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The research in this project follows different lines which are explained below. The
project should be located at the Erwin Schrödinger Institute and at the Institute
for Mathematics of the University of Vienna jointly.

1. Invariant Theory. Collaboration with Dmitri Alekseevky from Moscow, Mark
Losik from Saratov (RU) and Andreas Kriegl from Vienna.

In [65] we investigated the following problem: Let

P (t) = xn − σ1(t)xn−1 + · · ·+ (−1)nσn(t)

be a polynomial with all roots real, smoothly parametrized by t near 0 in R. Can we
find n smooth functions x1(t), . . . , xn(t) of the parameter t defined near 0, which
are the roots of P (t) for each t? We showed that this is possible under quite
general conditions: real analyticity or no two roots should meet of infinite order.
Some applications to perturbations of unbounded operators in Hilbert space are
also given.

This problem can be reformulated in the following way: Let the symmetric group
Sn act on Rn by permuting the coordinates (the roots), and consider the polynomial
mapping σ = (σ1, . . . , σn) : Rn → Rn whose components are the elementary sym-
metric polynomials (the coefficients). Given a smooth curve c : R → σ(Rn) ⊂ Rn,
is it possible to find a smooth lift c̄ : R → Rn with σ ◦ c̄ = c?

In [73] we tackled the following generalization of this problem. Consider an
orthogonal representation of a compact Lie group G on a real vector space V . Let
σ1, . . . , σn be a system of homogeneous generators for the algebra R[V ]G of invariant
polynomials on V . Then the mapping

σ = (σ1, . . . , σn) : V → Rn
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defines a bijection of the orbit space V/G to the semialgebraic set σ(V ) ⊆ Rn. A
curve

c : R → V/G = σ(V ) ⊆ Rn

in the orbit space V/G is called smooth if it is smooth as a curve in Rn. This is
well defined, i.e. does not depend on the choice of generators.
Problem. Given a smooth curve c : R → V/G in the orbit space, does there exist
a smooth lift to V , i.e. a smooth curve c̄ : R → V with c = σ ◦ c̄?
We gave satisfactiry answers under similar conditions as in the paper [65].

In this project we want to investigate these two questions, but replace R by higher
dimensional manifolds. Easy counterexamples show that liftings will be more rare
and that strong conditions will be necessary.

2. Completely integrable systems and double Lie groups. Collaboration
with the physicist Guiseppe Marmo from Napoli and with Janusz Grabowski from
Warsaw. In this project we want to push further the investigations from the pa-
pers [53], [70], [71], and [83] which give some indications about how to build new
integrable systems from old ones by the use of Poisson mappings: notably multipli-
cations on Poisson Lie groups. The paper [71] generalizes the notion of a completely
integrable system from a torus to an arbitrary Poisson Lie group.

3. Geodesics on infinite dimensional Lie groups and completely inte-
grable systems. Collaboration with Gerard Misiolek (Notre Dame University,
US) and Tudor Ratiu (ETH Lausanne).

In [69] a careful presentation is given of the known fact, that the geodesic equa-
tion on the Virasoro-Bott group of the right invariant H0-metric is the Korteveg-De
Vries equation. This allows for Jacobi fields, curvature, etc. In [79] this is extended
to the H1-metric, where another infinite dimensional completely integrable system
comes up, namely the Camassa-Holmes equation. There are many directions of
further research possible, see in particular point 6 of the application.

4. Further investigations of infinite dimensional regular Lie groups. Joint
work with Andreas Kriegl, J. Teichmann, and St. Haller. This is a continuation of
the work [62], [G], [75].

In particular the following topics should be treated: Up to now the question,
whether there exist non-regular convenient or even Fréchet-Lie-groups is unsolved.
It is not clear how necessary the hypothesis of regularity is in convenient Lie theory
(see [G]). By the methods of Lipschitz metrics it is possible to characterize regularity
by some simple conditions involving those metrics and smooth curves, however,
there are no good counterexamples (see [T0], [T4]).

Locally arcwise connected topological groups without one-parameter subgroups
are rare objects: one starting example is given by the integer valued L2-functions on
[0, 1], which form a closed locally arcwise connected subgroup of the abelian group
L2([0, 1]), the Hilbert space of real valued L2-functions. The aim is to find among
these abelian groups some convenient one to prove the conjecture that non-regular
convenient Lie groups do exist.

5. Attempts for a structure theory of the Lie algebra of vector fields on a
finite dimensional Lie group. Collaboration with St. Haller and J. Teichmann.
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Our aim is to develop some representation theory for Lie algebras of vector fields
on compact Lie groups and the associated infinite dimensional Lie groups. The aim
is to develop first some ‘algebraic structure theory’ of vector fields:

Let G be a connected, compact Lie group and let D be an element of the universal
enveloping algebra of gC × gC which acts a differential operator D : X(G) ⊗ C →
X(G)C on the space of complex vector fields on G, where the left factor acts by
left invariant vector fields and the right factor by right invariant ones. We assume
furthermore that D is invariant under the action of G×G such that the eigenspaces
are finite dimensional and the sum of the eigenspaces E(D) is dense in X(G)C

with respect to the biivariant L2-norm induced by the negative Cartan-Killing-
form on g. Examples of such elements are the Casimir operators of the left or
right G-action or the G × G-action on X(G)C, see below. Obviously the sum of
the eigenspaces E(D) can be completely reduced into finite dimensional irreducible
G × G-subrepresentations by the invariance of D and the finite dimensionality of
the eigenspaces. Given any finite dimensional irreducible G×G-subrepresentation
of X(G) ⊗ C, D restricts to this subrepresentation and is consequently scalar by
Schur’s lemma, so this subrepresentation lies in E(D).

The Lie bracket [., .] on X(G) ⊗ C restricts to E(D): Given two vector fields
v, w ∈ X(G)⊗ C in irreducible G×G-subrepresentations V and W , then [V,W ] is
a finite dimensional G × G-subrepresentation and can be completely reduced into
irreducible G × G-subrepresentations, consequently [v, w] lies in E(D). Our aim
is to understand deeply the decomposition into irreducible subrepresentations and
to understand the restricted Lie bracket [., .] : E(D) × E(D) → E(D) in algebraic
terms.

The Casimir operators of the left or right G-action or the G×G-action on X(G)⊗
C are examples for G×G-invariant differential operators in the universal enveloping
algebra of gC × gC, which admit a finite dimensional eigenspace decomposition due
to ellipticity. The main symbol of these Casimir operators is given in the left
trivialization by diag(D) : F(G)n → F(G)n, where D : F(G) → F(G) denotes
a self-adjoint elliptic operator on smooth complex valued functions. The Casimir
operator ∆L of the left G-action and the Casimir operator ∆R of the right G-
action commute and in the right respectively left trivialization they act like the
Laplace-Beltrami operator ∆ on smooth functions. More precisely, let X be a
vector field, then X =

∑n
i=1 f iXi, where {Xi}1≤i≤n denotes the frame of left

invariant vector fields and {f i}1≤i≤n are smooth functions on G. ∆RXi = 0, so
∆RX =

∑n
i=1(∆f i)Xi.

By means of harmonic analysis the decomposition in irreducible subrepresenta-
tions of the G × G-action on the complex valued smooth functions F(G) is well
understood. It should therefore be easy to understand the irreducible components
of the G × G-action on X(G) ⊗ C. This will be the basis for a further algebraic
analysis of the Lie bracket, since for two vector fields X, Y we can search the result
[X, Y ] in a finite sum of irreducible components.

To obtain more concrete ideas about G ×G-subrepresentations we investigated
the differential geometry of G, too. The Levi-Civita-connection is given by ∇XY =
1
2 [X, Y ] for left invariant vector fields X, Y or for right invariant vector fields X, Y .
Additionally the formula [X,∇Y Z] = ∇[X,Y ]Z+∇Y [X, Z] holds for X left invariant
or right invariant and Y, Z ∈ X(G)⊗C. Furthermore [X, Y ] = 0 for X any left and
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Y any right invariant vector field by commutation of left and right action of G on
G. Consequently we can construct non-trivial G×G-subrepresentation by iterated
covariant derivation.

6. Approximations procedures on regular Fréchet-Lie groups aiming
towards solving certain non-linear partial differential equations. This is
building on the Thesis [T0] of J. Teichmann and his paper [T4]

Assuming that the model space of a regular Lie group is a Fréchet space given by
an inverse limit of Hilbert spaces, so the definition of Lipschitz-metrics is equally a
definition of a variational problem, which is easily solved under some condition on
the Lie bracket, namely that ad has a continuous transpose with respect to some
scalar product. Then the geodesic equation associated to the variational problem
is given through ut = −ad(u)Tu where u denotes the right logarithmic derivative
of the geodesic (see [G], section 46.4). Only in the case, where u ∈ ker(ad(u)T)
for u ∈ g the smooth one-parameter subgroups are the geodesics. With respect to
interesting non-linear partial differential equations (for example the Korteweg-De
Vries-equation) it is worth studying this situation in concrete cases. The question
arises if such naturally appearing differential equations can be solved on the given
Lie groups by internal methods, for example by Lipschitz-metrics (see [T0], chapter
3). If this were the case, some interesting geometro-analytic progress in partial
differential equations would be possible. To set the program it is first necessary to
find some natural approximation procedure for geodesic problems fitting into some
successive subtilization of product integrals (see [T0], chapter 3), then to apply the
Lipschitz-methods to prove that approximation works well.

7. A non-linear version of Arzelà-Ascoli’s theorem on convenient Lie
groups. This conjecture is building on the Thesis [T0] of J. Teichmann.

Let E be a Fréchet space such that closed bounded sets are compact and assume
that G is a connected regular Lie group modeled on E. By a construction given
in the Thesis [T0], there is a sequence of Lipschitz-metrics on G generating the
sequential topology on G. Given a subset K of G being bounded with respect to
these Lipschitz-metrics, then the conjecture is that K is relatively compact in the
topology of G. This would be a non-linear analogue of the Arzelà-Ascoli theorem
in the version that bounded subsets of C∞(M) of smooth functions on a compact
manifold are relatively compact subsets.

8. Actions of finite dimensional Lie groups and structures of orbit
spaces. Collaboration with D. Alekseevsky from Moscow and M. Losik from Sara-
tov.

Let G be a Lie group which acts isometrically on a Riemannian manifold M . A
section of the Riemannian G-manifold M is a closed submanifold Σ which meets
each orbit orthogonally. In this situation the trace on Σ of the G-action is a
discrete group action by the generalized Weyl group W (Σ) = NG(Σ)/ZG(Σ), where
NG(Σ) := {g ∈ G : g.Σ = Σ} and ZG(Σ) := {g ∈ G : g.s = s for all s ∈ Σ}. A
differential form ϕ ∈ Ωp(M) is called G-invariant if g∗ϕ = ϕ for all g ∈ G and
horizontal if ϕ kills each vector tangent to a G-orbit. We denote by Ωp

hor(M)G the
space of all horizontal G-invariant p-forms on M which are also called basic forms.

In the papers [58] and [64] (this was the result promised for the project P 10037-
MAT) it was shown that for a proper isometric action of a Lie group G on a smooth
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Riemannian manifold M admitting a section Σ the restriction of differential forms
induces an isomorphism

Ωp
hor(M)G ∼=−→ Ωp(Σ)W (Σ)

between the space of horizontal G-invariant differential forms on M and the space
of all differential forms on Σ which are invariant under the action of the generalized
Weyl group W (Σ).

The project is to continue these investigations in the direction of obtaining a
better understanding of the geometry of the orbit space of an isometric Lie group
action. Paper [80] is in preparation and it contains already some results in this
direction.

9. Actions of Lie algebras on manifolds. Collaboration with D. Alekseevsky
from Moscow and Franz Kamber from Illinois.

In the paper [56] we stated to investigate the differential geometry of an action
of a Lie algebra on a manifold, i.e. only an infinitesimal Lie group action. We want
to study how this action can be extended to an enlarged manifold. Some results
are already available.

Personnel.
Stefan Haller, 1.3.2001–28.2.2003
Josef Teichmann, 1.7.2001–30.6.2003
N.N. Dissertant, 1.7.2000–30.6.2003
N.N. Dissertant, 1.7.2000–30.6.2003

I apply for the support for 2 postdocs (J. Teichmann and St. Haller) for two
years each, 4 x 504.000.-.

Furthermore I apply for support for two PhD-students for 3 years each. 6 x
328.000.-.

Sum: AS 3.984.000,–

If an application for a ‘Wissenschaftskolleg Differentialgleichungen’ materializes
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the ‘Wissenschaftskolleg’.
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