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Introduction

This book is devoted to the theory of manifolds of
differentiable mappings and contains results which can be
proved without the help of a hard implicit function
theorem on nuclear function spaces. All the necessary
background is developed in detail: § 1 (Jet bundles)
and § 2 (Manifolds with corners) contain basic material.
§ 3 - § 7 are devoted to the study of several canonical
topologies on spaces of continuous and differentiable
mapping and their properties. § 6 is devoted to trans-
versality of mappings betwsen manifolds with corners:
the results therein seem to be new. § 8 covers the
necessary facts from calculus on locally convex spaces.
Here we restrict our attention to the simplest notion

of differentiability, called Cg), that admits a chain
rule in general. It seems likely that nearly all the
main notions of differentiability coincide in the case
¢® (see H.H. KELIER (1974)), so there is no need to
struggle with highly complicated remainder conditions. We
prove the so-called Omega lemma and the existence of
Cg>—partitions of unity on the class of locally convex
vector spaces that appears later as the class of mani-
fold model spaces: countable strict inductive limits of
separable nuclear Fréchet spaces. § 9 contains general
material on C® -manifolds and a first simple example:
J® (X,Y), the cg’ ~fibre bundle of o -jets. § 10 contains
the core of the book: C% (X,Y) is made into a CJ -mani-
fold in a natural way, its tangent bundle is identified,
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certain splitting submanifolds are contructed, and the
definite obstacle to a cartesian closed category (i.e.
the natural equation CJ (4,C7 (B,C)) =Cg (AxB,C) in
general) in our setting is investigated. § 11 shows that
composition and inversion are Cg), so the group Diff(X)
of all diffeomorphisms of a finite dimensional manifold
(even with corners) is a Cg)—Lie—group. It is well known,
however, that its exponential mapping is not surjective
on any open neighbourhood of the identity in general
(see OMORI (1970)).

§ 12 is devoted to the computation of the tangent
mappings for several canonical congtructions of differen-
tial geometry; it is devoted to variational calculus.

In § 13 the principal fibre bundle structure of the mani-
fold of embeddings is investigated. § 14 is devoted to
the Cg’—Lie—group of symplectic diffeomorphisms.

I did not strife for maximal generality in this book,
rather for typical results and (hopefully) correct proofs:
this field is full of erroneous proofs (e.g. LESLIE) in
settings that are too simple.

In the last two decades Global Analysis seemed to
become the theory and application of Sobolev spaces: it
is convenient to work in a Hilbert space, even if it is
an unnatural setting for the problem. The main difficulty
there lies in the need for regularity theorems.

There is no Sobolev space in this book. I prefer the
natural setting of G%, although the methods for solving
non-linear partial differential equations are very
limited - hopefully a good implicit function theorem will
help.

iv



1 Jet bundles

1.1 Jet bundles consist of all possible invariant
expressions of Taylor-developments of mappings between
manifolds. Their invention goes back to Ehresmann.

1.2 Let X, Y be smooth manifolds without boundary. We
define a k-jet from X to Y to be an equivalence class
[i’,x'\k of pairs (f,x) where f: X-»7Y is a smooth mapping,
x €X, and where two pairs (f,x), (f',x') are equivalent,
(£,x) rlg(f',x'), iff x=x' and f and £' have the same
Taylor development of order k at x in some (hence any)
pair of coordinate charts centered at x and f(x)
respectively. We write [f,x']k=: 'jkf(x) and call that
the k-jet of £ at x. x is called the gource of the jet,
f(x) is called the btarget.

The set of all k-jets from X to Y is denoted by
Jk(X,Y). There are the gource mapping a: Jk(X,Y)—)X
a(jkf(x)) =x, and the target mapping w: JK(X,Y)——aY,
w(§52(x)) =£(x). We will also use the following
notation: J5(X,¥):=o” (x), I(X,1): =w™(x), Jf (X,7)=
= J}]f(X,Y)n Jk(X,Y)y. The last space is the set of all
jets with source x and target y.

For formalists there is another definition of the
equivalence relation & (£,x], =[f',x"], iff x=x' and

k., .k k .
T f=Tf" (T* denotes the k~th tangent mapping).



1.3 Now we look at the special case X=Rn, Y=R™®. We
write JX(RY,RD) = 35(n,m) too.

Let £: R®5>R™ be a smooth mapping. Then the k-jet of f
at x has a canonical representative, the Taylor
polynomial of order k of £ at X:

P(x+t) = f(x)+di‘(x) $ o A2E(x)t2 4 ... + tgr d Ke(x)tE +
+o(|4%)
= £(x) + (TE£) (%) + o] £ F)
The "'.'L‘aylor polynomial of £ at x without constant"
ka. t->T f(t) =57 df(x).t+... +EL' a%f(x).t is an
element oE the 11near space

Pk(n m) =11 Lgym(lp ,R™), where LJ (IRn R™) is the vector
j=1

space of j-linear symmetric mapplngs RE L RE (using the
total polarisation of polynomials). Conversely each

2!

polynomial péPk(n,m) corresponds to the k-jet
[toy+p(t-x), x'_]k with (arbitrary) source x and target
y. So we get a canonlcal identification Jk (n,m) =

Pk(nm), Jk (n,m) =R® xR ka(n m). =Y

If UcR® R vV eR™ are open subsets then clearly
Jk(U,V) =UxVka(n,m) in the same canonical way.

1.4 For later uses we consider the "truncated
composition" : Pk(n,m) ka(l,n) —>Pk(l,m), Peq=

= (polynomial p . q without terms of order >k).

This is a polynomial mapping of the coefficients of the
polynomials, so it is real analytic. Now let U;Rn,
WeRY, VeR™ be open subsets, let J5(U,V) x (W, 0): =
{(0,7) € I(U,V) x (W, U): olo) =w(r) in U} =
UxWxVka(n,m)ka(l,n). Then

t I5(U,V) x ([TE(W,0) - 35(W, V), given by y(o,7) =
y((alo),w(o),o), (alr),w(1),T))=

(al7),w(c),0. T) EWxVka(l,m), is a real analytic
mapping, called the fibered composition of jets. It will
be used heavily later on.

=< RN
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1.5 Iet U,U' cR™, VcR™ be open and let g: U'>U be a
smooth diffeomorphism. Define Jk(g,V): Jk(U,V)»Jk(U' , V)
by Jk(g,v) £,x) =[f- 8 g ! ()7 - Using the

canonical polynomial representation of jets (1.4)

J (g,V) has the follow:l.ng form:

3 <g,v> o =y(o,3"g(e” (), or (g, 7)(x,y,5) =

= (g7 (x),y,5. (¥ g)). 3%g,v) is a C*F

g (x)
diffeomorphism, if g is a CF diffeomorphism. If

g't U'»>TU' is another diffeomorphism, then clearly
g’ V) > (g, V) =3 (g0 &', V), and (g, V) =

= Jk(g,v)"1 . So Jk(.,V) is a contravariant functor
acting on diffeomorphisms between open subsets of R™.

Since the truncated composition g-70 . (’.Ek_1 g) is a

k m g ()
linear mapping, the mapping J (g,R): =

= k(g, m)\Jk(U R™): k(U lRm)—->Jk 1 (u',R™) is linear.
g (x)
1.6 Let UcR®, VTcR®, WecR' be open subsets, let
h: V-»VW Dbe a smoo‘ch mapping. Define Jk(U h) Jk(U V) -
> 35(U,w) vy 3T, n)[£,x]y = [Be £,3] or T5(U,n)0 =
Y(th(w(c)),c) or J%(u, B)(x,5,3) = (x,h(y), (Th) + 3).
T5(U,n) is ¢ ¥ ir u is ¢¥. Clearly we have

75(U,n) o 35(U,0r) =3¥(U,n. 0'), I(U,I8,) = Ta ; so0

k
k J=(u,v)
J*(U,.) is a covariant functor, acting on smooth mappings

between open subsets of f:l.mte dlmens:Lonal vector spaces.
The mapping J y(U h): x (U, V)—>J h(y)(U V') is linear
if the mapplng G- (Tyh) e 3 is llnear (e.g. if h is affine,
or if k=1). ’

1.7 ILet g: X'-»X be a diffeomorphism between manifolds.
Then the mapping J (g,Y) k(X Y) » K (X' Y), defined by
THe, 1) (355(x)) =3(2  £) (67" (1)) or 7, T)[2,5Y, =

= [f.g,8 (x)]k, is a bijection. Clearly Jk(.,Y) is a
contravariant functor, acting on diffeomorphisms of
manifolds, with values in the category of sets and
mappings.



If h: Y»>Y'is a smooth mapping between manifolds,
$hen we have the mapping J5(X,h): J5(X,Y)-J5(X,T'),
defined by J5(X,h)(i%£(x)) = j5(n. £)(x) or
Jk(X,h)[f,x]k= [ho f,x]k. Jk(X,.) is a covariant functor.

1.8 Iet X,Y be smooth manifolds of dimensions n,m resp.
and let (U,u) be a chart for X (i.e. UcX is open,

u: U»u(U) eR? is a diffeomorphism) and (V,v) be a chart
for Y. We consider the set J5 .(X,Y) =J(U,V)=

(axw)™ ' (UxV) e (X,Y) and the napping (u”,v) =
vy« Eaw),v) =350,v) « Ft v ) Fu,v) -
- FE((U),v(v)). (', v) is bijective and we will use
(350, v), 7t U, T > (), v(V)) as a
typical chart for J5(X,Y).

If (u',u'), (V',v') are some other charts for X,Y
resp. ther the chart change Jk(u."1 ,V) e Jk(u'-1 ,v! )"1:
FEw(Unu), v (vaT)) - E(UnT), w(VaT')) is the
mapping Jk(u.’ Al , Vo v'-1) which is a diffeomorphism
by 1.5 and 1.6. It remains to check that Jk(X,Y) is
Haugdorff in the topology induced by the atlas of all
charts of the form above. This is clear, since Jk(X,Y) is
not only a manifold with this atlas, but even a fibre
bundle over X x Y in the sense of the following definition.

1l

1.9 Definition: A ¢® fibre bundle (B,m,B,F) comsist of
smooth manifolds E,B,F and a smooth mapping m: E->B
which satisfies the following local triviality condition:
M There is an open cover (Ui) of B and a family of
diffeomorphisms y;: U; xF->m ' (U;) such that

i
Mo wi(x,y) =x for all x€U;, y€F.

b -
UixF-—-l——->1T1(E)=:EIUigE
pry \ /rr

Uy

E is called the total space, B is called the basig, 1 is
the projection, F is the Lfypical fibre. For x € B the set
Bt —— (x) is the fibre over x. A family (Ui,mbi) as

4



=T ﬂUj

above is called a fibre bundle atlasg. Let. U 13
then the mapping q;j" ° ¥yt ij-)Ui:] xF is a fibre
respecting diffeomorphlsm, s0 it is of the following form:
¥y - ¥5 (x,5) = (2,9 i(X)(y)) where qrj (x):F-F is a
diffeomorphism for any X. If there is a (finite dimen-
sional) Iie-group G acting smoothly on F (i.e. there is
a ¢° mapping T: GxF-F such that (g, ,1(8y,y)) =

= T(g1g2,y) and T(e,.) Idp) and if all ¥ (x) lie in &
(i.e. if 2ll 4. 5 -G are smooth mapplngs and
ji(x)(y) =T(¢ji(x),y)) then G is called a gtructure
group of the fibre bundle.

If F=Rl, and there is a structure group GL(1,R), then
(E,‘n‘,B,Rl) is said to have the structure of a vector
bundle. With these notions we collect the structure of
jet bundles in the following theorem.

1.10 Theorem. let X, Y be smooth manifolds.
1.J(XY)1saC mamfoldifXYareC mani-
folds; a canonical atlas is given by {(Jk(U V), Jk "1,v))

(U,u) chart on X, (V,v) chart on Y}.

2. (35(x,1), (a,0), Xx¥, P(n,m)) is a fibre bundle;
the canonical atlas of 1. induces a fibre bundle atlas.
GLk(n,lR) x G k(m R) is a structure group, where GLk(n,R) =

= GL(n,R) x I ngm(n,n) with truncated composition,
Jj=2

n=dim X, m=4im Y.

(Jk(X,Rm), a,X,Rmek(n,m)) is a vector bundle;
{(U,35(u,R™) o (uxId): Ux (R%xPX(n,m)) » ¥ (U,RD):(T,u)
chart on X} is a vector bundle atlas.

4, If f: XY is a Cr—mapping, then j
r-k

Ko X 35(X,Y) is

-mapping, sometimesg called the k-jet extengion of f.
5. If g: X'»X is a (CF-) dlffeomorphism and
h: Y- 7' is a (C%) ma mepping, then g (g Y): J5(x,Y)-
- 35X, Y) end FE(x,h): IE(X,Y) » F(X,Y') are oT°E
mappings. J (.,..) is a contra-covariant bifunctor.
6. For k' <k _J;._I;No we have canonical projections
nﬁ,: TE(x,1)» 35" (X,Y) given by e, [£,x] = [£,x],,. These

a C




SaASEY T, o Tow = oy 1= (0y0): J5(X,¥)->XxY
1! e ﬁkup ﬂo e Y0V} l.E Ay X1e

7. (X1, w., MY, 00 1) ®RPRT) are
fibre bundles; (J5(X,Y), nﬁ_1,33§-T}X,Y), Lgym(Rn,Rm))
are affine bundles; (J1(X,Y), (a,w), XxY) is a vector
bundle and coincides with (L(TX,TY),(':TX,TTY) X xY).
Furthermore we get: Jg(R,Y)==TY, J1(X,R)o:=T*X.

Proof:

1. see 1.8.

2. {(UxV, &(u,v1) o ((uxv)xId): (UxV)xP(n,n)-
- Jk(U,V): (U,u) chart on X, (V,v) chart on Y} is a
fibre ©hbundle atlas. The form of the structure group and
its action can be read of 1.5, 1.6.

3. Follows from 1.5 where we checked that Jk(u,Rm):
Jk(u(U),Rm)-)Jk(U,Rm) is fibrewise linear.

4. If (U,u) is a chart on X and (V,v) is a chart on
Y with £(U) €V, then I(u~1,v) o 5f o u™': w(U) cR®~
> Jk(u(U),v(V))==u(U)><v(V)><Pk(n,m) is just the mapping
x> (x,voefo u"1(x), Tk(Vo £ u—1)) (ef. 1.3) which is
visibly of class CT %,

5. See 1.7. Composing with the chart mappings of 1.
and using 1.5, 1.6 it follows that these mappings are
ok,

6. and 7. In a local chart the mapping nﬁ. is just
truncation of Taylor polynomials to order k'. ILet (U,u),
(V,v) be charts of X,Y resp. Then we investigate:
o) ek, FaT, 0T ), v(n) > 5 (a(w),
v(7)). We have J5(u(U),v(V)) =u(V) xv(V) x P*(n,n) =

= u(U) xv(V) x £ I:g (R®,RD) = u(U) x v(V) x P (n,m) x
k 1 Sym

. = ' k .
x T I3 (RERD) =3 (a(0),vw(V))x T Il (R®,R™)
j=kv+1 Sy j=k’+1 y

and the above mapping is just projection onto the first
factor. Therefore ﬂﬁ.: Jk(X,Y)—aJk'(X,Y) is locally
trivial with unique fibre type, so is a fibre bundle pro-
jection.

To investigate n§_1 we have Jk(m(U),w(V))==J "1(m(U),
¢(V))><L§ym(Rn,Rm). A chart change in X acts linear on



the fibres PX(n,m) anyhow by 1. 5. & chart change b in ¥
acts on LK (an,lRm) as follows: gt as (ho £)(x) =

ﬁ-;- dh(x) d f(x) +a sum of ’cerms involving d f(x),
1<k, multilinearly. The first part is linear in d f(x),
the second part produces the affine shift. So (Jk(X Y),
m_ o Nz, Ik syn(RTR™) is an affine bundle (i.e.
the structure group is the affine group of the model
fibre vector space). By the same method one can prove
that a structure group of Trk. is oL K’ (n,R) w GTEE' (m,R),
acting polynomially on the model fibre vector space (by
truncated composn.tlon) (Jx,1), (a,w), XxY, LR®,RD))
looks locally l:.ke. gl (o(U), (V) —-cp(U) x §(V) xL(an,!Rm),
3 (g,0)(2,7,5) = (&7 (x),h(y), an(y) .5.dgle” (x))) is
linear in o for fixed x,y, iff g is a local diffeomor-
phism in R™ and h any smooth mapping on R™. But this gives
just the same system of transition mappings as L(TX,TY)
has.

Finally: J)(R,Y) =L(2R,1Y) =1¥,J' (X,R) =L(TX,T R) =
= T¥X, g.e.d.

1.11 Let (E,uw,B,F) be a vector bundle, let (Ui,\yi:
U, xF»ElUi)ieI be a vector bundle atlas where the U, are
s0 small that there is an atlas (Ui,u.i) for B.

Definition: A smooth section of the bundle E (of m) is
2 smooth mapping s: B~>E with m. s=Idg . Let T'(E) =
= T(E,m,B) denote the space of all smooth sections of E
with the pointwise linear structure, let I‘C(E) =TC(E,1T,B)
denote the sub vector space of all smooth sections of E
with compact support.

Our next aim is to prove that the set [jks(x): s €T(B),
X€B} ¢ JE(B,E) has the structure of a vector bundle in a
natural way.

If s €T(E) then ¢;1 o (s|U;): U;» U, xF is of the form
x- (x, cH (x)) for suitable 850 U; - F.

For s:.mpllca.ty s sake we 1den‘b1fy silently U with
u, (U ) eR™. We compare J s (x) ¢ J¥ (g ,F) with

$E (451 o (s10,))(x) € (U, U, xF). Tet p=din F.



e, (x) = (2,8, (x), Th(s,)) €U xFx P (n,p). J(U;,U; xF) =
= U x(U xF)ka(n n+p) U xePk(n,u)xU ka(n n)
and Jk(\]:l (s\U )) —(x,s (x), Tk(s ),x, Id ) in this
deconposition.

Thererore the mapping e: J (Ui,F)-)Jk(Ui,UixF), given
by e(x,y,0) = (x,y,0,%,Id n)s is an embedding of the

vector bundle (J ( F),';, Fka(n,p)) onto an "affine
subbundle" of the flbre bu.ndle (g (U;,U; xF), (a,w),
U; xU; xF, P(n,n+p)). Now let U, j_U AT, be silently
identifled with both uy (U ) and uy (U L) 1nR . Then
q;i oq; 2 U s xF Ty JxF 1s of the form “’i ° ¥y (x,y) =
= (x,{, J(x) y) for transition mappings 7PL Uy -)GL(F)
(ef. 1.9).
For s €T(E) and x €U, . we have (x,si(x)) = i"1s(x) =
wl‘qu,j*s(x)-q;ﬁ lr,8,(0) = (2,45 () 85 ().
s;(x) = J(x) .s,(x). Since 4, J(x) GGL(F) we have
(s+ks )i—si+1s ; ete. and y; (x)(s (x) +2r8;'(x)) =
= 43 :(x)s, (x)+wl (x)s,'(x), so T ("’1 (s +hsy 1)) =
= Tk(q;lj.s )+ Tk(\pij.s '). So the mapping

1j' Jk(U J,}3‘)-->Jk(U j,F), given by jks (x)—»jks (x), is
a vector bundle homomorphism of (Jk(U j’F)""' 137
Fka(n,p)) into itself (more exactly: over the mapping

-1,
Ujg=Uy e Uyl uj( ij)')ui(Uij))‘ These transition

mappings 7 k can be used to glue all the trivial vector
bundles (Jk( ,F),a, ,Fka(n,p)) into the vector
bundle J (E), which we define by this process. So we have
proved the following result:

1.12 Theorem: Let (E,m,B,F) be a smooth vector bundle.
Then we have:

1. (Jk(E) T\’k B Fka(n,p)) is a vec‘tor bundle for each
k, where p= dim F, u=dim B. Here J (E) = k(E,T\',B) is the
set of all k-jets of sections of E. For any s €T(E) we
denote its k-jet at x by T¥s(x) if we consider it to be
an element of Jk(E).




2. The mapping ¢ =e: Jk(E)-eJk(B,E), given by
c(ﬁks(x))==j s(x), is a smooth embedding, fibered over
Uﬂys):B»BxE,

3. If o: (E,m,B,F)»>(E',n',B,F') is a vector bundle
homomorphism over Idg (i.e. @t E-E' is @, ﬂ o @=1T,
) -m|E E ~E ' is llnear for all x), then J (m)
E(r) > T5(57), given by IH(9)Tos(x) =T(v-5)(x), 1s a
vector bundle homomorphism again. Jk(.) is a covariant
functor, acting on strict vector bundle homomorphisms,
and ek: Jk(.)—aJk(B,.) is a natural transformation.

1.13 Remark: The following result shows that JX(TX)
generate all "natural vector bundles over X" in some
sense. The result is due to CHUU LIAN TERNG (1979) and
D.B.A. EPSTEIN, W. THURSTON (1979).

A natural vector bundle over n-dimensional manifolds
is a functor acting on the category of all n-manifolds
with embeddings as morphisms, such that:

(1) P(X) is a vector bundle over X for any n-manifold
X.

(2) F(i): F(X)-F(Y) is a continuous vector bundle
map over i: X-Y for any embedding i.

Now the following holds: For any natural vector
bundle F there is some k such that F(i) depends only
on j¥i. k is called the order of F. It follows that there
is a one to one correspondence between isomorphism classes
of natural vector bundlesnof order k and representations

of the ILie group GL(n)x I 13 (R®,RD).
j=2 ~sym

1.14 The vertical bundles of a fibre bundle.

1. Let (B,p,X,F) be a fibre bundle. A locally trivia-
lizing fibre bundle atlas (U N7 ) of E congists of an
open cover (Ui) of X and flbre respectlng diffeomorphisms

by -1
Uy xF - EIUi=p (uy)

=N

Uy



Then we have 1{;1' . ¥.(x,y) =(x, ¥y (x,y)) for x €U, 5=

= U; NU.;5 the g it UiJelef(F) are called the transition
mappings for E. If (V Vo ) ig a manifold atlas for F and
(Ul,u ) is a manifold atlas for X, then (¢1(U XV ),

(u XV ) by 1) is a manifold atlas for E.

The coordina*he tra.nsitions for this atlas look like
(2,90 (x7,3") = (g, (00,75 33 (2,90 = (g0 7 (),

Ty o vy o gy ~1{2),9)"

2. In the settlng of 1., the tangent bundle (TE,nE,E
R™ xR™®) of the total space E of the fibre bundle (E,p,
X,F) (where n=dim X, m=dim F) is a vector bundle. We
have the vector bundle homomorphism of constant rank:

TE ——33—9 TX

g l p l"x

E ———— X
The coordinate transformations for TE which are induced
by the atlas for E described in 1. look like:
(z,5;8,m) > (x',3'38'sm")
x! =u.i£x)
y'=v a“’ji(x’y)

=d(uy;)(x).8

=a, (vgy o ¥354)(%,3) -8 +a5(vg o ¥y3) (x,3)

3. The (fibre wise) kernel of the vector bundle homo-
morphism Tp: TE~-» TX is a vector subbundle of TE, the
vertical bundle (V(E),m,|V(E),E,R™). In local coordinates
(as described in 2.) Tp looks like:

p(x,y) =x
To(x,¥;8,1) =(x,8).
So locally V(E) is given by {(x,y;0,nm)}.

1.15 The vertical bundle of a vector bundle
1. Let (®,p,X,R™) be a vector bundle. Then the
coordinate transformations of 1.14.1: (x,y)-~ (x',y')
where X' =u, (x)
~x\: (X) Y,

can be chosen in such a way, that ‘);jl(x,y) is linear in y

10



for fixed x, and the atlas (V_,v ) is just ®R™,1a ).

The coordinate transitions for (TE,nE,E,IRanm) are:
(x,558,m) > (x',3',8"5n")

x! =uji(x)

¥ =V4(x)ey

g'=d Eji(x)-g _

n' =d1¢ i(x!y)'g +d21ji(x,y)-'ﬂ

=(a wji(x).g).y-+¢.i(x).n
The vertical bundle (V(E),qEIV(E),E,Rm) is again locally
given by {(z,y;0,n)}.

2. Since (E,p,X,R™) is a vector bundle, TE has two
vector bundle structures:

a) The tangent bundle structure (TE,nE,E,Rnd<Rm), given
locally by (x,y;3&,m) +A(x,y;8',n') =(x,y;E +AE', n+2An').
b) The derivative of the vector bundle structure (E,p,X,
R™), i.e. the vector bundle (TE,Tp,TX,R®xRT), given
locally by (x,y;€,m) @A(x,y';8,n') =(x,y +Ay';&,m+2n").

3. The vertical 1lift: let z €X, Ex=p’1(x) cE be the
fibre over x, let ix: Ex-9E denote the embedding of the
fibre.

For v,w€E_ let Vx(v,w) =Tv(ix).w€TE, where
%ﬁﬂ:%@Qe%e%ﬁvwm%ﬂQWMiswuwtm
vertical 1ift of w over v. In canonical coordinates V
has the following form: V((x,y),(x,z)) =(x,y;0,z).

V: E@E-V(E) is a C® —mapping and even a vector bundle
isomorphism (E@E, p,X,RExRT) - (V(E),p. T =Ty » Tp,X,
R™xR™D).

4. Ve will use the mapping (p=pry.V ': V(E)>E@E-E,
given locally by gE(x,y;O,n)==(x,n). Cp is called the
vertical projection.

1.16 The fibre derivative. Let (E,,p,,X, ,R™),
(Ez,pZ,Xz,rRl) be vector bundles and let

B, —— E

1 2
T R

1 2
11



be a Pibre respecting smooth mapping. The fibre deri-
vative of ¢ is the mapp:.ng

E, ®F, -Jﬁ—-)E

P1l 5 lPZ

X, ——— X

1 2

defined like follows. For x EX1 we have a ¢® -mapping
2 =0 (Bt (8D~ (By)zy
its derlvatlve makes sense: d(cpx)(n) n'e€ (E )
n,m' € (B, ) . We put dgo(n,m) =d(ey)(n).n’, 1f nyn' e (B )y
The local expression for dyp is: dpo ((z,y),(x,y")) =
= (o(x), dy0(x,3).3").

It is clear that the following formula holds:
dpo =gE2 ° Tcpe VE1 : E, ®F, —>V(E1)~>V(E2)—>E2.

Of course the fibre derivative makes sense if ¢ is
only defined on an open subset of E1 .

) between vector spaces, SO

1.17 Pullbacks of vector bundles
Iet (E,p,X,R®) be a vector bundle, f: Y»X be a ¢®-
mapping. Then the pullback of E by f is the vector
bundle (£*E,f*p,Y,R™), given by
P*E=Y x4B = {(y,e) €YxE, £(y)=p(e)}
£%p l l pry
Y = Y

It (U ,q;l) is a locally trivializing vector bundle atlas
for (E,p,XR ) (ef. 1.9, 1.15), i.e.

Vs
UxR -—l-—-*p (U) U; X open.

\/

Then (£~ (U;), £%4,) is a locally trivializing vector
bundle atlas for (f*E,f*p,Y,R™), where (fwi)(y,v) -
= (y,4;(£(3),¥)), i.e.

271 (u;) xR (£2p) 7 (27 (u,))

h f-1 (Ui) /

o (Tdx (5 o (fxld)))

12



1.18 Lemma:

1. Let Vect(X) denote the category of vector bundles
over X and strict vector bundle homomorphisms. If
f£: Y-X is a ¢ ®-mapping, then £* =Y xy.: Vect(X) - Vect(Y)
is a functor, mapping strict vector bundle homomorphisms
to strict vector bundle homomorphisms.

2. In a natural way we have T(f*E) =T(Y><XE) =17 x gy TB

3. For the vertical bundle we have V(£*E) =V(Y><XE) =
= YxXV(E) =f*V(E) in a natural way. Moreover
Voug: £*E O f*E » V(L*E) coincides with YxX(VE):
Txy(E®E) =£*(E@E) =f*E @ £*B-> ¥ x 1 (V(B)) = £*(V(E)),
and Coyp! V(f*E) -» £*E coincides with YxX(CE):
YxXV(E)—)YxXE.
Proof: 1. is clear.
2, Since p: E~»X is a submersion, fxp: ¥IXxE->XxX is
transversal to the diagonal Ay X x X, so TxyE=

= (fxp)” 1(AX) is a submanifold of YxE and we have
T(YxXE)-(T(fxp))'1(TAX)— {(vyu,) € (TxE):
(T2.v,,TP.W,) € Tp(0)n(e) b} s
= {(v, w)éTYxTE Tf.v =Tp.w}

TY>< TE.

(f*E)y {y} ) SYxyE, so Ty ((£%8).) = {0}
X Ty Be(a) gT(YxXEX, w Ve = Ty ng ((f*ﬁ )=

y

= nyXV(E) =Y xyV(E).
The rest is clear. g.e.d.

1.19 The double tangent bundle
Let X be a manifold. There is the double tangent bundle
T°X = T(TX), the vertical subbundle V(TX) c T(TX), the
vertical 1ift Vipy: TX®TX > V(TX) and the vertical pro-
jection (ny: V(TX) > T™X, cf. 1.15. But there is more
structure in this special situation:

There is the canonical £1ip mappi nyt T2X—> TZX,
given locally in canonical coordinates by
nX(x,y;g,n) =(x,8;¥5,Mn). ny is @, idempotent:uy o ny =
= Id; nx is a vector bundle isomorphism over IdTX between

13



2
the two vector bundle structures on T7X:
2. 2
Y === T°X
o
™o T(my)
TX ——==y
This is clear from the local expression. The fixed points
of ng are given locally by {{x,y;5sn)}. These are
exactly the elements of J (R,;X). For further use we note
agains
T(TTX) ° KX =TTTX
ﬂTX ° 7(.X=T(ﬂx)'
1.20 Vector fields and flows:
Let £ €%(X) be a vector field on X, let t- o, denote its

d .
local flow: ao(x) =X, 3% c._t(x) =§at(x). Then t»T(a,t) is
a local flow on TX since T is a functor. We compute its

time derivative locally: -— T(%)(x,y) = ‘t (c,.b(x),

dag(x).y) = (ay(x),day (). y, o, (x),da,(x).y) =

= ”X(“t(x)’ (x); day(x).y,da(x). y) =uy T(a,)(x,¥)-

So we get: =% T(%) =y o T(ut) =y © (g » at) =g o TE o Tay.
Te: TX-» T°X is not a vector field, but ny ° Tg is one:

Ty © Ay © Tg:T(nX) o TE =T(nX° £) =T(IdX) =Tdgy (cf. 1.19).
So we have:

Lemma: Let £ €%(X) be a vector field on X. Then ny . T is
a vector field on TX. If t- o, is the local flow for &,

then t-)Tat is the local flow for Ay ° Tg.

1.21 Sprays.
Let X be a manifold. We consider the mapping p: Rx TX -~
» TX, u(t,v) =t.v. For any t+0 the mapping wy: Mo IX,
“t(v) =t.v, is a diffeomorphism.
Definition: A spray € on X is a c® -mapping E: TX - T2X
subject to the following conditions:

1. Mgy o §=Tdgy (i.e. & is a vector field on TX)

2. T(TTX) o E =Idg§x

5. Muy).8(v) = T.&(tv), to.
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Example: Let X be a manlfold such that TX is trivial,
TX =X xR, Let y: X—>L (R sR™) be a C® -mapping. Then
the following mapping 1s a spray: £(x,v) = (x,v;v,
y(x)(v,v)).
Proof: My (x,v) =(x,tv), so T(ut)(x v;e,n) = (x,tv;€,1n).
So T(pt) g(x ) —T(p )(x v;v,v(x)(v, v)) =(x,tv;v,t
v(x)(v,v)) —-_E (x,tv; tv t y(x)(v v)) = (x tv; tv,

v@®) (4v,v)) =1 g(x,tv).

It can be shown, that any spray on a parallelizable X
is of this form. The mapping y appears in Riemannian
geometry as "Christoffel symbols".

Lemma: On gny manifold X there is a spray.

Proof: Let (Ui,ui) be an atlas for X. Then any U; is a
manifold with trivial tangent bundle, so there is a spray
E; on Ui by the example above. Let (cpi) be a smooth
partition of unity, subordinate to the open cover (Ui)'
Then E=¥% (cpi ° vX).gi is a spray on X, since condition

2. above ig affine, 1. and 3. are linear.

1.22 The local flow of a spray
Let £ be a spray on the manifold X, let ¢: D(E) ¢ TX xR~
> TX be the local flow of £€: D(E)=2TX x {0}, D(g) is open
and "radial" ((v,r) €D(g), |t| <1 implies (v,tr) € D(g)),
and o(v,0) =v, '&Q‘E v, =89, and D(g) is maximal.

1. Claim: o(sv,t) =s.p(v,st), s,t €R, if one side is
defined.
Proof: For fixed s and v € TX let c,(t) cp(‘t sv), B(t) =
so(v,st). Then a(0) =sv= B(O), alt) = (1; sV) =
E(o(t, sv))—g(a(t)), B(t) -—-— so (v, st) -d (ngo(st,v)) =
T(us) Tt elst,v) =T(u ). §(w(st,V)) s=°1- %(Sw(st,v)) s=
g(B(t)). So o and B are integral curves of the vector-
field & with the same initial conditions, so a=8. q.e.d.
- 2. Claim: Let y =ty o o: D(g) > X. Then the following
holds:

2.1. x(0,7v) =my(v)

2.2. Y‘V(O) =v

2.3. ‘)(v(t)“'g(')(_v-(-b))’ (V,t) ED(%)-

f
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2.4. y(t,sv) =x(st,v), s, €R if one side exists.
Proof. 2.1. (o0, v)—-ercp(O v) = 'n'X(V) ;(v(t) =
‘anp(t v) = T('er)cp (%) =Ty E (e, () =, (‘b) (by 1.21.2).
So Xv(o) 9,(0) =v, so 2.2. holds. xv(t) cp (t) =gl (t)) =
;‘(x,v(t)), g0 2.3. holds. 2.4. follows from claim 1.
x(t,87) = ngo(t,sv) =me(s.0(st,v)) =my(o(st,v)) =x(st,v).
g.e.d.
3, Qlaim: There is an open neighbourhood UsTX of the
zero section such that [-1,17xUcD(g).
Proof: Let v € TX; there is $>0 such that (5,v) €D(g).
By claim 1: 6.9(8.1,v) =o(1,85v), so (1,8v) €D(E). q.e.d.

1.23 The exponential mapping of a spray
Definition: In the setting of 1.22, the mapping exp:
Uec™->X, given by exp(v) =%(1,v) = -an;>(1 ,v), is called
the exponential mapping of the spray €. We write:
exp, = exp|UN X, x€X.
Theorem: If the open neighbourhood Uec TX of the zero
gection is small enough, then the exponential mapping
exp: U->X has the following properties:

1. exp Ox=x

2. exp, : un TXX—->X igs a diffeomorphism onto an open
neighbourhood of x in X.

3. Exp:('rrx,exp): U->XxX is a diffeomorphism onto an
open neighbourhood of the diagonal in X xX.
Proof: 1. exp(0, ) =x(1, 0 ) =x (1.22.2.1).

2. For vEUnT X let a(t) =exp, (tv) =y(1,tv) =

= y(t,7v) (by 1.22.2. 4) Then a(0) =, (o) v (by 1.22.2.2).
So Tox(expx).v=€d;-c- exp (tv)!tzo-v, 80 Tox(expx) IdTXX’

80 by the inverse function theorem exXp, ig a local
diffeomorphism. Choose U small enough.

3. By 2. Exp:(TrX,exp): U-»XxX is injective,
Exp(ox) =(x,x). We claim that TVEXp is injective for all
ve U, Let x='er(v), choose w € TV(U) =Tv(TX). If
O=TvExp.w=(Tv(nX).w, Tv(exp).w), then Tv("X)'w=O’ s0
% is vertical, w€ Tv(TxX)’ so O=Tv(exp).w=Tv(expx).w.
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But then w=0 since eXp, is a diffeomorphism by 2. So

(by dimension) T Bxp is invertible for all v€ U, so Exp

is a local diffeomorphism and injective, so 3. follows.
g.e.d.
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2 Manifolds with corners

2.1 Definition: A guadrant QCRn is a subset of the form

= {x eR™: 1, (x)=20,..., k(x)>o} where {11,...,11&} is a
11nearly 1ndependent subset of (R®)*. Here O<k<n and k
is called the index of Q.

If x€Q and exactly j of the 1,'s satisfy li(x) =0,
then x is called a corner of index j. The index of a
corner depends only on x and Q and not on the special
system {11,...,lk} describing Q.

2.2 Let UcQ be an open subset of a quadrant Q. A
function f: U->RP is called CF (0O<cr<m ) if all partial
derivatives of f of order <r exist and are continuous
on U. By the Whitney extension theorem (cf. H. WHITNEY
(1936), J.C. TOUGERON (1972)) this is the case iff f can
be extended to a ¢¥ function f° U—»Rp, where UcR®

open and U=QnU.

2.3 The border d»Q of a quadrant Q is {x er™: 1 (x)=0
or 12(1) 0Oor ... or lk_(x) =0}; it is the disjonrh
union of finitely many (plane) submanifolds of R®, the
faces, edges, corners etc. of Q. »Q is "stratlfied" by
this set of submanifolds.

Let UeQ, U'<cQ' be open subsets of quadrants in rRZ.
A mapping f: U-»TU' is a diffeomorphism iff f is bijective
and locally of maximal rank. It follows that f maps
corners of index jJ in U to corners of index J in U'. So:
x€UcQ is of index j iff f(x) €U' Q' is of index j.
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2.4 Manifolds with corners are defined in the usual
way: they are modelled on open subsets of quadrants in
R™, and are supposed to be of class C¥, r=1 (otherwise
we just get back topological manifolds with boundary):

A chart (U,u,Q) on a manifold X with corners is a
diffeomorphism u: U->u(U) €Q of an open set UcX onto an
open subset u(U) of a quadrant in R® (u=dim X). (U,u)
is called centered at x€X, if u(x) =0.

x €X is called a corner of index j if there is a chart
(U,u,Q) of X with x €U and u(x) is of index j in u(U) Q.
The index of x is independent of the chosen chart, by
the invariance of the index under diffeomorphisms.

The set of all corners of index j=1 is called the
border dX of X; x is called an inner point of X if
indX(x) =0,

2.5 A subset YcX is called a submanifold with corners
of the manifold with corners X, if for any y €Y there is
a chart (U,u,Q) of X centered at y and there is a
quadrant Q' cRX cR™ such that Q' €Q and w(YnTU) =

= uw(U)NQ'. A submanifold with corners Y of X is called
neat, if the index in Y of each y € Y coincides with its
index in X: any corner of Y iz a corner of the same
index of X. Only neat submanifolds will be seen to have
tubular neighbourhoods. Let us denote »Ix = {corners of
index j of X}. Then each X is a submanifold without
boundary of X, and each closure (in X) of a connected
component of ch is a submanifold with corners of X.

Neither of them is neat. et »X =U d9X.
J
2.6 The tangent bundle. Let X be a manifold with

corners, let (Ui’ui’Qi)iEI be an atlas of X. The tangent
bundle TX of X is the quotient space of the set
{(i,v,x): x€U,, i€1, v €R?} for the following equi-
valence relation: (i,v,x)~(j,w,y) iff x=y and

a(u, . u; ") (u(x)).v=v. TX is again a manifold with
corners: charts are ({[(i,v,x)], x€U,}, Ei[(i,v,x)]=
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= (v uy (x))); so "’1‘ Ty 1(U ) ->RrR% X Uy (U ) eR® xQ cR%
X RY is given by ch0031ng the index i in the equlvalence
class. (TX,nX, ,R®) is a vector bundle.

A tangent vector £ € TX is called inner (short for:
not outer) if there is a smooth curve e: [0,1)->X with
¢(0) =g. Let E€TX, let (U,u,Q) be a chart with x€T,
let Q={y€R": 1 (y)>o,...,lk(y)>01 Let u(g) =
= (v,u(x)) be the coordinate representation of E. € is
inner iff the following holds: if li(u(x))==0, then
li(v) >0, Tet us call £ gtrictly inner if li(u(x))zo
implies li(v)>0.

Let us denote the set of all inner tangent vectors
by ITX. Then TX is a subset of TX.

Example: Let Q= f{x €R™; 1,(x)=20,...,1,(x)20}. If x is
a corner of index Jj of Q, i.e. exactly 1j (x Y=0,...,

1, (z)=0, then T le the quadrant {veRn. 1, (v) =0,
g

..?,1 (v)>0} of 1ndex je

Examplé: 1TR =T {x=0} = {(x,h) €R®: x20, x=0=n20}.
h Thig set is a convex cone in R™, but
it is not an open subset of a quadrant,
h neither is it diffeomorphic to some.
! x
So in general iTX ceases to be a manifold with corners.
Remark: It is possible to enlarge the category of mani-
folds with corners in such a way, that it contains finite
products and inner tangent spaces and there are still
inner sprays onall these manifolds (just take the hull
of the set of all quadrants under the operation
Q3 TQ and deseribe it nicely; then model manifolds on
open subsets of these sets). But Whitney's extension
theorem is no longer applicable in the form of 2.2. So
we prefer to stick to the notion of manifolds with
corners.

2.7 Integration of inner vector fields
Let X be a manifold with corners, let £ be a vector
field on X. Let x €X be an inner point, then there is a
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unique integral curve of g through x. If x is a corner
of X, then there is an integral curve c: [0,e) X with
e(0)=x and c¢'(t)=€(c(t)) iff all g(y) are inner for y
near X.

So if € is an inner vector field (i.e. E has values
in 11X) then there exists a local flow for g in the
following sense: There is a set WecR xX containing {O} x X
and [0,e, ) x {x} for some e >0 for each x€X, and a
mapping ot W-X with (O, x) x and d‘t a(t,x) =€(a(t,x)).
But oy is not even a local diffeomorphism (it may map
a corner to an inner point).

By a partition of unity argument one may prove that
on each manifold with corners X there is a "strictly
inner" vector field g, i.e. €(x) is strictly inner if
x € 3X. Then the local flow ¢ of & flows dX into the
interior of X. By multiplication with a (small) function
one may adapt € in such a way that a(t,x) is defined for
all O<t<e and all x. Then o.e: X-»>X maps X diffeomor-
phically onto its image which is contained in \o(X). So
we have proved: (cf. A. DOUADY, L. HERAULT (1973)).
Lemma: BEach manifold with corners is a submanifold with
corners of a manifold without boundary of the same
dimension.

Now let € be a vector field which is tangential to
the border, i.e. if x € d9X then £(x) € T5'X ¥j. Then there
exists on local flow a for g for positive and negative

time: .
There is an open set WecR xX containing {0} xX,
a: W-»X such that «(0,x) =x, -&@_E a(x,t) =g(a(x,t)). oy is
a local diffeomorphism. Corners of index j may flow
only along ij.

2.8 The second tangent bundle

Definition: A vector A € T(TX) with T e lrx is said

to be an inner tangent vector to Trx if there is a curve
c: [0,e)~ X with ¢(0) =myy.h, c([0,e)) € 1K and ¢'(0) =A.
Example: Let Q= {x €R™: 1,(x) 20,...,1,(x) 20} be a
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quadrant and (x ,V) € TQ Let (xo,v h,k) ET Q. This
vector is an inner vector to 11Q if th» following holds:
1. If x_ is inner (so v arbitrary), then (h,k) is
arbitrary.
2. If li(xo)=0, li(v)>0, then li(h)zo. k is
arbitrary.
3. If 1, (x ) =0, l (v) o, thenl (h) =0 and l (k) =0.
Let us denote by T X the set of all inner vectors
to TTX.

2.8 Sprays: A spray € on a manifold with corners X is a
mapping §: TX - T2X such that

1. T(TTX) ° g:IdTX

2. TMpy o §=Tdpy (i e. E is a vector field)

3. T(ut)g(v)_ £ &(tv), t€R, t£0, vETX, where

Mgt TX > TX is given by v=- t.v. i )

A spray € is called an inner spray, if £(*TX) ¢ ip2y.
Example: Iet Q=[x €R™: 1,(x)=0,...,1,(x)20} be a
quadrant of index k. Let UQQ be open. Then 72y = (UxR™) x
% (RExRD); define £: TU- T°U by £(x,v) = (x,7v;v,0).

From 1.21 it is seen that & is a spray; it is easily
checked that £ is an inner spray.

Iemma: Each manifold with corners X admits an inner spray.

Use a partition of unity on X to paste together locally

given inner sprays (by the example).

We will need another sort of sprays:
Tangential sprays: A spray § on TX is called tangential,
if for any submanifold bJX (= {x€X: 1ndX(x) =j}) we have:
g(TbJX) cT (bJX) It is easily checked that the spray in
the example above is even tangential. By a partition of
unity on X we can paste together locally given tangential
sprays and get:

Lemma: Any manifold with corners admits tangential sprays.
A word of warning: If € is an inner spray on a quadrant

Q and if (x,v) € TQ is not inner, then (x,v;v,...) is no
inner vector to the manifold TX either. More so: There
does not exist a spray on a manifold X with non trivial
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corners that is an inner vectorfield on TX.

2.9 The flow of inner and tangential sprays.

Let £ be an inner spray on a manifold with corners X.
Then € is a vectorfield on TX and £(1X) < 11°X, but £ is
not an inner vgctorfield in general.

For any v € TTX there is an integral curve c: [O,e)e
» 17X with ¢(0) =v and ¢=¢g. ¢ since £(1x) ¢ '1%x. S0
there is a meximal set WeRx'TX containing {0} x“TX and
[O,cx) x {x} for any x el'm_c and some e, >0, and there is
a smooth mapping a: W — ITX with «(0,x) =X and
£ o(t,x) =g(a(t,%)). This mapping o is called the local
flow of the spray € in rx. A11 the properties 1.22.1
through 1.22.3 hold for this local flow o too, with some
more restrictions on the parameter (for not leaving 1x),
by the same proofs. )

If the spray € is tangential (so £]|T2’X is again a
spray on bJX for all j) then of cogr§g_its local flow o
leaves invarign1¥gll submag;iolds lTbﬂX, induces a local
flow on each lTbéX, w@ere bﬁx is the closure in X of a
connected component dyX of »/X. It is a manifold with
corners.

2.10 The exponential mapping.

Let € be an inmer spray on X. Then tpere is an open
neighbourhood U of the zero section in 17X such that
[0,1]x TX W, by the analogon of 1.22.3 for manifolds
with corners. Let X =Tye at W~X, where o is the local
flow of E. The mapping exp::expgz U-X, defined by
exp(v)==X(1,v)==nxa(1,v), v €U, is called the exponential
mapping of the spray E.

Theorem: Let € be an inner spray on a manifold with
corners X and let exp: U-»X, U a suitable open neighbour-
hood of the zero section in iTX, be_ the exponential map
of . If U is chosen small enough, the exp has the

following properties:
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1. exp Ox=x? xeX

2. exp : UN lTxX ~»X is a diffeomorphism of U onto an
open neighbourhood of x in X.

3. The mapping Exp= (nX,exp): U»XxX is a diffeomor-
phism of U onto an open neighbourhood of the diagonal

in X xX.
If € is moreover tangential (2.8) then expl| bean U:

bka XNU-» ka is again the exponential mapping for the
spray gl Tb X, where bﬂX is the closure of a connected

component bl‘l_X of ij.
Proof: As in 1.23. The last part is obvious.

2.11 Jet bundles:

Let U be open in a quadrant Q in Rn, let V be open in
a quadrant Q' cR™. Let E;Rn, T <R® pe open sets with
U=QnT, v=q'n7. We define: J5(U,V): =J§xv('ﬁﬁ)

= U dE_ED.
(x,y)eUxv *1¥
(compare 1.3). Then we have again Jk(U,V) =UxV><Pk(n,m).
If o: U'>»T, §: V-»V' are a diffeomorphism resp. smooth
mapping between open subsets of quadrants, then we have
again a diffeomorphism Jk(cp,V): Jk(U,V) —>Jk(U‘ ,V) resp.
smooth mappings Jk(U,w): Jk(U,V)aJk(U,V')
T0,4) = (0, 7") « (U, y) = F(U' ,4)
o (0, V): (U, V) > 35U, V'), defined
exactly as in 1.5 and 1.6 by truncated composition.

Let now X, Y be manifolds with corners, let ( u;,Q )
be an atlas for X, (Va’va’Qa') be an atlas for Y, then
we have the system of char’c change mappings:

Jk(u ou31,v ovu1) ( (U )v(V ))-»Jk(u_J(U L),

(Va )) which can be used ‘bo deflne the flbre bundle
(E(X,7), (a,8), Xx¥, P¥(n,n)).

2.12 A coordinate free definition of JX(X,Y) can be
given as follows (MATHER (1969)): A k-jet in J5(X,Y) is
an equivalence class [U,V,f,x'_lk of quadruples (U,V,f,x),
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where U is an open set in a manifold without boundary
containing a neighbourhood of x in X, V is an open subset
in another manifold without boundary containing a neigh-
pourhood of f£(x) in Y, and f: U~V is a CX-mapping. The
equivalence relation is the following:
[U}V,f,x]k==[U',V',f',x']k iff x=x' and in a (hence any)
pair of charts around x,f(x) of U,V have f and f£' the
same Taylor expression at x up to order k.

Another way to define Jk(X,Y) coordinate free is the
following: Let f,? be manifolds without boundary con-
taining X,Y as submanifolds with corners respectively
and dim X = dlm X, dim ¥=dim Y (ef. the lemma in 2.7).
The JX(X,Y) _JX & = (e, (xxT) €7 5%,1).

Then complicated ways of defining J for manifolds
with corners is chosen in order to get a fibre bundle
structure on Jk(X,Y); in other words, to include "outward
pointing jets".

2.13 If f: X-»Y is a smooth mapping and x€ X, then the
k-jet of f at x, in symbols jkf(x), is defined as follows:
Let U,V be (open subsets of) manifolds without boundary
containing neighbourhoods of x, f(x) 1n X,Y resp. w1th
a prolongation f: U~V of f. Then put j f(x)-[U v, £ Xy
Another way to define j f(x) is via local representatives
of £ in charts of X,Y, using 2.11.

A1l k-jets in Jk(X,Y) of the form jkf(x) for
£€C® (X,Y) and x €X are called inner k~jets. The set of
all these is denoted by %Jk(X,Y). It is not a manifold
with corners any more: We have the same difficulty as
with 11X. We have in fact ‘mx=275([0,¢),%) for e>o0.
2.14 Theorem 1.10 holds for manifolds with corners in
its full content the proof is the same with the
obvious changes.
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3 Topologies on spaces of continuous
mappings

3.1 Let X,Y be Hausdorff topological spaces, let C(X,Y)
denote the space of all continuous mappings X-»Y. The
best known topology on C(X,Y) is the compact-npen
topology (or CO-topology). A subbasis for this topology
consists of sets of the following form: {f € C(X,Y):

£(K) ¢ U} where K is compact in X and U is open in Y.
This is a Hausdorff-topology.

Lemma: If X is locally compact with countable basis of
open sets and if Y is a complete metric space, then there
is a complete metric on (C(X,Y),C0). So (C(X,Y),C0) is a
Baire space.

3.2 If fe€C(X,Y) let Te: X»XxY be given by

I‘f(x) =(x,f(x)). We use T; too %o denote the image of
this mapping {(x,f(x)): x€X}, the graph of f.
Definition: The wholly open topology (or WO-topology)

on C(X,Y) is given by the basis {W(U) = {f € C(X,Y):

f£(X) €U}: U open in Y}. This is not a Hausdorff topology
(surjective mappings cannot be separated).

Definition: The graph-topology or WO°-topology on C(X,Y)
is the topology induced by the embedding T': C(X,Y) -

- C(X,XxY), £~ Tes where C(X,XxY) bears the WO-topology.
The WOo—topology has the basis of open sets:

{M(U) = {£€ C(X,¥): T, U}, U open in Xx Y}. The Wo°-
topology is Hausdorff since it can easily be seen to be
finer than the compact open topology.
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3.3 Lemma: Let X be paracompact and let (Y,d) be a
metric space, then for f € C(X,Y) the following family is
a neighbourhood basis for the graph topology:
N(f,e):={ge (X,7): a(g(x),f(x))<e(x) for all x€X},
where € € C(X,Jo,m [).
Proof: Put W= {(x,y) €XxY: d(y,f(x)) <e(x)} then W is an
open neighbourhood of Tp in X xY and N(f,e) =M(W).
Conversely, let W be any open neighbourhood of I‘f in
A xY. For each x € X there is an open neighbourhood Ux of
x in X and some O<e, =<1 such that UX><B¢X (f(x)) =
= U, x {lyeY: d(y,f(x)) <e lsW, by definition of the
product topology. Now let (ch)XEX be a continuous
partition of unity subordinated to the open cover (Ux')xex
of X, and put ¢e= & €Oy Then ¢ i1s continuous on X,

¢>0, and {(x,y):xd(y,f(x))<e(x)} cW, so N(f,e) cM(U).
q-e.d.
3.4 Lemma: Let X be paracompact and let Y be metrizable.
Then for any sequence (fn) in C(X,Y) the following holds:
(fn) converges to f € C(X,Y) in the graph topology iff
there exists a compact set K< X such that fn equals f off
K for all but finitely many n's and fn]K converges to
f|K uniformly.
Proof: It is clear that the condition above implies
convergence. Conversely, let (fn) and £ in C(X,Y) be such
that the condition does not hold. Then either fn does not
converge to £ in CO or there exists a sequence (xn) in X
without a cluster point and a sequence en>0 in R such
that d(fn(xn),f(xn)) ze, for all n, where d is a metric
on Y. Now there is a continuous function ¢ on X with
O<e(x), e(xn) <e, for all n. But then d(fn(xn),f(xn))>
> c(xn), i.e. fnéN(f,e) for all n. So f, cannot converge
to £ in the graph topology. g.e.d.

3.5 (Corollary: Let f: T- (¢(X,Y),w0°) be 2 continuous
mapping, where T is compact connected metrizable, X is
paracompact and Y is metrizable. Then there exists a
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compact set KcX such that t-f(t)(x) is constant for

any x € X\K.

Proof: For any t €T there exists ¢t>-o and a compact set

K, cX such that t~»f(t)(x) is constant on Bg (%) =

= {t' €T: a(%,t') <e,} for any x €X\K;. If not then one

may find a sequence tnf*t in T and a sequence X, in X

without a cluster point such that f(tn)(xn)4=f(t)(xn) for

2ll n. But then f(tn)-$f(t) by 3.4, so £ is not continuous.
Now cover T by finitely many balls Be1(t1),...,Bek(tk)

and choose K::K;b1 U“"JKtn‘ g.e.d.

3.6 TLet (Y,d) be a metric space. A subset Q¢ C(X,Y) is
called uniformly closed with respect to d, if Q contains
all limits of sequences in Q which are uniformly conver-
gent on X with respect to 4.

Any set which is closed in the topology of pointwise
convergence is uniformly closed, as is a set which is
CO~-closed.

Proposition: Let X be paracompact, let (Y,4) be a complete
metric space. Then any set Q ¢ C(X,Y) which is uniformly
closed with respect to d is a Baire space in the graph
topology.

Proof: Tet (An) be a sequence of open dense subsets of
Q (for the trace of the graph topology). Let Uc Q be any
non empty open subset.

We have to show that UﬂﬂAn4=¢- AonU+¢, open, S0
there is £ €A NU and e €0(X,70,1[) such that
Qn ﬁ(f,eo)ngnU (where N(f,eo) = {g € C(X,Y): d(g(x),
f(x)) <e(x) for all x}). By recursion one gets sequences
(f,) in Q, e, in C(X,70,1[), with ey, <3 for all n and
inxr(fm1 ,en+1) SA 4N N(fn,en). Then d(fn+1 (x),fn(x)) <
<277, so (fn) is uniformly convergent on X, so its
limit £ is in Q since Q is uniformly closed. Moreover
feﬁ(fn,en)ﬂAh for all n, so £€U and feg A. g.e.d.

3.7 Definition: Let X be paracompact and let Y be
Hausdorff. We define the locally finite open topology or
LO-topology on C(X,Y) by the following basis:
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M(L,U) = {f €C(X,Y): f(Lc.) ch.! where L=(La) is a locally
finite family of closed subsets L cX and U= (Uq) is a
family of open subsets of Y with the same index set.
Definition: The L0°-topology on C(X,Y) is the topology
induced by the embedding T: C(X,Y)-C(X,XxY) where
0(X,XxY) bears the LO-topology.
Lemma: The LOO-‘topology is finer than the graph-topology;
so it is Hausdorff. (Since the LO-topology is finer than
the WO-topology.)
(¢(X,Y), 10°) has the following basis of open sets.
M(L,U) = {f e C(X,Y): Tf(Lc,) c UOL for all a}, where
L= (Lq) is a locally finite family of closed sets in X
and U= (Ua) ig a family of open subsets in X x Y with the
game index set.

3.8 Lemma: If X is paracompact and (Y,d) is a metric
gpace, then the following families are neighbourhood bases
of £ €C(X,Y) in the LO°-topology.

1. N(f,L,e; = {g € C(X,Y): d(g(x),f(x)) <e(1 for all
xGLa, for all o}, where Lx(La) is a locally finite
family of closed sets in X and e = (ca) is a family of
positive real numbers.

2. N(f,0) ={geC(X,Y): o (x)d(g(x),£(x)) <1 for all
x€X, for all a}, where o= (cpu) is a family of continuous
non-negative functions on X such that (supp cpa) is a
locally finite family in X.

Proof: a) Let N(f,L,e) be as above. Let M= (M ) be an
locally finite family of open subsets in X Wl'th MG‘JL .
Let U, = {(x,y) €eXxY: x€M o d(y,f(x))<eal, then U is
open :Ln IxY, f(L )cU . So £feM(L,U) eN(f,L,e), so
N(f,L,e) is a LO° —neighbourhood of f.

b) Let N(£,0) be s in 2. Let L = {x€X: L

< 9 (x) 5n11}’ then L= (L ) is locally finite and

fEI\T(fL (L ), e—(ean ——-))c:,N(f,cp), so N(f,p) is a
LOO—neighbourhood of £ by a).

¢) Let £ €M(L,U) be given, M(L,U) as in 2.7. Then
L= (Lcn) is locally finite closed, U=(Uu) is open and
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f(L )cU . As in the proof of lemma 3.3 we can find a
contlnuous function & L -»R, 1>6o.> 0, such that
{(x,y): a(y, f(x))<6 (x) for all x€L } cUcL for any a.
Then 31— is defined on L and is >1, so we may find a
famllycl(cp ) of continuous non-negative functions on X
such ‘that (su.pp ®, ) is a locally finite family and

@, (x) <——T—y for all X € L . But then we have f € N(f,p=

= (9)) £ (T, 0).

da) {N(f,p): @ as in the lemma } is a neighbour-
hood basis of f in the LO°-topology by b), c¢). Then by
a), b) {N(f,L,e): L,e} is neighbourhood basis also. q.e.d.

3.9 Lemma: If X is paracompact, (Y,d) is metric, (fn) is
a sequence in C(X,Y) and f € C(X,Y), then the following
holds: fn—>f in the LOO—‘topology iff there exists a
compact set K X such that f |X\K—le\K for all but
finitely many n's and f \K-> fIK uniformly.

Proof: If :f:‘ »>f in I0° then f »f in WO° by lemma 3.7,
but then (fn) and f satisfy the condition by lemma 3.4.

If (fn),f satisfy the condition, the clearly f -f in
1.0°. q.e.d.

3.10 Corollary: Let f: T (C(X,Y),10°) be a continuous

mapping, where T is compact metric connected, X is para-

compact and Y is metric. Then there exigsts a compact set

KecX such that t->f(t)(x) is constant on T for any

x € X\X.

Proof: This follows from 3.8 as 3.5 follows from 3.4.
g.e.d.

3.11 Proposition: Let X be paracompact, let (Y,d) be a
complete metric space. Then any subset Q<C(X,Y) is a
Baire space in the I:Oo—topology, if it is uniformly
closed in C(X,Y) with respect to d (cf. 3.6).

Proof: Tet An be a sequence of open dense subsets of Q
(in the trace of the LOo—topology). Let UcQ be any non

empty open subset. We have to show that UnMN A, is not
n
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enpty. Now A NU is non empty and open, so there
are f EA nuU and a locally finite cover L( o) _ (L (0))
of X cons:.stlng of closed sets L (o , and a fam:.ly
(O) of real numbers e , O0<e (o <1, such
that £ céQn (£, 1(0) ¢(o)) €A NTU (where ‘N(fo,L(°

(O )‘ {gec(x, Y) a(g(x),f(x)) <e, for all x €L, for
a.ll al).

By recursion one finds sequences (f ) in Q, L(n)
= (L ))BEBn’ ( )—( )BGB such that ' is a

closed locally finite cover of X, c(n) is a family of

real numbers with O<e (n )<—1—n, and such that

(nt1) (041 P (n) _(n)
n+1€Qﬁl\T(f +1,L )cA ﬂN(fn,L , € ).
Then we have d(fn+1 (x) f (X)) < for all x €X (since

n+1

n 1

any L(n) is a cover of X and all eB(n) S—Ln)’ S0 (fn) is
2

uniformly convergent on X and its limit f is in Q (since
Q is uniformly closed), feﬁ(fn,L(n),c(n))n A, for all
n, so TelUnnN A_. g.e.d.

B
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4 Topologies on spaces of
differentiable mappings

4.1 Let X,Y be manifolds with corners. For any K&€N we
have the fibre bundle JX(X,Y) of k-jets over Xx Y. We
consider the fol,'ll.owing: 2 3
S\ i b7

Xx ¥ =d%%,¥) «2— g1(x,7) —1 J3(X,Y) —2 ...
Iet us denote by J® (X,Y) the projective 1limit (in the
category of Hausdorff topological spaces) of this
systen. We have again mappings: a: IJ® (X,Y) » X, the
source map, w: J° (X,Y)>Y, the target map, Tl'l?:
J% (X,Y) »Jk(X,Y) which define the projective limit.
For any £ €C® (X,Y) all the k-jets j¥f(x) constitute the
element j® £(x) (given by j¥£(x) =mpy j P£(x)), and this
gives (by the limit property) a continuous mapping
i®r: X3P (x,7). (J®(X,Y), (a,w) ='rrg) , XxY, PP (n,m))
is a topological fibre bundle with typical fibre P® (n,m),
the space of all formal power series without congtant
terms in n variables with values in R™ (n=dimn X, m=
= dim Y). This fibre bundle is the projective limit of
the above system of fibre bundles in the category of
topological fibre bundles. We will see that Je (X,Y) is
a OF -fibre bundle later on (in § 9).

J® (X,Y) is a complete metric space, as a countable
projective limit of complete metric spaces.

4.2 For ¢® -manifolds with corners X,Y the mappings
i€ ¢® (x,7) - ¢°(x,75(X,Y)), O<k<w, are all injective
(since w o jkf=f).

Lemma: For any k=0,1,2,...,0 the image of the mapping
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jk: Ck(X,Y)eco(X,Jk(X,Y)) is closed in the compact open
topology.
Proof: We have to show that the image is closed under
taking limits of sequences which converge uniformly on
compact subsets. If suffices to consider compact convex
subsets of chart neighbourhoods. Finally we have to prove
the following: Let U be closed and convex in a quadrant
Q in an, let fn be a sequence of Ck—mappings U->R™ such
that for any r=0,1,...,k the sequence (drfn) converges
uniformly on U to a continuous mapping g : U¥>L§ym(Rn,Rm),
then drgo =8, for all such r.

The proof is by induction on r. The general step is
the same as the first step: if dfn-e &, uniformly on U,
£, 8, uwniformly on U, then for x,x+y in U (U is convex)

we have: go(x+y) =1lim fn(x+y)
n>®
=lin (£ (x) + /" at, (x+ty).y dt)

N=
=1im fn(x) + /' 1lim dfn(x+‘ty).y at
n 0 n

=go(x)+cf)1 g, (x+ty).y dt.
Therefore &4 =dgo, also on the boundary of U. g.e.d.

4.3 The compact Ck-topology or COK- opology on c(X,Y)
(0O<k<r<m ) is the topology induced on C¥(X,Y) by the
embedding (4.2) 7¥: ¢T(X,Y) - c°(X,d5(X,Y)) from the
compact open topology. The COk-topology has the following
properties:

1. The cok- opology on Ck(X,Y) is completely metrizable

(3.1 and 4.2), thus a Baire-topology.

2. (CF(X,Y),00%) for k<r is metrizable but not
complete. Its completion (in the canonical metric) is
just C5(X,Y).

4.4 The Whitney—Ck—topology or wok—‘topology on CF(X,Y)
(O<k<r<wm ) is the topology induced by the embedding
5% oF(x,Y) » c°(X,75(X,Y)) from the graph topology (or
the WO-topology, see below).

The WOk—topology has the following properties:
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1. A basis for open sets is given by all sets of the
form W(U) = {g € C¥(X,Y), 35g(X) U}, where U is open in
TE(X,Y).

2. If 4, is a metric on J(X,¥) (0sk<wm) generating
the topology, and if f € C¥(X,Y), then the following is a
neighbourhood basis for £ in the WOk—- opology:

N(2,k,¢): = {g € CT(X,¥): a4, (3%(x), F(x)) <e(x) for all
x €X}, where € €C(X,70,m [).

3 A sequence f in ct (X,Y) converges to f€ o¥(X,Y) in
WO iff there ex:.sts a compact set KX such that f

E vals fcgﬁ X for all but finitely many n's and
- J°f uniformly on K.
4, If T is a compact connected metric space and
f: T- (Cr(X,Y),WOk) is a continuous mapping, then there
exists a compact set K<X such that t-f(t)(x) is constant
for x € X\K.
5. (CF(X,Y),w0T) is a Baire space. Each CO'-closed
subset of CT(X,Y) is a Baire space too in WO (O<r<m ).
6. W0o® is the projective limit topology of all the
topologies wok, O<k<m.

7. A basis of open sets for (C® (X,Y),w0® ) consists
of all sets W(U,k) from 1., for k=0,1,2,... .
Proof: The WO-topology and the woo-topology coincide on
the image of 3¥: CF(X,Y)- (X, 5(X,Y)): J5(X,Y)SX is
already a fibration and jk takes values in the subsets
of sections of this fibration. In more detail: the
graph of any jkf, T . lies already in XxXJk(X,Y) =

= {(x,0) EXxJk(X,Yg:for.(o) =x} X x75(X,¥) and J5(X,Y) 5
- XxXJk(X,Y) gXxJk(X,Y), o~ (a(o),0), is a topological
embedding. So 1. and 2. follow from 3.2, 3. follows from
3.3, 4. is implies by 3.4, 5. by 3.5 and 4.2.

6. is seen as follows: (nk )"1 (U), U open in JE (%,Y),
k=0,1,2,..., is a basis of the topology on J® (X,Y) vy
construction. This implies 7. and 7. implies 6. q.e.d.

4.5 "We now want to compare (C® (X,Y),Wo® ) with function
spaces known from functional analysis. For that we need
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gome subresults.
1. (X, ¥x3) = I5(X,Y) x (I(X,2); this is evident in
charts.
. (C5(X,Y % 2),W0E) = (C5(X, ) ,W0K) x (¢¥(X,2),W05);
the decomposfclon of 1, 1s compatible w:.'th the decom—
position jk(f,g)—(g z,i%2) for (£,z) € C5(X,Tx2):

. (5%, 1%) Jk(X’Y)XXJk(X,Z)ng(X,Y)xJk(X,Z)

iE(£,e) TE(X, Y x2)

%. For he C5(Y,2) the mapping hy =C5(X,h): c¥(X,T) -
» c¥(X,2), given by hy(f) =h.f, is WO -continuous:
JE(x,n): J5(x,¥) »I(X,2) is continuous by 1.10, 2.14,
even for k=m by 4.1, so J5(X,h),: ¢°(X,I5(X,¥)) »
- CO(X,Jk(X,Z)) is trivially WO-continuous, nearly by
definition, and the following diagram commutes:

k
*(x,7) —I—— °(x,55(x,1))

l by N l JE(x,h),,
o(x,2) —l— 0O(x,55(x,2)).

4. ¢® (X,R) is a topological ring for the WO® —topology;
i.e. (f,g)~>f-g, (f,8)>f.g are continuous in WO® . This
follows from 2. and 3. But (C%® (X,R),W0%® ) is no topolo-
gical vector space, otherwise -1- £-0 in WO® for all
e c® (X,R), but this is only true for £ wlth compact
support by 4.4.3.

Therefore the space ® of all ¢® —functions with compact
support on R® is the meximal subspace of C® (R™,R) which
is a topological vector space in wo® .

Iet K cR™ be compac’c denote By = {g €®: supp g <K},
then on EK the ¢0%® ~topology and the Wwo® ~topology coin-
cide. If r<w, then (O7,W0%)=1lim (9,C07) in the

kR0
category of topological vector spaces, as can be seen
from HORVATH (1966), p. 171. By 4.4.6 we have (D,W0% )=
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= lim (9T,W0%) =¥ (as it is denoted by HORVATH), whose

P—

r
dual space (SJF)‘ is the space of all distributions of
finite type on rR™.

This is not the usuwal topology on D.

4.6 We want to construct the Lok—topology from the
LO-topology in the same way as above. This gives us a
new topology only in the case k=m® , because of the
following lemma:

Lemma: If k<o then the topology on ¢t (X,Y) (r=k)
induced by the embedding jk: c¥(x,Y) » c°(x, Jk(X Y)) from
‘bhe L0°-topology (or the LO—topology) coincides with the
WO —~topology.

Proof: The LO-topology and the I:Oo-topology on
C°(X,Jk(X,Y)) induce the same topology on CY(X,Y) via
jk, because jk maps into the subset of sections of the
fibration JX(X,Y) $X. Compare with the proof of 4.4.

By 3.6 the LOO—topology induces via jk a topology on
¢Y(X,Y) which is finer than the WOk-topology.

Now let fe€ C0F(X,Y). Let N(j¥f,I,e) be a basis neigh-
bourhood of j¥f in ¢°(X,J5(X,Y)) for the LO°-topology as
described in 3.7.1: L —(I’a) is a locally finite family
of closed sets in X, €= (¢ ) is a fam:Lly of positive
real numbers; d, is a metr::.c on J (X Y) compatible with
the topology. Then (3¥)~1(N(5%¢,1,¢)) = {g € ¥ (X,Y):
dk(jkg(X),jkf(x)) <e, for x € La’ for all x}.

By a partition of unity argument there is a positive
continuous real function e: X~-R such that e(x)<e if
x€L (since L= (L ) is locally :fin:.te ’ch:u.s is possa.ble)
Then N(f,k,e) = {secr(x 1): a4 (Fe(x), 1¥2(x)) <e(x) for
all x€X} ¢ (jk)-1 (N(j £,L,e)). So WOX is finer as
()7 (20%).  qee.d.

4.7 The ®-topology on C® (X,Y) is the topology induced
by the embedding j%: ¢® (X,¥)-c%(X,I® (X,¥)) from the
LO- or the LOO-topology, which coincide on the image of
jk (ef. 4.4). We have the following properties:
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1. A basis of open sets for the D-topology is given
by sets of the form: M(L,U) = {f € c® (X,1): P £(I ) <
c Un}, where L= (L ) is a locally finite sequence of
closed sets in X and (U ) is a sequence of open sets in
IJ® (X,Y). (Bach locally flnite family is essentially a
sequence since X is locally compact second countable.)
This follows from 3.6.

2. The following is a basis of open sets for the
D-topology too: M'(L,U) = {fe c® (X,Y): jnf(Ln) cU},
where L = (L ) is a locally finite sequence of closed
sets in X and U, is open in J %(X,Y) for all neN.
Proof: (*rrm) 1(U), U open in J%(X,Y), runs through a
basis of open sets in J® (X,Y). Given any basic set of
1. one may repeat the I 's, reorderit, put Uy =J%X,Y)
and (nl) 1(U ) into the sequence (U ) to represent this
set as a union of sets of the form M'(L U).

3. Let K= (K ) be_a sequence of compact sets in X

with Ko=¢, K QK?1+1 (the open interiour), Lr,llKn=X. Then
the following system of sets jis a basis for the D-topo-
logy: M(U,m) = {£ € ¢® (X,¥): £(X\Kpo) € U} where

m= (mn) is a sequence in N and U, sd (x, Y) is open.
One may suppose m, increasing.
Proof: Any locally finite family L= (L ) satisfies
X\Kn (1) 2L ;X\Kn (1) for suitable mapplngs n,,0,5:
N—>N. The "Je‘c—order" of a set U (:‘J (X,Y) may be lifted
by (m)71(Uy) = (X, T).

4. Let f€ o® (x,Y), let d be a compatible metric on
Jm (X,Y). Then all sets of the following form are a basis
of neighbourhoods of f: N(f,L,e) ={gec® (X,¥): a(i®a(x),
i® £(x)) <e, for all x €L, for all n}, where L=(L ) is
a locally finite sequence of closed sets, e¢= (en> 0) is a_

sequence of positive constants.

The following sets form a basis of neighbourhoods too:
N(£,0) = {g € 0% (X,7): o (x)a(3%(x),3% £(x)) <1 for all
x€X, for all n}, where o= (cpn), 9, € C(X,[0, ), (supp cpn)
is locally finite. This follows from 3.7.
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5. Let 4, be a compatible metric on J%(x,Y) for any
k, then for fe ¢® (X,Y) the following is a basis of
neighbourhoods: V_(f) = {g € c® (X,1): cpn(x)dn(jng(x) ’
j%£(x)) <1 for all x €X, for all n}, where again cp=(CDn),
nEC(X,[O,CO [), with (supp cpn) locally finite.

This can be deducad from 4. or directly from 2. (see
MICHOR [27).

6. (¢® (X,Y),9) is a Baire space. Each 00%° -closed
subset of C® (X,Y) is a Baire space with the ®-topology.
This follows from 3.10 and 4.2.

7. If (£,) is a sequence in c® (X,Y) and fec® (X,Y),
then we have: f -»f in ® iff there exists a compact set
KcX such that f equals £ off XK for all but finitely
many n's and i® f ]K—)J f|K uniformly (i.e. £,~f in
c0® ). This follows from 3.8.

8. Let f: T~ (¢® (X,Y),D) be a continuous mapping,
where T is compact connected metric. Then there exists a
compact subset XK cX such that t- f(t)(x) is constant on
T for all x € X\K. See 3.9.

9. (¢® (x,Yx2),D) = (¢ (X,¥) :s)x(c"" (%,2),9).

Proof: As in 4.5.1 and 2. we have J° (X,¥x2) =
= J%° (X,Y)x}gﬁ” (X,2) and
(;® g)

> 3% (X,Y) xxJ ®(X,2) € I (X,Y) xI®(X,2)

- I
i~ (£,8)
’ J® (X,Tx32)
commutes for all (f,g) in ¢® (X,Y) x¢® (X,Z). So the
T0-topology on C°(X,d% (X,¥x2)) =0°(X,d% (X,¥) x4I® (X,2))
induces the same topolcgy on both spaces. q.e.d.

4.8 Proposition: Let (E,p,X,RT) be a ¢® —vector bundle
over a manifold with cormers X. Let T, (E) denote the
space of all c® sections with compact support of this
bundle, equipped with the trace of the D-topology on

® (x,E). g_llg_lll"c(E) is the maximal subspace of T'(E)
which is a topological vector space in the @-topologl.
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(I‘c(E),E) is a complete locally convex vector space, a
nuclear (LF)-space, dually nuclear and a Lindeldf space,
hence even paracompact and normal.

Proof: T'(E), the space of all C® —sections of E, is a
closed subset of C® (X,E), since po s=1Id, is a continuous
equation in s for the ®-topology. (py: ¢ (X,E)- ¢® (X,X)
is ®-continuous; this is trivially seen in 4.5.3; it will
be explicitly proved in 7. below). I‘c(E) ={s €T(E):

-11;1-. §-0 in 9} is clearly the maximal subset of T(E) which

is a topological vector space.

Since X has a finite atlas (see GREUB, HALPERIN,
VANSTONE I), there exists a second vector-bundle (F,p',
X,Rp) such that the Whitney sum E®F is a trivial vector
bundle over X, so BE@F=XxR™P. By 4.7.9 T((B) is a
topological subspace, even a direct summand in I‘ (E@F) =

=T, (x me+p)='-$)(X)m+p, where ®(X) denotes the space of
all smooth sections with compact support; the topology
is the nuclear (LF)-topology of L. SCHWARTZ, as can be
seen from comparing 4.7.3 with HORVATH, p. 170. We will
give a direct explicit proof of this fact later.
So 9(X)®*P is an (LF)~space too, i.e. a locally convex
direct limit of a countable strict family of separable
Fréchet spaces, which can be identified with :SJK (X)m+p =

= {f € D(x)2P, supp f <K }, where K—(K ) is a sequence
of compact sets Kng wrbh K cK and X=U K . Each
1

1 +1
‘DK (X is a Lindeldf space since it is separable and
me‘brlc, so 5D(X)m+p and its closed subspace T, (B) are
Lindeldf too. Since they are clearly comple‘bely regular,

they are paracompact and normal. Since T, (E) is even a
m+p

)D.H'p

direct summand in ®(X) it is nuclear and dually

nuclear and an (LF)-space too. q.e.d.

4.9 Remark: None of the topologies on C® (X,Y) mentioned
so far is fine enough for our porposes, since (C® (X,Y),
®) and (¢® (X,Y),w0® ) are not locally contractible, not
even locally arcwise connected if X is not compact: If f
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and g€ ¢® (X,Y) are connected by =2 continuous curve

e: [0,11-C%® (X,Y), e(0) =%, c(1) =g, then f and g differ
at most on a compact set KcX as can be seen from 4.7.8
and 4.4.4.

This is true for all topologies between W0° and ®. So
there can be no way to make a manifold out of C% (X,Y) in
any sense, if one insists that there should be open chart
neighbourhoods, modelled on topological vector spaces.

£.10 Definition: Let X,Y be smooth manifolds with corners.
Call f,g €C® (X,Y) equivalent, f~g, if the set

{xeX: £f(x) +g(x)} is relatively compact in X. This is
clearly an equivalence relation on ¢® (x,1).

Now the fine-®-topology or (FD)-topology on C® (X,Y)
is the coarsest topology on C® (X,Y) which is finer than
the ®-topology and makes the above equivalence relation
to an open one.

An equivalent description of the (F®)-topology is the
following: take all eqguivalence classes, induce the
P-topology on them and take their disjoint union.

Or: Declare all equivalence classes to be open and add
them to the open sets of the ®-topology.

It is clear how the different bases and neighbourhood
bases of the ®D-topology described in 4.7 give bases and
neighbourhood bases of the (FD®)-topology: intersect all
basic open sets with equivalence classes; intersect each
basic neighbourhood of f with {g: g ~T}.

The (FD)-topology was called EG)—topology in MICHOR
(1978), where it was introduced.

4.11 Remarks:

1. The (FD)-topology has the same converging sequences
and continuous curves as the - and the WO“)—topology,
since 4.7.7 and 4.4.3, 4.7.8, 4.4.4 remain valid.

2. In the notation of 4.8 TC(E) is open in T(E) for
the (FD)-topology. So T(E), the space of all sections of
a vector bundle, equipped with the F®-topology, is a
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local topological affine space with model topological
vector space (I‘C(E),E): For any s € T(E) the set
) +I‘C(E) is an open neighbourhood of s and an affine
subspace which is isomorphic to I‘C(E). We will see later
on that this is enough structure to get calculus on T'(E).
3. (¢® (X,Y),(FD)) is no longer a Baire space, since
I‘G(E) is no Baire space, if X is not compact: Let (K )
be a sequence of compacts in X with K =g, K L °,

U K, =X. Then each I‘K (E) ={s er(E), supp s;K} is
n
novhere dense in T, (E) but T (B) =y Tx (E).

We will see later that (Cm (x, Y)n(F@)) is locally
homomorphic to spaces of type T (E), so ¢® (X,Y) is no
Baire space either, but we may conclude that (¢® (X,Y),
(FD)) is paracompact and normal. This is an open problem
for WO® and ®.
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5 Open subsets

Let X,Y be manifolds with corners, if not explicitly
stated otherwise.

5.1 Proposition:

1. The set of immersions Imm™(X,Y) is WO'-open in
Cr(X,Y) for each r>1. (Therefore open in each finer
topology to0o).

2. The set of all submersions Sub’(X,Y) is WO1—_g_p_e_:51_
_.'j__n_Cr(X,Y) for each r=1.

Proof: f: X»Y is an immersion (a submersion) iff j1f(x)
has maximal renk in J} £(x)(%:¥). The set of all 1-jets
of maximal rank in JAI (),C,Y) is an open subset, even an
open sub fibre bundle Sl(X,Y), so Imm(X,Y) (resp.
Sub(X,Y)) = {£ € 6"(X,¥): 3'2(X) =8} (X,Y)} is a basic WO'
open set. q.e.d.

5.2 Definition: A continuous mapping f: X- Y is called
proper, if ! (K) is compact for each compact K¢ Y.
Proposition: The set CrrOP(X,Y) of all proper CT-mappings
is W0° open and closed in CT(X,Y), r=0. cgmp(x,Y) is
not empty if dim Y=>1. For the proof we need a sublemma.
Sublemma: Let X be a manifold with corners. Then there is

a complete metric on X generating the topology, such that
each bounded subset is relatively compact.

Proof of the sublemma: As in the lemma in 2.7 let o be
the local flow of a strictly inner vector field g on X,
guch that e is everywhere defined for some e¢>0, then
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X-»X\b X embeds X as a submanifold with corners of
the manifold without boundary X\b X. Choose a complete
Riemannion metric on X\b X (these form a CO® -dense
subset of the set of all Riemannion metrics, see MORROW
(1970)). Geodesic distance has the stated property on
X\»'X. Since the image of o, is closed in X\»'X, the
pull bank of the geodesic distance via e has the stated
properties on X. g.e.d.

Proof of the proposition: Let d,d be complete metrics on
X,Y resp. such that each bounded subset is relatively
compact. Choose any constant e¢>0. For f e ¢® (X,Y)
consider N(f,e,0) = {ge cT(X,Y): aA(£(x),g(x)) <e for all
x € X}.

Claim: If f is proper, thenany ge N(f,e,0) is proper too.

If KcY is compact, then L= {ye¥Y: d(y,K)<e} is
compact too, so f"1(L) is compact in X. If xé;f'1(L) then
g(x) €K since f(x) €L and d(g(x),f(x)) <e.

So g_1(K)s;f"1(L), s0 g"1(K) is compact.

Claim: If f is not proper, then no g€ N(f,e¢,0) is proper.
There is a compact K<Y such that f_1(K) is not
compact. Define L=1{yeY: d(y,K) <e}, then L is compact.

If x€f 1(K), then £(x) €K, so g(x) €L, so x€g ' (L).
Therefore g_1(IJ 2f’1(K), s0 g_1(L) contains a closed
but not compact set, so g_1(L) is not compact either.

To prove the last claim of the proposition, let
X, €X be fixed, let f(x) =d(x, X, ) . If d is as constructed
1n the sublemma, then f is Ca)functlon on X. Furthermore
£~ ([—n,n]) is compact in X (d-bounded and closed). Now
take any embedding c: R~ Y and consider c. f € C% (X,Y).
This mapping is proper. g.e.d.

See MATHER (1969) and HIRSCH (1976) for alternative
proofs of parts of the proposition.

5.3 Proposition: The set EF(X,Y) of all embeddings is
wo'—open in CF(X,Y), r=1.

The set of injective immersions is not open.
Proof: Congider <first U open and convex in a quadrant
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Q in R™, let Q' be a quadrant in R, let f£: U-Q' be a
C1-embedding. By Taylor's theorem we have for x,x+y € U:
£(xty) - 2(x) =af(x).y + [ (1-t) (af(x+ty) - af(x)).y dt.

Put U(1) =inf{|1(y)|: } for 1eL(R®,R™®), then
U: L(R®,RT) >RV is a continuous function and U(l) >0 iff

1 is injective. Then we get (1)
| £(x+y) - £(x)| 2U(af(x)). |yl -/ (1-t)||af (x+ty)-af(x)|| | y|dt.

Let e(x) =U(af(x))/4, then e: U-)fR is continuous, e(x)>O0.
Choose 6:U->R continuous, &(x)>0, &(x)<e(x) such that
|z] <8(x) implies ||df(x+z) -df(x)|| <e(x). Then we have:
|yl <®x), x,x+y €U imply

| £(x+y) - £(x)| > 4e(x).|y| - e(x)|y| =3e(x)|y|. Now

€ U-»R, €y (x)>0 be a continuous functlon such that the
following holds if g: U-»Q' is a C ~function and

lag(x) = af(x)l| <e, (x) for all x €U, then

|U(dg(x)) -=U(af(x))| <e(x). Let WeU be open, convex and
such that W is compact cU. For x€U let

e, (x) =inf{|£(x) - £(z)| : z €M {x+y: |y| <8(x)}}>0. This
is a continuous function since £(W\{x+y: |y| <8(x)})is
compact. Let € (x)<e1(x), €5t U-»R continuous, e3(x)>0,
such that e3(x)<inf{e(x+y): lyl <8(x)}.

Claim: Let ge (! éU Q') be such that the following hold:

62 X
lg(x) - £(x)| <—7— for all x€T.

[[dg(x) - af(x)|] <-—eg—i- for all x €U, Then g|W is an
embedding.
Proof: U(dg(x) =U(af(x)) - |U(as(x)) -U(dg(x))| >
> 4e(x) —e(x)>0, so g is an immerion on U.
Now let x,x+y €W, y+0. If |y| <8(x), then estimate
(1) for g shows:
lg(xty) —g(x)| =U(dg(x)|y| - [ (1-t)l|dg(x+ty) - dg(x)] | y| dt.

But ||dg(x+ty) - dg(x)l] <|ldg(x+ty) - df (x+ty)|| +
+ l!df(§+t§) df(x)l|(+l;df(x) -dg(=x)ll <

X € X
< —3——2———X+e(X) +-12——<2e(X)

Therefore |g(x+y) -g(x)| =U(dg(x))|y| -2e(x).|y| >
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> (3e(x) -2e(x)) |yl >o0.
If on the other hand |y| = 8(x), then we have:

|g(x+y) - g(x)] ZIfEX+y)—f(x)B - If(X+y§ - g(x+y)| -
e5(x +e2(x+y e2 X+y e2 3’
- lféxg -g(x)| = 5 7
€,(x) +ey(x+y
= 4 > 0.
So g is injective. Since W is compact, g|W is am
embedding, so g|W is it too.

We have proven the claim.

Now we look at the general situation again: X,Y are
manifolds with corners, f: X»Y is an embedding (Cr). Let
d,d, be metrics on ¥, gt (X,Y) resp. which are compatible
with the topologies. Ugsing the first part of the proof
we may find the following data: a locally finite open
relatively compact cover (U ) of X, compacts K in U
such that (K ©) is still an open cover, contin&ous
positive fu.nctlons ea, 6&’ defined cover Ua’ such that the
follow1ng holds. if g € ¢'(X,Y) and d(g(x),f(x))<e ()5
d, (j g(x),] f(x))<6 (x) for all xEU , then g\Ua :Ls an
embeddlng.

By a partition of unity argument we find continuous
positive functions e, on X such that e(x)<ea(x) if
x€U,, 8(x) < %(x) if x€T_.

Since f is an embedding, there are disjoint open sets
A, B sY with f(KOL) L?“ and f(X\Ua) < B,.

Now let 8 be the WO -open neighbourhood of £, given
by 8={gec(X,1): ala(x),2(x)) <e(x), 4,(3'2(x),5 e(x)) <
< 8(x), g(X )gAm, g(X\U ) ;B for all x €X, for all al.
Claim: Bach g€%8 is an embeddlng. By construction glU
is an embedding, so g is an immersion.

If x,y in X, xéKa, x+y, then we have: yEU‘JL implies
g(x) £g(y) since glU is an embedding.

vy €X\U_, then g(y)Gg(X\U )eB o’ g(x)eg(K )gA , SO
g(x) :l:g(ygL Therefore g is 1njective.

We have to show finally: g: X-g(X) is a homgomor-
phism. It suffices to show if (xn) is a sequence in X
such that g(xn) »g(x), then X, > X.

45



x is contained in some Ka’ so g(x)e ACL which is open.
So all but finitely many g(xn) €A, only finitely many
g(xn) (EBa, therefore only finitely many x are not in
Ua' Since g]Ua is a homeomorphism onto its image, x - X.
g.e.d.
5.4 Corollary: The The set BY___(X,Y) of all closed
embeddings is wo' open in CI'I()X Y), r=1.

r =g r
Proof: EprOP(X Y)=E" (X,Y)n CprOP(X,Y).

5.5 Let us denote the set of all surjective ¢ -sub-
mersions of X onto Y by QY(X,Y), r=1. If dim X<din ¥,
then Q¥(X,Y) =@, if dim X=dim Y, then Q'(X,Y) is the

set of all covering mappings.

Example: Let X=Y=[0,1]. Let £.: [0,1]>[0,1] be given
by £4(x) =t.x. Then £, Tdry 44 for t>1 in (¢® (x,1),9),
but no £, is surjectlve if t=}=1 So QF(X,Y) is not open.
Lemma: Let X,Y be manifolds without boundary, let

f: X>7Y be a surjective Cr—submersion, r=1. Then there

exists a WO°- open neighbourhood of f in ¢® (X,Y), con-

sisting entirely of surjective mappings.
Proof: Let f: X-»Y be a surjective submersion. Using
the theorem of implicit functions. we can construct the

following data:

(1) (u. Uy ), a locally finite atlas of X, such that
u; (U )=2D7, the closed unit ball in R®, for each i
(n dlm X), and (U ) in still locally finite.

(2) (V V5 ) an atlas of Y such that v (V ) 2 D%

(m=4dim Y) a.nd (v:L 1(Dm)) is still a cover of Y.

(3) f(U )CV for each i, and there is an m—dlmensn.onal
linear subspace L cr® , and a linear 1somorph:|.sm 1: R®» 1L
such 1(v, (V;)) r_:u.i(Ui) and 1ov; e fou, " 1. u, (U5) cRM- L
coincides with the restriction of the orthogonal projection

onto L.
Now for any i choose B , a closed ball of center O and
radius >1 in R® such ‘that D r:B (V ).

Then choose € > 0 in such a Way, that for any z € o™
X € dB; and yERm with |x-y] <e; the following holds:
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the ray from z through y meets bBi in a point u with
|x-u| <1 <diam B;.

Now let WeC°(X,Y) be the following WOC-open neigh-

bourhood of f: W={ge C°(X,Y): |vig(x) —vif(x)] <e;
for all xEUi, for all i}.
Claim: Each g€ W is surjective. It suffices to show
that v, o g(U ) 2 D™ for then g(Ui) _>_*vi"1 (D™)
and the v, 1(Dm) still cover Y.

By condition (3) we have vy o u."1 ° l"'Idv,(v_)‘

ivi

Let hy =v, cgou-1ol.v(v)->R For any g €W we
have \h (x) -x| = \v og(u. l(x)) -V e f(u. —1l(x))) <ej.
Suppose that b, (B; )1;~Dm Then there is soms z EDm\h (B ).
Define H: Bl-abBi as follows: for x¢€ B; let H(x) be the
intersection with ®B; of the ray from z through hi(x).

H is continuous since z¢hi(Bi). By choice of e; and
Ihi(x) - x| <e; we have H(x) £-x for all x € B, . Therefore
H| ®B;: dB; » dB; is homotopic to the identity (a homo-
topy connec‘t:.ng H| ®B; and Id, moves H(x) along the
shorter great circle to x). A ;wvellknown theorem of
algebraic topology (equivalent to Brouwer's fixed point
theorem) says that no continuous mapping g1 5 g1

which extends to a continuous mapping D™ Sm—1
homotopic to the identity. This contradiction shows that
Dmghi(Bi) for all i and proves the lemma. q.e.d.

can be

5.6 Corollary: Let X,Y be manifolds without boundary.
Then the set QF(X,Y) of all surjective submersions

X-+Y (r=1) is W0' open in C¥(X,Y).
Proof: Use 5.5 and 5.1.
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5.7 Corollary: Let X be a manifold without boundary
Then the set DiffY(X) of all C'-diffeomorphisms of X
onto X is WO' open in C¥(X,X), r=1.

5.8 Lemma: Let X,Y be C°-menifolds without boundary,
let f: X» Y be a homeomorphism. Then there is a wo® open
neighbourhood of f EE'CO(X,Y) consisting entirely of
surjective mappings.
Proof: If f==I@X,thenone may carry over the proof of
lemma 5.5: in this case one only needs the cover (2), so
there is no need for the implicit function theorem.

Now if B¢ C°(X,X) is an open neighbourhood of Tdy

consisting entirely of surjective mappings, and if

f: X>7Y is a homeomorphism, then by 4.5.3 f£,: C°(X,X)~
> 0°(X,Y) is Wo®-continuous with WOC-continuous inverse
(£71)4, s0 £,(8) = {f.g: g€B} is a WO° open neighbour-

hood of f consisting entirely of surjective mappings.
g.e.d.

5.9 Definition: Let X,Y be manifolds with cornersgs again.
Denote by C (X Y) the set of all "border faithful" mappings
in C%(X, Y), i.e. t)(y Y) = {fecT(X,Y): £(» X) c» Y}. Since
> X and » Y are closed, Cb(X,Y) is closed in the W0°-
topology.

5.10 The double of a manifold with corners: Let X be a
manifold with corners. DX, the double of X, is the
identification space obtained from (Xx0) U(Xx1) by
identifying (x,0) with (x,0) if x € dX. DX is a C°-mani~
fold (since any quadrant is homeomorphism to a half space).
If X has smooth boundary, then there is a ¢® —structure
on DX inducing the given ones on the two copies of X in
DX, and this structure is unique (up to diffeomorphisms):
uniqueness of gluing, see e.g. HIRSCH (1976), p. 184.

Let X,Y be manifolds with corners, then we have a
mapping D: cg(x,Y)—»c"(Dx,DY), defined by Df = (£fx0) U
U (fx 1 )/N.

It is clear that D: c°(x Y) » ¢°(DX,DY) is a topological
embedding for the wo° —topology D has values in Cb(DX DY),
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i.e. the set of all f in C°(DX,DY) mapping the submani-
fold » X of DX into p Y.

There are two continuous projections Cg(DX,DY)—>Cg(X,Y),
which are left inverse to D, given by g->pe go io,
Pegel,, where p: DX-»X is induced by p(x,0) =x,

p{x,1) =%, and iyt X»DX, i,: X>IX are given by io(x) =
= (x,0), i1(x)==(x,1). Since i_,i, are closed embeddings,
these projections are continuous (cf. § 7).

5.11 If X is a manifold with corners and f: X-»X is a
diffeomorphism, then automatically f(» X) cd X, so
Dize"(X) & €1 (X,Y), r=1.

Proposition: Let X be a manifold with cormers, then
Diff¥(X) is o' open in CI(X,X), r=1.

Proof: If fED:Lffr(X) c cr(x X), then Df: DX~ DX is a
homeomorphlsm. By 5.8 there is a wo° open neighbourhood
BcC (DX,DX) consisting entirely of surjective mappings.
Then D™1(B) is a WO° open neighbourhood of £ in o2 (x,x)
congsisting entirely of surjective mappings. But then

D1 (8) nEY(X,Y) (cf. 5.3) is a WO' open neighbourhood of

£ in C (X X), consisting entirely of diffeomorphisms.
g.e.d.

49



6 Transversality and dense subsets

This section lies somewhat outside the main line of
development of thig book. We include it since we have at
hand all the necessary background on manifolds with corners
and topologies on spaces of mappings. We prove the
trangversality theorem for manifolds with corners, in a
formulation glightly more general than the usual one,
thus solving two problems stated in HIRSCH (1976). See
GIBSON (1979), BOLUBITZKY-GUILLEMIN (1973) and HIRSCH
(1976) for proofs in the setting of manifolds without
boundary.

6.1 Definition: Let X1,X2,Y be manifolds with corners,
let fi: Xi-eY'be smooth mappings, i=1,2.

We say that f1 and f2 are transversal at y €Y if
Im Tx1f1 +In szfz = TyY whenever f, (x1) = fg(xg) =y. In
symbols: :E1;Qf2 at y. f1,f2 are said to be transversal,
f1,$f2, if they are transversal everywhere. Finally we
say that f1 and f2 are transversal over Ax B (where A;X1 R

Bc X, are subsets) if T f (T X )+T f (T X,) =
2 X1y Xy 27 "xy72
= Tf1(x1)Y for all x, €A, x, € B such that f1(x1)==f2(x2).

6.2 If f: X->Y is a submersion between manifolds without
boundary, then ¢! (point) is a submanifold of X, whose
codimension equals the dimension of Y if it is not empty.
If furthermore Z is a submanifold without boundary of Y,
and £A2 (i.e. £Ai, where i: Z~»Y is the embedding),
then f"1(Z) is a submanifold of X, whose codimension
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equals the codimension of Z if it is not empty. Finally
let £,: X, »Y (i=1,2) be smooth mappings between mani-
folds without boundary. If f1 E.fz then the topological
pullback X, x (Y,f1 ’fz)Xz = {(x1 ,x2) €X, xX,: £, (X1) =

= fg(xg)}y
. pr,
X1><(Y,f1,f2)X2 — %
pry l %
4
X > X,

1
is a submanifold of X1 xX
For X1 X(Y,f £, )X _(f xf ) (A) where f1 xfyi

X1 xXg-*YxY and where A is the diagonal of Yx Y, and we
have (f, xf,) A A 1ff £, AL,.

All those results break down if we consider manifolds
with cOrners.
Example: Let £: R®->R be a smooth mapping such that £ 1(0)
is very bad, a Cantor-like set in R™, say (any closed
subset of R™ is of the form £ ' (0) for suitable smooth f
by a partition of unity argument). Consider g. R™ xR, >R,
g(x,t) =f(x)+t. Then g is a submersmn, but g (O) has
intersection £ 1(0) with R%x {0} = a(R™ xR+).

The following lemma will serve as a substitute for
results as above.

6.3 Lemma: Let X,Y,Z be manifolds with cormerg, Z a
submanifold with corners of Y. Let £: X-»Y be a smooth
mapping and suppose that £AZ. Let X be a manifold with-
out boundary of the same dimension as X containing X as
a submanifold with corners (2.7).

Then (), as a subset of X, is covered by at most
countably many submanifolds without boundary V. of X of
the same codimension as Z, such that for any x c£7(z)
we have '1‘ f. T V., ng(x

Proof: Let x€X w:x_th f(x)€Zc¥. Let (U,u,Q) be a chart
for Y centered at f(x) € ¥ and making Z to a submanifold
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with corners, i.e. w(Un2Z)=u(U)nQ', where Q' is a
quadrant in IRKCIR , Q'€ Q. Here m=dim ¥, k=4im Z.
Consider the mapping h=pr,. u. f: f'1(U) cX->U->u(U) ¢
c QcRm—IkalR k—HRm k. Thls mapping is defined on an
open neighbourhood of x in X. Enlarge h to an open neigh-
bourhood of x in )?‘, using the Whitney extension theorem
(2.2). h is a submersion at x since £AZ, so it is a
submersion in an open neighbourhood W of x in '}\(‘ Clearly
£ z)nwen™(0)nw. Put 171(0) nW=: V_, one of the
submanifolds referred to in the lemma. Clearly countably
many of these V_ suffice to cover £ (z). q.e.d.

This lemma is weak but it suffices to prove the
following:

6.4 Lemma: Let X,Y,Z,W be manifolds with corners, let
f: Z-Y be a smooth mapping. Let o: W= ¢® (x,Y) be a
mapping. Consider 3: WxX-Y, given by &(w,x) =o(w)(x),
and assume that & is smooth.

If 3AF then the set {weW: o(w) AL} is dense in W
(in fact: its complement in W has Lebesgue measure O0).

Proof: Consider 3 xf: WxXxZ->Y¥YxY. Since 8 Af, ¥ xf is
transversal to the diagonal A of Yx Y.

Let W,X,Z be manifolds without boundary containing
W,X,Z as equal dimensional submanifolds with boundary,
respectively, using 2.7. By lemma 6.3 there are countably
many submanifolds V; of TxIx¥ without boundary whose
union contains (8x£)~1(4) s WxXxZcWxEx2, having the
same codimension as A, such that

w,2,2) EXE) Ty 2 535 € T(a(w,x),2(2))0 TOF
(w,x z) ev,n (3 xfs‘{(A).
Denote by Tt V —>W the restriction of the projection
Wxxxz->w for all i.
Clalm If weéW is a regular value (in W) for all m; then
cp(w),&f If this claim is true then we are done, since
we can use Sard's theorem (for manifolds without boundary):
The complement of the set of regular values of uf in ¥ has
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Lebesgue measure 0, so this is true in W too. The comple-
ment of the set of all wé€ W which are regular values of
each ™ is a countable union of sets of Lebesgue measure
O then, so is itself of Lebesgue measure O.

Thus let w€ W be regular for all ™ . If dim Vi =:k
(for all i) <dim W, then w{Eni(Vi) for all i, so
o(w)(X)n£(z) =@, so o(w) AL.

Suppose that k=dim W. Let y€Y. If y Eo(w)(X)n £(2),
then o(w) AFf at y. So let y€o(w)(X)Nnf(Z), choose
X € (cp(w))_1 (y), z€ £ (z2), so x€X, z€Z. Then (w,x,z) €V,
for some i and m, is submersive at (w,x,z) since w is a
regular value of ™5 - So N
T(w,x,z)ni'(T(w,x,z)Vi) =TWW=TEW. Therefore we have:

o~

YREXD =Ty o ) WXEx T =Ty o o)Wy +
y(1Ge,x)} x2) =
= T(y,x,2)1 + Nw,x,z) o x X dzb) + Ty (1Gex)} < 2).

(W x’z)(§)<f) to this equation:
T(w,x,z)("XfS(T(w,x’z)(wxxxz))=

(w,x,z

* T(w,x,z)( trh x X f21) v, x,2

Now apply T

= T(w,x,Z)(i X E) (P x,2) s ¥

+ T(w’x’z)(q’Xf)(T(w’x’z)(fW} xXwx{z})) +
+ T(w,x,z)(QXf)(T(w,x,z)( {(w,x)}x2)) ;T(y,y)A+
+

(Txcp(w).TxX) xO+Ox(TZf.TzZ) by the choice of V.
By hypothesis (&xf)AA, so

T(y,y)(YxY)=T(y,y)A+T(w,x,Z)(§Xf)(T(w,x,Z)wxsz)

and so T(y’y)(YxY) =T(y,y)a+(Txcp(w).TxX) x 0 +

+ Ox (Tzf.TZZ) =T(y,y)a +T(X’Z)(cp(w) xf).T(X’Z)(XxZ).
But this means (go(w)xf)AA at (y,y) and in turn

o(w)Rf at y. q.e.d.

6.5 Lemma: Let X,Y,Z be manifolds with corners, let
f: Z-»Y be a proper gnooth mapping. Then the set
(g€ c® (X,Y): g AL} is wo' open in ¢® (X,Y).

Proof: Let g€ C® (X,Y), gAf. Iet (4;) be a countable
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locally finite compact cover of Y such that the family
of open interiours (A °) is still a cover. Put

By:= (A ). Then each B; is compact since f is proper
(in fact: (B ) is a locally finite cover, but we will not
need this). The family (g~ 1(A %)) is an open cover of X.
Tet (Cc.) be a locally finite compact refinement of the
cover (g~ 1(A °)), let i(o) denote the refinement mapping,
so g(C,) = 1(a)

Now let x€C o Z EBi(o.)‘ Then the following assertion
holds:

Either g(x) £f(z), or g(kx) =f(z) and the linear
mapping T g+T f: T XxT Z->T (x)Y hag rank equal to dim Y.

This statement remains ‘brue for all x' GU n C o
z €V, and g'eN(c s 1s€y, ) ={hec® (X,Y): a4 (j h(x ),

3 g(x )) <e,, for all x! EC }, where U is an open neigh~
bourhood of x in X, V is an open neighbourhood of z in
Z, d; is a compatible metrlc on J! (X,Y) and €,z is a
constant >0. This follows since the rank of a matrix is
an upper semicontinuous function of the matrix.

Cover the compact set Ca by finitely many Ux’ say
Ux1 ,...,an, cover the compact set Bi(a) by Vz,' yeus ,VZm
and put ca-—-min{exi’z 1.

Let N(C_,1,e ) = {n'e ¢® (X,7): &, (3'n(x),3'a(x)) <e,
for all x€ Ca}. If g' EN(Ca’1’eo.) then g' Af over
Cax Bi(cn) by construction.

Now let e€: X- ]0,m [ be a continuous positive function
such that e(x) < €, for x€C  for all a. Such a function
exists since (C¢ ) is locally finite. Put
8 ={hec® (X,Y): a, (i'n(x),3'e(x)) <e(x) for all x}n
n {hec® (X,7): h(C ) €424y Tor all a}. Then 3 is WO'
open and g €8B. Ve cla:Lm that any g' €8 is transversal to
f. Let g' €8 and take x€X. Then x €C_ for some a.

If z ¢ Bi(a) then £(z) EAi(a) but g'(x) EA?_(G), so
g'(x) ££(z). If z EB.SG) then g' Af over (x,z) since
g' Af over C % B. for g' El\T(Ca,1,ea) for all o). So

i(a)
g' Af over {x} X Z. Since x was arbitrary, g' Af. g.e.d.
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6.6 Lemma: Let X,Y,Z be manifolds with corners, let
f: Z-»Y be a smooth mapping. The set {g¢ ¢® (X,¥):
gAfT over Ax B} is WO' open in C® (X,Y) if AcX and
BecZ are compact sets.

Proof: This is contained in the proof of the lemma 6.5
above: Put A=C o’ B= Bl( o) and construct N(C ARTH ) as
in the foreg01ng proof, then this is a WO open nelgh—
bourhood of g consisting entirely of mappings transversal
to £ over AxB. It is even CO1 open. g.e.d.

6.7 Corolla;x Let X,Y,2 be manifolds with cormers, let
£ Z->J (x,7) be a_proper smooth mapping Then the get
{g€c®(X,Y): ¥z af} is WO open in ¢® (X,¥).

Proof: jk: Ca)(X,Y)->C°>(X,Jk(X,Y)) is continuous from

the WOE'! to the WO'! topology by 7.1 below. But then
g€ c® (%,1): %gaz) =" ({hec® (x,55x,7)): hAL})
1s WOkt open by 6.5. g.e.d.

6.8 Theorem (Thom's transversality theorem):

Let X,Y,Z be manifolds with cormers with f: Z-aJk(X Y) a
smooth mapping. Then the set {g€C® (X,Y): j5g &2} is a
residusl subset of C® (X,Y) for the WO® and the
D-topology. Hence it is dense.

Proof: We have to show that the set (g€ c® (X,Y): j5g&f}
can be represented as a countable intersection of open
dense subsets. For that end choose the following data:
1. A countable cover (A ) of X by compact sets, each
A; contained in U, where (Ui,ul,Q ) is an atlas for X.
2. A countable cover (B;) of Y by compact sets, each
Bj contained in V., where zv ,V.,Q.:') is an atlas for Y.
3. A countable cover (C ) of Z by compact subsets.
It suffices to show 'tha't: each subset {ge€0® (X,Y):
3 gﬁ&f over (Airﬁg 1(Bj))xcn} is open and dense in the
two topologies considered, for their intersection is
just {g: g Af}.
So fix one of these sets and forget the indices. For
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g €0® (X,Y) we have :Jkg;l‘\f over (AN g_1(B)) x C iff

jkg,‘L‘,f over Ax (CNn(wo f)-1(B)); here w: J’k(X,Y)-oY is
the target projection, and the equivalence holds since:
x€Ang ' (B), z€C with j%g(x) =£(z) iff x €A, z€CN

N (wo £)71(B) with j¥g(x) =£(z). But then {g: j¥g&f over
(An g—1(B)) xC} ={g: ;jkgf’ﬂ,f over Ax (CN (wo f)-1(B))} =

= (O (fhec® (x,55(x,1)): AT over

Ax(cn (we £)71(B))}) is W0=*! open by lemma 6.6 and
continuity of j¥X. So this set is WO®- and D-open.

Thus it remains to prove density. Let he ¢® (X,Y). We
will show that we can approximate h by functions in
{g: jkgfﬂf over (AN g—1(B)) xC}.

Put D=An h-1(B), a compact set in the open chart
neighbourhood U. Put U!' =n"! (V) nU, an open neighbour-
hood of D in U. Let A: u(U')-aR+
function with compact support in u(U') such that A =1 on
an open neighbourhood u(U") of u(D).

Consider the mapping h' =veho u ' |u(U'): w(U')->v(V).
Consider the space R%x PX(n,m) (n=dim X, m=dim Y) of all
polynomial mappings R®->R™ of degree <k, and let E(Q,Q')
be the subset consisting of all o €R®xPX(n,m) with
o(Q) =Q'. We claim that E(Q,Q') is a quadrant. This is
seen as follows. Choose a basis for Rn such that Q has
the form Rn’l><(R+)l (1=1index of Q) in coordinates with
respect to this basis. Likewise for R™ and Q'. If
o: RE>R™ is a polynomial mapping then o(Q) Q' iff each
monomial of each coordinate function of ¢ with its
coefficient maps Q into Q', so o €E(Q,Q') if certain of
its coefficients are non-negative. For o(Q) €Q' iff certain
of its coordinate polynomials are non-negative on Q, and
a polynomial on RY is non-negative on Q iff each of its
monomials (with coefficient) is non-negative on Q. Now
let V' be an open set in R™ such that v(V)=V'NnQ'. Con-
sider the set W' comnsisting of all o in.Rm><Pk(n,m) with
(b' +2o)(supp A) €V'. Then W' is an open neighbourhood of
0 in.Rm5<Pk(n,m) (in the CO-topology, but this coincides

be a non-negative smooth
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with the usual topology). Put W=W'NnE(Q,Q'), an open
subset of a quadrant, so a manifold with corners. Note
that O €W.

Now define the mapping é: WxX-Y by &(o,x) =
=v1, (h' +x0)(u(x)) for x€U', 3(o,x) =h(x) otherwise.
Then § is a smooth mapping. Write Qo for the mapping
x> ¥(0,x), 0 €W. By construction the mapping (o,x)-
> jk(QG)(x), WxXaJk(X,Y), has the property that its
restriction 3 to Wx U" is a submersion. So clearly
3Af and by lemma 6.4 the set {o € W: 'Sc,ﬂ.\f} ={cew:

:jk( Qc),'lé\i’ over U" xZ} is dense in W, hence it contains a
sequence g, converging to O in W. But then the sequence
8,: =%, converges to h in WO® and ® since &, equals h
off thePcompact set u‘1(supp \) and g, converges to h
"uniformly in all derivatives" on this compact set
(4.4.3, 4.7.7).

By construction we have jkgnrgf over U" x C. But we
need Jkgnﬁ‘\f over (AN gn_1 (B)) xC.

Claim: There is an N such that Ang ~ (B) U" for all
n=N.

If this claim is true then we are done, since all -
n>N, are in the set {g: jkggf over (AN g"1(B))xC} and
the &y approximate h. So this set is dense.

Now we prove the claim: we have n~! (B)NAcU" by
construction. This is in turn equivalent to:
A\(h|2)~1(B) 24\U", and to (h|A)”'(T\B) 2 A\U"; thus we
have Y\B= (h|A)(k|a)~ 1 (YAB) = (h|A) (A\U").

Now A\U" is compact and Y\B is open, gn-eh in the
CO-topology too, so there is some N with gn(A\IJ“) cY\B
for all n=N. But then we have
AU < (g, |0)7" g (A\U") = (g, 4)7 (T\B) which is in turn
equivalent to A\(g,|4)~"(B)=2A\U", and to g ' (B)nAcU"
for n=N, what we wanted. q.e.d.

6.9 Corollary: (Elementary transversality theorem).
Let X,Y,Z be manifolds with corners with f: Z-Y a
smooth mapping. Then the set g€ C® (X,Y): gAf} is a
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residual subset of o® (X,Y) in_the Wwo® - and the
D-topology. If f is proper, then this set is WO1 -open
too.

Proof: We have J°(X,Y) =XxY and j%: X-J%°(X,Y) equals
the graph-mapping T' : X-XxY, x> (x,g(x)). It is easily
checked that for g€ 0® (X,Y) we have g&Af iff

T ,&R(Idxxf), i.e. j gA(I xf), where Idy xf: XxZ-»>XxY.
Therefore {gec® (X,Y): g;gf} ={g € c® (X,Y):

b gPA(IdXxf)} and the corollary follows from 6.8 and

6.5. g.e.d.

6.10 The rest of this section is devoted to a generali-
zation of transversality in jet spaces to transversality
in multi jet spaces and some applications.
Let X,Y be manifolds with corners. Define
X9 =XxXx...xX (s times) and X(S) = {(x1 se e e s Xy ) e xS
xl={=x for i+ j}, an open submanifold of X°. Let
a: Jkix,Y)»X be the source projection, let
oS: I5(X,¥)%>%° denote the s-fold product mapping. Then
(8) 5k (x,7): = ()1 (x(8)) ig called the s—fold k-jet
btindle. A multijet bundle is some s-fold k~jet bundle.
k(X Y) is a fibre bundle over X(S) x Y°.
Now let £f: X>Y be a smooth mapping. Define
(s); kf X(S) (s) k(X Y) in the obv:Lous way, i.e.
(S) kf(x1,...,x Y=(3 f(x1),...,;] f(x )).

6.11 Lemma: Let X,Y,Z be manifolds with corners, let
f: Z- [S}J (x, Y) be a smooth mapping. Let Ac;X(SS, BeZ
Py Then thg set g€ e® (; (X,Y):
j gfﬂf over AxB} is wok* -open in ¢% (X,Y).

Proof: Let ge ¢® (X,Y), (s)jkgr’gf over AxB. Let
X= (x1 yeoo ,xs) €A, z €B. Then the following holds:

Bither (8)gkg(x) £ 2(2), or ()3%(x) = (3¥e(x,), ...,

3 g(x ))—(f (z),...,f (z))—f(z) and each l:l.near mapping

(jﬁs)'*'T zfit Ty Xx‘l‘ Z—>’.'L‘f (z )J (X,Y) has rank equal

to aim J5(X,Y).
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This statement remains true for all
x'.—.(x1 pe e Xy ')G(U X eeex U )nx(s)nA z' €V, and

g' GN{hE ¢® (X,Y): Ay (3k+1h(a) Jk+1g(a)) <°x,z for all
a€Al, where d 1 is a compatible metric on
Jk+1(X Y), A= U pry (A) €X is a compact set,

i=
pry X(s)-)X being the i-th projection, and where

U 4e00,0 are open neighbourhoods of X,,...,x_ in X
X, Xg 1 s

respectively and Vz is an open neighbourhood of z in Z.
This follows from the upper semicontinuity of the rank
of a matrix. Now cover the compact set A by finitely many
of these sets Ux X oo xe , cover the compact set B by

1 s
finitely many of the Vz's and let ¢ be the minimum of all
the €y corresponding to these covers. Put

2
{hecm (X,Y): dk+1(jk+1g(X)( §k+1h(X))<e for all
S Jkg'f’l‘\f over AxB. q.e.d.

xEA} then for g' €8 we have
6.12 Theorem (Multijet transversality theorem).

Let X,Y,Z be smooth manifolds with corners with

£ 7 s)J]‘{(X,Y) a_smooth mapping. Then the set

{gec°° (x,Y): ‘S jkg,&f} is a residual subset of 0% (X,Y)
in the WO® ~ and the D-topology. Hence it is dense.

Proof: Again we have to show that the set {g: (S)J g AT}
can be represented as a countable intersection of open
dense subsets. The method of proof is the same as in 6.8.
Choose the following data:
1. A countable cover of X(s> by compact sets

( oo XA )1€N’ where each A;. is compact in X. N(()'t?
that Ain 1k-¢ if 1<j<k<s by the definition of X‘S
Suppose furthermore that each A is contained in some

open set U, in X, where again U —-¢ for j &k, and

ij"

where (U, j’u‘i ’Qi ) is an atlas for X.
2. A countable cover (By, x...xB; );qy of Y° by

compact sets, each B:L contained in some V:Lj where

(Vij’vi:j’Qij) is an atlas for Y.
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3. A countable cover (C ). 1en of Z by compact subsets.

It suffices to show ‘that each set {g¢€ CCD (X Y):

)J g AT over ((A1ng 1(Bj ))x.,.x(A (Bjs))xcn}
(for any i,j,n€N) is open and dense in the two topolo-

ies, for their intersection is the set of all g such that

)J gAf over U ((A1ﬂg'1(Bj 1) X eeex
x (4 neg 1(B‘.]sig><cn=x(5)><

So fix one of these sets and forget the first indices,
for convenience's gake, so A: _A1 X aoo xA is compact in
X(S), B:=B, Xeoo xB is compact in YS C 1s compact in Z.

For gGCaD (x,Y) we have (s )j g,ﬂf over (An (g° )_1(B))x0
iff (s)jkg,‘l{f over Ax (Cn (0 of)_ (B)); here g°: x°>7Y°
is the s—fold product mapping, ws:(s)Jk(X,Y)eJk(X,Y)S»YS
is the s-fold target projection. This follows from the
argument uged in the proof of 6.8. But then the set
{g: (s)jkgaf over (AN (gs)—1(B)) xC} = {g: (s)jkg;lz‘,:f over
Ax(cn (0% £)71(B))] 1s wo¥*'_open in ¢® (X,Y) by
lemma 6.11.

So it remains to prove density. Let he C® (X,Y). We
will show that we can approximate h by functions in
tg: (¥ me ovex (41 (¢° )=1(B)) xC}. Now, for 1<j<s,
put D —A Nh- (Bj)’ a compact set in Uj’ Put
U, =" (V.)nU , an open neighbourhood of Dj in Uj' Let

: uj(U ) >R be a non-negative smooth function with
\.ompact support in the set u (U.‘I ) which is open in Q;] <R
(n=dim X), such that X\, =1 on an open neighbourhood
uj(Uj") of U‘j(Dj) in u‘jin ).

Consider the mapping hj =V ho uj-1 |uJ(Uj'):
uy (U )—>v (V).

Cnsiden RE x PX(n, n) (n=dim X, n=din ¥) of all
polynomial mappings RU->R™ of degree <k and let B(Q.,Q.')
be the subset of all o €R%x PX(n,m) such that c(Q );ij:‘J.
Then E(Q.,Qj') is a quadrant, by the argument in 6.8. Let
W.' be the Set of all o €R®xP(n,m) such that
(b, +x.0)(supp A;) €V.', where V.' is an open subset of

R™ with vj(Vj) =V;'nQy'. Then W' is an open neighbour-

n
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hood of 0 in R®xP¥(n,m). Let W, =W.' nE(Q.,Q.'), &
submanifold with corners of Rmek(n m) containing 0. Put
W= W xW2><... xW and define %: WxX-Y by
9(01,...,cs,x) vj o (b, +2,0.)(n.(x)) if xEUj,
Q(c,x)=§(c1,...,cs,x) =h(x) otherwise. % is a smooth
mapping since the open sets U1 seeeyU, of X are pairwise
disjoint. Write ¢ for the mapping X-7Y, x- §(o,x) =

#(c ,...,crs,x) :f.’or oe W. By cons‘cru.ctlon the mapping
(mm»(%(cxﬂ (8 ) (x,)0e0,35(85) (x),
wxx(s) (s J (X Y), is smooth and has the property that
1ts restriction 3 to WxU"=Wx (U1 " e xUs") is a sub-
mersion (on these sets all the A,'s equal 1). So clearly
$ AL and by lemma 6.4 again the set
{c=(01 ,...,cs): 3‘0;31’} ={oew: (s)jk(Qc)E\f over U" x Z}
is dense in W, hence it contains a sequence o n) -

(c:1 yeessTg (n ) converging to O € W. But then the
sequence g : = @ (n) in ¢® (X,Y) converges to h in the

wo® -topology and in the D-topology since &, equals h off
the compact set U u.:j (supp k ) and g, converges to h

"uniformly in all derivatives" on this compact set. By
congtruction we have (s )j g, Af over U"xZ, so over
U" % C. But again we need (s )j gnPAf over

(an (gns) (B)) xC. That this is true for n sufficiently
large follows from the argument used at the end of the
proof of 6.8. g.e.d.

6.13 Corollary: Let X,Y be manifolds with corners. Then
the gset Imm(X,Y) of immersions is open and dense in

o® (X,Y) for the WO® —topology and for the D-topology if
dim Y=2 dim X.

Proof: Imm(X,Y) is always open by 5.1. It remains to show
that it is dense. Let n=dim X, m=dim Y. Let

Ry = Rk(X Y) :J1 (X,Y) be the subsets of 1-jets of rank k.
Locally, in J'(u(U),v(V)) =u(U) x v(V) x L(R®,R™)
((u,u,Q),(V,v,Q') being charts of X,Y resp.) we have

R (w(0),v(V)) =" (a1, w) (R 0 T(U, 7)) = (V) x ¥(V) x Ty (n,m),

61



where Lk(n m) is the space of linear mappings of rank k
from R® to R® sy & submanlfold of L(R ,lRm) of dimengion
k(n+m) -%° (see below); so R (X Y) is a sub fibre bundle
of J1 (X,Y), = submanifold of dimension k(n+m) - X2 4n+m.
£ec® (X,Y) is an immersion iff j'f misses
Ro’R1 ,...,R - Let us suppose that f is transversal to
each Rk’ 0 <k <n-1. Then f misses these sets if dim Rk+
+ dim X<aim 31 (X,Y) for O<ksn-1, L.e. if dim R+
+ dim X<d1m R, 4 +dim X<dinm J(x,1), 1.e. [(n-1)(m+n) -
- (n—‘l) J+n<n+pinm or m=2n. dg.e.d.
It remains to show the
Sublemma s Lk(n,m) is a submanifold of L(n,m) of dimension
k(n+m) - x°.
Proof: Let E EL (n,m) be given. Choose bases for R™ IR
such that the ma'trlx of E has the form (IO 8) where I,
is the kxk unit matrix. Choose an element near E in
L(R™,R™®) with matrix (é‘ g), near enough such that
det A£0. Then

rene (3 Doven [0 2] 3] -

-1
= rank (Ik A_1B ) .
0 -CA 'B+D

So rank (A B)=x irz D=ca™

Lk(n m) is jus‘l: the number of free entrmes in A,B,C,
dim Lk(n m) = K2 +k(n-k) +k(m-k) = k(n+m)—k . g.e.d.

B. So the dimension of

6.14 Corollary: Let X,Y be manifolds with corners such
that dim Y>2 dim X +1. Then the set of injective
immersions X-Y is dense in C® (X,Y) in the WO® - and the
d-topology.

Proof: Since the set of immersions is open and dense it

remains to show that the se“b of injective mappings is
resiamal. (2)59(x,v)=x(2 and f€C®(X,Y) is in-
jective iff )3 fs X(z) (<2 J °(X,Y) does not meet

XAY, AY being the diagonal in Yx Y. Now codim
X(z) xAY—codlm A‘Y dim Y. So (2)3 f,’gX( )XAY implieg T
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f >

g.e.d.
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7 Continuity of certain canonical
mappings

We will use only c® -mappings and only the - and
(F®)-topology in the next chapters. Therefore we will
prove continuity of composition etc. only for these
topologies. The proofs for the WOk-'topologies are often
earier and can be found in the literature: MATHER (1969),
GOLUBITSKY-GUILLEMIN (1973) X,Y,Z designate manifolds with
cornersg, if not stated explicitly otherwise.

7.1 Proposrb:.on. For any k>0 the mapping ;] c® (X,Y) »
> ¢%® (x,T (X Y)) is continuous for the ®- and the (FD)-
topology (on both spaces).

Remark: T: ¢® (X,Y)-c® (TX,TY) is not continuows: We
use 4.2.3. Let t»f be a continuous curve in o® (x,Y),
t € [0,17, then ft’f’c' differ only on a compact set KcX,
but ’.E:t‘_t,Tft. differ on whole fibres of TX, so t-»Tft is
no continuous curve anymore.
Proof: For any 1 €N we consider the mapping

: &Fh(x,7) > 35X, 5(X,Y)) defined as follows: for
GE’JKH‘(X,Y) with (o) =x choose a representant
rec® (INI,\'?), T an open neighbourhood of x in a manifold
without boundary containing X as a submanifold with corners
of the same dimension, ¥ an open neighbourhood of w(g)
in a like manifold containing Y. Then put o1 (o) =
= 31(:] £)(x). In local charts Jk+l(u(U),v(V)) =
= w(U) xv(V) x P (n,m) (n=dim X, m=dim Y),
7Hu(v), 3 (u(U),v(7))) =u(V) x (a(V) xv(1) x P¥(n,m)) x
x Pl(n,mc(n”‘) ~1)) (dim P(n,m) =m((%E) =1)); this
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mapping looks as follows.
(x,7,3) » (x,(x,5,3555(0) =
2.12).

It is clear that this gives a smooth well defined
mapping, in fact, an embedding.

Let now M'(L,U) be one of the open basic sets for ®
fron 4 7.2. in ¢® (X,J (X Y)), i.e. U= (U ), U, open in
3%, 5(X,T)), T=(L.) a locally finite closed fam:.ly in
X and M'(L,U) = {£ € ¢® (X,35(X,1)): jnf(Ln);Un}. Put
L,’' =@ for n=0,...,k-1, L' =Ly, 1—0 1y00.,L ’=(Ln'),
put Up' =@, n=0,...,k-1, U " = (o, l) (Ty),
l==O,1,2,...,(Un')==U' Then M' (L' U') is a basic open
set in (¢® (X,Y),9) and clearly (i)~ '(w'(z,u)) =
= M'(3',U'). So 3%: (¢®(X,¥),®)~ (¢® (X,d5(X,¥)),D) is
continuous. For (FD) the result follows: since f~g iff
J frvakg. q.e.d.

5, 311%)(0)) (et. 2.11,

7.2 Continuity of a certain restriction of the compo-
gition is our next aim. But first some preparations.

Let A,B,P be topological Hausdorff spaces, let
e A~ P, mg: B> P be continuous mappings. Let
AxpB= {(a,b) € Ax B, nA(a) =ﬂB(b)} be the topological
pullback, with the topology induced from A x B:

AxPB _1;_>_r_2__+ B

Pr1[ un :

A —=— P

A Kelley topological space S is a Hausdorff topological
gpace bearing the inductive limit topology with respect
to all the embeddings of its compacta. So a subset W in
S is closed (open) iff WNK is closed (open) in K for
each compact set X in S.

Metric spaces are Kelley spaces, as are locally compact
spaces. Closed subsets of Kelley spaces are again Kelley
spaces, as are topological inductive limits of Kelley
spaces. 9(Q) (Q an open subset of some R™), the space of
smooth functions with compact support on Q, is not a
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Kelley space (if n>1), see VALDIVIA (1974).

Lemma: Let A,B,P be Hausdorff topological spaces, P a
paracompact Kelley space. Let ' A->P and Tyt B-> P be
continuous mappings. Let KcA, L<B be subsets such that
TTAIK and ﬂB[L are proper (5.2). Let U be an open neigh-
bourhood of KxPL in AxPB- Then there are open neigh-
bourhoods V of K in A and W of L in B such that
KXPL;VXPWQU;AXPB.

This lemma (with P locally compact and paracompact)
is due to MATHER (1969). For the next theorem we need
this lemma only in the restricted form. For the proof we
need a
Sublemma: Let T be a Hausdorff space, let R be a Kelley
space. If £f: T» R is continuous and proper, then f is a

closed mapping (i.e. closed sets have closed image). If
furthermore R is locally compact than T is, too.

Proof of the sublemma: Let ScT be a closed subset. Let
KcR be a compact subset. Then f_1(K) is compact in T
since f is proper. So SN f—1(K) is compact, so £(S)NK=
= £(sn£"1(K)) is compact in R. Since this holds for any
compact K< R, £(8) is closed in R.

Now if R is lecally compact, then the inverse image of
a compact neighbourhood of f(x) is a compact neighbour-
hood of x in T, so T is locally compact. q.e.d.

Proof of the lemma: AxpB=(m, xm;)” (disgonal in PxP),
s0 AxPB is closed in AxB. So E: =A><B\A><PB is open

in AxB. For pe P let Kp: =Kn (T\'A)—1 (p), x =Ln ('rrB)—1 (p).
Then KPXLP=KPXPLP ngPLc_:U. By hypothesis Kp and L

are compact. UUE is open in Ax B (U alone is not open?.
We claim that there are open neighbourhoods Vp of Kp in

A and Wp of Lp in B such that V_xW_cUUE.

This is seen as follows: For any (k,1) € K_xI_ choose
open neighbourhoods V'L of k in A and W'l of 1 in B
such that Vk’lxwk’l cUUE (by definition of the product
topology). For any fixed k the family (wk’l)lel. ig an

P

open cover of Lp, so there is a finite subcover
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k,1

k,1 1,

x,1
f TN, L W Ry, put vE=T
K1 k,1
w=w Tu...uw e ka
m ’j ’j . K
Then V¥ o W¥e U V  3IxW 9dcUUE, and W 2T
=1

K,1
N...nV B gng

(Vk)kGKP is an open cover of KP’ g0 there is a finite
k k k k
subcover (V 1,...,V D). Put wp=w T oo W B ang
k k

1 n
V.=V I L, V. cX and V_xW
p K U i uv ,tenwpz 0’ Ps o px P;

ceUvVv ixW i cUUE. Now we proceed with the proof of the

i
lemna. nA|K, ﬂB]L are closed mappings by the sublemma,
therefore TI'A(K\V ) and T\‘B(L\W ) are closed in P, so
PP: =P\(-nB(L\Wp) UWA(K\UP)) is open, pePp. So (Pp)pGP
is an open cover of P. Since P 1s paracompact, there
exists a locally finite refinement of this cover, which
we call (P ). For o let p(a) € P such that Pa;Pp(a)
(refining mapping). Put Ve =V5(a) u(wA)":(P\P )
wC(,=Wp(G.) U(TTB) (P\PCL)’
and V= Va' W= wa.

We c%aim, tha‘%: KcV, LcW, V, W open in A, B resp.,
VxPWcU.

(1) XecV: It suffices to show that KcV  for all a,
i.e.: if k€K then keV or k¢ (ﬂA)_1(P\PQ). If
kttvp(a), then 'rrA(k) ETI‘AEK\V a))’ so nA(k) €P ) by
construction.

(2) L cW: the same argument.

(3) V is open: Let ve V. (Pc.) is locally finite, so
there is an open neighbourhood N of TTA('V') in P such that
NN Pa=p for all o but ay,...,0,, say. Put
N' = (TTA)—1 (W) n Va1 N...nNV_ ; this is an open neighbour-

p( p(a

hood of v1. If o ¢ {cx1,...,ar},1then Nn Pq=¢, S0
N'n (TI'A) (Pon) =@, so N' s (P\Pq) gVa.
So N s;VCJL for all a, so N' V. Thus V is open.
(4) W is open: the same argument.
(5) VxpWeU: Let (v,w) €VxpW, p=m,(v) =my(w). There

is an o' with p€éP_,. Then veV=NV_ cV_,, but
o o &
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v ('rrA)_1(P\Pa,), s0 veva'\("A)_1(P\Pa')Svp(c.'
same way it follows that we Wp(a' ) Therefore
(v,w)evp(a.)xw )CUUE, but (v,w) ¢ B, so (v,w) € U.

p(a’
Thus prWgU. g.e.d.

). In the

7.3 TITheorem: Let X,Y,Z be smooth manifolds with corners.
Then composition Comp: C® (Y,Z) xC rOp(x Y) »0® (X,2) is
continuous 1n the ©- and the (F-‘i))-to;gologx

For the WO —topologles this theorem is due to
MATHER (1969).
Proof: Let (g,f) €c® (¥, z)xc;"rop(x Y), let M'(L,U) be a
basic open neighbourhood of g. f in (¢% (X,Z),9), as
described in 4.7.2., i.e. L= (Ln) is a locally finite
closed family in X, U= (U ) with U, open in J}X,Y),
go fEN (L,U) = {hec® (X,2): Jnh(L ) £ U, for all n}. So
we have jJ (g f)(L )s;U For any n>O oonsider the
topological pullback as described in 7.2:

INT,2) x 33X, Y) =2, (x,1)

Pr»] w

o4
Jy,z) 'S

The mappings v, : Jn(Y,z)xYJn(x,Y)aJn(x,z),

Yn(O',T) =goT (cf. 1.4) are well defined (since o(c) =

= w(r)) and smooth. We have:

Y (3 g(Y)xYJ “e(L ))—Yn(i(a Pg(£(x)),i"(x)): x€L })
SR . ) (x)¢ xel }=i%g. £)(L,) s U,.

This means

3 g(Y)ij Re(1, )CYn 1(U ) for all n. alj g(Y) is proper,

since it is a dlffeomorphism, inverse to j= g: Y- j g(Y)
wlj f(L ) is proper: if G;Y is compact, then

(wlj f(L ))_1(0)—3 (L, N £ 1(¢)) = 3% (compact) =

= compact, since £ is proper. So all hypotheses of

lemma 7.2 are fulfilled, therefore we may find open neigh-

bourhoods V, of j e(Y) in J™(Y,2) and W' of j f(L ) in

TX,Y) such that j Pg(T) x (I (T,) €V x W ' sy 1(U ).

*y'n
Since f is proper and Y is locally compact and (Ln) is
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locally finite, the family (f(Ln)) is again closed
(sublemma 7.2) and locally finite. There is a closed
locally finite family (K ) in Y with £(L ) cK ° (open
interiour). So w (§™£(L.)) = f(L )cK ° and K, 8 is open,
s0 w”1(K,°) is open in frln(x Y). Let w =W, T (x),
then W is open and j f(L ):W furthermore
F8(T) x i £ (T,) €V x oW, eV wa S vy “uy).
Put K= (K ), V (V ) W= (W ) Then gGM'(K V) gince
3 g(K )c;j g(Y) cV and féM'(L W) gince j f(L )c:W .
Claim: Comp(M' (X, v), M'(L,W)) eM'(L,U). Let g' eM'(K v),
f'€M'(L,W), then for any n and x €L, we have:
£1(x) =0 7' (x) €w j f'(L )c:w(w )cK <K , so
(%" (2" (x)),3%" (x)) €V xqW s ve (T, 80
n(g o £1)(x) =y, (3" (£ (x)),3 f'(x))EU 50

o £' €M'(L,U).

So Comp is continuous for the ®-topologies. Now if
f~f', g~g', then £' is proper too and thus go f ~g' . £'.

qg.e.d.

T.4 Proposition:
1. Let f: X'>»X be a proper smooth mapping, then

£+ =0% (£,7): ¢®(X,1)»C® (X',Y), £*(g) =g £, is
continuous in the - and (FD)-topology.

2. Let h: Y»Y be a smooth mapping. Then
hy =0® (X,h): ¢® (X,¥)-»c® (X,Y') is continuous for the
D- and (F®)-topology.
Proof: 1. follows from 7.3.
2. 7.3 shows, that hy: Cg)rop(x’Y)"Cm (X,Y') is con~
tinuous, but we want more. Let M'(L,U) be a basic open
set in (0% (X,Y'),D), as in 4.7.2: L=(L,) is a locally
finite closed family, —-(U ), U, open in INX,Y).
JHX,h): JNX,Y) » INX,Y) i smooth (2.14 resp. 1.10).

Put V= (3%(X,0))7(U,), V=(V,). Then (h,)™'u'(L,V) =
M'(L , V) s 0® (%,Y). For the (F®)-topology one remarks
that £~f' implies he f~ho £'. g.e.d.

7.5 Let X be a manifold with cormerg. For any k=1 we

consider the open sub fibre bundle J]‘jfnv(X,X) of the
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fibre bundle J5(X,X) over XxX, consisting of all
"invertible k-jets". In local coordinates (U,u),(V,v) on
X we have Jk(u(U),v(V)) =u(U) xV(V) ka(n n) =

= u(U) x v(V) ><L sym (Rn,Rn) X ooo ><L (Rn,Rn), and

J]:fnv(u(U) ,v(V)) consist of all (x,y,c) = (x,y,a1 - SO ,gk)
such that o is invertible with respect to the truncated
composition, i.e. such that o EGL(n,rE)

Lemna: The mapving iv: 7= (X,%) > 35, (X,%), given by
inv(c) =c¢ ', is a smooth fibre respecting mapping over
(x,y) = (y,x), XxX-»>XxX.

Proof In local coordinates we have:

invs: (u(U) ,'V(V))—”Jk (v(V) u(U)) is given by
inv(x,y,c) = (y,x, 1nvkc), where invk'o' is the inverse power
series for the polynomial ¢, truncated at order k. Since
the coefficients of inv o are rational functions of the
coefficients of o, inv is a smooth mapping. g.e.d.

7.6 Theorem: The mapping Inv: Diff(X)- Diff(X), given
by Inv(f) =f‘1, is continuous for the - and the (F®)-
topology.

Proof: Let M'(L,U) be a basic open neighbourhood of f—1

in % (X,X), where f € Diff(X), where L= (I,) is a locally
finite closed family in X, U_(U ), U, open in JHx,x).

We may assume that U  is open in J:an(X X), and that each
X\I,n0 is compact (thls is possible, see 4.7.3% and 4.7.3).
We want to construct a ®-open neighbourhood B of £ in
¢® (X,X) such that Inv(Bn Diff(X)) eM'(L,U). Since

£ €M (5,0) we have (3%(£71))7'(U)) 2L for each n. Let
(L ') be a locally finite sequence of closed set in X,
such that (J (f_1))"1(U ):zL 'EL'OEL for all n. Since
X\L'° ;X\L we have X\L’ compact too fOI‘ each n. Put
K'_f‘1’L'), 1(L),K'-—(K') K=(K,). K' K are
again loca.lly flnlte closed famllles in X and K s;K‘

Let d be a matric on X, compatible with the topology,

let e: X—>1R+ be a strictly positive continuous function
on X such that O<maxie(x): xEX\KnO} <distance between
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the compact X\Lﬁ? and the disjoint closed set Ln’ for
each n. This exists since (K ) is locally finite, X\Kno
is compact and (L ) is 1ocally finite. Put Vn==inv(Un)
(7.4), an open set in J (X X), V-—(Vh). Consider the
basic DP-open set M'(X', V) We claim that it contains f:

For n€N and x €K ' we have ] e(x) =inv(j (f—1)(f(x))),
£(x) Ef(K ’)_L Y, so (£ 1)(f(x)) €U, by the choice of
L,'. Thus j f(x) Elnv(U )-V , SO fEM'(K‘ ,V). Now let
N(f 0,¢) = {g € c® (X,X): d(f(x),g(x))<e(x) for all x €X]
and put 8 =M'(K',V) n N(£,0,¢). Then B is open, fED.

We finally claim that Inv(8 N Diff(X)) ¢M'(L,U): Let
g €8 N Diff(X).

Then g(K )gL for each n, since d(f(x),g(x)) <e(x)
and for XEX\Kn we have f(x) EX\L ' s;X\L'0 and e(x) <
< distance between X\L'O and I ; so g(x)&ipn, g(x) €X\L,.

Therefore g(X\Kn )GX\Ln, i.e. g(Kn’) cL as asserted,
by & € Diff(X).

Now for x € L we have j Bg™ 1)(x)-—inv(j 2(g” 1(x))) =
c inv(V. ) =T snmegGM%K'V)amig (L)sK',so

n, 1%y Bn
Fele ' (x)) s i a(Xy ) sV, .

This says that g—1€]ﬁ'(L,U). We have proved that Inv
is continuous for the D-topology. To obtain the same
result for the (FD)-topology just note that £~f' iff
LTSIl g.e.d.

7.7 GCorollary: Diff(X) is a topological group in the
Wo¥-topology, k=1, in the D-topology and in the (F®)-
topology. Denote by Diffc(X) = {f € Diff(X): f ~Idy} the
set of all diffeomorphisms with compact support. Then
Diff (X) is a closed normal subgroup in (Diff(X),Wo,
k>1,9) and is an open subgroup in (Diff(X),(FD)).
Remark: (Diffc(X),'-D) has been studied by several authors:
EPSTEIN (1970), MATHER (1974,1975), BANYAGA (1978),
CALABI (1970).

Mather has shown that the subgroup of Diffc(X) con-
sisting of all diffeomorphisms diffeotopic to IdX (i.e.
homotopic in Diffc(X)) is perfect, i.e. coincides with its
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commutator group. We will see later that this is exactly
the connected component of Id, in (Diffo(X),S)).

BANYAGA proved the same for symplectic diffeomorphisms,
CALABI gave an erroneous proof of this.
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8 Differential calculus on locally
convex spaces

Ordinary differential calculus as beginning students
of mathematics learn in the introductory courses on
Analysis generalizes rather wonderfully up to Banach
spaces (only partitions of unity are lost in the process).
By this I mean that there is essentially one "good" de-
finition of Ck—mappings and that important theorems of
calculus continue to hold on Banach spaces in essentially
the same form as they do on Rn, including the implicit
function theorem. Therefore there is nearly no difficulty
in generaling manifold theory to Banach spaces (see
S. LANG, 1972, for a wonderful account) and one even gets
the "best" formulations for finite dimensional differential
geometry by writing it down for Banach gpaces in some
cases.

There is a definite end to this beautiful theory at
Banach gpaces. This is mainly due to the fact that the
usual norm topology on L(E,F) for normed spaces E,F does
not have a canonical extension to the wider category of
locally convex spaces; what is worse: if E is not
normable, then there does not exist a compatible topology
on L(E,F) such that for example the evaluation map
ev: ExL(E,F)->F would be continuous. So if one wants to
have a theory of differentiation such that the chain rule
holds, one hag to leave the realms of topology and use
convergence structures instead. A whole hort of mutually
inequivalent definitions of differentiability therefore
appears in the literature. But however, as H.H. KELLER
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(1974) has shown, many of these notions coincide, if one
looks at % mappings, and more so, 1f one restricts
the spaces. We will use the simplest of the good notions
of KBLIER, the notion c‘f =c:i

Recently U. SEIP (1979) has shown that the compactly
generated analogue of Cg), restricted to a carefully
chosen category of compactly generated linear spaces
(those which come from sequentially complete locally
convex vector spaces) gives a cartesion closed category
of smooth mappings (i.e. ¢% (&,¢® (7,8)) =c® (EnF,q)
holds generally),a so called "“convenient setting" for
differential calculus. By generalizing the notion of
manifold considerably (they need not have charts homeo-
morphic to open subsets of vector spaces; they are just
required to have something like a fibre linear tangent
bundle) he is even able to get a cartesian closed category
of smooth mappings and "manifolds" (U. SEIP. preprint).

We will stick to the traditional notion of manifold
as having an atlas consisting of charts in this book,
since we are essentially interested in getting as much
"differential geometry" on manifolds of mappings as
possible.

In the following we denote by E,F,G,... complete
locally convex vector spaces.

8.1 Definition: Let UcE be an open subset. A mapping
f: U»TF is said to be cl on U iff the following two
conditions hold:

1. 1lim % (f(x+\y) - £(x)) =Df(x).y in F where
-0
Df(x): E~»F is a linear map, for x in U, y€E, \€R.

2. The map (x,y)~>Df(x)y is jointly continuous,
UxE->F.
Remark: Condition 1 says that all directional derivatives
of f should exist, condition 2 says that these fit
together continuously. Condition 2 cannot be expressed in
the following manner: Df: U- L(E,F) is continuous, where
L(E,F) has some carefully chosen topology (cf. KELIER
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1974). This is possible however in the compactly generated
setting of SEIP 1979.

It can easily be shown that any Gl mapping is con-
tinuous.

Let us denote the gset of all C mappings from U to F
by 01(U F) Clearly ) (U ) 1s a 11near space and
01(U’R) is an algebra and ¢} (U’F) is a module over this
algebra.

8.2 Lemma: let UckE, VsteoemlmthC(UFL
1 ]

geC(VGL £(U) cv. Then go feC(UG)amiwehmm

D(g. £)(x)y =Dg(£(x)).Df(x).y for any x€U and y€E.

Proof: The limit condition 8.1.1 can be computed ag in
any analysis course. D(g. £f)(x)y is jointly continuous
in x and y as can be seen from the right hand side of
the above equation.

8.3 Lemma (partial derivatives): Let £f: ExF-G be a
mapping. Then f € cl(ExF,G) iff the following conditions
are satisfied: x1—>f(x1,x2), x2—>f(x1,x2) are of class
Cl for fixed Xy X, respectively with derivatives
D1f(x1,x2)y1 and sz(x1,x2)y2 which are jointly continuous
in all appearing variables.

The derivative of f is then given by Df(x1,x2)(y1,y2)=
= D1f(x1,x2)y1-+D2f(x1,x2)y2.

Clearly the same resgult holds if f is only defined in
an open subset of ExY.

Proof: Necessity:
D f(x1,x2)y1-11% (f(x -#xyj,xz)-f(x ,x2) =
= 1im T (£((x, %) +A(3,,0)) —£(xy,%,)) =DE(x,,%,) (y,,0),

keO
80 D1f is jointly continuous in all appearing variables.

Similarly for D2f.
Sufficiency: D f(x,,x%,)y, +Df(x ,x,)y, =

= 1ig D f(x1,x2-+Xy2)y1-FD f(x1,x2)y2=
= lim lim 1+ f(x Uy, Xy +AY ) = (X%, y%, +Ay,) ] 4
20 20 M [ 1’ 2 1772 2 ]

75



+ 3ig E [f(x1,x2-+uy2)-f(x1,x2)] =
= llm 1 [f(x +uyy X, -Fuyz)-f(x1,x2-+uy2)]-+

=
+ 1im O [f(x1,x2-+py2)-f(x1,x2)] =

u-
= 13.)1(1)1 1 [f(x +‘\,1y1 1% +p,y2) - f(x1 ,X2)_] =
= Df(x1 1%5)(¥74,55)-
So the joint continuity of Df in all variables is
equivalent to the joint continuity of D1f, sz in all

variables. g.e.d.

8.4 We do not prove a mean-value-lemma, since we will

always take recourse to the following simple fact in
situations traditionally mastered with the mean value

lemma.

Lemma: et £: U->F be C!, x,y €U and [x,y] (i.e. the
segment from x to y: {tx+(1—t)y. 0<t=<1}) < U, where

UcE is open. Then f(y) - f(x)-—f Df(x-kt(y—x))(y—x)dt

where the Integral is the ordinary Bochner Integral (even
Riemann-sums converge in F).

Proof: The integral converges in F since the function is
continuous in t. The formula follows by congidering the
function g(t) =£f(x +t(y-x)), R»F; we may even assume
that g has values in R by using the Hahn-Banach theorem
and the chain rule. g.e.d.

Remark: Clearly f(y) -f£f(x) is contained in closed convex
set containing all Df(x +t(y—x))(y-x), t€ [0,1]; this is
normally alluded to be the mean value theorem.

8.5 Definition: f: UcE~F is called ci

Df: UxBF is again 01.

To define D f we compute as follows, using 8.3:
D(Df) (X1 ,X2)(y1 ,yz) =
=D, (Df)(x ,xz)y1-+D (Df)(x1,x2)y2

118 1 [(Df(x -+Xy1)x - Df(x )x21-+
&ig L [Df(x )(x -kuyz)-—Df(x1)x2]=

if f is 01o and

It

+
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= lim — Df(x + )x, - Df(x, )x,] +
320 » [ N % 1)%2]
* lim o Df(xy ) (uyy)

W
=: D°f(x;)(y,,%,) +Df(x,)y,

where we defined
D2f(x 1(74,55): —1151 [Df(x, +y )y, - DE(x,)y,] =
»

—D1(Df)(x1 ’yz)y1 =
=D(Df)(x1 ’yz)(y1 ,0) =
=D(Df)(x,,¥,)(y,,2) - Df(x,).z.

Clearly D2f: UxExE-F is jointly continuous.
We use this recursively to define:
Definition: f: UgE-TF is called c® irf
DP7g: Ux (Ex...xE)~F is C
~N

p~-1
We define recursively
DP2(x) (3, 5. 5p) ¢ =Dy (PP £) (2,7, - - 2Tp) ¥y =

= DO ) (2,55, -7 ) (3750, --,0) =
= D(DT-1f)(x9YZ’-‘ "yp)(y1 7229- .. 9Zp) -
- DP~ f(x)(z2,...,zp).

DPr: Ux(Ex...xE)>F is jointly continuous by recursion,
and p-linear. It is even symmetric in the p-factors.

This can easily be seen by restricting Dpf(x) to the
p-dimensional linear subspace of E containing y1,...,yp;
this is then the ordinary p-th derivative at x of £
restricted to the p-dimensional affine subspace through

x parallel to the one just chosen and symmetry follows.
Definition: Let Cg(U F) denote the space of all Op

mappings UcE->F. Iet ¢ (U,F)= N cP(U F).
p=1
Remark: We refrain from putting a topology on the space

Cg)(U,F). If UcE and E is infinite-dimensional then all
topologies considered in § 4 with the exception of the
compact—O“’—topology become zero-dimensional. 4.4.4 shows
that there are no nonconstant continuous curves in
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Cg)(U,F), since there are of course no smooth mappings
with compact support. The problem of putting a topology
on Cg)(U,F) has been successfully solved by U. SEIP.

8.6 Theorem: Let E-»X be a finite dimensional vector
bundle over a second countable smooth manifold with
corners X. Then the space T, (E) of all smooth sections of
E, bearing the 9-topology (cf. 4.8) admits C partitions
of unity. In particular it is paracompact.

The last assertion has already been proved in 4.8. We
repeat the proof of this. We begin with a sublemma.
Sublemma: TC(E) is a ILindelsf space, i.e. each open cover
of T, (E) has a countable subcover.

Proof of the sublemma: Let (Kn) be a sequence of compact
subsets in X such that Kﬁ}:K © and X= U Kn Denote by
n

w)thesmmmwe{ser(Eh supp s<K_}. ﬂmnTK(E)
K, c n n

with the D-topology is a separable nuclear Fréchet space;
we will use separable Fréchet here. So each T (E) is a
Lindeldf space. let u:=(ui)ieI be an open covK? of Pc(h).
Then U covers the closed linear subspace Iy (E) too, so

there is a countable subfamily u  of U covering TKn(E).

Then U u, covers U T: (B) = T, (E) and U u, is countable.

n n g.e.d.
Proof of the theorem: The constructions to come follow
closely the method of BOURBAKI, General topology, IX, § 5,
but we will carry along more information in the proof.

It is well known that TC(E) is a nuclear space
(GROTHENDIECK, 1955). We will give an explicit proof of
this fact in the next volume.

So we may assume that there is a system of seminorms
on FC(E), Pz:ipi}iEI’ generating the topology of TC(E),
such that for any two seminorms pi,pje P there is a third
me%wﬁh%ZP,%>%,amsmhmutMCwMMwn

T, (E)/p 1(O) of each factor space T (E)/pi 1(O) in the
norm topology p derived from the seminorm 1 is a
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Hilbert space. Let us denote by q,: I‘C(E)»I‘C(E)/pi—1(o)
the projection.

It is well known that the square of the norm in a
Hilbert space is a C® —function (by bilinearity), there-
fore for each i €I the mapping p = (;6;-)2 cq; is a
COQ ~-function on I‘C(E) (by the cha:l.n rule, since g; is
1inear and continuous).

S0 we have the following data: P= {Pi}iEI is a system
of seminorms on T (E), generating the ®-topology, complete
(so pi,pj<p for all i,j for some k=k(i,j)) and such
that p. = is cgo on T (E).

l\Tow let U= (U ) cs Pe an arbitrary open cover of
T, (E). For each xEUOL choose p, € P and €>C such that
Vx, {yEI‘ (B): pi(x-y)<e} gV e;;U . Then (V_ ),
X€U g €4 is an open cover of I‘ (E) refining Uu. By the
sublemma there is a countable su.bcover (Vv )nEN of (V ),
then (vn)neN is a countable open cover of T (E) refinlng
U, and each Vn is of the form
v, {yer (B): pi (v -x, )<e } for suitable anI‘C(E),

€, >0, p; €P.
in
From now on we adapt the proof for Hilbert spaces of
S. LANG (1972), p. 35 f.
Define a cover (W )nEN of I‘C(E) refining (Vn)nen\!
recursively as follows: Let WO =

Having defined Wn—1 , let

= L 1 = .
r0 n=€ " T 0" %t "1 let Aj n= {yGI‘c(E).
j(y x )>rj } for 0<j<n, and let

V=V, nA onf o N Ay g pe

Claim: (wn) is an open cover of I‘C(E) and W sV .

Open, W, eV, is clear. Let yEl‘c(E). Let n be the smallest
index such that yEVn. If y were not in wn, then

yET BNV, = (T (BN\V,) U (T, (ENA ) U... UT(BNA,_,
g0 there is some j <n with

yEI‘c(E)\Ajn= {z GI‘O(E): pij(y —xj) srjn} ;Vj since

jn<¢j-

)

11

r
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This contradicts the minimality of n for y GVJ. There-
fore y ewn.
Claim: (“vg) is locally finite. Let x €T (E). Then x €V
for some n, i.e. p; (x—xn) <e,. Let

O<n<-1§ (e n- Py (x-nx )). Let B={y€1" (B): pi (y-x) <nm}.

_n_
Now BeT (E)\A i Tor k sufficiently large s:ane

pC(E)\.Ahk_ {y: pin(y—xn)<rn’k=cn-i1;} and

L
1 (x-xn) +n<e, - for k large. But this means that

B#W_k=¢ for k large enough, So we have found a neighbour-
hood B of x meeting only finitely many Wn's.
Claim: For each W there a function ¢, '€ CCD (I‘ (E),R)
such that @ ‘(x)>0 if x €W and cpn'(x) o if x¢w .

Let a(t), B(t) be ¢® —-functions on R such that
a(t)>0 if |t| <1 and a(t) =0 if |t| =1, p(t) >0 if |t} >1
and B(t) =0 if |t| <1.

Then x+ a(c - .25 2(x-xn)) is a Cg’ ~function on

(E), >0 if x€V,, =0 if xEV_, and
x»s(rj’n z‘pij (x x.)) is a C, -function on Tc(E), >0
if x-GA:I ne =0 if XEA jn (it rj’nso adjust the definition
suitably).

Then @' (x) =ale,2p; 2(x-x,)). 1 8(ry 2op; P (x-x))
n

n 1<j=n

has the required properties.
So @, ' 20, (supp cpn') = (T) is locally finite and for
each x there is an n with cpn‘(x) >0. So x—>)3 ®, "(x) is

well defined and Cm on T (E) and >0 everywhere, there-
fore 9, ' (x)

o, (x) =m

is the required partition oi’ unity subordinated to (W—),
soto(V)and(U) q.e.d.

8.7 Theorem (Q-lemma): Let (Ei’Pi’X’Fi)’ i=1,2, e
finite dimensional smooth vector bundles over a manifold
with corners X. Let U~:=E1 be an open neighbourhood of the
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image of a section S, EI‘C(E1 ), let a: U~>E, be a smooth
fibre respecting mapping such that a. s o has compact
support.

Then the mapping oy: VeT,(B,) T (E,), ax(s) =a-s,
. ® -
is a C_ -mapping, where V= {sel‘c(E1): s(X) U} is open
in T (E,).

We have D(ay) =(dFa)*, where dpa: UxE, »E, is the
fibre derivative of o (cf. 1.16), i.e. dFa('nx) =
= d(al (B,) N U)(n,) for n €E_NU, x€X.

Remark: We will need this theorem in a slightly more
general form; Ei will be TX or a pull back of this bundle,
and U will be open in iTX only. Then V is no more open in
Tc(E1), only open in a "quadrant of infinite index".
Proof: It suffices to show that D(ay)(s)(s') =
= (dFa) (s,s! )-dFa. (s,s'), since then g, is of class
c°° already: (dpa)e: VxT(E,) T (E,) is continuous by
70 4.2, 80 qy is of class c1 But D(a*) = (dpa)s
T (E O, )—>I‘ (E ) is of the same form as oy, S0 oy 18
(3‘g By recursion oy 1is C . So we have to show that for
s,s' EI‘c(E ) (we ignore V from now on) the following
holds: (s428") - au(s)
(1) 1 oc* oy = = (dpa)e(s,s') in
(T (E ),®), for A €R. We will use 4.7.6, 4.7.7.
For xEX we have
2) 1I [ow (s +xs") = ax(8) I(x) =%\- [a(s(x) +As'(x)) -
- afs(x))]

(3) [(apa)y(s,s')(x) =dpals(x)).s' (x).

If x is not in the compact support of s', then (2)
and (3) are both zero, so (1) holds there.

It suffices to show, that on the compact support of
s' "all partial derivatives" of (2) with respect to x
converge uniformly to those of (3) for A- 0. For that it
suffices to show that for any X, this is true on a neigh-
bourhood of X, - So we may restrict to a chart W centered

at X, and trivializing for both bundles, to get the
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following situation:

o
WxF1——————awa

F
-
S,8' ’
-
-

xoengan.

Then we have s(x) =(x,t(x)), s'(x) =(x,t'(x)),
o(x,5) = (x,8,(y)) = (x,8(x,5)) for xeW, t,t' €™ (W,F,)
and gec® (WxF1 ’FZ)’ and we have to show, that each
derivative with respect to x of
(4) B(x,t(x) +at'(x)) - 8(x,t(x))
A

converges to the corresponding derivative with respect
to x of

(5) alp,) (6(x)). " (x) = a,8(x,5(x)). ' (x),

uniformly on a neighbourhood of Xge By Taylor's theorem
we have

(£(x) + 2t (x)) - B (t(x))
e — e Al =1 a(p) (8(x)) (At (x)) +

# 3 11 8% (8,) (8x) +une? (1)) (8 (1) 208" () .

So it remains to show that each derivative with respect
to x of

ORYE (1-0)a%(8,) (5(x) +unt " (x)) (8" (x) 5 (x) ) dy

converges to O uniformly on a neighbourhood of X, for

A= 0. For |A| <1 e.g. the integrand is bounded on a
compact neighbourhood of X, SO converges to O uniformly
with A-»> 0. Any derivative dk with respect to x commutes
with the integral in (6); after that the argument may be
repeated. g.e.d.
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9 Manifolds modelled on locally
convex spaces

Here we present the main concepts in a form and
notation suitable for our purposes. The second part is
devoted to a simple example.

9.1 Definition: By a Cj -manifold we mean the following
data:

1. A Hausdorff topological vector space M, together
with a family (Ui'ui’Ei)iGI’ where (Ui) as an open cover
of M, u, Ui—aui(Ui) gEi 1is a homeomorphism onto an open
subset ui(Ui) of a complete locally convex vector space
Ei for each i.

2. If U, ;:=U;NU £ @ then the mapping

iJ
Uy =y e uj“ : uj(Uij)-anj-)ui(Uij)
N
Ej Ei

is required to be a Cg)-mapping. It follows that it is a
Cg) diffeomorphism and that Ei is linearly isomorphic

to Ej'

Bach (U, ,u,E;) is called a chart for the C® -manifold
M, the collection (Ui,ui,Ei)iEM is called the defining
atlasgs. Any family as in 1. satisfying 2. is called an
atlas, two atlasses are called egquivalent, if their union
is an atlas too (i.e. satisfies 2.).

By a Cg -manifold we will always mean a manifold defined
as above, a ¢%® —manifold or smooth manifold will always
be finite-dimensional (it is a C7 -manifold too then).
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CC: -mappings between C ~manifolds will be mappings
that are Cm when composed w1th chart mappings.

9.2 Let M be a CF -manifold, let NcM be a subset. N is
called a spll‘bti_x_l_g C!cD ~-submanifold of M, if for each

X € N there is a chart (U u,E) of M with x€U, u(x) =0¢€E
and a closed direct summand FcE (i.e. F is a closed
linear subspace having a closed topological complemtary
subspace in E) such that w(UNN) =u(U)NnF. The collection
of all (UnY¥N, u|UnN,F), (U,u,E) as above, is an atlas
for N, making it to a cg" -manifold itself.

If one drops the requirement that F has to be a direct
gummand (so F is only required to be a closed linear sub-
space), then the subset N is called a non gplitting
0% —submanifold (short for: not necessarily splitting
C, ~-submanifold). We will have the chance to meet specimens
of both kinds later on.

9.3 Tangent bundle. Let M be a Cg) -manifold with an
atlas (Ui,u ’Ej_)iEI defining it. A tangent vector at

x €M should be a natural way to define "directional
derivatives of functions at x". So if f: M->R is C(’J , one
may try D(f. uy 1)(ui(x)) v, where VEE, is arbitrary.

So we choose the following definition:

A tangent vector on the Cg) -manifold M is an equiva-
lence class of 5-tuples (v,U ,u.i,Ei,x), where (Ui,u 'Ei)
is a (compatible) chart on M, veEi, and x € U;; two such
tuples (v,U sy ,x) and (w,U »Uys ,B;,y) are equivalent
iff x=y and D(u o Uy )(u. (y)g w=v. The unique point x
in each 5-tuple o:t’ a class is called is foot point of the
tangent vector; T xM is the space of all tangent vectors
with foot point x, and TM denotes the space of all tangent
vectors on M. Let =Tyt TM->M the mapping associating
its foot point to each tangent vector. Choose a chart
(U;,u;,E;) of M. Then one gets a chart (ﬁi,ﬁi,Eiin)
of TM as follows:
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§i=nM-1(Ui)’
w (8) = (uy(x),v) if (v,U,,u,,B,,x) € E.

It is easily checked that the chart change U, o E:'
given by (y,v) = (uju (y),D(UL:j o ui)(y).v), which is a
c°° mapping nearly by definition. Now induce the (unique)
’copology on TM which makes each Ei to a homeomorphism. It
is clear that wh is continuous for this topology. It
remains to show that this topology is Hausdorff:
Let E,m€TM, Efn. If m,(E) =TTM(n), then for any canonical
chart (T,,u;,E; xB,;) we have u, () =(y,v), ®;(n)=(y,w);
separate v,w in E by disjoint open sets V, w veEV, WENW,
then T~ (E «7), & u, ~1(8; xW) separate g,n. If
my (&) %nM(n), then separate these images by disjoint open
set V,W in M, so m, 1(V), Ty 1(W) separate E,m.

Thus we have proved that TM is again a c°° -manifold
with the atlas (T ,ui,E xEl), which we call the canoni-
cal atlas.

115

9.6 Definition: By a cg" ~vector bundle we mean the
following data:

1. A triple (E,p,M), where & and M are C -manifolds
and m: > M is a C -mapping.

2. A family ( ;|' ,F )iEI where (U ) is an open cover
of M, @53 Uy xFy ap (U ) is a C —diffeomorphism and
F is a complete locally convex vector space. @; is re-
quired to be "fibre-resgpecting", i.e. p cpi(x,y) =x for
eri, yEFi, or

@3
Uy xF, —— p7(U;) = &/T;

\ A
commutes.

Furthermore for each x EUi -Uin U3 the mapping
cpij(x) cpi . 9y l{x} ij. Fj—’Fi is required to be a
linear iaomorphism. More exactly: cpi cp (x,y) =
= (x,cpij(x) .y), this defines Py 43 FjeF which is required
to be linear (isomorphism follows)
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A family (U N ,F. )lEI as in 2. is called a vector
bundle atlas, each (U ,cpl,Fl) is called a vector bundle
chart. Two vector bundle atlasses are called equivalent
if their union is again a vector bundle atlas. So more
exactly a Cg) vector bundle is given by an equivalence
class of vector bundle atlasses on (&,p,M).

Given an atlas (U 1204 ’Ei)iél of a Cm -manifold M,
consider the canomcal atlas (Ui,u ) xE ) of TM. Then
( ° (u x Idy ),E )iEI is a vector bu.ndle atlag for
(TM,n‘M,M)

We did not require that the "fibre type" of the wvector
bundle is constant over the whole base manifold M, since
this will not be the case for ¢% (X,Y).

We will meet Cg) —fibre bundles with structure groups
later on too; these are defined in the obvious way along
the lines explained so far. We will use these notions
and all other well known notions from finite dimensional
differential geometry without further notice in the
"ng ~complete~locally—convex"—-setting if the generalization
is obvious and without problems.

9.5 Our next aim is to investigate the (simple) example
® (X,Y), where X,Y are smooth manifolds without boundary,
in order to get some feeling for the theory. We begin
with some preparations.

1. Remember J® (U,V) where U is open in R®, V is open
in R® from 3.1. We had J° (U,V) =UxVx T LJ (IR ,R™)

=U)('V')<:PCn (n,m)

== (V).

2. Formal composition comp: P® (n,m) x P® (k,n) » P® (k,n)
is jointly corntinuous:
Tet A=(A3)321 € P® (n,m) -jn1 Lgym
B=(89) . eP°° (ic,n) .

Then (A . B) igs a finite linear combination with
universal constants (depending only on j,k,n,m) of ex~

(R®,RD), let
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. . 1 i1 ir -

pressions like A~ o (B ',...,B 7), 1,iy,...,1,=], r=<J.
Since each A- AT is continuous (linear) thas result
follows.

3. Let E be a complete locally convex space, let
£: E-»P° (n,m) be a nspping, f = (£ ) ymq s T E»Lgym(Rn,Rm)
Then f is C°° iff £Y is C for for each j.
y) - fj(x))
A =1’
converges to (df (x). y) in each coordinate, thus in

© (n,m). (x,y)~(af (xg y)j 1s jointly continuous in
x and y. So f is 01 and Df = (df )j . By recursion f is
Cgo . The other implication follows from the chain rule.

4. Let £€C® (U,V), U open in R", V open in R®. Then
3% £: U»J"’ (U,V) is c°°
Proof: % £=(Igyt, 2,a1%,a%¢,33¢,...): U->a® (U,7) =

U><V><L; xL2 X -«., and each coordinate mepping is
© ym” “gym
c™ . Now use 3.

5. Formal composition comp: P® (n,m) x P® (k,n)-»P® (k,m)
ig (jointly) c°°
Proof: Repeat the proof of 2.; since each A=~ Al is con-
tinuous linear, (4,B)-> (A, B):L is ng for each 1. Now
use 3.

6. If g: U'»>U is a diffeomorphism between apen subsets
of an, then fgr any open n VeR® the mapping
I%° (g,v): ¥ (U V) » 3% (U V), iven by J% (g,7)(J® £)(x) =
=3P (fo g)(g (x)), is a O ~diffeomorphism.
Proof: The inverse is of the same form, so it suffices
to show that this mapping is smooth., Now this mapping
has the following form:
UxVx B® (n,m) »U' xVx2® (n,m), (.,y,4)> (g (x),y,
4o (3% geg (x))).

Now use 4., 5. and the chain rule.

7. If he V—>V' is a smooth mapping between open gets
vV cR™ = V' &R* resp., then I (y,n): 3% (U,V) - I° (U,V')
Proof: Thig mapping has the following form:
UxV x PP (n,m)»UxV' PP (n,k), (x,y,4)~ (x,h(x),

this

Proof: T (£(x+1y) - £(x)) = (f (x+)
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3P h(x) o A). Use again 4., 5. and the chain rule.

8. Let X,Y be smooth manifolds without boundary.
Then J® (X,Y) is a Cf -manifold. (% (L, 1),m3, Xx¥,
P® (n,m)) is a Cgo —fibre bundle (even with structure
group, but we won't prove this).

Proof: ILet (Ui,ui) be an atlas of X, let (Vj’vj) be an
atlas of Y. Use (J%° (Ui,V.), Jm(u.i—1 W)y

R® xR % P® (n,m)) as a C, -compatible (by 6. and 7.) atlag
of JP (X,Y). This atlas even gives a fibre bundle atlas
(U Ty, 3% (g5 ¢ (g %7y x 83w ), 2% (2,m)) o2

J%¥ (X,Y) (compare 1.10).

9. P® (n,m) is metrizable. If d© is a metric on it
then x-» d® (0,x) is continuous, and does not factor over
any projection ﬂg’ : P® (n,m)~» Pk(n,m) (truncation).

But: Let f: P® (n,m) >R be a Ol-—-func’cion. Then for any
AeP® (n,m) there is an open neighbourhood U of A in
P® (n,m) and a k such that £|U: U»R factors over

n{cnlU: U-> PS(n,m):
£|U
U > R

‘ffl”\./'g

n]? (U) e Pk(n,m)

Proof: Df: P® xP®> R is continuous, so (p£)~! 1-1,1[ is
open and contains (4,0). By the definition of the product
topology there are open neighbourhoods U of A and V of

0 in P® of the form 1] Lj and V Lj r .
8 jEk Sy X i sym T

wheri i is an open convex neighbourhood of 11;) (A) in Pk
and V is an open neighbourhood of O in Pk

Iet BEU, C€P® with mp (C) =0, then t.C€V for all
t€R, so |t.Df(B).C| =|Df(B)(t.C)| <1 for all tER, so
Df(B).C=0.

Now let B € U. Denote by B the element (TT]C: B,0) Gka

.

Since U is convex we have by 8.4:
£(B) - £(B) = /| DE(B+1C).C dt, where C=B-TB satisfies
0
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7®C=0 and all B+1tC, 0<t=<1, lie in U. So the integrand
is 0, so £(B) =f(B). This says that f|U factors over

(e ]
e - g.e.d.
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10 Manifolds of mappings

10.1 Iet X be a C® -manifold with corners (finite di-
mensional).

Definition: A local addition T on X is a smooth mapping
T: iTX—>X satisfying

(A1) (rrgs7): IMXsXxX is a diffeomorphism onto an open
neighbourhood of the diagonal in X x X.

(A2) 'r(O ) =x for all x in X.

l’I‘X is no longer a manifold with corners (see 2.6),
but it is so nice that one can still talk of differentiable
mappings on it.

From the conditions above it follows immediately that

—'rllT X: T X>X is a diffeomorphism of a quadrant
lT X (see 2. 6) onto an open neighbourhood of x in X.
Lem.ma Any 0% —manifold with corners admits a local

addition.

Proof: Let exp: D +X be an exponential mapping on X, where
9 is an open neighbourhood of the zero section in 17X as
we constructed in 2.10. Choose a fibre respecting
diffeomorphism h: TX >V onto an open neighbgmchood of the
zero section in TX, h(OX) =0,, such that h(*TX) 9. In
the next lemma we will construct such a diffeomorphism.
Then exp . (h| TX): *TX->X is a local addition. q.e.d.

10.2 Lemma: Let X be a ¢® —manifold with cormers, let
(E,p,X,F) be a vector bundle over X, let V be an open
neighbourhood of the zero section in E. Then there is a
diffeomorphism h: E->h(E) eV with h(Ox) =0_, Poh=0p,

X
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n(*x) e v nitx and n(TpdX) eV TOIX for all j.

Proof: Let g be a (Riemannian) metric on E. Then there
is a smooth function &€ C® (X,]0,0 [) such that
={n€E: g(p(n))(n,n)<5(p(n))2} cV. This can be proved
as in lemma 3.2. Now let h: E- U be defined by
h(ﬂ)—ﬁ(P(n)) n/V1 +g(n,n5. Then po h=p, h(0, ) = 0, and
(u) u[\/o(p(u)) -g(u,u). The last claims hold s:n.nce
h "zontracts along rays entering from Ox" g.e.d.

10.3 Remark: Construct the local addition as in lemma
10.1 but suppose furthermore, that the exponential
mapping used comes from a tangential spray & (i.e.
(Tij)cT 29X for each j cf. 2.8), then by 2.10 we have
exp_~ (ij) r;Txij for x € dJX for all j; conversely we
only have exp (on Ty bJX) < U ™. But for the local

>3
addition T=expo (h) 11%) we have too
1(Z)"]X) = bJX if x € 39X, for each j. A local addition
w:Lth this property will be called boundary respecting.

10.4 Theorem: Let X,Y be C® -manifolds, X with cormers,
Y without boundary. Then (C%® (X,Y),(F®)) is cenonically
a cgo -manifold, modelled on nuclear and dually nuclear

locally convex vector spaces (of the form I‘c(f*TY)).

Proof: Let 7: TY->Y be a local addition on Y; existence
of such was asserted in 10.1.
Let fec® (X,Y).
Put U, = {g € c® (x,Y): g~f, g(x)€ Te(x)(Te(x)Y) for
for all x € X}
= (g€ c® (X,7): g~F, (£,8)(X) s (my,7)(TD)}.
U, is open in (0% (X, 1), (7).

Put Dp(X,T7) = {s € o® (X,TY): Myos=%, s=0 off some
compact in X, i.e. s NOY" f}, the space of all "vector
fields along f with compact support".

Then (SDf(X,TY),(FSJ)) is topological vector space,
topologically and linearly isomorphic to T c(:E’*TY), where
T#*7Y is the pullhvack onto X of the vector bundle TY
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(ef. 1.17, 1.18). Furthermore put
®pt Up->D(X,T7) =T _(£4T7), po(g) = (my,)7 o (£,8), or
(op(g))(x) =Tf(x)_1g(x), and yp: Dp(X,TY) > U,, given by
pp(s) =70 s. ¢p and . are continuous by 7.4.2, and op
and yp are inverse to each other:
tePp(8) =70 (1, 1) (£,8) =pry o (myy1) o (mpy) T o (2,8) =
=Pr2 ° (f’g) =g
0ptp(8) = (mgy ™) o (£,70 8) = (mgy ™)™ {1y 0 8570 8) =
= (1'ry,T)_1 o (my,T) o s=s.
We call (U&,cpf,‘é)f (X,1Y)) = (Uf,cpf,rc(f*TY)) +he canonical
chart of ¢ (X,Y), centered at f, induced by t. The family
(Uf,;p;,l‘c(f*TY))fecoo (X,7) is called the canonical atlas
of C% (X,Y) induced by T. It only remains to check that
the chart change is CCCD . For this purpose we define for
£ec® (x,1):

2 PRYY ——— XY

Te
\
X

— 4 - —_
by o= (f*my,T): £*IT>X Y, Tf(x,bf(x)) e (x,—rf(x)bf(x)).
Remember that £¥TY¥=Xx, Y= {(x,"): £(x) =TrY(T\)} cX % TY.
Then Te is a fibre respecting diffeomorphism onto an
open subset of X xY, which is an open neighbourhood of
the graph Te of £ in Xx Y.
Now choose f,g € C® (X,Y) such that U, N Ugw, let
8 Ecpf(Ufn U )gI‘c(f*TY). Then we may compute as follows:
Qo ¥ (S)=%Tr ,T) Ve (8,70 8) =
g 'f T
= (g, 1) o (@x 1) (Ia,8) =
=T -1 o Tpo S=
€ 4
= ('rg ° 'rf)*(S)~
Here 7,71 o Tyt £#IY —— X x¥ — g*TY

g \
!
X/
is a fibre respecting c® ~-mapping.
By the Q-lemma 8.7 o ocp—1=('r e To)y is a
® ® % f o 8 £
C, -mapping. So C (X,Y) is a C, -manifold.
For completeness' sake we prove too:

1
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Let t,7' be local additions, let fe C% (X,Y), let
cpf'r, cpr‘ be the canonical chart mu?pings induced by T
and T' respectively. Then cpr o (cpr )~ is cgo on its
domain. For o' fo (o f)"1(3) = (1-ry,-r)_1 o (£y7' o 8) =

= (™)™ e (£x17) o (Id,8) =
=Tf_11o 'r__é.o 8=
= (17 o TR u(s).

So by the (O-lemma again we are done. This shows that
the GZD -manifold structure on G%° (X,Y) does not depend
on the choice of the local additon r. q.e.d.

10.5 Proposition: Let X,Y,Z be C® -manifolds, Y¥,Z with-
out boundary. Then the canonical identification

c® (X, ¥x2)=c® (X,Y) xc® (X,2) of 4.7.9 is of class

C? and even compatible with a suitable choice of canoni-
cal charts.

Proof: Let (f£,g) €C® (X,Y) xCc® (X,2). We write again (f,g)
for the corresponding element of c® (X,YxZ), which is
given by (f,g)(x) =(f(x),g(x)). Let T: TY~-Y and p: TZ-72
be local additions. Then T xp: TYXxTZ->YxZ is a local
addition on YxZ. Now we have:

I‘c((f,g)*T(YxZ)) =I‘c(f*TY@g*TZ) =rc(f*TY) @I‘c(g*TZ),
U(f,g) anng for the canonical charts, and

Uy —— et T, ((£,8)*2(Yx2))

" cpfxcpg
> *
foUg I‘c(f*TY) xl"c(g TZ). q.e.d.

10.6 TFor the next result we need some preparations.
Definition: Let X,Y be ¢® —manifolds without boundary,
let 7: TY> Y be a local addition. Suppose that X is a
submanifold of Y. X is called additively closed with
respect to T in Y if v(TX) ¢X, i.e. T induces a local
addition on X.

(This notion is comparable to "geodesically closed"
of Riemannian geometry).
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Lemma: Let (E,p,B,F) be a vector bundle over a manifold
without boundary B. Then there exists a local addition
7: TE->E with the following properties:

1. B, identified with the zero section in E, is
additively closed in E with respect to T.

2. Any vector subspace of each fibre Eb=p-1(b), b € B,
ig additively closed in E with respect to T.

Moreover v induces on each fibre Eb the local addition

coming from the affine structure of E,: 'rb(m) =p+m,
D, EEb, o € Tn(Eb) =V(E)n"

Proof: Let (B',p',B,F') be a second vector bundle such
that E®@E' is trivial. Such a vector bundle exists, see
HIRSCH (1976), p. 100. Then E®E' is isomorphic to

B><IRn for some u. ILet T be a local addition on B, let
T, be the affine local addition on R™: 7,(v.)=x+v,,

v, ETXIRn&IRn. Then T, x T, is a local addition on B xRY,
satisfying 1. and 2. Now transport Ty X Ty back to EAE'
via the isomorphism, then Ty X T induces a local addition
on the sub bundle E of ERE' by 2. g.e.d.

10.7 Definition: Let X be a submanifold of a manifold Y,
both of them without boundary. A tubular neighbourhood of
X in Y is an open neighbourhood U of X in Y together with

a surjective submersion p: U-X such that:
1. (U,p,X,...) is a vector bundle
2. X-» U is the zero section of this bundle.

Temma: Let Y be a submanifold of a manifold X, both of
them without boundary. Then there exists a tubular neigh-
bourhood of Y in X.

This is a standard result of differential topology.
A proof of it is contained in the proof of lemma 10.9
below.

10.8 Proposition: Let X,Y,Z be C® -manifolds, Y,Z with-
out boundary. Let i: Y~ Z be an embedding. Then C% (X,Y)
is a splitting C? -submanifold of C%® (X,2) via
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ig: CP(X,7)- 0% (%,2).

Proof: Let YcUcZ where U is a tubular neighbourhood of
Y in Z, so (U,p,Y) is a vector bundlc. By 10.6 there is
2 local addition Tt on U, T7: TU-» U, such that Y and all
p_1 (y), €Y are additively closed in U.

Now let ge ¢® (X,Y) < ¢® (X,U).

Let (U_,o ,I‘c(g*TU)) be the canonical chart of
¢® (X,U) centered at g which is induced by r.

For any f €U_ we have: £(X) ¥, i.e. £eC® (X,Y), iff
95(2) = (m,m) ™" (e, £) €3, (X,77) =T (*17), since
Tg(x)(v) €Y iff v€T, Y. This says that
Ugn ¢® (x,Y) =cpg"1 (I‘cgg"*TY)), where I‘c(g*TY) is a linear
subspace of T (g*TU) =T (g*TZ), even a direct summand,
since Tc(g*TU) =T‘c(g*(TU|Y)) -..-rc(g*(TYev(U) 1Y) =

=T, (&*TY ©g*V(V) |Y) =
=I‘c(g*TY) ®I‘C(S*V(U)),

where V(U) is the vertical bundle of (U,p,Y).
TU|Y=TY® (V(U)|Y) can be seen by looking at the canonical
chart change in 1.14. So ¢® (X,Y) is a splitting
cg’ -submanifold of C® (X,U) which again is open in
cg’ (X,2). q.e.d.

10.9 Let X,Y be manifolds without boundary. Q(X,Y) has
been defined to be the set of all surjective submersions
X->Y (5.6). Q(X,Y) is open in ¢® (X,Y).
Definition: For q € Q(X,Y) let S_(Y,X) denote the space of
all sections of g, i.e. S (¥,X)= {gec® (Y,X): qo g=IdY}.
Note that any g€ Sq(Y,X) is an embedding.
Lemma: If g is as above, let g€ S (Y,X). Then there exists
a tubular neighbourhood p_: Wg—)g Y) of g(Y) in X whose
projection p_ coincides with the restriction to Wg of the
mapping g. q: X-g(Y).
Proof: Firstly let i: X->R"™ be an embedding of X into
some R™. Then g(Y) is a submanifold of R™ too via ile(Y).
For y € g(¥) eR™ let Py: R > Ti(y)(g(Y)) be the orthogonal
projection onto ’I‘i(y)(g(Y)). Y"Py defines a C® —mapping
@
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g(Y)» L(R®,R™) (this can be seen using the Gram-Schmidt-
Orthonormalization process.)
Ian—Py: Rn=Ti(y)ar-> (T3 (g
orthonormal projection onto the orthonormal complement.
y-»(Id -Py) is again a C® -mapping g(¥Y) » L(R%,R™).
Extend® thls mapping to a C® -mapping h: X-L(R®,R™®) (this
is poss1ble since g(Y) is a submanifold). Now let
f: X-»>R™ be defined by £(x) =h(g . a(x))(i(x) -igq(x)) +
+ igq(x). Then £(q” (y)) €Ty, (y y(&8(¥TN* +ie(y), y€¥,
and f|g(Y) =1i|g(¥), so there is an open neighbourhood V
of g(Y) in X such that £|V: V-R™ is still an embedding.
q|V: V- Y is still a surjective submersion, since V is

)g(Y))L is the associated

open in X and Vag(Y).

We will prove now that g(Y¥) has a tubular neighbourhood
in V, whose projection coincides with go. q. This proves
the lemma then.

For that let W be an open neighbourhood of (V) in R®
and let r: W- f(V) be a normal tubular neighbourhood of
2(V) (i.e. 7 (x) =Wn (T_£(V)* +x), x€£(V)).

Proof, that this exists: Consider Tf(V)* in
TR™| £(V); this is a vector bundle over £(V). Let
1: T£(V)L-R™ be defined by 1(v,) =x+v_, x€£(V),

v, €rn f(V)* cR™. Then To 1 is the identlty on T f(V),

where £(V) ¢ T£(V)* via the zero section, and T, 1 is the

identity on Txf(V)L, 80 TOXl is an isomorphism.xSo 1] zero
section ig an embedding, Tl|zero section is fibre-wise an
isomorphism, so there is an open neighbourhood of the
zero section in Tf(V)! such that 1 is a diffeomorphism
on it. Draw this diffeomorphism over the whole of TFf(V)*
using 10.2 and get the looked for tubular neighbourhood
W of £(V) in R™ with normal projection.

Now equip £(V) with the Riemannian metric induced from
R® and let (B,p,fg(V) =ig(V)) denote the normal bundle
Tfg(Y)*t = T£(X)| fg(Y). Further let

U ={v_€B_: y+v_ €W}, yefg(¥) and put U= |J
y y ¥ y yefg(Y) y
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Then U is open in E (U is the inverse image of W under
the mapping »_-y +v_, E->R™®) and contains the zero
gection. Since r: W-f(V) is a normal projection and
U_cT £(V) for any y € fg(Y) (i.e. U_ is tangential to
£(V) at y), the mapping p: U- £(V), p(vy) =r(y +vy), is
a diffeomorphism, at least in a neighbourhood of the

zero section of U. Draw this neighbourhood over the whole
of E using 10.2 again, and get the tubular neighbourhood
P: W fg(Y) of fg(Y) in €(V), whose fibres are orthogonal
$o £g(¥) in R®. Transport back to V via £ | and get the
looked for tubular neighbourhood, whose projection coin-
cides with g. g by the construction of f. qg.e.d.
Remark: To prove lemma 9.8 it suffices to choose any A0
embedding f: X-»>R%, YcXcR™ and work in £(X) instead of
£(V).

10.10 Proposition: ILet q € Q(X,Y) be a surjective sub-
mersion between manifolds without boundary. Then the
space Sq(Y,X) of all sections of q is a splitting

cg" -submanifold of ¢® (Y,X).

Proof: Let g€ Sq(Y,X). Then g: Y-»X is an embedding and
by 10.9 there exists a tubular neighbourhood p : Wg—> g(Y)
of g(Y) in X such that Py =& o q]W_. q|W_ is still a sur-
jective submersion since g(Y)eW_, W_open. Let
T : TW_ ->W_  be a local addition satisfying 10.6, i.e.
g(¥) eW_ and each fibre (W )_ is additively closed with
respect to v _. Let (Ug,cp Ty (g* TW )) be a canonical chart
of ¢ (¥, W ) centered at g and 1ndu.ced by g

For f € U we have, by construction of 'rg
fes (YW ), i.e. qo. £= Idy, iff
V%(f%’) “Te(y) (glg(y)) =T0glg(y) = (Vg g(y), here

W ) is the vertical bundle of . This says that
5,(T W)U =o (e (e*v(W,))), and T (g*V(Wg)) is a
dlrect summand: T, (g*V(W )) T, (g*T(g(Y))

= T, (&*(V(W,) | &(1) @ 7a(¥)) =T (&" (24,1 (0)) =T (870 ).
So § (Vs Vg )_s (v,X) nc® (¥, Wy ) is a splitting c°° s
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manifold of C® (Y,Wg) and ¢% (Y,wg) is open in
¢® (Y,X). gq.e.d.

10.11 Our next aim is to identify the tangent bundle of
c® (X,Y). Again some Preparations.

Let 7: TY->Y be a local addition on Y, let
Ro= Ryt TzYa T2Y be the canonical conjugation on Y, given
locally by: uY(x,y;g,n) = (x,g;y,m) (ef. 1.19).
Lemma: In the situation. above, Tt o wyt TY->TY is a
local addition on TY.

Proof: We have to check 10.1 (41) and (A2).
(TrY,'r): TY>Y¥xY is a diffeomorphism onto an open neigh-
bourhood V of the diagonal in Yx ¥, so T(my,t): T°¥~
» M(Y¥xY)|V=(DYxTY)|V is a diffeomorphism too. So
(Tipys 7 o ”Y) = (Ty o nys TTo ”Y) (1.19)
= (TnY,T'r) o nY:T(rrY,'r) o ny is a diffeomorphis too, and
the image (TYxTY)|V is open in TY xTY :nd contains the
diagonal. So (A1) holds.

To show (A2) we compute locally. Write
: (x,y)»>7(x,y), (x,0)=x.

Then Tr(x,y;€,n) = (7(x,¥),d,7(x,¥). € +d,r(x,y).n),
Tro n(x,y;€,0) =(T(X,§),d1T(X,E).y-+d2T(X,§).n).
1 o #(x,y;0,0) = (T(X,O),d1T(X,O).y +0) =(x,y), since
7(x,0) =%, so d.1'r(x,0) =Id. q.e.d.
Remark 1: Note that the image of (Trt. n)v =TT, xITv TY

y ¥y
contains the whole fibre T_Y in TY.

This follows from the proof of (A1) above or directly
locally so:
Tr o n(x,y;0,m) = (1(x,0) ,d1'r(x,0).y +d2'r(x,0).'n), and
dzT(X,O) is invertible.
Remark 2: If £ is a spray on Y and exp £ its exponential
map, then it can be proved that E=T‘M.Yo Roy o T8 o Hyt
TZY%TBY is again a spray and its exponential map is Just
exp £E=T exp €. #y (compare with 1.20).
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10.12 The space ®(X,TY):

Let X,Y be o® -manifolds, X witl corners, Y without
boundary. Let 1t: TY-»Y be a local addition. Denote by
T=TT, Hy? TZY—aTY the local addition investigated in
10.11. Let OY: Y- TY denote the zero section.

1. Definition: Let ®(X,TY) denote the space of all smooth
mappings s: X - TY such that s =0 off some compact in X,
i.e. the space of all mappings X-TY "with compact support"
With s the whole equivalence class of s is in ®(X,TY),

so 9(X,TY) is a (FD)-open subset of C® (X,TY) and inherits
the canonical C? -manifold structure.

We will use the canonical atlas induced by the local
addition T: T°Y TY.

Remark 1 of 10.11 shows that the charts
(on o 20 9, £ T((Oy e DI*NIT)) for £ ¢® (x,7)
already cover the whole of ®(X,TY). We want to investigate

this charts a little. Let
(UO . £ cpoYo £ rc((OY° £)*T(TY))) be such a chart,

centered at Oy o f € 9(X,TY) for some f € ¢® (X,Y).

2. Claim: UO
Y
(Uf,cpf,rc(f*TY)) is the canonmical chart of ¢® (X,Y),
centered at f, induced by 7.

L ¢=18€3(X,T0): myo €U}, where

For by 10.4 we have Uy o= {s €D(X,TY): (OYo f,8)(X) e
Yo
c Im(“TY’T_)_ and s NOY" f}.
But Im(nTy,'r) =Im(('1‘rrY,T'r) o nY) =In T(WY,T) =
= (TYxTY)/Im(ny,'r), as we saw already in the proof of
10.11. Now for x € X we have
(Of(x),s(x)) € (TYxTY)/Im(TrY,'\') iff
(TTYX TTY)(Of X),s(x)) € Im('nY,'r), i.e.
(f,TTYo s)(x) EIm(ﬂY,'r), and this is the case iff
Ty o 8 € Uy, since for s €D(X,TY) clearly §~O0yo f iff
TTYO S"*‘fo
Now identify T ((Oy e £)*T(TY)) with ® (x,m(1Y)),
(¢} Y OYo £

then clearly ® (X,7(TY)) =D (X,T°Y/Y), where
Oy o £ Oy o £
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7Y |Y = T2Y| zero section of TY.

But T°Y|Y splits canonically as T2Y|Y=TY@TY, given
locally by (y,0;b,e) « ((y,b),(y,c)) (ef. 1.15 = 1.19).
So this splitting is described by the homomorphism of
vector bundles over Y

Vry *y 2
Yo TY —==— V(TY) —— T°Y|Y, where V is the
vertical 1ift 1.15.3; its inverse is given by
-1 _
Toy = (Tpys Cpy)

2 "y
T°Y|Y —— V(TY) TY ®TY, where
Cpyt V(TY) > TY is the vertical projection of 1.15.4.

3. So by 1.18 we get an induced isomorphism of vector-
bundles

X% (21,0, . f’nTY)TZYIY — (0y. £)*(T%¥/Y)

S (IdX><KY) f*(xY)
XX (1,2,my 0 mgy) VT £%(V(TY))

° | (Tagxyigy™) £ (Vg
X % (Y'f’“meam)(wew) £#(TY ® TY)

(Ex(1,2,m) Y xx(Ex (1,8,7,)T0) = (£17) @ (£¥17),

where we write f*(nY) by some abuse of notation.
But then clearly we have an isomorphism of topological
vector spaces:

b (£%(Tgy ™) o £2(ag) dut T ((0y « £)%(1%7|7)) -
- I‘c(f*TYGBf*’I.‘Y) =I‘c(f*TY) GBI‘c(f*TY).

10.13 Theorem: Let X,Y be C® -manifolds, Y withouu
boundary. Then TCQ)(X,Y)szﬁ(X,TY) canonically asg

® - . @

C, -manifolds and WCG’(X,Y)"(“Y)*' D(X,TY)-»C™ (X,Y).

Proof: Let t: TY-»Y be a local addition;considexr the
canonical atlas (Uf’mf’rc(f*TY))fGCa)(X,Y) of ¢® (X,Y),
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induced by T. Remember the definition and the canonical
atlas (T,,,,T (£*T7) xT_(£*TY)) of ¢® (X,Y), explained
in 9.3.

Now consider the canonical atlas of ®(X,TY),
(UoYo £1%, . £To((0g o DI*T2Y/¥)) e (x,g)» induced by
T=T7 . ny 7°Y 5 TY. We claim that the isomorphisms
T ((0y. f)*TzY/Y)»I‘c(f*TY)xI‘c(f*TY) of 10.12.4 induce
a natural identification of ¥(X,TY) with pe® (x,Y).

In more detail: Let f,g€ 0™ (X,¥) with Uyn U B e
claim that the following diagram commutes:

(1) 5 . (5
N ©_ o (o
U.NnTU £ £ >0 (T.NT
f( £ < ch( f g)
cpf(/Ufﬂ Ug)xI‘c(f*TY) cpg(Ufﬂ Ug)xrc(g*TY)“
II nl ni ‘\‘
{ T _(£*TY) xT_(£*1T7) T (g*TY) xT _(g*TY)
! (] [¢] (6] (¢] \
/ ” \\
[ T (L*TY & £+17) T, (g*TY ® g*TY) \
1 \
] s \\
I/ (£*(ny) o E¥(Vipy ) ‘l (g% (ny)o&*(Vpy) )*\‘
] \
i T ((0y £)*1%7/7) T ((0yog)*I2Y/¥) \
v [¢] Y C Y 4
U ﬂ/n ) ( U,
%Yof( 0y°f UOY-g = » °F’0Y-g Uost“ Oy° &

P00 g ° (g of)“1
Y Y

If this is true, then we have an identification
9(X,7Y) =T¢® (X,Y) as canonical as we can hope for.
First we check that (f*(nY) o TH(V

TY))
bijection between the indicated subsets.

% induces a

(2) Claim: Let (r,s)EI‘c(f*TY) xI‘c(f*TY). Then

2% (uy) o T*(Vpy) o (r,8) € chYof(UOYOf n UOYQg) iff

T Ecpf(Ufn Ug). f*(u,Y) ° f*(VTY) o (r,s) € chYOf(UOYafO UOYog)
iff CPoYof(f*(nY) o £*(Vpy) o (,8)) € UOYog since it is

clearly in UOY’f for all (r,s).
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This is the case, by 10.12.2, iff

Ty o chY,f“1(f*(nY) o £%(Vpy) * (x,5)) €U, Now
Ty o cooY,f‘1<f*<nY> o 24 (Tpy) o (r,8)) =

= Tyo To f*(nY) o f*(VTY) o (r,8) =

= Ty e T o Ny oy o VTY° (r,s) =

= To Tqy e VTY° (r,s) =

=Ta I‘-—-cpf"1 ().

So the claim is proved. Clearly the same assertion holds
for g.
Now we prove that the diagram commutes. Let
(r,s) chf(UfﬂUg) xI‘C(f*TY). Then, by 9.3,
By o (5f)_1(r,S) = (g 0 rpf_1 (), Dl cpf'1 )(r).s) =
= (Tg—1onoI', dF(Tg‘1°¢f) o (r,8)) by 10.4,
- (Tg-mfor, Corry ° T(Tg“1,Tf) o Vongy o (r,8) by 1.16,
= (ﬂg*TY’gg*TY) o T(Tg—1on) o Vospy ° (r,s)
= Vg*TYq ° T(Tg_1on) o Vewpy (r,s).

(3) 8o (g%(ny) » *(Vpy))a(By» (B (7,8)) =

* -1 =1 =
8 }LYo Vg*TYo Vg*TY o T(‘Tg o'l'f) o Vf*TYo (r,s) =

1l

g%u‘Yc T(Tg—.1on) ) Vf*TYg (r’s)_
-1 _
CPOY"gO (CDOch) ° (f*(ny_) o f*(VTY))-}&(r’S) -

= 3 ° .
= TOY°8 o TOY°f ° fa?(%y) o F (VTY) (I‘,S)
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fH(IY S TY)=—— X x (Y’f’ﬂTYeTY)(TYeTY)

(4) §
£ (VTY) =Verpy Tdy x vTY
£*(V(TY)) =— X x . V(TY)
§ (Y"fsﬂY T"TY)
l f*(nY) Tdy Xty
2
(0o £)*(T2Y/7) == X x °Y/Y
Y ! (TSY,OYof,TTTY)
£* (ny) Tdy X ny Idy X T
- £5(V(TY)) ==X v(TY T Tro
TOY°f ( ( )) X(Y!f!nY"TTTY) ( ) dXX( T KY')

/(TT)O o f IdXxT'r\
: Y

IxTY XxTY
/

1 (TT)OYog Tdy x Tt
TOY°8

3 -

g*(V(TY)) = Xx (y, g, mom )V (T(T)) Tdy xT

Y 'TY I

J'/ g¥ (M-Y) IdX X KY IdXX(TTo %Y)

2 2
(OY°g)%(T Y/Y) XX (TYQOY°f’ﬂTY)T Y/Y

So we may continue:
= @;*(%Y) o (TT)OYog—1 o (TT)OYOfof*(nY)of*(xY),f*(VTY)°(r,s)

= g*(KY) ° (TT)OY -1 ° (TT)Oy°f° vf*TYo (I‘,S)‘

o8&
It remains to show that

-1 N -1, )
(TT)OYog o (TT)Oyof—-T(Tg 7o) | £¥7(TT).

Tf T
PPy — L 5 X XY e——B—— g*TyY
I Id, xt I IdyxrT I
: y X
- TY
Xy, g,my) XX XX (v,g,my)
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T
(5) T(£*7Y) ...._T.<_I£2___. T(XxY) Q————(Ig-)—-_T(g*TY)

(X (Y’f,nY)TY) XX (g, g, q )T
" Id v XTT T4 myxTT “

o Tdpy X 2
P ae )T T R T DX (17, 7, 2m )"
TOX % Tncl. Ot | Oyt Oy x Incl.

X x T(TY

X (TY,Oyof,TwY)V(TY) X (TY,oy.,g,lTnY) (T7)

XX (1,2, mgomyy) V(T EX(1,g,mpempy) V)

/ * XTY\
£*(V(TY)) g* (V(TY))

(Tr) ()
OYnf OY°g

The above diagramm, which is clearly commutative, shows,
that this is indeed the case.

So the theorem is proved (the second assertion is
easily checked looking at diagram (4)). q.e.d.

10.14 Corollary: Let X,Y,Z be manifolds, without buundary,
if necessary. Then the following holds:

1. If £f: Y-»2 is a CCO -mapping, then
fu: CP (X,Y) 0P (X,2) is cg“’ and its tangent mapping
T(fy): TP (X,Y)»1c® (X,2) is given by
(X, Tf): ®(X,TY)»>D(X,T7).

2. if g: Z-»X is a proper o® -mapping, then
g*: ¢P (%,Y)-»c®(2,Y) is cg’ and its tangent mapping
T(g*): Tc® (X,Y)-»1c® (2,Y) is given by g*=9(g,TY):
®(X,TY) »9(Z,TY).

Proof: f, is Ccco by using the Q~lemma 8.7 for the local
representative of f, in canonical charts. g¥* is Cg) gince
it induces continuous linear mappings between canonical
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charts (compare 10.4).

The form of T(f,) and T(g®) can be seen by looking at
the canonical charts of ®(X,TY) and at the proof of 10.13;
or, much easier, by applying the following lemma: see
below. g.e.d.

10.15 Lemma: Let X,Y be C® -manifolds, Y without boundary.
Let c: R->C® (X,Y) be a P -curve. Then &(0) =3+ c(t)|,_,=0

in Tc(o)cm (X,Y) =D, () (X,T¥) iff a%; e(t,x) =0 in T (o) (p)¥

for all x € X. In other words: T,c=0 iff To(evx" c) =0 for
all x€X, where ev, s ¢® (X,7)~Y is evaluation at x.
Proof: evx=(§)*: o® (%,Y) » 0® (%,Y) =Y, where X: #->X
is the mapping from the one-point-manifold * to X with
image X €X. So ev, is cg" by 10.14. (It is easily seen
that ev, is continuous and linear in each chart.)

Ngf let (Ué(o),mc(o ,Tc(c(O)*TY)) be a canonical chart
of ¢% (X,Y), centered at c(0) € ¢® (X,Y), induced from a
local addition T: TY>Y. Then we have: = c(t)|, =0 in
T 0y ¢° (X,Y) 12f = ®5(0)(e($))] =0 in T (c(0)*1T).

®(0)(e(8)) = (my,m) ™" ¢ (e(0),e(%)). So
cpc(o)(c(t)) —cpc(o)(C(O))l
t

4
3% Pe(0) (el po(x) = [};_i)’g (x) =

-0
section.

= [1im —11-;- cpc(o)(c(t))](x) since cpc(o)(c(o)) is the zero

= lim + () (c(t))(x), since evaluation at x is linear
>0 ¥ ¢(0)
and continuous on I‘c(c(O)*TY).

]

Lin g (ry,7)7" (e(0,x),0(t,x))
—>

& (o) (e(0,3),e(,2)) | 4o

]

Since (Try,'r) is a diffeomorphism, this is 0 iff
L o(t.x)=01in TT. g.e.d.

Application: We compute the form of the tangent mapping of
it c® (x,Y)»c® (X,z), i.e. we prove the rest of 10.14.1.
Let c: R»C%® (X,Y) be a Cgo —curve, representing the
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tangent vector ¢(0) €D, (o) (X,TY) =Tc(o)c"3 (X,Y) (each
tangent vector may be represented in that form).
Then T(£,).8(0) == foc(t)|,_o-

[2(£4).¢(0)](x) = [a'{ o o(t)]_o1(x) =
=5 £(c(t,x))| ,_, by the lemma

It

. o(t,x)| o
Tf . &(0,x) = [Tf. ¢(0)(x)

So T(f£y).c(0) = (T£),(8(0)). gq.e.d.
Now we prove 10.14.2:
T(g*).c(0) = g*(C(O)) £=0 = ag c(0) o &l o

[T(g*)-C(O)](X) =& c(0) . gl,_o1(=)
= é% c(O,g(x))\t=o by the lemma

= ¢(0,g(x)) = [c(0) « g](x)
[e*(c(0))(=x).

So T(g*).c(0) =g*(c(0)) =9(g,TY).c(0).  g.e.d.
This method will be used a lot.

1

10.16 Up to now we have investigated the canonical mani-
fold structure of C® (X,Y), if Y is a manifold wil iout
boundary.

1. Now let us suppose that Y is a manifold with corners
too. Let t: TY>Y be a boundary respecting (10.3) local
addition on Y.

Tet fe0® (%, Y). Define again Ug ={gea®(x,1):
(f,g)(X) :(TW,T)(lTY) f~gl. This is again open in
c¢® (%,Y). Define ©p: Up> T (£¥TY) by
mf(g)._(ny,T) (f,g)-—ff 1° Tg. This is again a con-
tinuous mapping, but mf( ) does not coincide with the
whole of T, (£*7Y). In fact,
cpf(U )= {ser (£*7Y): s(X);f*( 1ry))

= {se'sf(x TY): s(X) e "TY}.
It can be proved, that this set is closed in Tc(f*TY).
This is even a sort of guadrant in rc(f*TY), but its
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boundary consists of "plane" pieces of infinite codi-
mension, if f meets ¥Y in infinitely many points on X. We
may call the chart change C (compare with 10. 4) and we
may say cum grano salis, that CG)(X Y) is a "C -mani-
fold with corners".

2. We will not enter into this in full generality. But
some further details are very interesting. Note first
that the set Pp (U,) contalns a closed maximal llnear
subspace, S (X TY) =9 (X TY) {s ESD:E(X TY): s(X)g TY},
where we put Ty - U TodreTy. (207 =T\oY ).

Tet s €D,(X,TY). Then s¢€ SDf(X,TY) iff s(£7'(27Y)) e Toly
for each j.
So "o (X,17) = N (s €2,(X,T0): s(x)eTy(, )77}

0sIsn zer (337)
is indeed closed, since s~ s(x) is a continuous linear
functional.

How do the spaces K5 (X TY) behave under chart change?

Py D (s) = (rys7)= 1(g,ToS)

Since T is boundary respecting (10.3), the subspaces
by (X TY) and ) (X,TY) map into each other under
chart change, if we suppose that f 1(bJY)- 1(ij) for
all j. Define cnlc (X,Y) to be the set of mappings
£ ec®(X,Y) with 1 (39%) = 29X for each j. '

T is boundary respecting, i.e. Ty 1(bJY):TbeY for
all ye Y, for all j. So if £ is nice, then
0p(U,N O (X,7)) = ¥,(x,T7).

So we have proved:

Theorem: Let X,Y be manifolds with corners. Then the
closed subset Cpy . (X,¥) of C®(X,Y) is a C -menifold
(without boundary), modelled on topological vector spaces
of the form ) (X,TY). Since Diff(X) is open in ¢®  (x,X),

Diff(X) is a Co -manifold (without boundary) too.

nice
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11 Differentiability of certain
mappings

11.1 Propogition: Let X,Y be C® -manifolds without

boundary. Then for any k=0 the mapping
£ 0@ (X,7) »c® (X,35(X,Y)) is of class c®.

Proof: Let T: TY»>Y and p: TJ5(X,Y) - 75(X,¥) be local
additions, let £€C® (X,Y). Let (Up,q,,T (£¥17)) be the
canonical chart of C® (X,Y) centered at f and induced
by 7; and let (U, , @ ,I‘c((jkf)*’l‘Jk(X,Y))) be the

. k.,

£ @ Iy gk X
canonical chart of ¢ (X,J (X,Y)) centered at j°f and
induced by p.

We have to check wether the mapping

9 o350 0,7t T (£*TT) > T_((5£)*13%(X,¥)) (or rather
it
a restriction to an open subset of it) is Cgo . For

8 €T _(£*TY) we have o K ° jko o _1(s)=p I =1, (14 ,Jk(ToS))
c 55r il §5r X

=0 (s T5(X, 075 0 7,)) o €0 T(s)
J
by the following diagram:

(3%£)*0a%(x,¥)

iE(108)

P
RS

JE(X, £*T7) X % 75(X,Y)

Hera ¢ is the natural embedding of 1.12.2 and
T pTr
2Py —L 5 XY —2— ¥ induces Jk(X,Pronf):
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TE(X,2#7Y) » JE(X,Y). Now I¥: T, (£¢TY) 5 T (35(£*TY)) 1s
continuous and linear (a linear partial differential
operator) and Pk —1o(q,Jk(X,pr2. Tf))a €: Jk(f*TY)->

hif
> (jkf)*TJk(X,Yg is a smooth fibre respecting (over X)
mapping, so by the chain rule and by the Q-lemma 8.7 the

mapping ¢ ojkomf_1 is Cg>. qg.e.d.
it
11.2 In order to compute T(jk) we need:

L omok _ k
Lemma: TJ<(X,Y) —TXx(XmX’a)J (X,TY).

Proof: If U,V are open in Rn,Rm resp. then
1E(U,V) = (U x T x B(n,m)) = (UxT x2(n,m)) x (R xR™x B(n,m))
(UxR™) x (VxR™) x P(n,2m)
(UxR™) x 7{Ux (VxR™) x P(n,2m))
TUXUQ‘k(U,TV), _
since Lgym(an;lRm) ngym(Rn;Rm) aLgym(an R™ «R™) naturally.
Since the above computation is natural (with respect to
mappings as in 1.5, 1.6) the result holds globally too.

_ q.e.d.
11.3 Proposition: Let 3¥: 0% (X,¥)- J5(X,d5(X,¥)). Then
its tangent mapping T(3%): Tc® (X,¥)» 1c® (X,3%(X,¥)) is
given by the following sequence:

IR

1

1l

c¢® (X,Y) « s ¢® (X,Y) = D(X,TY)
i
Ix, 0y
. . 9(X,35(X,1Y))
Ix,v T(ix,y) | (Ogec,Id)
tE)(X,TXxXJk(X,TY))
1 I

Y Y
e® (x,3%(x,Y)) «I— 70® (x,55(x,Y)) =D(X, 155X, T))

Proof: There is some abuse of notation in the diagram,
@(X,JE(X,TY)) is not defined properly. It is clear what
is meant by it.

To prove it one could follow up the proof of 11.1 and
could see T(jg’Y) in chart-representative. We will compute
explicitly using 10.15.
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Iet c: R->C® (X,Y) ve a ¢ -curve. Then
[TC(O)(JX Y).C(O)](X) = [d't jX Yc(t)lt=01(x) =
d‘b jX,Yc(t’°)(x)\t=O_—JX,TY(dt C(t,o))(X)lt=0=
(35, pye(0) 1(x).

We may commute jk and d—‘?t- since these are partial
differential operators with respect to different variables.
The rest is a question of natural embeddings. qg.e.d.

]

11.4 Theorem: Let X be a o® -manifold with corners, let

Y,Z be 0% —panifolds without boundary. Then the mapping
® @

Comp: C%® (Y,Z) xC rop(XmY) -» % (x,2), given by

Comp(g,f) =g f, is a C, —mapping.

Proof: Let t: TY->Y and p: TZ-Z be local additions. Let
gECCO (Y,2), fGCp op(X¥) and let (U ,p,,T (g*12)) and
(ETJ,cpf,I‘ (£*TY)) be the canonical charts of COD (Y,z) and
(X,Y), centered at g and £, induced by T and p
respectively. Fur'ther let (U 21,2 e ((go£)*TZ)) be the
canonical chart of C% (x,2) cen‘cered at g.f, induced by
p. Let us assume that U_ and Uf are so small that
Oomp(ng ) €U, » (this is possible by 7.3). Note that
au‘bomatlcally Ufgcprop(x Y) if £ is proper (h~f, f
proper implies h proper).
Consider the mapping
(1) e=0 ¢ Compo (o -1 xcpf—1): I‘c(g*TZ) xl‘c(f*TY)-v
> T ((gt%*TZ) (which is not globally defined - but we
wan‘b to save notation).
Then
(2) o(t,8) =0, plo,” (£) o 0.7 (s))

= pgof -1 (T X:ptTS) ’
where p : (gf)*TZ~>XxZ is the fibre respecting diffeo-
gnf N /pr1
morphism into, given by Pgot = (IdX xp)| X% (Z,gf,ﬂZ)TZ:
(gf)*TZ > X xZ. First we investigate the partial mapping
(3) t=c(t,8), s EI‘c(f*TY) fixed, t GTc(g*TZ). Since
Te8 1s proper too. 30 the mapping
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(rs)*: T (g*1z) »T ((grs)*12), (r8)*(t) =tetos, is con-
tinuous and linear. Now congider the fibre respecting
smooth diffeomorphism (not everywhere defined):

p
(g7s)*17 BIS ¥ y7 < Pat (gF)*12
X " 17 X | 7 Lo X “ 77
——x°
X (Z,gTS,T\‘Z) . IdXXp/,x X (Z!gfﬁﬂz)

\l\XxTZ
N

X

-1 _ -1 \ .
Then (pgf opgTS)*(Ts)*t—pgf o(IdX,P“cTs,—c(t,s);

By the chain rule and by the Q-lemma 8.7 the mapping
t»>c(t,s) is of class CCD and its derivative is given by

(4) Dye(t,s).t' =D((p ) (T8)*) (£). %" =
D((b g™ v ) )((Tsm)(?m)*t ) =

= =1 '
= dplogy oPgrg)e (78,8 7s) by 8.7

]

1

-1 .
C(ge)vrz e TPgr  © Parg) @ V(grs)npg o (trs,t78) by. 1.16
= C(gf)*1z ° T(pgf—q) o T(Idy xp) o (O, Vg o (PotTs, Dot 8))

by 1.18, where p: (g'rs)*TZ=X><Z’.L‘Z—->TZ is the restriction
of the second projection,

= Q(gf)*TZoT(pgf ) o (Og,Tp o Vy o (ptrs,pt'rs)). The
last expression shows that D c(t,s).t' is jointly con-
tinuous in t,t',s (use 7.3, '7 4 and the fact that s-rs,
T, (£#*1Y) » C rop(X,Y) is continuous).

Now we look at the mapping
(5) s»c(t,s), €T (g*12) fixed, s €T (£¥IY). For fixed
t we define the mapping
(6) a(t): £*TY - (g£)*TZ by

(T
T*TY o(t) + (gf)*17

e Id, x st e
IdXx'r IxY ?

Xx(Yf/:TY \ / \('z\ 17
£y . & ,m,)

111



Then a(t)y(s)=p o(IdXxpt) °Tpo S

gf
=p f_1o(IdX,pt'rs),

and o(t) is a smooth fibre respecting mapping (not every-

where defined).

So by the Q-lemma 8.7 the mapping (5) is of class

and we have

(7 D2c(t,s).s' =D(a(t)y)(s).s! =dF(a(t)) o (s,s'). But

we are far from being done: t->a(t) is not continuous in

t (since Te does not have a closed image, so is not

proper, and since teIdXxpt is continuous iff X is com-

pact). We will rewrite expression (7) in form where it is

obvious that it is jointly continuous in t,s,s'.

CCD

First we compute as follows:
(8) Dye(t,s).s' =dp(alt)) o (s,8') =
= Q(gf)*TZoT(a(t))on*TYo (S,S') by 1. 16
_ -1
= C(gf)¥17 ° T(pgf ) o T(Idy xpt) o T(1e) o Vopqpyo (s,8')
_ -1
= g(gf)*TZ ° T(pgf ) o (OX’T(ptT) ° VTY° (PS,PS'))
where again p: f*TY=XxYTY—»TY is the restriction of
the second projection.
So it remains to show that
(9) (t,s,s')aT(ptT)VTY(ps,ps') is jointly continuous.
For that we look at the manli’old
M: =T Yx (1Y, “TY’G)J (T7,7) X (y, )J (v, TZ)x(Z w, )J (7z,2)

Let y: M- TZ be the o® -mapping, given by

(v,cr1 ,02,03) =030 0y 0y (v) (y is just matrix multi-
plication locally). Then we have

(10) T(ptT)VTY(ps,ps ) =

= vo (Vpy(ps,ps'), j "(1) o 08,3 (%) o t0s, 3'(p) o trp8)
and this expression is jointly continuous in (t,s,s')
(tps =Ts as we have written before, t: f£*TY-Y, rs is
alway proper).

So we have seen that the partial derivatives
D1c(‘t,s).t' and ch(‘t,s).s‘ exist and are jointly con-
tinuous in (t,s,t',s'). So by 8.3 the mapping (t,s) - c(t,s)
is a Cl—mapping, and Dc(t,s)(t',s')=BIc(‘b,s)s'. By (4)
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and (8), (10) the expressions D, c(t,s)t' and D c(t s)s'
have a form similar to c(t,s) 1tself the part j (t) of
(10) is Ca) by 11.1. So by recursion ¢ is 02 and C
q. e a.

11.5 Remark: The question arises wether this result
11.4 remains valid if we admit cormers in all manifolds.
Remember 10.16 where we noted that Cp p(X Y) and

¢® (¥,2) are not quite C -manifolds since they have
"corners of infinite 1ndex". The technical details of the
proof offer mo difficulty, since the (-lemma needs just
convexity. We put:

Theorem: Let X,Y,Z be manifolds with corners. Then the
mapping COI;).)p: Co 0o (¥52) xcpmp pice (%o T) > (X,2) is
of class Cc .

Proof: Just note that go f is nice if g and f are nice.
The proof is the same.

11.6 Corollary: Let X be a manifold with corners, let

Y,Z be manlfolds without boundary. Consider the Ca’
mapping Comp: C% (Y,2) xcmrop(x Y)-»¢® (X,2); i'ts

tangent mappine TComp: D(X,TZ) xD (X,7Y)»9(X,T2) is

prop
given by
T(g,£)C0mp-(t,8) = (Tg)y(s) +£%(t) =3 g s+t £.

Proof: The finite dimensional proof for Lie-groups works
here: Congider the mappings
Iyt 0°° (v,2)-»c® (¥, z)xc“’ (X,Y),
K.: Ch elo(x Y) »¢® (1,2) XC%’iop(X Y), given by
Je (h) =(h, f) K (h)..(g,h) respectively. Then clearly
Comp a Jf_f : c°° (v,z)-c¢® (X,2)
Comp o K, =gy ¢® _(x,Y)-c® (x,2).
Therefore

. = .G+ . =
T(g’f)Comp (t,s) T(g,f)Comp(Tg(Jf) t Tf(Kg) s)

prop

= - . C . K 8=
T(g’f)Comp Tg(Jf) t-%T(g’f) omp Tf( g) 8
Tg(f*).t-ﬁTf(g*).s==f*(t)-k(Tg)*(s) by 10.14. q.e.d.

Il

Of course the same result is true in the setting of
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11.5, as are all the following ones with the appropriate
changes.

11.7 Corollary: Let Y be without boundary. Then
evaluation Ev: Xx 0% (X,Y) -7, given by Ev(x,f) =f(x),
is a Cg) ~mapping.

Proof: X =C® (%,X) =c® (%,X), where * denotes the

prop
one—point-—manlfold. Thus
Ev = Comp: ¢® (X,7) chrop(*’x) »0% (%,Y) =Y is cg” by

11.4. q.e.d.

11.8 Corollary: The canonlcal mapping

A, @ @ Y)(X

: O (x,¢7 (Yv,2))~» (Z ) =7 takes values in
c® (XxY z).

Proof: If fe€Cy (X,0% (Y 2)), then (x,y) =£(x)(y), so
F=Ev. (Id xf) is a G -mapping Xx¥Y->2%, i.e. a

o® -mapping. q.e.d.

Remark: f- IdYxf is not continuous in general.

11.9 Corollary: Let X,Y,Z be manifolds without boundary.
Then via the canonical mapping of 11.8 we have always

c? (x,06® (Y,2)) e ¢® (XxY,2); equality holds iff Y is
compact or dim Z=0.

Proof: If dim % =0 then ¢% (Y,2) =27 since any mapping
into Z is smooth, and C® (Y,Z) is zero dimensional too
(discrete). So let us assume that dim Z>0. ¢ was proved
in 11.8.

Consider the mapping €: X-C® (¥,YxX), e(x)(y)=(y,x)
(the insertion mapping). If Y is not compact, then € is
not continuous by 4.7.8. But & =Idy . €C0P (YxX,¥xX),
so we have .

Let us assume now that e: X-¢% (¥, YxX) is a C
mapping. For any f € C® (YxX Z) we have f=1T, . ¢:

Xx->¢® (Y, ), which is a Lc -mapping then. So we have
euquality for all Z.

It remains to show that e¢ is a Cg) -mapping, if Y is

compact. We compute locally, of course: Let X, €X be

TxX
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fixed, let 1: TX-X, p: TY~> Y be local additions, let
(Ue(x )’me(x ),I‘ (c(x )¥*T(Y%X))) be the canonical chart

of ¢® (Y YxX), centered at c(x ), induced by pxT. Let

(V,-r -1, VT X) be the chart at x, of X. Since

e(X )(.V)—- (y,x ) we have e(x )*T(YxX)—TYxT X =
%o
TYGB(YxT X) as vector bundle over Y, so

T, (e(x )*T(YxX)) =T (TY)xI‘ (Y><T X) =T, (TY) x9(Y, T X).
o 0
FTor x€V and y €Y we have then

(Og(x,) * €N = (o x 1) g y(y)7 =) ) =

= (o xmyp ) 7 ) = oy (@) me 7)) = (0gr, 7))

0 o
Therefore ¢(V) cU ) and

e(x
Pe(x,) ° €o Txo——(o ,Id): T X-T (TY) xT, X-»r (TY) x

0
% ‘-D(Y T X) = T, (e(x)*T(¥%x X)), here ®(Y, T x) denotes the
O

space of all smooth mappings with compact support

Y-1T_ X, and T, X->9(Y, T, X) is a continuous linear em-
%o %
bedding iff Y is compact (o‘bherwn.se this mapping does not

even taken values in 9(Y, T X) since the latter space does
not contain constant mappin&s) g.e.d.

Remark: This result puts a definite end to all dreams of
cartesian closedness in our setting. See GUTKNECHT (1977)
for a slight extension of this result (Z may be a C?—
manifolds too).

11.10 Corollary: lLet X X2, Y1,Y2 be 6% —manifolds
Y1,Y without bou.ndary.

1. If X, is compact then for any fixed £ €C® (X,,Y,)
the mappi gg g>gxf, ¢® (X Y ) »¢® (X xX5,Y, x ¥, ) is
Cc .

2. If X1 and X2 are compact, then the mapping
¢® (%,,%,) x % 80 ¥,)» 0P (X, xX,, ¥, xY,), given by
(g,f)—égxf is Cg

Proof: If X2 is compact, then the projection
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pr,: X1 xggeX is smooth and proper, SO
(pry)*: ¢* (X,,Y, ) > 0% (X, xX,,Y,) is Cg by 11.4, 10.14.
So gxf=(Idy xf) ((pr, )*(g),prz)
a .
= (IdY1 x £)x((pr,)*(g),pry) is C; in g, by 10.5

and 10.14.

If X, and X, are compact, then gxf= ((pr, )*(g),
(pr,)*(£)) is €T in (g,£) by 11.4 or 10.14 and 10.5.

q.e.d.

11.11 Theorem: Let X be a c® —manifold (with or with-
out corners). Then the inversion Inv: Diff(X) - Diff(X)
is a Cg) -mapping. So Diff(X) is a Lie-group in the
Cg’ ~-gense.

Proof: Let X have corners (for a change). It suffices to
show, that Inv is cgo on an open heighbourhood U of IdX.
For if f € Diff(X) is arbitrary and g is near f then

el =g o) e (e . IviU. (£71),](8), so Inv
is 023 0o on 2 neighbourhood of f by 11.4 (11.5).

Now let 1: TX->X be a local addition which is boundary
respecting (10.3), i.e. 7 1(ij)~'l‘ 2x 1f x € 3%, for
all j. Let (U= Upqr ®=@1q» Ky (TX)) be the canonical
chart of c];‘]'iL ce(XsX), centered ot T4y and induced by T. Ve
suppose that U so small as to be contained in Diff(X).
Here tI‘g(TX): {s EI‘C(TX): s(ij) ;Tij for all j} is the
closed subspace of all vector fields with compact support
which are tangent to each boundary component ij.

Put

(1) 1= Invocp_1: T, (TX)-> 1‘ (TX)

(2) c=p. Compe (67! xg1): Br_(1X) x br_(1%) » *r_(1x)
(¢ is not everywhere defined 1n general)

Then c(s,i(s)) =¢@(Id) =0 for all s. Suppose that i is
and differentiate formally with respect to s:
D,lc(s,i(s)) +D,c(s,1(s)).Di(s) =0;

So we get the following ansatz:

(3) Di(s) =-Dye(s,1(s))™" o Dyels,i(s)): Pr (1X) - *r (1X).
From 11.4 (6) and (7) we kmow that c(s, t)—a(a)*(t) and

CCD
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Dye(s,t) = D(a(s)*(t)-(d a(s))a(t), where
C!.(S)"'l'Id (Ides)oTId. TX»> X x X~ TX =

""(TTXsT) (IdXTS)(TT 9'1')
TS=0 1(s)EIDiff(X), ) (Id><Ts) is a diffeomorphism
(when properly restricted), so a(s) is aninvertible fibre
respecting mapping (when properly restricted) and
()™ = ()™ e (Tax (671 (D)7 e (1) =

= (o) e (Tax (@7 ()™ o (1) =
=(ﬂX,T)—1o (Idx71ei(s)) o (my,7) =

=a(i(s)).
So als), is (locally) invertible and (a(s)*) =a(i(e))y-
Thus c(s,.): N (TX)-» T, (TX) is a (local) diffeomor-
phism and
(4) o(s,.)7" = (als) )~ =ali(s))y=c(i(s),.). By the
chain rule:
Dy0(e, )" = [Dle(s,.)) (877" =Dles, ) (els, 1)) =

= D(c(i(s),.))(c(s,t)) =Dye(i(s),c(s,1t)).
So (3) becomes the ansatz
(5) Di(s)s' =-Dye(s,i(s))™" o D, cls,i(s)).s’

==—D20(i(s),c(s,i(s)))o D1c(s,i(s)).s'
=—D20(i(s),qx). D1c(s,i(s)).s'.

From 11.4 we conclude that Di(s)s' is jointly continuous
in g and s' (i is continuous by 7.6) if it is of the
form (5). It remains to show that

(6) lim “Sﬂsx) =1(8)_ p,o(s,i(s)) 7!« D els,i(s)). '
A0
holds in FO(TX). We will prove this in the following

lemma.

Suppose that (6) holds. Then i is of class C.. Look
again at (5): Di is smoothly expressed in terms of i;
so Di is Cl, so i is Cc; by recursion i is Cg). g.e.d.

11.12 Lemma: In the setting of 11.11 we have for any
s,8' € ’r (1), )e€R:
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lim 1(s+)\s>\) -i(s) _ -D c(s 1(s)) 0 D1c(s,i(s)).s'
-0
in v (1),

Proof: By 11.11. (2) we have
c(s+rs', i(s+Ars')) =0, c(s,i(s)) =0. Using lemma 8.4 we
compute as follows: Let A %0, A near zero.

O='1' [C(s+ls',i(s+Xs')) -c(s,i(s))]=
f1 3= C(S +uirs',i(s) +p(i(s +as') -i(s)))du=
f1 Dc(S+uks ,i(s) +u(ils +as') -1i(s))).
(As ,i(s+as') —i(s))du =
=7 (41 D c(s +urs',1(s) +u(i(s+1s') -1(s))). (A" Jau +
+JX- [ Dyc(s +urs',i(s) +u(i(s+2as') -i(s))).(i(s +2s') -
-i(s))au.

For A - 0 the first summand converges visibly to
j"l D, c(s,i(s)).s'du= D, c(s,i(s)).s'. Therefore we have

(1) lim f D c(s+u>\s ,1(s)+u(i(s+)\s ) -i(g))).
0 0

_1(s+ksx)—1(s) au=-D c(s,i(s)).s' in rc(TX).

Sup ose that we know already that the set
?s«l—)\s -i(s). .
: 0<|a]l =1, A €R} is bounded in

I‘ (TX) Then M is relatively compact, since tl" (TX) is a
Mon‘bel space (as a closed subspace of the Montel space

T (TX)). M=M_uM_, where N _{l(s”sk)‘l(S), o<i<i},
M is defined sn.mllarly by —1 <A <0. Then M and M_ are
continuous curves in 1" (TX) with "one end open" each
(for A»0). So there are cluster points of M not lying

in M.
Let t be a cluster point of M, not lying in M. Then

there is a net (Moore-Smith-sequence)
i(s+2 s') -i(s)
tc.=( )\ ) in M such that l:Lm t —t in '[‘ (TX)

and 1lim )\ =0. By the joint continuity of ch in all

o
variables we s8ee that

118



1im [1 Dye(s +uds’,i(s) +u(i(s +1s') -i(s)).t au =

a O
=D c(s i(s)).t.

Bu’t this limit equals -D, c(s,i(s)).s' by (1), so
t =-D, e(s,i(s)) 1. D1c(s,1(s)) s' (D c(s,i(s)) is invertible
by 1. 11 . (4)). Since this holds for any cluster point of
M for A-> O we get the desired result
lim

i(s+ )\s)'\) -i(s) = -Dye(s,i(s))” .Dyc(s,i(s)).s".
A0

It remains to show that M is bounded. This will be proved
using (1) again. Since 'T_(TX) is closed in T (1X) 1t
suffices to show that M is bounded in I‘C(TX).

I‘C(TX) =1im I‘K(TX) where I‘K(TX) ={s €T(TX): supp s =k},

and where K runs through all compact sets in X (cf. 4.8).
In order to show that M is bounded we have to show that
the following two conditions are fulfilled:
(2) There is a compact set K<X such that
supp i(s +)\s)'\) =i(s) cK for all 0<| )\I <1.
(3) For any k=0 the mapping (1, x) » 35 (1(s+xs )_l(’l)(x)
is "uniformly bounded" in (2,x) € ([-1,0) U (o 1])><K
(with respect to any metric on the bundle J (TX))

It is easy to show that (2) holds:
{i(s+2rs') -i(s): -1 <A <1} is a compact piece of a
continuous curve in tI‘c(TX), so it is bounded, so there
is some compact set KcX such that supp(i(s+2As') -i(s)) <K
for all A, -1 <)X <1. Then clearly
supp Hatre ) =3(8) _ qupp(i(s +1s') -1(s)) K for
O<|Al <1.

It remains to show that for each k the expression
(4) 7 (i S+)‘§i ) - i s))(x) is uniformly bounded for
(x,x) €Kx ([-1,1\{0}). Since K is compact it suffices to
show that for any x €K expression (4) is uniformly bounded
for (x,)\) EUxox ([-1,1\{0}), where UXo is a neighbour-

hood of X, in X.

Choose the neighbourhood U=U_ so small that TX|U is
trn.vial _XxR . So we assume tha% we are in an open set
in R®: We use the same notation for the local represen—
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tatives in R®. So s,s': U—)Rn, E=a(s): UxIRn—HRn, i(s),
i(s+2s'): U»R®, Now (1) takes the following form:

(1) 1im[ dyfals +prs') I (x,1(s) (2) +u[i(s +rs')(x) -

- i(s)(x)]) ﬂé_‘tﬁ_'.).i_)_:_l_(i&). du——[D o(s,i(s)).s'(x)

The 1limit is uniform w:l.th respect to x €U and any deri-
vative with respect to x converges too. Now
dyfa(s +urs')I(...): R*>R™ is invertible for all x €T,
nefo,17, r€[~1,1]. So there is an ¢>0 such that
laylals +urs')(...).v| ze.|v| for all those xz l)\, by
compactness. So we get: If |J‘(S+)‘$I )(’{)_1 s)(x | »o,
then the norm of the integral converges to @ too, a
contradiction to (1').

Repeat this argument for each derivative with respect
to x of (1') and get the desired result: (3) is true.

g.e.d.

11.13 Proposition: Let X be a C® -manifold with or
without cormers. Then the tangent mapping

T Inv: ts)D ff(X)(X TX) - % ff(X)(X TX), is given by
T(Inv).s=—(T27) .80 £71 = (271 ) *s = ~f,s.

Proof: Again the usual finite-dimensional proof is
applicable. By 11.6 we have T f)Comp(t s)=Tg.s+t. f.
Since Comp(f,Inv(f)) =Id we have (by the chain rule):

0= Tf Inv(f)(}omp (s, T, Inv. s)=TFf, (’.L‘ Inv.s) +s. Inv(f) =
= Tf. (T,Inv 8) +so. f‘1.

So Ti,Inv.s-—Tf 1. s.t 1. gle.a.
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12 Some tangent mappings

From now on all manifolds are supposed to be without
boundary.

12.1 Local topological affine spaces: Let (E,p,X) be a
vector bundle. Consider the space T(E) of all smooth
gections of the vector bundle E, equipped with the (FD)-
topology (4.7). We used to call two sections S48,
equivalent, Sy ~Sy, if they coincide off some compact set
in X, i.e. if s, - s, has compact support, s,-s, ETE(E).
Each equivalence class in T(E) is a topological affine

space whose model vector space is the topological vector
space TC(E). So T(E) is the disjoint union of topological
affine spaces, whose model space is Tc(E). So we call

T(E) a local topological affine space with model TC(E).
Consequently the manifold structure of (T(E),(FD)) is very
simple: TT(E)::T(E)><TC(E). Any mapping £ from T'(E) into
gome topological vector space can be differentiated as if
T(E) was a topological vector space too:

(f) S, -Df(s ). s, =1im ? (£f(s +t52) f(s )) for any
-0
s1 eT(E), s, €T,(E), t€R.

12.2 1. Le%t u)ér(g T#Y) be a k-times covariant tensor-
field on Y. Iet Pw: C® (X,Y)->T(® T*X) be the mapping
given by (Pw)(f) =f*w=(wo. £)(Tf®... ® Tf). The chain rule
and the results of § 11 imply that Pw is a c°° -mapping. So
it has a tangent mapping:

T(Pw): TC® (X,Y) =9(X,TY) > Tr (& T*X) —r(a T*X) x T, (@ T*X) .
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2. Definition: Let sES)f(X,TY) =cha.) (X,Y) be a vector-
field along f with compact support. For any w €T(® T#*Y)
we define ¢ w: ='1‘f(PuJ).s, we call 8 w the Lie-derivative
of w along s.

3. Since ’.L‘I‘(]é T#*X) —r(g %) x T, (g ™X) is trivial, we
may compute £ gw as follows: Let t—>f be any smooth curve
in ¢® (X,Y) through £ (i.e. £ =1) such that

£y =5 €9, (X,T7), then szsw=Tf(35>m).s=d%G (Pw)(£ )40 =

=<th (£4*0)|_o (cf. 10.15).

4. Now if f=TIdy and w€T(® T*X), then s EI‘C(TX) is a
vectorfield with compact support, so it has a global
flow t—»f_h. We may use this global flow to compute ﬂsw
and we see that in this case we got the usual Lie-deri-—
vative of w along the vectorfield with compact support s.
Hence the name Lie-derivative.

5. It is not possible to give ﬁ more detailed expression
for & g in general: interpret w: ® TY-»R as a o® -mapping.

d
ghen cle;rly g8 w=pr,e Two (dt Tf, ®... ®TF ‘t —0)¢
® TX>T(® TY) >»TR =R xR->R, and the first mapping does mnot

take values in the vertical bundle.

6. Lemma: For wér(g T+Y), ¢€I‘(é T*Y) we have for any
8 €9,(X,TY): ss(ﬁm,) =8 w®f*y +f*we 8 y. So
8t NG T#Y) > T(® T*X) is a derivation over the algebra
homomorphism f*: T(® T*Y)» I'(® T*X).
Proof: 8, is clearly linear. Now :f*(wk® §) = f*w @ f*y, so
P(w =(.8.) (Pw,Py): C® (X,Y)->T(® ™) xT(8 T*X) -»
- T( ® T¥X) and the last mapping is "bilinear" on the
product of the local topological affine spaces, so we use
the remark at the end of 12.1 for the tangent mapping of
Plouoy). g.e.d.

T. Let us finally compute a local formula for ¢ gwe

Let (U,u) be a chart on X, (V,v) be a chart on Y such
that £(T) €V. We use the same letters for the local re—
presentatives of all objects. So we assume that w(y) is a
k-linear mapping on (Rm)k (where m=dim ¥, n=dim X) for
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each y € v(V) sR™®, we denote the action by
(w(y); Wy Xoeoo xwk}. Then locally we have for viERn:
(((w)E)(x)5 vy X eee XV =

= {w(f(x)); df(x).v Xoae xdf(x) >+ Now let t»ft be a
smooth curve through £ with dt f,ﬁlJc —o=8. Then f, (T)ev
for small t. So we have to compute:
£ (w2, (x)); AL (1)o7, X+ ou x AL (X)W 4o =

= {dw(f(x)).s(x); df(x).v1 X e xdf(x).vk)+

+ {w(£(x)); ds(x).v,‘ xdf(x).vzx oo xdf(x). )t
+ oeee
+ Cw(£(x)); af(x).v,y x.oo xdf(x).vy_, x ds(x).v),

since agt' ‘dft(x)‘vj‘t=0 =d(acl_t-t- ft)(x)'vj|t=0=ds(x)'vj'

12.3 Definition: If s€Cy (X,TY) is a vector field along
f (not necessarily with compact support) and

w€T(® T*Y), let the contraction of w along s be defined
by sdw, where

(sdw)(x)(ByseetrBy 4)=

= w(f(x)l){(s(x) Ty £ g reeerd .8 ). It is clear that

st .: T(® T*Y)—-)I‘( ® T*X) is a linear (affine) mapping
which is F®-continuous iff f is proper.

12.4 Lemma: Let w € 0P(Y) be a differential form on Y
and let s ESDf(X,TY) be_a vector field along f. Then we
have:
= * % q
1. 8 (wAy) =8 waf*y+f* A8 y for any y €*(Y).
2. nsw=6(st) +8_J(8w) (where & is exteriour
differentiation on X,Y).

Remark: If s does not have compact support we may use 2.
to define st in general. This can also be done by the
formula ﬂsw-(-%- 0l to-

Proof: 1. is clear from 12.2.6. To prove 2. let
g1,...,§ be vector fields on X. Let us assume as in
12.2.7, that (U,u), (V,v) are local charts on X,Y resp.
with £(T) ¢ V. We denote again local representatives by
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the same letters. Then &w has the following local
expression (see LANG, 1972).

<6w(y), Wo X eee XW )=

= Z' (- 1)l<dw(y)w,w x...xwix...xw)
i=0 L
s % has the following expression:

(s d8w)(x); VyXees xvp):

= Cow(£(x)); s(x) xdaf(x).v, x... xdf(x).vp>=

= (dw(£(x)).s(x); af(x).v, x... de(x).vp>+

+ ;{1 (-1 (Qu(£(x)).af(x).vy;5 s(x) xdL(x).v, x . .-
.. .><d.f(x).vi Koo xdf(x).vp).

8(sdw) has the following expression:

(8(sdw)(x); Vi X xvp) =

= '§1 (—1)1-1(d(s_lw)(x).vi; Ty X e xw;ix... XV y =
i=

= ¥ o Nalwe £) (e xarx ... xa2) J(x).v,5 Ty X -
i=1 xle..-xvp>

= IE) (—1)i_1<dw(f(x)).df(x).vi; s;(x)xd:‘?(x).v1 X o

i=1
xdf(x).vi X oo xdf(x).vp)

+ 112)1 (-1 )i"1 (w(f(x)); <:'ls(x).vi ><di’(x).v‘l X oeon
...xdf(x).vix...xdf(x).v Y
P Y
+ 3 2 (DM Nu(e@); s(x) xag(x).v, x ...
i=1 j<i
X PR(E) L (74,7y) X e XAE(R).Ty e x AE(X) V)
35 (0F () s(x) xas(x).v, x...xdf(x).v e
i=1 j>i
eee x 4 f(x).(vj,vi) X oo xdf(x).vp).

The last two sums cancel since dzf(x).(vj,vi) is
symmetric in i,j, and if we transport this element to the
first place we get a sign (~1 )i'H'j-1 for the first sum
and a sign (-1)1"1"'3—2 for the second sum.

The first sum cancels with the second sum of s.J dw

124



above. 8o we get the following expression:
([sdw+8(saw)](x), Vi X eee XV Y=
(dw(f(x)) s(x); af(x). Ty X xdf(x) o S+

+ 21 (=) Nu(2(x)); ds(x).vixdf(x).v1 Xae
im
s xdf(x).vi Koo xdf(x).vp).
Transport dls(x).vi to the i'-th place, then the sign in
the last sum disappears and the local formula of 12.2.7
remains. g.e.d.

12.5  Lemma: Let s €D,(X,T¥), g €C® (¥,2) and
wET(® T*Z), then we have:
1. sa(g*w) = (Tg),sdw, where (Tg),s=Tg. 8.
2o W = .
Qs(g w) Q(Tg)*sw

Proof: 1. is a trivial computation. 2. can be seen as
follows:

Tf((}?w) o g*).s=Tgf(Pw) 0 Tf(g*).s=

= Tgf(Pw) o (Tg)*.s=s(Tg)*sw. But

(Pw) o 84 () = (Pu)(go £) =(ge £)*w=

= %o g¥w="P(g*w)(£), so 8 (g*w) =T,(P(g*w)).s=
Tf((Pm) 0 g*).s=Q(Tg)*sw. q.e.d.

Remark: 1. is obviously true if s does not have compact
support. and 2. can be shown to be true in this case too
with some care:

12.6 Application: The lemma of Poincaré (J. Moser,
A. Weinstein). Let (E,p,X) be a vector bundle. We want a
homotopy operator I: QP(E) > P! (E).

Let M—b denote the multiplication operator with t €R,
M‘b: E-E.

Let py =-&% M |g_y be the vectorfield along M, for each
t‘

Let B €aP(E) be a differential form. By the general
principle of computing tangents we have by 12.2:
Aoy o = - _
= M BIs:t”TMt(PB)‘“t'ButB (note that the second ex
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pression is not well defined, since u, does not have
compact support in general: the first expression however
equals the last one by the computation in 12.2.7, where
compact support was never used). So

4

T We=9 Lo 8(uydB8) +u, 6B by 12.4. Now

M —IdE, o’ E-E is the projection onto the zero section
of E, so Mo=OE° p: E-»X-E.

Thus we have

B-M *B=p-p*(0;*8) =/  [8(j,dB) +u,o87ds.

(We can evaluate this Ointegral pointwise on X). Put
1(p) = /" (uy 1 B)at.

Then B-M *B=I(88)+5(IB)| .

Remark: If B is closed, 88 =0, and OE*LB is exact, then
B=-bp*ep+ 8I(B). If X= {*] is a point, then Op*B =0 since
TX =0, 80 B closed implies B = 8I(B) on a vector space.
This is the lemma of Poincaré.

12.7 Let X be a manifold without boundary. Let
(Vol(X),p,X) denote the line bundle of all densities on
X, the volume bundle, which is defined by the transition
mappings ¥y4° U xR—)U xR,
¥ 4 (x,a) =(x,|det a(y, o uy -1 )(u (x))|.2), where (U;,u
is any atlas on X.

This bundle is always trivial, but not canonically so.
If X is orientable, then AUT*X is isomorphic to Vol(X)
(two isomorphisms, one for each choice of orientation).
Any element o EVol(X)x can be visualized as a "non-
oriented" volume function on TXX, assigning to each
n-tuple (§1 ,...,gn) of vectors in TX (n=dim X) a number
0(51 ,...,gn) which is positively homogeneous and sub-
additive in each variable (sort of absolute value of a
determinant function).

See DIEUDONNE, Vol. 7, 23.4.1-3 for further infor-
mation.

;)
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12.8 Tet I(S°T*X), denote the space of all Riemannian
metrics on X (positive definite sections of the bundle
SzT*X of symmetric 2-tensors on X), an open "convex"
subset of the local topological affine space I‘(SQT*X).

For a Riemannian metric g€ T¥( SZT*X)+ denote by vol(g)
the density on X determined by g as follows: For
§yreee 8y € LK Lot vol(g) (8 ,...,8,) =, [Aet(g (8;,85); 4).
Since g is positive definite, the determinant is always
> 0 for an n-frame ( g5 ). So we get a mapping
vol: I‘(S T*X) »>T Vol(X), which is O since it is the
composition of the following mapplngs.
r(s%1#x) > T PP(F_(TX), XxRE"),, the space of sections
of the bundle of fibre respecting fibrewise quadratic
mappings from the n—grame—'bundle Fn(TX) of TX into the
trivial gg.n&le Xxgz , taking posn.tive definite values
only, —————> " P (F ™, X xRT) —% T Vol(X). The first
mapping is COO since i‘t is only fibrewise vector oper-
ations with g, s0 one may use the (Q-lemma. The rest is
clear.

So there is a tangent mapping
T vol: T(S°T*X), x T (S°T#X) — T Vol(X) x T Vol(X). Ve
want to compute this mapping. We do this locally. Let
(T, x1,...,x ) be a local coordinate system on X such that
g(x) =g, jax 1@axd. Then ax' A ...Aax™ is a smooth Lebes-
gue measure (a density) on U and we have
vol(g)(x) —m .dx'A ... AGX on U.

We need the deriva?:ive of the determinant function
det: RE »R. If X= (X:_JE) Ean, let C(X) denote the trans-
posed matrix of the signed algebraic complements of X,
so that X.C(X) =det(X).Id. With this notation we have:
d(det)(X).Y=trace (C(X). Y). If X is invertible, then
x5 . c(X), so d(det)(X).Y=det(X).trace (X7 . ¥).

Now let g be a Riemannian metric, let k€ Ty I‘(S T*X)

=T, (S T*X). Choose a smooth curve t-g, in I‘(S T*X)

'bhrough g with == dt g_b\_b__o—k By 10.15 we have

Il
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(2, (vol)k](x) =a% vol(gy)(x)|,_o- If x is in U, then we
can continue:

dt vol(gt)(x)lt_o dt N etlgtsljl %) dx' A ... Adx lt—O

Zm . d(det) (g(x)). (F gy (x)),_odx' A... nax"

1 -1
5 det(g (x)) trace(g(x)™ ' o k(x))
Jaet &; 5Tx) Laxl A ... nad®

-;- trace(g(x)-1 o k(x)).vol(g)(x).

In the last expression the trace is indeed invariantly
defined:

T X gx) , T,*X is invertible, so g(x)_1o k(x):
TXX—aTx*X->TxX. We have denoted the mappings associated
to g with the same letter (g ,kp is sometimes usual).

We have shown:

12.9 Theorem: The mapping vol: T(S T*X) >T Vol(X) is
a Ca) mapping and its tangent mapping

T vol. T(S T*X) ><1‘ (S T#X) > T Vol(X) xT Vol(X) is
given by Tg vol. k-_ ; trace (g~ L k). vol(g), where the

trace is1taken from the fibre linear mappi
g ' (X) k(x)

T_*X ~———> T X —— T_%¥*X,
X X X

12.10 Remark: Nearly all constructions from differential
geometry have somewhere a mapping between manifolds of
mappings at their base. The tangent mappings of these
mappings are very interesting objects to study; many of
them are already well known from variational calculus.
The main example is of course the following: The space
of all (linear) connections of a vector bundle is a local
topological affine space with model vector space
(E*@T*X ®E). If E=TX, then the mapping
V T(S T*X) - gpace of connections, which associates to
each g its Lev1—01v1ta connection V_, is clearly C:) It
is straightforward to compute locally its tangent mapping
(as in 12.8), but the resulting formulae are very
complicated and admit no obvious global interpretation.
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13 The principal bundle of
embeddings

13.1 ILet X and Y be C® -manifolds, X possibly with
corners, Y without boundary. Let us suppose furthermore
that dim X<dim Y.

Let E(X,Y) be the space of all c® embeddings,
Eprop(X’Y) be the space of all proper embeddings, i.e.
cloged embeddings. These two spaces are open in
(c® (%,Y),(F9)) (cf. 5.3, 5. 4), so they are c -manifolds.

Congider the following C -mappings:

p: Diff(X) xE(X,Y)~»E(X,Y), p(g,i) =i. g,
p: Diff(X) xBE (X,Y)»>E (X,Y); i.e. p denotes the
prop =’ 7~ “prop

right action of the C, ~Lie-group on E(X, Y) EP (x,Y)
respectively. Any gEElef(X) induces a G —diffeomorphism
p(g,.) of E(X,Y) and EP (X,Y), whose inverse is
p(g ,.). Since each element of B(X,Y) is injective, the
actlon of Diff(X) on E(X,Y) is free: i. g =1.8, for
some i €E(X,Y) implies g =8, in Diff(X).

Therefore p(.,1): Diff(X)->E(X,Y) is a bijection onto
the orbit i. Diff(X) of i. If i is proper, then the whole
orbit is contained in E (X Y). (We will see later that

prop
p(.,i) is even a diffeomorphism onto the orbit).

13,2 Definition: Let U(X,Y) =E(X,Y)/Diff(X) denote the
orbit space, equipped with the quotient topology; let
u: E(X,Y)-»TU(X,Y) denote the quotient mapping.

U(X,Y) is, heuristically speaking, the space of all
"gubmanifolds of type X in Y¥".
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13.3 Lemma: Let i €E(X,Y). Write L=1i(X), a_submanifold
of Y. Then the following hold: '

1. The orbit i . Diff(X) coincides with Diff(X,L) as
subset of E(X,Y).

2. The inclusion Diff(X,L)-E(X,Y) is a splitting
cg’ -submanifold.

3. The mapping p(.,i): Diff(X)->1i. Diff(X) =Diff(X,L)
is a cg’ -diffeomorphism.

4. If i is proper and X is without boundary, then the

orbit of i is closed in Eprop(X’Y)'

5. If X is without boundary and has only finitely many
connected components, then Diff(X,L)=E (x,1).

brop
Proof: 1. is clear. 2. follows from 10.8 and 5.7.

3. follows from 11.4. 4. Let (ga) be a net in Diff(X)
such that 1. ga=p(ga,i) converges to fEEprop(X,Y).
Then io ga(X) =i(X) =L for all g, and since L is closed
in Y (i is proper) we have f(X) L.

Let X. be a connected component of X, then Xj is open
and closed in X, so f(Xj) is open (since f is an
immersion and X is without boundary) and closed (since
f is proper) in L, so f(Xj) is a connected component of
L.

Now let Lk be any connected component of L, then for
some o, and some component X, of X we have 1. ga(Xj) =L
for all a=za . Therefore f(Xj) =L, so £ is surjective,
f e Diff(X,L).

5. Let X1 "“’Xk be the connected components of X, let
TEE .o (X,L). From the proof of 4. we see that
f(X1 ,...,f(Xk) are different comnected components of L.
Since L =1i(X) has as many connected components as X the
assertion follows. g.e.d.

13.4 DNow let X,Y be both without boundary, fix i € E(X,Y)
and i(X) =L. Let (WL,pL,L) be a tubular neighbourhood
of L in Y (10.7).
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Lemma: Let j € C® (X,W;) such that pp o § €B(X,Y). Then j
is an embedding with inverse (pLo;j)'1 o (pp13(X)):3(X) > X,
Furthermore for any x € X we have

-1 , _ .
{ij)(TxX)@Tj(x)(pL (prd(x))) =Ty ()W, =Ty (x)¥» L.
j is transversal to the fibres of p,: WL->L

Proof: Py, e Jj is injective, so j: X~ WL ig injective, with
inverse (pLo :])"1 o (lej(X)). This inverse is continuous,
so J is a topplogical embedding. For x in X we have:

(%3 () 21) (B (TF) =T (oo D (TK) =Ty ()0 =

= (Tj(x)pL)(Tj(x)wL)’ thus dim ij(TXX)Zdim T )L=

PLJ(X
= dim T X, so j is an immersion, so j € B(X,Y).

F : T.

urthermore the kernel of Tj(x)PL Ta(x)wL—)TpL:j(x)L

‘is just Tj(x)(pL'1(pLj(x))), the tangent space to the
fibre of p; through j(x), s0 the second assertion follows.
qg.e.d.

13.5 Let the data of 13.4 be given. Then we define:
Q; = {3€C® (X0 ): ppo =1, jwi}=

= (pp)x N (L) 0 {52 §~d).

By 13.4 we have Qi;E(X,WL).
Lemma: 1. For the quotient mapping u: E(X,Y)- U(X,Y) we
have: u./'Qi: QieU(X,Y) is injective.

2. Let VeDiff(X) be open. Then QioV ig open in
B(X,Y). '

Proof: 1. Let j,j'€Q;, u(j)=u(j'), i.e. j=j'og for
some g € Diff(X). Then :L=pLo:j=pLo(j‘og)=(pLoj‘) o g=108,
so g=IdX and j=3'.

2. Let us suppose first that Ve {g € Diff(X):
g~IdX} , the open subgroup of diffeomorphisms with compact
support.
(Pp)w: E(X,WL)->CO° (X,I) is continuous, i . Diff(X) =
= Diff(X,L) is open in c® (X,L), p(.,i): Diff(X) -»Diff(X,L)
is a diffeomorphism, so (pL)*—1(p(.,i)(V)) is open in
E(X,WL) and in B(X,Y).
Claim: (py)y ™ (p(.,1)(V)) N {j €B(X,Y): j~i}=Q; o V. This
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proves the lemma in the special case.

If je(pg)w (p(.,1)(V)) and j~i, then proj €107, sO
prej =1ieg for some g€V, g~Idy. Then jog™ ' €B(X,W),
pLo(jeg_1)=i,,gog" =1, jeg | ~i, 850 jog | €Q; and
i=(jog"" )eg €0Q V.

Let conversely jEQi, g €V. Then PLoj"—'i, j~i, so0
Pro(Jjeg) =icg €0 (.,1)(V) and jog~i, s0 jog€ (PL)*—1
(p(e,yi)(V))n {j: j~il, and the claim follows.

Now let V be an arbitrary open subset in Diff(X).
Decompose V into the disjoint union of all non empty
intersections of V with open equivalence classes
{g €Diff(X): g~f} for all f€ Diff(X). Call these non
empty intersections Vq. For any o choose g €V _, then
Vo ga_1 is an open subset of {ge Diff(X), gruIdX}, so
Qe (Vo ga‘1) is open in B(X,Y) by the tirst part of the
proof. But then Q; . Va==p(ga”)(Qi° (v, o ga" )) is open
too and Qio V= g Qio Va also. g.e.d.

13.6 Corollary: u.(Qi) is open in U(X,Y) =E(X,Y)/Diff(X)
in the quotient topology.

Proof: By 13.5.2 the full inverse image Qi o Diff(X) of
u(Qi) under u is open in E(X,Y), so u.(Qi) is open in the
quotient topology.

13.7 Let again X,Y be C® -manifolds without boundary,
ieB(X,Y), L=1i(X), (WL,pL,L) a tubular neighbourhood of
L in Y. Furthermore let T4 TWL—’WL be a local addition
for the vector bundle WL as constructed in lemma 10.6,
i.e. the zero section LQWL and each vector subspace of
each fibre is additively closed in WL with respect to Ty,

Decompose TWL|L=TL eav(wL)lL as in 10.12. Write
VL=V(WL)|L (we do not identify V(WL)lL with WI. itself to
get more clarity).

TE? mapping Tyl (V) s (Vp) =T (pL"1(y))-+(WL)y=
= Pg, (y) is a diffeomorphism onto by the comnstruction of
TL in lemma 10.6, for each y€ L.

Therefore TL\VL: VL-o WL is a fibre respecting diffeo-
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morphism (onto).

13.8 Lemma: In the setting of 13.7 the set Q from 13.5
is a splitting C -submanifold ox E(X,Y).

Proof: We will show that Qi is a splitting Cg’-sumani—
fold of the open subset E(W,WL) of E(X,Y).

Let (Ui,wi,rc(i*TWL)) be the canonical chart of E(X,WL)
centered at i, induced by the local addition L from
13.7, i.e.

U; = {3 € B(X,up): (1,5)(X) & (my, 7P )(TWp), § ~i}e

Qi={jEE(x,WL): Pred =1, j~i}eU; since 7p|Vy: Vp =Wy

ig a fibre respecting diffeomorphism onto (by 13.7).
jeq 1ff Pred=1 and j~i, i.e. j(x)e (pL)"1(i(x))

Since (pL) (1(x)) is additively closed with respect to

T, We see that j(x)G_gL 1(1(x)) iff

(TL)l(x) (j(x)) e (W )i(x) So for j €U; we have:

jeQ iff @, (J) =('rL)i—1 o (Tay,3) €T (1#¥V). So

?; Q¢ Qi—>I‘c(i*VL) is a bijection and I‘C(i*VL) is a
direct summand in I‘c(i*TWL) since I‘C(i*TWL) =I‘c(i*TWLlL) =
= I‘C(i*(TL ®vy)) =I‘C(i*TLGai*VL) =T, (1*IL) eI‘c(i*VL).
g.e.d.
13.9 Lemma: Let X,Y be both without boundary. Then
U(X,Y) =E(X,Y)/Diff(X) is a Hausdorff space in the
quotient topoloy.
Proof: Let i,j € E(X,Y) with u(i) £u(j). Then i(X) £ j(X)
in Y for otherwise put i(X) =j(X) =L, a submanifold of
Y; i_1.j: X->L-X is a diffeomorphism of X and
j=1e(i"1.3) €1i. Diff(X), so u(i) =u(j), contrary to the
assumption.
Now we distinguish two cases:
Case 1: We may find a point y €i(X)\j(X), say, whichis
not a cluster point of j(X). Choose an open neighbourhood
V of y, in Y and an open neighbourhhod W of j(X) in Y
such that VNW=pg. Let B={keB(X,Y): k(X)nV4g} and
RB={ke€B(X,Y): k(X) cW}. Then B is visibly WO-open and B
ig C0°-open (if k€8 choose x € X with k(x) € V. Then
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{1 €E(X,Y): 1(x) €V} is a C0°-open neighbourhood of k
in 8). Furthermore B and ® are Diff(X)-saturated, 1 €S,
jeW, and BNV =@. So u(B) and u(B®) separate u(i) and
u(j) in U(X,Y).

Case 2: i(X) e J(X), 3(X) €i(X). Let y € i(X) for instance.
Let (V,v) be a chart of Y centered at y which maps

i(X) NV into a linear subspace, v(i(X)n V) cR®nv(V) eR®
(n=dim X, m=dim Y). Since j(X) €i(X) we conclude that
v((i(X)ujiX))nV) cR2Nv(V) too. So we see that

i(X) Uj(X) is a submanifold of Y of the same dimension
as X.

Put M: =i(X) U j(X). Let (WM,pM,M) be a tubular neigh-
bourhood of M in Y. Then WMli(X) is a tubular neighbour-
hood of i(X) in Y, WMIJ(X) is one of j(X). Let Qs Qj be
defined as in 13.5, using these tubular neighbourhoods
of i(X), j(X). There is some yOEi(X)\j(X), say. By
13.5.2 Qio Diff(X) and Q. . Diff(X) are open and Diff(X)
saturated in E(X,Y), containing i and j resp., and
Qo Diff(X) N Q. o lef(X) @ since for any k€ Q; - Diff(X)
the set k(X) meets pM (y ), and for all k€ Q. - Diff(X)
it does not. So u(Qi) n u(Q )=¢ in U(X,Y), they are open
neighbourhoods separating u(i) and u(j). q.e.d.

13.10 Corollary: Each orbit i. Diff(X) is closed in
E(X,Y). (This is better than 13.3.4).

13.11 We make now a first assault on the fibre bundle
structure of E(X,Y). Let X,Y be C° -manifolds without
boundary, i €E(X,¥), L=i(X). Write i:=u(i) € U(X,¥).
Then Q, : -u(Q ) is an open neighbourhood of i in U(Xx,Y).
We will show 'that E(X Y)\Qi is trivial.

1. Define s, : Q -»E(X,Y) by 5 —-(ulQ ) - 8; is well
defined, since ul| Ql is injective (13 5. 1) So s; is a
local section of u.

2. Then fibres of u: E(X,Y)~»U(X,Y) (i.e. the
Diff(X)-orbits) over Q; meet Q; in exactly one point each
(13.5.1). Since the action p of Diff(X) on E(X,Y) is free,
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the mapping o|Diff(X)x Q;: Diff(X) x Q —>u_1(ai) is bi-
jective, so there is an inverse mapplng

(pID:Lff(X)xQ )7 = (yg58)% w71(Q;) »DaLR(X) x Qg5 s
Yt (Q )-»lef(X), CHERN 1(Q )-»Q and we have

(a) v, (1) =0 (v, (1), 5, 1(3)) =3 2or sach j € (3,), ana
6i(j) ~i, PL l(j) —l-

3. Claim: K u (Q ) » Diff(X) is a C -mapping. We
have 1o v,(3) =pp e & (j) o v;(3) =pp 3 (so ppeo J is
deflned), so Y5 (J)—p(-,i) o (pr)x(3) or

"p(.,l) (pL)*. E (Q )—>D1ff(X) which is COD

4. Claim: &, w- (Q )-»Q is C . We have
8:(3) o v;(3) =j, s0 8, (j)-—Jc Yl(j) , SO
6 —pe(hWoY ,Id% u” (Q)aQ ,wM&hlch

5. Therefore p: D1ff(X)><Qi->u (Q ) is a C -diffeo-
morphism. This mapplng will serve as trlviallslng mapping.

6. Claim: 85 Q »>Q (from 1.) is continuous (so a
homeomorphism)

For yEQ we have {s (y)} =8 (u” 1(y)) by cons‘l:ructions.
Mthleeomn,ﬂmné W)lsomnlnu (Q)by4

1(Q ) is open in E(X,Y), so u 1( —1(V))- _1(u(V)) =
= i (V) is open in E(X,Y). By definltlon of the quotient
topology si_1(V) is open in U(X,Y).

We have proved the following:

Theorem: Let X,Y be Oa)—manifolds without boundary,

dim X<dim Y. Then (E(X,Y), u, U(X,Y), Diff(X)) is a
topological principal fibre bundle, trivial over the open
neighbourhoods Q; of i in U(X,Y) for each i€ E(X,Y); a
trivialig}ng mgpp}ng is g%ven by:

Di£f(X) x Qg »u” (), (8,3)~5;(F) « &

13.12 Theorem: In the setting of 13.7, U(X,Y) is a
cg" -manifold.

Proof: For any i€ E(X,Y) the open neighbourhood Q of 1
in U(X,Y) is homeomorphic to the splitting C —submanl—
fold Q of E(X,Y) (ef. 13.8, 13.11.6); so it remains to
check whether these submanifolds fit together nicely.
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In other words: We use the mappings
(9;1Q5) o 85: Q; »T_(1*V)) (in the notation of 13.7, 13.8)
as charts for U(X,Y). U(X,Y) is a Hausdorff space by
13.9. So it remains to check ye‘thgr the chart change is
0?. Let i,k €E(X,Y) so that Q; nQ, 4.

Suppose first that i and k lie on the same
Diff(X)-orbit in E(X,Y), i.e. there is some g € Diff(X)
with i=k. g.

Then L=1i(X) =k(X) in Y and
Q ={J €E(X,Wy): ppoj=1, J~i}=

={J€E(X,WL): PLe J=kog, j~ko gl

={j.g: ] EE(X,WL), Py, e i=k, j~k}

=Q - g=p(g,.)(Q).

§o Qi and Q are Diff(X)~-translates of each other,

Q; =G  and we have ((o Q) e 5) o ((03]Q;) si)'1 =

(o lop) « sy s (w10  (ogl0y)" -

(o] Q) « (p(&,-)1Qp) o (oy105)7"

The last mapping is a Cg3 —diffeomorphism by 13.1 and
13.7.

Now consider i,k €E(X,Y) with @, nQ %@, but not lying
on the same orbit. Let L=i(Xx), K=k(X).AThen LEXK
(13-9)._‘{JeAMVe 5,.(Q; n ék).= sk(ak) nu! (Q;) =
=QNu (Qi) by construction.

For jEC),k we have Py e j=k and j~k, so j='rKot= .
= cpk"‘l (t) for some t EI‘c(k*VK). If furthermore j Eu_1(Qi),
then J=8;(3) .« v;(3) for &;(j) €Q; and v;(3) € Dif£(X),
by 13.11. If t€ (cpk|Qk) o 5,(Q; N Q) e T (k¥Vy), then
((p;1Q;) » 85) o (( Q) o 8,)71 (%) =
= (031Q) 0 55 0 7T o (0 1 Q) TH(E) = (0;1Q5) o 55 o u(3) =
(1050 (85(3)) = (0,19, (5,(3))  (c£. 13.11.6)

— (5y1Q;) o By o (o] Q) T(8):
The last expression is C? by 13.8 and 13.11.4. g.e.d.

1]

1l

]

13.13 Lemma: In the setting of 13.7, the mapping
u: B(X,Y)-»U(X,Y) is a submersion, i.e. for each i€ E(X,Y)
the mapping Tju: TiE(X,Y)a‘Di(X,TY)-) iy U(X,Y)zI‘c(i*VL)
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is surjective and moreover a topological linear quotient
mapping with splitting kernel.

Proof: The kernel of Tiu. is 'l‘i (i o Diff(X)) =1"C(i*’l‘L),
and this is a splitting subspace of I‘c(i*TY) as we already
proved in 13.8.

The rest follows from the construction of the canonical
charts for U(X,Y). g.e.d.

13.14 Theorem: Let X,Y be C® -manifolds without boundary,
dim X<dim Y. Then (BE(X,Y),u,U(X,Y), Diff(X)) is a
Cg) principal fibre bundle.

Proof: s, ¢ ai»Qi is a Cg) ~diffeomorphism by construction
of the chgrts forAU(X,Y).’Then the mappings

DifF(X) x Q » 0™ (Q), (g,9)~8;(5)« & are C¥ diffeomor-
phisms defining the local product structure of the prin-
cipal bundle. g.e.d.

13.15 Let Uprop(X,Y) =u(Eprop(X’Y)) denote the space of
all proper orbits (i.e. to say the "space of all closed
submanifolds of type X in Y").

Corollary: (B, . .(X,¥),u, U, (X,¥), Diff(X)) is a ey -
principal fibre bundle too, in fact Eprop(X’Y) =

= B(X,Y)/U ro (X,Y), the restriction of the principal
fibre bundle E(X,Y) to the open subset Uprop(X,Y) of
U(x,Y).

13.16 Remark: 1. If X has corners, then Q; ° Diff(X) is
no longer open in E(X,Y), so 13.5.2 does not hold: one
may stretch or shrink i(X) in Y by moving the corners of
i(X) tangentially to i(X) outwardly or inwardly. This is
a continuous curve in E(X,Y) which cannot be absorbed
into a local product structure.

2. If X does not have corners and dim X=dim Y, then
each orbit Diff(X,L) =i . Diff(X), i(X) =1L, is open in
B(X,Y), so U(X,Y) is discrete. Thus (E(X,Y),u,U(X,Y),
Diff(X)) is a cg’ principal fibre bundle too, but
trivially so.
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14 Lie groups of symplectic
diffeomorphisms

This section is based on ideas of A. WEINSTEIN (1971).

14.1 Iet X be a smooth CP —manifold without boundary
and let QO be a symplectic structure on X (i.e. a non
degenerate closed 2-form on X). We say, that (X,Q) is a
symplectic manifold.

The dimension of X is necessarily even.

First we need to state some wellknown facts:
An isotropic submanifold Y<X is a submanifold Y such
that Q|TY=0; it follows that dim Y% dim X. A
Lagrangian submanifold is a maximal isotopic submanifold;
each isotropic submanifold is contained in a Lagrangian
one, and an isotropic submanifold Y is Lagrangian iff

dim Y=-;— dim X.

14.2 If (X,Q) is a symplectic manifold, let 7: T*X- X be
a "local addition" (these are defined only for TX-X,
but carry such one to T¥X via an identification

T#X =TX, induced by a Riemannian metric on X or by the
symplectic form). Then t: T*X X has the following pro-

perties:
(A1) (ﬂx*,T): T#X > X x X is a diffeomorphism onto an open
neighbourhood of the diagonal By in X xX
(A2) -r(Ox) =x for all x€X.

Now consider the symplectic structure
Q*: =pr1*0-—pr2*0 on X xX, where pry IxX~X, pro: IxX-X
are the first and second projection resp.
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We consider two symplectic structures on T#X: the
first one is Q: = (nX*,T)*Qx.

The second one is the canonical symplectic structure
w on T¥*X,

For completeness sake we repeat its construction:
Denote by o the canonical 1-form on T*X, which is
characterized by the following property: If s € T(T*X) is
any 1-form on X, then s*g=s. o can be defined directly

as follows: Let € € Tn(T*X) for m € ™X, then (g,al(n)) =
= (Tn(rrx*).g,n), where ry*: T*X-X is the canonical pro-
jection.

If s eT(T*X), ¢ €T X, then ((,s*a(x)) =

= (6, (Tgs)*a(s(x))) = (Tys.Crals(x))) = (Tg(4) (y*) . Tys.C,

s(x)) =
= (Tx(“X*" 8).¢,8(x)) =(¢,s(x)); therefore s*g=s.
Having constructed the 1-form o on T*X we define
w=-%x.
Now let us denote the zero section of T*X by Zy- Then
o/ TZg =0, so w|TZy =0. Furthermore O%|Tay =
(pr *Q) — pr *Q)ITAX 0 and (n *or): Zy~ by, SO
a, Tz = ((mg*,7)*0%)| 12y "'((“x »7) | 2y )* (0| Tag) =0

Let us summarize this discussion in the following
lemma.
Iemma: Let (X,0) be a symplectic m_;arnifold let
T: T¥X~-»X be a local addition. Put ox *Q pr2*Q. thig
is o symplectic structure on XxX, and 1e1: Q= (g ,T)*0%.

Then Q is & symplectic structure on T*X and Q| T2y =0. We
have wITZ =0 too for the canonical symplectic structure

on T¥X,

14.3 Now we will construct a local diffeomorphism
f: T*X»T*X with fIZ =Id such that f*w=0. So
f: (T#X, Q) - (T*X,w) will be a symplectomorphism,
f| ZX = IdZX.

First we solve the problem in T(T*X)IZX. Zy is a
Lagrangian submanifold for each of the two symplectic
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structures, w,’.(;, on T#X, By linear algebra of symplectic
linear spaces there is a vector bundle isomorphism

v T('I.‘*X)lz eT(T*X)lZ over the identity on Zy mapping
the symplectic s’cruc‘bure Q (on each fibre) to the sym-
plectic structure w and leaving ’l‘ZX pointwise fixed (on
TZy both structures vanish).

There is a diffeomorphism h: U-»V between open neigh-
bourhoods U,V of ZX in T#X such that Tah=y for anX
(so even hj ZX=Id). This implies h*(wIZX) =0|Zy. Such a
diffeomorphism may be constructed using a tubular neigh-
bourhood of Zy* in M™X. Put G= (b7 )*(3|U). This is a
symplectic structure on V such that Q| Zy =w|Zy.

Now we solve the problem in a neighbourhood of ZX‘
Put w=Q-w on V.
wt=(1-t)w +t0=w +tw, tER. w, is a 2-form for all tE€R.
dw, = (1-1) bw +t80=0. wthX=wIZX=ﬁ| Zy for all t, so w
is non degenerate in the fibres over ZX' So all Wi for
t € [0,1] are non degenerate in the fibres over an open

t

fibrewise convex neighbourhood WeV of ZX in T*X, so
we s T (T*X)eTa*(T*X) is invertible for all ¢ €W and

t € [O 17, where (g,w =b:;':(C,))—w.t(E, ¢)s €, CeT (T*X). Let
I: Q (W)—>O (W) be the homotopy operator constructed in
12.6, put v=1I(w) cql (w).

Since w] Zy =0 (even w| TZy =0 would suffice) we have
w=I(8w)+56I(w)=0+5p by 12.6. Put By =-(w_b=H=)_1.cp, then
g is a time dependent vector field on W. Let 84 denote
the local flow of gt, i.e. dt 8y = gt ° 8y-

Since wlZ =0 (here we need it!) we have gtIZX=O
(see 12.6), so there is a neighbourhood W, of Zy in W
such that g, exists for t€[0,1] in W

Now we compute:

1°

4 _a 4 -
35 (Bl gip =75 (8g*wy)l ooy +35 (8y*wg)l gy =

d

—_ 3 —

‘Qgtogt‘”t*gt (35 “s) o=t

by 12.2 (note that By 8y does not have compact support).
gt* commutes with af—is- since gt* acts linearly and con-
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tinuously on 02(W1 ).

It

8(Eyogiduy) +E 08 I buy by 12.4.2

+ gt*m

Il

gy*8(E aw) +0+g, %60
g, *6(u,7(2,)) +8, %60
gt*é(—cp +@) =0

i

Therefore g *ws is constant in g, so
g1*w1 =8, Q g *w =w. So if we put £f=h" -1, g, we get
£5Q = g, *(n~1)#g = g *Q=w in an open neighbourhood of Zy
in T*X We summarize-
Lemma: In the setting of 14.2 there exists a diffeomor-
phism f: U-7V between open neighbourhoods of ZX in T*X

such that f*0=w and f|2, =14, .
Blol taay B T o =0,

14.4 Theorem: Let (X,Q) be a symplectic manifold. Then
the group Diff Q(X) of all symplectic diffeomorphisms of

is a (gplitting if X is compact) C -submanifold of
D:Lff(X) So it is a ch -Lie—group :Ltself

Warning: It is not clear whether T .0 Diff(X) coincides
with the space of vector-fields with compact support on
X such that Q§Q=O. We only know that these lie in the
Lie-algebra.

Proof: Let t: T*X-»>X be a local addition ag in 14.2,
construct OF on XxX, 5 and w on T*X as in 14.2. Let £
be the diffeomorphis’rg of a neighbourhood of ZX in T*X
onto another with £*Q=w, f|Zy =IdZX.

Let p =(1'\'X*,'r) o f: Uc X ->XxX, a diffeomorphism of
an open ngighbourhood U of Z in T*X onto an open neigh-
bourhood V of Ay in X xX. Then p(Z ) = Ay by construction
and p*Q* =£*(my * )% = £RQ = .

Now let U :D:Lff(X) be the open neighbourhood of Idy
given by all g € Diff(X) such the graph PS of g lies in
V in X xX and g~IdX. Since V is open, Uo is open in the
(FD)-topology.
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Claim 1: Let g€U,. Then g€ 0 Diff(X) (i.e. g*n=Q) iff

T_ is a Lagrangian submanifold of (X xX,0%).

Proof: x- (x,g(x)) is the natural embedding of X onto Ty
Therefore TT =Tn cTX x TX, so TI‘g=1‘T =

= {(g,Tg.E), E€TX} c T x TX. Now dim T_=4im X =

= 32- dim (X xX), so T'_is Lagrangian in XxX iff QxlTI‘g=O.
This is the case iff pr, *Q-—prz*QII‘T =0 or
(pr1*ﬂ-pr2*n)((§,Tg.§), (T\aTg‘n)) =0 for all E,m ETva
x€X, i.e. Qx(g,n) =ng(’.[‘g.§,’l‘g.n) for all €,n¢€ TxX’

x € X. But this means Q=g*Q. So the claim is proved.

Now, since p*Q* =w, a submanifold McVgXxX of
dim M=dim X is a Lagrangian submanifold of (X xX,0~) iff
o (M) is a Lagrangian submanifold of (T#X,w).

Note that a submanifold Ng T#X isg the image of a
1-form iff m*|N: N-X is a diffeomorphism.

Qlaim 2: Le't P € T(T*X) be a 1-form on X. Then

o(X) e (T*X,w) is Lagrangian iff 5P =0.

Proof: Remember the canonical 1-form o from 14.2: for any
1-form o € T(T*X) we have o¢*a =¢. Now @(X) is Lagrangian
iff (w=-5a)|T(p(X)) =0, i.e. —p*bdo=0. But

o*do = dp*a = &p. So ©(X) is Lagrangian iff &p=0.

Now let U c Diff(X) be so small that for each g€ U,
the submanifold P 1(I‘ ) 3.s the image of a 1-form (with
compact support). Since p~ (I‘Id) =p 1(AX) =Zy this is
still a (FD)-neighbourhood of Idy. Then for g € U, we have:
g €0 Diff(X) iff T, is Tagrangian in (XxX,0%) iff the
one form s whose image is p-1 (r' ) is closed. So let
w: U =T, (T*X) be the mapping assigning to each g the
1—form s wi‘bh a(X) =p 1(1‘ ).

Claim 3: u: U =T, (T*X) is C

Proof: If geU ;lef(X), then

c(g): x- (x,gx)»p (x,gx)»nx*p (x,gx) is a diffeomor-
phism: it is clearly smooth, it 1s immersive since

|p 1(1‘ ) is a diffeomorphism, and it is bijective since

"1 (T_) =u(g)(X). (There is no obvious relation between
a(g) and g.) By comstruction, a: Uo—»Diff(X) is Cgo by

142



the Q-lemma and the chain rule.

Tet B(g) be the mapping: x- (x,gx)-p ' (x,gx),

B(g): X~ T*X. Then B: U »>C® (X,T#X) is CT by the
(-lemma and the chain rule. We have a(g)-—(er“) (g(g)).
Clearly p(g) =8(g) » alg)™" =

=p(8) » InV(oc(g)) =

= Comp(B(g), Inv(a(g))).
Since composition and Inversion are C , the mapping p
is COD and the claim is proved.
Claim 4: u s w(U)) =: U, eT (T*K) > Di££(X) 1s €T too.
Proof: For s EVO consider the mapping
y(s): x> s(g)~»po(s(x))~ Pry o Po s(x). Then vy: v, - Diff(X)
is a c°° -mepping by the Q-lemma.

Let ViV - Diff(X) be given by
v(g): x-~» s(x)»p(s(x))aprQ pos(x). Then v is Cc t00.

Tt is clear that u~1(s) =v(8).« v(s)~! = comp(y(s),
Inv(y(s))); so u"1 is cgo and u: UO»VOs;I‘c(T*X) is a 0?
diffeomorphism.

Now 2! (T (T#X)) =kernel(6: T (T#X)»>T_(A2T*X)), the
space of all closed 1-forms with compact support, is a
cloged linear subspace of I‘C(T*X) since the exteriour
derivative is a continuous linear differential operator
on I‘C(T*X). If the manifold X is compact then the theorem
of Hodge says that the space of smooth cloged 1-forms is
a direct summand in the space of all 1-forms.

So we get: g €U, NDiff (X) iff 8(u(g)) =0, or
u(g) €V, N kernel 5. Thus U NDiff,(X) is a o°° —submani-
fold of Diff(X) it is split’c:.ng if X is compact Since
Difo(X) is a group one may transport around the open set
UQ and finish the proof of the theorem. g.e.d
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List of symbols

§ 1
% k-jet extension of f 1
I5(%,7) k-jet bundle 1
as Jk(X,Y)»X source mapping 1
ws Jk(X,Y)-»Y target mapping 1
JE(n,m) = JE(RB,RD) 2
Pk(n,m) polynomial mappings RT-R® of

degree <k without constant

term 2
1d m(Rn,lRm) symmetric j-linear mappings 2
n%,': JE(x,¥) » 7' (X,¥) projection 5
T(E) space of smooth sections 7
I‘C(E) space of sections with compact

support 7
Jk(E) k-jet bundle of a vector bundle 8
V(E) vertical bundle 10
VE: ES®E->V(E) vertical 1ift 11
gt V(E)->E vertical projection 1
chp fibre derivative of o 12
f*E pullback of a vector bundle 12
ng: T°X- 19X canonical flip mapping 13
exp exponential mapping 16
§ 2
z_)jX manifold of cormers of index j 19
rx space of inner tangent vectors 20
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szX space of inner second tangent
vectors

§ 3

c(X,Y) space of continuous mappings

co compact open topology

Tf graph of f

Ww(U)

wo wholly open topology

wo° graph topolo y

M(U)

N(f,e)

Lo locally finite open topology

LOO—topology
M(L!U)’ N(f)L’e)’ N(f’w)

§ 4

J%° (x,Y) © -jet bundle

COk compact Ok—topology

WOk Whitney Ck—topology

W¢U), N(£,k,¢)

9, SK spaces of test functions

EF space of test functions
P-topology

M(L,U), M'(L,U), N(f,L,e), N(f,p)

fr~g equivalent mappings, £ and g

coincide off some compact set

(FD)-topology, fine ®-topology

§ 5

Imm® (X,Y) space of immersions

sub® (X,Y) space of submersions

Crrop(X,Y) space of proper mappings
EY(X,Y) space of embeddings

Errop(X’Y) space of closed embeddings
QB(X,Y) space of surjective submersions
Diff¥(X) group of diffeomorphisms
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22

26
26
26
26
26
26
26
27
29
29
29

32
33
33
34
35
36
36
37

40
40

42
42
42
43
46
47
48



CT(X,Y)

DX, Df

§ 6
A

X
1 X(Y,f1,f2)x2

(8) 7k (¥, 1)
(S)jlcf

§ 7

Comp
£ =0% (£,Y)
hy =0% (X,h)
Inv

Diffc(X)
§ 8

ol

[¢]
Df
Déf, D, f
Der

P
CC

§ 9
P® (n,m)
§ 10
mf(X,TY)
(Uf’cpfprc(f*TY))

-1

bp =g

Tf PHTY > XY

Sq(Y,X)
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space of boundary respecting

mapping
double of a manifold, mapping

transversal
topological pullback

multijet bundle
multijet extension of f

composition

inversion
group of diffeomorphisms with
compact support

differentiability class
derivative

partial derivatives
second derivative
differentiability class

space of formal power series
without constant terms

vector fields along f with
compact support

canonical chart of ¢® (X,Y)
centered at f

space of sections of g

48

50
51

58
58

68
69
69
70

i

T4
T4
75
76
7

86

N

92
92
92
95



(X, TY)
evx

®
cnice(X’Y)
§ 11

Ev: Xx0® (X,Y)~»Y

§ 12

Pw

st

sJw
Vol(X)
r(s21x),
vol(g)

§ 13

p: Diff(X) x B(X,Y)»B(X,Y)
U(X,Y)==E(X,Y)/Diff(X)

u: B(X,Y)-» U(X,Y)

§ 14
Zy
Diff, (%)

evaluation at x
nice mappings

evaluation

pullback mapping
Lie~derivative along s
contraction along s

bundle of densitites

space of Riemannian metrics
density induced by a metric

action
orbit space

zero section of X
group of symplectic diffeo-
morphisms

99
105
107

114

121
122
123
126
127
127 -

129
129
129

139

141
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Index

additively closed

border
border faithful mapping
boundary respecting local addition

cartesisn closed

Cq -manifold

compact Ck—topology
compact open topology
contraction

corner

density
double of a manifold

elementary transversality theorem
equivalent mappings
exponential mapping

fibre bundle

fibre bundle with structure group
fibre derivative

fine ®-topology

graph topology
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93

18
48
91

115
83
33
26

123
18

126
48

57
40
16,23

Ul

40

26



index of a quadrant
inner spray

inner tangent vector
isotropic submanifold

jet
jet bundle

Kelley topological space
k-jet

Lagrangian submanifold
Lie-derivative

Lindeldf space

lemma of Poincaré

local addition

locally finite open topology
local topological affine space

manifold with corners
multijet bundle
multijet transversality theorem

neat submanifold
non-gsplitting Cg)— submanifold
nuclear space

partition of unity
proper mapping
pullback of vector bundle

quadrant

section

source mapping

splitting og" -submanifold
gpray

gtrictly inner tangent vector
submanifold with corners

18
22
20
138

1,24

41,121

19
58
59

19
84
39,78

78
42
12

18

84
14
20
19
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tangential spray 22

target mapping 1
Thom's transversality theorem 55
transversal 50
truncated composition 2
tubular neighbourhood 94
vertical bundle 10,11
vertical 1ift 11
vertical projection 11
Whitney Ck—topology 33
wholly open topology 26
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