<'a '>L2 = <'7 >H1 .
Thus the space (DinAl (R), H 1) is a flat space in the sense of Riemannian geometry.

Here (-,-)72 denotes the L2-inner product on A(R) interpreted as a weak Rie-
mannian metric on A(R, R~ _5), that does not depend on the basepoint, i.e.

GE (h,k) = (h, k) 12 :/Rh(x)k(ac) dz
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for h,k € A(R) = T, A(R,R5_5).

14.5. Explicit solutions for the geodesic equation. [2, Section 4.4] Given
©o, 1 € Diff A1 (R) the unique geodesic p(t,x) connecting them is given by

et ) = B (1= O)R(p0) + tR(01) ) ()

and their geodesic distance is

(1) d(po,1)? = 4 / (P4 ()2 — (gh()2)° da

R
Furthermore the support of the geodesic is localized in the following sense: if
o(t,x) =x + f(t,z) with f(t) € A1 (R) and similarly for ¢g, 1, then supp(9;f(t))
is contained in supp(9; fo) U supp(9z f1)-

e Thus the Hunter-Saxton equation is C'™l-well posed in each space A, (R) for
each A € {W[M]’l,S%],D[M]} and all weight sequences M = (M},) and L = (L),
Ly, > 1, with the restrictions of Hypothesis [3:2}

e [2 Section 4.5] The metric space (DiffAl(R),Hl) is path-connected and
geodesically convex but not geodesically complete. Each non-trivial geodesic is
incomplete.

14.6. The strange behavior of geodesics on the Lie subgroup Diff A(R). [2|
Sections 4.5, 4.6, and 4.7] For A € {W[M]1 S%},DW]}, the R-mapping is bijective

R : Diff A(R) — {7 € AR, Rs_s) : /IR (@) (y(x) +4) da = o} C AR, Rs ).

The pull-back of the flat L2-metric via R is again the homogeneous Sobolev metric
of order one. The image of the R-map is a splitting submanifold in the sense of
[T, Section 27.11]. The geodesic equation (the Christoffel symbol) does not exist
on Diff A(R). The geodesic distance d* on Diff A(R) coincides with the restriction
of @t to Diff A(R), i.e., for ¢, p1 € DIff A(R) we have d4(¢o, 1) = d1 (@0, p1)-
Every geodesic in Diff A; (R) intersects Diff A(R) at most twice and every geodesic
is tangent to a right-coset of Diff A(R) at most once. For ¢, ¢1 € Diff A(R) we can
give the following formula for the size of the shift
22—t

Shift, (1)) = —— || Rivo) = R(p)[[}2 = (¢ = Dl|v/5 — V&l |- -

14.7. Continuing geodesics beyond the group and the geodesic comple-
tion to a monoid. [2| Section 4.10] Consider a straight line y(t) = vy + ty1 in
A(R,R). Then ~(t) € A(R,R~_5) precisely for ¢ in an open interval (¢o,¢;) which
is finite at least on one side; at ¢; < oo, say. Note that

1

PO) = RO = o+ 1 [ 206+ 50w du

makes sense for all ¢, and that ¢(t) : R — R is smooth and ¢(¢)'(x) > 0 for all x and
t so that ¢(t) is monotone non-decreasing. Moreover, ¢(t) is proper and surjective,
since 7y(t) vanishes at —oo and co. Let

Mon, (R) := {Id+f : f € A, (R,R), f' > —1}
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be the monoid (under composition) of all such functions.

For v € A(R,R) let z(y) := min{zr € RU {oo} : v(x) = —2}. Then for the
line t — ~(t) from above we see that z(y(t)) < oo for all ¢ > ¢;. Thus, if the so
extended geodesic ¢ leaves the diffeomorphism group at 1, it never comes back but
stays inside Mon 4, (R) for the rest of its life. In this sense Mon 4, (R) is a ‘geodesic
completion’ of Diff A; (R), and Mon 4, (R) \ Diff A; (R) is the ‘boundary’.

14.8. Remark. The results from carry over to the periodic case; this was
spelled out already in [2] Section 6]. They also carry over to the two-component
Hunter-Saxton equation on the real line, namely to the semidirect product
Diff A; (R) x A(R); see |2 Section 5]. Note that the Hunter—Saxton equation also
admits soliton-like solutions; see [2| Section 4.11]. These are not C*° as diffeomor-
phisms, so there is no Denjoy—Carleman improvement for them.

15. THE STRANGE BEHAVIOR OF COMPOSITION ON Dlﬁ’W[M]’p(R) OR
Diff(WIMlr A L1, (R) FOR 1 < p < 2

Assume that M = (M) satisfies Hypothesis and that L = (Lj) satisfies
Li > 1 for all k. In this section we investigate extensions of the C[Ml-regular
Lie groups Diff WIMl»(R) and Diff BIM(R) (as well as of the regular Lie groups
Diff W P(R) and Diff B(R)) which are similar to those from Section Surpris-
ingly, these extensions lead to half-Lie groups only, namely C'M] (or smooth) man-
ifolds which are topological groups with CM] (or smooth) right translations — but
left translations and inversions are only continuous. Nevertheless, the R-transform
is CM] (or smooth) and similar results as in Section [14] hold.

15.1. Extending the function spaces WMP for 1 < p < co and BMI, For
A€ {WIMLP for 1 < p < oo, BIMI} we consider the space Ay := {f € C®(R) :
/€ A(R)} with the structure given by the linear isomorphism f +— (f’, f(zo)) €
A(R) x R, for any fixed 2o € R. Since A(R) € L'(R), functions in A>(R) are no
longer bounded. Thus evaluations at —oo and at oo no longer make sense.

Analogously, we consider the cases A € {IWP for 1 < p < oo, B}. Let

DiftwMP(R) .= {1d+f: fewMPR), ¢ > -1}, forl<p<oo,
Diffwy* p(R)*{IdJrf.fGWQOOP( f>71} for 1 < p < o0,
Diff BSI(R) := {1d+f : f € B (R), inf f'(x) > -1},

Diff By(R) := {Id+f : f € B2(R), 1nff —1}

15.2. Theorem. Then Difsz[M]’p(R) for1 < p < oo and Diﬁ:"BgM] (R) are only
CMI half-Lie groups, and Diff Ws*P(R) for 1 < p < oo and DiffBy(R) are only
half-Lie groups.

Proof. This will follow from Proposition [15.6] and Theorem [15.8 (]
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15.3. The homogeneous H' metric on R\DiHWQ[M]’p(R) for 1 < p < 2. For

h,k € WQ[M]’p (R), considered as elements of the Lie algebra, we consider the right
invariant symmetric positive semi-definite bilinear form

! 1.
Golhuk) = Guallh 0 ko ™) = [(ho @Y lko ) do= [ZFdo.
R

It is visibly C'™]. Its kernel is exactly the tangent bundle of all left translation cosets
{p+a: a € R}, so it induces a weak Riemannian metric on the homogeneous space
R\Diff WP (R) which is a C'™] manifold diffeomorphic to {f € WM"*(R) : f/ >
—1, f(0) = 0}. Elements of Diﬂ:"WQ[M]’p(R) still act as C'M! diffeomorphisms from
the right on this homogeneous space. The corresponding geodesic equation is the
Hunter—Saxton equation in the form

1 [ p?
D = 7/ Pro dz  for any g € R.
2 Juy Pa

This follows from the variation with fixed ends

1t L[ e,
0sE(p) = 0s5 [ Golwr, i) dt = 055 2t g dt
2 0 2 0 JR Px

1 x 2
1
:/ /(—@tt‘F*/ &dz> P g dt |
0o JR 2 zo Pz z Px

If the composition mapping were differentiable, passing to the right logarithmic
derivative ¢ — u = (¢;) o ¢~ would equivalently render this geodesic equation to
the Lie algebra valued equation

2

o

1 x
Up = —Uly + f/ (ug(2))*dz  for any zo € R,

142, But note that

which in turn is equivalent to the usual form us, = —vug, — Sus

u.uy is not in I/VQ[M]”’(R)7 in general.

15.4. The R-transform: R\DifW/™?(R) — WIMP(R). For 1 < p < 2 we
consider the R-transform

. R\Diff WM (R) — wiM» (R R._,) ¢ WiMlP(R,R)
' o2 ()2 -1),

which is defined on the space of left cosets {¢) + a : @ € R}. For any fixed zp € R
its inverse is given by

WM (R R, _5) — R\Dif W} (R)

R_ll x
’Y'—>($H$+i/z (V) +4(y) dy ),

0

modulo translations acting from the left.

Again, the R-transform is an isometry between the weak Riemannian mani-
fold R\Difsz[M]’p (R) with the homogeneous H'-metric, and the flat open subset
WIMLP(R, R+ _5) in the pre-Hilbert space WIMP(R, R) with the constant L? inner
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product. All results of Section continue to hold with the appropriate changes;
but not the formula for the shift in [[4.6]

15.5. The case A = WIMl»r N L! for 1 < p < o also leads to a C™! half-
Lie group. The construction in leads to a half-Lie group because the an-
tiderivatives of elements in the spaces A2(R) are unbounded. But even if we
force them to be bounded, we only get half-Lie groups as we show now. In
the case p > 1 we have WIMI?(R) ¢ LY(R), in general. So we might con-
sider the space (WIMP 0 L1),(R) := {f € C®(R) : f/ € WIM»(R) N LY(R)}
of bounded antiderivatives of functions in WIMIP(R) N L'; we use the conve-
nient vector space structure induced by the embedding f — (f’, f',ev_s) into
WMLP(R) x L'(R) x R. But the corresponding group Diff(WIMP 0 L1),(R) is
only a C!™! half-Lie group if p > 1. Even the group Diff(W>? N L')5(R), where
(WPNLY)5(R) := {f € C*(R): f/ € WP(R)NL'(R)}, is only a half-Lie group
if p > 1. See Proposition and Theorem below.

15.6. Proposition. Left translation is not even Gateaux differentiable on
Diff (WP N L')o(R), Diff Ws*P(R), and DiffBy(R), or on Diff(WIMlr 0 L1)y(R),
DiffWQ[M}’p(R), and DiﬁBgM] (R), for non-quasianalytic M = (M) if p > 1. In
fact, the derivative takes values in the larger space with weaker structure

WP = (f e C®(R): f e WIMIP(R)} = WIMIP(R) x R.
Proof. Lett — Id+f(t, ) and t — Id +g(t, ) be C*-curves in Diff(WPNLY)5(R).

For f this means precisely that f € C°°(R?) such that d,f > —1 and, for all k € N,
a € Ny, and K € # (R),

sup (|07 02 f(t, )| Lo ) < 00,
teK

(1) sup [|0F 0, f(t, )llLr(z) < o0,
teK

sup |0F f(t, —o0)| < oo,
teK

and likewise for g. In view of we must investigate h(t, z) := f(t,x+ g(t, x)).
We shall find functions f and g satisfying such that
0Ouh(t, ) = (07 f)(t @ + g(t, 2))Aug(t, 7)
+ @2tz + g(t,2))0g(t, 2)0ug(t, @)
(2) + (002 ) (8w + g(t, 7))
+ (00 f) (8, + g(t, 7)) Og(t, x)
+ (0:1)(t, @ + g(t, 2))(0:029) (¢, ).

is not 1-integrable in x for any ¢; this will imply the result. Let us define

f(t2) = /Oxs@(y)dy and  g(t,z) =1 /Omw(wdy

where ¢ is the function from Lemma below and 4 is any function in WP (R)N
L'(R) with ¢ > —1 and [ 9(y)dy — Cy # 0 as & — +oo. Then f and g satisfy
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1)). However, the first term on the right-hand side of (2)), which equals
) g ) q

@' (x +g(t, x)) /Oz Y(y) dy,

is not 1-integrable in x for any ¢, by the properties of ¢ and 1. All other terms on
the right-hand side of are 1-integrable and tend to 0 as x — 400, since f and
g satisfy (I). It follows that 8,0,h(t,x) is not 1-integrable in x for any ¢.

By allowing p = oo we may treat Diff W;°P(R) and Diff Bo(R) simultaneously.
That t — Id+g(¢, ) is a C*°-curve in Dif W;°P(R) means that g € C*°(R?) such
that inf,.ecg 0:9(t,z) > —1 and, for some zp € R and all £ € N, a € N5, and
K e #(R),

sup [|0£05 g(t, )l Loy < o0,
3) tek

sup [0F g(t, z0)| < 0.
teK

Let x # 0 be any nonnegative C°°-function on R with support in [—1, 1], and set
wal(T) = ZZO lanx( — 2n), where a,, > 0 and (a,) € . Then ¢, € W>P(R)
and 0, (z) == [ pa(y) dy € W57P(R) is increasing and satisfies

n

buen+1) = [ xw)dy Y

k=1
Define g(t, ) := t0(,-1)(z), f(x) := Oy(x), and h(t,x) := f(x + g(t,x)), where
I k=l ifn=[e]
"0 otherwise

Then
hiz (0, 2) = ()0 -1y (x) + @b () @(n—1) ().
For p < oo the first term on the right-hand side is not in LP, since

2n+1
JECTSETES oy NN SO

> X 17 gy Z(bne(ml)(zn 1y

and since Y ,_, k= > log(n + 1) and hence

1 ifn=[e"]
bt (20~ 1) 2 [l sy 08(0) 2 s {0 othervise

As the second term clearly is in LP, we conclude that @ — hy;(0, ) is not in LP.
For p = oo choose b, = (1 + /log(n))~!

This proof can be adapted to Diff(WM» 0 L1),(R), DifW/™*(R), and
Diﬁ"BgM] (R) for non-quasianalytic M = (M), by choosing a nonnegative CMI-
function x with support in [—1, 1] (above and in the proof of Lemma [15.7). O

15.7. Lemma. There exists a function o € WP(R) N LY(R) with ¢’ ¢ L'(R) and
@ >0, for each p > 1.
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Proof. Let 0 ;é x € C*(R) be nonnegative with supp(x) € [~1,1] and define
@it > x(log(n)(t — 2n)). Then ¢ € C*(R) as locally finite sum with

og(n k
#0(1) = 3 BN (log(m) ¢ — 2m),

n

and hence
lpt*) = ( gfln / [x® (log(n)(t — 2n))[P dt
log(n 1
Z( gn ) log(n) I ”L”(R

n
p—1

log(n)*
= W, S en)~
= HX HLp(R) P

which is finite for £k = 0 and p > 1, is infinite for K = 1 and p = 1, and is finite for
k>1andp>1. ([

15.8. Theorem. Right translation is C*° on Diff(W>P N L1)3(R), Diff W;°P(R),
and Diff By(R) and C™) on Diff(WIMIPALY),(R), DifWIMP(R), and Dif B (R)
for all p > 1; so these two groups are only half-Lie groups.

Proof. Let us first consider Diff(W>? N L1)5(R). Consider a C*-curve t

Id+f(t, ) in Diff(WPNLY)5(R), i.e., f € C°°(R?) satisfies (15.6}|1) and 9, f > —1.

Let g € (WP N LY)5(R) with ¢/ > —1. In view of (8.5f1) we must show that
h(t,xz) = f(t,z + g(x)) satisfies (15.6/l1)). The first condition in (15.6}f1) can be

check as in [I8] (there is only a shift by 1 in the order of differentiation). For the
second condition consider

(1) OF s h(t,x) = (0F0: f)(t,x + g(2))(1 + ¢'(2)),

and thus sup,c |0F0:h(t, )|[L1(r) < oo for all k € N and K € J(R), since f
satisfies (15.6}]1) and since z — = + g(z) is a diffeomorphism. The third condition
follows from

(2)  OFh(t,—00) = lim_ofh(t,x) = lim Ok f(t,x+g(x)) = O f(t, ~00).

Now let us turn to Diff(W[M-» 0 L), (R). Let U be open in a Banach space F
and let f € CIMI(U x R) satisfy 9, f > —1 and

. (fo 10502 f(u, 2) (01, .., vg) [P dar)/?
vk e AU) Dp >0 .keNs,EgNN) prre (kb + a)! Mitq
Iy <1
3) sup fR|81’f(9;f(u7x)(vl,...7vk)|d:lc
keN,ue K PP (K + 1) M4
lville<1
sup |0k f (u, —00)(v1, ..., v8)|

keN,ue K Pk k! M,
lville<1

< 00,

< 00,

< 0.
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Let g € (WIMP 0 L1)y(R) with ¢’ > —1. We must show that h(u,z) := f(u,z +
g(z)) satisfies ([3). Again the first condition in follows along the lines of the
proof of Theorem As before we may infer from and that the second and
the third condition in are transmitted from f to h.

The other cases can be treated analogously; in the Faa di Bruno formula for
0%92h there appear only derivatives of f and g of order > 1 and all these are
globally bounded in z. O

15.9. Half-Lie groups associated to WM-» N L! for 1 < p < 2, and their
R-transforms. We consider the convenient vector space (WIMP 0 L1),(R) :=
{f € C*R): f € WMP(R) N LY(R)} of bounded antiderivatives of functions
in WIMLP(R) N L' as described in Note that the evaluations at —oo and at
oo again make sense. We consider the exact and splitting sequence of convenient
vector spaces

(ev—oo 1€Voo )

R2

(WMl A L1 (R) C—— (WIMLp 0 L1),(R)

where (WIMLP 0 L1)o(R) is just the kernel of (ev_o,evao).

The space (WMP 0 L1)o(R) differs from WIMLP(R) N L' if p > 1; Lemma m
can easily be adapted to show this. We also consider the space (WIM-PA L) (R) =
ker(ev_) of functions in (WIMP N L1)y(R) with f(—o00) = 0. In the sequence of
injections

(WMLP A LYo (R) — (WM 0 LY (R) — (WIMbP 0 L1, (R) — BMI(R)
each space is an ideal in BI™(R); this can be checked easily.

We consider corresponding groups:

Diff(WM» A LYo (R) — Diff(WMh? A LY (R) <
— Diff(WMP 0 L1),(R) — Diff BIMI(R)

Each of these is a normal subgroup in each other in which it is contained.
Only Diff BIMI(R) are CM!] Lie groups. The other groups Diff (WMl 0 L1)4(R),
Diff(WIMlr 0 LYY, (R), and Diff(WIMP 0 L1),(R) are only C™] half-Lie groups.

15.10. Some easy observations on the half-Lie groups in this paper. Not
every tangent vector can be extended to a left invariant vector field on the whole
group, but they can be extended to right invariant vector fields, which are only
continuous and not differentiable in general. The same holds for right invariant
Riemannian metrics. The tangent space at the identity is not a Lie algebra, since
[X,Y] = X'Y — XY’ is not in the modelling space any more, in general. The
behavior of Sobolev completions of diffeomorphisms groups seems to be the same.

But the right invariant homogeneous H' metric is C™], even when applied
to two right invariant vector fields. Even geodesics exists and are C™!. This is
compatible with Lemma |15.11] below.
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15.11. Lemma. The R-transform, given by
. {Diff(WWLP NLY1(R) = WMP(R Ry o) N LY (R, R> )
' P2 ()2 -1),
is CM],

This also holds (for C* instead of C!™]) for the half-Lie group Diff(W? N
LY (R).

Proof. The arguments given in imply that R maps Diff(WM» 0 L), (R) to
WIMP(R,R._5) N LY (R,R5_5). To see that R is C!™) let U be open in a Banach
space E and let f € CIMI(U x R) satisfy 9, f > —1 and . We must check
that g := R(p) = RId+f) = 0, f + F(0, f)0.f € CMI(U x R) satisfies

(JolOk02g(u,z)(vr, ... vp)|P dm)l/p

VK e (U)Odp>0: sup < 00,
( ) keN,aeN pk+a (k + Oé)' Mpytq
ueK
(1) llv;lle<1
Iz |0Fg(u, ) (v, ..., vp)| do
sSup ¥R < 00.
keNueK Pk k! My,
lvjllz<1

We may conclude by Proposition and by Theorem (as in [14.4) that h :=
F (0, f) satisfies

|6k8°‘h(u,x)(v1,...,fuk)|
VK e (U)Op>0: sup vz
(v) e keNaen P (k+a)! Myya
ueK,zeR
lv;lle<1

Then g = 0, f + h 0, f satisfies , since so does 0, f and hence also hd, f. O

< Q.

Thus all results about the R-transform from Section [[4] hold also for the half-Lie
groups Diff(WIMl» N L) (R) for 1 < p < 2.
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