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PETER W. MICHOR

This project is planned as a continuation of the project P 17108-N04
which was finished in September 2007.

The research in the new project will follow different lines which are ex-
plained below.

Papers cited as [Mxy] can be found (fulltext) via the homepage of Peter
Michor

http://www.mat.univie.ac.at/~michor/listpubl.html
under the number [xy]

Geometry and analysis of shape space. The core of shape space in one
of its simplest forms is the orbit space of the action of the group of diffeomor-
phisms of the circle S1 (the reparametrization group) on the space of immer-
sions of the circle into the plane R2. The aim is to find good Riemannian
metrics which allow applications in pattern recognition and visualization.
The contributions of the PI were obtained mainly in collaboration with
David Mumford. In the paper [M107] via the Hamiltonian approach many
metrics were investigated, together with their conserved quantities (one of
them is the reparameterization momentum) and their sectional curvatures.
Recall from a result of the predecessor of this project, that the L2-metric
on the space of immersions has zero geodesic distance on the orbit space
under the reparameterization group. These metrics come in 3 flavors: Some
are derived from the the L2-metric by multiplying it with a function of the
length of the curve (a conformal change) or by multiplying the L2-integrand
with a function of length and curvature (this is called almost local). Of the
second flavor are the metrics which come from the Sobolev Hn-inner prod-
uct on the space of immersions. The last flavor comes from using a suitable
Sobolov metric on the diffeomorphism group of the plane and treating shape
space as a homogeneous space. This is the metric that has found already
many applications, particularly in medicine. This metric was pioneered by
Michael Miller, Alain Trouve, and Laurent Younes, see [3, 4, 9] These appli-
cations are done at the ‘Center for imaging sciences’ at the Johns Hopkins
University, and they are used to recognize diseases from the the tomograph-
ical data of hearts and brains, [6, 7]. A version of one of the metrics in
[M107] turns out to be isometric to a quotient of (an open subset in) an
infinite dimensional Grassmannian of 2-planes in Hilbert space. Here recent

Date: July 9, 2008.

1



2 PETER W. MICHOR

formulas of Neretin allow explicit geodesics and explicit formulas for the
geodesic distance. This is done in [M111].

The geodesic equations arising in vision are relatives of some well known
PDE’s, like the Burgers’ hierarchy. Some of them might be completely
integrable systems.

In [M108] the homotopy type of the rotation degree 0 immersed plane
curves is determined: π1 = Z and π2 = Z, all others vanish. [M109] is
a review article on Riemannian metrics on infinite dimensional regular Lie
groups, containing detailed presentations of the Hamiltonian approach. This
are the notes for a lecture course which the PI gave in order to prepare for
the existence results for geodesics equations in [M107].

The aims of this part are as follows:

• To complete the geometric information on the shape space of plane
curves, in particular to compute the sectional curvature for the met-
rics derived from Sobolev metrics on the space of immersions, and
and derived from right invariant Sobolov metrics on the diffeomor-
phism group of the the 2-plane. The latter one is tied to the formula
due to Arnol’d for the curvature of the right invariant Sobolov metric
on the group of diffeomorphisms.

• To develop the theory for surfaces in 3-space in great detail, because
this has many applications.

• To develop the theory in the general situation where shape space is
the non-linear Grassmannian Imm(M,N)/ Diff(M), for a compact
(template) manifold M , and Riemannian manifold (N, g) of higher
dimension. The metric here comes from invariant metrics on the
space of immersions. This is interesting from a pure mathematical
point of view.

• To develop the theory in the setting, where Emb(M,N)/ Diff(M) is
a homogeneous of the diffeomorphism group Diff(N). Here subman-
ifolds are transported around and deformed by diffeomorphism of
N . But one can deform not only submanifold, one can deform also
currents or measure or tensors on N (like the fiber structure of the
muscles in the heart). To compute the sectional curvature is quite
difficult.

• To further develop the theory of manifolds of mappings which lies
at the basis of any kind of shape space. Also to analyse and solve
the partial differential equations and their variants which appear as
geodesic equations for various metrics on shape spaces.

Why is it so important to compute curvature on shape space? Let me
start with a quotation from David Mumford:

Pattern Theory started in the 70’s with the ideas of Ulf
Grenander and his school at Brown. The aim is to analyze
from a statistical point of view the patterns in all ‘signals’
generated by the world, whether they be images, sounds,
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written text, DNA or protein strings, spike trains in neu-
rons, time series of prices or weather, etc. Pattern theory
proposes that the types of patterns – and the hidden vari-
ables needed to describe these patterns – found in one class
of signals will often be found in the others and that their
characteristic variability will be similar. The underlying idea
is to find classes of stochastic models which can capture all
the patterns that we see in nature, so that random samples
from these models have the same ‘look and feel’ as the sam-
ples from the world itself. Then the detection of patterns in
noisy and ambiguous samples can be achieved by the use of
Bayes’s rule, a method that can be described as ‘analysis by
synthesis’.

So eventually one has to do statistics on shape space of a certain kind,
and has to group patterns by geodesic distance to some ‘template’. But
this depends tremendously on curvature. In particular, positvie curvature
is difficult because shortest geodesics to a template can jump when moving
a shape.

How will this part of the project be run? There will be a lot of collabo-
ration with David Mumford (emeritus at Brown), the group at the Center
for Imaging Sciences at Johns Hopkins (Michael Miller, Laurent Younes),
with Alain Trouve at the Ecole Normale Superieure de Cachan in France,
with Daniel Cremer at the computer vision group in Bonn, and with Darryl
Holm at Imperial college. Collaboration (less focused on vision) is planned
with Tudor Ratiu in Lausanne and with Thomas Kappeler in Zürich. Grad-
uate students and post docs can rotate through some of this places and
become aquainted with many aspects of vision. So in this project I ask for
support for 2 graduate students and 2 postdocs and some money for travel,
invitations, and workshops.

Choosings roots smoothly alias lifting of mappings over orbit map-
pings, and invariant theory. In [M105] the following is proved: Any
sufficiently often differentiable curve in the orbit space V/G of a real finite
dimensional orthogonal representation G → O(V ) of a finite group G admits
a differentiable lift into the representation space V with locally bounded de-
rivative. As a consequence any sufficiently often differentiable curve in the
orbit space V/G can be lifted twice differentiably which is in general best
possible. These results are then generalized to arbitrary polar representa-
tions.
Question: Can one lift a sufficiently often differentiable curve twice differ-
entiable for any orthogonal representation of a compact group?

In [8] the the regularity of the roots of complex monic polynomials P (t)
of degree n depending smoothly on a real parameter t is studied. If P (t) is
C∞ and no two of the continuously chosen roots meet of infinite order of
flatness, then there exists a locally absolutely continuous parameterization
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of the roots. Provided that P (t) is Cn, the roots may be parameterized dif-
ferentiably if and only if whenever roots meet they meet of order at least 1.
Applications to the perturbation theory of normal matrices and unbounded
normal operators with compact resolvents and common domain of definition
are given. The eigenvalues and eigenvectors of a C∞ curve of such operators
can be arranged locally in an absolutely continuous way, provided that no
two of the eigenvalues meet of infinite order of flatness.
[M110] shows the following: If u 7→ A(u) is a C1,α-mapping having as val-
ues unbounded self-adjoint operators with compact resolvents and common
domain of definition, parametrized by u in an (even infinite dimensional)
space then any continuous arrangement of the eigenvalues u 7→ λi(u) is C0,1

in u. If u 7→ A(u) is C0,1, then the eigenvalues may be chosen C0,1/N (even
C0,1 if N = 2), locally in u, where N is locally the maximal multiplicity of
the eigenvalues.
Question: Can the roots of a many parameter family of complex polynomi-
als be chosen absolutily continuously in the parameters? A positive answer
would have strong consequences for well-posedness of linear PDE’s.

In this research direction, collaboration with Armin Rainer from Vienna
and with Ferruccio Colombini and Sergio Spagnolo from Pisa is expected.
Since Armin Rainer is an independent mathematician now, he will employed
in this project only for short periods, if necessary.

Symplectic and Poisson geometry. Here I expect mainly results in con-
nections with the Hamiltonian approach for geodesic equations on various
shape spaces which arise from invariance under various reparametrization
groups.

Actions of Lie groups and structures of orbit spaces. Collaboration
of Peter Michor with D. Alekseevsky from Moscow, M. Losik from Saratov,
Andreas Kriegl and Armin Rainer from Vienna. The project is to continue
the investigations in the direction of obtaining a better understanding of the
geometry of the orbit space of an isometric Lie group action. Paper [M85]
gives a good description of the orbit space and of the image of geodesics
on it: Short geodesics which are orthogonal to the orbits map to distance
minimizing curves in the orbit space. Longer orthogonal geodesics map to
curves which are reflected at singular strata. Non-orthogonal geodesics map
in special examples to solutions of very interesting dynamical systems gen-
eralizing the Calogero-Moser system. The symplectic reduction side of this
has been vastly extended by Simon Hochgerner, and is now outside of the
scope of this project.
But many other questions are still open: Describe the orbit space stratifi-
cation in infinite dimension (this has relevance for shape spaces). Work out
in detail the orbit space of some class of finite dimensional representations
of compact groups.
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Paper [M97] develops reflection groups on Riemannian manifolds and
shows how to reconstruct them from the orbit space (a generalized Weyl
chamber). Research in this direction will go on.

The generalized Cayley transform for a representation. The paper
[M87] with Bert Kostant contains the costruction of the generalized Cayley
transform from a Lie group to its Lie algebra, induced by a representation.
Many properties were deduced, mostly of algebraic geometric type. For the
spin representation this equals the classical Cayley transform A 7→ (A −
Id)(A + Id)−1 for matrices, multiplied by a rational function which kills the
polar divisor of the classical Cayley transform. This has been extended to a
classification of all algebraic groups which are birational to its Lie algebra,
see [2]. In this project I want to carry over the construction of the Cayley
transform to the case of super Lie groups and super Lie algebras. Attempts
to do this cry out for some basic facts of super algebraic geometry, which
do not seem to have been worked out in detail yet. One could also look for
the quantum group version of this construction.

Also the Cayley transform from a finite group of Lie type to its Lie algebra
should be investigated. It is the first connection between the group and its
(finite) Lie algebra (the exponential mapping does not make sense). An
attempt to do this in a thesis in a a predecessor of this project failed.

Convenient setting for Denjoy-Carleman ultradifferentiable map-
pings. Let M = (Mk)k∈N0 be a non-decreasing sequence of real numbers
with M0 = 1. Let U ⊆ Rn be open. We denote by CM (U) the set of all
f ∈ C∞(U) such that, for all compact K ⊆ U , there exist positive constants
C and ρ such that

|∂αf(x)| ≤ C ρ|α| |α|!M|α|

for all α ∈ Nn
0 and x ∈ K. The set CM (U) is the Denjoy–Carleman class

of functions on U . If Mk = 1, for all k, then CM (U) coincides with the
ring Cω(U) of real analytic functions on U . In general, Cω(U) ⊆ CM (U) ⊆
C∞(U). Gevray differentiable functions are a particular case which have
many applications in proving wellposedness for certain linear PDE’s.

It seems that for certain classes of weight sequences M = (Mk) one can
obtain the convenient setting of CM -calculus: A mapping is CM if it maps
CM -curves to CM -curves, and in general we have CM (E,CM (F,G)) =
CM (E × F,G) for locally convex spaces. This allows to treat the theory
of manifolds of CM -mappings, and in particular to prove that the group of
all CM -diffeomorphisms is a regular CM -Lie group, but not better. Such
results have applications for choosing roots of polynomials in a CM -way, and
for perturbation of eigenvalues of CM -parameterized curves of unbounded
operators on Hilbert space with compact resolvent and common domain of
defintion. This is a collaboration with Andreas Kriegl and Armin Rainer.
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Personnel and budget.
Name Position per year
N.N. Post Doc position 54,180.00
N.N. Post Doc position 54,180.00
N.N. graduate student 31,670.00
Project money Guests, travels 10,000.00

Sum per year 150,030.00
Sum for 3 years, in EURO 450,090.00

The project money is for inviting guests to Vienna, among them the
scientists mentioned in the report.

Start of the program: October 2008.
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Verlag, 2003. 259-296.

[2] N. Lemire, V.L. Popov, Z. Reichstein: Cayley groups. J. Amer. Math. Soc. 19 (2006),
no. 4, 921–967

[M107] Peter W. Michor, David Mumford: An overview of the Riemannian metrics on
spaces of curves using the Hamiltonian approach. Applied and Computational Har-
monic Analysis 23 (2007), 74-113.

[M109] P.W. Michor: Some Geometric Evolution Equations Arising as Geodesic Equa-
tions on Groups of Diffeomorphism, Including the Hamiltonian Approach. IN: Phase
space analysis of Partial Differential Equations. Series: Progress in Non Linear Differ-
ential Equations and Their Applications, Vol. 69. Bove, Antonio; Colombini, Ferruccio;
Santo, Daniele Del (Eds.). Birkhauser Verlag 2006. Pages 133-215.

[3] M. Miller and A. Trouve and L. Younes: The Metric Spaces, Euler Equations, and
Normal Geodesic Image Motions of Computational Anatomy. ICIP 2003

[4] M. Miller and A. Trouve and L. Younes: Geodesic Shooting for Computational
Anatomy. J. Math. Imaging Vision 24 (2006), no. 2, 209–228

[5] D. Mumford: Mathematical Theories of Shape: do they model perception? Proc.
Conference 1570, Soc. Photo-optical &Ind. Engineers, pages 2–10, 1991.

[6] A. Qiu, B.J. Rosenau, A.S. Greenberg, P. Barta, S. Yantis, and M.I. Miller: Esti-
mating Linear Cortical Magnification in Human Primary Visual Cortex via Dynamic
Programming. NeuroImage 31. 1 (2006):125-138



LIE THEORY AND APPLICATIONS. III 7

[7] Qiu, A., L. Younes, L. Wang, S.K. Gillespie, G. Kaplan, J.G. Csernansky, and M.I.
Miller: Combining anatomical manifold information via diffeomorphic metric map-
pings for studying cortical thinning of the cingulated gyrus in schizophrenia. Neu-
roImage (2007)

[8] Armin Rainer: Perturbation of complex polynomials and normal operators.
arXiv:math.CA/0611633.

[9] A. Trouve and L. Younes: Local Geometry of Deformable Templates. SIAM J. Math.
Anal. 37 (2005), no. 1, 17–59
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