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ON THE CURVATURE OF A CERTAIN
RIEMANNIAN SPACE OF MATRICES
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ABSTRACT. Positive definite matrices of trace 1 describe the state space of a finite quantum system.
This manifold can be endowed by the physically very relevant Bogoliubov-Kubo-Mori inner product
as a Riemannian metric. In the paper the curvature tensor and the scalar curvature are computed.

1. INTRODUCTION

The state space of a finite quantum system is identified with the set of positive semidefinite
matrices of trace 1. The set of all strictly positive definite matrices of trace 1 becomes naturally
a differentiable manifold and the Bogoliubov-Kubo-Mori scalar product defines a Riemannian
structure on it. Reference [4] tells about the relation of this metric to the von Neumann en-
tropy functional. Shortly speaking, the von Neumann entropy is a concave functional on the
above space of matrices and its negative Hessian is a positive definite inner product knowns as
Bogoliubov-Kubo-Mori scalar product (or canonical correlation). For the physical background of
the Bogoliubov-Kubo-Mori inner product, [2] is a good source.

The objective of the paper is to compute the scalar curvature in the Riemannian geometry
of the Bogoliubov-Kubo-Mori scalar product. Earlier this was obtained in [7] for the 2 x 2
matrices and some sectional curvatures were computed in [4] for larger matrices. In this paper,
we consider the space of real density matrices which is a geodetic submanifold in the space of
complex density matrices. Our study is strongly motivated by the conjectures formulated in [4]
and [5]. It was conjectured that the scalar curvature takes its maximum when all eigenvalues of
the density matrix are equal, and more generally the scalar curvature is monotone with respect
to the majorization relation of matrices. Although we obtain an explicit formula for the scalar
curvature, the conjecture remains unproven. (Nevertheless, a huge number of numerical examples
are still supporting the conjecture.) The method of computation of the Ricci and scalar curvature
is inspired by [3]. First we use a basis in the tangent space to express the scalar curvature and
then we get rid of the basis by means of linear algebra.

When this paper was nearly finished we received the preprint [1] where the scalar curvature is
computed for arbitrary monoton metrics in the complex case by a different method. Our aim is
to find a formula for the scalar curvature which depends only on easily computable quantities of
matrices. The scalar curvature turns out to be a rather complicated function of the eigenvalues
and we express it in terms of some symmetric functions of pairs and triplets of the eigenvalues.

2. THE BOGOLIUBOV-KUBO-MORI SCALAR PRODUCT
ON THE SPACE OF POSITIVE DEFINITE MATRICES

2.1. The setup. Let S = S(n) be the space of all real selfadjoint (n x n)-matrices, S; = Si(n)
be the open subspace of positive definite matrices. Then S, is a manifold with tangent bundle
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TS, = S+ xS. We shall consider the following Riemannian metric on Sy, where D € S1 and
XY €eTpSy =6:

Gp(X,Y) :/ T (D+t) ' X(D+t)7'Y)dt.
0
Because
T (D + 67 X(D+1)71Y) ] < nt~2|X| |Vl
the integral is finite. We shall identify S with its dual S* by the standard (i.e., Hilbert-Schmidt)
inner product (X,Y) = Tr (XY'). Then we can view the Riemannian metric G also as a mapping
GDZTDS+ :S—>T58+ =8 %S,
Gp(X) :/ (D4+t)"'X (D +t)"*dt,
0
which is symmetric with respect to (X,Y) = Tr XY. (Note that Gp is the Frechet derivative

of log D.) Now let D € S; and choose a basis of R such that D =, \;Ej; is diagonal, where
(E;;) is the usual system of matrix units, then the selfadjoint matrices

Fy = By + By, (k<1

are a complete system of eigenvectors of Gp : & — S. This means that (Fjj)i<i<j<n is an
orthogonal basis of (TpS,Gp) with

0 for (i,7) # (k1)
GD(FZ']'7FM): Zmij fOfi:k<j:l
where
log A\; — log A\,

Me +8) T 1) Hdt = 22200 .
JRCET R NN

The expression my; is a symmetric function of the eigenvalues Ay and ;. In fact 1/my,; is the
logarithmic mean of A\x and ;. This implies that

1
my = — whenever Ak = A,

Ak

in particular, myr = 1/A;. Note that Gp(F;;) = m;; Fy; for all ¢ < j.
Another symmetric expression

/OC(/\Z- +)TTON )T O )T dE =
0

will appear below. The identity

1
(mkkl i mkll> 1
Mpr \ Mkk my
is easily computed and will be used later.

2.2. The Christoffel symbol. Since we have a global chart we can express the Levi-Civita
connection by one Christoffel symbol:

(Ven)|lp = dn(D).£(D) — Tp(&(D), n(D))
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where £,1: S; — S are smooth vector fields. The Christoffel symbol is then given by

Gp(Tp(X,Y), Z) = 3dG(D)(Z)(X,Y) = 3dG(D)(X)(2,Y) — 3dG(D)(Y)(X, 2),

where the derivative of the metric
dG(D)(Z)(X,Y) = / T (~(D+ 072D+ 1) X(D+ 1)1V -
0
— D+ 'X(D+4)"1Z2(D + t)’1Y> dt

is visibly symmetric in the entries Z, X, Y.
The Christoffel form is given by

Gp(Pp(X,Y)) = —3dG(D)(X)(Y)
_ %/w(D 1) (X(D +)TY +Y(D+ t)_1X> (D +)~Ldt,
0

Ip(X, )=-3Gp" .dG(D)(X)

Since )
Gl (X) = / DX D' du,
0

we can express the Christoffel form as an integral formula. The derivative is

dD(D)(X)(Y, Z) = —3d(G™")(D)(X).dG(D)(Y)(Z) + 3Gp' d*G(D)(X,Y)(Z).

2.3. When D =" A\, E;; is diagonal, then
dG(D)(Z2)(X) = = mij(EuZE;;X B + E X Ej; ZEy,).
ijk
In particular,
dG(D)(Fi;)(Fri) = —0jema Fiy — 6jimin; Fix — dumjriFir — diemyii Fji,

and
Myl Mjki Mg
Up(Fij, Fr) = =0 —=Fi — 61 Fi, — 0q—""Fji, — bix—"—F

Mk
il Mk mjk mji

2.4. The curvature. The Riemannian curvature R(£,7)¢ = (V¢V,) =V, VE — Vi ;)¢ is then

determined in terms of the Christoffel form by

Ri(X,Y)Z = —dT(D)(X)(Y, Z) + dT(D)(Y)(X, Z)+
+I'p(X,I'p(Y,2)) =I'p(Y,I'p(X, Z)).

If we insert the expressions from 2.2 we get after some computation

Rp(X,Y)Z = 1d(G™1)(D)(X).dG(D)(Y)(Z) — 3d(G~1)(D)(Y).dG(D)(X)(Z)
= —1GpdG(D)(X).Gp'.dG(D)(Y)(Z)
+ 1G5 dG(D)(Y).Gp .dG(D)(X)(Z)

The Ricci curvature is then given by the following trace

Ricp(X,Z) =Trs (Y = Rp(X,Y)Z),
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and the scalar curvature is
Scal(D) = Tr 5(X +— Gp'. Ricp(X, )).

Next we compute the traces in a concrete basis. Let A; be an orthonormal basis with respect
to the inner product (X,Y) = Tr(XY) on S. Then

Ricp(X, Z) = (Rp(X, A.)Z, As)

S

and

Scal(D) = (Gp'.Ricp(Ar, ), A = (Ricp(Ar, ),Gp Ay

t

t
= Ricp(Ar, Gp'Ar) =Y ) (Rp(Ar, A)GRL Ay Ay) .
t t s

3. THE SUBMANIFOLD OF NORMALIZED MATRICES

3.1. The submanifold of trace 1 matrices. We consider the affine submanifold of S of all
positive definite real selfadjoint matrices with trace 1 and its tangent bundle:

S ={DeS, Tr(D)=1},
TS, = 81 X Sy, where Sy = {X eS: TI“(X) :0}.

Lemma.

(1) The unit normal field n along the submanifold S with respect to the Riemannian metric
G from 2.1 is given by n(D) = (D, D).

(2) The G-orthonormal projection Pp : § = TpSy — TpS1 = Sy is given by Pp(X) =
X -Tr(X)n(D)=X-Tr(X)D for D€ S and X € S).

(3) The Christoffel form for the covariant derivative V1 of the induced Riemannian metric
S1, Gl is given by

I'p(X,Y) = Ppl'p(X,Y) =Tp(X,Y) - Tr (Tp(X,Y)).D, DeS, X,Y €Sy,
and the second fundamental form is given by

Sp :TpS1 X TpS1 =8y xSg — R
Sp(X,Y)=Tr(I'p(X,Y))
:/ Tt (D+t) ' X(D+t)"'Y
0
—ID(D+t)2X(D+t)7'Y

~1D(D+1)72Y(D+ t)’lX) dt.

Proof. If X € § commutes with D we get

Gp(X,Y) :/OOO Tr((D+t)"*X(D+t)7'Y)dt = /OooTr((D+t)_2XY)dt:
=[-Tr((D+t)'XY)]i=° = Tr (D71 XY)

Thus for Y € Sy we have Gp(D,Y) = Tr(Y) = 0. Moreover for D € §; we have Gp(D, D) =
Tr (D) =1, so (1) follows. The remaining assertions are standard facts from Riemannian geom-
etry.
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For the explicit expression of the second fundamental form we proceed as follows. For D € S§;
the Weingarten mapping is given by

Lp: TpS1 =8y — Sy = TDSh
LD(X) L= V(D,X)n = dn(D)X - FD(X,R(D)) =X — FD(X,D),

and the second fundamental form is then given by

SD :TD81 X TD81 = So X SO — R
SD(Xa Y) = GD(LD(X)7Y) = GD(X - FD(X7D)7Y)
= Gp(X,Y) + 3dG(D)(X)(D.Y)

= /OOO Tr(D+t) ' X(D+t)"'Y
~ DD+ )X (D + 7Y = 1D(D+ )2V (D +1) 7' X)) dt.
Another formula for the second fundamental form is
(4) Sp(X,Y):="Tr(Fa(X,Y)) = Tr (—3G " dG(X)(Y))
= ;/01 /OOC Tr (D*(D+t) ' X(D+t)"'Y(D+t)"'D' "+

FDUD )Y (D + 1) X(D + t)*lDH) dtdu. O

3.2. The curvature via the Gaufl equation. The Gaufl equation expresses the curvature R
of 8, and the curvature R' of S; for D € S; and X,Y, Z,U € Sy by

Gp(R(X,Y)Z,U) = Gp(R"(X,Y)Z,U) + Sp(X, Z)Sp(Y,U) — Sp(Y, Z)Sp(X,U).
The Ricci curvature of the submanifold S; is then given by the following trace
Ricp(X,Z)=Trs, (Y = Rp(X.Y)Z),
and the scalar curvature is
Scal' (D) = Trs, (X = Gyt Ricp (X, ).

Next we compute the traces in a concrete basis in case of a diagonal D =Y. \;E;; € Si. Let
A, be an orthonormal basis with respect to the inner product Gp on Sy. Then

Rich(X,Z) = > Gp(Rp(X,A.)Z, A,)
and
Scal'(D ZGD (GLY . Rich(Ar, ), A;) = Z(Rich(At, ), Ay)

= ZRch (Ag, Ap) = ZZGD p(Ae, Ag) Ay, As)
t

:Z(GD(RD(At,A)At, o) — Sp(Ar, A)Sp(As, Ay) — SD(AS,At)SD(At,AS))
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4. COMPUTATION OF THE SCALAR CURVATURE

Our aim is to have an explicit formula for the scalar curvature Scal' (D) in terms of eigenvalues
of the D, which we assume to be a diagonal matrix. As in the previous section, let A; be an
orthonormal basis with respect to the inner product Gp on Sg. We assume that some of the
basis elements are diagonal (like D) and the others are normalized symmetrized matrix units.

4.1. The first term. We decompose the sum
S Go(Rp(Arn A A Ay)
t,s

into three subsums and we compute them separately. First we consider the case when both A,
and A, are offdiagonal, that is, they are in the form F;;/,/2m;;.
Offdiagonal-offdiagonal.

Z#G (Bp( U’Fkl>Fm7Fkl) = Z

4mijmkl

Rp(F;;, Fu)F, F
4m1]< p(Fij, Fra) Fijs F)

=- Z 16717%3' <GE)1'd(G)(D)(Fij)'Ggl.dG(D)(Fkl)(Fij)a Frp)

L (G d(G)(D)-(Fu)- G AG(D) (Fy)(Fy), )

where summation is over ¢ < j and k < [. We continue with the first term and calculate in an
elementary way:

=3 s (G5 AG)D) ()G G D) Fi) (F). F)

12 Z m?u}w 4+ = 2 mlzij + = 2 m?jj

16 2
16 M MywMuw 16 ml My 16 ‘M

u<v<w J

For the second term we use dG(D)(F;;)(Fi;) = —mi; Fis — mi;;Fj; and get

+ Z G d(G)(D).(F).Gp' dG(D)(Fy;)(Fyj), Fra)
1<j, k<l
_ 1 Myuo Myuw 1 MyvwMyvy 1 Moyww Myww
2 Z I 2 I I 2 Mo Mo M
u<v<w u<v<w u<v<w
1 mi; 1 m;
* 1 Z m2mn + Z Z mz‘mjj
i<j W i<j W

Offdiagonal-diagonal. Next we compute the sum

ZGD(RD(At;As)At7As)

t,s

when A; = ZZ aﬁEii are diagonal, G p-orthogonal to D, and orthonormalized, and where the A,
are still offdiagonal. This means that

p(D,A;) = Zm“)\a —Za =0 and Gp(4; Ay) Zm”a = a4 : =0y

We also have

dG(D)(Fkl)(At) = dG(D)(At)(Fkl) = —(m}gklaz + mkllaf)Fkl, dG(D)(At)(At/) = —D_214,514tl7
dG(D)(Fr)(Fr) = — 6 (muk + mugt) Fr — mpra Fre — mueFy,  and Gp' Ay = DA,
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since D, A;, and Ay commute. We get

1
Z Gp(Rp(As, Fii) A, Frp)

t k<l 2mp
1 _
= - 3 (dG(D)(Ay).Gp'.dG(D)(Fri)(Ar), Fri)
t et OV
+ > o (dG(D)(Fu)- G dG(D) (A (Ar), Fiu) =
th<t O VKL
1 _
=-> & (Gp"dG(D)(Fp)(Ay), d(G)(D)(As)(Frr))
thal O R
1 _
+ 8 (G'.dG(D)(Ar)(Ar), dG(D)(Fia)(Frr)) =
<t O KL
1 1 ¢ ¢ ¢ ¢
= - 3 <m7(*mkkzak — mypuay) Fr, (—meriay, — minay) Fr)
oy Bk Tl
1 1
+ (— —(a) By, (—mpri Frr — muxFiy)) =
t;l S Z N, p)
1
= _ Z - (mkklaz —|—m;€”a§)2
tk<l Kl
T Z L (mkkll(at)2 +mllk1(at)2> =Q
oy A T T

Denoting by @ this seemingly basis dependent quantity we transform the sums in @) as follows:

Z(...):% So=>0)

tk<l t.k,l tk=l

Summing for k = [ indexes we obtain:

1 m2 1 1
Y (sl mia)? = 3 T gy = LS LGt
—; Mg m2, 4 \2
t k=l T o
1 140 1 t2> 1 2mikk, 4o 1 1,
Mpri~—a)” +mur~—(a = al)2 == a2
t%;l dmy, ( /\k( k) /\l( l) h Ampp )\k ( k) 4 " )\%( k)

The two terms turned out to be equal, so

1 1 m m
Q= 5| > m—g(mwa‘}c +mpaf)® + > — < PEL (ah)? + ”k(af)Q)

1
m
thl Kl thl K

We start to deal with the first sum. Let

t
g

btzi, A =V g (1<k<n).
k Ny
Then A, b%, b2, ..., b1 is an orthonormal basis in R”. We define a linear mapping K from R” to

the space of all real n x n matrices (endowed with the standard Hilbert-Schmidt inner product).

1
Ke= Z P [mkkl \/Eck + mgu \chl]Ekz (ce R™).

k,l
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Then

1 2
[IKCb||* = Z - [mriaf, + menaj]
k.l kl

which is a term in (). Hence

1
2 —o (maniaj, + minaf)® = S IKH P = Tr KK — || KA.
t

tk,l Kl
Since : ]2
Mpgi Ak + Mg
ICAIP = o= =2 1=n"
k.l kl k.l
and
i
Tr KK = le’cel”Q 22 zzl +2Z Z’LZ
m )\k _
—9 kR - AL
Xk 2?@
we have

Z m1 (mirial, + mrua)® = 22 mkkl}‘k Z A

t,kl 'kl k.l

The other terms of () are similarly computed as traces.

1 Mkl 12 miue , + 2) Mkl + miu kkl)\k + mk”)\l
E —_— a + —(a = E E
Xl ( /\k ( k) )\l ( l)

t.k,l k,l k.l

_ Z Mkl T Mkl 2
m
P kl

Finally, we obtain a basis independent expression for Q:
2
M Ak A7 Mgl + My
- - 1+
Q ; 4mil 16 Z Z Smkl

Diagonal-offdiagonal. This case is completely similar (in fact, symmetric) and yields the
same Q.
Diagonal-diagonal. Now we compute the sum

ZGD(RD(At;As)At7As)

t,s

when A; and A, are both diagonal, Gp-orthogonal to D, and orthonormalized. We get
Z Gp(Rp(Ay, As)Ar, As)

— Z D)(A).GL .dG(D)(AL)(A), Ay)
+ Z Ay).Gp'.dG(D)(A)(Ar), Ay) =
— Z Z<G,31.dG(D)(AS)(At), d(G)(D)(A¢)(As))

Z (Gp'dG(D)(Ar)(Ar), d(G)(D)(As)(As)) =

== 1<<—D*1AtAs, —D72A1A;) = (D7 (A)?, =D (A)%) =0
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4.2. The second term. We start the computation of

— ZSD(Atht)SD(AstS)'

t,s

We use first the formula from 3.1.(4), and use also 2.3.

Sp(Fij, Fr) = Tr (=3G5" dG(Fy;)(Frr))

=Tr (—%GBl(—(SjkmiljFil — 0 Fik — dumjkiFie — duemiii Fj1))

m'l ikj kz m gli
_ 1 i Mk m;
=35Tr (5jk Fy + 5]l sz + du Fjp + 0ip—— Fjl>
m;; mjk mji
mii;
Jte

- ]k‘(sll + 5]l51k

+ 52l6jk + 61]65]1
mji

We observe that for (i < j) # (k <) we get Sp(Fij, Fia) = 0. Furthermore, for ¢ < j we have

Sp(Fyg, Fiy) = 2 T
M My
Sp(Fii, Frr) = 40k ik
mzk
mii;
S (F”, Fkl) - 6zk61l + 6zl61k + 61162k} + 61k51l b
msi mik mik mg
=0ifk <.

First we take summation when both A; and A, are offdiagonal:

=Y Sp(Ar, A)Sp(As, Ag) =

t,s

1 1 1
E Sp F, F.:|Sp < Fy, Fkl)
i<j,k<l <\/2 Y \/Qmij Zj) 2mp 2my,

_ Z . 1 (mii]‘ +mijj> (mkkl +mkll>

i< k<l NG5kl My mjj Mgk my
1 Z 1 n2(n — 1)2
16
1<j,k<l

and

1 1 —1)2
— > Sp(An A)Sp(An i) = —5(n =) Y <mkm . mw) _ n(n—-1*
k<l

s Mgk my 16

Note that this contribution is symmetric in ¢t and s and we should take it twice.
Now it easily follows the value of the sum when both A; and A, are diagonal:

_ ZSD(At,At)SD(As,As) = —Z

1
= (n—1)>
> =1

| =
DN |~

t,s



10 PETER W. MICHOR, DENES PETZ, ATTILA ANDAI

4.3. The third term. Now we have to deal with
- ZSD Ar, Ag)Sp(As, Ap) = = Sp(Ar, A,)?
t,s

By the formulas from 4.2 we have that it suffices to sum when both A; and A, are diagonal and
both of them are offdiagonal. Hence

2
m m n—1 nn-1
_ZSD As, AG)Sp(Ag, Ay) = _Z4m ( RRL kll) _ ( )
Kl

Mgk my

4 8

4.4. The scalar curvature formula.

R 3y Muw Loy Mo

u<v<w muvmvwmwu 2 mvumvvmvw

u<v<w

+ 1 Z MwwuMwwv + 1 Z Myuv Muuw

2 5 MuwaMunMuw 2 S My M Mo

2 2
+ 3 mZZj 3 mlj]
2 § : 2

8 MM 8 = mi;mg;

_ } : M Ak 1 Z AL Mkl + M
2m2 3 DY 4
w1 Sk i Tkl

B n?(n—1)2 n(n—1)> 1
16 8 4 4 16

Some further simplification:

3 leZJ 3 mzzjj 3 mm/\ + m”]/\
— + — —
8 ; mimi; 8 ; mZmg; 16 Ej: mg; Z i

2 2 2
L MR L e Mg Ak + Mg
§ : 7 = E : 3
2 k.l My 4 K, Mgy

Hence

_ uvw

UU mvwmwu

My My, M 2 My My M
VU VU vw u<v<w uu uv uw

A +m2,\ 13 1 Mmegpl +m nin—1)

kk:l k kM Kkl kll 2
—ne - s E — 4+ E + n°—n+1).
m3, 2 - i " ( )

u<v<w

3
i Z
v<w

1 mvvwmvvu 1 mwwumwwv 1 muuvmuuw
2 z; Z Moy Moy My Z

1

~ 6

k,l

4mkl 4

Although this formula is rather explicit, it is difficult to analyse it. When the given density
matrix is replaced by a more mixed one then some of the terms increase and some of them
decrease. Unfortunately, we could not conclude anything for the monotonicity conjecture.
Acknowledgement. The second-named author thanks to Erwin Schrédinger International
Institute for Mathematical Physics and to Hungarian grant OTKA F023447 for support.
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