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Abstract. After reviewing graded derivations on the algebra of differential
forms and the basic properties of the Frolicher-Nijenhuis bracket we show,

that this bracket is well-behaved with respect to f-related vector valued forms.
Then graded derivations on the graded module of vector bundle valued differen-
tial forms are investigated, and also graded derivations from differential

forms to vector bundle valued differential forms. Finally we start to look

for all natural concomitants of Frolicher-Nijenhuis-type and we give some

preliminary results in this direction.
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The Frolicher-Nijenhuis bracket is an extension of the Lie bracket of vector

fields to a graded Lie bracket of tangent bundle valued differential forms.

It's component of degree 1 expresses obstructions to integrability in various

contexts (connections, almost complex structures). Recently it has been used

by M. Modugno to give a new foundation for the theory of connections and

curvatures on fibred manifolds.

1. Derivations on the algebra of differential forms and the Frolicher-
Nijenhuis bracket - a review.

2. Naturality of the Frdlicher-Nijenhuis bracket.

3. Derivations on the module of vector bundle valued differential forms and
the global formula for the Frolicher-Nijenhuis bracket.

4. Derivations from the algebra of differential forms into the graded module
of vector bundle valued forms.

5. Looking for natural concomitants of vector valued differential forms.

This paper is in final form and no version of it will appear elsewhere.
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1. Derivations on the algebra of differential forms and

the Frolicher Nijenhuis bracket - a review.

This introductory section is meant as a reference for the following. The

results are due to (4] and (9], see also (21,061,(71,18},[13].

l.1. Let M be a smooth second countable manifold, let Q(M) = G)Qk(M) be the
k

graded commutative algebra of differential forms. An R-linear mapping

h+k

D: Q(M) » Q(M) is said to be of deqree k if D" (M)) < @™ (M); and D is said

to be a (graded) derivation of degree k if furthermore

D(¢pa¥) = Doy + (.-l)hk(pAD'w for ¢ th(M), Ve Q(M).
Let Deer(M) be the linear space of all derivations of degree k and let

Der QM) =@ Deer(M) be the space of all derivations.
K .

Proposition: Der Q(M) becomes a graded Lie algebra with the graded commutator

[01,021= DyoD; -(-1)*1¥20,00,, D, € Der, Q(M).
i
This means that the the bracket is graded anticommutative,

[D,, D;]= -(-l)klkz[q 0.}, and satisfies the graded Jacobi identity:

{Dl ’[DZ’DS]]= [[Dl rDZ]sDé]"‘(‘l)kl k2 [DZ v[Dl ,D3]] (SO ad(Dl) = [Dl 1-] is

itself a derivation).
The proof is by computation.
1.2. A derivation D e Der, (M) is called algebraic, if D|9°(M) = 0.

Then D(f.¢) = f.D$ for f e C*(M) and D is tensorial.

Furthermore D is uniquely determined by Dlﬁg(M): Q}(M) +~$¥+1(M), which is
induced by a vector bundle mapping K: T*M » Ak+lT*M, which we view as an

element of Qk+l(M;TM), the space of all TM-valued (k+1)-forms on M.

We write D = i(K) and note the defining equation D¢ =¢oK for o € Ql(M).
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Proposition: 1. For ¢ ¢ Qh(M) and XJ e X(M) (the space of vector fields) we have:
(1(K)¢)(Xl,...,Xk+h) =

1 .
T (D)t (oD D signo KOG e Xy 1)) Ko (ka2 Ko (kan)
; ‘ge S

k+h

Note that this formula makes sense also if ¢ ¢ Qh(M;E) is a vector bundle
valued differential form.

k.+1

2. For Kj e j "(M;TM) the derivation [i(K;),i(K2)] is again algebraic, so

ki +k2 +1

it is of the form i([Ki,K2]") for some unique [Ki ,K21"e Q (M;TM).

With the bracket [ , 17, *1(M;TM) becomes also a graded Lie algebra.
We have [Ki,Ke 1" = i(KidKe -(-1) " i(ka )1 (see 1.)
In [+] the expression i(K)¢ is denoted by ¢~K . If X € Q°(M;TM) is a vector

field, then i(X) is the usual insertion operator of degree -1 on Q(M).

.3. The exteriour derivative d is also a derivation of degree 1, which is not

algebraic. In view of the well known equation O(X) = i(X)d + di(X) (0(X) the
Lie derivation, X a vector field) we define the derivation

0(K) := [i(K),d] e Der (M) for K Q(M;TM) and call it the Lie derivation

along K. Note that O(IdTM) = d.

Proposition: Any derivation D e Deer(M) can uniquely be written in the form

k+1

D = 0O(K) + i(L) for K € Qk(M;TM) and L € ~(M;TM). D is algebraic if and

only if K = 0. {D,d] = 0 if and only if L = O.

Scetch of proof: Let Xj ¢ ¥(M) be vector fields. Then f w» (Df)(Xl,.:.,Xk) is
a derivation (of degree 0) of C™(M) = (M), so it is given by the action of
a vector field K(Xl""’xk)’ which is skew and C (M)-linear 'in the Xj, S0
Ke Qk(M;TM). Then D - O(K) is algebraic, so equals i(L) for some L.

Note that [0(K),d) =0 by the graded Jacobi identity.
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1.4, Definition: Let KJ € ij(M;TM). Then clearly[[0(K,),0(K;)],d] = 0. So by 1.3
[6(K1),0(K2 )] = 0([K;,K2]) for some unique [K;,K,] € Qk1+k2(M;TM), which is

called the Frélicher Nijenhuis bracket of Kj,K,.

1.5. Proposition: 1. With the Frolicher Nijenhuis bracket the space Q(M;TM)
becomes a graded Lie algebra.
2. For vector fields X,Y the bracket [X,Y] is the usual Lie bracket of

vector fields.

h+1

1.6. Proposition: For K € Qk(M;TM) and L e @  ~(M;TM) we have

[0(K),i(L)] = i([K,L]) ~(-1D*Ma(i(L)K).

Proof: [0(K),i(L)] +(—l)hk9(i(L)K) vanishes on QO(M), so is algebraic. By the
graded Jacoby identity we get [[0(K),i(L)],d] = [i([K,L]),d] , and since

[.,d] 1is injective on algebraic derivations the formula follows. ged.

1.7. Proposition: 1. The space Der2(M) is a graded module over the graded
commutative algebra Q(M) with the action (p~D)y = ¢p~Dyp .
2. For D € Der, (M) and ¢ € Q9I(M) we have
(0aD1 ,D2] = ¢>A[ll>1 0,1 -k dkep o p
3. For L e Q(M;TM) we have i(¢gaLl) = ¢nai(L).
4. For K € 25(M;TM) we have ©(p~K) = ¢0(K) +(-1)%*dy . i(K).
5. For L; € Q"1 (M;TH) we have
[6ats ;121" = 6ally,L2]" —(-1) T2 0 Ly,
6. For K, e @4(M;TM) we have
[6K1 5Kz = ¢alKs Kz ] S0 @ROK2 g0 oKy +(-1)FK G (Ky K,
7. For X,Y € ¥(M), ¢ € Q9(M), y .€ (M) we have:
[48X,08Y] = d~ts[X,Y] + ¢~0(X)paY - O(Y)paleX
+(=1)(dpi (XN@Y + i(Y)padyeX).

Proof: For 2,3,4 just compute. For 5 compute i([¢-L;,L;]7). For 6 compute

0 ([¢~K, ,K2]). For 7 use 6. qed.
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1.8. Proposition: For K € Qk(M;TM), $ € Qh(M), Xi e X(M) we have

(O(K)¢)(xl,...,xk+h) =

1 s
S E sign o O(K(xc,l’"’’Xok))(q)(xo(k+l)’“"Xo(l<+h)))

kt h!
ce Sh+k
-1 .
o—_ E signo ¢([K(Xol""’Xok)’xo(k+l)]’xo(k+2)""’Xo(k+h))
k! (h-1)! o
k-1
(-1) .
+ s1gng d)(K([XO_l,XOZ},Xc},..-,Xo(k+l)),x0(k+2),...,xo(k+h)).

(k-1)! (h-1)! 2!

This can be proved by combinatorics starting from the formula in 1.2.1

(difficult), or by putting K = y@X and using 1.7.4,

1.9. Proposition: For K € Q<(M;TM) and L € 2" (M;TM) we have

[K,L] (Xl,... X, ., ) =

' “k+h
1 .
= — signo [K(xgl""’Xok)’L(Xo(k+l)’""xo(k+b))]
9 € Sy
-] .
Sy ZE:: signo LIKOC psee X0 )X 001y 1% () g ()
kh
(-1) .
+ TR jg:: signo K([L(Xol""’Xoh)’xo(h+l)]’xc(h+2)’""Xo(h+k))
k-1
(-1) .
T e Z!EE:Slgﬂ(J LOKCEX 15X 500X 30X 013 % (kaz) - X (eah))
(k-1)h
(-1) .
+ ji:_31gnc; KA1 % 021 X050 X (ne1)) Ko (hez) Ko (k)

(k=1)! (h-1)! 2!

This formula has been found independently by [ 6] and [ 7). The proof of it
will be given in section 3.17.

i+1(M;TM) we have

ki kz

1.10. Proposition: 1. For Ki in Qki(M;TM) and Li in Qk
[o(k)) + i(L), 0(Ky) + i(L,)] = 0([K), Kyl + i(Ly)K, - (-1) R

(L, L)%+ [Kp, L) - DMK, LD,

i(Lz)K

Each side in this formula looks like a semidirect product, but the mappings

i: Q(M;TM) » End(Q(M;TM), [ , ] ) and ad: Q(M;TM) » End(Q(M;T™), [, 1)
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do not take values in the subspaces of graded derivations. We have instead:
2. For L in %*1(M;TM) and K, in @(M;TH) we have

. _ . _ qkl . _

1(L)[Kl, K2] = [1(L)Kl, KZ] + (-1) [Kl’ 1(L)K2]

~(CDI9E(KG, LK, - Gofker ke, Lk ).

l,
3. For K in Qk(M;TM) and Li in qu(M;TM) we have
[K, [Ll) L2] ] - [[K1 Ll]y LZ] + (‘l) [Lly [Ky Lz]] -

SCEDR I K, L) - ()RR Rk, L D).

Proof: Equation 1 follows easily from l.6. Equations 2 and 3 follow from 1
by writing out the graded Jacobi identity for for the graded commutator, or
as follows: Consider e(i(L)[Kl, Kz]) and use 1.6 repeatedly to obtain

O of the right hand side of formula 2. Then consider i([K, [Ll’ Lz]“]) and

use again 1.6 repeatedly to obtain i of the right hand side of formula 3. qed.

1.11. Remark: The formulas of 1.10 lead to the concept of knit product of two
graded Lie algebras, described by a derivatively knitted pair of representations
(here the mappings i and ad mentioned in 1.10.1). This makes also sense for
ordinary Lie algebras. The "integrated" version of the knit product for

Lie groups (and groups in general) is the "Zappa-Szep"-product of groups.

I will explain this in some other paper. Here I just want to remark that the
knit product describes the general situation: whenever a (graded) Lie algebra

is the direct sum of two subalgebras, it is a knit product of them.
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2. Naturality of the Frélicher Nijenhuis bracket

2.1. Let f: M+ N be a smooth mapping between smooth second countable
manifolds. Two vector valued differential forms K in Qk(M;TM) and K' in
Qk(N;TN) will be called f-related or f-dependent, if for all Xi in TXM

o T f X ) = T f.K (X N R

we have K

)(Txf.Xl,..

K f(x

2.2. Theorem: 1. If K and K' as above are f-related, then
i(K)of* = F*oi(K'): QIN) + Q(M).

2. 1F i(K) o F¥[BLN) = F* 01 (K')|BX(N), then K and K' are
f-related. Here Bl is the space of exact 1-forms.

3. If Kj and K'j are f-related forij = 1, 2, then their
algebraic brackets [Kl, KZ]‘ and [K'l, K'z]“are also
f-related.

4. If K and K' are f-related, then 8(K)of = f*o0(K').

5. If 0(K) o F*]0°(N) = F¥00(K')|@°(N), then K and K' are
f-related.

6. If Kj and K'j are f-related for j = 1, 2, then their
Frolicher Nijenhuis brackets [Kl, KZ] and [K'l, K'Z]

are also f-related.

Proof: 1. Let ¢ be in QP (N) and X, in T _M. Then we have by formula 1.2.1:

(i(K) f*cb)x(xl,...,xp+k E

1

= _—_75_177 z sign o (f ¢) (K (X 510 ) X S (kel)? o(k+p 1))
:-——7—5—-—1-)—12819“04){:( )(TFK (Gl,... )Tf O'(k'*'l)’ .)

= ‘T"?E'IT" Y signo e (x )(K f(x)(T F.X o pree o TP Xy ), T FX o (ee1y s

(F* 1K) ) Xqseees Xy p)-

1]

2. For all ¢ in Bl(N) we have

(LK) % 9) (XgyeanX ) = ((F*) oK) (X 5ener X)) = ¢f(x).rxr.Kx(x1,...,xk),
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(F* i(K") ¢)X(xl,...,xk) = (f*(¢<>K'))x(xl,...) = ¢F(x).K'f(x)(Txf.Xl,...

Since elements in Bl(N) separate points in TN, K and K' are f-related.
3. The operator f* intertwines i(Kj) and i(K'j), so it also intertwines
their graded commutators, which in turn equal i([Kl, K2]“) and

i([K'l, K'Z]A) respectively. Now use 2.

4. 0K) F* = [(K),d] F* = i(K) d £* = (D" 1 d i) £ = £ oK),

5. For g in Q°(N) = C(N) we have 0(K) f* g = i(K) d f* g = i(K) f* dg
and f* (K') g = f*¥ i(K') dg. By 2 the result follows.

6. The operator f* intertwines G(Kj) and O(K'j), so also their graded
commutators which equal @([Kl, K2]) and e([K'l, K'Z]), respectively.

Now use 5. ged.

2.3. Proposition: If Kj and K'j as in 2.1 are f-dependent for j = 1, 2,

then also i(Kl)K2 and i(K'l)K'2 are f-dependent.

Proof: T f.(i(K)K)) (Xpseees X o g) =

"—"Ggffff' z sign o T f. (K ) (K ) (X ,...,X0 1)’X0(k1+l)"")

= _—T_TE;_—S. ; sign o (K' 2)f( )(T f. (Kl) (Xol"" ) T f. Xc(k f1)7

).

1 .
T (e DT Y sign 0 (K')) ey (K l)f(x)(Txf.Xol,...),Txf.XO(k1+l),...

(KK ) g0y (T FoX o ...,Txf.Xkl+k2_l). qed.

2.4. Let f: M-+ M be a diffeomorphism. We define the "pullback-operator"

f*: Q(M;TM) > Q(M;TM) by the formila:
-1
* » -
(FF K) (XqpaeeyX ) = (T F) Kf(x)(Txf.Xl,...,Txf.Xk).
Thus f*K and K are f-related. Clearly this concept makes sense for

locally defined diffeomorphisms and open embeddings.

2.5. Corollary: If f is a diffeomorphism or open embedding then
F¥[K,L] = [F¥ K, ¥ L], FIK, L]" = [F* K, f*L]" and

F*(1(K)L) = i(F* K)(F* L) for all vector valued forms K, L.
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This is immediate from 2.2 and 2.3. We may thus say that the Frolicher
»

Nijenhuis bracket, the algebraic bracket and the insertion operation are

natural bilinear (algebraic or differential) concomitants.

.6. Let X be a vector field on M and let let denote it's local flow.

We define the operator ©(X): Q(M;TM) - Q(M;TM), the Lie derivation along X

of vector valued forms, by 0O(X) K = -%f|o (let)*K .

Lemma: 0O(X) K = [X, K] , the Frolicher Nijenhuis bracket.
Proof: Obviously ©(X) is R-linear, so it suffices to check this for

vector valued forms K = y@®Y, ¢ in Qk(M), Y a vector field. But then

0(X) (W®Y) =_g_tlo F*O* weY) =%t|0((rlxt5*\p® F1X %)

o(X)p8Y + pee(X)Y = 0(X)y @Y + v [X,Y]

[X, y ®Y] by formula 1.7.7. qed.

.7. Remark: If we put f = let in 2.5 and differentiate with respect to

t we get O(X)[K, L] = [0(X] K, L] + [K, 6(X) L]. In view of lemma 2.6

this is a special case of the graded Jacobi identity. For the other two
concomitants we get [X, [K, L]171= [[X, K], L]” + [K, [X, L])" and

[X, i(KIL] = i([X, KDL + i(K)[X, L] . Both eqations become wrong if we
insert a vector valued form of higher degree for the zero form X.

We may say that all these concomitants commute with Lie derivation along
vector fields. In a later section we will see how this property determines

these concomitants and some others.
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3. Derivations on the module of vector bundle valued

differential forms and the global formula for the

Frolicher Nijenhuis bracket.

3.1. Let (E,p,M) be a smooth vector bundle with projection p: E + M.
Let Qk(M;E) denote the space of all E-valued differential forms of degree
k on M, i.e. sections of the bundle AkM)<E. Then Q(M;E), the space of
all E-valued forms, is a graded module over the graded commutative algebra
2(M) of forms on M. The module action is given by

D SR
Qu,.¢)(Xl,...,Xp+q) = p! q! é s1gn o w(xol,-.-’xop) ¢(X0(p+l)9-.-y&3(p+q)).

Definition: A derivation of degree k on Q(M;E) is a linear mapping

D: Q(M;E) + Q(M;E) with D@P(M;E)) € QP (M;E) such that
Dw~®) = Dw)~® + (-1)Pu~D(@) for w in QP(M) and & in QI(M;E),

where D: Q@(M) + Q(M) is some mapping.

Lemma: D is uniquely determined by D and is a derivation of degree k

on Q(M).

Proof: The action of Q(M) on Q(M;E) is effective: w~® = Y~d for all
¢ in Q(M;E) implies w = Y. Now the assertion follows easily from the

derivation property of D.

3.2. A derivation D of Q(M;E) is called algebraic if the uniquely associated
derivation D of Q(M) is algebraic (i.e. vanishes on Q%(M) and is therefore
of tensorial character). This is the case if and only if D(f.®) = f.D(%)

for all f in Cm(M) and ¢ in 2(M;E). So D itself is of tensorial character.
Lemma: Let D be a derivation of degree k on (M;E) with D = 0. Then there

is a unique P in QX(M;L(E,E)) such that D = u(P), where L(E,E) is

the bundle of lineaf endomorphisms of the fibres of E and

1 .
(U(P) ¢)X(X1,...,Xq+k) = Wg sign g Px(_Xol,...,Xck) ¢ (X

x 0(q+k),... .
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So the the graded Q(M)-module homomorphisms are exactly of the form u(P).

3.3. Corollary: If D is an algebraic derivation on Q(M;E) of degree k,
then there are unique forms L in Qk+l(M;TM) and P in Qk(M;L(E,E))

such that D = i(L) + u(P), where i(L) is given by formula 1.2.1.

3.4. Theorem: The space Der Q(M;E) of (graded) derivations of the Q(M)-
module Q(M;E) is a graded Lie algebra with the graded commutator

(1.1) as bracket. We have [Dl’DZ] = [51,52].

Proof: Compute.

3.5. For P in 9P(M;L(E,E)) and Q@ in Q3(M;L(E,E)) define the bracket
(P, Q)7 in QP9 (M;L(E,E)) by the formula
1 .
e, Q]r(Xl,...,Xp+q) ST gl g sign o P(Xol"" olp+1)’ "
This clearly defines a graded Lie algebra (QUMLGELENL 5, 7).

,XOP)O QX 2.

Proposition: For Li in Qki+l(M;TM) and Pi in Qki(M;L(E,E)) we have

[i(Ly) + u(Py), (L) + u(Py)] =

kika

= i([Ll, Lz]“) + pQ[Pl, P2]“+ i(Ll)P2 - (-1) i(Lz)Pl).

So the graded Lie subalgebra of algebraic derivations of Der Q(M;E)

is the semidirect product of those of the form u(P) (which form the

ideal) and those of the form i(L).

Proof: The graded commutator on the D-level (in Der Q(M)) gives the i-part.
Restriction of the graded commutator to 0°(M;E) =T'(E) destroys the i-part

and gives directly the content of yu. ged.

3.6. Now let V be a covariant derivative on the vector bundle E, and denote

again by V the exteriour covariant derivative QP (M;E)> Qp+l(M;E), given by
P : ~
1 a
(v ¢)(X0,...,Xp) = g (-1) (in ¢)(x0,...,xi,...,xp) +

i+]
+ I (-1) ¢([Xi,Xj],X Xi"" jro

yesey
1< 0
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It is a graded derivation of degree 1 and W(w~®) = dw~o + (-1)Pw ~ 7o
for a p-form w. Also [V,V] = 2VV = 2u(R), where R in GF(M;L(E,E)) is
the curvature form of V. The Bianchi identity is [V, u(R)]=

V u(R) - u(R) Vv = VVV -VVV = 0. A convenient reference for this is

[5], vol. II. Note that the exteriour covariant derivatives on E are
exactly the elements D in Der, QM;E) with D = d, and two of them differ

by u(A) for A in Ql(M;L(E,E)).

3.7. Let us fix a covariant exteriour derivative for the moment.
Then for K in Qk(M;TM) we consider the derivation OV(K) := [i(K), V]

of degree k on Q(M;E), which we call the covariant Lie derivation along K.

Clearly OV(K) = ©(K) on Q(M). If we change the covariant derivative we get
GV(K) - OV+A(K) = [1(K), u(A)] = pu(i(K)A). If K = X, a vector field, then

GV(X) is mentioned in an execise in [5] (vol. II, p. 352).

3.8. Theorem: If V is a (fixed) covariant exteriour derivative on E, then
any derivation D in Derk Q(M;E) can be written in the form

k+1

D = GV(K) + i(L) + p(P) for unique K in Qk(M;TM), Lin @ ~(M;TM)

and P in Qk(M;L(E,E)). D is algebraic if and only if K = O.
Proof: By 1.3 we have D = ©(K) + i(L) for unique K and L as specified.

The derivation D - OV(K) - i(L) then haé D-part 0 so it is of the form

u(P) by 3.2. : ged.

3.9. Lemma: For K in Qk(M;TM) and L in Q(M;TM) we have
[1(L), 0y(K)] = 0y (i (LK) + -DXi(L,KD.
If R in Q2(M;L(E,E)) is is the curvature form of ¥, then

[,K), 7] = ui(IR).

Proof: tet s in QO(M;E) be a section. Then [i(L), OV(K)] s = i(L) QV(K) s -0

i(L) [i(K), V] s = i(L) i(K) Vs - 0 = i(L)(VsoK) = Vso (i(L)K)

1

i(i(LK) Vs = [i(i(L)K), V] s = 0y (1 (L)K) s. So [i(L), OV(K)} - 0y (1 (L)K)
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vanishes on QO(M;E), thus it has no p-part, 1s algebraic, thus of the form
i(L') for some L'. But this i(L') is also the algebraic part of

(1000, 6,001 = [i(L), 0(K)] in Der 2(M), which is 1 i([L, K1) by 1.6.
For the second formula we have [GV(K), v) = [[i(K), V], v] =

00, [9,9)] - DR, 100,010 = (00, 2u(R)] - [0, 7T, by 3.6

and the graded Jacobi identity. So [OV(K),V] = [i(K), p(R)] = u(i(K)R) by 3.5.

3.10 Lemma: For K, in gki(M;TM) and a fixed covariant derivative y on (E,p,M)
we have [OV(Kl)’ GV(KZ)] = Ov([Kl, KZ]) + u(k(Kl,Kz)R)y

where R in QZ(M-L(E £)) is the curvature of v and where

_ (- 1)k2(1(x ) 1(Ky) - 1K K,))
(1 ) (K)) 3(K,) + (- 1)(k D) | 1K) 1K) -
LK K, + (- (k- 0ke=1) 5y )3

A(Kl,Kz)

Proof: [Bg(K, ), 0y (K 21 = (6 (Ky)s [i(K,), V1l=

- [log(ky)s 1K, 9+ (- 1)“ (=) [i(K,), [6g(Ky), V1) by Jacobi

= [i([Ky, K1) - (- ki kamb) g g (1K KD, V] by 3.9
S G DL iK,), uE KR by 3.9

=0 ([Kl, 2]) + n( (KK, )R) by using 3.9 and 3.5 and exchanging the

role of Kl and and K2 in X . Clearly X\ is graded antisymmetric, and the
second formula for A is the arlthmetlc mean of two expressions. qed.
Remark: Note that in the second formula for A the graded anticommutator

appears. Here graded Jordan algebras enter.

3.11. The covariant derivative V on (E,p,M) induces a covariant derivative
VL(E’E) on the vector bundle (L(E,E),p,M) by the formula

u(vk(E’E)P) = (9, u(P)] on T(E) for P in [ (L(E,E)) and X in X¥(M).

This is the usual extension of Vy to the tensor bundle in such a way,

that it is a derivation with respect to tensor products and commutes with

t.races.
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vL(E’E) idE - 0.

2. [v, u(P)] = u(
3 VL(E,E)(Pla P,) = (VL(E,E)Pl)6 p

Lemma: 1.
VL(E’E)P) for P in Q(M;L(E,E)).
,+ (-DMP 8 (vL(E’E)PZ)

for P, in Qki(M;L(E,E)), where P. 8 P, = —1

19 Py = g7y At PjoPy.

Proof: Read carefully [5], vol. II, page 321 and 326. Cr plug in the

definitions and check 2 directly (easy). 1 and 3 follow from 2. qed.

3.12. Lemma: For K in Q(M;TM) and P in Q(M; L(E,E)) we have

[GV(K)’ u(P)] = “(GVL(E,E)(K) P).

Proof: Use GV(K) = [i(K), V], the graded Jacobi identity, 3.11 and 3.5. qed.

kj+l

3.13. Theorem: Let Ki be in Qki(M;TM), Li in Q (M;TM) and Pi in Qki(M;L(E,E)).

Then we have [ Ov(Kl) + i(Ll) + u(Pl), OV(KZ) + i(Lz) + u(Pz) ] =

= 0, ([Kp, K1 + 1(L)K, - (-DYke

i(Lz)Kl)
s 1(ILy, L%+ Ky, L) - -k, )
+u(lPys PoI" + O (g,£) (KPP, - (—1)k1kzeVL(E,E)(K2)Pl +
S LR, - ((DRRIWP,
+ A(Kl,KZ)R ), where R is the curvature of V, and

X(Kl,KZ) is from 3.10.

This follews directly from the lemmas above. Note in u( ) the representations
OyL(E,e) and i. Both of them are graded derivations of @Qm;Le,e), I, 17),
so they describe semidirect products. The mysterious summand deforming the
graded Lie algebra structure is A(Kl,KZ)R. The ingredients in the @v - part
and the i - part are again a derivatively knitted pair of representations,

see 1.11.
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3.14. The space Der Q(M; E) of derivations of the graded (M) - module
Q(M; E) is itself a graded (M) - module with the action (wD)¢ =

zwDd and ((JJAD) -_-(DA[_).

Proposition: 1. For D, in Der Q(M;E) and w in Q9(M) we have:
1

[waDy, D,] = wA[Dy, D,] - (1) (a+ka Dk D A D

1’ 1

2. waiK) = ilw~K).
3. waBy(K) = 0y(w~K) - (-1)%* i (dw ~K).

4. wAau(P) = ulwaP).

3.15. Proposition: For K in Qk(MjTM), ¢ in QY(M;E) and vector fields X5

we have: (OV(K)¢)(X1,...,Xk+q) =

) o (X

! .
= Ri qr L Signo VK(X01,...,x o(ks1)? " X5 (keq)?

-1 . ok
k——| (q—l—.)' z sign o @([K(Xol,...,xok)g Xc(k+l)]7xo(k+2)1---)

k-1
(-1) .
(DT (a2t T osion o @WK(EX ys X oLsXogoeeesX(00)) 0% a2y o

+

Proof: This can either be proved by combinatorics from the formula in 1.2.1

(difficult) or by using 3.14.3 and starting with k = 0. ged.

3.16. Theorem: Let V be a symmetric covariant derivative on TM. Then for
K in Qki(M;TM) the Frolicher Nijenhuis bracket satisfies

ky k |
[Kqs Ky1 = 0K Ky = (-1)71 7200 (K))K) .

Proof: If k, = k, = 0 then K = Y are just vector fields and

1 2 1° 2

OV(X)Y = [i(X),V]Y = i(X)VY - 0 = VXY, so the formula just says that V is

symmetric. Now we use induction on kl + kz and 1.10.2. Let X be a vector field.

X, K

OO, Kyl = TIOOK, Ky + (DM IKG, 100K, -
SEDMEK G, XDK, - (DR (T, XDK)) by 1.10.2,

= 0pLOOK K, = 1W"DMe00) 500K, + D¥eYK DiXK, -

ky kg ~Kg .

- (—1)k1(k2'1) Ov(i(X)Kz)Kl} -(-1)kli([Kl,x3)K2 + (-1) 1([Ky,X DKy,

)
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by the induction hypothesis. Now use lemma 3.9 to obtain
100 0y (KK, - (-1« kZGV(KZ)Kl ). This holds for all vector fields,

so the result follows. ged.

3.17. Proof of proposition 1.9: In 3.16 use 3.15 and once more the

symmetry of V. ged.

4. Derivations from the algebra of differential forms

into the graded module of vector bundle valued forms.

4.1. Let (E,p,M) be a vector bundle over a manifold M. Then a linear

mapping D: Q(M) + Q(M;E) will be called a graded derivation of degree k

iF D@IM)C Q%K (M5E) and D(w~y) = Dyayp + (-D¥% Dy in g(ME) for
a form w in Qq(M), and an arbitratry form y . Here we also consider
Q(M;E) as a graded right Q(M)-module with multiplication ¢ .y =

= (-1)PUW Ao for w in QI(M) and ¢ in QP (M;E).

A derivation D is called algebraic if D|Q0(M) = 0. We will denote by
Derk(Q(M), Q(M;E)) the space of all derivations of degree k from Q(M)

into Q(M;E).

4.2, Let D, = (Dl’ 51) in Der Q(M;E) be a derivation of the Q(M)-module
1
Q(M;E) as studied in section 3. Let 02 be in Derk Q(M), (M;E)). Then we
2

D

.- ky ko
:=D 002—(-1) DZO 1

define [Dl’ DZJ 1

Proposition: Then [Dl, Dz] is a graded derivation of degree k, +k, from
(M) into Q(M;E). Thus we get a sort of graded commutator
[, 1 : Der(M;E) x Der((M),Q(M;E)) » Der(Q(M),Q(M;E)).
For Dl’ D2 in DerQ(M;E) of degree k, , k,, respectively, and for
D3 in Der(Q(M),Q(M;E)) we have the "graded Jacobi identity":

[0,, [D,, D41] = [[Dy, D,1, D3] + (-1 *2([0,, (D), D,1].
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The proof is by computation. The graded Jacobi identity is equivalent
to: D+ [D, ] is a homomorphism of graded Lie algebras DerQ(M;E) +

+ End(Der (Q(M),Q(M;E))).

4.3. Any algebraic derivation is of tensorial character and is uniquely

determined by DIQl(M): Ql(M) + k+l(M;E), which is given by the action

k+1

of a vector bundle homomorphism ™M > AT T*Mx E, which we view as an

element Q of Qk+l(M; L(T*M,E)). We write D =: p(Q) to express this dependence.

Lemma: 1. For wy in Ql(M) and Q in Qk+l(M;L(T*M,E)) we have

)(i-l)k "

D(Q)(U)lf\---/\wp) = I (—l ln...a(p(ﬂ)wi)a...nw.

p
2. 1f Q = L@s for L in @<*1(M;TM) and s in T(E), then

p(L®s)y = i(L)ves for all ¥ in Q(M).
3. For @ in <YLML(TM,E)), w in (M), and vector fields X,

(D(Q)(ﬂ)(xl,..,x ) =

1 .
= Gyl (oDt I sign 0 Q(Xol""’xc(k+l))(w( ’Xo(k+2)""))’

q+k

Proof: 1 follows by induction from the derivation property. Both sides in
2 define derivations (M) = Q(M;E) and they coincide on Ql(M) and vanish on

2O(M), so they are equal. 3 follows from 2 and 1.2.1. ged.

4.i. For L in QXY L(M;TM) and @ in @3 1(M;L(T*M,E)) the derivation
[i(L), p(Q)] is again algebraic, so it is of the form p([L,Q]") for some
unique element [L, Q1" in 9k+q+1(M;L(T*M,E)). Note the defining equation:

o(lL, Q17) := [i(L), p(@)].

Lemma: We have [L, @17z (L)@ - (-1)%% p(Q)L, where i(L)Q is clear and

(@ WeX) = p@yax in e mEe) = aTHanLrmED.

Procf : It suffices to check the formula for L =w@®X, evaluated on a 1l-form.

This is easy. : qed.
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4.5. Corollary: With the action [ , 1% of (Q(M;TM),[ , 1°) the space

Q*—l(M;L(T*M,E)) is a graded Lie module also (compare 4.2).

4.6. Lemma: For P in §P(M;L(E,E)) and Q in Qq(M;L(T*M,E)) we have
(u(P), p(Q)] = u(P) p(Q) - 0 = p(u(P)Q), where u(P) = (u(P), 0)
is in Dequ(M;E), see 3.2. u(P)Q is given by

1 .
(]J(P)Q)(xly--°,x ) = p_"’a'i z s51gn 0 P(XO']»,‘..’XOP) OQ(X

p+q o(p+l)”")’

Proof: Evaluate at a 1-form. ged.

4.7. Now let V be any covariant derivative on (E,p,M), so (V, d) is in
Derlﬂ(M;E), and for any Q in Qq(M;L(T*M,E)) we may consider the derivation
GV(Q) :=(-1)9 [y, p(Q)] = p(Q) d - (—l)q-le(Q)‘ in Derq(Q(M),Q(M;L(T*M,E))).

We will call OV(Q) the E-valued covariant exteriour Lie derivative along Q

of differential forms.

Theorem: Let D be any derivation in Derk(Q(M), Q(M;E)). Then there

are unique elements Q in Qk(M; L(T*M,E)) and R in Qk+l

(M; L(T*M,E))
such that D = 0'(Q) + p(R).
If V + u(A) is other covariant derivative (for A in Ql(M;L(E,E))),

then VM (@) = %(@) + (-D¥ p(u(a)).

Proof: Let Xi be vector fields on M, let s be a section of E*. Then

f + <s, (Df)(Xl,...,Xk)> is a derivation C*(M) + C®(M); so it is given by
the action of a uniquely determined vector field Y(s,Xl,...,Xk), which is
clearly Cm(M)—line;r in s and the Xi'S, and is skew in the Xi's, S0 we

may write Y(S,Xl,...,Xk) = <s, Q(Xl""’xk)> for some unique

Q in @“(M; TM®E) = oX(M; L(T™M,E)). Now DF = p(Q)df by construction,

so D - 0Y(Q) is algebraic and coincides with p(R) for some uniquely determined

k+1

R in Q (M; L(T*M,E)) by 4.3. The last assertion is clear by 4.6. ged.
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4.8. Lemma: 1. For P in € (M;L(E,E)) and Q in a3 (M;L(T*M,E)) we have
[u(P), 691 = ' (u(P)a) - 1P (7 EEpya).

2. [v, GV(Q)] = (-1)%  p(u(R)Q), where R is the curvature.

Proof: Plug in the definitions and use 4.6 and 3.11. For 2 use the

definitions, 3.6 and again 4.6. ged.

4.9. The space Der (Q(M),Q(M;E)) also bears a graded Q(M)-module structure

given by (w~D)¢ = wAD$ .

Lemma: 1. pw~0Q) = wAp(Q).
2. For D1 = (Dl’ Dl) in DerkIQ(M;E), 02 in Derkz(Q(M), Q(M;E)) and
w in P (M) we have
%
© ~ Dy + (-1)P T Dy, Dyl
3. For w in GP(M) and Q in Q3(M; L(T*M,E)) we have

[Dl, LL)ADZ] =D

V(0a0) = 007 (Q) + (-1)P"%dw ~ p(Q).

Proof: Compute.

4.10. Now we want to decompose-the bracket [i(u), oV(Q)] for L in QP (M;TM)
and Q in Q9(M; L(T*M,E)). Let f be in c®(M) = e2(M). Then
(10D, V(@IF = i(L) p(@) df = i(L) Q(dF) = (1(L)A) df = p(i(LIQ) dF =
= ev(i(L)Q)f. Therefore [i(L), @V(Q)] - Gv(i(L)Q) is algebraic, and we
put (according to formula 3.9 for choosing the sign):

), oV@7 - VG = (DI oL, a1,
Then [ , 3V is a differential concomitant oP (M3 TM) x Q3 (M;L(T*M,E))

> QPFA(M;L(T*M,E)).

Lemma: In the situation above we also have

(o (1), (@) = p(LL, AV - (DT PIG@L).

Proof: This is also a routine computation.




4.11. Lemma: For K in @X(M;TM) and Q in Q9(M;L(T*M,E)) we have
[0 (), 07 (@] = e" (1K, 1Y) +
+ D () wR) @ - wR) (i) @ - (<1)*D@D Jgy iy,

Here R is the curvature of V.

Proof: This is a routine computation, using OV(K) = [i(K),V] and the

graded Jacobi identity.

4.12. Analysis of the concomitant[ , ]V: Qk(M;TM)><Qq(M;L(T*M,E)) -+

> QK I(M;L(T*M,E)).

Proposition: 1. Let ¥ and V + u(A), A in Ql(M;L(E,E)), be two covariant

derivatives on (E,p,M). Then we have:
i, 0¥ -k, 0"**P) - LGawoma - DI Dok,

2. For w in QP(M) we have
K, a8 = CDPXy K, @17 % 0KdwaQ - (-1) P -1 ooay.

3. [waK, Q1Y = walK, 21" + (-1)Pdw ~ i (K)Q -

- 1 PHI%Y gy k.

4. For K. in @“5(M;TM) and ¢ in QP (M;E) we have:

Ky, 0K, 0" = 0y (K10 ~K, - (-1)("*“2)(kl‘l)vmi(Kz)Kl +
. (—l)p'9¢,\[Kl, K,1, where [K, K,] is the Frolicher-

Nijenhuis bracket.

5. [Ky, [Kyy 0317 (0K, K1, @17 - DMk, k), 01"V =
= B K KR + (DIKDake g 66 YRYQK -
- (0% oGk ROk, - D3RR R K, +

+ (-ntaDle-D oo man, k)

Hints for the proof: We use the map p(Q): Q(M;TM) + Q(M;L(T*M,E)) given by

(@ @OX) = p(Quw@X. It satisfies p(@WAK) = p(@yK + -DPOy o,
With this 2 up to 4 are routine computations using results of sections 1

and 4., 5 is shown for Q = ¢,\K3 and is rather difficult.
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5. Looking for natural concomitants of

vector valued differential forms.

5.1. Let us consider, for each n-dimensional manifold M, a R -bilinear
operator BMé P (M;TM) x (M3 TM) > o (M;TM) such that for each local
diffeomorphism f: M + N we have f* By (K,L) = BM(f*K,f*L).

Then clearly each BM is a local bilinear operator, and by the extension
of Peetre's theorem to bilinear operators (see nh By is a bilinear
differential operator. Let us now fix a manifold M. If (xl,...,xn) is a

local coordinate system on M, then on its domain of definitions

we may write K = K; d°‘®a.l, where ai = —ai— ’ d® = dx® ..., Adxak, where
ax

a = (al<:a2< ...<:ak) is a form index, for K in qP(M;TM), and likewise

L = Lg J3®aj for L in Qq(M;TM). Here we use the Einstein sum convention.

Then B(K,L) = B?%RSk aR(K;) aS(Lé) dY @3, , where R, S are multi-indices
Y

for iterated partial derivatives.

5.2. First of all we see from 5.1, that we may differentiate through B:

Given any vector field X on M, we may consider it's local flow Fli and
_d_ Xi% ¢ _d X\ Xy* _

we get 0(X)B(K,L) = g¢| (F1{)" BK,L) = gtlg BO(FLY) K, (FL)L) =

= B(e(X)K,L) + B(K,0(X)L), or, in view of 2.6:

[X, B(K,L)] = B([X,K],L) + B(K,[X,L]).

5.3. One may take the local expression for B of 5.1 and express formula 5.2

in it. This gives horrible linear equations for the coefficients of Bj; for by

BQBRSk

vanish,
1JY

choosing X = aj one easily sees, that all derivatives of
so they are constants in any coordinate system.

I will not consider these equations in this paper.

5.4. Using a local coordinate system on M we see that we have to determine

B in R" at O.
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Lemma: Let I be the vector field I =3 xi ai on R".
1. If y is a constant p-form on Rn, then o(I)y = p.y.
2. For K in QP®",R™) we have [I,K](0) = (p-1)K(0).
3. If X is a vector field on R" which is homogeneous of degree k,
so X(tx) = th(x), then [I,X] = (k-1)X.
4. For any vector field Y we have [I,Y](0) = -Y(0).
5. If y is a constant p-form and X is a vector field which is

homogeneous of degree k, then [I,p@X]= (p+k-1)¥@X.

Proof: We show 3: rli(x) - eb x. ((Fli)* X)(x) = T(Fli)_loXoFli (x) =
) = oDt (k-1)t

5. [1,p@X] = (D) (yeX) = o(IWeX + y®0(I)X, so this follows from 1 and 3.

X(x). Thus [1,X] = 0(DX = S|, e X = (k-1)X.

Similarly 2 follows from 1 and 4. The rest is obvious. qed.

5.5. Let ¢ be a constant p-form, let  be a constant g-form, and let X and
Y be vector fields, homogeneous of degree k and m respectively. Then by 5.4:

(r-1) B(¢®X,y®Y)(0) = [I, B(¢eX,b®Y)1(0)

B([I,6®X],p@Y)(D) + B(¢&X, [I,b®@Y])(0).

=(p+qg+k+m-2)BlodaX,paY)(0).
So if p+q+k+m-1 # r, then B(¢®X,y®Y)(0) = O.

Since 0 is arbitrary, we. may conclude. (where C is contraction, C(y®X) = i(X)y).

Corollary: If B: QP(M;TM) x29(M;TM) + @F(M;TM) is a natural concomitant, then:
1. If p+q-1 = r, then B is algebraic. Examples of such concomitants
are: i(K)L, 1(L)K, C(K)aL, C(L) aK, C(K) ~C(L) ~ Idpy.
2. If p+q = r, then B is a homogeneous bilinear differential operator
of total order 1. Thus on R" we have B(K,L) = Al(DK,L) + AZ(K,DL),
where Ai are algebraic and DK is the derivative of K. Examples are

[K,L], dC(K) ~L, dC(L) ~K, dC(K) ~C{L) ~ Id dC(L)AC(K)AIdTM.

™’

dC(i(K)L) ~ Id 1y dC(i(L)K) A Id -



219

3. If p+q+l = r, then B is homogeneuos of total order 2. So on R"
BIK,L) = A (DKL) + Ay(DK,DL) + A,(K,D2L), where the A; are
algebraic. Examples are: dC(K) AdC(L)‘~IdTM.

4. If p+g-l<r, then B = 0.

5. If p+q-1 = r+m, then B is a bilinear differential operator,

homogeneous of order m.

5.6. Remark: Of course it would be very interesting to determine the
vector space of all natural concomitants for each choice of r. One way

would be to solve the linear equations mentioned in 5.3. For me this was

too difficult.
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