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Chapter 1

Introduction

1.1 An example

We start with an example. Let M be a smooth manifold, or an algebraic variety. Then the bundle
of differential forms generates a bundle of algebras. If ω1 is a p-form and ω2 is a q-form, then
ω1∧ω2 is a (p+ q)-form. Thus we can assemble all differential forms into an algebra, and we obtain
a bundle A(M) of algebras over M . Clearly, for any open set U ⊂M , the sections of A(M) over U
do not form a commutative algebra, but a Z2-graded commutative algebra: if ω1 is a p-form and ω2

is a q-form, then ω1 ∧ ω2 = (−1)pqω2 ∧ ω1. The algebra of sections of A(M) over U thus naturally
splits into a direct sum of even rank differential forms and odd rank differential forms. In other
words, we have constructed a sheaf AM of Z2-graded commutative algebras on M .

In this thesis we will develop the algebraic machinery to deal with spaces that come with sheaves
of Z2-graded commutative algebras. Such algebras we will call superalgebras.

1.2 Motivation

It is well-known that the elementary particles from the standard model come into two kinds: bosons
and fermions. Already a long time ago in 1925, it was noted by Pauli [1] that on the level of
quantum mechanics these fermions have to be treated in a rather unusual way, namely by using
anticommuting variables (be aware, this is a slight twist of history). That is, fermions were to be
described by sections of algebra bundles such that if η, η′ are two such sections, then ηη′ = −η′η.
Since then, many things have changed in physics, but the fermionic variables pursue to exist. Even
more, in modern theories as the minimal supersymmetric standard model, or in super string theory,
or in M-theory, F-theory, . . . , the role of fermionic variables has gained increased interest and
importance.

With the venue of mirror symmetry (see [2] for an introduction with a historical overview and
references), varieties with additional noncommuting variables became more and more interesting.
Even from a purely mathematical point of view, the idea of making spaces with noncommuting
coordinates has become popular and seems to make it possible to get deep mathematical results.

We will not even try to give a historical overview of the history of the subject. Partially this is
due to the fact that in the Russian literature anticommuting variables were already used before the
texts were translated in English. Therefore there is some debate on who was first. The interested
reader is referred to [3–7] for historical notes, remarks and lists of references.
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The theory of supermanifolds has already been an object of focus in many publications, for
example, see [5, 6, 8–14] for a (incomplete) selection of expositions. However, mainly the category
of smooth manifolds was considered. Many authors note that much algebra can be translated to
get a superversion of a theorem of commutative algebra. However, little steps are taken to fully
develop a theory for superalgebras parallel to the theory of commutative algebras. In this thesis we
will be very explicit and present all details: a partial goal is to get an overview of which theorems
still hold, when replacing commutative by Z2-graded commutative. For example, it is already clear
that the theorem of Cartier, which states that in characteristic zero, any commutative Hopf algebra
is reduced, will not hold for a super Hopf algebra.

1.3 Plan

The idea of the thesis was to generalize the Cayley map, which sets up a birational equivalence
between a reductive algebraic group and its Lie algebra, to supermanifolds. Then rather quickly
we stumbled over the question what a supergroup should be, and how we should view its Lie
superalgebra. On the one hand Lie superalgebras are vector spaces over a field with an algebraic
structure, on the other hand, in the literature one views supergroups more in a functorial way.
Therefore, the connection between a supergroup and its Lie superalgebra cannot be simply a kind
of differentiation. The next obstruction was to find enough generalizations of commutative algebra
and algebraic geometry to treat supergroups and supervarieties in a satisfying way. This then turned
out to be most of the work. Many authors already dealt with generalizations of commutative algebra
to the realm of superrings and superalgebras, but mainly on an ad-hoc basis and sometimes even
wrongly or unsatisfactorily. Therefore the plan of the dissertation changed more or less to the
following task: give structure to commutative algebra for superrings.

In chapter two we deal with super vector spaces, which are in fact no more than vector spaces
with a Z2-grading, and shortly discuss Lie superalgebras. In chapter three we give a fast introduction
to the most elementary objects, like superrings and their modules. Prime ideals in superrings are the
focus of chapter four, which will be used extensively when we discuss localization and completion of
superrings in chapter five, where we also shortly discuss superschemes. We return back to modules
of superrings in chapter six and discuss more general notions that can be treated after having
developed the machinery in the preceding chapters. In chapter seven we give a rudimentary scheme
for dimension theory of superrings. These first chapters are an attempt to try to generalize results of
commutative algebra to superrings. We have used and followed the standard works on commutative
algebra as for example [15–19].

In chapter eight we return to the question we started with: the relationship with the Lie super-
algebra of a supergroup. In the ninth chapter we come to discuss representations of supergroups.
For that we need some more knowledge on coalgebras and comodules and their generalizations to
the super case. The presentation in chapters eight and nine closely follows the books [20–22]. In
the final chapter, we get to the starting point of our quest: we define a Cayley map for supergroups.
In order to do so, we first need to address the question what a rational map is for superschemes
and group functors.

1.4 Notation and conventions

A note on notation: We fix a field k for the rest of the paper. We assume that the characteristic
of k is zero, but most of the claims hold for nonzero characteristic as well. We write Z2 = Z/2Z
and denote the elements of Z2 by 0̄, 1̄. When x ∈ Z2 then (−1)x is 1 if x = 0̄ and −1 if x = 1̄. We
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use i, j, . . . both for indices that take values in Z2 as for indices that take values in Z. From the
context it will be clear what kind of index it is. If A and B are two sets, we write A − B for the
set of elements that are in A but not in B. For the concatenation of maps between super vector
spaces we use the convention that the symbol ⊗ (tensor product) binds stronger than the symbol
◦ (concatenation). The end of an example is indicated by the symbol △. The end of a proof is
indicated by the symbol �.

On nomenclature: When we have defined an object or property and used the prefix super, then
afterwards the prefix super will often be omitted. Important exceptions are superring, superalgebra
and super vector spaces, which will always be denoted superring, superalgebra and super vector
spaces. As an example, the ‘super dimension of a superring’ will often be denoted ‘the dimension of a
superring’. Note that the word ‘commutative ring’ is thus never used to indicate a supercommutative
superring. Giving names to objects in ‘supermathematics’ is for a great deal a matter of taste and we
are not aware of any fix rules. Therefore, some inconsistencies in nomenclature seem unavoidable:
super Hopf algebra on the one hand, but Lie superalgebra on the other hand, superring as one
construction, and super coalgebra as an alternative. When it comes to choosing nomenclature, we
have taken seemingly settled conventions and esthetics as guidance.

On occasion we need Zorn’s lemma. In some cases we have spelled out how to use the lemma,
especially in the first few chapters. In many cases however, we only indicate that the lemma of
Zorn is used and do not give the details. The justification lies in the fact that all applications of
Zorn’s lemma are very similar.

We distinguish betweem homomorphisms and morphisms. Morphisms are the arrows of the
category the objects live in. Hence we will speak of group morphisms instead of group homomor-
phisms. Homomorphisms are only used for super vector spaces and supermodules and need not
preserve the Z2-grading.

We frequently use categorical language and assume the reader has some familiarity with concepts
as initial object, terminal object, universal properties, monomorphism, epimorphism, and so on.
We refer to [23–25] for explanations on these matters in case our explanation is not sufficient or
missing.





Chapter 2

Super vector spaces

In this chapter we define the most basic notions of super mathematics, the super vector spaces.
We will then discuss the category of super vector spaces, come to notions as supermatrices, su-
perdeterminant and supertrace. Then we will introduce Lie superalgebras and briefly discuss some
classification issues of these. In this chapter we restrict to finite-dimensional (super) vector spaces.

2.1 Super vector spaces

A super vector space over k is a Z2-graded vector space over k and we write V = V0̄ ⊕ V1̄. The
elements of V0̄ and V1̄ are called even respectively odd. A homogeneous element is an element that
is even or odd. For a homogeneous element v we write |v| for the parity; if v ∈ V0̄ ( resp. V1̄) we
have |v| = 0̄ ( resp. 1̄). A morphism of super vector spaces is a parity preserving map. We write
Hom(V,W ) for all k-linear morphisms from V to W . The field k itself is viewed as a super vector
space with zero odd part.

For a super vector space V we say that a linear subspace U ⊂ V is a sub super vector space if
U is Z2-graded, that is, if U = (U ∩V0̄)⊕ (U ∩V1̄). In this case, U itself is a super vector space and
the inclusion U → V is a morphism of super vector spaces. The quotient V/U is then a well-defined
super vector space with the Z2-grading (V/U)0̄ = V0̄/U0̄ and (V/U)1̄ = V1̄/U1̄.

The category sVec of super vector spaces over k is abelian: Cokernels and kernels are au-
tomatically Z2-graded since the morphisms are Z2-graded. Direct sums and direct products are
constructed as for ordinary vector spaces, but with parity preserving maps. The direct sum V ⊕W
is Z2-graded as

(V ⊕W )i = Vi ⊕Wi , i ∈ Z2 . (2.1)

The direct product V ×W is given the Z2-grading (V ×W )i = Vi ×Wi. It is easy to check that
the inclusions V → V ⊕W , W → V ⊕W and the projections V ⊕W → V , V ⊕W → W preserve
the Z2-grading. The tensor product V ⊗W exists and is Z2-graded with

(V ⊗W )i =
⊕

j+k=i

Vj ⊗Wk , i ∈ Z2 . (2.2)

The dual of a super vector space V is denoted V ∗ and has the natural Z2-grading ω ∈ (V ∗)i ⇔
|ω(v)| = |v|+ i = 0̄.

We have an inner hom-functor: we denote Hom(V,W ) the vector space of all k-linear maps from
V to W . The space Hom(V,W ) is Z2-graded; the even maps preserve parity, the odd maps change
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parity. The functor (V,W ) 7→ Hom(V,W ) is an endo-bi-functor on the category of super vector
spaces. We have

Hom(V,W ) ∼= V ∗ ⊗W . (2.3)

We define the functor Π : sVec → sVec by putting (ΠV )0̄ = V1̄, (ΠV )1̄ = V0̄ and on morphisms
f : V → W we put (Πf) : v 7→ f(v), where we view v as an element of ΠV and f(v) as an element
of ΠW . The functor Π is sometimes called the parity swapping functor. It is easy to see that for
any morphism f : V →W we have KerΠf ∼= ΠKerf and CokerΠf ∼= ΠCokerf .

Remark 2.1.1. Using the isomorphism in the category sVec given by

V ⊗W →W ⊗ V , v ⊗ w 7→ (−1)|v||w|w ⊗ v , (2.4)

most of multilinear algebra can be treated from a categorical point of view, see for example for a
proof of the Birkhoff–De Witt theorem along these lines in [6].

Let V be a super vector space such that the dimension of V as a vector space is finite. Then
we define the super dimension of V to be the pair p|q where p is the dimension of V0̄ over k and q
is the dimension of V1̄ over k. We will often say dimension of V , when it is clear that V is a super
vector space to denote the super dimension of V . The super vector space kp|q is the super vector
space with even part kp and odd part kq. Choosing a basis of homogeneous elements in V we get
an isomorphism V ∼= kp|q for some p and q. A standard basis of a super vector space is a basis
of homogeneous elements e1, . . . , er, such that in the ordering the even elements precede the odd
elements.

We can write any morphism f : kp|q → kr|s as a block matrix of the form

(
A 0
0 D

)
, (2.5)

where A is an r× p-matrix and D an s× q-matrix. Any element of Hom(V,W )1̄ can be represented
by a block matrix of the form (

0 B
C 0

)
, (2.6)

where B is an r × q-matrix and C is an s × p-matrix. The most interesting case, which is also
the one we will need later on, is the case where p = r and q = s. We write Matp|q(k) for the

set of all the matrices that represent elements of Hom(kp|q, kp|q). The set Matp|q(k) is a vector
space in the obvious way and is Z2-graded in the sense discussed above; that is we decompose each
(p+ q)× (p+ q)-matrix as

(
A B
C D

)

0̄

=

(
A 0
0 D

)
,

(
A B
C D

)

1̄

=

(
0 B
C 0

)
, (2.7)

where A is a p× p-matrix, B is a p× q-matrix, C is a q× p-matrix and D is a q × q-matrix. Hence
Matp|q(k) becomes a super vector space.

Remark 2.1.2. The super vector space Matp|q(k) is also an algebra, where multiplication is ordi-
nary matrix multiplication. It is not hard to check that the product of two even matrices is again
even, that the product of an even and an odd matrix is odd and that the product of two odd
matrices is even. Therefore, as we will see later, Matp|q(k) is a superalgebra. However, it is not
supercommutative.
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We define the supertrace as the map str : Matp|q(k)→ k given by

str :

(
A B
C D

)
7→ trA− trD , (2.8)

where tr denotes the ordinary trace. The supertrace is independent of the basis chosen since any
two bases are related by an element of Matp|q(k)0̄. One easily shows that for homogeneous X and
Y in Matp|q(k) we have

str(XY ) = (−1)|X||Y |str(Y X) . (2.9)

The set Matp|q(k)
∗
0̄ of invertible even elements of Matp|q(k) forms an algebraic group (in particular

it is a variety over k) and we can define a map b : Matp|q(k)
∗
0̄ → k as follows:

b :

(
A 0
0 D

)
7→ detA

detD
. (2.10)

The function b satisfies b(XY ) = b(X)b(Y ) and is thus a group morphism. It is interesting to note
that the induced map on the tangent spaces is the restriction of str to Matp|q(k)0̄. In chapter 3 we
will see that this correspondence can be generalized to the case when the matrix entries take values
in a commutative superring. The map b is then called the Berezinian.

We define the super transpose XST of an element X ∈ Matp|q(k) as follows. First we write X
with respect to a standard basis in block form as

X =

(
A B
C D

)
, (2.11)

with A a p× p-matrix and D a q × q-matrix and then put

XST =

(
AT CT

−BT DT

)
, (2.12)

where T denotes the ordinary transpose. One easily shows that

(XY )ST = (−1)|X||Y |Y STXST , strXST = strX . (2.13)

Remark 2.1.3. For the remainder of the paper, if we use parity assignments in formulas, we mean
that the formula holds as given for homogeneous elements and is extended to arbitrary elements
by linearity. If we write subscripts 0̄, 1̄ we mean a decomposition into even and odd parts. Thus
for example, if V is a super vector space and v ∈ V then we write v = v0̄ + v1̄, where v0̄ ∈ V0̄ and
v1̄ ∈ V1̄. In addition, when we decompose matrices in block form, this will always be done with
respect to a standard basis.

2.2 Lie superalgebras

Definition 2.2.1. A Lie superalgebra is a super vector space g together with an operation [, ] :
g⊗ g→ g that preserves the Z2-grading and satisfies:

(i) [x, y] + (−1)|x||y|[y, x] = 0,

(ii) (−1)|x||z|[[x, y], z] + (−1)|y||x|[[y, z], x] + (−1)|y||z|[[z, x], y] = 0.
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The requirement (ii) is often called the super Jacobi identity The operation [, ] we call the Lie
bracket, although some people prefer the name super Lie bracket. A morphism of Lie superalgebras
is a super vector space morphism that preserves the Lie bracket; if g and h are Lie superalgebras,
a morphism is a linear Z2-grading preserving map f : g→ h satisfying [f(x), f(y)] = f([x, y]).

Suppose that g is a Lie superalgebra. Then from the definition it follows that g0̄ is an ordinary
Lie algebra and that g1̄ is a g0̄-representation.

Now we discuss some basic examples. In fact, we have already seen some examples of Lie
superalgebras: The super vector space Matp|q(k) can be equipped with a Lie superalgebra structure,
by defining

[X,Y ] = XY − (−1)|X||Y |Y X . (2.14)

It is easily checked that this makes Matp|q(k) into a Lie superalgebra and the obtained Lie superal-
gebra is denoted glp|q(k). In this case the Lie bracket is also called the super commutator. For any
super vector space V we write glV for the Lie superalgebra of all linear maps V → V equipped with
the commutator. Another example is the kernel of the map str : Matp|q(k)→ k; if X,Y ∈ Matp|q(k)

have super trace zero, then so doesXY−(−1)|X||Y |Y X by eqn.(2.9). Thus with the same Lie bracket
as glp|q we can make the super vector space of all supertrace zero (p + q) × (p + q)-matrices into
a Lie superalgebra, which is denoted by slp|q(k). We now give an example, which we haven’t seen
yet. Consider the (p+ 2q)× (p+ 2q)-matrix Ω defined by

Ω =

(1p 0
0 Jq

)
, Jq =

(
0 −1q1q 0

)
, (2.15)

where for any natural number m, 1m denotes the m × m identity matrix. We now define the
orthosymplectic Lie superalgebra ospp|2q(k) as the super vector space of (p+2q)× (p+2q)-matrices

X satisfying XSTΩ + ΩX = 0 and with the Lie bracket the super commutator of Matp|2q(k). The
inclusion ospp|2q(k)→ slp|2q(k) is a Lie superalgebra morphism.

Many notions that are defined for Lie algebras can also be defined for Lie superalgebras and
many well-known results for Lie algebras apply as well to Lie superalgebras. In the next paragraph
we explain the classification of the simple Lie superalgebras. We do not prove any result, but refer
to the literature where the proof can be found.

An ideal in a Lie superalgebra g is a sub super vector space L ⊂ g such that [g, L] ⊂ L, or
equivalently [L, g] ⊂ L. In particular, an ideal is a Lie sub superalgebra. We say a Lie superalgebra
is solvable if the following series terminates in a finite number of steps:

g0 = g , gk+1 = [gk, gk] . (2.16)

A Lie superalgebra is called nilpotent if the following series terminates in a finite number of steps:

g0 = g , gk+1 = [g, gk] . (2.17)

A Lie superalgebra is called semi-simple if it contains no nontrivial solvable ideals.
There exists a version of Engel’s theorem for Lie superalgebras:

Lemma 2.2.2. Let g be a sub Lie superalgebra of glV and suppose all elements of g are nilpotent
operators on V , then there is a nonzero v ∈ V with g · v = 0.

By considering homogeneous elements in g, we see that we can take v to be homogeneous. The
proof of lemma 2.2.2 proceeds as in the case for ordinary Lie algebras, see for example [26, 27].

A representation of a Lie superalgebra g is a Lie superalgebra morphism ρ : g → glV for some
super vector space V . In that case we call V a g-module. A g-submodule is a sub super vector space
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W ⊂ V such that ρ(g)W ⊂ W . The representation ρ is completely reducible if for any submodule
W there is a complement to W in V that is also a submodule. We say a representation is irreducible
if there are no nontrivial submodules. We note that Ado’s theorem holds for Lie superalgebra; any
finite-dimensional Lie superalgebra can be embedded into glV for some finite-dimensional super
vector space V when the characteristic of k is not 2 [28].

The adjoint representation is given by x 7→ adx ∈ gl(g), where adx is the linear map sending
y ∈ g to [x, y]. We call a Lie superalgebra simple if g is irreducible as g-module with the adjoint
representation. Equivalently, g contains no nontrivial ideals. We present a criterion for simplicity
of a Lie superalgebra:

Lemma 2.2.3. Let g = g0̄ ⊕ g1̄ be a simple Lie superalgebra. Then

(i) The representation of g0̄ on g1̄ is faithful.

(ii) [g1̄, g1̄] = g0̄.

Conversely, if (i) and (ii) hold and the representation of g0̄ in g1̄ is irreducible, then g is simple.

The proof of lemma 2.2.3 can be found in [29]. There is a variation of Schur’s lemma for Lie
superalgebras, for details see for example [29–31]:

Lemma 2.2.4. Let V = V0̄ ⊕ V1̄ be a super vector space over an algebraically closed field, let g be
a simple sub Lie superalgebra of glV and define C(g) = {a ∈ glV |[a, x] = 0 , ∀x ∈ g}. Then we have

(i) C(g) consists of all multiples of the identity ,

(ii) and when dimV0̄ = dimV1̄ then C(g) consists of the subalgebra of glV generated by the identity
and some linear operator that interchanges V0̄ and V1̄.

The Cartan–Killing form is the bilinear form (x, y) 7→ str(adx◦ady). In general, it does not hold
that the Cartan–Killing form is nondegenerate for semisimple Lie superalgebras. In the classification
of simple Lie superalgebras, there appear simple Lie superalgebras that have a Cartan–Killing form
that is identically zero. In fact, if g is simple, then either the Cartan–Killing form is nondegenerate,
or is identically zero.

We call a Lie superalgebra g = g0̄⊕g1̄ of classical type if (i) g is simple and (ii) the representation
of g0̄ in g1̄ is completely reducible. The classical Lie superalgebras are classified by Kac [32] (also see
for example [5,29–31,33–35]). All finite-dimensional simple Lie superalgebras over C are isomorphic
to one of the following:

(i) A(m,n) = slm+1|n+1(C), possibly with substraction of the center if m = n.

(ii) B(m,n) = osp2m+1,2n(C).

(iii) C(n) = osp2,2n(C).

(iv) D(m,n) = osp2m,2n(C), with m > 1.

(v) D(2, 1;α) for some α 6= 0,−1 in C, for a description see [29, 31].

(vi) F (4), for a description see [29, 31].

(vii) G(3), for a description see [29, 31].
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(viii) P (n) for n > 2; this Lie superalgebra is defined as all (n+n)× (n+n)-matrices in Matn|n(C)
of the form (

a b
c d

)
, with tr a = 0 , bT = b , cT = −cT . (2.18)

(ix) Q(n); this Lie superalgebra is defined as follows. We first define the sub Lie superalgebra

Q̃(n) of gln+1|n+1(C) formed by (n+ 1)× (n+ 1)-matrices of the form

(
a b
b a

)
, with tr b = 0 . (2.19)

Then we put Q(n) = Q̃(n)/C1n+1.

The Lie superalgebras F (4), G(3) and D(2, 1;α) are rather mysterious exceptional Lie super-
algebras. The most remarkable feature of D(2, 1;α) is that this is a continuous series of simple
Lie superalgebras, a counterpart of which does not exist in the world of Lie algebras. For the
classification of real simple Lie superalgebras we refer to [36, 37].

Remark 2.2.5. Lie superalgebras made their first appearance in mathematics in the works of
Fröhlicher & Nijenhuis [38], Gerstenhaber [39,40], Nijenhuis & Richardson [41] and Milnor & Moore
[42] around 1960 in the context of deformation theory, topology and cohomology theories. Hopf
and Steenrod used commutative superalgebras for different algebraic structures in cohomology
groups. A little later around 1970 physicists discovered Lie superalgebras independently in their
investigations on supersymmetry; pioneers were Gol’fand and Likhtman with their important paper
[43], Miyazawa [44], Volkov and Akulov [45], and Wess and Zumino [46, 47].

For more historical notes and references, see for example [4, 5, 48, 49].



Chapter 3

Basics of superrings and

supermodules

In this chapter we introduce the concepts of superrings and supermodules. The chapter will serve
as a basis for the following chapters. Since important tools such as localization and completion, but
also important results on prime ideals, will be discussed in the following chapters, some notions are
only shortly discussed and await a further treatment later. Many proofs are similar to the proofs
from ordinary commutative algebra. For completeness and ease of reading, we incorporated them
in the present text.

3.1 Superrings and superalgebras

Definition 3.1.1. A superring A is a Z2-graded ring A = A0̄ ⊕ A1̄ such that the product map
A×A→ A satisfies AiAj ⊂ Ai+j . A morphism of superrings is a Z2-grading preserving morphism
of rings. The elements of A0̄ are called even, the elements of A1̄ are called odd and an element that
is either even or odd is said to be homogeneous.

We always assume that a superring has a multiplicative unit element 1 and is associative.
Morphisms f : A → B map the unit element of A to the unit element of B. Furthermore we only
consider commutative superrings; we call a superring commutative if

ab− (−1)|a||b|ba = 0 , for all a, b ∈ A0̄ ∪A1̄ . (3.1)

Note that in particular a2 = 0 if a ∈ A1̄. We write sRng for the category of superrings that are
associative, unital and commutative.

Lemma 3.1.2. Let A be a (not necessarily commutative or associative) superring with unit element,
then 1 ∈ A0̄.

Proof. Write 1 = e0̄ + e1̄ for the decomposition of 1 into homogeneous components. We have
e0̄1 = e0̄ and thus e0̄ = (e0̄)

2 + e0̄e1̄, but e0̄e1̄ is odd whereas e0̄ and e0̄e0̄ are even. Hence e0̄e1̄ = 0,
from which it follows that e1̄ = 1e1̄ = e0̄e1̄ + e1̄e1̄ = e1̄e1̄. But since e1̄ is odd and e1̄e1̄ is even, we
must have e1̄ = 0 and 1 = e0̄ ∈ A0̄.

Lemma 3.1.3. Let A be a superring, then any idempotent lies in A0̄.
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Proof. Let e0̄ +e1̄ be an idempotent, then (e0̄)
2 = e0̄ and 2e0̄e1̄ = e1̄. Multiplying the last equation

with e0̄ we get 2(e0̄)
2e1̄ = 2e0̄e1̄ = e0̄e1̄, hence e1̄ = 2e0̄e1̄ = 0.

A sub superring I of A, such that for all a ∈ A and x ∈ I we have xa ∈ A and ax ∈ A, is called
an ideal of A. A Z2-graded ideal I of A is a subring of A such that (1) ax ∈ I for all x ∈ I, a ∈ A
and (2) I = (I ∩ A0̄) ⊕ (I ∩ A1̄). Point (2) means that if x lies in I, then also the homogeneous
components. It then follows that for all x ∈ I, a ∈ A we have xa ∈ I. Given a Z2-graded ideal I in
A, we define the quotient to be the superring A/I = (A0̄/I0̄)⊕(A1̄/I1̄). If S is a set of homogeneous
elements, we write (S) for the ideal generated by the elements of S. Thus (S) contains all elements
of the form

∑
m∈M amsm with am ∈ A and sm ∈ S and M a finite set. If S consists of elements

f1, . . . , fr we write (S) = (f1, . . . , fr).
Every superring A comes with a canonical ideal JA, which is defined as the ideal generated by

the odd elements - and is thus automatically Z2-graded. The quotient A/JA is called the body and
denoted Ā and the image of a ∈ A under the projection A → A/JA is denoted ā. Any element
x ∈ JA is a finite sum

∑m
i=1 aibi with ai ∈ A and bi ∈ A1̄. Then xm+1 = 0 and thus JA consists of

nilpotent elements.
The set of nilpotent elements of A is a Z2-graded ideal; it is an ideal since the sum of two

nilpotents is nilpotent and since the product of any element with a nilpotent is again nilpotent and
it is Z2-graded since all elements of A1̄ are nilpotent. We denote the ideal of nilpotent elements of A
by Nilrad(A) and call it the nilradical of A. Clearly we have JA ⊂ Nilrad(A). When x ∈ Nilrad(A),
then 1−x is invertible with the inverse given by 1+x+x2 + . . .+xn with n so large that xn+1 = 0.
If a superring A is such that Ā contains no nilpotents, or equivalently if Nilrad(A) = JA, we call A
reduced. If Ā is an integral domain, we call A a super domain.

For an element a ∈ A we define Ann(a) to be the ideal of all elements b ∈ A such that ba = 0
and we call Ann(a) the annihilator of a. If a is not Z2-graded, it is not guaranteed that Ann(a)
is a Z2-graded ideal; if a is homogeneous, then Ann(a) is Z2-graded. We therefore avoid the use
of the notation Ann(a) for inhomogeneous a. The elements of Ann(a) are, by the usual abuse of
language, also called annihilators of a.

A zerodivisor is a nonzero element x in A such that there exists a nonzero y ∈ A with xy = 0.
The set of zerodivisors do not form an ideal in general. Let us describe the set D of zerodivisors
in a superring A. It is clear that all odd elements are in D, A1̄ ⊂ D. If x is any even element of
D, and θ is any odd element, then we claim that x + θ is in D. Indeed, suppose xy = 0 for some
nonzero y. Then we can take y to be homogeneous. If yθ = 0, then y(x+ θ) = 0 and x+ θ ∈ D. If
yθ 6= 0, then yθ(x+ θ) = 0, and again x+ θ ∈ D.

Now let x+ θ be any element in D, then (x+ θ)(y+ η) = 0 for some nonzero y+ η. Written out
this means xy + θη = 0 and xη + yθ = 0. If θη = 0, then x ∈ D. If θη 6= 0, then x(θη) = 0 implies
that x ∈ D. Hence, in any case, x ∈ D. Therefore we conclude that the set D of zerodivisors of a
superring A is the set of elements x + θ, with x even and θ odd, such that not both x and θ are
zero and such that when x is nonzero, it is the annihilator of some homogeneous element of A and
θ is arbitrary. If x = 0, then θ is any nonzero odd element.

Rehearsing the discussion in the preceding paragraph we obtain:

Corollary 3.1.4. The set D of zerodivisors is given by

D =
⋃

z 6=0homogeneous

Ann(z) .

Proof. For any homogeneous element in D we are done. If x + θ ∈ D is not homogeneous, then
x annihilates an even element z. If θz = 0, then x + θ annihilates z, and if θz 6= 0, then x + θ
annihilates zθ. But both z and zθ are even.
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Definition 3.1.5. We call an ideal m of a superring A a maximal ideal if m is not properly contained
in any other ideal and m is properly contained in A.

We have not included the requirement that a maximal ideal is Z2-graded in the definition, since
it follows that any maximal ideal is Z2-graded:

Lemma 3.1.6. Let A be a superring, then any maximal ideal is automatically Z2-graded and
contains JA.

Proof. Let m be a maximal ideal and a ∈ A1̄ and consider the ideal m′ generated by a and m. If
a /∈ m, then m is properly contained in m′ and thus m′ = A and it follows that there are m ∈ m

and b ∈ A such that m+ ba = 1, but 1− ba is invertible. Hence m = A, which is a contradiction to
m being a maximal ideal. Hence a maximal ideal contains all odd elements and thus JA.

As the maximal ideals in a superring contain all the odd elements, the quotient A/m does behave
as if A were a commutative ring:

Lemma 3.1.7. Let A be a superring. An ideal m of A is a maximal ideal of A if and only if A/m
if a field.

Proof. If A/m is a field, then A1̄ ⊂ m. If m ⊂ m′ then every element m′ of m′−m has an invertible
image in A/m and we may assume m′ to be even. This means am′ +m = 1 for some a ∈ A0̄ and
m ∈ m0̄ implying m′ = A. On the other hand, if m is maximal and x ∈ A/m is nonzero then choose
an even preimage y of x in A. The ideal generated by y and m equals A and thus there are a ∈ A0̄

and m ∈ m0̄, such that ay +m = 1 and thus x is invertible.

We already noted that all elements of the form 1 + y with y ∈ JA are invertible. The following
lemma characterizes the invertible elements:

Lemma 3.1.8. Let A be a superring, then the following are equivalent: (i) a ∈ A is invertible (has
a left and a right inverse), (ii) a0̄ is invertible in A0̄, (iii) ā is invertible in Ā.

Proof. Let a in A be invertible and let y ∈ A be an inverse; ya = ay = 1 (since A is associative, if
an element has a right inverse and a left inverse then they are equal). Then applying the projection
A→ Ā it is clear that ā is invertible in Ā. From ay = 1 we have a1̄y0̄ + a0̄y1̄ = 0 and a0̄y0̄ = 1−w,
with w = a1̄y1̄. The element w is nilpotent, and hence 1−w is invertible and the inverse lies in A0̄

and thus a0̄y0̄(1 − w)−1 = 1, showing that a0̄ is invertible in A0̄. Conversely, consider a ∈ A. If a0̄

is invertible in A0̄, then there is b ∈ A0̄ such that a0̄b = ba0̄ = 1 and thus ab = 1 +w with w = a1̄b
a nilpotent element and thus 1 + w is invertible. If ā is invertible in Ā, then there is b ∈ A such
that āb̄ = b̄ā = 1 and thus ab = 1−w and ba = 1−w′ with w,w′ ∈ JA and thus a has a left and a
right inverse.

Proposition 3.1.9. Let A be a superring and let m be a Z2-graded ideal in A of the form m =
m0̄ ⊕A1̄. Then m is a maximal ideal in A if and only if m0̄ is a maximal ideal in A0̄.

Proof. The quotient A/m is a field if and only if A0̄/m0̄ is a field, since A/m ∼= A0̄/m0̄.

We now show that the projection A → Ā can be seen as a functor and we give an adjoint to
this functor. Let Rng denote the category of commutative, associative rings with unit. Define the
functor S : Rng→ sRng on objects as R 7→ S(R), with S(R)0̄ = R and S(R)1̄ = 0. On morphisms
f : R → R′ we put S(f) : r 7→ f(r). Thus S does nothing more than considering the objects as
superrings with zero odd part.
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On the other hand, there are two obvious ways to make a commutative ring from a superring A;
we can take Ā and A0̄. As we will see, the choice Ā is the more natural of the two. If f : A→ B is
a morphism of superrings then f(JA) ⊂ JB and hence we can define f̄ : Ā→ B̄ to be the induced
morphism with f̄(ā) = f(a) for all a ∈ A. Thus the diagram below commutes:

A
f - B

Ā

πA

?
f̄ - B̄

πB

?

, (3.2)

where πA : A → A and πB : B → B̄ are the canonical projections. We write B for the functor
B : sRng → Rng that assigns to each superalgebra A the body Ā and each morphism f the
induced morphism f̄ .

Proposition 3.1.10. The functor S : Rng → sRng is right-adjoint to the functor B : sRng →
Rng.

Proof. Let A be a superring and R a commutative ring. Then f ∈ HomsRng(A,S(R)) has to factor
over JA since all odd elements of A need to be mapped to zero. Thus there is a unique morphism
f̄ : Ā → R such that f = f̄ ◦ π, which we can view as a morphism in Rng. Conversely, given
a morphism in g ∈ HomRng(B(A), R), then by composition with the projection A → Ā = B(A)
we obtain a morphism from A to S(R) in sRng. Hence HomsRng(A,S(R)) ∼= HomRng(B(A), R).
Using the commutativity of diagram (3.2), naturality is obvious.

Definition 3.1.11. A superalgebra over k is a super vector space over k with a k-bilinear map
A⊗A→ A such that the image of Ai ⊗Aj lies in Ai+j .

A superalgebra over k is thus a superring with the extra structure of being a super vector space
over k with a compatible Z2-grading; that is, the Z2-grading as a superring and as a super vector
space coincide. A morphism of superalgebras is a morphism of superrings that is k-linear. We denote
sAlg the category of superalgebras over k. The notion of a body carries over to superalgebras. We
call a superalgebra commutative if it is commutative as a superring. Unless otherwise specified, all
the superalgebras that we consider are commutative, associative and have a unit element 1. The
tensor product A⊗kB of superalgebras A and B is as a super vector space defined as in the category
of super vector spaces and equipped with the product a⊗ b · a′ ⊗ b′ = (−1)|a

′||b|aa′ ⊗ bb′.
The polynomial superalgebra (over k) in n even variables Xi, 1 ≤ i ≤ n, and m odd variables

Θα, 1 ≤ α ≤ m, is defined to be the algebra over k generated by the Xi and Θα subject to the
relations XiXj = XjXi, XiΘα = ΘαXi and ΘαΘβ = −ΘβΘα for all i, j, α, β. This algebra is

denoted k[X1, . . . , Xn|Θ1, . . . ,Θm]. We have k[X1, . . . , Xn|Θ1, . . . ,Θm] ∼= k[X1, . . . , Xn].
Let V be a super vector space over k and let T (V ) =

⊕
k≥0 V

⊗k be its tensor superalgebra. As
a superalgebra T (V ) is generated by 1 and all v ∈ V . The multiplication is defined by the tensor
product: the product v · w for v ∈ V ⊗n and w ∈ V ⊗m is v ⊗ w. We call IV the Z2-graded ideal
generated by all elements of the form v⊗w− (−1)|v||w|w⊗ v, where v, w run over all homogeneous
elements of V . We define the symmetric superalgebra over V as the quotient S(V ) = T (V )/IV .
Furthermore, we call k[V ] = S(V ∗) the polynomial superalgebra of V . If V is finite-dimensional,
then there is a noncanonical isomorphism k[V ] ∼= S(V ) and k[V ] is a polynomial superalgebra.

We say a superalgebra A is finitely generated if there exist finitely many homogeneous elements
a1, . . . , at such that any element x in A can be expressed as a polynomial

x =
∑

i1,...,it

ci1···ita
i1
1 · · · aitt , (3.3)



3.2 Supermodules 15

such that only finitely many coefficients ci1···it are nonzero. In other words, a superalgebra A is
finitely generated if and only if there exists a surjective morphism of superalgebras P → A where
P is a polynomial superalgebra.

3.2 Supermodules

On occasion it is convenient to use the notion of Z2-graded abelian groups. We call an abelian
group G a Z2-graded abelian group if G is a direct sum G0̄ ⊕G1̄. The elements of G0̄ are labeled
as even elements whereas the elements of G1̄ are labeled as odd elements.

Definition 3.2.1. Let A be a superring and let M be a Z2-graded abelian group M =
⊕

i∈Z2
Mi.

We call M a left A-module if M is a left A-module in the usual sense with the additional requirement
that the structure morphism l : A×M →M satisfies Ai ×Mj ⊂Mi+j.

We almost always write am for l(a,m), except when clearness is at risk. A right A-module is
defined in a similar way; again the only difference from the usual concept of a right A-module is that
the structure morphism r : M ×A→M respects the Z2-grading. For a commutative superring A,
every left A-module M with structure morphism l : A×M →M admits a canonical right A-module
structure. We define the structure morphism r : M ×A→M by

r(m, a) = (−1)|a||m|l(a,m) , m ∈M ,a ∈ A . (3.4)

When we define the right action of A as in eqn.(3.4), it commutes with the left action: r(l(a,m), b) =
l(a, r(m, b)) for all a, b ∈ A andm ∈M . Therefore we can unambiguously write amb for l(a, r(m, b)).
If M is a left A-module equipped with the compatible right action of A just described, we call M an
A-module. A submodule N of an A-module M is a submodule N of M in the usual sense with the
requirement N = (N ∩M0̄)⊕ (N ∩M1̄), that is, if n ∈ N then the homogeneous components of n
also lie in N . If N is a submodule of M , the quotient module M/N is defined by (M/N)i = Mi/Ni
for i = 0̄, 1̄ and the right action is given by r(mmodN, a) = mamodN .

Let M be an A-module. We call a proper submodule N ⊂M a maximal submodule if the only
submodule of M that properly contains N is M itself. A necessary condition that N is a maximal
submodule of M is that either N0̄ = M0̄ or N1̄ = M1̄. Hence M/N has either a trivial even part, or
a trivial odd part, which implies that A1̄ has to act trivially on M/N and thus M/N is in a natural
way a Ā-module.

We define morphisms of A-modules to be parity-preserving maps that commute with the action
of A. Since a morphism f preserves parity, when f commutes with the right action of A it also
commutes with the left action. (In section 3.7 and in chapter 6 we will also consider odd A-linear
maps; then we define A-linearity as commuting with the right action of A.) We call two A-modules
M and N isomorphic if there are morphisms of A-modules f : M → N and g : N → M such that
f ◦ g = idN and g ◦ f = idM . One easily checks that a morphism f : M → N is an isomorphism if
and only if Kerf = 0 and f(M) = N .

Direct sums and direct products of A-modules are defined in the usual way; for two A-modules
M and N

(M ⊕N)i = Mi ⊕Ni , (M ×N)i = Mi ×Ni . (3.5)

For the tensor product we have to be a bit more careful. As usual, the tensor product can be defined
by its universal property, see for example [50]. We construct the module M ⊗A N as follows: let
M ⊠ N be the abelian group generated freely by all pairs m ⊗ n, where m and n run over all
homogeneous elements of M respectively N . Then we put a Z2-grading on this group by saying
that an element m ⊗ n is even if m,n are both even or both odd and m ⊗ n is odd if m is odd
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and n even or m is even and n is odd. Then M ⊠N = (M ⊠N)0̄ ⊕ (M ⊠N)1̄. We make M ⊠N
into an A-module by defining the right action r(m ⊗ n, a) = m ⊗ (na). Next we consider the
submodule RM,N ⊂M ⊠N generated by all homogeneous elements of the form ma⊗ n−m⊗ an,
(m+m′)⊗ (n+n′)−m⊗n−m⊗n′−m′⊗n−m′⊗n′ where m,n,m′, n′ run over all homogeneous
elements and a over all homogeneous a ∈ A. The resulting quotient A-module M⊠N/RM,N we call
M⊗AN . One easily verifies that M⊗AN has the usual universal property (see for example [15,50]).

The body module of an A-module M is defined to be the quotient M = M/JAM and we write
m̄ for the image of m ∈M in M . The body module is in a natural way an Ā-module, as the action
of A factors over JA; ām̄ = am for a ∈ A,m ∈M . In particular, the body Ā is both an A-module
and an Ā-module.

Lemma 3.2.2. Let A be a superring and M an A-module, then M ∼= Ā⊗AM , where Ā is viewed
as an A-module.

Proof. Consider the maps f : Ā ⊗AM → M sending ā⊗m to am and g : M → Ā⊗AM sending
m̄→ 1⊗m. The maps f, g are well-defined morphisms and inverse to each other.

Definition 3.2.3. Let A be a superring. We define the parity-swapping functor Π in the category
of A-modules by (ΠM)0̄ = M1̄ and (ΠM)1̄ = M0̄. The action of A on ΠM is such that the right
action of A on ΠM coincides with the right action of A on M . On morphisms f : M → N we
define Πf as the same morphism from ΠM to ΠN as abelian groups. Thus Π exchanges the labels
‘even’ and ‘odd’ for the elements of M .

Definition 3.2.4. Let A be a superring and M an A-module. The module M is finitely generated
if it is generated as a module by a finite number of homogeneous elements. An ideal in A is finitely
generated if it is finitely generated by homogeneous elements as an A-module. If f : A → B is
a morphism of superrings, B becomes an A-module and then we call B an A-superalgebra. We
say that B is finitely generated as an A-superalgebra, if there is a finite number of homogeneous
elements b1, . . . , bt in B such that each element of B can be written as a polynomial in the bi with
coefficients in A.

Remark 3.2.5. If A is a superring and I is a Z2-graded ideal that is generated by inhomogeneous
elements x1, . . . , xn, then I is also generated by the homogeneous components and thus I is finitely
generated. However, if we define an ideal I to be the ideal generated by inhomogeneous elements,
then it is not guaranteed that I is Z2-graded.

The notion of annihilator of an element of a superring carries over to modules. Let M be any
module over a superring A. For any m ∈M we define Ann(m) to be the set of all a ∈ A such that
am = 0, that is, the left action of a maps m to zero. If am = 0 we say that a annihilates m. When
m is homogeneous, one easily sees that Ann(m) is a Z2-graded ideal in A. The next example shows
that if m is not homogeneous, then Ann(m) might not be Z2-graded.

Example 3.2.6. Let A = k[X |Θ1,Θ2] and consider the A-module A/(X2 + Θ1Θ2). The element
a = X(X + Θ2) annihilates m = X − Θ1 but X2 and XΘ2 do not annihilate m. Hence Ann(m)
need not be Z2-graded if m is not homogeneous. △

For a submodule N ⊂ M we write Ann(N) for the Z2-graded ideal of elements a A such that
aN = 0. Equivalently, Ann(N) = ∩n∈NAnn(n) where the intersection goes over all elements of N .
Indeed, a ∈ A annihilates all homogeneous elements of N if and only if a annihilates all elements
of N .

Let f : A→ B be a morphism of superrings. The map f turns B into an A-module so that B
is an A-superalgebra. If B is a finitely generated as an A-module, we call the morphism f finite.
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Let JA and JB be the canonical ideals of A and B respectively. Then f(JA) ⊂ JB and thus there
is an induced morphism of commutative rings f̄ : Ā→ B̄. It is obvious that when f is finite, then
so is f̄ . The following lemma states that under mild assumptions the converse holds as well:

Lemma 3.2.7. Let f : A → B be a morphism of superrings such that B is a finitely generated
A-superalgebra and such that the induced morphism of commutative rings f̄ : Ā→ B̄ is finite. Then
f is finite.

Proof. By assumption there are even elements x1, . . . , xp and odd elements η1, . . . , ηq in B and a
surjective morphism of superrings

f̂ : A[X1, . . . , Xp|H1, . . . , Hq]→ B , (3.6)

with f̂(Xi) = xi and f̂(Hj) = ηj and where the Xi are even variables and the Hj are odd variables.
The assumptions also ensure that the induced morphism Ā[X1, . . . , Xp] → B̄ is surjective and
that there is a positive integer N , such that every element b̄ of B̄ is the image of a polynomial
g(X1, . . . , Xp) with coefficients in Ā and degree less than N . We now claim that B is generated
as an A-module by all elements of the form g, gηj , gηj1ηj2 , . . ., gη1η2 · · · ηq, where g runs over all
monomials of degree less than N . Since there are only finitely many such monomials, the lemma is
then proved.

Let us denote A[X ]N for all polynomials in X1, . . . , Xp with coefficients in A and degree less

than N . If b is any element in B, then there is an element b̃ ∈ f(A[X ]N) such that b − b̃ ∈ JB.
Thus we can write

b− b̃ =
∑

j

bjηj . (3.7)

But also for each bj there is an element b̃j ∈ f(A[X ]N) such that bj − b̃j ∈ JB. Hence we can write

b = b̃+
∑

j

b̃jηj +
∑

j,k

bjkηjηk . (3.8)

We can repeat the procedure till we reach an expression

b = b̃+
∑

j

b̃jηj +
∑

j,k

b̃jkηjηk + . . .+ b̃12···qη1η2 · · · ηq , (3.9)

with all b̃j ∈ f(A[X ]N). This proves the claim.

3.3 Noetherian superrings

Proposition 3.3.1. Let A be a superring, then the following are equivalent:

(i) Each Z2-graded ideal of A is finitely generated.

(ii) Each ascending chain I0 ⊂ I1 ⊂ I2 ⊂ . . . of Z2-graded ideals in A is stationary, that is, there
is an integer n such that In = In+1 = In+2 = . . ..

(iii) Every nonempty set of Z2-graded ideals contains a maximal element.

Proof. (i)⇒ (ii): Let I0 ⊂ I1 ⊂ I2 ⊂ . . . be an ascending chain of Z2-graded ideals in A. Consider
the ideal I = ∪kIk, which is Z2-graded and thus has to be finitely generated. Let m be an integer
such that Im contains all the (homogeneous) generators of I. Then Il = Im for all l ≥ m.
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(ii)⇒ (iii): Let S be a nonempty set of Z2-graded ideals in A that has no maximal elements.
Since S is nonempty we can find I0 in S. Since I0 cannot be maximal we can find I1 in S that
properly contains I0. Repeating the procedure we find a chain I0 ⊂ I1 ⊂ . . . of proper inclusions
going on indefinitely, contradicting the assumption that each chain of ideals is stationary.

(iii) ⇒ (i): Let I be a Z2-graded ideal of A. Let S be the set of finitely generated Z2-graded
ideals of A that are contained in I. Then all the Z2-graded ideals that are generated by finitely
many homogeneous elements of I are in S, and thus S contains at least the zero ideal and is therefore
not empty. Hence S contains a maximal element Imax. If I 6= Imax then there is a homogeneous
element x ∈ I that does not lie in Imax. The ideal generated by Imax and x is finitely generated,
contained in I and properly contains Imax, contradictory to the choice of Imax. Hence there is no
such x ∈ I − Imax and I = Imax and I is finitely generated.

Definition 3.3.2. A superring satisfying any of the three equivalent conditions of proposition 3.3.1
is called a Noetherian superring.

Proposition 3.3.3. Let A and B be superrings and let f : A→ B be a surjective morphism. If A
is Noetherian, then so is B.

Proof. For any Z2-graded ideal I of B consider its inverse image f−1(I) in A, which is a Z2-graded
ideal and hence finitely generated. The images of generators of f−1(I) generate I as an ideal.

By considering the body of a superring as a superring with zero odd part we immediately get:

Corollary 3.3.4. When A is a Noetherian superring, then the body Ā is a Noetherian ring.

The converse of corollary 3.3.4 is not true. A counter example is given by the superalgebras
considered by DeWitt and Rogers [7, 10, 51]. Consider the superalgebra A over k defined by A =
k[(θi)i∈IN ]. The ideal JA generated by the odd elements is clearly not finitely generated, whereas
A/JA ∼= k is Noetherian.

Proposition 3.3.5. If A is a Noetherian superring and J is the Z2-graded ideal generated by the
odd elements, then there are finitely many odd elements that generate J . Furthermore, if S is a set
of homogeneous elements that generate J , then J is already generated by the odd elements of S.

Proof. Let J be generated by θ1, . . . , θs, which we may assume to be homogeneous. Assume θ1 to
be even, then θ1 ∈ (A1̄)

2 and it follows that θ1 is a quadratic expression in the θi: θ1 = a + θ1b
where a, b are linear combinations of the θi for i 6= 1. Reiteration gives

θ1 =

r∑

k=1

abk + θ1b
r+1 , (3.10)

and since b is nilpotent we see that in fact θ2, . . . , θs generate J . Hence we can remove all even
generators of J by this procedure leaving only the odd ones.

Proposition 3.3.6. Let A be a Noetherian superring, then A0̄ is Noetherian.

Proof. Let I be any ideal of A0̄, J the Z2-graded ideal in A generated by the odd elements and
I ′ the Z2-graded ideal in A generated by I. First, we claim that I ′ ∩ A0̄ = (I ′)0̄ = I. Indeed, for
if x ∈ (I ′)0̄, then x =

∑
rifi where fi ∈ I and the ri we may assume to be homogeneous, hence

x ∈ A0̄I ⊂ I. Thus (I ′)0̄ is contained in I. On the other hand, the inclusion I ⊂ (I ′)0̄ follows from
the definition of I ′.

I ′ is generated by a finite number of even elements ai and a finite number of odd elements bi. If
x ∈ I, then x is an even element of I ′ and hence we have x =

∑
xiai +

∑
yibi, where yi ∈ A1̄ ⊂ J .
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The Z2-graded ideal J is generated by a finite number of generators θi, which by proposition 3.3.5
can be taken to lie in A1̄. But then we see that the set consisting of all elements ai and θkbl generate
I and lie in (I ′)0̄ = I.

Proposition 3.3.7. Let R be a commutative Noetherian ring. Then the superring
R[X1, . . . , Xn|Θ1, . . . ,Θm] is Noetherian.

Proof. In view of the result for commutative rings of the form R[X1, . . . , Xn] (see for example
[15,19,50]) it suffices to show that if A is a Noetherian superring, then A[θ] with θ an odd variable
is a Noetherian superring. Let I be a Z2-graded ideal in A[θ] and define

I1 = {a ∈ A|∃b ∈ A such that b+ aθ ∈ I} . (3.11)

It follows that I1 is a Z2-graded ideal in A. Hence there are homogeneous generators t1, . . . , tk ∈ A
of I1. For every ti we select homogeneous yi = ci+ tiθ ∈ I where ci ∈ A is homogeneous. Let K be
the Z2-graded ideal in A[θ] generated by the elements y1, . . . , yk and let

I0 = {a ∈ A|∃b ∈ K such that a+ b ∈ I} . (3.12)

Then I0 is a Z2-graded ideal in A and hence there are homogeneous generators r1, . . . , rl ∈ A of I0.
Since K ⊂ I we have I0 ⊂ I ∩ A. Let J be the ideal in A[θ] generated by the yi and the ri. Then
we clearly have J ⊂ I. Let u = x+ yθ ∈ I. Since y ∈ I1 there is u′ in K given by u′ =

∑
i yidi for

some di ∈ A with u− u′ ∈ A. Hence u− u′ ∈ I0, but then u = (u− u′) + u′ is an element of J ; we
conclude that I = J .

An immediate result of propositions 3.3.3 and 3.3.7 is that any superring that is finitely generated
over a commutative ring, is Noetherian.

We call an A-module M Noetherian if one of the following properties holds:

(i) Each Z2-graded submodule N of M is finitely generated.

(ii) Each ascending chain M0 ⊂M1 ⊂M2 ⊂ . . . of Z2-graded submodules is stationary.

(iii) Every nonempty subset of Z2-graded submodules of M has a maximal element.

The proof that the properties (i)-(iii) are equivalent is the same as in proposition 3.3.1. A superring
is Noetherian if it is Noetherian as a module over itself. If f : M → N is a surjective morphism, then
by the same reasoning as in proposition 3.3.3 the module N is Noetherian when M is Noetherian.
Furthermore, when M is a Noetherian A-module and N is a submodule of M , then N is also a
Noetherian A-module; any submodule of N is a submodule of M , and thus finitely generated.

Proposition 3.3.8. Let A be a Noetherian superring and M a finitely generated A-module, then
M is a Noetherian A-module.

Proof. Suppose M is generated by m1, . . . ,mr. We use induction on r. For r = 1 the module
M is isomorphic to A/a or Π(A/a) for some ideal a in A. Each Z2-graded submodule of M then
corresponds to a Z2-graded ideal in A and hence M is Noetherian. If r > 1 and N a submodule
of M , consider the image N ′ of N in M/Am1, which is a Z2-graded module generated by r − 1
elements. Thus there are elements x1, . . . , xk in N , such that their images in N ′ generate N ′. The
A-module Am1 is Noetherian and hence we can assume that N ∩ Am1 is generated by y1, . . . , yl.
Take n ∈ N , then there are ai ∈ A such that n−∑

aixi goes to zero in N ′, and hence n−∑
aixi

lies in N ∩Am1, so that we can write it as an A-linear combination of the yj. It follows that n is
an A-linear combination of the yj and the xi.

Later in section 6.4 we will have more to say on finitely generated modules of a Noetherian
superring.
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3.4 Artinian superrings

Noetherian modules satisfy the ascending chain condition: any ascending chain of submodules
becomes stationary after a finite number of steps. The descending chain condition requires from a
module that any descending chain of submodules becomes stationary after a finite number of terms.
A module that satisfies the descending chain condition is said to be Artinian. In this section we
present the basics on Artinian modules. When we have dealt with localization and prime ideals we
return to Artinian modules again in section 5.2.

Let A be a superring and let M be an A-module. We say that M is a simple module if M does
not contain any nontrivial submodules, that is, the only submodules are 0 and M itself. There is a
certain duality between maximal submodules and simple modules: if N is a submodule of M , then
M/N is simple if and only if N is maximal.

For superrings, a simple module has the peculiar property that it is either even or odd and
hence A1̄ acts by zero: JAM = 0. If we pick an element m ∈M then A ·m ⊂M and hence either
m = 0, or A ·m = M . Thus M is generated by one element and hence M ∼= A/m or M ∼= ΠA/m for
some ideal m, which clearly has to be a maximal ideal. In particular, M is an Ā-module and since
the image of m in Ā is a maximal ideal, M is simple as an Ā-module. Conversely, if M is a simple
Ā-module, it is of the form Ā/m̄ for some maximal ideal m̄. We make M into an A-module through
the canonical projection A→ Ā. Then M is a simple A-module isomorphic to A/m, where m is the
inverse image of m̄ under the canonical projection. We thus have proved the following statement:

Proposition 3.4.1. There is a one-to-one correspondence between the simple A-modules and simple
Ā-modules.

We call a superring Artinian if it satisfies the descending chain condition on Z2-graded ideals;
in other words, a superring A is Artinian if any sequence

I0 ⊃ I1 ⊃ I2 ⊃ . . . , (3.13)

stabilizes after a finite number of terms. We call a module over a superring Artinian if it satisfies
the descending chain condition on Z2-graded submodules. Equivalently, each nonempty set of
submodules contains a minimal element. Thus a superring is Artinian if and only of it is Artinian
when considered as a module over itself. If a superring A is Artinian, then so is ΠA as an A-module.

Proposition 3.4.2. Let M be an Artinian A-module, then all submodules of M are Artinian and
all quotients of M are Artinian.

Proof. If N ⊂M , then any chain in N is a chain in M , hence stabilizes. If we have a chain in M/N ,
we can find a chain of preimages of the projection M → M/N in M . This chain maps surjective
onto the given chain and terminates as M is Artinian. Thus the chain in M/N also terminates.

Proposition 3.4.3. Let A be a superring. Let M be an A-module, and N a submodule of M . If
N and M/N are Artinian, so is M .

Proof. Let M1 ⊃ M2 ⊃ . . . be any chain of submodules of A. Consider the chain of images of Mi

under the projection M →M/N . Then this chain stabilizes. Hence there is an integer k such that
MimodN = Mj modN for all i, j ≥ k. Consider the chain M1 ∩N ⊃ M2 ∩N ⊃ . . .. Then there
is an integer l such that Mi ∩N = Mj ∩ N for all i, j ≥ l. This implies that Mi = Mj for all i, j
greater than or equal to the maximum of k, l. Indeed, let j ≥ i be both larger than the maximum
of k and l, so that Mi ⊃ Mj and suppose mi ∈ Mi. Then mi = mj + n for some mj ∈ Mj and
n ∈ N . We see that n ∈Mi ∩N , hence n ∈Mj ∩N and thus mi ∈Mj .
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Corollary 3.4.4. If M and N are two Artinian modules, so is their direct sum M ⊕N .

Proof. Apply proposition 3.4.3 to the modules E = M ⊕N and N ; E/N ∼= M is Artinian and N
is Artinian. Hence E is Artinian.

Corollary 3.4.5. Let A be an Artinian superring and M a finitely generated A-module. Then M
is an Artinian A-module.

Proof. If M is finitely generated, then M is a quotient of a finite direct sum of copies of A and ΠA.
Hence the result follows from proposition 3.4.2 and corollary 3.4.4.

We call a descending chain M = M0 ⊃ M1 ⊃ . . . of submodules in M a composition series
if Mi/Mi+1 is a simple module. We define the length of a module to be the minimal length of a
composition series. If there are no finite composition series we say the module has infinite length.
We denote the length of M by l(M).

Lemma 3.4.6. Let M be a A-module and N a proper submodule of M . Then l(N) < l(M).

Proof. We look at the intersections of N with composition series of M . Take any composition series
of M :

M = M0 ⊃M1 ⊃ . . . ⊃Mn = 0 . (3.14)

We have
N ∩Mi

N ∩Mi+1

∼= N ∩Mi +Mi+1

Mi+1
⊂ Mi

Mi+1
. (3.15)

Hence either the left-hand side is zero, or the left-hand side is simple. In the first case N ∩Mi
∼=

N ∩Mi+1, and in the second case N ∩Mi +Mi+1 = Mi. In any case we can delete the redundant
terms in the series M ∩ N = M0 ∩ N ⊃ M1 ∩ N ⊃ . . . ⊃ Mn ∩ N to get a composition series of
M ∩ N of length ≤ n. Suppose equality holds, then for all i we have N ∩Mi + Mi+1 = Mi, so
N ∩Mn = Mn implying Mn ⊂ N . And for n − 1 we see N ∩Mn−1 +Mn = Mn−1 and thus also
Mn−1 ⊂ N . Continuing the process we arrive at M0 ⊂ N , which contradicts the assumption that
N is a proper submodule. Hence any composition series of M gives rise to a shorter composition
series of N .

Lemma 3.4.7. Let M be a module with length l(M). If we have a chain of submodules M = M0 ⊃
M1 ⊃M2 ⊃ . . . ⊃Mr then r ≤ l(M).

Proof. We use induction on the length ofM . If l(M) = 0 then the statement is trivial. For l(M) = 1
we see that M is simple. Hence any chain of submodules consists of one term. Now suppose l(M) ≥
1, then we use lemma 3.4.6 and the induction hypothesis to derive that r − 1 ≤ l(M1) ≤ l(M)− 1.
Hence r ≤ l(M)

Corollary 3.4.8. All composition series of M have the same length l(M).

Proof. By lemma 3.4.7 we see all chains have length smaller or equal l(M). But by the very
definition of the length of M , l(M) is the minimal length of a composition. Hence no composition
series can satisfy the strict inequality.

Theorem 3.4.9. A module M has a finite composition series if and only if it is Noetherian and
Artinian.
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Proof. Suppose M has length l(M) < ∞, then all chains have length less than l(M). This proves
that M is Noetherian and Artinian. Conversely, suppose M is Artinian and Noetherian. Then as
M is Noetherian, we can choose a maximal submodule M1. M1 itself is also Noetherian and hence
we find a proper maximal submodule M2. We now observe that M/M1 is simple, since else M1

would not be maximal. Similarly M1/M2 is simple. We continue the process to find a composition
series. This composition series is finite since M is assumed to be Artinian.

Corollary 3.4.10. If a superalgebra over a field k is finite-dimensional, it is Artinian and Noethe-
rian.

Proof. In any chain with proper inclusions, the dimension has to change at every step. Thus M
has a finite composition series.

3.5 Split superrings

In this section we discuss some superrings with a particular simple form. Because of their simplicity
they are an easy testing ground for several concepts that will be discussed later. The split superrings
admit a geometric intuition: they can be seen as the ring of functions of an ordinary variety in An

with some additional noncommutative structure.

Definition 3.5.1. We say a superring A has a split body if there is a morphism of superrings
σ : Ā → A, such that σ(x) = x for all x ∈ Ā; in this definition Ā is considered a superring with
trivial odd part.

Definition 3.5.1 can be rephrased by saying that the exact sequence 0 → JA → A → Ā → 0
splits. We call the morphism σ the splitting morphism. From the definition it follows that a
superring A is a split superring if and only if A contains a commutative ring that is isomorphic to
Ā and that maps surjectively to Ā under the projection A→ Ā. Hence the following lemma follows
immediately.

Lemma 3.5.2. Let B be a commutative ring and let A be the superring given by A = B[θ1, . . . , θm]/I
where the θi are odd variables and where I is a Z2-graded ideal contained in JA. Then A has a split
body.

An example of a superring with a split body is given by the superring associated to the ‘super-
sphere’:

A =
k[X1, X2, X3|θ1, θ2, θ3]
(
∑3

i=1X
2
i ,

∑3
i=1Xiθi)

. (3.16)

An example of a superring that does not have a split body is given by

A =
k[X |θ1, θ2]
(X2 + θ1θ2)

, (3.17)

where the body is given by k[X ]/(X2).

Proposition 3.5.3. Let B be a superring and let A be the superring given by A = B[θ1, . . . , θm]/I
where the θi are odd variables and where I is a Z2-graded ideal contained in (θ1, . . . , θm). Then if
B has a split body then A has a split body.

Proof. Clearly, (θ1, . . . , θm) ⊂ JA and thus B̄ = Ā and since B is a subalgebra containing B̄ as a
subalgebra.
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Proposition 3.5.4. Let A be a superring with a split body and splitting morphism σ : Ā→ A and
suppose f : A→ B is a surjective morphism of superrings with kernel I and denote Ī the image of
I in Ā. If σ(Ī) ⊂ I, then B has a split body.

Proof. We have an induced surjective ring morphism f̄ : Ā → B̄ with kernel Ī. For b̄ ∈ B̄ we
can find ā with f̄(ā) = b̄. We define τ(b̄) = f ◦ σ(ā); then τ(b̄) is independent of the choice of

ā since σ(Ī) ⊂ I. Furthermore τ(b̄) = f ◦ σ(ā) = f̄σ(ā) = f̄(ā) = b̄ and hence τ is a splitting
morphism.

3.6 Grassmann envelopes

Given a super vector space V over k and a superalgebra A over k, we can consider V (A) = V ⊗kA.
Then V (A) is an A-module, and although we will define free modules not until section 3.7, it is
not too hard to see that V (A) is a free A-module. One calls V (A) the Grassmann envelope of the
first kind. The even part of V (A) is an A0̄-module and is called the Grassmann envelope of the
second kind. These two constructions play an important role in the theory of Lie superalgebras
associated to algebraic supergroups in chapter 8. The name Grassmann envelop was dubbed by
Felix Berezin [9], one of the pioneers in the area of super mathematics.

If V is a Lie superalgebra, then V ⊗A is also a Lie superalgebra and (V ⊗A)0̄ is a Lie algebra with
an A0̄-module structure. Later, in subsection 8.6.4 we loosen up the definition of Lie algebra to be
a module over a commutative ring R together with a Lie bracket [, ], satisfying the usual conditions
of being R-linear, [x, x] = 0 and the Jacobi identity. Then we can say that A 7→ (V ⊗ A)0̄ is a
functor from the category of superalgebras to the category of Lie algebras.

Let C be some category that admits a faithful embedding into the category of super vector
spaces. We take a heuristic approach and use the liberty to specify a posteriori what further
properties we require C to have. To a super vector space V we associate a functor TV : sAlg→ C

as follows: On the objects we put TV : A 7→ (V ⊗ A)0̄; we thus need that C is such that it allows
that the objects (V ⊗A)0̄ are A0̄-modules in a functorial way. On morphisms φ : A→ B the functor
TV acts on the second factor; TV (φ) : v ⊗ a 7→ v ⊗ φ(a). We write TV ⊗ TW for the functor that
maps A to (V ⊗k A)0̄ ⊗A0̄

(W ⊗k A)0̄ and a morphism f : A→ B is mapped to the morphism that
sends v ⊗ a⊗A0̄

w ⊗ a′ to v ⊗ f(a)⊗A0̄
w ⊗ f(a′). Note that TV⊗W 6= TV ⊗ TW . We remark that

there is an important difference between ⊗A0̄
and ⊗A. So is θ⊗A θ = 0 but θ ⊗A0̄

θ 6= 0 in general
for odd θ ∈ A. The definition of

⊗
i∈I TVi

is immediate for finite sets I. If V is a Lie superalgebra,
the objects (V ⊗A)0̄ are Lie algebras in a natural way and hence we can take C to be the category
LieAlg of Lie algebras, as described above. The following result is due to Deligne and Morgan [6]:

Proposition 3.6.1.

(a) There is a one-to-one correspondence between the natural transformations
⊗

i∈I TVi
→ TW

and super vector space morphisms f :
⊗

i∈I Vi →W .

(b) If all objects TV (A) are functorially Lie algebras over A0̄, then the vector space V is a Lie
superalgebra.

Proof. (a) We first do the proof for I = {1}. We use the functoriality and apply the functors to
A = k and A′ = k[θ] to get maps V0̄ → W0̄ and V1̄ → W1̄. Let f : V → W be the map defined in
this way. Consider now a general superalgebra A and consider the element v ⊗ a ∈ (V ⊗ A)0̄. If
a is even, we can use the A0̄-linearity to obtain v ⊗ a = v ⊗ 1 · a 7→ f(v) ⊗ a, and if a is odd we
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consider the morphism k[θ]→ A given by θ 7→ a.

TV (k[θ]) - TW (k[θ])

TV (A)
?

- TW (A)
?

. (3.18)

Since TV → TW is a natural transformation, the diagram (3.18) we obtain v⊗θ 7→ v⊗a 7→ f(v)⊗a.
So indeed the natural transformation agrees with the given map f . On the other hand, a morphism
f of super vector spaces induces exactly the same natural transformation.
For more general index sets I the proof is rather similar. Let us first do existence and uniqueness.
Write the natural transformation as ϕ(A) for each superalgebra A. If we choose A = k, we get a
map f :

⊗
i∈I Vi,0̄ → W0̄. To specify a map on the tensor product of Vi,0̄ for i /∈ J and Vi,1̄ for

i ∈ J for some subset J ⊂ I we use A = k[(θj)j∈J ]. We take vi ∈ Vi,0̄ for i /∈ J and vi ∈ Vi,1̄ for
i ∈ J , we write wi = vi for i /∈ I and wi = viθi for i ∈ J and determine f from

ϕ(k[(θj)j∈J ])(⊗iwi) = (−1)N(N−1)/2f(⊗vi)Πi∈Jθi , where N = #J . (3.19)

The expression (3.19) is dictated by the fact that under the morphism θi → 0 the left-hand side
vanishes, hence also the right-hand side. Therefore the right-hand side is a product of the θi with
i ∈ J . Since the expression (3.19) fixes f , the morphism f is unique and furthermore, given ϕ
we define f in this way. Let now f be defined in this way and consider a general superalgebra
A. We have a similar commutative diagram as in part (a). Given an element ⊗wi, where wi is in
V0̄ ⊗A0̄ for i /∈ J for a subset J ⊂ I and wi ∈ V1̄ ⊗A1̄ for i ∈ J , we can use A0̄-linearity to choose
wi = vi⊗1 ∼= vi with vi ∈ V0̄ in the first case. For the second case we write wi = vi⊗ai and choose
the morphism k[(θj)j∈J ] → A given by θj → aj . The same commutative diagram as for the case
I = {1} concludes the proof of the general case.
(b) The rules that determine the Lie algebra structure are given by maps of the form treated in (a)
satisfying the axioms of a Lie superalgebra.

In fact, Deligne and Morgan proved the theorem for a more general case. However, stating the
theorem in the general case is a rather difficult task; in fact, to state the theorem is more difficult
than to prove it. We therefore refer the reader to [6].

3.7 Free modules and supermatrices

We consider a fixed superring A. A free A-module can be characterized as usual by a universal
property: Let S be a set that is a disjoint union of two sets S0̄ and S1̄; S = S0̄∪S1̄ and S0̄∩S1̄ = 0.
A free A-module on S is an A-module FS together with a map u : S → FS with u(Si) ⊂ (FS)i for
i = 0̄, 1̄ such that if M is any A-module and f : S →M is a map of S to M such that f(Si) ⊂Mi,
then there is a unique morphism of A-modules v : FS → M with f = v ◦ u. From the universal
property it follows that FS is unique up to isomorphism. The construction of FS is as follows: for
each x ∈ S0̄ we take a copy of A and put u(x) to be the unit element in A, for y ∈ S1̄ we take a
copy of ΠA and map y to 1 ∈ ΠA. We thus have FS = (

⊕
x∈S0̄

A) ⊕ (
⊕

y∈S1̄
ΠA) and u(x) = 1 in

the corresponding factor of A or ΠA; then FS has the required universal property. We are mainly
interested in the case that S is a finite set.

If |S0̄| = p and |S1̄| = q we write FS = Ap|q for the free A-module on S. Thus Ap|q =
(
⊕p

i=1 A)⊕ (
⊕q

j=1 ΠA). We call p|q the rank of the module Ap|q. If S is not finite, we say that the
free module on S has infinite rank. By the following lemma the definition of rank makes sense:
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Lemma 3.7.1. The rank of a free A-module on a finite set is well-defined; that is, if Ap|q ∼= Ar|s,
then p = q and r = s.

Proof. Let K = A/m for some maximal ideal m. Then it is easy to see that p|q is the dimension of
the super vector space Ap|q ⊗A K ∼= Kp|q. Thus Kp|q ∼= Kr|s, but then Kp ∼= Kr and Kq ∼= Ks as
vector spaces, from which the lemma follows.

Lemma 3.7.2. If M is a free A-module of rank p|q, then M is a free Ā-module of rank p+ q.

Proof. Follows from the isomorphisms A ⊗A Ā ∼= Ā and ΠA ⊗A Ā ∼= Ā, which are isomorphism of
Ā-modules since Ā-modules don’t have a definite parity. We thus have Ap|q ⊗A Ā ∼=

⊕p+q
i=1 Ā.

For the rest of this section we assume that A is a superalgebra over k. The goal below is to
define supermatrices with entries in A. We consider maps from Ap|q to Ar|s that preserve sums
and commute with the right action of A: ϕ(ma) = ϕ(m)a for all m ∈ Ap|q. The set of all such
maps we denote HomA(Ap|q, Ar|s). We call an element of HomA(Ap|q, Ar|s) even if it preserves theZ2-grading and odd if it reverses the Z2-grading. It is easy to see that then HomA(Ap|q , Ar|s) is aZ2-graded abelian group.

Since Ap|q ∼= kp|q ⊗k A, any morphism F ∈ HomA(Ap|q, Ar|s) should be an A-linear sum of
(r + s) × (p + q)-matrices with entries in k. For convenience we write M = Ap|q and N = Ar|s.
Assume m1, . . . ,mp+q are generators for M and n1, . . . , nr+s are generators for N . We can always
arrange the generators in the standard way, by which we mean that m1, . . . ,mp are even and
mp+1, . . . ,mp+q are odd. (We thus also arrange that n1, . . . , nr are even and nr+1, . . . , nr+s are
odd.)

Given any A-linear map F ∈ HomA(M,N) we define an (r + s) × (p + q)-matrix (Fij) with
entries in A by F (mi) =

∑
j njFji. Let L = Au|v be another free A-module with standard basis

l1, . . . , lu+v and let G : N → L be an element of HomA(N,L) that can be represented by a
(u + v) × (r + s)-matrix with entries in A given by G(nj) =

∑
k lkGkj . It is not too hard to see

that then (G ◦ F )(mi) =
∑

k,j lkGkjFji so that (G ◦ F )ki =
∑

j GkjFji. Note that it is crucial in
this definition that F and G commute with the right action of A. We can decompose the matrix
(Fij) in block-form as

F =

(
F00 F01

F10 F11

)
, (3.20)

where F00 is of size r×p, F01 is of size r×q, F10 is of size s×p and F11 is of size s×q. In the sequel,
when we decompose a matrix into block matrices, we always mean the block-form as in (3.20). If
the map F is even, then the entries of F00 and F11 are even elements of A, whereas the entries of
F01 and F10 are odd elements of A. When F is an odd homomorphism, then all entries have the
opposite parity.

We now focus on the case where M = N . We denote Matp|q(A) the set of (p + q) × (p + q)-
matrices with entries in A. From the above discussion there is a one-to-one correspondence between
HomA(M,M) and Matp|q(A). We make Matp|q(A) into a Z2-graded abelian group by saying that
a matrix (Fij) is even (resp. odd) when it is even (resp. odd) as an element of HomA(M,M). We
make Matp|q(A) into an A-module by defining for a ∈ A the action (Fij)a = ((F ◦ a)ij), where a is
identified with the morphism m 7→ am. On the basis elements mi we have

(Fa)(mi) = F (mi)a(−1)|mi||a| =
∑

j

mjFjia(−1)|mi||a| . (3.21)

We see that (Fji)a is given by the matrix with entries Fjia(−1)|i||a|, where we used the short-hand
|i| = |mi|, which we also use below. Using the law of matrix multiplication (FG)ij =

∑
k FikGkj
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we make Matp|q(A) into an associative, unital, noncommutative A-superalgebra. We denote the
unit matrix by 1.

Let X ∈ Matp|q(A), then X̄ is the matrix obtained by applying the projection to the body on

each entry: in components (X̄)ij = (Xij). Suppose that X is such that X̄ = 0, then for each entry
Xij there is an integer nij such that X

nij

ij = 0. Thus XN = 0, where N =
∑

ij nij . From this
observation the proof of the following lemma is easy.

Lemma 3.7.3. A matrix X ∈ Matp|q(A) is invertible if and only if X̄ is invertible. If X is even
and of the form

X =

(
A B
C D

)
, (3.22)

then X is invertible if and only if A and D are invertible, that is, if and only if detA and detD are
invertible in A0̄.

Proof. If X is invertible, there is a matrix Y with XY = Y X = 1, applying the body projection
on both sides, we see X̄ is invertible. If X̄ is invertible, there is Y ∈ Matp|q(A) with XY − 1 =

Y X − 1 = 0. Hence we have Y X = 1 − N andXY = 1 − N ′, where N and N ′ are nilpotent
matrices, so that 1 − N and 1 − N ′ are invertible. Thus X has a left- and a right inverse. Since
Matp|q(A) is associative, the left- and right inverse coincide.

If X is even and of the form as stated, it follows that when X̄ is invertible, then so are Ā and
D̄. Using the same argument, we see that also A and D are invertible. Since A and D only contain
even elements, we can apply the determinant rule.

Definition 3.7.4. We define the supertrace str of a supermatrix by

str

(
A B
C D

)
= trA− trD . (3.23)

Definition 3.7.5. We define the supertranspose XST of a supermatrix X as follows. For even
supermatrices we define the supertranspose by

(
A B
C D

)ST
=

(
AT −CT
BT DT

)
, (3.24)

and for odd supermatrices we define the supertranspose by

(
A B
C D

)ST
=

(
AT CT

−BT DT

)
, (3.25)

where the superscript T denotes the ordinary transpose.

Definition 3.7.5 is compatible with the earlier definition we gave of the supertranspose in equation
(2.12). We observe that if x and y are p×q- and q×r-matrices respectively with only odd elements as
entries, then (xy)T = −yTxT . Using this observation and the definitions, the proof of the following
lemma can be done by a straightforward calculation:

Lemma 3.7.6. Let X and Y be two matrices in Matp|q(A) for some superring A. Then str(XY ) =

(−1)|X||Y |str(Y X), (XY )ST = (−1)|X||Y |Y STXST and strXST = strX.
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We give A ⊗k Matp|q(k) a superalgebra structure in the usual way: if a, b ∈ A and X,Y ∈
Matp|q(k) then a⊗X · b⊗Y = (−1)|X||b|ab⊗XY . We now give an explicit isomorphism of algebras
A⊗k Matp|q(k)→ Matp|q(A). This isomorphism explains why some sign changes can appear when
one passes from A⊗kMatp|q(k) to Matp|q(A). Some authors wave this sign change away and simply
redefine - for example - the notion of supertransposition. We denote Eij the matrix in Matp|q(k)
that has a 1 on the (i, j)th place and is zero elsewhere. We have |Eij | = |i|+ |j|. We write δij for
the Kronecker delta.

Lemma 3.7.7. Let A be a superalgebra over k. The k-linear map ϕ : A⊗Matp|q(k)→ Matp|q(A)

that sends a ⊗k Eij to the matrix with entries (ϕ(a ⊗k Eij))mn = (−1)|i||a|aδimδjn is an algebra
isomorphism.

Proof. By definition, the map sends sums to sums so we have to check that ϕ preserves products.
We have

a⊗k Eij · b⊗k Ekl = (−1)(|i|+|j|)|b|ab⊗ δjkEil , (3.26)

and applying ϕ we obtain a matrix with (m,n)-entry

(−1)|a||i|+|b||j|(abδjk)δimδln . (3.27)

On the other hand
∑

p

(ϕ(a⊗k Eij))mp(ϕ(b ⊗k Ekl))pn =
∑

p

(−1)|a||m|+|b||p|abδimδjpδkpδln

= (−1)|a||i|+|b||j|abδimδjkδln .

(3.28)

Clearly, the map ϕ is surjective and injective.

We define the functor GLp|q from the category of superrings sRng to the category of groups Grp

as follows: to each superring A we assign the group of invertible even elements of Matp|q(A) and to
each morphism of superrings f : A→ B we assign the map that sends a matrix (Xij) ∈ GLp|q(A) to
the matrix (f(Xij)) ∈ GLp|q(B) - that is, it works on each matrix entry. Since an algebra morphism
maps invertible elements to invertible elements, the matrix (f(Xij)) ∈ GLp|q(B) is indeed invertible
by lemma 3.7.3.

Definition 3.7.8. For an invertible even supermatrix X we define the superdeterminant BerX by
the formula

Ber

(
A B
C D

)
=

det(A−BD−1C)

detD
. (3.29)

The notation is in honor of Berezin and therefore the superdeterminant is often called the
Berezinian.

It is easy to see that BerXST = BerX . The following lemma is proved in [9, 11]:

Lemma 3.7.9. For two elements X and Y of GLp|q(A) we have Ber (XY ) = BerX BerY .

The lemma states that we have a natural transformation GLp|q → GL1|0.





Chapter 4

Primes and primaries

In this chapter we study the notion of a prime ideal more profoundly. We define primary ideals and
consider primary decompositions.

4.1 Properties of prime ideals

Definition 4.1.1. Let A be a superring. We call an ideal p of A a prime ideal if p is properly
contained in A and pq ∈ p implies that p ∈ p or q ∈ p.

Due to the defining property, a prime ideal is always Z2-graded; if p ∈ p then p1̄ ∈ p since
(p1̄)

2 = 0 ∈ p. Hence all prime ideals of A contain JA. In order to check that an ideal is prime, we
only need to check the definition 4.1.1 for the homogeneous elements by the following lemma.

Lemma 4.1.2. Let A be a superring and p be a properly contained ideal of A. Then for p to
be prime it is necessary and sufficient that for all homogeneous elements p, q ∈ A it follows from
pq ∈ A that p ∈ p or q ∈ p.

Proof. The necessity is clear. To proof the sufficiency, let p, q be arbitrary elements of A with
pq ∈ p. Since p1̄ and q1̄ square to zero and 0 ∈ p, we must have p1̄ ∈ p and q1̄ ∈ p. Hence p0̄q0̄ ∈ p

and thus p0̄ ∈ p or q0̄ ∈ p. Therefore we conclude p ∈ A or q ∈ A.

We can equivalently define a prime ideal as an ideal p of A such that A/p is an integral domain
with 0 6= 1. It follows that A is a super domain if and only if Nilrad(A) is a prime ideal.

Proposition 4.1.3. Let a1, . . . , ar be a set of Z2-graded ideals in a superring A. If p is a prime
ideal of A that contains the product a1 · · · ar, then p contains at least one of the ai.

Proof. By induction it is sufficient to consider the case r = 2. If p does not contain a1, consider a
homogeneous element a ∈ a1 that does not lie in p. Then for each a′ ∈ a2 the element aa′ lies in p

hence a′ ∈ p and thus a2 ⊂ p.

A slight variation of proposition 4.1.3 involving the intersection instead of the product is given
in the following lemma.

Lemma 4.1.4. Let a1, . . . , an be ideals and let p be a prime ideal such that p = ∩iai. Then p = ai
for some i.
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Proof. Suppose p + ai for all i. Then there are homogeneous xi ∈ ai such that xi 6= p for all i. But∏
i xi lies in the intersection and thus in p; then one of the xi should have been in p already. Thus

we obtain a contradiction. Hence p contains at least one of the ai, say p ⊃ a1. Since p = ∩iai we
have furthermore that p ⊂ ai for all i, hence a1 ⊂ p ⊂ a1.

Proposition 4.1.5. Suppose A is a superring and m is a maximal ideal of A. If for some integer
n ≥ 1 there is a prime ideal p of A that contains mr, then p = m.

Proof. We apply proposition 4.1.3 to the product ai = mi and deduce that m ⊂ p. Since m is
maximal, we cannot have a proper inclusion and thus p = m.

Lemma 4.1.6. Let A and B be superrings and f : A → B a morphism of superrings. If p is a
prime ideal in B, then the inverse image f−1(p) is a prime ideal of B.

Proof. We give two proofs, as the result is of great importance. (i): If p, q are elements such that
f(q) /∈ p and f(pq) ∈ p then f(p) ∈ p and thus p ∈ f−1(p). (ii): It is clear that f−1(p) is aZ2-graded ideal in A and that the induced morphism A/f−1(p) → B/p is injective. Since B/p is
an integral domain and A/f−1(p) is isomorphic to a subring of B/p, it is an integral domain as
well.

Lemma 4.1.7. Let A be a superring and a a Z2-graded ideal in A. Then there is a one-to-one
correspondence between the prime ideals in A that contain a and the prime ideals in A/a. This
correspondence preserves inclusions and hence there is a one-to-one correspondence between the
maximal ideals in A that contain a and the maximal ideals in A/a.

Proof. Suppose p is a prime ideal in A that contains a. Since the projection π : A → A/a is
surjective, one easily checks that π(p) is a prime ideal in A/a. The ideal π−1(π(p)) is a prime ideal
by lemma 4.1.6. Suppose x ∈ π−1(π(p)), then π(x) = π(y) for some y ∈ p. Hence x − y ∈ a ⊂ p

and therefore x ∈ p. It follows that p = π−1(π(p).
Conversely, suppose b is a prime ideal in A/a. Then by lemma 4.1.6 π−1(b) is a prime ideal in A

and clearly it contains a. Furthermore, we have π(π−1(b)) = b, so that the correspondence holds.
Clearly, if p ⊂ p′ are two prime ideals in A, then π(p) ⊂ π(p′). Thus the correspondence

preserves inclusions.

An immediate application to the ideal generated by the odd elements gives:

Lemma 4.1.8. Let A be superring, then there is a one-to-one correspondence between the prime
ideals in A and the prime ideals in A/JA. This correspondence is inclusion preserving and thus
there is a one-to-one correspondence between the maximal ideals in A and the maximal ideals in
A/JA.

Proof. We set a = JA in lemma 4.1.7 and note that all prime ideals contain JA.

Lemma 4.1.9. Let A be a superring. Then (1) any prime ideal p is of the form p = p0̄ ⊕ A1̄,
where p0̄ is a prime ideal of the commutative ring A0̄, and (2) any maximal ideal m is of the form
m = m0̄ ⊕A1̄, where m0̄ is a maximal ideal of the commutative ring A0̄.

Proof. It is clear that A1̄ is contained in any prime (resp. maximal) ideal. For any ideal p of A
containing A1̄, p0̄ is an ideal in A0̄ containing JA ∩A0̄ = (A1̄)

2 and

A/p ∼= A0̄/p0̄ . (4.1)

Thus if p is a prime (resp. maximal) ideal of A, then p0̄ is a prime (resp. maximal) ideal of A0̄.
Conversely, if p0̄ is a prime (resp. maximal) ideal of A0̄, then p0̄ ⊕ A1̄ is a prime (resp. maximal)
ideal of A.
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Corollary 4.1.10. Let A be a superring, then the intersection of all prime ideals is the nilradical
of A.

Proof. If a ∈ Nilrad(A), then a lies in every prime ideal. Conversely, let I be the intersection of
the prime ideals in A, then Ī = I mod JA is the intersection of all prime ideals of A. Thus if a lies
in I, then ā lies in Ī and there exists an integer n such that ān = 0, and thus an ∈ JA. But then
an is nilpotent, hence a is nilpotent.

Corollary 4.1.11. Let A be a superring and M an A-module with finite length l(M). Then M has
length l(M) as an A0̄-module.

Proof. Let M = M0 ⊃ M1 ⊃ . . . ⊃ Mn with n = l(M) be a decomposition series of M as an
A-module. We know that all decomposition series of an A0̄-module with finite length have the
same length - this is the commutative counterpart of corollary 3.4.8. Dropping the Z2-parity, we
have

Mi/Mi+1
∼= A/m ∼= A0̄/m0̄ , (4.2)

for some maximal ideal m = m0̄⊕A1̄ in A. By lemma 4.1.9 m0̄ is a maximal ideal in A0̄ and hence
the series (4.2) is also a composition series of M as an A0̄-module. Thus, M has finite length as an
A0̄-module and the length is n = l(M).

Definition 4.1.12. Let A be a superring and I a Z2-graded ideal in A. The radical of I is the
ideal

√
I defined by the set of all elements r ∈ A such that rn ∈ I for some positive integer n.

Suppose r ∈
√
I, then r = r0̄ + r1̄ and rn = rn0̄ + nrn−1

0̄
r1̄. Thus if I is Z2-graded, then rn0̄ ∈ I.

Hence r0̄ ∈
√
I, so that also r1̄ ∈

√
I. We therefore conclude that the radical ideal of a Z2-graded

ideal is Z2-graded. By lemma 4.1.7 we can equivalently characterize the radical of a Z2-graded
ideal I as follows: a ∈

√
I if and only if amod I ∈ Nilrad(A/I).

Using corollary 4.1.10 and we obtain

Lemma 4.1.13. Let I be a Z2-graded ideal in a superring A. Then the radical of I is the intersection
of all prime ideals in A containing I.

Proof. The nilradical of A/I is given by the intersection of all prime ideals in A/I. The preimage
of the nilradical of A/I under the projection A → A/I is precisely

√
I and the preimages of the

prime ideals in A/I are by lemma 4.1.7 the prime ideals in A that contain I. Thus the radical of I
is the intersection of the prime ideals containing I.

Let X and Y be algebraic sets in An for some n and suppose X is described by a finite set of
polynomial equations fi = 0 and Y by a finite set of polynomial equations gj = 0. Let I be the

reduced ideal describing X and let J be the reduced ideal describing Y ; I =
√

(fi) and J =
√

(gj).
The union X ∪ Y is on the one hand defined by I ∩ J and on the other hand by the equations figj,
that is, by IJ . One is thus lead to conclude that at least over an algebraically closed field we have√
IJ =

√
I ∩ J . However, we can prove this in general and even for superrings:

Lemma 4.1.14. Let I, J be ideals in any superring A. Then
√
IJ =

√
I ∩ J .

Proof. Since IJ ⊂ I ∩ J , any prime ideal containing I ∩ J also contains IJ . Let p be any prime
ideal containing IJ . Suppose p does not contain I ∩ J , then there is an x lying both in I and in J
but not in p. Then x2 ∈ IJ and thus x2 ∈ p, so we conclude x ∈ p. Thus we obtain a contradiction.
Hence if a prime ideal contains IJ it also contains I∩J . Thus the sets A = {p|p ⊃ IJ , p prime} and
B = {p|p ⊃ I ∩ J , p prime} are equal and hence also the intersection over the elements of A equals
the intersection over the elements of B. By lemma 4.1.13 it then follows that

√
IJ =

√
I ∩ J .
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One also uses the term radical ideal for an ideal I satisfying
√
I = I. It follows directly from

the definition of prime ideals that they are radical, although one is also lead to this conclusion by
lemma 4.1.13 as any prime ideal contains itself.

Lemma 4.1.15. Let A be a superring and let I be the intersection ∩m max. idealsm of all maximal
ideals of A. Then x ∈ I if and only if for all a ∈ A the element 1− ax is invertible.

Proof. If x ∈ I and if 1− ax is not invertible, then 1− (ax)0̄ is not invertible. The Z2-graded ideal
(1− (ax)0̄) is properly contained in A and thus is contained in some maximal ideal m, meaning that
there is m ∈ m such that 1 − (ax)0̄ = m, but then 1 ∈ m since (ax)0̄ ∈ m. Conversely, if 1 − ax is
invertible for all a ∈ A and m is a maximal ideal not containing x, then m does not contain x0̄. TheZ2-graded ideal (m, x0̄) equals A, implying that there is a ∈ A and m ∈ m such that 1 = ax0̄ +m.
But as x1̄ ∈ m we see there exists a ∈ A such that 1 = ax+m for some m ∈ m, and thus 1−ax = m.
The latter identity implies that m is invertible and thus m = A, which is a contradiction.

The ideal I = ∩m max. idealsm is called the Jacobson radical of A. Since each nilpotent of A
is contained in any maximal ideal, the Jacobson radical contains all nilpotents. If M is a simple
A-module, then M must be isomorphic to A/m or ΠA/m for some maximal ideal m. Hence the
Jacobson radical annihilates any simple module. Conversely, if I is an ideal such that I annihilates
any simple module, then I is contained in the Jacobson radical. The Jacobson radical is the largest
ideal that annihilates any simple module. One calls an ideal that annihilates a simple module a
primitive ideal. It is easy to see that all primitive ideals are Z2-graded. We conclude that the
Jacobson radical is the intersection of all primitive ideals.

Definition 4.1.16. Let A be a superring. We call a prime ideal p of A minimal if for any prime
ideal q of A the inclusion q ⊂ p implies q = p.

Let a be any Z2-graded ideal in A. Then we say that a prime ideal p is minimal over a if p

contains a and for any prime ideal q the inclusion a ⊂ q ⊂ p implies p = q. Equivalently, a prime
ideal p is minimal over a if and only if the image of p in A/a is a minimal prime. Thus a minimal
prime is a prime ideal minimal over the zero ideal. If a prime ideal q contains a, we also say that q

lies over a.

Lemma 4.1.17. Let A be a superring. A prime ideal p of A is minimal if and only if the prime
ideal p̄ of Ā is minimal.

Proof. Follows from lemma 4.1.8 as the correspondence between the prime ideals of A and the prime
ideals of Ā preserves inclusions.

Proposition 4.1.18. Let A be a Noetherian superring and a an ideal in A, then there are only
finitely many prime ideals over a.

Proof. Suppose the statement fails. Consider the set S of ideals b for which there are not finitely
many minimal prime ideals over b and suppose S 6= ∅. Since A is Noetherian, there is a maximal
element b in S. Clearly, b cannot be prime, since then there is only one minimal prime over b,
namely b itself. Hence there are f, g ∈ A − b with fg ∈ b. The ideals b + (g) and b + (f) both
properly contain b and are not equal to A, since b is contained in some maximal ideal m, and thus
f ∈ m or g ∈ m. If p is a prime ideal over b, then it contains f or g, say f ; then p is a prime ideal
over b + (f). Therefore p is a minimal prime over b if and only if it is a minimal prime over b + (g)
or b + (f). But there are finitely many minimal primes over b + (f) and b + (g), and then also
finitely many minimal primes over b. But that is a contradiction.

We immediately obtain by taking a = 0:



4.1 Properties of prime ideals 33

Corollary 4.1.19. Let A be a Noetherian superring. Then there are only finitely many minimal
primes.

Recall that a super domain is a superring A such that the body Ā is an integral domain. A
commutative ring is an integral domain if and only if 0 is a prime ideal. In that case, 0 is the only
minimal prime. For superrings the analogue is the following:

Lemma 4.1.20. A superring A is a super domain if and only if JA is the only minimal prime.

Proof. A superring A is a super domain if and only if JA is a prime ideal. The ideal JA is a prime
ideal if and only if JA is a minimal prime.

We now define local superrings and give two characterizations. Later we will often use local
superrings and use the different characterizations. As in the commutative case, local superrings
have many favorable properties. When we have discussed localization in chapter 5 we can often
reduce a problem to the case where the superring is local.

Definition 4.1.21. We call a superring a local superring if there is one unique maximal ideal.

Lemma 4.1.22. A superring A is a local superring if and only if all the non-invertible elements of
A form an ideal.

Proof. If A is a local superring with maximal ideal m and x is not invertible, then x0̄ is not invertible
and x1̄ lies in m. The ideal generated by x0̄ is contained in m by maximality and uniqueness of m;
hence x ∈ m. Thus all non invertible elements lie in m; the invertible elements cannot lie in m. On
the other hand, if all non invertible elements form an ideal I, then this ideal is automatically the
largest ideal since an element outside I is contained only in the trivial ideal A.

The lemma gives a way to prove that a superring is local; if we have a candidate for the unique
maximal ideal and we can show that all elements not in that ideal are invertible we are done. In
the sequel we will often use this without mentioning.

Lemma 4.1.23. A superring A is a local superring with maximal ideal m if and only if Ā is a local
ring with maximal ideal m̄.

Proof. Assume A is a local superring with maximal ideal m. Then m̄ is a maximal ideal of Ā. If
x ∈ Ā does not lie in m, then there is an element y ∈ A − m with ȳ = x. Then y is invertible and
hence x. Conversely, if for a superring A the body Ā is a local ring with maximal ideal m̄, then
m = π−1(m̄) is a maximal ideal of A, where π : A → Ā is the canonical projection onto the body.
If x ∈ A−m, then x̄ lies outside m̄ and thus is invertible, and hence x is invertible.

Lemma 4.1.24. Let A be local superring with maximal ideal m. Then A0̄ is a local ring with
maximal ideal m0̄.

Proof. By proposition 3.1.9 there is a one-to-one correspondence between the maximal ideals in A0̄

and the maximal ideals in A. Thus A has one unique maximal ideal if and only if A0̄ has one unique
maximal ideal.

The following lemmas describe some properties of morphisms between local superrings.

Lemma 4.1.25. Let A,B be local rings with maximal ideals m, n respectively and let ϕ : A→ B be
a morphism. Then ϕ−1(n) ⊂ m.

Proof. Let x /∈ m, then x is invertible and hence ϕ(x) is invertible and thus ϕ(x) /∈ n.
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Definition 4.1.26. We call a morphism ϕ : A → B between local rings A,B with maximal ideals
m, n respectively a local morphism if ϕ−1(n) = m, or equivalently m ⊂ ϕ−1(n), which is again
equivalent to ϕ(m) ⊂ n.

Lemma 4.1.27. Let A,B be local rings with maximal ideals m, n respectively and let ϕ : A→ B be
a morphism, then Ker(ϕ) ⊂ m.

Proof. Let x /∈ m, then x is invertible and hence ϕ(x) is invertible and hence not zero.

In the commutative setting a well-known theorem due to Cohen [52] states that a ring is Noethe-
rian if and only if all prime ideals are finitely generated. This reduces the problem of checking
whether a ring is Noetherian to proving that all prime ideals are finitely generated. One can prove
the generalization of Cohen’s structure theorem for superrings, as we show in the next proposition:

Proposition 4.1.28. A superring A is Noetherian if and only if all prime ideals are finitely gen-
erated.

Proof. We follow more or less the proof of [19]. The necessity is clear. To prove sufficiency we show
that if the set S of proper Z2-graded ideals that are not finitely generated is nonempty, it contains
a maximal element, which is a prime ideal.

We order S by inclusion. Consider a totally ordered subset P of S. The object I = ∪I∈PI is aZ2-graded proper ideal that is not a finitely generated ideal; if I were not finitely generated, there
would be an ideal in P that contains all generators and hence is finitely generated. Thus I is an
upper bound of P . By Zorn’s lemma, S contains a maximal element m ∈ S.

Suppose m were not a prime ideal. Then there are homogeneous a, b ∈ A − m and ab ∈ m.
Consider the ideal m′ generated by m and a and consider the ideal m′′ of all elements x ∈ A such
that ax ∈ m. Since a is homogeneous, m′ and m′′ are Z2-graded ideals. Also, a ∈ m′ and b ∈ m′′

so that both contain m properly. If m′ = A, then there are x ∈ A and m ∈ m with xa + m = 1
but then b = (xa +m)b ∈ m, contradicting b /∈ m. Hence m′ is finitely generated. If m′′ = A then
a = 1a ∈ m, which is also impossible by assumption and thus m′′ is finitely generated as well. Let
{ui + avi}1≤i≤r be homogeneous generators for m′ with ui ∈ m and vi ∈ A and let {wj}1≤j≤s be

homogeneous generators for m′′. Let x ∈ m, then since m ⊂ m′ there are xi ∈ A with

x =

n∑

i=1

(ui + avi)xi =

n∑

i=1

uixi + a

n∑

i=1

vixi . (4.3)

Since the sum
∑

i vixi lies in m′′ the set {ui}1≤i≤r ∪ {awj}1≤j≤s generates m. Hence m /∈ S, which
is a contradiction. Therefore m must be a prime ideal.

Theorem 4.1.29. Let A be an Artinian superalgebra, then A is Noetherian and all prime ideals
are maximal and there are only finitely many maximal ideals.

Proof. Let S be the set of ideals that are a product of maximal ideals. Since A is Artinian we can
find a minimal element J ∈ S. Since J is minimal we have m ⊃ Jm = J for all maximal ideals m.
Hence J is contained in the Jacobson radical. Also J2 ⊂ J is a product of maximal ideals, hence
J2 = J . Suppose J 6= 0, then we can choose an ideal I that is minimal among the ideals that do
not annihilate J . Then we have (IJ)J = IJ2 = IJ 6= 0 and thus IJ ⊂ I and therefore IJ = I.
Since I does not annihilate J , there is a homogeneous x in I with xJ 6= 0. But then we must have
(x) = I and there must be an j ∈ J with x = xj and hence (1 − j)x = 0. But j is contained the
Jacobson radical and thus 1− j is invertible. Hence x = 0. But then the assumption J 6= 0 is false;
thus J = 0.
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We conclude that we can write 0 as a product of maximal ideals, and by Artinianity thus
0 = m1m2 · · ·mt for some maximal ideals mi. For each i we have that Vi = m1 · · ·mi/m1 · · ·mi+1 is
a super vector space over A/mi+1. We now wish to show that the dimension of such super vector
spaces is finite. Any chain of subspaces in Vi corresponds to a chain of ideals in A containing
m1m2 · · ·mi+1. The chain in A terminates and hence the chain in Vi too; hence the dimension of Vi
is finite. Putting the composition series together (really concatenation) we see that A has a finite
length and is Noetherian.

Suppose that p is a prime ideal in A. Then p ⊃ 0 = m1 · · ·mt. By proposition 4.1.3 p contains
one of the maximal ideals mi and thus mi = p. Hence there are only finitely many prime ideals.

A superring that has only finitely many maximal ideals is called a semilocal superring - some
people prefer the name quasi-local. Theorem 4.1.29 then states that Artinian superrings are semilo-
cal. We will not go into the theory of semilocal superrings.

4.2 Primary ideals and primary decompositions

Definition 4.2.1. We call an ideal q of A a primary ideal if q is Z2-graded, q is properly contained
in A and if x /∈ q and y /∈ q but xy ∈ q then we have xr ∈ q and ys ∈ q for some natural numbers
r and s.

Or equivalently

Definition 4.2.2. We call an ideal q of A a primary ideal if q is Z2-graded, and A/q is a nonzero
superring such that all zerodivisors are nilpotent.

We need to impose that a primary ideal is Z2-graded, as the following example shows:

Example 4.2.3. Take A = k[x|ϑ] und q = (x2 + 2xϑ, x3). Then A is in fact commutative and we
can safely consider the quotient A′ = A/q, which is a ring (no longer a superring). As k-vector
space we have A′ = k ⊕ kx̄ ⊕ kϑ̄ + kx̄ϑ̄, where a bar denotes the image in A′. We easily see that
a ∈ A′ is either a unit or nilpotent. Hence q is primary in the ordinary sense, but not Z2-graded,
since x2 /∈ q. △

Proposition 4.2.4. A Z2-graded ideal q is primary if and only if for all homogeneous x, y ∈ A− q

with xy ∈ q, the images of x and y in A/q are nilpotent.

Proof. Clearly the condition is necessary. To prove sufficiency, let x, y ∈ A − q with xy ∈ q and
suppose q satisfies the condition stated in the proposition. Then since q is Z2-graded x0̄y0̄ +x1̄y1̄ ∈
q ⊂ √q. Since x1̄y1̄ ∈

√
q we have x0̄y0̄ ∈

√
q, but then (x0̄)

N (y0̄)
N ∈ q and thus x0̄ and y0̄ are

nilpotent in A/q and thus in
√

q. But then x0̄, y0̄, x1̄, y1̄ are all in
√

q and thus also x0̄ + x1̄ and
y0̄ + y1̄. Thus x and y are nilpotent in A/q. Hence q is primary.

Proposition 4.2.5. Let q be a primary ideal. Then
√

q is the smallest prime ideal containing q.

Proof. It suffices to prove that
√

q is a prime ideal. Further note that A1̄ ⊂
√

q. It thus suffices
to show that when the product of two even elements x and y lies in

√
q then so does x or y. So

assume x, y are even and xy ∈ √q. Then xnyn ∈ q for some integer n. Thus if xn /∈ q and yn /∈ q

then ymn and xmn lie in q for some m. But then x and y are elements of
√
q.

Lemma 4.2.5 allows us to make the following definition:

Definition 4.2.6. When we write p =
√

q for a primary ideal q, we say that q is p-primary.
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The following lemmas are straightforward generalizations of standard results in commutative
algebra. We follow the presentation of [16].

Proposition 4.2.7. Let A be a superring and a an ideal in A such that
√

a is a maximal ideal.
Then a is a primary ideal.

Proof. Let m =
√

a and let m̄ be the image of m under the projection A→ A/a. Clearly all elements
of m̄ are nilpotent. If ymod a is not in m, then y /∈ m. Hence there is z ∈ A with yz = 1 +m for
some m ∈ m. Thus (ymod a)(zmod a) = 1 + u with u nilpotent. But then xmod a is invertible in
A/a. Therefore, all elements of A/a are either nilpotent or invertible and thus any zerodivisor is
nilpotent.

Lemma 4.2.8. Let qi be p-primary ideals for 1 ≤ i ≤ n. Then q =
⋂n
i=1 qi is also p-primary.

Proof. First we note that
√⋂n

i=1 qi =
⋂n
i=1

√
qi = p. Thus we have to prove that q is a primary

ideal. Suppose x, y are homogeneous elements of A that do not lie in a but xy lies in a. Then
x /∈ qk, y /∈ ql for some k, l but xy ∈ qi for all i. If k 6= l then y lies in

√
qk = p and x lies in√

ql = p. If k = l then x and y lie in
√

qk = p. Hence in any case there are positive integers m,n
such that xm lies in qi for all i and yn lies all qi for all i.

For a Z2-graded ideal a in a superring A and a homogeneous element a ∈ A we write (a : a) for
the ideal consisting of those elements b ∈ A such that ba ∈ a. One easily checks that (a : a) is aZ2-graded ideal. The elements of (0 : a) are the annihilators of a. Clearly if a ∈ a then (a : a) = A.

Lemma 4.2.9. Let q be a p-primary ideal and x ∈ A homogeneous. (i) If x ∈ q then (q : x) = A.
(ii) If x /∈ q then (q : x) is p-primary. (iii) If x /∈ p then (q : x) = q.

Proof. (i) is obvious. (ii): Suppose y ∈ (q : x), then xy ∈ p. As x /∈ q then we must have y ∈ p.
Thus q ⊂ (q : x) ⊂ p and thus by taking radicals we see

√
(q : x) = p. Now we need to prove that

(q : x) is a primary ideal. Suppose yz are homogeneous, not in (q : x) but yz ∈ (q : x). Then it
follows that xyz ∈ q. By assumption xy /∈ q and xz /∈ q, so that we must have y ∈ p and z ∈ p. (iii)
If x /∈ p, then xy = 0 has no solutions in A/q other than y = 0. Thus (q : x) = q in this case.

4.3 Primary decompositions

In this section all superrings are assumed to be Noetherian. An ideal a in A is said to be irreducible
if for any decomposition a = b ∩ c, where all three are Z2-graded, it follows that a = b or a = c.
Using the assumption that the superring is Noetherian we obtain:

Lemma 4.3.1. Every Z2-graded ideal is a finite intersection of irreducible Z2-graded ideals.

Proof. Suppose the set S of Z2-graded ideals that are not an intersection of irreducible Z2-graded
ideals is nonempty. Since A is Noetherian, S has a maximal element a. But a cannot be irreducible,
hence a = b ∩ c where b and c properly contain a and are Z2-graded. Hence b and c are finite
intersections of irreducible Z2-graded ideals, and hence also a, contradicting a ∈ S. Thus the
assumption S 6= ∅ is false.

Lemma 4.3.2. Every irreducible Z2-graded ideal is a primary ideal.

Proof. Let q be an irreducible Z2-graded ideal. We claim that we only need to prove that if the
zero ideal in A′ = A/q is irreducible, it is primary. To prove the claim: Since q is irreducible, the
zero ideal in A′ is irreducible. If x, y are in A, but not in q, such that xy lies in q, then x and y are
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nilpotent in A′ as the zero ideal in A′ is primary. Thus q is primary. So we proceed to prove that
if the zero ideal is irreducible, it is primary.

Let xy = 0 and suppose that y 6= 0 and x, y are homogeneous (this we can do using corollary
3.1.4). Then consider the chain Ann(x) ⊂ Ann(x2) ⊂ . . .. This chain becomes stationary and thus
there is an n such that Ann(xn) = Ann(xn+1) = . . .. We claim that then (xn) ∩ (y) = 0: if a ∈ (y)
then ax = 0 and if furthermore a = bxn then bxn+1 = 0. But then b ∈ Ann(xn+1) = Ann(xn) and
thus a = 0. Since 0 is assumed to be irreducible and y 6= 0, we must have xn=0. This shows that
the zero ideal is primary.

Let a be a Z2-graded ideal in A. Then we call a primary decomposition of a a decomposition
a = q1 ∩ . . . ∩ qk, where the qi are primary ideals.

Corollary 4.3.3. Every Z2-graded ideal has a primary decomposition.

Proof. From the above two lemmas we see that any ideal is a finite intersection of irreducible ideals,
and thus a finite intersection of primary ideals.

We now ask whether a primary decomposition is unique in a certain sense. Of course, we then
should require that for all i we have q + ∩i6=jqj. Furthermore, if some of the qi have the same
radical ideal p, then their intersection is also a p-primary ideal. Hence, we are led to the following
definition of a minimal decomposition:

Definition 4.3.4. Let a be an ideal. We call a decomposition a = q1 ∩ . . . ∩ qr minimal if all the
radicals

√
qi are distinct and for all i we have q + ∩i6=jqj.

Our first result about uniqueness is captured in the following proposition:

Proposition 4.3.5. Let a = q1 ∩ . . .∩ qr be a minimal primary decomposition and write pi =
√

qi.
Then the pi are independent of the decomposition.

Proof. Let x ∈ A be homogeneous, then (a : x) = (∩iqi : x) = ∩i(qi : x). Hence by lemma 4.2.9 we
have

√
a : x = ∩i

√
qi : x = ∩i:x 6=qi

pi. Since the decomposition is minimal, we can find for all i an
homogeneous x such that x 6= qi but x ∈ qj for all j 6= i. Then

√
a : x = pi. So suppose

√
a : x is

any prime ideal p, then p = ∩i:x 6=qi
pi. Using lemma 4.1.4 we find that p is one of the pi. Hence the

pi in any minimal primary decomposition are the prime ideals occurring in the set

{√
a : x |x ∈ A, xhomogeneous

}
,

which proves the claim.

Corollary 4.3.6. The prime ideals occurring as the radicals of the primary ideals in a primary
decomposition of a are precisely the prime ideals that occur as annihilators of homogeneous elements
of A/a.

Proof. Let x in A be homogeneous. Consider x̄ the image of x in A/a. Then the annihilator of x̄
is (a : x). But the prime ideals of the primary decomposition in a are precisely the prime ideals p

for which there exists a homogeneous x ∈ A with p = (a : x).

Definition 4.3.7. Let a be a Z2-graded ideal in A and let a = q1 ∩ . . . ∩ qr be a minimal primary
decomposition of a. Then the prime ideals

√
qi are called the primes associated to a. The minimal

primes along the
√

qi (that is,
√

qi is minimal if it is not contained in another
√

qj) are called the
minimal or isolated primes belonging to a. Those that are not minimal are called the embedded
prime ideals.
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Remark 4.3.8. The names isolated, minimal and embedded come from algebraic geometry: an
ideal a gives rise to a variety X . The primary ideals in a primary decomposition of a describe the
irreducible components and their subvarieties. Thus the minimal primes are then the radical ideals
describing the maximal irreducible subvarieties, i.e., the irreducible components of X .

Proposition 4.3.9. Let a be any Z2-graded ideal in A. Then any prime ideal p containing a also
contains a minimal prime associated to a. Hence the minimal primes associated to a are precisely
the minimal ones among the prime ideals containing a.

Proof. Let p be a prime ideal containing a. Then
√

p = p ⊃ √a = ∩pi, where the pi are the prime
ideals associated to a. In fact, the intersection only goes over the minimal primes associated to a.
By the same reasoning as in the proof of lemma 4.1.4 we see p must contain one of the minimal
pi. Since a ⊂ √a = ∩{p | p is a minimal prime associated to a}. Hence a is contained in all of its
minimal primes. This proves the claim.

We already characterized the radical ideal of an ideal a as the intersection of all prime ideals
containing a in lemma 4.1.13. The intersection only needs to be taken over those prime ideals
containing a that are minimal over a, which are only finitely many in Noetherian superrings. The
following corollary to proposition 4.3.9 relates this to the minimal primes associated to a:

Corollary 4.3.10. The radical ideal of an ideal a is the intersection of the minimal primes asso-
ciated to a.

Remark 4.3.11. Thus we have another proof of the fact that any Z2-graded ideal in a Noetherian
superring only has a finite number of minimal primes among the primes containing it. Taking the
ideal to be the zero ideal, we see that a Noetherian superring only has finitely many minimal prime
ideals. The geometric statement is that any affine variety only has a finite number of irreducible
components.

Proposition 4.3.12. Let a = q1 ∩ . . .∩ qr be a primary decomposition of a and let pi =
√

qi be the
primes associated to a. Then the union of all these prime ideals is given by

∪ipi = {x ∈ Ahomogeneous |(a : x) 6= a} . (4.4)

Proof. The set D of zerodivisors of a superring is given by (see 3.1.4)

D =
⋃

x 6=0homogeneous

Ann(x) ,

hence D =
√
D = ∪x 6=0

√
Ann(x). The annihilator of an element x is given by Ann(x) = (0 : x).

The set E of elements that form the zerodivisors modulo a is thus

E = ∪x/∈a

√
(a : x) .

From lemma 4.2.9 it follows that
√

(a : x) is the intersection of the prime ideals pj such that x /∈ qi.
Thus for x /∈ a we see that the ideal (a : x) is contained in some pj. Hence E ⊂ ∪jpi. On the other

hand, each pi is of the form
√

(a : x), and thus pi is contained in E.

Corollary 4.3.13. The set of zerodivisors of A is the union of the prime ideals associated to 0.



Chapter 5

Localization and completion

In this chapter we discuss two important notions that will be used frequently in the sequel: com-
pletion and localization. The two constructions do not differ much from their counterparts in
commutative algebra. The purpose of this chapter is then to see which properties of localizations
and completions that are familiar for commutative rings do hold for superrings as well. In section
5.2 we apply the knowledge of completions to say more on Artinian superrings and in section 5.3
we specialize to a class of superrings, namely, to quotients of Grassmann algebras. In section 5.4 we
start with a rudimentary version of the theory of superschemes. In the sections starting from 5.5
we discuss completions of superrings. In order to introduce and to work with completions we have
to know some properties of filtered superrings and associated graded superrings. As an application
of the results on filtrations and graded superrings, we discuss the Artin–Rees lemma for superrings
in section 5.7. In section 5.12 we discuss the structure theorem of Cohen for superrings.

5.1 Localization

Let A be a superring. A multiplicative set in A is a set S ⊂ A such that 1 ∈ S and for all a, b ∈ S
the product ab also lies in S. As in general Z2-graded rings, to have a suitable notion of localization
we need a multiplicative set that consists of homogeneous elements only. However, in superrings
the odd elements square to zero and when 0 ∈ S the localized rings are zero. We therefore consider
only those multiplicative sets of a superring A that lie in the even part A0̄.

Let A be a superring and let S be a multiplicative set in A0̄. We define a superring S−1A,
called the localization of A at S, as follows: as a set S−1A is defined to be quotient S×A/ ∼, with
(s, a) ∼ (s′, a′) if and only if there exists z ∈ S with z(as′ − a′s) = 0. We write a/s or a

s for the
equivalence class of (s, a). The multiplication is defined by a/s · a′/s′ = aa′/ss′ and addition by

a

s
+
a′

s′
=
as′ + a′s

ss′
, (5.1)

where it is easily verified that the right-hand side is independent of the chosen representatives. The
unit element is 1/1 and the Z2-grading is given by a/s ∈ (S−1A)j if and only if a ∈ Aj , so that
(S−1A)0̄ ∩ (S−1A)1̄ = 0 and hence (S−1A) = (S−1A)0̄ ⊕ (S−1A)1̄. Note that 0 ∈ S if and only if
S−1A = 0. We denote iS the canonical morphism A→ S−1A that maps a ∈ A to a/1. If S is the
set {fn}n≥0 for some f ∈ A0̄ then we write S−1A = Af .

Proposition 5.1.1. Let A be a superring and S a multiplicative set in A0̄ with canonical morphism
iS : A → S−1A. The localization of A at S has the following universal property: The morphism
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iS : A → S−1A maps elements of S to invertible elements in S−1A and if f : A → B is any
morphism of superrings such that the elements of f(S) are invertible in B, then there exists a
unique morphism of superrings f ′ : S−1A→ B with f ′ ◦ iS = f .

Proof. That all elements in iS(S) are invertible is obvious. Suppose we are given a map f :
A → B. For any s ∈ S we have 1 = f ′(s/s) = f ′(s/1)f ′(1/s) = f ′(iS(s))f ′(1/s) = f(s)f ′(1/s)
so that f ′(1/s) = f(s)−1. We conclude that f ′ is uniquely determined and given by f ′(a/s) =
f ′(iS(a))f(s)−1 = f(a)f(s)−1.

Hence S−1A has the usual universal property; the pair (iS , S
−1A) with the properties announced

in proposition 5.1.1 is therefore determined up to isomorphism. The following two propositions are
straightforward and only rely on the universal property. Also see [18] for the commutative case.

Proposition 5.1.2. Let A and B be superrings and let S be a multiplicative set in A0̄ and T a
multiplicative set in B0̄. Let f : A→ B be a morphism with f(S) ⊂ T . Then there exists a unique
morphism f ′ : S−1A→ T−1B such that the following diagram commutes:

A
f - B

S−1A

?

f ′
- T−1B

?

, (5.2)

where the vertical arrows represent the canonical morphisms. If furthermore we have f(S) = T ,
then f ′ is injective (resp. surjective) when f ′ is injective (resp. surjective).

Proof. Applying the universal property of proposition 5.1.1 to the composite A → B → T−1B
gives a morphism f ′ : S−1A→ T−1B such that diagram (5.2) commutes. The morphism f ′ maps
a/s to f(a)/f(s). Suppose f(S) = T and f(a/s) = 0, then since f(S) = T there is s′ ∈ S with
f(s′)f(a) = 0 but then a/s is already zero. Surjectivity is clear.

Proposition 5.1.3. Let A be a superring, and let S and T be two multiplicative sets in A0̄. Let
iS : A→ S−1A be the canonical morphism and let T ′ = i(T ), then we have a canonical isomorphism
(ST )−1A ∼= (T ′)−1(S−1A).

Proof. If f : A → B is a morphism such that the set f(ST ) consists of invertible elements in B,
then also the set f(S) consists of invertible elements and hence there exists a unique morphism
f ′ : S−1A → B with f ′ ◦ iS = f . The elements f ′(T ′) are invertible in B and hence there exists
a unique morphism f ′′ : T ′−1(S−1A) → B with f ′′ ◦ iT ′ = f ′, where iT ′ : S−1A → T ′−1(S−1A) is
the canonical morphism. We put i = iT ′ ◦ iS , so that f = f ′′ ◦ i. Clearly if g is such that f = g ◦ i,
then (g ◦ iT ′) ◦ iS = f and hence g ◦ iT ′ = f ′. It follows that g = f ′′. Hence T ′−1(S−1A) has the
same universal property as (ST )−1A and therefore (ST )−1A ∼= T ′−1(S−1A)

Localizing commutes with going to the body of a superalgebra in the following sense:

Proposition 5.1.4. Let A be a superring, S a multiplicative set in A0̄ and let S̄ be the image of S
under the projection A→ Ā. Then S−1A ∼= S̄−1Ā.

Proof. The Z2-graded ideal in S−1A generated by the odd elements of S−1A is JA · S−1A. Con-
sider the canonical morphism p : S−1A → S−1A and the morphism g : S−1A → S̄−1Ā given by
a/smodJA · S−1A 7→ ā/s̄. Clearly, the morphism g is surjective. Suppose that a/smod JA · S−1A
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is mapped to zero by g, then there is s′ ∈ S such that s̄′ā = 0. Therefore s′a ∈ JA, which implies
a/s = as′/ss′ ∈ JA · S−1A. Alternatively, one can argue using lemma 5.1.2: we take f : A→ B to
be the projection π : A→ Ā and T = π(S). The kernel of π′ : S−1A→ S̄−1Ā is then found to be
the Z2-graded ideal generated by the nilpotent elements of S−1A.

We now investigate the relation between the Z2-graded ideals of S−1A and the Z2-graded ideals
of A. We use this to prove that the localizations of Noetherian rings are Noetherian.

Lemma 5.1.5. Let A be a superring, S a multiplicative set in A0̄ and i : S → S−1A the canonical
morphism. If I is a Z2-graded ideal in S−1A, then i−1(I) · S−1A = I.

Proof. Clearly i−1(I) · S−1A ⊂ I. Conversely, if a/s ∈ I then a ∈ i−1(I) and thus it follows that
a/s ∈ i−1(I) · S−1A.

Using lemma 5.1.5 the proof of the following corollary is trivial:

Corollary 5.1.6. The map Ψ : I 7→ i−1(I) is an injective map from the set of Z2-graded ideals in
S−1A to the set of Z2-graded ideals in A. Furthermore the map Ψ preserves inclusions.

Corollary 5.1.7. Let A be a Noetherian superring and S a multiplicative set in A0̄. Then S−1A
is Noetherian.

Proof. If I is a Z2-graded ideal in S−1A, then I = i−1(I)·S−1A and i−1(I) is finitely generated.

Proposition 5.1.8. Let A be a superring, S a multiplicative set in A0̄ and i : A → S−1A the
canonical morphism. There is a one-to-one inclusion preserving correspondence between the prime
ideals in S−1A and the prime ideals in A not meeting S.

Proof. By lemma 4.1.6, if p is a prime ideal in S−1A then i−1(p) is a prime ideal in A. For aZ2-graded ideal I in A let I ′ denote the Z2-graded ideal generated by i(I) in S−1A. Let p be a
prime ideal in A not meeting S and suppose that p′ is not proper - that is p′ = S−1A. Then there
exists p ∈ p and s ∈ S with p/s = 1 and thus there exists s′ ∈ S with s′(p − s) = 0, which is

impossible since p ∩ S = ∅. If a
s ,

a′

s′ ∈ S−1A with aa′

ss′ ∈ p′, then there is p ∈ p and z ∈ S with
aa′

ss′ = p
z and hence there is z′ ∈ S with aa′zz′ ∈ p and hence a or a′ in p. Hence p′ is a prime ideal.

If p is a prime ideal in A not meeting S then p ⊂ i−1(p′). If x ∈ i−1(p′) then x/1 ∈ p′ and hence
there is p ∈ p and s ∈ S with p/s = x/1 and thus there is s′ ∈ S with s′p = s′sx and thus x ∈ p.
Thus p = i−1(p′) and by lemma 5.1.5 for any prime ideal q in S−1A we have (i−1(q))′. It is clear
that the correspondence between the prime ideals in S−1A and the prime ideals in A not meeting
S is inclusion preserving.

For any prime ideal p in a superring A, the set S = A− p is multiplicative. In this case we use
the notation S−1A = Ap.

Proposition 5.1.9. Let A be a superring and p a prime ideal in A, then Ap is a local ring with
maximal ideal the Z2-graded ideal generated by the image of p in Ap.

Proof. Denote p′ the Z2-graded ideal in Ap generated by the image p in Ap. Any element not in p′

is invertible and p′ 6= Ap.

Proposition 5.1.10. Let A be a superring, p a prime ideal in A. Denote p̄ the image of p in Ā,
then Ap

∼= (Ā)p̄

Proof. Immediate from proposition 5.1.4.



42 Localization and completion

Consider a prime ideal p ⊂ A. There is a relation between the localizations Af , where f runs
over the homogeneous elements that are not contained in p, and the localization Ap. In order to see

this relation we need to define a direct system. Suppose that f ∈
√

(g) for some even f, g ∈ A, then
fn = ag for some integer n and some even a. Hence we have an induced morphism ψg,f : Ag → Af
given by ψg,f : b/gs 7→ bas/fns. The induced morphism does not depend on the choice of n and a.

One checks, that if f ∈
√

(g) and g ∈
√

(f), then the maps ψf,g : Af → Ag and ψg,f : Ag → Af
are each others inverse. We define the direct system (ψg,f : Ag → Af ; f ∈

√
(g))f,g/∈p to be

the category of all localizations Af , where f /∈ p and f ∈ A0̄, and with morphisms the maps

ψg,f : Ag → Af , whenever f ∈
√

(g). We define the (direct) limit of this direct system as the direct
product superring

∐
f /∈p

Af modded out by the following equivalence relation: we call a/f ∈ Af
equivalent to a′/f ′ ∈ Af ′ if there is an element g ∈ A − p with g ∈

√
(f) ∩

√
(f ′) such that

ψf,g(a/f) = ψf ′,g(a
′/f ′) in Ag. One easily checks that this defines a superring, which we denote

lim−→f /∈p
Af . Furthermore, there are canonical insertions if : Af → Ap, which send a/f in Af to the

equivalence class of a/f in lim−→f /∈p
Af . The insertions if are morphisms of A-modules.

Lemma 5.1.11. Let A be a superring, p a prime ideal. The superring lim−→f /∈p
Af is characterized

uniquely by the following universal property: The canonical insertions if : Af → lim−→f /∈p
Af commute

with the maps ψf,g : Af → Ag, for g ∈
√

(f), that is, ig ◦ ψf,g = if . If Z is any A-module together
with morphisms of A-modules jf : Af → Z with jg ◦ ψf,g = jf , then there is a unique morphism of
A-modules ψ : lim−→f /∈p

Af → Z such that the following diagram commutes for all even f, g ∈ A− p

with g ∈
√

(f):
Af

ψf,g

- Ag

lim−→
f /∈p

Af

if

�

if
-

Z

ψ

?

fg

�

jf

-

. (5.3)

Proof. That for all even f, g ∈ A − p with g ∈
√

(f) we have ig ◦ ψf,g = if is obvious. To get the
morphism from lim−→f /∈p

Af to Z we note that the image of any equivalence class of a/f is completely

determined by the image of a/f under jf in Z. When we denote [a/f ] for the equivalence class of
a/f in lim−→f /∈p

Af we thus have ψ([a/f ]) = jf (a/f). As the jf commute with the maps ψf,g the

morphism ψ is well-defined.

Proposition 5.1.12. We have the following isomorphism of A-modules:

lim−→
f /∈p

Af ∼= Ap . (5.4)

where the limit goes over all even f ∈ A that are not in p.

Proof. The isomorphism is given by the map ϕ that sends the equivalence class of a/f r in lim−→f /∈p
Af

to the element a/f r in Ap. The map ϕ is clearly surjective, so we show injectivity. Suppose a/f r
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is in the kernel of ϕ, then there is some even g ∈ A− p such that ga = 0. In particular, f rgra = 0.
But then the element agr/f rgr = 0 as an element of Afg, which shows that a/f r is equivalent to
zero in lim−→f /∈p

Af .

For a given superring A, we denote SA the set of elements a in A such that ā 6= 0, where ā
denotes the image of a in the body Ā. The set SA is a multiplicative set if and only if JA is a prime
ideal. In that case we define Frac(A) to be S−1

A A = AJA
and call it the superring of fractions of A.

The superring Frac(A) is a local superring and Frac(A) is isomorphic to the field of fractions of the
integral domain Ā. In particular, the body of Frac(A) is a field.

Let A be a superring and let M be an A-module. For a multiplicative set S in A0̄ we construct
an A-module S−1M as follows: we consider on the product S×M the equivalence relation (s,m) ∼
(s′,m′) if and only if there is z ∈ S with z(sm − s′m) = 0 in M . We let m/s or m

s denote the
equivalence class of (s,m) and define addition by

m

s
+
m′

s′
=
ms′ +m′s

ss′
, (5.5)

where the right-hand side is independent of the choice of representatives. The action of A is defined
by a ·m/s = (am)/s. We denote jS : M → S−1M the canonical morphism sending m to m/1. We
call S−1M the localization of M at S.

Lemma 5.1.13. Let A be a superring, S a multiplicative set in A0̄ and M an A-module. Then
S−1A⊗AM ∼= S−1M as A-modules.

Proof. Define f : S−1A⊗AM → S−1M and g : S−1M → S−1A⊗AM by

f :
a

s
⊗m 7→ am

s
, g :

m

s
7→ 1

s
⊗m. (5.6)

Then f ◦ g = idS−1M and g ◦ f = idS−1A⊗AM . Clearly f and g preserve the parity and commute
with the (left and right) action of A.

The module S−1M also has a universal property:

Proposition 5.1.14. Let M be an A-module, S a multiplicative set in A0̄ and jS : M → S−1M
the canonical morphism. Then the A-module S−1M has the following universal property: For all
s ∈ S the A-linear map ls : S−1M → S−1M given by ls : x 7→ sx is invertible. For any A-module
N such that for all s ∈ S the linear map ls is invertible and f : M → N a morphism of A-modules,
there exists a unique morphism f ′ : S−1M → N such that f ′ ◦ jS = f .

Proof. Suppose we are given a module N such that for all s ∈ S the A-linear map ls is invertible
and a morphism f : M → N . Existence of the morphism f ′ : S−1M → N follows when we define
f ′(m/s) = (ls)

−1f(m) and uniqueness follows from f(m) = f ′(jS(m)) = f ′(s ·m/s) = s ·f ′(m/s) =
ls(f

′(m/s)).

The linear map ls : S−1M → S−1M given by ls : x 7→ sx is called the linear homothety along
s, also see [18]. Using proposition 5.1.14 we immediately obtain:

Corollary 5.1.15. Let A be a superring, M an A-module and S a multiplicative set in A0̄ such
that ls : m 7→ sm is invertible for all s ∈ S, then S−1M ∼= M . In particular, when we denote
iS : A→ S−1A the canonical morphism, then if S′ ⊂ iS(S) we have S′−1(S−1A) ∼= S−1A.

We also have the analogue of proposition 5.1.3:
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Proposition 5.1.16. Let A be a superring and S and T multiplicative sets in A0̄. Denote T ′ =
iS(T ) the image of T in S−1A. For any A-module M we have (ST )−1M ∼= T ′−1(S−1M).

Proof. The proof is exactly the same as the proof of proposition 5.1.3.

Proposition 5.1.17. Let A be a superring and let M ′,M,M ′′ be A-modules. The sequence of
A-modules

0 - M ′ f - M
g - M ′′ - 0 , (5.7)

with morphisms f and g is exact if and only if the sequence

0 - S−1M ′ f ′

- S−1M
g′- S−1M ′′ - 0 (5.8)

is exact for all multiplicative sets S in A0̄, where f ′ and g′ are the induced morphisms as in
proposition 5.1.2.

Proof. For the ‘if’-part, put S = {1}. To prove the ‘only if’-part: Suppose that for m′ ∈ M ′,
f ′(m′/s) = 0, then there is s′ ∈ S with f(s′m′) = s′f(m′) = 0 and thus s′m′ = 0 and m′/s = 0.
Therefore f ′ is injective. Clearly g′ ◦ f ′ = 0 and g′ is surjective. If for m ∈ M , g′(m/s) = 0 there
is s′ ∈ S with s′m = f(m′) for some m′ ∈ M ′. But then m/s = f(m′)/ss′. This proves that
Im(f ′) = Ker(g′).

Corollary 5.1.18. If N is an A-submodule of M , then we can identify S−1N with an A-submodule
of S−1M and S−1(M/N) with S−1M/S−1N . Furthermore, if f : M → N is a morphism of A-
modules and f ′ : S−1N → S−1M the induced morphism, then Kerf ′ = S−1Kerf and Cokerf ′ =
S−1Cokerf .

If p is a prime ideal in a superring A, then for any A-module M we write Mp for S−1M , where
S = A− p.

Lemma 5.1.19. Let A be a superring and let m and m′ be maximal ideals in A, then (A/m)m′ is
the zero-module if m 6= m′ and is isomorphic to A/m if m = m′. In particular, A/m ∼= Am/mm.

Proof. If m = m′ then all elements in A − m are invertible modulo m. Hence the first part follows
from corollary 5.1.15. If m 6= m′, then there is an even m ∈ m not lying in m′. Consider the
morphism that sends a/s ∈ Am′ to ma/ms in mm′ . This map is injective and surjective. But then
it follows that mm′ ∼= Am′ . Thus (A/m)m′ ∼= Am′/mm′ = 0. The final statement then follows from
localizing the exact sequence 0→ m→ A→ A/m→ 0 at A−m.

Proposition 5.1.20. Let A be a Noetherian reduced superring, that is, Ā contains no nilpotent
elements. Then there is a localization S−1A of A such that S−1A is an integral domain.

Proof. Since A is Noetherian, there are only finitely many minimal primes. Let p1, . . . , pn be the
set of minimal primes of A, and let p̄1, . . . , p̄n bet the corresponding set of minimal primes in A/J .
If n = 1, then p1 ⊃ J and p1 is the nilradical, which contains all nilpotents. Since A/J is reduced,
all nilpotents lie in J and hence p1 = J . So A/J has a unique minimal prime ideal 0 and thus A/J
is an integral domain. Indeed, p̄1 is the nilradical ideal of Ā. But then p̄1 = 0 and Ā is an integral
domain.

Now let n > 1. By assumption, we have ∩ni=1pi = J . It follows that if x ∈ pi but x /∈ pj for
i 6= j, then x̄ 6= 0. By minimality of the pi, for each i > 1 we can find an even xi in pi, with
xi /∈ p1 and thus x̄i 6= 0. The product x = x2x3 · · ·xn lies in the intersection ∩i>1pi, but not in
p1 (hence not nilpotent) and it is even. But then by proposition 5.1.8 Ax is a superring with a
unique minimal prime ideal p1Ax. Thus if J ′ is the Z2-graded ideal generated by the odd elements
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of Ax, then Ax/J
′ has a unique minimal prime, which is the nilradical of Ax/J

′. By proposition
5.1.4 Ax/J

′ ∼= (A/J)x̄. Suppose ā/x̄s ∈ (A/J)x̄ is nilpotent; then there are integers m,n such that
x̄mān = 0 in A/J and hence x̄mā is nilpotent, but since A/J is reduced x̄mā = 0 and thus ā/x̄s = 0.
Hence 0 = Nilrad(Ax/J

′) is the unique minimal prime and thus Ax/J is an integral domain.

We end this section with a useful lemma that tells us that two modules are isomorphic if all
localizations at maximal ideals are isomorphic.

Lemma 5.1.21. A morphism ϕ : M → N is injective (resp. surjective) if and only if all induced
morphisms ϕm : Mm → Nm are injective (resp. surjective), where m ranges over all the maximal
ideals of A.

Proof. First, suppose m goes to zero in Mm for all maximal ideals m. When m goes to zero in Mm,
both its homogeneous parts go to zero and we may assume that m is homogeneous. The annihilator
of m is contained in no maximal ideal and hence equals A and thus m = 0. We obtain that M = 0
if and only if Mm for all maximal ideals m.

We have Ker(ϕm) = (Kerϕ)m, hence if Ker(ϕm) = 0 for all maximal ideals m then Kerϕ = 0.
We also have (Cokerϕm) = (Cokerϕ)m. Hence Cokerϕ = 0 if and only if (Cokerϕ)m = 0 for all
maximal ideals m.

5.2 Application to Artinian superrings

We now apply the results of the previous section to get more insight into Artinian superrings.

Proposition 5.2.1. If M is an R-module of finite length l(M) = n and m and n are different
maximal ideals in R, then (Mm)n = 0

Proof. We take a composition series of M and localize at m:

Mm = (M0)m ⊃ (M1)m ⊃ . . . ⊃ (Mn)m = 0 . (5.9)

We know that the quotients Mi/Mi+1 are simple, and hence by lemma 5.1.19 after localizing with
respect to m some terms become equal: if m 6= Ann(Mi/Mi+1) then (Mi)m = (Mi+1)m. Hence we
get a composition series for Mm = M ′

0 ⊃ M ′
1 . . . ⊃ M ′

r = 0 and r ≤ n by deleting the redundant
and for all i we have Ann(M ′

i/M
′
i+1) = m. If we localize this series with respect to n we get a

composition series for (Mm)n with all quotients zero; all terms in eqn.(5.9) are equal and thus
zero.

Using proposition 5.2.1 we immediately obtain:

Corollary 5.2.2. The length of Mm is the number of times that R/m or Π(R/m) appears in any
composition series of M ; hence the number of times R/m or Π(R/m) appears in a composition
series is independent of the composition series.

Corollary 5.2.3. If M has finite length the maps M → Mm for a maximal ideal m in A make
together an isomorphism

M ∼= ⊕m max.idealMm . (5.10)

Proof. By lemma 5.1.21 it is sufficient to check that Mn
∼= (⊕m max.idealMm)n for all maximal ideals

n. But M has finite length and thus (Mm)n
∼= Mm if m = n and zero otherwise. But then each

morphism Mn → (⊕mmax.idealMm)n
∼= Mn is the identity, and thus an isomorphism.
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Corollary 5.2.4. Any Artinian superring A is a finite direct product of local Artinian rings.

Proof. As A-modules we have A = ⊕mAm where the sum is over all maximal ideals and by theorem
4.1.29 there are only finitely many summands. The direct product algebra

∏
m
Am is as A-module

just the direct sum. All maps A→ Am are superring morphisms, and hence the map A→ ∏
m
Am

is a superring morphism.

Lemma 5.2.5. Let A be a superring with canonical ideal JA. If JA is Artinian as an A-module
and Ā is an Artinian algebra, then A is an Artinian superring.

Proof. Since Ā is an Artinian algebra, Ā is an Artinian A-module, where the action of a ∈ A on
b̄ ∈ Ā is given by (a, b̄) 7→ āb̄. Given a composition series of Ā and JA we can concatenate them to
get a composition series of A.

Proposition 5.2.6. If A is a superalgebra that is a finite-dimensional super vector space over k,
then A is a finite product of local superalgebras Ai and the elements of the maximal ideals of the Ai
are nilpotent.

Proof. Since A is finite-dimensional, it is Artinian and by theorem 4.1.29 there are only finitely
many maximal ideals m1, . . . ,mr. By corollary 5.2.4 A is a direct product of local superalgebras.
For every maximal ideal mi of A we have a component Ai and the maximal ideal of Ai is the
restriction of mi to Ai. Hence every prime ideal in Ai coincides with the maximal ideal in Ai. But
the nilradical is the intersection of the prime ideals, hence the maximal ideal in Ai coincides with
the nilradical.

5.3 Geometric superalgebras

We consider superalgebras over a fixed field k. We call a superalgebra A properly geometric if
Ā = k. If Ā is a field, then Ā is an extension of k and in case Ā is a proper extension of k, we call
A geometric.

Note that all properly geometric superalgebras over k have split bodies. All superrings that
have a trivial odd part have a split body. If A is a superring with a split body, then A has a
sub superring isomorphic to Ā, since the splitting morphism is injective. Thus a geometric split
superalgebra A is a quotient of Ā[θi; i ∈ I] for some index set I.

Lemma 5.3.1. Let A be a finitely generated superalgebra over k. If A is geometric, then Ā is an
algebraic extension of k.

Proof. Ā is a finitely generated k-algebra and it is a field. Thus we are in the situation of the weak
Nullstellensatz, which states that Ā is algebraic over k (see for example [16, 17, 53]).

The Grassmann algebras over k are defined by Λn = k[θ1, . . . , θn], where θj are odd variables.
The Grassmann algebras have a few remarkable properties: (i) Λn has only one prime ideal Jn,
which is the Z2-graded ideal generated by the odd elements. (ii) ΛJn

∼= Λn. (iii) Λn is properly
geometric. (iv) Λn is finitely generated. (v) Λn has a split body. (vi) Λn is finite-dimensional. If a
superalgebra satisfies the properties (iii) and (v), then it is a quotient of a Grassmann algebra by
the following lemma:

Lemma 5.3.2. Let A be a finitely generated properly geometric superalgebra over k. Then A is a
quotient of a Grassmann algebra.
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Proof. The body of A is isomorphic to the field k, which is Artinian. Since A is finitely generated,
there are a finite number of odd generators η1, . . . , ηn. Given x ∈ A, then x − x̄ =

∑
riηi and

ri − r̄i =
∑
rijηj , rij − r̄ij =

∑
rijkηk and so on. The process terminates since there are finitely

many ηi. Hence x can be expressed in terms of the ηi with k-coefficients.

Corollary 5.3.3. If A is an Artinian properly geometric superalgebra, then A is a quotient of
a Grassmann algebra. In particular, any finite-dimensional properly geometric superalgebra is a
quotient of a Grassmann algebra.

We note that if a superalgebra A is geometric, there is only one prime ideal, namely JA. The
elements of JA are nilpotent so that any element not in JA is invertible. Hence localizing A at JA
gives AJA

∼= A.

Lemma 5.3.4. Let A be a finite-dimensional superalgebra over k and suppose Ā ∼= k × · · · × k,
then A is a direct product of quotients of Grassmann algebras.

Proof. By proposition 5.2.6 we know that A is a product algebra of the localizations at different
maximal ideals of A; A ∼= A1 × · · · × Ar. The Ai are local and the elements of the maximal ideals
in Ai are nilpotent. Taking the body gives Ā ∼= Ā1 × · · · × Ār ∼= k × · · · × k and assume there
are s copies of k. The projection to the body preserves idempotents, and hence the unit element
ei of Ai is a sum of the basis idempotents fj . But then r ≤ s. On the other hand, Ā1 × · · · × Ār
contains r independent idempotents, hence r ≥ s and thus r = s. Clearly, k ⊂ Āi for all i, and if
Āi is contained in a product k× · · · × k, then Āi must be contained in one of the factors; otherwise
the 1 of Āi cannot be a zerodivisor of the 1’s of the all the other Aj , j 6= i.

Proposition 5.3.5. Let A be a Noetherian geometric superring and let M be a finitely generated
A-module. Then M is a finite-dimensional super vector space over Ā, say of dimension p|q, and if
e1, . . . , ep+q is a standard basis of M , then the preimages of the ei in M generate M .

Note that with a standard basis we mean that for 1 ≤ i ≤ p the ei are even and for p+ 1 ≤ j ≤
p+ q the ej are odd.

Proof. We denote the preimages of the ei in M by the same symbol. For x ∈ M we can find
ai ∈ A such that x −∑

i aiei ∈ JM . Call N the submodule of M generated by the ei, so that
M = N +JAM . Then it follows that JA(M/N) = M/N . Since each element of JA is nilpotent and
JA is finitely generated, there exists an integer s such that (JA)s = 0. Combining these observations
we conclude that M/N = (JA)sM/N = 0.

5.4 Superschemes

5.4.1 The affine superscheme

Let A = A0̄⊕A1̄ be a superring. We know there is an inclusion preserving one-to-one correspondence
between the prime ideals in A and the prime ideals in Ā. Now consider A0̄ as a commutative ring. It
has an ideal A2

1̄, which is contained in all prime ideals. Furthermore, we have Ā ∼= A0̄/A
2
1̄ so that we

conclude that there is an inclusion preserving one-to-one correspondence between the prime ideals
of A0̄ and A. We use this fact to associate a topological space to each superring. This topological
space we equip with a sheaf of superrings. The result is called an affine superscheme and a general
superscheme has to look locally like an affine superscheme. The presentation below is very similar
to the usual expositions of the construction of the spectrum of a commutative ring. Therefore the
discussion will be rather short and some proofs are omitted. All omitted proofs for the commutative
case can be found in the textbooks [54, 55] and can be copied almost literally for the super case.
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The topological space

For any commutative ring R, we denote Spec(R) the topological space of prime ideals. The topology
is defined by prescribing the closed sets. The closed sets of Spec(R) are the sets

V (a) = {p ∈ Spec(R) | p ⊃ a} , (5.11)

where a is any ideal in R. If a is generated by a single element f ∈ R, we also write V (f) for V (a).
One easily checks that V (a) ∪ V (b) = V (ab) = V (a ∩ b) and V (

∑
i ai) =

⋂
i V (ai), so that the

closed sets V (a) indeed define a topology. For any f ∈ R we define the principal open set D(f) by

D(f) = {p ∈ Spec(R) | f /∈ p} . (5.12)

Equivalently, we can define D(f) as the complement of V (f). If J is any ideal in R that is contained
in the nilradical of R, then the projection π : R→ R/J induces a continuous map

π′ : Spec(R/J)→ Spec(R) , π′(p) = π−1(p). (5.13)

As J is contained in the nilradical, the map π′ is a bijection and one easily checks that its in-
verse, which sends q ∈ Spec(R) to q modJ ∈ Spec(R/J), is continuous. Hence π′ is in fact a
homeomorphism. Thus for any superring A there is a homeomorphism of topological spaces:

Spec(Ā) ∼= Spec(A0̄) , (5.14)

induced by the projection A0̄ → Ā ∼= A0̄/A
2
1̄. To any superring A we now associate the topological

space Spec(A0̄) and call it the spectrum of A. For convenience, we mostly work with the description
of the spectrum of A as the topological space of prime ideals of A0̄, although describing the spectrum
as the prime ideals of Ā is equivalent. The following lemma gives some properties of the principal
open sets on Spec(A0̄):

Lemma 5.4.1. Let A be a superring, then we have:

(i) If F = {fi | i ∈ I} is a set of elements of A0̄, then
⋃
i∈I D(fi) = Spec(A0̄) if and only if the

ideal generated by the fi is A. Thus, the principal open sets D(fi) cover Spec(A0̄) if and
only if there are finitely many fi1 , . . . , fik in F and finitely many a1, . . . , ak ∈ A such that

1 =
∑k
j=1 ajfij .

(ii) D(a) ⊂ D(b) if and only if V (b) ⊂ V (a) if and only if
√

a ⊂
√

b. In particular, D(f) ⊂ D(g)
if and only if f ∈ √g.

(iii) D(f) ∩D(g) = D(fg).

(iv) If D(f) = D(g), then Af ∼= Ag.

(v) The principal open sets form a basis of the topology.

Proof. (i): The functions fi generate A0̄ in A0̄ if and only if they generate A in A. Hence we are
back in the commutative case. (ii): The first equivalence is trivial. For the second; V (b) ⊂ V (a) if
and only if any prime ideal that contains b also contains a. But

√
a is the intersection of the prime

ideals that contain a. (iii): A prime ideal p does not contain f and g if and only if it does not
contain fg. (iv): By (ii) there are a, b ∈ A and integers m,n such that fn = ag and gm = bf . We
have a natural morphism Af → Ag that maps c/fs to cbs/gms and a natural morphism Ag → Af
that maps d/gt to dat/fnt. Since fmn = ambf and abng = gmn, these maps are isomorphisms. (v):
Any open set U is the complement of a set V (a) for some Z2-graded ideal in A. This complement
is not empty if there exists an even a ∈ a that is not contained in some prime ideal p. Then
D(a) ⊂ U .
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The sheaf

We now equip the topological space Spec(A0̄) with a sheaf O of superrings, such that the stalks
are local rings. In this way, Spec(A0̄) becomes a locally superringed space. First we describe some
properties that we want the sheaf to have. Then we define the sheaf and state as a proposition that
the sheaf indeed has the desired properties.

The stalk at p of the sheaf O is defined as the inductive limit lim−→p∈U
O(U), denoted Op and

we want it to be Ap. This is in analogy with the case for commutative rings. Also, if we have a
morphism of superrings ψ : A→ B, then for any prime ideal q of B, the preimage ψ−1(p) is a prime
ideal of A and we have an induced morphism ψp : Aψ−1(p) → Bp.

On the principal open sets D(f) we want that O(D(f)) = Af . We thus only allow even f for
the principal open sets. If D(f) ⊂ D(g) then fn = ag for some a ∈ A, from which we conclude
that there is a natural morphism Ag 7→ Af given by

b

gm
7→ amb

fmn
. (5.15)

The map Ag 7→ Af is well-defined and does not depend on the choice of the exponent n and the
element a. If we have inclusions D(f) ⊂ D(g) ⊂ D(h), then one easily checks that the following
diagram commutes:

Ah - Af

Ag

-

-
. (5.16)

Furthermore, if D(f) = D(g), then by lemma 5.4.1 we have Af ∼= Ag. The assignment D(f) 7→
Af therefore defines a presheaf on the principal open sets. The following lemma shows that the
assignment in fact gives a sheaf on the principal open sets:

Lemma 5.4.2. Suppose D(f) = D(f1) ∪ . . . ∪D(fk).

(i) If s ∈ Af goes to zero for all maps Af → Afi
, then s = 0 in Af .

(ii) If a set of elements si ∈ Afi
is given, such that si and sj have the same image in Afifj

for
all 1 ≤ i, j ≤ k, then there is an element s ∈ Af that has image si in Afi

for all i.

Proof. As D(f) ∼= Spec(Af ) it is sufficient to prove the lemma for f = 1. For (i): s goes to zero in
Afi

if and only if there is an integer N such that fNi s = 0 for all i. But as the D(fi) form a cover,
there is a relation 1 = f1a1 + . . .+ fkak. But then s = 1s = (f1a1 + . . .+ fkak)

Nks = 0. For (ii):
We can write si = ai/f

n
i for some n and some ai ∈ A. That the images of si and sj agree in Afifj

means that aif
n
j /(fifj)

n = ajf
n
i /(fifj)

n. But then there is an integer m such that

(fifj)
m

(
aif

n
j − ajfni

)
= 0 , for all i, j . (5.17)

We define bi = aif
m
i and write si = bi/f

m
i . Then eqn.(5.17) reads bif

n+m
j = bjf

n+m
i . From

Spec(A0̄) = ∪D(fi) = ∪D(fn+m
i ) we infer that there is a relation 1 =

∑
i cif

n+m
i for some even ci.

Define s =
∑

i cibi, then as sfn+m
i = bi we see that the image of s in Afi

is si.

With these preliminaries we can give the general definition of the sheaf on Spec(A0̄). To check
that it is really a sheaf is then further an exercise in dealing with sheaves and can be found in the
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textbooks [55] and [54]. On an arbitrary open set U ⊂ Spec(A0̄) we define O(U) as follows: O(U)
is the superring of all functions s : U →∐

p∈U Ap, s : p 7→ sp, such that sp ∈ Ap and for all p in U
there exists an open neighborhood V of p and elements a ∈ A and f ∈ A0̄, with f /∈ q for all q ∈ V ,
such that sq equals the image of a/f in Aq for all q ∈ V . As the principal sets form a basis of the
topology, we may in fact always assume that V = D(f). We call the sheaf O associated to A the
structure sheaf of Spec(A). We now state that the given definition of the structure sheaf O has the
required properties:

Proposition 5.4.3. Let A be a superring and let O be the sheaf of superrings on Spec(A0̄) defined
above. Then

(i) On the principal open sets we have O(D(f)) = Af .

(ii) The stalk at p is Ap.

Proof. We only indicate the proof and refer for the details to [54,55]. (i) is proved in 5.4.2(ii). For
(ii): the principal open sets are a basis for the topology and hence in calculating the inductive limit
lim−→p∈U

O(U) we can take the limit over the principal open sets. If f ∈ √g, we have a morphism

Ag → Af , which we use to construct the direct system (Ag → Af : f, g /∈ p, and f ∈ √g); the limit
of this direct system is then the stalk at p. But the map

ϕ : lim−→
f /∈p

Af → Ap ,
a

f
7→ a

f
∈ Ap , (5.18)

is an isomorphism of superrings by proposition 5.1.12.

From proposition 5.4.3 we see that the stalks are local rings, and the global sections are the
elements of A.

If p is a prime ideal in A and s is a section that is defined in some open neighborhood U of p,
then we write sp for the image of s in Ap. The ‘function value’ of s in p is defined as the image
of sp in Ap/mp, and is denoted s(p). All odd sections thus have zero value at any point, but as
sections they are not zero.

5.4.2 The general superscheme

To define the category of superschemes is then done in a similar way as the category of schemes is
constructed. We define a locally superringed space to be a pair (X,OX), where X is a topological
space and OX is a sheaf of superrings on X such that the stalks OX,x are local superrings for
all x ∈ X . A morphism of locally superringed spaces (X,OX) → (Y,OY ) is a pair (ϕ, ψ) with
ϕ : X → Y a continuous map and ψ a set of morphisms ψU : OY (U) → OX(ϕ−1(U)) for all open
sets U ⊂ Y satisfying the following two conditions: (i) The ψU are compatible with restrictions,
that is, for all inclusions V ⊂ U ⊂ Y the following diagram commutes

OY (U)
ψU - OX(ϕ−1(U))

OY (V )
?

ψV - OX(ϕ−1(V ))

?

. (5.19)

In diagram (5.19) the vertical arrows are the restriction maps. (ii): Because of the compatibility
of the morphisms ψU , there is an induced morphism on the stalks ψx : OY,ϕ(x) → OX,x, which we
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require to be a local morphism. That is, if mϕ(x) is the maximal ideal of OY,ϕ(x) and mx is the
maximal ideal of OX,x then ψx(mϕ(x)) ⊂ mx, or equivalently, ψ−1

x (mx) = mϕ(x).

Definition 5.4.4. Let X be a topological space with a sheaf OX of local superrings. We say that
(X,OX) is a superscheme if for each point x ∈ X there is an open neighborhood U of x such
that the topological space U equipped with the restriction of the sheaf OX to U is isomorphic as a
locally superringed space to an affine superscheme Spec(A0̄) with its sheaf of superrings. If (X,OX)
and (Y,OY ) are two superschemes then a morphism of superschemes is a morphism f = (ϕ, ψ) :
(X,OX)→ (Y,OY ) of locally superringed spaces.

It follows from the definition that for a superring A, the topological space X = Spec(A0̄)
equipped with the sheaf of superrings O : D(f) 7→ Af defines a superscheme. We denote Ssch the
category of superschemes. For a superring A, we also write Spec(A) for the superscheme constructed
from A.

Proposition 5.4.5. Let (X,OX) be a superscheme and let A be a superring. Denote (Y,OY ) the
superscheme associated to the spectrum of A. Then the natural morphism

Γ : HomSsch((X,OX), (Y,OY ))→ HomsRng (A,OX(X)) (5.20)

that sends a morphism of superschemes f = (ϕ, ψ) to the morphism of superrings ψY : A→ OX(X),
is a bijection.

Proof. First we show that Γ is injective. Let f = (ϕ, ψ) be a morphism and let Γ(f) : A 7→ OX(X)
be the map on global sections. For any x ∈ X the image ϕ(x) is recovered by

ϕ(x) =
{
a ∈ A | aϕ(x) ∈ mϕ(x)

}

=
{
a ∈ A | ψx(aϕ(x)) ∈ mx

}

= {a ∈ A | (ψX(a))x ∈ mx} .
(5.21)

Indeed, the first equality follows from the fact that for any prime ideal p ⊂ A the kernel of the
map A→ Ap → Ap/mp is precisely p. The second equality follows from the fact that ψp is a local
morphism. The third equality follows since ψ is compatible with restrictions to any open subset in
X , so that the following diagram commutes

A = OY (Y )
ψX - OX(X)

Aϕ(x) = OY,f(x)

?

ψx

- OX,x
?

. (5.22)

Thus the continuous map ϕ : X → Y is uniquely determined by ψX = Γ(f). To show that the
maps ψU for open sets U ⊂ Y are uniquely determined by ψX as well, we only need to check this
on a basis of the topology, which is given by the principal open sets D(g), for an even element g of
A. Consider the following diagram:

A = OY (Y )
ψX - OX(X)

Ag = OY,D(g)

?

ψD(g)

- OX,ϕ−1(D(g))

?

. (5.23)
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The map ψD(g) is the unique morphism Ag → OX(ϕ−1(D(g))) that makes the diagram com-
mutative. Indeed, the image of the elements in the multiplicative set generated by g under the
composition A → OX(X) → OX(ϕ−1(D(g))) is contained in the set of invertible elements of
OX(ϕ−1(D(g))). But then there is one unique morphism Ag 7→ OX(ϕ−1(D(g))) such that the
diagram commutes by the universal property of the localized superring Ag (see proposition 5.1.1).
Thus the map Γ is injective.

To prove surjectivity of Γ, we first assume X = Spec(B) for some superring B and that a
morphism of superrings χ : A → B is given. As alluded before, this induces a morphism χp :
Aχ−1(p) → Bp for any prime ideal p ⊂ B. By the above, we know that there is only one possible
continuous map ϕ : X → Y , which is easily seen to be ϕ(p) = χ−1(p) for any prime ideal p ⊂ B.
The map ϕ is then continuous since for any principal open subset D(g) ⊂ Y we have

ϕ−1(D(g)) =
{
p ⊂ B , prime ideal | g /∈ χ−1(p)

}

= {p ⊂ B , prime ideal | χ(g) /∈ p}
= D(χ(g)) .

(5.24)

As the D(g) are a basis, ϕ is continuous. Since ϕ−1(D(g)) = D(χ(g)) we immediately see that on
the principal open subsets we can define ψD(g) by the morphism

ψD(g) = χg : Ag → Bχ(g) ,
a

gr
7→ χ(a)

χ(g)r
. (5.25)

The map ψD(g) is then compatible with restrictions: Let D(h) ⊂ D(g), then hn = vg for some
v ∈ A0̄ and χ(h)n = χ(v)χ(g). Thus we have maps Ag → Ah, sending a/gr to avr/hnr and
Bχ(g) → Bχ(h) sending b/χ(g)r to bχ(v)r/χ(h)nr. Then the following diagram commutes:

Ag
ψD(g) - Bχ(g)

Ah
?

ψD(h) - Bχ(h)

?

. (5.26)

For any prime ideal p in B, we then consider the compositions Ag → Bχ(g) → Bp, where g runs
over all the even elements of A with χ(g) /∈ p. As the diagram (5.26) commutes, there is a unique
morphism Aχ−1(p) → Bp, which is the induced morphism on the stalks ψp. We see that ψp maps a/g
to χ(a)/χ(g) for any g /∈ ψ−1(p). Thus ψ coincides with the natural morphism χp : Aχ−1(p) → Bp

and we see that ψp is local. The maps ψU for open U ⊂ Y thus combine with ϕ to give a morphism
f = (ϕ, ψ) of superschemes and on the global sections we see that ψX = χ.

Assuming surjectivity of Γ for affine superschemes, let (X,OX) be any superscheme. We can
cover X by affine superscheme (Xα,OXα

), where OXα
is the restriction of OX to Xα. For any

χ : A → OX(X) define χα as the composition of χ with the restriction morphism OX(X) →
OXα

(Xα) = OX(Xα). Then there are morphisms fα = (ϕα, ψα) with ψα(Xα) = χα. The following



5.4 Superschemes 53

diagram commutes due to the definition of χα:

A
χα - OX(Xα)

OX(X)

rα

-

ψ
-

OX(Xβ)

χβ

?

rβ,αβ

-

rβ

�
OX(Xα ∩Xβ)

rα,αβ

?

, (5.27)

where rα, rβ , rα,αβ and rβ,αβ are the restriction morphisms. Hence, we have two morphisms of
superschemes fα, fβ from (Xα ∩Xβ,OXα∩Xβ

) to (Spec(A),OSpec(A)) that give the same morphism
of superrings A → OX(Xα ∩ Xβ). But the map Γ is injective and therefore on the intersections
Xα ∩ Xβ the morphisms fα agree. We can thus glue the fα together to form a morphism f :
(X,OX)→ (Y,OY ).

The following two corollaries are immediate:

Corollary 5.4.6. The object Spec(Z) is terminal in the category of superschemes.

Corollary 5.4.7. The category of affine superschemes is contravariant equivalent to the category
of superrings.

An important example of an affine superscheme is the space An|mk , which is defined as Spec(An|m)
where An|m = k[x1, . . . , xn|ϑ1, . . . , ϑm].

Another way of formulating proposition 5.4.5 is as follows:

Theorem 5.4.8. Let (X,OX) be any affine superscheme and let A be a superring. Any morphism
of superschemes X → Spec(A) factors over Spec(OX(X)):

X - Spec(A)

Spec(OX(X))

-

-
. (5.28)

Remark 5.4.9. Having developed the notion of superschemes so far, one can go on and define
closed sub superschemes, closed immersions, open sub superschemes, and so on. We do not follow
this route, since this is merely scheme- or sheaf-theoretic and has less to do with special properties
of superrings. We refer to [54–56] for the development of these scheme-theoretic notions in the
usual algebro-geometric setting. We content ourselves with indicating that fibred products exist in
the category of superschemes. The scheme-theoretic notions that we will need are defined on the
way. We follow [55].

Definition 5.4.10. Let S = (Z,OZ) be a superscheme. We say a superscheme T = (X,OX) is a
superscheme over S if there is a morphism of superschemes f : T → S. We call f the structural
morphism. If T ′ = (Y,OY ) is another superscheme over S with structural morphism f ′ : T ′ → S,
we define a morphism as a morphism of superschemes g : T → T ′ such that f ′ ◦ g = f .
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Note that the superschemes over a fixed superscheme S form a category. We want to prove the
existence of the fibred product in this category, which is defined as follows:

Definition 5.4.11. Let T = (X,OX) and T ′ = (Y,OY ) be superschemes over S with structural
morphisms f : T → S and f ′ : T ′ → S, then the fibred product of T and T ′ over S is a superscheme
W over S with structural morphism g : W → S and morphisms p : W → T and p′ : W → T ′, such
that the following diagram commutes

W
p - T

T ′

p′

?

f ′
- S

f

?

g

-

, (5.29)

and if Z is any superscheme over S with maps q : Z → T and q′ : Z → T ′ such that f ◦ q = f ′ ◦ q′,
then there is a unique morphism h : Z → W such that p ◦ h = q and p′ ◦ h = q′. We call p and p′

the projections on to X and X ′ respectively.

Remark 5.4.12. If T = (X,OX) is a superscheme over S with structural morphism f : T → S,
we will often simply write X for T and omit the mention of the structural morphism. If X,Y are
superschemes over S, we write X ×S Y for the fibred product of X and Y over S.

If U is an open subspace of X , then the restriction of the structure sheaf of X to U makes
U in a superscheme, such that for all u ∈ U the stalk of OU at u is the same as the stalk of
OX at u. We call U an open sub superscheme. The inclusion of U in X defines a morphism of
superschemes, which, as one easily verifies, is a monomorphism in the category of superschemes.
Note that by a monomorphism is meant a morphism h : X → Y such that if f, g : W → X are two
morphisms such that h ◦ f = h ◦ g then f = g. A word on notation: if f : X → Y is a morphism of
superschemes and V is an open subset of Y , then with f−1(V ) we mean the superscheme defined
by the topological space f−1(V ) with the structure sheaf given by the restriction of the structure
sheaf of X to f−1(V ).

Lemma 5.4.13. If X = Spec(A) and Y = Spec(B) are superschemes over S = Spec(C) then the
fibred product X ×S Y exists and is isomorphic to Spec(A⊗C B).

Proof. This follows from the (dual) universal property of the tensor product in the category of
C-modules and theorem 5.4.8.

If U is an open sub superscheme of a superscheme X over S, then U is also a superscheme over
S, where the structural morphism U → S is the restriction of the structural morphism X → S to
U .

Lemma 5.4.14. Suppose that the fibred product X ×S Y exists and write p : X ×S Y → X for the
projection to X. If U is an open subset of X, then p−1(U) is isomorphic to U ×S Y .

Proof. The proof is purely diagram manipulating: Write x : X → S and y : Y → S for the structural
morphisms, the restriction of x to U we also denote by x. Suppose f : Z → U and g : Z → Y
are morphisms such that x ◦ f = y ◦ g. Then there is a unique morphism h : Z → X ×S Y , such
that p ◦ h = f . Hence h(Z) ⊂ p−1(U), the morphism h factors over h′ : Z → p−1(U) as h = i ◦ h′,
where i : p−1(U)→ X ×S Y is the canonical injection. As i is a monomorphism, the morphism h′

is unique. Hence p−1(U) has the required universal property of the fibred product.
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Lemma 5.4.15. Let X and Y be superschemes over S. Let {Xi} be a set of open sub superschemes
of X such that the Xi cover X. If all fibred products Xi ×S Y exist, then X ×S Y exists.

Proof. Denote pi : Xi ×S Y → Xi the projection to Xi. Write Uij = p−1
i (Xi ∩Xj), then Uij and

Uji are by the previous lemma 5.4.14 the fibred product isomorphic to (Xi ∩Xj)×S Y . Hence we
have an isomorphism Uij ∼= Uji and we write φij : Uij → Uji for the isomorphism. By the same
reasoning, the open sub superschemes p−1

i (Xi∩Xj ∩Xk), p
−1
j (Xi∩Xj ∩Xk) and p−1

k (Xi∩Xj ∩Xk)
are isomorphic. It follows by the uniqueness of the isomorphisms that the restrictions of φik and of
φjk ◦ φij to Uij ∩ Uik are the same. Hence we can glue the Xi ×S Y together to a superscheme W
(see for example [56, Corollary I.14]). We have morphisms q : W → Y and p : W → X by gluing
the projections Xi ×S Y → Y and Xi ×S Y → Xi together.

Now suppose f : Z → X and g : Z → Y are morphisms such that x◦f = y ◦g, where x : X → S
and y : Y → S are the structural morphisms. We write Zi = f−1(Xi) and find unique morphisms
hi : Zi → Xi ×S Y . By construction of W , the hi glue together to a morphism h : Z → W . The
morphism h is uniquely determined by the hi. Hence W has the required universal property.

Theorem 5.4.16. Let X and Y be superschemes over S. Then the fibred product X ×S Y exists.

Proof. Let {Xi} and {Ya} be affine coverings of X and Y respectively. If S is affine, we can apply
lemma 5.4.15 to conclude that X ×S Ya exists, and thus we apply lemma 5.4.15 again to conclude
that X ×S Y exists.

Now suppose S is arbitrary. Cover S by open affine sub superschemes {Si}. Let Xi = x−1(Si)
and Yi = y−1(Si) where x : X → S and y : Y → S are the structural morphisms. We know that
the fibred products Xi ×Si

Yi exist. One easily sees that Xi ×Si
Yi ∼= Xi ×S Y . Applying again

lemma 5.4.15 proves the theorem.

5.4.3 The underlying scheme

Let X be a superscheme with structure sheaf OX . We define the underlying scheme X of X to
have the same underlying topological space as X , but with the sheaf such that the stalk at x ∈ X
is OX,x = OX,x. Consider the presheaf defined by the assignment U 7→ OX(U) for each open set
U . This is indeed a presheaf: By the commutativity of diagram (3.2) of section 3.1 we have for
each open inclusion U ⊂ V ⊂ X a unique induced restriction res′ : OX(V )→ OX(U) such that the
following diagram commutes

OX(V )
res - OX(U)

OX(V )

?

res′
- OX(U)

?

, (5.30)

where the horizontal arrows are the restrictions and the vertical arrows are the projections to the
body. Thus we have a presheaf and the stalk at x ∈ X of this presheaf is indeed OX,x. If the sheaf
OX,x consists of split superrings, one easily verifies that this presheaf is a sheaf. In the general
case, we define the sheaf OX̄ to be the sheafification of this presheaf. By construction we have a
morphism X → X that ‘embeds’ the underlying scheme into the superscheme X .

Theorem 5.4.17. Let f : X → Y be a morphism of superschemes and let X and Y be the
underlying schemes of X and Y respectively. Then there is a unique morphism of schemes f̄ : X →
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Y such that the following diagram commutes

X
f - Y

X

6

f̄
- Y

6

. (5.31)

Proof. Let f : X → Y denote the morphism of topological spaces and let φU : OY (U) →
OX(f−1(U)) be the morphism on sections over U for any open U ⊂ Y . Then we have an in-
duced morphism on the stalks ϕx : OY,f(x) → OX,x. We define f̄ as follows: as a morphism of
topological spaces, we take the same as f . On the sections we define φ̄U via the stalks. For each
x ∈ X and a ∈ OY,f(x) we define ϕ̄x(ā) = ϕx(a). This is required by the commutativity of 5.31

and fixes the morphisms φ̄U : OY (U) → OX(f−1(U)). Indeed, if τ̄ ∈ OY (U) for some open set
U ⊂ Y , we need to define φ̄U (τ̄ ) as the function that sends p ∈ f−1(U) to ϕ̄p(τ̄f(p)). In this way we
automatically have compatibility with restrictions and thus we have a morphism of ringed spaces.
Now let mx and mf(x) be the maximal ideals of OX,x and OY,f(x) respectively, then by definition
of ϕ̄x we have ϕ̄x(mf(x)) ⊂ mx.

5.4.4 Projective superschemes

We say a superring A is a Z-graded superring if A is a direct sum A =
⊕

i≥0Ai of abelian groups
such that (Ai)0̄ = A0̄ ∩ Ai, (Ai)1̄ = A1̄ ∩ Ai and the multiplication map satisfies AiAj ⊂ Ai+j .
We say an element a of A is homogeneous if it lies in some Ai,0̄ or Ai,1̄. We call an element Z-
homogeneous if it lies in some Ai. We write deg(a) for the Z-degree of a Z-homogeneous element
of A. An ideal a ⊂ A is called homogeneous if for any element a ∈ a also all its homogeneous
components ai,0̄ ∈ Ai,0̄ and ai,1̄ ∈ Ai,1̄ lie in a. Intersection, sum and product of homogeneous
ideals are again homogeneous and an ideal is homogeneous if and only if it can be generated by
homogeneous elements. A homogeneous ideal p is prime if and only if for any homogeneous a, a′ ∈ A
that are not in p also aa′ /∈ p. We denote A+ the homogeneous ideal given by A+ =

⊕
i≥1Ai.

We want to associate a topological space to a Z-graded superring. Following for example [55]
we define Proj(A) to be the set of homogeneous prime ideals in A that do not contain A+. We
give Proj(A) the topology defined by the closed sets V (a) = {p ∈ Proj(A) | p ⊃ a}, where a is any
homogeneous ideal in A. As in the affine case, one easily checks that this indeed defines a topology.
For any even homogeneous f ∈ A+ we define the principal open subset D+(f) to be the subset of
Proj(A) of the homogeneous prime ideals p that do not contain f . As in the affine case, the set
D+(f) is the complement of V (f) and the set of all D+(f), where f runs over all homogeneous
even elements of A+, forms a basis of the topology. Indeed, if V (a) is a closed subset, we choose
a ∈ a0̄ ∩A+, then D+(a) lies in the complement of V (a).

Let {fi ∈ A+ ∩A0̄ | i ∈ I} be a set of even Z-homogeneous elements in A+ such that the fi
generate A+. Then we have Proj(A) =

⋃
i∈I D+(fi), since if p is a homogeneous prime ideal not in

the union, it contains all the fi and thus A+, which is impossible. The converse need not hold. A
counterexample is provided by the commutative Z-graded ring A = k[x, y]/(y2), where A0 = k and
the Z-degrees of x and y are both 1. Then Proj(A) contains only the element p = (y): Suppose a
homogeneous prime ideal p contains f = xm + λxm−1y for some λ ∈ k. Since y ∈ p it follows that
xm ∈ p. But then we need that x ∈ p and it follows that A+ = (x, y) ⊂ p, which is impossible by the
definition of Proj(A). But then D+(x) is an open subset of Proj(A) that covers Proj(A). However,
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x does not generate A+. The following lemma does give a sufficient and necessary condition for a
set of even Z-homogeneous elements to give rise to a covering of Proj(A):

Lemma 5.4.18. Let {fi | i ∈ I} be a set of even Z-homogeneous elements in A+. Then
⋃
i∈I D+(fi) =

Proj(A) if and only if the radical ideal of the ideal (fi : i ∈ I) contains A+.

Proof. Suppose that the radical ideal of (fi : i ∈ I) contains A+. Then any homogeneous prime
ideal p not contained in the union

⋃
i∈I D+(fi) must contain (fi : i ∈ I) and therefore also the

radical of (fi : i ∈ I). But then p ⊃ A+, and thus p does not correspond to a point in Proj(A).
For the converse, suppose that the radical ideal of (fi : i ∈ I) does not contain A+. Then there is
a homogeneous a such that no power of a lies in (fi : i ∈ I). Consider the set Ω of homogeneous
ideals that contain (fi : i ∈ I) but do not contain any power of a. Then Ω is not empty as
(fi : i ∈ I) ∈ Ω and Ω can be partially ordered by inclusion. If {Iα} is some totally ordered
subset of Ω, then

⋃
α Iα is homogeneous, contains (fi : i ∈ I) and does not contain any power

of a. By Zorn, there is a maximal element m ∈ Ω. Suppose, that there are x, y /∈ m that are
homogeneous and that xy ∈ m. Then the homogeneous ideals (m, x) and (m, y) both properly
contain m and thus contain some power of a. There are thus r, s, r′, s′ ∈ A and m,m′ ∈ m such
that ak = (rx + sm) and al = (r′y + s′m′) for some positive integers k, l. It follows then that
ak+r = (rx+ sm)(r′y+ s′m′) ∈ m, which is a contradiction; hence no such x and y exist. Therefore
m is a prime ideal. Since a /∈ m, m does not contain A+. But then m corresponds to a point in
Proj(A) not contained in the union

⋃
i∈I D+(fi). Hence the D+(fi) do not cover Proj(A).

If S is a multiplicative set in A that only contains even Z-homogeneous elements, then the
localization S−1A has a natural Z-grading and is again a superring: For homogeneous a we define
the Z-grading of a/s to be the Z-degree of a minus the Z-degree of s and we call a/s even (resp.
odd) if a is even (resp. odd). The sub superring of all elements of Z-degree zero we denote (S−1A)0.
This is again a superring and all elements are of the form a/s for some Z-homogeneous a ∈ A with
Z-degree equal to the Z-degree of s. In the case where S ⊂ A0, one easily sees that (S−1A)0 is
naturally isomorphic to the superring obtained by localizing A0 with respect to S. If S is the
multiplicative set generated by an even Z-homogeneous element f , then we write A(f) for (S−1A)0.

Lemma 5.4.19. Let S be a multiplicative set of A that only contains even Z-homogeneous elements.
Let T ′ be a multiplicative set inside (S−1A)0 that only contains even elements. Consider the set T
of even elements t ∈ A such that t/s ∈ T ′ for some s ∈ S. Then T is a multiplicative set inside A
that only contains even Z-homogeneous elements and

(T ′)−1(S−1A)0 ∼= ((TS)−1A)0 . (5.32)

Proof. We denote the elements of (T ′)−1(S−1A)0 by (a/s, t/z), where a/s ∈ (S−1A)0 and t/z ∈ T ′.
All elements of (T ′)−1(S−1A)0 are of the form (a/s, t/z), with deg(a) = deg(s), deg(z) = deg(z)
and t ∈ T .

We define a map ϕ : (T ′)−1(S−1A)0 → ((TS)−1A)0 by

ϕ : (a/s, t/z) 7→ az

st
. (5.33)

It is easily checked that ϕ is a well-defined map and preserves the Z2-grading. Furthermore, we
see that ϕ(x) + ϕ(y) = ϕ(x + y) and ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ (T ′)−1(S−1A)0. Therefore
ϕ is a morphism of superrings. Suppose ϕ((a/s, t/z)) = 0, then there are s′ ∈ S and t′ ∈ T so
that s′t′az = 0 in A. But (a/s, t/z) is zero in (T ′)−1(S−1A)0 if and only if there are s′′ and t′′

in S and T respectively, such that s′′t′′a = 0. It follows that Ker(ϕ) = 0. To prove surjectivity,
let a

st ∈ ((ST )−1(A))0 be given with s ∈ S and t ∈ T . It follows that deg(a) = deg(s) + deg(t).
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As t ∈ T , there is an s′ with deg(s′) = deg(t) such that s′/t ∈ T ′. The element (a/ss′, t/s′) of
(T ′)−1(S−1A)0 is thus well-defined and

ϕ : (a/ss′, t/s′) 7→ as′

tss′
∼ a

st
. (5.34)

Lemma 5.4.20. Let f be an even Z-homogeneous element of nonzero Z-degree. Then the map
ϕ : D+(f)→ Spec(A(f)) given by ϕ(p) = (pAf )0 is a homeomorphism.

Proof. We define an inverse morphism as follows: suppose q is a prime ideal in A(f), define ψ(q)
as the set of all elements that are sums of Z-homogeneous elements y for which there exist integers
m,n with ym/fn ∈ q. Then ψ(q) is by construction homogeneous, does not contain f and contains
all odd elements. We thus need to show that ψ(q) is an ideal and is prime. Suppose x, y ∈ ψ(q)
and x, y are homogeneous. If x, y do not have the same Z-degree, then by definition x + y lies in
ψ(q). If x and y have the same Z-degree and the integers a, b, c, d are such that xa/f b and yc/fd

lie in q, then it follows that ad = bc. Thus xac/f bc ∈ q and yac/f bc ∈ q, from which we deduce
(x+ y)2ac/f2bc ∈ q so that x+ y ∈ ψ(q). If a ∈ A is homogeneous and x is a homogeneous element
in ψ(q) with xm/fn ∈ q, then (rx)mdeg(f)/fndeg(r) ∈ q, from which we conclude that rx ∈ ψ(q).
Now suppose x, y ∈ A are homogeneous such that xy ∈ ψ(q), so that there are positive integers
m,n with z = xnyn/fm ∈ q. Then ndeg(x)+ndeg(y) = mdeg(f) and raising z to the power deg(f)
gives

xndeg(f)

fndeg(x)

yndeg(f)

fndeg(y)
∈ q , (5.35)

from which we conclude that ψ(q) is a prime ideal. It is furthermore straightforward to check that
ψ(ϕ(p)) = p for any homogeneous prime ideal p in D+(f) and that ϕ(ψ(q)) = q for any prime ideal
q in A(f).

One easily verifies that p ∈ D+(f) contains the homogeneous even element g ∈ A if and only
if ϕ(p) contains h = gdeg(f)/fdeg(g) ∈ A(f). Thus ϕ(V (g) ∩ D+(f)) ⊂ V (h) and ϕ−1(V (h)) ⊂
V (g) ∩D+(f). But then we must have equalities and thus ϕ is continuous and sends open sets to
open sets. Since we already proved ϕ is a bijection, ϕ is a homeomorphism.

Corollary 5.4.21. Let f be an even Z-homogeneous element of nonzero Z-degree. There is a
one-to-one correspondence between the homogeneous prime ideals of Af and the prime ideals of
A(f).

Proof. There is a one-to-one correspondence between the prime ideals in A not containing f and
the prime ideals in Af . It is easily seen that this correspondence preserves the Z-grading.

For any prime ideal p not containing A+, consider the multiplicative set S of all even Z-
homogeneous elements of A that are not in p. Then the localization S−1A is a Z-graded superring
and contains a sub superring of elements of Z-degree zero. We define A(p) to be this sub superring
of elements of Z-degree zero. It is easily seen that this again defines a superring. We then obtain a
sheaf O on Proj(A) as follows: for any open set U ⊂ Proj(A) we define O(U) to be the superring
of all functions s : U → A(p), such that the image sp of p ∈ U under s lies in A(p) and such that for
all p ∈ U there is an open neighborhood V ⊂ U containing p for which there are Z-homogeneous
a ∈ A and f ∈ A0̄ of the same Z-degree and f /∈ q for all q ∈ V , such that sq coincides with the
image of a/f in A(q) for all q ∈ V . We call O the structure sheaf of Proj(A). We use the notation
(O,Proj(A)) for the topological space Proj(A) equipped with the sheaf of superrings O that we
just defined.
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Lemma 5.4.22. Let p ∈ Proj(A), then the stalk of the sheaf O at p is A(p).

Proof. The stalk can be constructed as follows: Consider the set of all pairs (s, U), where U is an
open neighborhood of p and s ∈ O(U). We define the pairs (s, U) and (t, V ) to be equivalent if
there is an open subset W contained in U and V such that the restrictions of s and t to W are
equivalent as elements in O(W ). The equivalence classes of the pairs (s, U) can then be equipped
with the structure of a superring and the superring obtained in this way is the stalk Op.

By the very definition of the sheaf O on Spec(A) we can assume that for any element (s, U) ∈ Op

the open set U is so large that s is given by a/g for some g /∈ p and a ∈ A with equal degree. Then
there is an obvious morphism Op → A(p) that sends (a/g, U) to the element a/g in A(p). This
implies that the map is well-defined. Clearly, it is surjective. To check injectivity, we assume (s, U)
is mapped to zero. We may then assume s = a/g for some g /∈ p. By assumption there is an even
element h ∈ p such that ha = 0. But then the section s vanishes on U ∩D+(h) and hence (s, U) is
zero in Op.

Proposition 5.4.23. Let f be an even homogeneous element of A+. Then the restriction of the
structure sheaf O of A to D+(f) makes D(f) into an affine superscheme, which is isomorphic to
Spec(A(f)).

Proof. By lemma 5.4.20 the topological spaces D+(f) and Spec(A(f)) are homeomorphic with the
homeomorphism ϕ : D+(f) → Spec(A(f)) defined by ϕ(p) = (pAf )0. From the proof of the same

lemma we know that ϕ(D+(f) ∩D+(g)) = D(gdeg(f)/fdeg(g)).
Call (X,OX) the superringed space D+(f) with the sheaf OProj(A)|D+(f) and (Y,OY ) the super-

scheme of Spec(A(f)). Call S the multiplicative set of even Z-homogeneous in Af not contained in
pAf for some homogeneous prime ideal p in D+(f). By lemma 5.4.19 we have OY,ϕ(p) = (S−1Af )0,
which is again isomorphic to A(p) since f ∈ S. Therefore OX,p ∼= OY,ϕ(p) as superrings. But since
the stalks are local rings, the isomorphism must be a local morphism. Explicitly, the morphism is
given by χp : OY,ϕ(p) → OX,p, χp : (a/f r, g/f t) 7→ af t/gf r.

A principal open set D(g/f t) ⊂ Y is the spectrum of A(f,g) and thus we have an induced
morphism χD(g/ft) : OY (D(g/f t)) → OX(D+(g) ∩D+(f)) given by (a/f r, g/f t) 7→ af t/gf r. But
then there is only one way to extend this to a morphism of sheaves. Suppose U is an open set of
Y and s is a section over U . Then we define χU (s) to be the morphism that sends p ∈ ϕ−1(U) to
χp(sϕ(p)). Then χU (s) is indeed a section of OX(U) since if on V ⊂ U the section s is given by
sq = (a/f r, g/f t) ∈ OY,q then we have χU (s) : p 7→ af t/gf r ∈ OX,p for all p ∈ ϕ−1(U). It is then
easily seen that the maps χU are compatible with restrictions and that the induced morphism on
the stalks is precisely the local morphism χp. As χp is an isomorphism, we have an isomorphism
of sheaves OX ∼= OY and the proposition is proved.

Corollary 5.4.24. For any Z-graded superring, Proj(A), together with its structure sheaf O of
superrings, is a superscheme.

We define the projective superspace Pn|mk to be Proj(An+1|m), where An+1|m = k[x0, . . . , xn |
ϑ1, . . . , ϑm]. The elements xi and ϑα we give Z-degree 1. The elements x0, . . . , xn define an
ideal whose radical is A+, and thus the subsets D+(xi) provide a cover. One easily sees that

D+(xi) ∼= Spec(An|m) = An|mk .

5.5 Completion

Let A be a superring. We define a filtration of A to be a set of Z2-graded ideals F = {ak}k≥0 with

F : A = a0 ⊃ a1 ⊃ a2 ⊃ a3 ⊃ · · · , (5.36)
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with aiaj ⊂ ai+j . The F -associated graded superring is given by

grF (A) = A/a1 ⊕ a1/a2 ⊕ a2/a3 ⊕ · · · . (5.37)

Addition is done componentwise and the rule for multiplication is given as follows: consider the two
elements x = x′ mod am+1 ∈ am/am+1 and y = y′ mod ak+1 ∈ ak/ak+1 in grF (A), then we put xy =
x′y′ mod am+k+1. Since the ai are assumed to be Z2-graded, so is the A-module ak and hence also
ak/ak+1; this induces a componentwise Z2-grading on grF (A): grF (A)i = (A/a1)i ⊕ (a1/a2)i ⊕ · · · ,
where i ∈ Z2. A particular example of a filtration of A is obtained by taking ai = ai for some fixedZ2-graded ideal a. We then call the filtration given by

A := a0 ⊃ a ⊃ a2 ⊃ a3 ⊃ · · · , (5.38)

the a-adic filtration. The associated graded superring is then denoted gra(A).
We define an inverse system of A-modules to be a set of A-modules Mi, where i runs over some

directed partially ordered index set I, together with morphisms of A-modules fij : Mi → Mj for
i ≥ j satisfying fjk ◦ fij = fik and fii = idMi

. Recall that a partially ordered index set I is directed
if for any two i, j ∈ I there is k ∈ I with i, j ≥ k. We write (fij : Mi →Mj)I for the inverse system.
If I is clear from the context it will be omitted. To an inverse system X = (fij : Mi → Mj)I we
associate a category of cones. A cone over X is defined as an A-module C, called the apex of the
cone, together with maps cj : C → Mj for all j ∈ I satisfying fij ◦ ci = cj for all i, j ∈ I. We
then write (C, ci)I for the cone with apex C and morphisms ci : C → Mi. A morphism of cones
(C, ci)I → (D, di)I is a morphism of A-modules g : C → D such that ci ◦g = di. We write Cone(X)
for the category of cones associated to X . See the figure in equation (5.39) for a sketch of the
situation:

· · · � Mj
�

fij

Mi
� · · ·

C

ci

-

cj

�

D

g

6
di

-

dj

�

. (5.39)

We call the terminal object in the category of cones associated to X the (inverse) limit of the
inverse system X . The terminal object consists of an A-module X∞ and a set of morphisms
xi : X∞ → Mi. We write X∞ = lim←−Mi and we call the morphisms xi the projections from the
limit to the inverse system. The objectX∞ is thus characterized by the following universal property:
there are morphisms xi : X∞ →Mi satisfying fij ◦ xi = xj and if C is an A-module together with
morphisms ci : C → Mi satisfying fij ◦ ci = cj , then there is a unique morphism of A-modules
h : X∞ → C such that ci = xi ◦ h. By the universal property, or equivalently by being a terminal
object in some category, the A-module X∞ is determined up to isomorphism.

A filtration F = {ak}k≥0 in a superring A gives rise to an inverse system XF := (A/ai →
A/aj : i ≥ j): we have natural morphisms A/ai → A/aj if i ≥ j and if i ≥ j ≥ k, then the
composite of A/ai → A/aj and A/aj → A/ak equals the morphism A/ai → A/ak. The limit of

this inverse system is called the completion of A with respect to F and is denoted Â = lim←−A/ai.
If the filtration of F is clear from the context, we simply call Â the completion. An explicit
construction of Â is as follows: We take the subset of

∏
i(A/ai) that contains all the elements
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(ai mod ai)i = (a1 mod a1, a2 mod a2, . . .) such that ai ≡ aj mod aj for all i ≥ j. We can turn this
subset into a superring by defining the addition and the multiplication pointwise and the Z2-grading
we define by the rule that (ai mod ai)i is even (resp. odd) when all aimod ai are even (resp. odd)
elements in A/ai. The superring obtained in this way has the universal property of Â. Often when
we write (aimod ai)i we refer to this description of the completion Â.

Proposition 5.5.1. Let A be a superring and F = {ak}k≥0 a filtration of A. Write Â = lim←−A/ak.
Write pk for the projections pk : Â → A/ak and denote âk be the kernel of pk. Then Â has a
filtration F̂ : Â = â0 ⊃ â1 ⊃ â2 ⊃ · · · . We have (1) ak/ak+1

∼= âk/âk+1, (2) Â/âk ∼= A/ak, (3)
grF̂ (Â) ∼= grF (A), and (4) lim←− Â/âk

∼= Â.

Proof. Most is standard and can be found in for example [15,16]. We have morphisms of A-modules
ϕk : ak → âk/âk+1 sending x ∈ ak to (xmod ai)i mod âk+1, which are surjective and with kernel
ak+1. The induced maps fk : ak/ak+1 → âk/âk+1 are thus isomorphisms and can be combined
to form a morphism ψ : grF (A) → grF̂ (Â); one easily checks that for homogeneous x and y we
have ψ(xy) = ψ(x)ψ(y). This proves (1) and (3). Assertion (2) can be seen by using the explicit
construction given above. To prove (4) we note that by (3) the systems (A/ai → A/aj : j ≤ i) and

(Â/âi → A/âj : j ≤ i) are isomorphic, and hence the categories of cones are isomorphic. Then the
terminal objects are isomorphic too.

Lemma 5.5.2. Let A be a superring and suppose A is filtered by a filtration F = {ai}i≥0 and by
a filtration G = {nj}j≥0. If for all ai there is an nj with nj ⊂ ai and for all nk there is al with

al ⊂ nk then lim←−A/ai
∼= lim←−A/nj.

Proof. Any cone (Z, fi : Z → A/ai) over the inverse system X := (A/ai → A/aj, i ≥ j) gives rise to
a cone over Y := (A/ni → A/nj , i ≥ j) and vice versa. Thus we get functors Cone(X)→ Cone(Y )
and Cone(Y )→ Cone(X) and these functors are inverse to each other. Hence Cone(X) and Cone(Y )
are isomorphic and thus the terminal objects are the isomorphic.

A particular case, which will be of interest later when we prove the Cohen structure theorem in
section 5.12, is treated in the following theorem:

Theorem 5.5.3. Let A be a complete superring with respect to the p-adic filtration, where p is a
prime ideal. Then A0̄ is complete with respect to the p0̄-adic filtration.

Proof. Clearly we have (lim←−A/p
i)0̄ ∼= lim←−A0̄/(p

i)0̄. But the right-hand side is isomorphic to

lim←−A0̄/(p0̄)
i since (p2i)0̄ ⊂ (p0̄)

i and (p0̄)
i ⊂ (pi)0̄.

Theorem 5.5.4. Let A be a Noetherian superring and F = {ak}k≥0 a filtration of A with ak = Ik

for some Z2-graded ideal I. Then grF (A) is Noetherian.

Proof. Since A is Noetherian I is finitely generated and A/I is Noetherian. But then if x1, . . . , xp
are homogeneous generators of I, then the xi mod I generate grF (A) as an A/I-algebra and hence
grF (A) is Noetherian.

If A is a superring with a filtration F = {ak}k≥0 and completion Â we have a canonical morphism

j : A → Â mapping a ∈ A to the element (amod a1, amod a2, . . .) = (amod ai)i. We call j the
canonical insertion of the completion with respect to F .

Lemma 5.5.5. Let A be a superring with filtration F = {ak}k≥0 and let Â be the completion

Â = lim←−A/ak with the induced filtration F̂ = {âk}k≥0 and let j : A→ Â be the canonical insertion.
Then:
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(i) j(ak) ⊂ âk,

(ii) j−1(âk) = ak,

(iii) Ker(j) =
⋂
k≥0 ak.

Proof. By construction the morphism that sends a ∈ A to amod âi in Â/âi is surjective by 5.5.1.
This proves (i) and (ii). For (iii): if a ∈ Ker(j) then amod ai = 0 for all i, which means a ∈ ai for
all i.

Definition 5.5.6. Let A be a superring with filtration F = {ak}k≥0 and let Â be the completion

Â = lim←−A/ak with the induced filtration F̂ = {âk}k≥0 and let j : A→ Â be the canonical insertion.
We say a superring is Hausdorff if Ker(j) = 0. We call a superring F -complete, or complete with
respect to F if j : A→ Â is an isomorphism.

Corollary 5.5.7. Let A be a superring with a filtration F = {ak} and let Â be the completion with
respect to F . Then Â is complete and Hausdorff. A complete superring is Hausdorff.

Proof. The second statement follows from lemma 5.5.5 and the observation that
⋂
k âk = 0. By

5.5.1 we know that Â is isomorphic to the limit of the inverse system (Â/âi → Â/âj : i ≥ j).

Denote qi : Â→ Â/âi the canonical projection and pi :
ˆ̂
A = lim←− Â/âi the morphisms from the limit

into the inverse system. One checks that pi ◦ j = qi and thus by the universal property, there is
a unique morphism k : lim←− Â/âi → Â such that qi ◦ k = pi. Now we apply the universal property

again to conclude that j ◦ k is the identity on lim←− Â/âi and k ◦ j is the identity on Â.

Proposition 5.5.8. Let A be a ring and suppose {ak}k≥0 is a filtration with ak = mk for some

maximal ideal m in A. Then Â = lim−→A/ak is a local ring with maximal ideal m̂.

Proof. Let x = (xi)i /∈ m̂, then x1 6= 0. But then no xi is zero. Then thus xi /∈ m ·A/mi, but A/mi

is easily seen to be a local ring with maximal ideal m ·A/mi (see the lemma 5.5.9 below) and thus
each xi is a unit. We write thus yi for the inverse of xi in A/mi, then from xi ≡ xj mod mj for j ≤ i
follows that yi ≡ yj mod mj for j ≤ i.

Lemma 5.5.9. Let A be a superring with maximal ideal m and let n be a Z2-graded ideal such that
mk ⊂ n ⊂ m for some integer k. Then A/n is a local ring with maximal ideal m · A/n

Proof. Let x /∈ m ·A/n, then x = amod n for some a /∈ m. Since m is maximal, there is b ∈ A such
that ab = 1−m for some m ∈ m. Thus ab(1 +m+m2 + . . .+mk) = 1 +w for some w ∈ mk. But
then b(1 +m+m2 + . . .+mk)mod n is an inverse to x.

Proposition 5.5.10. Let A be a superring and m a maximal ideal. Then first localizing A with
respect to m and then completing with respect to the maximal ideal mAm of Am yields a result
isomorphic to completing A directly with respect to m.

Proof. Follows at once from the assertion that A/mk ∼= (A/mk)m for all positive integers k. The
assertion follows since all elements of A−m act as invertible maps on A/mk. That is, all homotheties
ls : A/mk → A/mk along s ∈ A−m are invertible maps. Then the assertion follows from corollary
5.1.15.

Lemma 5.5.11. Let A,B be local rings with maximal ideals m, n respectively and let ϕ : A→ B be
a surjective morphism. If A is complete with respect to the m-adic filtration then m ⊂ ϕ−1(n).
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Proof. Choose s /∈ n and assume s ∈ ϕ(m). Then ϕ(x) = s for some x ∈ m. Since s is invertible,
there is t ∈ B with st = 1 and since ϕ is surjective there is a y ∈ A with ϕ(y) = t. Hence ϕ(xy) = 1
and thus xy = 1 + η for some η ∈ Ker(ϕ) ⊂ m. But since A is complete, the element 1 + η is
invertible. Thus x is invertible, contradicting x ∈ m. Hence if s /∈ n, then s /∈ ϕ(m). Thus ϕ(m) ⊂ n,
which implies m ⊂ ϕ−1(n).

Hence we have proved:

Proposition 5.5.12. Let A,B be local rings with maximal ideals m, n respectively and assume A is
complete with respect to the m-adic filtration. Then every surjective morphism ϕ : A→ B is local.

See definition 4.1.26 for the definition of a local morphism.

Corollary 5.5.13. Let A,B be local rings with maximal ideals m, n respectively and assume A
is complete with respect to the m-adic filtration. For a surjective morphism f : A → B we have
f(m) = n.

5.6 Complete rings and convergence

In this section we fix the following notation: A is a complete ring with respect to the filtration
F = {ak}k≥0, Â is the completion Â = lim←−A/ak with the induced filtration F̂ = {âk}k≥0 and

j : A→ Â is the canonical insertion, which is thus an isomorphism.

Lemma 5.6.1. We have j(ak) = âk and
⋂
k≥0 ak = 0.

Proof. Follows from lemma 5.5.5 and the fact that j is an isomorphism.

Definition 5.6.2. Let {ai}i≥0 be a sequence of elements of A. We say that the ai converge to
a ∈ A if for all integers n there is an integer in such that a− al ∈ an whenever l ≥ in. We call the
sequence {ai}i≥0 a Cauchy sequence if for each integer n there is an integer in such that ak−al ∈ an
whenever k, l ≥ in.
Lemma 5.6.3. Let {ai}i≥0 be a sequence and suppose it converges to a and to b, then a = b.

Proof. The sequence {0 = ai − ai}i≥0 converges to a−b, hence a−b ∈ ⋂
k ak = 0. Hence a = b.

Due to the lemma we call the unique element of A to which {ai}i≥0 converges the limit and we
write limi ai for the limit. A sequence that has a limit is called a converging sequence.

Lemma 5.6.4. Let {ai}i≥0 and {bi}i≥0 be sequences converging to a and b respectively. Then the
sequences {ai + bi}i≥0 and {aibi}i≥0 are also converging and have limits a+ b and ab respectively.

Proof. The proof follows directly from the identities: (a + b) − (ai + bi) = (a − ai) + (b − bi) and
ab− aibi = (a− ai)bi + a(b− bi).

Proposition 5.6.5. A sequence {ai}i≥0 is converging if and only if it is a Cauchy sequence.

Proof. If a sequence converges then it is a Cauchy sequence since ai − aj = (a − aj) − (a − ai).
Conversely, let {ai}i≥0 be a Cauchy sequence in Â. Each ai is (represented by) a sequence ai =
((ai)k)k with (ai)k ∈ A/ak. Let for each integer n be in such that ai − aj ∈ an for all i, j ≥ in.
Then the limit of the sequence can be represented by the element ((ai1)1, (ai2)2, . . .).

Corollary 5.6.6. Suppose {ai}i≥0 is a sequence such that ai ∈ ai, then with bj =
∑j
i=0 ai we

obtain a converging sequence {bj}j≥0.
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Proof. Indeed bj − bk ∈ aj for k ≥ j.

Definition 5.6.7. With the premises of corollary 5.6.6, we call
∑∞

i=0 ai = limj bj.

An easy application of the above is the following result involving the geometric series in complete
superrings:

Lemma 5.6.8. Let a be an element of a1, then 1− a is invertible in A.

Proof. The inverse is given by
∑∞

i=0 a
i, which is a converging sum as ai ∈ ai ⊂ ai.

5.7 Stable filtrations and the Artin–Rees lemma

This section is devoted to prove the Artin–Rees lemma. To state and prove the result, we don’t
need completions, but knowledge of filtrations and associated graded superrings. The Artin–Rees
lemma is used in section 5.11 to prove that the completion functor, which sends an A-module M
to the lim←−A/a

i-module lim←−M/aiM , is exact.

Definition 5.7.1. Let A be a superring, a a Z2-graded ideal in A and F : M = M0 ⊃M1 ⊃M2 ⊃
· · · a filtered A-module. We say F is a a-filtration if aMn ⊂ Mn+1. We say that F is a-stable if
there is an integer N such that aMk = Mk+1 for all k ≥ N .

Let M be an A-module with an a-filtration F . As in section 5.5 we define an associated graded
module grF (M) by

grF (M) = M/M1 ⊕M1/M2 ⊕ . . . . (5.40)

The action of gra(A) on grF (M) is defined as follows: a homogeneous element amod ai+1 in the
ai/ai+1 summand of gra(A) sends the homogeneous elementmmodMj+1 in theMj/Mj+1-summand
of grF (M) to the element ammodMi+j+1 in the Mj+i/Mi+j+1-summand of grF (M). This turns
grF (M) in a natural way into a gra(A)-module.

Proposition 5.7.2. Let a be a Z2-graded ideal of the superring A and let F be an a-stable filtration
of the A-module M ; F = {Mk}k≥0, such that all the Mk are finitely generated. Then grF (M) is a
finitely generated gra(A)-module.

Proof. Suppose aMi = Mi+1 for all i ≥ N , then a/a2(Mi/Mi+1) = Mi+1/Mi+2 for all i ≥ N .
We can map the generators of Mj into the Mj/Mj+1-summand: taking all these images of the
generators of Mj for j ≤ N we obtain a set of generators for grF (M).

Definition 5.7.3. Let A be a superring, a a Z2-graded ideal. Then we call the blow-up superalgebra
of A at a the superalgebra BaA, where

BaA := A⊕ a⊕ a2 ⊕ . . . ∼= A[ta] ⊂ A[t] . (5.41)

The addition and Z2-grading of BaA are defined componentwise and the multiplication is defined
as follows: for a, b in the ai-, respectively aj-summand we define ab to be equal to element that is
ab in the ai+j-summand and zero in any other summand. For an A-module we define the blow-up
module in a to be the BaA-module

BaM = M ⊕ aM ⊕ a2M ⊕ . . . . (5.42)

The action of BaA on BaM is given by: an element a in the ai-summand of BaA maps the element
m of the ajM -summand of BaM to am in the ai+jM -summand of BaM . The Z2-grading and
addition are defined pointwise.
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Lemma 5.7.4. If A is Noetherian and a a Z2-graded ideal then BaA is Noetherian.

Proof. Let x1, . . . , xp be a set of homogeneous generators of a, then 1 ∈ A and xi ∈ a generate BaA
as an A-algebra. Hence BaA is Noetherian.

Note that BaA/aBaA ∼= gra(A).

Lemma 5.7.5. Let A be a superring, a a Z2-graded ideal and M a finitely-generated A-module. Let
F : M0 ⊃ M1 ⊃ · · · be an a-filtration of M of with all Mk finitely generated. Then, F is a-stable
if and only if the BaA-module BaM := M0 ⊕M1 ⊕ . . . is finitely generated.

Proof. Define Nn = ⊕ni=0Mi and M̃n = Nn ⊕ aMn ⊕ a2Mn ⊕ · · · . Each Nn is finitely generated
over A and hence for each n, M̃n is a finitely generated BaA. Since BaM is the union of all the
M̃n, BaM is finitely generated if and only if for a certain k we have M̃k = BaM , which happens if
and only if Mm+k = amMk for all m ≥ 0.

With lemma 5.7.5 it is not difficult to prove the following theorem, which is the Artin–Rees
lemma for superrings:

Theorem 5.7.6. Let A be a Noetherian superring, a a Z2-graded ideal, M a finitely generated
A-module and M ′ ⊂M a submodule. When F : M = M0 ⊃M1 ⊃ · · · is an a-stable filtration, then
the induced filtration on M ′ is a-stable. That is, there is an integer N such that ak(M ′ ∩Mi) =
M ′ ∩Mi+k for all i ≥ N .

Proof. Consider the filtration F ′ = {M ′
i}i≥0 with Mi = Mi ∩M ′. Then BF ′M ′ = M ′

0⊕M ′
1⊕ . . . ⊂

M0 ⊕M1 ⊕ . . . = BFM seen as BFA-modules. Then BaA is a Noetherian ring and F is a-stable.
Hence BFM is finitely generated by lemma 5.7.5, so that BF ′M ′ is finitely generated and hence F ′

is a-stable.

5.8 Completions of Noetherian superrings

Let A be a superring with a filtration F = {ak}k≥0, and let Â = lim←−A/ai be the completion with
respect to F of A. In this section we introduce a map A → grF (A) that will enable us to prove
that Â is Noetherian when A is Noetherian and ak = ak for some Z2-graded ideal a ⊂ A.

Let f ∈ A be given and assume there is an integer k such that f ∈ ak but f /∈ ak+1. In other
words, k is the smallest integer such that f mod ak+1 6= 0. Then we define in(f) as the element of
grF (A) lying in the ak/ak+1-component given by f mod ak+1. If for f no such k exists, or in other
words f ∈ ⋂

i ai, then we put in(f) = 0. In this way we have defined a map in : A→ grF (A); it is
important to note that this is not a morphism, it is only a map of sets.

We define deg : A → N to be the map that sends f ∈ A to the smallest integer k such that
f mod ak+1 6= 0; if no such smallest integer exists, we put deg(f) =∞. For a homogeneous element g
of grF (A) we also use degree to indicate in which summand g lies. We thus have deg(in(f)) = deg(f).

Lemma 5.8.1. Let f, g be elements of A, then (1) deg(f + g) ≥ min
(
deg(f), deg(g)

)
and (2)

deg(fg) ≥ deg(f) + deg(g).

Proof. Follows at once from f ∈ ak ⇒ deg(f) ≥ k.

Lemma 5.8.2. If f1, . . . , fs are elements of A with the same degree then
∑

i in(fi) = 0 or
∑

i in(f) =
in(

∑
i fi).

Proof. Let the degree be k, then
∑

i fi ∈ ak, hence in(
∑

i fi) lies in some al/al+1-summand of
grF (A) for l ≥ k. If l = k then we have

∑
i in(f) = in(

∑
i fi) and if l > k then

∑
i in(f) = 0.
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Lemma 5.8.3. If f, g are elements of A then in(f)in(g) = 0 or in(f)in(g) = in(fg).

Proof. Similar as the proof of lemma 5.8.2.

Proposition 5.8.4. Let A be a superring that is complete with respect to a filtration F = {ak}k≥0.
Let grF (A) be the associated graded superring to F and let I be a Z2-graded ideal of A and suppose
a1, . . . , as are elements of I such that in(a1), . . . , in(as) generate in(I). Then the ai generate I.

Proof. Write I ′ = (a1, . . . , as). Since A is Hausdorff, there is an integer d such that none of the ai
is contained in ad. Let f ∈ I and let e be the degree of f . Then in(f) =

∑
Gj in(aj) where we can

take the Gj to be homogeneous and of degree e− deg(aj). Choose gj in A such that in(gj) = Gj ;
then we have

∑
j in(gj)in(aj) = in(

∑
j gjaj), which equals in(f). It follows that f −∑

gjaj lies
in ae+1 and thus we may repeat the procedure till we arrive at a stage where we find F = f − f ′

with f ′ ∈ I ′ and F ∈ ad+1. By the same reasoning we find F =
∑

in(gj)in(aj) for some elements
gj in A. The degrees of the gj are positive, and thus gj ∈ ae−d. Thus we get at a first step

F −∑
j g

(1)
j aj ∈ ae−d+1, and n steps later F −∑

i,j g
(i)
j aj ∈ ae−d+n with the g

(i)
j ∈ ae−d+i−1.

Define Gnj =
∑n

i=1 g
(i)
j , then the Gnj build a Cauchy sequence for each j, the limit of which we

denote by hj . Thus F =
∑
hjaj lies in I ′ and thus f lies in I ′.

Corollary 5.8.5. Let A be a Noetherian superring with the filtration F = {ak}k≥0 where ak = ak

for some Z2-graded ideal a. Then Â = lim←−A/a
k is a Noetherian superring.

Proof. Let I be a Z2-graded ideal in Â and consider the Z2-graded ideal in(I) in grF̂ (Â) ∼= grF (A).
Since grF (A) is Noetherian, in(I) is finitely generated and we may assume that in(I) is generated
by homogeneous elements of the form in(f). Hence there are finitely many f ∈ Â such that in(f)
generate in(I) and thus, by proposition 5.8.4 those f already generate I.

5.9 Complete filtered pairs

Definition 5.9.1. Let A be a superring and a ⊂ A a Z2-graded ideal such that A is complete with
respect to the a-adic filtration. In this situation we call A together with the a-adic filtration

{
ak

}
k≥0

a complete filtered pair (CFP) and denote it by (A,
{
ak

}
k≥0

). If (A,
{
ak

}
k≥0

) and (B,
{
bk

}
k≥0

)

are two CFP’s, then a morphism of complete filtered pairs is a morphism ϕ : A→ B of superrings
such that ϕ(a) ⊂ b, or equivalently ϕ(a)k ⊂ bk for all k.

Proposition 5.9.2. Let ϕ : (A,
{
mk

}
k≥0

) → (B,
{
nk

}
k≥0

) be a morphism of CFP’s, then ϕ

preserves limits.

Proof. Let {ri}i≥0 be a sequence in A with limit r. Then choose integers in such that r − rj ∈ mn

if j ≥ in. It follows that ϕ(r) − ϕ(rj) ∈ nn whenever j ≥ in.

Lemma 5.9.3. Let (A,
{
mk

}
k≥0

) be a CFP. Let {ri}i≥0 be a Cauchy sequence in A for which there

exists an integer p such that for all i we have ri ∈ mp, then limi ri ∈ mp.

Proof. There exists an integer N such that (limi ri)− rj ∈ mp for all j ≥ N . But since rj ∈ mp for
all j, we have limi ri ∈ mp.

There exists a useful functor gr from the category of CFP’s to the category of superrings that
we now describe. If (A,

{
mk

}
k≥0

) and (B,
{
nk

}
k≥0

) are CFP’s and ϕ : A → B is a morphism of

CFP’s then the functor maps the CFP’s to their associated graded superrings, so that

gr : (A,
{
mk

}
k≥0

) 7→ grm(A) = A/m⊕m/m2 ⊕m2/m3 ⊕ . . . .
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The functor gr maps the morphism ϕ to the map gr(ϕ) that sends the homogeneous element
rmod mk+1 to ϕ(r)mod nk+1. It is easily checked that the resulting map gr(ϕ) is a morphism of
superrings.

Proposition 5.9.4. Suppose ϕ : (A,
{
mk

}
k≥0

) → (B,
{
nk

}
k≥0

) is a morphism of CFP’s. If

gr(ϕ) is a monomorphism, then ϕ is a monomorphism. If gr(ϕ) is an epimorphism, then ϕ is an
epimorphism.

Proof. If r ∈ A is nonzero, then there is an integer k such that r ∈ mk but r /∈ mk+1. Thus in(r) is
nonzero and thus gr(ϕ)(in(r)) is nonzero, which implies ϕ(r)mod mk+1 6= 0.

For the epimorphisms, consider s ∈ B and assume gr(ϕ) is surjective. Consider in(s) ∈ grn(B)
and assume it lies in the ith component; in(s) ∈ ni/ni+1. Then there is x = r1 mod mi+1 that
maps to in(s). Hence s − ϕ(r1) ∈ ni+1. Then we find r2 mod mi+2 that maps to in(s− ϕ(r1)) and
s − ϕ(r1) − ϕ(r2) ∈ ni+2. We thus find a Cauchy sequence xn =

∑n
i=1 ri and s − ϕ(xn) ∈ ni+n.

Hence s = limn→∞ ϕ(xn) = ϕ(limn→∞ xn) and thus ϕ is surjective.

Remark 5.9.5. The conclusion of proposition 5.9.4 is more briefly stated by saying that the functor
gr reflects epimorphisms and monomorphisms.

Proposition 5.9.6. Let (A,
{
mk

}
k≥0

) and (B,
{
nk

}
k≥0

) be CFP’s and suppose ϕ is a morphism

of CFP’s such that ϕ(mk) = nk for all k, then gr(ϕ) is surjective.

Proof. Let s ∈ B and suppose that s ∈ nk − nk+1. Then there is by assumption r ∈ mk − mk+1

such that ϕ(r) = s. Hence gr(ϕ)(in(r)) = in(s).

As a corollary we obtain:

Theorem 5.9.7. Let (A,
{
mk

}
k≥0

) and (B,
{
nk

}
k≥0

) be CFP’s and suppose ϕ is a morphism of

CFP’s. Then gr(ϕ) is surjective if and only if ϕ(mk) = nk for all k.

Proof. The only thing that is left to prove is that if gr(ϕ) is surjective, then for all s ∈ nk, there
is an r ∈ mk such that ϕ(r) = s. Using lemma 5.9.3 and the proof of proposition 5.9.4 this is
immediate.

5.10 Maps from power series rings

Lemma 5.10.1. Let B be a superalgebra over a commutative ring A, and suppose a is a Z2-
graded ideal in B such that B is complete with respect to the a-adic filtration. Given elements
e1, . . . , en ∈ a0̄ and η1, . . . , ηs ∈ a1̄, then there exists a unique A-algebra morphism

ϕ : A[[x1, . . . , xn|ϑ1, . . . , ϑs]]→ B ,

such that the xi are sent to the ei and the ϑα to the ηα.

Proof. Call T the A-algebra A[[x1, . . . , xn|ϑ1, . . . , ϑs]] and call K the Z2-graded ideal of T generated
by x1, . . . , xn and ϑ1, . . . , ϑs. Also, call S the A-algebra A[x1, . . . , xn|ϑ1, . . . , ϑs] and L the Z2-
graded ideal of S generated by x1, . . . , xn and ϑ1, . . . , ϑs. Then T/Kt ∼= S/Lt for all integers t and
there is a unique A-algebra morphism from S to B/nt sending xi to ei and ϑα to ηα. This map
factors over T/Kt. But B is the inverse limit of the B/nt and hence there is a unique morphism from
T to B sending the xi and ϑα to the ei and ηα respectively. Since B is complete, the morphism is
well-defined, by which we mean in this case that we can write the image of a sequence as a sequence
of images, which converges as this sequence is a Cauchy sequence and B is complete.
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Lemma 5.10.2. With the preliminaries of lemma 5.10.1, if in addition the induced morphism A→
B/n is an epimorphism and the ei, ηα together generate n, then ϕ : A[[x1, . . . , xn|ϑ1, . . . , ϑs]]→ B
is an epimorphism.

Proof. From the assumptions and theorem 5.9.7 it follows that the morphism gr(Ã) → B, where
Ã = A[[x1, . . . , xn|ϑ1, . . . , ϑs]], is an epimorphism. But the functor gr reflects epimorphisms.

Lemma 5.10.3. With the preliminaries of lemma 5.10.1, if in addition the induced morphism
gr(Ã) → gr(B), with Ã = A[[x1, . . . , xn|ϑ1, . . . , ϑs]], is a monomorphism, then ϕ is a monomor-
phism.

Proof. The functor gr reflects monomorphisms by proposition 5.9.4.

5.11 Exactness of inverse limits

Let A be a Noetherian superring with an a-adic filtration, where a is a Z2-graded ideal, and let
Â be the completion of A with respect to the a-adic filtration. For any A-module M we define
M̂ = lim←−M/aiM ; thus M̂ is the terminal object in the category of cones over the inverse system

(M/aiM → M/ajM : i ≥ j). An explicit construction of M̂ can be given along the same lines as
in section 5.5.

Suppose f : M → N is a morphism of A-modules and pi : M̂ →M/aiM the projections to the
inverse system (M/aiM → M/ajM : i ≥ j). Then f induces morphisms fi : M/aiM → N/aiN
that are defined by fi(mmod aiM) = f(m)mod aiN . The composites fi ◦ pi : M̂ → N/aiN form
a cone over the inverse system (N/aiN → N/ajN : i ≥ j) with apex M̂ . Thus there is a unique

morphism f̂ : M̂ → N̂ such that the following diagram commutes

. . . - M/aiM - M/ajM - · · ·

M̂

pj

-

pi

�

N̂

f̂

?

. . . - N/aiN

fi

?
-

qi

�
N/ajN

fj

?
-

qj -

· · ·

, (5.43)

and where qi : N̂ → N/aiN are the projections from the limit N̂ to the inverse system. We thus
can see completion as a functor that assigns to an A-module M the Â-module M̂ and that maps
the morphisms f : M → N to the morphism f̂ that we just described. Below we show that the
completion functor is exact. We follow the exposition of [15].

Proposition 5.11.1. Let A be a Noetherian superring and let a be a Z2-graded ideal. If

0→M → N → P → 0 (5.44)
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is an exact sequence of finitely generated A-modules, then the induced sequence

0→ M̂ → N̂ → P̂ → 0 (5.45)

is exact.

Proof. Without loss of generality we may assume that M ⊂ N . Call g the morphism N → P .
We first prove surjectivity of ĝ: let (pj mod ajP )j ∈ P̂ . Choose n1 such that g(n1)mod aP =

p1 mod aP . Next we find ñ2 ∈ N with g(ñ2)mod a2P = p2 mod a2P . Then (ñ2 − n1)mod aN
maps to (p2 − p1)mod aP = 0. Hence there is a2 ∈ Ker(g) with n2 − n1 + a2 ∈ aN . Then define
n2 = ñ2 + a2. We have g(n2) = g(ñ2) and n2 ≡ n1 mod aN . We can inductively repeat this
procedure to find for all pi an ni that maps to pi such that ni ≡ nj mod ajN for all j ≤ i.

The next step is to prove that M̂ ∼= lim←−M/M ∩ aiN . The filtration N ⊃ aN ⊃ a2N ⊃ . . .

is a-stable and N is finitely generated; the filtration M ⊃ (M ∩ aN) ⊃ (M ∩ a2N) ⊃ . . . is then
a-stable by the Artin–Rees lemma 5.7.6. Hence there is r ≥ 0 such that for all k ≥ 0 we have
ak(M ∩ arN) = M ∩ ar+kN and thus M ∩ ar+kN ⊂ akM for all k ≥ 0. Since in addition the
inclusion ajM ⊂ M ∩ aiN holds for all j ≥ i, we can apply lemma 5.5.2 to conclude the that
M̂ ∼= lim←−M/M ∩ aiN .

Consider how we defined the morphism f̂ in the diagram of eqn.(5.43); if all fi are identically

zero, then the zero morphism 0 : M̂ → N̂ makes the diagram commute and by uniqueness, f̂ = 0.
Thus the composition M̂ → N̂ → P̂ is the zero morphism from M̂ to P̂ .

Now assume n = (nimod aiN)i goes to zero in P̂ . But then g(ni) ∈ aiN which implies ni ∈
M +aiN ; it follows that ni mod aiN = mi mod aiN for some mi ∈M . The mi fit together to define
an element in M̂ and we can write ni ≡ mi mod aiN . The element m = (mi modM ∩ aiN) ∈ M̂
goes to n ∈ N̂ . The injectivity of M̂ → N̂ is obvious: m = (mi modM∩aiN) maps to (mi mod aiN)
in N̂ , hence if m goes to zero, then all mi already lie in aiN and thus in M ∩miN .

Proposition 5.11.2. Let A be a Noetherian superring, a a Z2-graded ideal in A, Â = lim←−A/a
i

the a-adic completion with respect to a. When M is a finitely generated A-module, then the natural
morphism Â⊗AM → M̂ := lim←−M/akM is an isomorphism.

Proof. If M = A then the statement is trivially true. If M is a finite direct sum of copies of A it
is also easily seen to be true. If M is any general finitely generated A-module, there are finitely
generated free A-modules G and F such that the sequence F → G → A → 0 is exact; since M
is finitely generated, the existence of a surjective morphism G → M , with G a finitely generated
free module, is clear and the kernel of this morphism is again a finitely generated module. By the
preceding proposition 5.11.1 the horizontal lines of the diagram

F̂ - Ĝ - M̂ - 0

Â⊗A F
?

- Â⊗A G
?

- Â⊗AM
?

- 0

(5.46)

are exact and the two first vertical arrows are isomorphisms; hence the right vertical arrow is also
an isomorphism.

Corollary 5.11.3. Let f : A → B be a surjective morphism of superrings where A is Noetherian
and complete with respect to a-adic filtration, for some Z2-graded ideal a. Define b = f(a) to be the
image of a in B, which is a Z2-graded ideal in B. Then B is complete with respect to the b-adic
filtration.
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Proof. From corollary 5.5.13 we have bk = f(ak) and ak · B = bk. Let I be the kernel of f , then

Î = lim←− I/a
kI ∼= Â ⊗A I ∼= I is the kernel of the induced morphism f̂ : Â ∼= A → B̂, which is a

surjective morphism of superrings. Hence B ∼= A/I ∼= Â/Î ∼= B̂.

Corollary 5.11.4. Let A be a Noetherian superring, a a Z2-graded ideal and Â the a-adic com-
pletion. Then for any Z2-graded ideal I in A, the map Â ⊗A I → Â is an injective morphism of
A-modules.

Proof. Let I be any Z2-graded ideal of A. The sequence 0 → I → A → A/I → 0 is exact.
Tensoring with Â and using that Î ∼= I ⊗A Â, we see that proposition 5.11.1 implies that the
sequence 0→ Î → Â is exact. This proves the corollary.

Remark 5.11.5. In proposition 6.2.8 we will see that the result of corollary 5.11.4 can be restated
as follows: the completion Â of a Noetherian superring A is a flat A-module. The notion of flatness
is defined in definition 6.2.1 in chapter 6.

5.12 Cohen’s structure theorem

Proposition 5.12.1. Let A be a superring and suppose L is a field inside A, then there is an
isomorphism π : L→ L′ of fields where L′ ⊂ A0̄.

Proof. Denote proj : A → A0̄ the projection that sends a0̄ + a1̄ to a0̄. The map π is given by
restricting proj : A→ A0̄ to L. The field L′ we then take to be the image of π(L) = L′.

Proposition 5.12.1 might at first seem unnecessary. However, the next example shows that there
are cases where a superring contains a field that does not lie in the even part.

Example 5.12.2. Let A = k(x)[θ] and consider the k-algebra morphism k[Y ] → A given by
Y → x+ θ, then since the kernel is trivial and the image of a nonzero element is a unit, there is a
unique morphism f : k(Y )→ k(x)[θ] making the following diagram commute:

k[Y ] - k(x)[θ]

k(Y )

i

?
f

-

. (5.47)

Hence the image is a field in A, not lying in A0̄. △

Theorem 5.12.3. Let A be a Noetherian superring that is complete with respect to the m-adic
filtration, where m is a maximal ideal, and assume that A contains a field. Then A contains a
coefficient field, that is, a field L inside A that is isomorphic to A/m.

Proof. By the proposition 3.3.6, lemma 4.1.24 and theorem 5.5.3 the commutative ring A0̄ is local,
complete and Noetherian. By proposition 5.12.1 we may assume the field is contained in A0̄. Hence
everything can be analyzed in A0̄ and we may apply Cohen’s structure theorem [57]; also see for
example [15].

Theorem 5.12.4. Let A be a complete local Noetherian superring with maximal ideal m and residue
class field K. If A contains a field, then A ∼= K[[x1, . . . , xs|ϑ1, . . . , ϑt]]/I for some s, t and Z2-
graded ideal I.
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Proof. We may assume the field lies in A0̄, hence there is a coefficient field L in A0̄ ⊂ A. Thus A
is an L-superalgebra. Let a1, . . . , as, b1, . . . , bs be homogeneous generators of m with ai even and
bl odd. By lemma 5.10.1 there is a morphism ϕ : K[[x1, . . . , xs|ϑ1, . . . , ϑs]], mapping xi to ai and
ϑk to bk. The morphism ϕ is an epimorphism by lemma 5.10.2. We can take I to be the kernel of
ϕ.





Chapter 6

Categories of modules

In this chapter we study some generalities of modules of some superring A. In particular, we define
flat, projective and injective modules and give some of their most elementary properties. We give
some generalizations of classical results from commutative algebra such as the Hamilton–Cayley
theorem, Krull’s intersection theorem and Nakayama’s lemma. In the final section of this chapter
we discuss properties of base-change, that is, we relate the two categories of modules of two different
superrings.

6.1 Generalities

In this section we present some general aspects of the category of modules of a fixed superring A.

6.1.1 Internal Hom-functors

We write HomA(M,N) for the set of all maps f : M → N such that f(m +m′) = f(m) + f(m′)
and f(m · a) = f(m) · a for all m,m′ ∈M and a ∈ A. We refer to the elements of HomA(M,N) as
homomorphisms. We equip HomA(M,N) with the Z2-grading

HomA(M,N)i = {f ∈ HomA(M,N) | f(Mj) ⊂ Ni+j} , (6.1)

and with the following action of A:

(a · f)(m) = a · (f(m)) , (f · a)(m) = (−1)|a||m|f(m) · a . (6.2)

With this structure HomA(M,N) becomes an A-module. Furthermore, we have HomA(M,N)0̄ =
HomA(M,N) and the even homomorphisms, which are the morphisms in the category ofA-modules,
also commute with the left action of A on M and N . We stress that HomA(M,N) contains more
than the ‘arrows’ in the category; hence in commutative diagrams, all maps are assumed to be
morphisms, that is, even homomorphisms, unless otherwise specified.

Proposition 6.1.1. Given two sequences

(S1) 0 - N ′ f - N
g - N ′′

(S2) L′ d - L
e - L′′ - 0

of A-modules with morphisms f, g, d, e.
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(i) The sequence (S1) is exact if and only if for all A-modules M the sequence

(S3) 0 - HomA(M,N ′)
f∗

- HomA(M,N)
g∗ - HomA(M,N ′′)

is exact, where f∗(a) = f ◦ a and g∗(b) = g ◦ b.

(ii) The sequence (S2) is exact if and only if for all A-modules M the sequence

(S4) 0 - HomA(L′′,M)
e∗ - HomA(L,M)

d∗ - HomA(L′,M)

is exact, where e∗(a) = a ◦ e and d∗(b) = b ◦ d.

(iii) The sequence (S2) is exact if and only if for all A-modules M the sequence

(S5) M ⊗A L′ id⊗d- M ⊗A L
id⊗e- MA ⊗ L′′ - 0

is exact.

Proof. (i): Suppose (S1) is exact, then it is clear that f∗ is injective and g∗ ◦ f∗ = 0. Suppose
b ∈ Kerg∗, then g(b(m)) = 0 for all m ∈ M . There exists a unique n ∈ N ′ such that b(m) = f(n)
and it is easy to see that the morphism h that assigns to each m ∈M the unique n ∈ N ′ such that
b(m) = f(n) is a homomorphism of A-modules with parity |h| = |b|. Hence b = f ◦ h. Suppose
(S3) is exact for all M . Using M = N ′ we find g ◦ f = g∗ ◦ f∗(idN ′) = 0. Taking M = Kerf
and i : Kerf → N ′ the canonical injection we get f∗(i) = 0 and thus Kerf = 0. When we take
M = Kerg and j : Kerg → N the canonical injection, we get g∗(j) = 0 and hence j = f∗(h) = f ◦h
for some morphism h, since j preserves parity. Hence Kerg = Imj ⊂ Im(f).

(ii): Suppose (S2) is exact. It is cleat that e∗ is injective and that d∗ ◦ e∗ = 0. Suppose
b ∈ Kerd∗, then Kere ⊂ Kerb. We define a homomorphism c : L′′ → M as follows: for x ∈ L′′

there is y ∈ L with e(y) = x and with |x| = |y|, we then put c(x) = b(y). The map is a well-defined
morphism since Kere ⊂ Kerb. Hence b = c ◦ e. Suppose (S4) is exact for all M . Choose M = L′′

and apply to idL′′ to find e ◦ d = d∗ ◦ e∗(idL′′) = 0. When we take M = L′′/Ime and the canonical
projection p : L′′ → L′′/Ime we find e∗(p) = 0 and hence p = 0, which means L′′ = Ime. When
we choose M = L/Imd and q : L → L/Imd the canonical projection, then d∗(q) = 0 and hence
q = e∗(r) = r ◦ e for some morphism r : L′′ → L/Imd. Hence Kere ⊂ Kerq = Imd.

(iii) When (S5) is exact for all M , take M = A. Conversely, if (S2) is exact, then clearly
id ⊗ e ◦ id ⊗ d = 0 and id ⊗ e is surjective. To prove Kerid ⊗ e ⊂ Imid ⊗ d we let X = Imid ⊗ d
and define a morphism v : M ⊗A L′′ →M ⊗A L/X as follows: for m⊗ x in M ⊗A L′′ we find y ∈ L
with e(y) = x and put v(m⊗ x) = m⊗ ymodX . Then v is a well-defined morphism. Denoting by
w the morphism M ⊗A L/X → M ⊗A L′′ induced by id ⊗ e, we see that v ◦ w is the identity on
M ⊗A L/X . Hence w is injective and thus Kere ⊂ X .

Remark 6.1.2. The proof of proposition 6.1.1 also shows that (S1) is exact if and only if for all
A-modules M the sequence

(S3′) 0 - HomA(M,N ′)
f∗

- HomA(M,N)
g∗ - HomA(M,N ′′)

is exact and that (S2) is exact if and only if for all A-modules M the sequence

(S4′) 0 - HomA(L′′,M)
e∗ - HomA(L,M)

d∗ - HomA(L′,M)

is exact.
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For a given A-module we write HomA(M,−) for the functor that assigns to each A-module
N the A-module HomA(M,N) and to any morphism f : N → N ′ the morphism f∗ defined in
proposition 6.1.1. Similarly, we define the functor HomA(−,M) that assigns to each A-module N
the A-module HomA(N,M) and to each morphism d : N → N ′ the morphism d∗ as defined in
proposition 6.1.1. And finally, the functor that assigns to each A-module N the A-module M ⊗AN
and to each morphism d : N → N ′ the map id ⊗ d we write as M ⊗A −. Then the result of
proposition 6.1.1 entails that HomA(M,−) and Hom(−,M) are left-exact, whereas M ⊗A − is
right-exact. The functor − ⊗A M , being defined in the obvious way, is naturally isomorphic to
M ⊗A −. Some immediate properties of the Hom-functors are:

HomA(M ⊕M ′, N) ∼= HomA(M,N)⊕HomA(M ′, N) ,

HomA(M,N ⊕N ′) ∼= HomA(M,N)⊕HomA(M,N ′) .
(6.3)

Proposition 6.1.3. Let M be an A-module. For all A-modules P and Q we have an isomorphism
of A-modules αPQ : HomA(P,HomA(M,Q))→ Hom(P⊗AM,Q) and if x : P ′ → P and y : Q→ Q′

are two morphisms of A-modules then the diagram

HomA(P,HomA(M,Q))
αP Q - Hom(P ⊗AM,Q)

HomA(P ′,HomA(M,Q′))
?

αP ′Q′ - Hom(P ′ ⊗AM,Q′)
?

(6.4)

commutes, where the vertical arrows are induced by the Hom-functors. In other words, the functor
HomA(M,−) is left-adjoint to −⊗AM .

Proof. Given A-modules P and Q, we show HomA(P,HomA(M,Q)) ∼= Hom(P ⊗AM,Q) for all M .
We define αPQ : HomA(P ⊗AM,Q) → HomA(P,HomA(M,Q)) by (αPQf)(p)(m) = f(p ⊗m) for
all p ∈ P and m ∈ M . Clearly |αPQ(f)| = |f |. The inverse is βPQ : HomA(P,HomA(M,Q)) →
HomA(P ⊗AM,Q) sending g to g(p⊗m) = g(p)(m), so that βPQ is an even map. The maps αPQ
and βPQ are clearly inverse to each other and are morphisms of A-modules; they commute with
right action of A. For naturality, the proof is virtually the same as in the non-super case. Observing
that in the definition of αPQ and βPQ the order of all symbols stays the same, no signs can enter
the calculation.

6.1.2 Parity swapping

In definition 3.2.3 we introduced the functor Π, mapping an A-module M to an A-module ΠM
with reversed parity assignment. We have a canonical morpism M → ΠM , mapping m in M to
mπ, which is the same element as m, but then seen as element of ΠM ; for homogeneous elements
|mπ| = |m|+ 1. From definition 3.2.3 and the above we immediately have

Lemma 6.1.4. The canonical morphism m 7→ mπ is an odd homomorphism of A-modules; (ma)π =
mπa and (am)π = (−1)|a|a ·mπ.

We have a canonical isomorphism HomA(A,M) ∼= M as A-modules, where f : A → M is
mapped to f(1). However, HomA(ΠA,M) is not canonically isomorphic to ΠM since the same
map does not commute with the right action of A; of course they are isomorphic as abelian groups.
If f ∈ HomA(M,N) has parity |f | then viewing f as a morphism from ΠM to ΠN , f has the
same parity, and hence HomA(ΠM,ΠN) ∼= HomA(M,N) as Z2-graded abelian groups, however
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not as A-modules. Furthermore, ΠHomA(M,N) ∼= HomA(ΠM,N) ∼= HomA(M,ΠN) as abelian
groups. Let us briefly show that the isomorphism ΠHomA(M,N) ∼= HomA(M,ΠN) holds in the
category of A-modules; f : M → ΠN we map to f̃ : M → N given by f̃(m) = f(m). Hence
as morphisms of abelian groups, f and f̃ are the same. However, if f is an even element of
HomA(M,ΠN), then f̃ is odd as an element of HomA(M,N); we therefore consider f̃ as an element

of ΠHomA(M,N). The assignment f 7→ f̃ commutes with the right action of A since f̃ · a(m) =
f · a(m) = (−1)|a||m|f(m) · a = f̃ · a(m). The same trick does not work for HomA(ΠM,N) as the
same assignment only commutes with the left action of A and not with the right action.

6.1.3 Abelian structure

If f : M → N is a morphism of A-modules, then f is injective if and only if f is a monomorphism
and f is surjective if and only if f is an epimorphism. As usual, the kernel and the cokernel of f are
defined by Kerf = {m ∈M |f(m) = 0} and Cokerf = N/f(M), which are both Z2-graded modules
since f preserves the degree. The morphism f is injective if and only if Kerf = 0 and f is surjective
if and only if Cokerf = 0. The kernel and cokernel have the usual universal properties and can
equivalently be described as the equalizer respectively coequalizer of f and the zero morphism. The
zero morphism is the unique morphism 0 : M → N that sends m ∈M to 0 ∈ N . The initial object
in the category of A-modules is the zero-module 0, which is also the terminal object and therefore
the zero object of the category. All these statements are nothing new and are trivial to prove. For
more details and an explanation of the category theoretical terms we refer to [23–25].

Lemma 6.1.5. Let A be a superring. Then the category of A-modules is an abelian category.

Proof. The only thing that is to prove is that every monomorphism is the kernel of some morphism
and that every epimorphism is the cokernel of some morphism. Let f : M → N be a monomorphism.
Now consider the A-module N/f(M) and the projection map p : N →M/f(M). The kernel of this
morphism is precisely f(M). Now let f : M → N be an epimorphism. Then N ∼= M/Kerf and
thus i : Kerf →M shows that f is the cokernel of i.

We have in fact already used that the category of A-modules is abelian, as we have been working
with exact sequences already. On several occasions we have also seen that some functors are exact,
which only makes sense in abelian categories. In abelian categories a quick way to prove that a
certain functor is left- or right-exact is to show the existence of an adjoint functor. This is based on
the following observation (which is no special feature of superrings but for completeness we state
and prove it):

Proposition 6.1.6. Let A and B be abelian categories. Suppose that two functors L : A → B and
R : B → A are adjoint to each other, where L is left-adjoint to R; there is a natural isomorphism
HomB(L(a), b) ∼= HomA(a,R(b)) for all A-objects a and B-objects b. Then L is right-exact and R
is left-exact.

Proof. We prove that L is right-exact. The proof of the statement about R is done by reversing
some arrows.

Suppose
0 - a′ - a - a′′ - 0 (6.5)

is an exact sequence. Now we apply L and HomB(−, b) for any B-object b to get a (maybe not
exact) sequence

0 - HomB(L(a′), b) - HomB(L(a), b) - HomB(L(a′′), b) - 0 . (6.6)
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As L is left-adjoint to R we have a commutative diagram of abelian groups

0 - HomB(L(a′′), b) - HomB(L(a), b) - HomB(L(a′), b)

0 - HomA(a′′, R(b))
?

- HomA(a,R(b))
?

- HomA(a′, R(b))
?

, (6.7)

where all the vertical arrows are isomorphisms and the bottom row is exact. Therefore the top
row is exact too. But then the sequence (6.6) is exact for all B-objects b. From an analogue of
proposition 6.1.1(ii) (and remark 6.1.2) for the category B it then follows that the sequence

L(a′) - L(a) - L(a′′) - 0 (6.8)

is exact.

We thus immediately obtain that the functor M 7→ M ⊗A N is right-exact, by using propo-
sition 6.1.3. Since for any A-modules M and N there is an isomorphism of abelian groups
HomA(M,ΠN) ∼= HomA(ΠM,N) the functor Π is exact.

6.1.4 Body modules

If M is an A-module, then the body module M = M/JAM is in a natural way an Ā-module. Given
a morphism of A-modules f : M →M ′, then we have f(JAM) ⊂ JAN and thus we have a unique
morphism f̄ such that the diagram

M
f - N

M

?
f̄ - N

?

(6.9)

commutes, where the vertical arrows are the canonical projections (also see diagram (3.2)). Hence
we have a functor from the category of A-modules to the category of Ā-modules. Clearly, the
functor is not full, since any morphism of A-modules has to preserve the parity.

There is an adjoint to the functor M 7→ M , which is defined as follows. For any Ā-module M
we define an A-module M̌ such that as abelian groups we have M̌0̄ = M and M̌1̄ = 0 and that for
any m ∈ M̌ we have the A-action m · a = m · ā. One can now almost literally copy the proof of
proposition 3.1.10 to obtain:

Lemma 6.1.7. The functor M 7→M from the category of A-modules to the category of Ā-modules
is left-adjoint to the functor M → M̌ from the category of Ā-modules to the category of A-modules.

Proof. As indicated one can copy the proof of proposition 3.1.10 or alternatively, one can use the
result of proposition 6.5.3 from section 6.5 by taking f : A→ Ā the projection to the body.

Lemma 6.1.8. The functor that assigns to each A-module M the Ā-module M is right-exact.

Proof. We observe that M ∼= M⊗A Ā as A-modules. A sequence is exact if and only if it is exact as
a sequence of abelian groups and hence the statement follows from proposition 6.1.1. An alternative
proof is to use proposition 6.1.6 in combination with lemma 6.1.7.
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6.2 Flat modules and projective modules

In this section we present the definitions of flat and projective modules for modules of superrings.
The definitions do not differ from their counterparts in commutative algebra. Therefore also most
of the basic properties coincide. We show that if M is a projective respectively flat A-module, then
the body module M is a projective respectively flat Ā-module.

Definition 6.2.1. Let M be an A-module. If HomA(M,−) is exact, then we call M projective. If
M ⊗A − is exact, then we call M flat.

We now first focus on projective modules. The following lemma gives equivalent characteriza-
tions of projective modules.

Lemma 6.2.2. Let P be an A-module. The following are equivalent:

(i) The functor HomA(P,−) is exact.

(ii) For each surjective morphism f : M → N and any homomorphism g : P → N , there is a
homomorphism h : P →M such that f ◦ h = g.

(iii) Every exact sequence

0 - M
q - N

p - P - 0 (6.10)

splits; that is, there is a morphism s : P → N such that p ◦ s = idP .

(iv) P is a direct summand of a free module, which means that there is a free module F and a
module Q such that F ∼= P ⊕Q.

Proof. (i) ⇔ (ii) is just paraphrasing the definition: the sequence Hom(P,M) → Hom(P,N) → 0
is exact for all exact sequences M → N → 0 if and only if P is projective, if and only if the induced
morphism Hom(P,M)→ Hom(P,N) is surjective. (ii)⇒ (iii): Apply (ii) to N = P . (iii)⇒ (iv):
Let F be a free module that maps surjectively on to P , which exists, since we can choose a generator
of F for each element of P . We get an exact sequence 0 → K → F → P → 0, with K the kernel
of the map p : F → P . The sequence splits and hence there exists s : P → F with p ◦ s = idM .
Any f ∈ F we can write as f − s ◦ p(f) + s ◦ p(f) and f − s ◦ p(f) ∈ Kerp and s ◦ p(f) ∈ Ims. If
f ∈ Im(s)∩Kerf , then f = s(x) for some x ∈ P and 0 = p(f) = x so that Kerp∩ Ims = 0 and thus
F = Kerp⊕ Ims. Since s is injective, Ims ∼= P and thus F ∼= Kerp⊕P . (iv)⇒ (ii): Let F = P ⊕Q
with F a free module. Suppose we are given a morphism g : P → N and a surjective morphism
f : M → N , we can extend the morphism g to a morphism g′ : F → N by first projecting to P .
Since P is a direct summand we have a morphism s : P → F and a projection p : F → P such that
p ◦ s = idM . For each generator x ∈ F , choose an element mx ∈ M such that f(mx) = g ◦ p(x).
Call h′ the unique morphism F →M that assigns to x the element mx ∈M . Then the diagram

F
p - P - 0

M

h′

?
f - N

g

?
- 0

(6.11)

commutes. The map h = h′ ◦ s satisfies the requirements since for all x ∈ P we have f ◦ h′ ◦ s(x) =
g ◦ p ◦ s(x) = g(x).
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We immediately obtain from characterization (iv) of lemma 6.2.2 the following class of projective
modules:

Corollary 6.2.3. Any free module is a projective module.

Theorem 6.2.4. If P is a projective A-module, then P̄ is a projective Ā-module.

Proof. The result follows directly from corollary 6.5.4, which we prove when we discuss base changes,
by taking B = A/JA and f the projection A→ Ā. We now present an alternative more direct proof:
Let f : M → N be a surjective morphism of Ā-modules. We can view M and N as A-modules as
follows m · a = m · ā. Then f is a surjective morphism of A-modules. Now suppose g : P̄ → N is
any morphism of Ā-modules. We have a morphism of A-modules P → P̄ → N , by concatenating
the projection π : P → P̄ with g. Then we have a morphism of A-modules h : P → M such that
f ◦ h = g ◦ π. By proposition 3.1.10 (or by direct arguments) the morphism h factors over P̄ , that
is, there is a morphism h̄ : P̄ →M such that h = h̄ ◦ π.

From the definition and proposition 6.1.1 it follows that the A-module M is flat if and if for any
injective morphism f : N → N ′ the induced morphism id ⊗ f : M ⊗A N → M ⊗A N ′ is injective.
This characterization of flatness we use to show the following:

Proposition 6.2.5. A projective module is flat.

Proof. Let f : M → N be an injective morphism. If F is a free module on homogeneous generators
(ti)i∈I then M ⊗A F ∼= ⊕i∈IM . Clearly the induced morphism ⊕i∈IM → ⊕i∈IN is injective, and
so F is flat. If now P is projective, then there is a free module F such that P is a direct summand
of F ; that is, there is a surjective morphism p : F → P and an injective morphism s : P → F
such that p ◦ s = idP . Clearly p ⊗ idM : F ⊗A M → P ⊗A M is surjective and a left inverse to
s⊗ idM : P ⊗AM → F ⊗AM , and hence s⊗ idM is injective. The diagram

0 - F ⊗AM
idF ⊗f- F ⊗A N

P ⊗AM

p⊗idM

?
idP⊗f- P ⊗A N

p⊗idN

?

(6.12)

is commutative. Let ti ∈ P and mi ∈ M be such that
∑
ti ⊗ f(mi) = 0. We then have

∑
s(ti) ⊗

f(mi) = 0 so that
∑
s(ti) ⊗mi is in the kernel of F ⊗A M → F ⊗A N . Since the upper row of

diagram (6.12) is exact we have
∑
s(ti)⊗mi = 0, but then

∑
ti⊗mi = p(

∑
s(ti)⊗mi) = 0. Thus

also the map idP ⊗ f is injective.

The fact that any module is a quotient of a free module implies that the category of A-modules
has enough projectives. By this we mean that for any A-module M , there is a projective module
P and a surjective morphism P → M . Since any free module is projective, we can take P to be
the free module on a set of homogeneous generators for M . Now let K be the kernel of the map
P →M , then we can find a projective (and even free) A-module P1, such that P1 maps surjectively
onto K. Thus the following sequence is exact

P1
- P - M - 0 . (6.13)

Applying the same reasoning to the kernel of the composite map P1 → P and continuing this
process, one obtains a projective resolution of M :

. . . - P2
- P1

- P - M - 0 , (6.14)
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which is an exact sequence consisting of all projective A-modules, except for M . When all the Pi
are in fact free, one calls the projective resolution a free resolution. Using projective resolutions one
can define left-derived functors (see for example [15, 50] for a pedagogical treatment). In section
6.3 we will show that the category of A-modules has enough injectives, which then allows the
construction of right-derived functors. Without proof (which does hardly deviate from the proof in
the commutative case) we mention that as in the commutative case two projective resolutions are
homotopic to each other.

Lemma 6.2.6.

(i) If (Mi)i∈I is a family of flat A-modules, then M = ⊕i∈IMi is flat.

(ii) If M and M ′ are flat A-modules, then M ⊗AM ′ is flat.

Proof. (i): Write M =
⊕

i∈IMi. Since (
⊕

i∈IMi) ⊗A N ∼=
⊕

i∈I(Mi ⊗A N) and a morphism
idM ⊗ f :

⊕
i∈I(Mi ⊗A N) → ⊕

i∈I(Mi ⊗A N ′) is injective if and only each of the restrictions
fi : Mi ⊗A N → Mi ⊗A N ′ is injective, the first claim is obvious. (ii) Let f : N → N ′ be an
injective morphism. Then idM ′ ⊗ f : M ′ ⊗A N → M ′ ⊗A N ′ is injective. Tensoring with M gives
the result.

Lemma 6.2.7. Let A be a superring and S a multiplicative set in A0̄. Then S−1A is a flat A-
module.

Proof. This follows immediately from proposition 5.1.17.

The following lemma gives equivalent characterizations of flat modules, also see [18, 50]:

Proposition 6.2.8. Let M be an A-module, then the following are equivalent:

(i) M is a flat A-module.

(ii) For every exact sequence of A-modules N ′ → N → N ′′ the associated sequence M ⊗A N ′ →
M ⊗A N → M ⊗A N ′′ is exact (by convention such a sequence is exact if and only if it is
exact at the middle node).

(iii) For all exact sequences

0 - K
i - L

p - M - 0 , (6.15)

and for all A-modules N the associated sequence

0 - K ⊗A N
i⊗idN- L⊗A N

p⊗idN- M ⊗A N - 0 (6.16)

is exact.

(iv) For any Z2-graded ideal a of A the morphism a⊗AM →M sending a⊗m to am, is injective.

Proof. Clearly (i) and (ii) are equivalent by the definition of flatness. (i)⇒ (ii): Assume we have
an exact sequence of A-modules

N ′ f - N
g- N ′′ , (6.17)

then we have an induced short exact sequence

0 - f(N ′) - N - g(N) - 0 , (6.18)
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and thus the sequence

0 - f(N ′)⊗AM - N ⊗AM - g(N)⊗AM - 0 (6.19)

is exact. Now consider the sequenceN ′⊗AM → N⊗AM → N ′′⊗AM and suppose x ∈ Ker(g⊗idM ).
Then by the exactness of the sequence (6.19) we see that x ∈ Im(f⊗idM ), that is, x lies in the image
of f . Hence N ′⊗AM → N⊗AM → N ′′⊗AM is exact. (i)⇐ (ii): By proposition 6.1.1 the functor
N 7→M ⊗AM is right-exact. We thus only need to show that if 0→ N → N ′′ is exact, then so is
0→ N⊗AM → N ′′⊗AM . We then take N ′ = 0. (i)⇒ (iv): this is immediate. (i)⇐ (iv): We first
claim that if 0→ N →⊕

i∈I A⊕
⊕

j∈J ΠA is exact then so is 0→ N⊗AM →
⊕

i∈IM⊕
⊕

j∈J ΠM .
Suppose that some element goes to zero in

⊕
i∈IM ⊕

⊕
j∈J ΠM , then it already goes to zero in

a finite direct sum, and hence we restrict to exact sequences of the form 0 → N → Ap|q. We use
an induction argument. Let F1 and F2 be two free modules such that F1 ⊕ F2 = Ap|q and we may
assume by (iv) and exactness of Π that for all exact sequences 0 → Ni → Fi, with i = 1, 2 the
sequences 0 → Ni ⊗AM → Fi ⊗AM are exact. Now consider any monomorphism N → Ap|q and
identify N with a submodule of Ap|q. Define N1 = N ∩ F1 and N2 = N ∩ F2. Then the following
diagram is commutative and has exact rows and columns

0 0 0

N1

?
- N

?
- N2

?
- 0

0 - F1

?
- Ap|q

?
- F2

?

. (6.20)

We tensor with M and obtain the diagram

0 0

N1 ⊗AM
?

- N ⊗AM - N2 ⊗AM
?

- 0

0 - F1 ⊗AM
?

- Mp|q

?
- F2 ⊗AM

?

. (6.21)

The lower row is exact since (F1 ⊕ F1) ⊗AM = Mp|q, that is, the lower row splits. This implies
that the map F1 ⊗AM → Mp|q has a left inverse and thus is injective. The columns of diagram
(6.21) are exact by the assumption on F1 and F2. Using a diagram-chasing argument one sees that
the morphism of the middle column is injective. This proves the claim.

Any module N is a quotient of a free module F . Thus let 0 → K → F → N → 0 be a short
exact sequence, with F free and K the kernel of the surjective map p : F → N . Now suppose
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j : N ′ → N is a monomorphism and call F ′ = p−1(N ′) ⊂ F , then we have a commutative diagram
with exact rows

0 - K - F ′ - N ′ - 0

0 - K

idK

?
- F

i

?
- N

j

?
- 0

, (6.22)

where i : F ′ → F is the canonical injection. Tensoring with M gives

K ⊗AM - F ′ ⊗AM - N ′ ⊗AM - 0

0 - K ⊗AM
?

- F ⊗AM
?

- N ⊗AM
?

- 0

. (6.23)

The first column of diagram (6.23) is the identity map, the second is a monomorphism by the first
claim and the by the same reason the bottom row is exact. A diagram-chasing argument shows that
the kernel of the last column is trivial. This proves that the functor N 7→ N ⊗A M is left-exact,
hence exact. And thus M is flat.

Remark 6.2.9. Note that in the last part of the proof of proposition 6.2.8 no sign of any difference
between commutative rings and superrings was seen. The argument relied only on diagrammatics.
This is a general feature; as soon as one enters the realm of diagrammatics all differences between
commutative rings and superrings disappear.

Proposition 6.2.10. Let E be a flat A-module, then Ē is a flat Ā-module.

Proof. Suppose Ē is not flat, then there is an injection i : M → N of Ā-modules such that
idĒ ⊗ i : Ē ⊗ĀM → Ē ⊗Ā N has a nontrivial kernel. We can view M and N as (even) A-modules,
where JA acts trivially. Let us denote M∗ respectively N∗ the abelian group M respectively N
seen as A-module. Similarly we write i∗ : M∗ → N∗ for the induced morphism of A-modules; then
i∗ is injective. We have a well-defined morphism of abelian groups Ē ⊗Ā M → E ⊗A M∗ given
by ē ⊗Ā m 7→ e ⊗A m, which is injective (since it has a left inverse) and surjective and thus an
isomorphism. The diagram

E ⊗AM∗ idE⊗Ai
∗

- E ⊗A N∗

Ē ⊗ĀM
?

idĒ⊗Āi
- Ē ⊗Ā N

?

(6.24)

commutes and the vertical arrows are isomorphisms of abelian groups. But then the upper morphism
idE ⊗A i∗ has a nontrivial kernel, contradicting the flatness of E.

6.3 Injective modules

In this section we prove that the category of A-modules has enough injectives, which allows us to
construct right-derived functors and injective resolutions.
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Definition 6.3.1. Let A be a superring and I an A-module. We call I an injective module if the
functor HomA(−, I) is exact.

There are other characterizations of injective modules as the next lemma shows (see for example
[50]):

Lemma 6.3.2. Let A be a superring and I an A-module. Then I is injective if and only if one of
the two following conditions holds:

(i) For any injective morphism i : M ′ → M and morphism f : M ′ → I, there is a morphism
g : M → I such that g ◦ i = f .

(ii) Any exact sequence 0→ I →M →M ′′ → 0 splits.

Proof. The functor HomA(−, I) is exact if and only if condition (i) is satisfied. Now assume that
condition (i) holds and an exact sequence 0 → I → M → M ′′ → 0 is given. Applying (i) to the
identity morphism idI : I → I we see that there is a morphism g : M → I such that the following
diagram commutes and the top row is exact:

0 - I - M

I

idI

?

g

�

. (6.25)

Thus (ii) holds. Now assume condition (ii) holds. Consider an injective morphism i : M ′ →
M and a morphism f : M ′ → I. Define the module N as N = I ⊕ M/K where K is the
submodule of I ⊕M generated by the elements of the form (f(x), 0)− (0, i(x)), where x runs over
all homogeneous elements of M ′. Then there are morphisms u : I → N and v : M → N defined by
u(x) = (x, 0)modK and v(y) = (0, y)modK. One easily checks that the morphism u is injective
so that the following diagram commutes and has exact rows

0 - M ′ i - M

0 - I

f

?

u
- N

v

?

. (6.26)

Now we apply condition (ii) to the bottom row to find a morphism g : N → I, which can be
concatenated with v to get the required map g ◦ v : M → I. Hence (i) holds.

Recall that an abelian group G is called divisible if for all nonzero integers n the map G→ G,
sending g to ng, is surjective. Furthermore, an abelian group is injective (when we view it as a
Z-module) if and only if it is divisible, see for example [15, 50].

For two abelian groups G and H we write HomZ(G,H) for the morphisms of abelian groups
G → H . If G is an abelian group and A is a superring, which is also an abelian group, we want
to turn HomZ(A,G) into an A-module. As a set of morphisms of abelian groups, HomZ(A,G) is
already an abelian group. We give HomZ(A,G) the following Z2-grading: we call f ∈ HomZ(A,G)
even respectively odd if f(A1̄) = 0 respectively f(A1̄) = 0. Then we can write HomZ(A,G) =
HomZ(A,G)0̄ ⊕ HomZ(A,G)1̄ and HomZ(A,G) is a Z2-graded abelian group. For any a ∈ A we
define the right action of a on f ∈ HomZ(A,G) as follows (f · a)(a′) = f(aa′) for all a′ ∈ A. It is
easily checked that this turns HomZ(A,G) into an A-module.
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Lemma 6.3.3. Let M be an A-module and G an abelian group. Then we have an isomorphism of
abelian groups HomZ(M,G) ∼= HomA(M,HomZ(A,G)).

Proof. We define a morphism of abelian groups α : HomZ(M,G) → HomA(M,HomZ(A,G)) as
follows: Let ψ : M → G be a morphism of abelian groups and m ∈M , then α(ψ)(m) : a 7→ ψ(ma).
It is easy to verify that α(ψ) satisfies α(ψ)(m + m′) = α(ψ)(m) + α(ψ)(m′) and α(ψ)(m) · a =
α(ψ)(ma) for all m,m′ ∈ M and a ∈ A. Thus α(ψ) ∈ HomA(M,HomZ(A,G)). We define a
second morphism of abelian groups β : HomA(M,HomZ(A,G))→ HomZ(M,G) as follows: For any
ϕ ∈ HomA(M,HomZ(A,G)) we define the morphism β(ϕ) : M → G by β(ϕ) : m 7→ ϕ(m)(1), which
clearly satisfies β(ϕ)(m +m′) = β(ϕ)(m) + β(ϕ)(m′). The morphisms α and β are morphisms of
abelian groups and are inverse to each other.

Lemma 6.3.4. Let D be a divisible abelian group. Then the A-module HomZ(A,D) is an injective
A-module.

Proof. Let i : M ′ → M be an injective morphism of A-modules. Then the induced sequence of
abelian groups HomZ(M,D)→ HomZ(M ′, D)→ 0 is exact. Using the isomorphism of lemma 6.3.3
we obtain a commutative diagram

HomA(M,HomZ(A,D)) - HomA(M ′,HomZ(A,D)) - 0

HomZ(M,D)

6

- HomZ(M ′, D)

6

- 0

, (6.27)

of which the bottom row is exact and where the horizontal arrows are the maps f 7→ f ◦ i. But then
the top row is exact as well, proving that the functor M 7→ HomA(M,HomZ(A,D)) is exact.

As a consequence, we obtain that the category of A-modules has enough injectives:

Theorem 6.3.5. Let M be an A-module. Then there is an injective A-module I such that M
injects into I.

Proof. Consider the A-module as an abelian group. Since the category of abelian groups has enough
injectives there is monomorphism f : M → D for some divisible group D. Then there is a natural
morphism of A-modules M → HomZ(A,D) given by m 7→ fm, where fm(a) = f(ma). One easily
checks that fm+m′ = fm + fm′ and fma = fm · a for all m,m′ ∈ M and a ∈ A. The map m 7→ fm
is thus a morphism of A-modules. If fm = fm′ then in particular fm(1) = fm′(1), which implies
m = m′. Hence m 7→ fm is an injective morphism. By lemma 6.3.4 the A-module HomZ(A,D) is
injective and thus we have shown that any A-module can be injected into an injective module.

6.4 Finitely generated and Noetherian modules

In this section we rederive some classical results of commutative algebra for finitely generated
modules: we discuss the lemma of Nakayama, the Hamilton–Cayley theorem, the Krull intersection
theorem and we start the discussion with paving the way for a result on generic freeness.

Definition 6.4.1. Let M be an A-module. We say a prime ideal p of A is associated to M , when
there is a homogeneous m ∈M such that p = Ann(m).
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A prime ideal associated toM that is minimal is called a minimal prime ofM and the other prime
ideals associated to M are called embedded primes. The nomenclature for prime ideals associated to
a module is very similar to the nomenclature of prime ideals associated to a primary decomposition
of an Z2-graded ideal. This is not a coincidence and is explained in for instance [15, chapter 3].

Lemma 6.4.2. Let A be a Noetherian superring. If M is a nonzero A-module, then there are
primes associated to M .

Proof. Since M is nonzero, the set of Z2-graded ideals Ann(m), where m runs over the nonzero
homogeneous elements is not empty. Since A is Noetherian, there is a maximal element p. We will
show that p is prime. Suppose p is the annihilator of m ∈M . Assume there are homogeneous a, b ∈
A with b /∈ p and ab ∈ p. Then ab ·m = 0, and thus a · (bm) = 0 and bm 6= 0. Clearly, p ⊂ Ann(bm)
and by maximality of p the Z2-graded ideal Ann(bm) must equal p, so that a ∈ Ann(bm) = p.

Theorem 6.4.3. Let A be a Noetherian superring. Let M be a finitely generated A-module. Then
there exists a filtration

M = M0 ⊃M1 ⊃ . . . ⊃Mn ⊃Mn+1 = 0 . (6.28)

of submodules such that Mi/Mi+1 is isomorphic to either A/pi or ΠA/pi for some prime ideal pi.

Proof. Let S be the set of submodules that admit such a decomposition. Then S is not-empty, since
it contains 0. Since M is Noetherian, S contains a maximal element N . If M 6= N then M/N 6= 0
and there exists a prime ideal associated to M/N . Hence M/N contains a submodule N ′/N that
is isomorphic to either A/p or ΠA/p for some prime p. Hence N ′ lies in S and properly contains
N . Hence we must have M = N .

We apply theorem 6.4.3 to show that under suitable circumstances we can make a module M
of a Noetherian superring A free by localizing at some element. The method of Takeuchi [58] only
works for reduced rings, since then we can localize as in proposition 5.1.20 to obtain an integral
domain and in an integral domain 0 is a prime ideal. By theorem 6.4.3 we know that M admits a
decomposition

M = M0 ⊃M1 ⊃ . . . ⊃Mn ⊃Mn+1 = 0 , (6.29)

such that Mi/Mi+1 for 0 ≤ i ≤ n is as an A-module isomorphic to A/pi or Π(A/pi) where pi is a
prime ideal. If we can regroup a few terms in such a filtration such that Mi/Mi+1 is of the form
A/ai (or Π(A/ai)) where ai is either the zero ideal or a Z2-graded ideal such that ai is nonzero,
then we can for each nonzero ai choose an element ai ∈ ai,0̄ with āi 6= 0 and if ai = 0 we put ai = 1.
If Ā is an integral domain, the multiplicative set generated by a = a1 · · ·an does not contain zero
and (A/ai)a = 0 if ai 6= 0. Hence

Ma = (Ma)0 ⊃ (Ma)1 ⊃ . . . ⊃ (Ma)k+1 = 0 , (6.30)

with k ≤ n and (Ma)i/(Ma)i+1
∼= Aa and then Ma is free. If Ā is not an integral domain, we can

first localize A such that Ā is an integral domain (see proposition 5.1.20). We thus have shown:

Theorem 6.4.4. Let A be a reduced Noetherian superring and M a finitely generated A-module.
Then there exists a nonzero even element a ∈ A such that the localization Ma is a free Aa-module.

If a superring A is reduced, then the underlying commutative ring has no nilpotents. Then a
localization of A can be done such that Ā is an integral domain, which implies that Spec(A) is
irreducible as a topological space. If M is a finitely generated module, then there is a sheaf M on
Spec(A) such that on the principal open sets D(f) we haveM(D(f)) = Mf (see for example [54,55]
for this construction). We say M is the sheaf associated to M . Theorem 6.4.4 then implies that
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on an open dense subset the sheaf M is free. In other words, M is a locally free sheaf. More
generally, we call a superscheme (X,OX) Noetherian if it admits an open cover by affine Noetherian
superschemes. A sheaf of OX -modules M for which there are affine open sets Ui ∼= Spec(Ai) such
that the restriction ofM to Ui is isomorphic to the sheaf associated to an Ai-module Mi, is called
a quasi-coherent sheaf. If all the Mi are finitely generated, we call M a coherent sheaf. Theorem
6.4.4 then says that under the condition that the Ai are reduced, a coherent sheaf is locally free.

We come to three ‘classics’ of commutative algebra: Nakayama’s lemma, the Hamilton–Cayley
theorem and the Krull intersection theorem. Especially the lemma of Nakayama, with which we
start below, will prove useful in later sections.

Proposition 6.4.5 (Nakayama’s lemma). Let M be a finitely generated A-module. Suppose that
I is a Z2-graded ideal contained in the Jacobson radical (see for example section 4.1). Then if
IM = M , then M = 0.

Proof. Let m1, . . . ,mn be a set of homogeneous generators for M . Then mn ∈ IM and hence we
find ai ∈ I with mn =

∑
i aimi. Since 1 − an is invertible by lemma 4.1.15, we can eliminate mn

from the set of generators, and M is generated by n−1 elements. So we may assume M is generated
by 1 element m. But then m = am for some a ∈ I and then (1− a)m = 0, hence m = 0.

Let N be a submodule of a finitely generated A-module M and I a Z2-graded ideal contained
in the Jacobson radical of A. If we can write M as M = IM + N , then it follows that M = N
by applying the Nakayama lemma 6.4.5 to the quotient M/N . When A is a local superring with
maximal ideal m and M is finitely generated, then mM = M implies M = 0. For a local ring, the
Nakayama lemma has an important consequence for projective modules:

Lemma 6.4.6. Let A be a local superring. Then every finitely generated projective A-module is a
free module.

Proof. Let m1, . . . ,mn be a set of homogeneous elements such that their images in M/mM are
a (standard) basis for the super vector space M/mM . We then have a morphism h : Ap|q → M
for some p and q with p + q = n. Let N be the submodule of M generated by the m1, . . . ,mn.
If m ∈ M , then there are ai ∈ A such that m −∑

i aimi goes to zero in M/mM , which means
m −∑

i aimi ∈ mM . We thus conclude that M = N + mM . The Nakayama lemma implies that
M = N . Thus the map Ap|q → M is surjective. As M is projective we infer that there is a
morphism s : M → Ap|q such that the following diagram commutes and the bottom line is exact:

M

Ap|q
h

-

s

�
M

idM

?
- 0

. (6.31)

Let ei be a homogeneous basis for 1 ≤ i ≤ n of A such that h(ei) = mi. There are elements Sij
of A such that s(mi) = ei +

∑
j ejSji. As h(s(mi)) = mi we have

∑
j Sijej ∈ Kerh. Now suppose

x =
∑

i eixi ∈ Kerh, then 0 =
∑
imixi and since the mi mod m are linearly independent over A/m

we must have xi ∈ m. Furthermore, we have

0 = s ◦ h(x) =
∑

i

eixi +
∑

ij

eiSijxj . (6.32)

As the ei are independent we have xi = −Sijxj . But then x = −∑
ij eiSijxj ∈ mKerh. Hence

Kerh = mKerh and thus by Nakayama’s lemma 6.4.5 we conclude Kerh = 0.
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Theorem 6.4.7 (Hamilton–Cayley). Let M be a finitely generated A-module. Given a morphism
ϕ : M → M with ϕ(M) ⊂ IM for some Z2-graded ideal I in A. There there exists a monic
polynomial p = XN +a1X

N−1 + . . .+aN in A0̄[X ] with p(ϕ) = 0 and with ai ∈ Ii and where A0̄[X ]
is the polynomial ring in one variable with coefficients in A0̄.

Proof. If M is finitely generated so is M . Using the classical version of the Cayley–Hamilton
theorem (see for example [15, 50]) we find a polynomial p̄ ∈ Ā[X ] of the form

p̄(X) = Xn + r1X
n−1 + . . .+ rn , (6.33)

with p̄(ϕ̄) = 0 and ri ∈ Īi. We can construct an element p ∈ A0̄[x] such that under the projection
A→ Ā the polynomial p goes to p̄. We write

p(X) = Xn + b1X
n−1 + . . .+ bn , (6.34)

where we can choose the bi ∈ (I0̄)
i. For any m ∈ M we consider p(ϕ)(m). From ϕs(m) = ϕ̄s(m̄)

for each integer s, it follows that p(ϕ)(m) = 0. Hence p(ϕ)M ⊂ JAM . Hence on the generators we
can write

p(ϕ)(mi) =
∑

k

jikmk , jik ∈ JA . (6.35)

Since the jik are nilpotent, there is a power r such that p(ϕ)r = 0. The polynomial p(ϕ)r is monic
and the coefficients ai in

P (X) = p(X)r = XN + a1X
N−1 + . . .+ aN , (6.36)

are in Ii0̄.

Corollary 6.4.8. Let A be a superring, I a Z2-graded ideal in A, M a finitely generated A-module
and suppose a ∈ A is homogeneous with aM ⊂ IM . Then there is an integer n > 0 and a
homogeneous element b ∈ I with (an + b)M = 0. In particular, when M = IM , there is an even
element b ∈ I with (1 + b)M = 0.

Proof. A direct application of the Hamilton–Cayley theorem 6.4.7 by taking ϕ(m) = ma: then we
find that there is a monic polynomial p(X) =

∑n
i=0X

ian−i in A0̄ such that ak ∈ Ik0̄ and p(a) = 0.
Therefore an + b acts by zero on M , for some homogeneous b ∈ I. The second statement follows
by taking a = 1.

When the Z2-graded ideal I of corollary 6.4.8 lies in the Jacobson radical, then it follows M = 0
and thus we get an alternative way of deducing the lemma of Nakayama. Indeed, if I is the Jacobson
radical, then the element 1 + b is invertible and thus (1 + b)M = 0 implies M = 0.

We now turn to the preparation that we will use to prove the Krull intersection theorem for
superrings. The presentation follows the lines of [19].

Lemma 6.4.9. Let A be a Noetherian superring, I a Z2-graded ideal in A. Suppose M is a finitely
generated A-module and N ⊂ M a Z2-graded submodule. Then there exists a submodule Q ⊂ M
and an integer n > 0 such that

(i) Q ∩N = IN and

(ii) InM ⊂ Q.
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Proof. Consider the set S of all submodules N ′ ⊂M such that N ′∩N = IN . Then S 6= ∅ and there
is thus a maximal element Q. We claim that Q satisfies the properties (i) and (ii) of the lemma.
Clearly Q ∩ N = IN . Since M is finitely generated, to prove (ii) it suffices to show that for all
homogeneous x ∈ I, there exists an integer r with xrM ⊂ Q. Take x ∈ I homogeneous and consider
for each integer s > 0 the submodules (Q : xs) = {m ∈M | xsm ∈ Q}, then (Q : xs) ⊂ (Q : xs+1).
Since M is Noetherian, there is an r such that for s ≥ r from xsm ∈ Q follows that xrm ∈ Q. We
claim that (xrM +Q)∩N = IN . From the inclusion Q ⊃ IN it follows that IN ⊂ (xrM +Q)∩N .
On the other hand, if m = xrm′ + q for m′ ∈ M , with q ∈ Q, lies in N , then xm ∈ IN . Hence
xr+1m′ ∈ Q, and thus we see that m ∈ Q. But then xrM +Q ⊂ Q by the maximality of Q so that
we conclude xrM ⊂ Q.

Theorem 6.4.10 (Krull’s intersection theorem). Let A be a Noetherian superring, I a Z2-graded
ideal in A and M a finitely generated A-module. Call N = ∩i≥0I

iM , then IN = N .

Proof. By lemma 6.4.9 there exists a submodule A of M such that Q ∩N = IN and an integer n
such that InM ⊂ Q. But then N ⊂ InM ⊂ Q. Hence N = Q ∩N = IN .

We have the following corollaries:

Corollary 6.4.11. Let A be a Noetherian superring, I a Z2-graded ideal in A and M a finitely
generated A-module. Then we have:

(i) There is an even y ∈ I with (1 + y) ∩i≥0 I
iM = 0.

(ii) If in addition I is contained in the Jacobson radical then ∩i≥0I
iM = 0.

(iii) If A is local with maximal ideal m then ∩i≥0m
i = 0.

Proof. By combining theorem 6.4.10 with the second part of corollary 6.4.8 we obtain (i). The
second and third part of the corollary are then immediate.

6.5 Base change

Let A and B be superrings and let f : A → B be a morphism. In this case we say that B is an
A-superalgebra. We will use the map f to get functors that relate the category of A-modules to
the category of B-modules.

We define the functor f∗ : A-mod → B-mod as follows: For an A-module M we define
f∗(M) = M ⊗A B, which is canonically a right B-module. For a homomorphism of A-modules
u : M → N we define f∗(u) : f∗(M) → f∗(N) by f∗(u) = u ⊗ idB. The functor f∗ is right-exact
by proposition 6.1.1. The functor f∗ preserves injective morphisms if and only if B is flat as an
A-module, where the action of A on B is the one prescribed by f .

We define a functor f∗ : B-mod → A-mod for the same f : A → B as follows: For each
B-module M we let f∗(M) be the A-module, where the right action of a ∈ A on m ∈M is defined
by (m, a) 7→ mf(a). For a morphism v : M → N of B-modules we put f∗(v)(m) = v(m).

Lemma 6.5.1. Let A,B be superrings, f : A → B a morphism and let M and N be A-modules.
We have f∗(M ⊗A N) ∼= f∗(M)⊗B f∗(N) and f∗(M ⊕N) = f∗(M)⊕ f∗(N).

Proof. Follows from (M ⊗A N) ⊗A B ∼= (M ⊗A B) ⊗B (N ⊗A B) where the isomorphisms are
given by ψ : m ⊗ n ⊗ b 7→ (m ⊗ 1) ⊗ (n ⊗ b) = (−1)|n||b|(m ⊗ b) ⊗ (n ⊗ 1) and the inverse is
ψ−1 : (m⊗ b1)⊗ (n⊗ b2) 7→ (−1)|n||b1|m⊗ n⊗ b1b2.

For the second part we note that it follows from the definition of the direct sum that (M ⊕
N)⊗A B ∼= (M ⊗A B)⊕ (N ⊗A B).



6.5 Base change 89

Lemma 6.5.2. Let A be a local superalgebra with maximal ideal m, and let M and N be two finitely
generated A-modules. Then M ⊗A N = 0 if and only if M or N is zero.

Proof. Applying lemma 6.5.1 to the canonical projection f : A → B = A/m we see that (M ⊗A
B) ⊗B (N ⊗A B) = 0. Both factors are super vector spaces, hence one of them has to vanish.
Suppose M ⊗AA/m = 0, then M/mM = 0 and thus M = mM . By Nakayama’s lemma M = 0.

Proposition 6.5.3. Let A and B be superrings and f : A → B a morphism. There is a natural
isomorphism of Z2-graded abelian groups HomA(M, f∗(N)) ∼= HomB(f∗(M), N) for M ∈ A-mod

and N ∈ B-mod. In other words, f∗ is left-adjoint to f∗.

Proof. Note that y ∈ HomA(M, f∗(N)) implies that y(ma) = y(m)f(a). We define a morphism of
sets α : HomB(f∗(M), N)→ HomA(M, f∗(N)) by

αx(m) = x(m⊗ 1) . (6.37)

The inverse to α is given by the morphism β : HomA(M, f∗(N))→ HomB(f∗(M), N) defined by

βy(m⊗ b) = y(m)b . (6.38)

The maps α and β are well-defined and preserve the parity. The naturality is shown by a direct
application of the definitions.

Corollary 6.5.4. Let A and B be superalgebras and f : A→ B a morphism of superalgebras. If P
is a projective A-module, then P ⊗A B is a projective B-module.

Proof. Suppose x : K → L is a surjective morphism of B-modules and y : P ⊗A B → L is a
morphism of B-modules. The induced sequence of A-modules f∗(K) → f∗(L) → 0 is exact since
f∗(x)(k) = x(k); the maps f∗(x) and x are the same as morphisms of abelian groups. We have
a morphism f∗(y) : P → f∗(L) sending p ∈ P to y(p ⊗ 1). Since P is a projective A-module,
there is a morphism h : P → f∗(K) such that f∗ ◦ h = f∗(y). We define h∗ = f∗(h) : P ⊗A B →
K by h∗(p ⊗ b) = h(p)b. Then h∗ is a well-defined morphism of B-modules. We observe that
x ◦ h∗(p⊗ b) = x(h(p))b = (f∗(x) ◦ h(p))b = (f∗(y)(p))b = y(p⊗ 1)b = y(p⊗ b) and thus x ◦ h∗ = y,
which means that P ⊗A B is projective.

Let B be an A-superalgebra, so that B is an A-module. Let us write ab for the left action
of a ∈ A on b ∈ B; we thus suppress writing explicitly the morphism A → B. If M and N
are A-modules, then HomA(M,N) ⊗A B and HomB(M ⊗A B,N ⊗A B) are B-modules, and we
expect them to be isomorphic. In order to be able to show in theorem 6.5.9 that under suitable
circumstances this is indeed so, we need some preliminaries.

If N is an A-module, we write Np|q for the A-module N ⊗A Ap|q ∼= (
⊕p

i=1N) ⊕ (
⊕q

j=1 ΠN).

For 1 ≤ k ≤ p+ q we have a morphism of A-modules uk : A→ Ap|q, which maps 1 to the 1 in the
kth summand of Ap|q. In the remainder of this subsection, we denote ek the image of 1 under uk;
ek = uk(1). Each element n of Np|q admits a unique decomposition n =

∑p+q
k=1 nkek.

Definition 6.5.5. If M is a finitely generated A-module we have an exact sequence

0 - K - F
p - M - 0 , (6.39)

where F is a finite free module and K is the kernel of the morphism p : F → K. If K is finitely
generated, we call M finitely presented. Equivalently, M is finitely presented if and only if there
are finite free modules F and G such that the sequence

F - G
p - M - 0 (6.40)

is exact. The exact sequence (6.40) is called a short free resolution of M .
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Clearly, the property of being finitely presented is preserved under base extension: if M is a
finitely presented A-module, then M ⊗A B is a finitely presented B-module. Some direct conse-
quences of the definition:

Proposition 6.5.6. If A is a Noetherian superring and M is a finitely generated A-module, then
M is finitely presented.

Proof. If p : F → M is a surjective A-module morphism and F finitely generated, then F is a
Noetherian A-module, and thus Kerp is finitely generated.

Proposition 6.5.7. If P is a finitely generated projective A-module, then P is finitely presented.

Proof. If P is projective and finitely generated, then there is a finite free module F and a surjective
morphism p : F → P . By lemma 6.2.2 we can write F ∼= P ⊕Kerp and since Kerp is a quotient of
F it is finitely generated.

For an A-module M there may be several different short free resolutions. The following propo-
sition is not needed to prove theorem 6.5.9 and relates different free resolutions.

Proposition 6.5.8. Let M be finitely presented and let

F
q - G

p - M - 0

F ′ q′ - G′ p′ - M - 0

(6.41)

be two short free resolutions of M . Then there are A-module morphisms α : F → F ′ and β : G→ G′

such that the diagram with exact rows

F
q - G

p - M - 0

F ′

α

?
q′ - G′

β

?
p′ - M

idM

?
- 0

(6.42)

commutes. Furthermore, if α is surjective, then so is β.

Proof. Let x be a generator in G, then p(x) = p′(y) for some y ∈ G′. We define β : G → G′ by
β(x) = y and extend by A-linearity so that p = p′ ◦ β. If x is a generator in F then p′ ◦ β ◦ q(x) = 0
and hence there is y ∈ F ′ with q′(y) = β ◦ q(x). We define α : F → F ′ by α(x) = y and extend
by A-linearity. Now suppose α is surjective and g′ ∈ G′. Then we can find g ∈ G such that
p(g) = p′(g′), so that β(g) − g′ = q′(f ′) for some f ′ ∈ F ′. Hence β(g) − g′ = q′ ◦ α(f) for some
f ∈ F and thus β(g)− g′ = β ◦ q(f), which implies g′ ∈ Imβ.

Theorem 6.5.9. Let A and B be superalgebras and let M and N be A-modules. Suppose we have
a superalgebra morphism f : A→ B. We have a morphism of B-modules

α : HomA(M,N)⊗A B → HomB(f∗(M), f∗(N)) (6.43)

defined by
α(ϕ ⊗A b)(m⊗A b′) = (−1)|m||b|ϕ(m) ⊗A bb′ . (6.44)

If B is a flat A-module and M is finitely presented, then the map α is an isomorphism of B-modules.
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Proof. First we show that α is a morphism of B-modules:

α(ϕ⊗ b1b2)(m⊗ b3) = (−1)|m|(|b1|+|b2|)ϕ(m)⊗ b1b2b3 , (6.45)

on the one hand and

((α(ϕ ⊗ b1)) · b2)(m⊗ b3) = (−1)|b2|(|m|+|b3|)α(ϕ⊗ b1)(m⊗ b3) · b2
= (−1)|m|(|b1|+|b2|)+|b2||b3|ϕ(m)⊗ b1b3b2 ,

(6.46)

which equals (6.45). Furthermore, the map α preserves sums and the parity.
Next, we first verify the isomorphism on the module M = A. In this case HomA(A,N) ∼= N ,

A⊗A B ∼= B and HomB(B,N ⊗A B) ∼= N ⊗A B. It is easy to check that the map α is the identity.
Now we deal with M = Ap|q. We have an isomorphism of abelian groups HomA(Ap|q, N)⊗A B ∼=
Np|q ⊗A B and also

HomB(Ap|q ⊗A B,N ⊗A B) ∼= HomB(Bp|q, N ⊗A B)

∼= (N ⊗A B)p|q ∼= Np|q ⊗A B ,
(6.47)

are isomorphisms of abelian groups. The isomorphisms are however not isomorphisms ofB-modules,
since the isomorphisms do not commute with the right action of B. The morphism of B-modules
induces a map α̂ : Np|q ⊗A B → Np|q ⊗A B of abelian groups given by

α̂ :
∑

j

ejnj ⊗ b 7→
∑

j

ej(−1)|b||ej |nj ⊗ b , (6.48)

where the ej are the images of 1 ∈ A in the jth summand of Np|q ∼= N ⊗A Ap|q. The minus sign
in eqn.(6.48) should not surprise us, since we do not have morphisms of modules. However, we see
that α̂ is an isomorphism of abelian groups, since it squares to the identity and preserves sums.
We already verified that α is a morphism of B-modules, hence also for M = Ap|q the map α is an
isomorphism.

Now we assume that B is a flat A-module and M is finitely presented. Hence there are finite
free A-modules G and F and connecting maps δ and ǫ such that the following sequence

F
δ - G

ǫ - M - 0 (6.49)

is exact. Applying the functors −⊗A B and HomB(−, N ⊗A B) we get an exact sequence

0 - HomB(f∗(M), f∗(N)) - HomB(f∗(G), f∗(N)) - HomB(f∗(F ), f∗(N)) . (6.50)

Similarly we obtain an exact sequence (using flatness of B)

0 - HomA(M,N)⊗B - HomA(G,N)⊗B - HomA(F,N)⊗B . (6.51)

Writing αX for the morphism αX : HomA(X,N)⊗AB → HomB(f∗(X), f∗(N)) as defined in (6.44)
and putting X = F,G,M we get a commutative diagram (where it is needed that ǫ and δ are even
in order to ensure commutativity):

0 - HomB(M ′, N ′) - HomB(G′, N ′) - HomB(F ′, N ′)

0 - HomA(M,N)⊗B

αM

6

- HomA(G,N)⊗B

αG

6

- HomA(F,N) ⊗B

αF

6

. (6.52)

From the first part of the proof we know that αF and αG are isomorphisms. By a simple diagram-
chasing argument it follows that αM is also an isomorphism.
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Corollary 6.5.10. Let A be a superalgebra over k and let V1 and V2 be super vector spaces over k
of finite dimensions p1|q1 and p2|q2 respectively. Then

HomsVec (V1, V2)⊗k A ∼= HomA(Ap1|q1 , Ap2|q2) . (6.53)

Proof. Since k is a field, A and V2 are free k-modules and hence A is flat and V2 is finitely presented.
It is easy to see that Ar|s ∼= kr|s ⊗k A for any r and s.

We remark that the situation in corollary 6.5.10 is very similar to the situation of lemma 3.7.7,
but there is a difference. Corollary 6.5.10 just states that there is an isomorphism of A-modules.
For the case of super vector spaces, it is not too hard this result directly, which we in fact did in
section 3.7. Lemma 3.7.7 additionally gives an isomorphism of superalgebras.

Corollary 6.5.11. Let A be a superring and p a prime ideal in A. Then we have HomA(M,N)p
∼=

HomAp
(Mp, Np).

Proof. Using the fact that Ap is a flat A-module, and that Mp
∼= M ⊗A Ap the result follows

immediately from lemma 6.2.7.

Corollary 6.5.12. Let A be a Noetherian superring and M a finitely generated module. Then M
is projective if and only if all localizations Mp at prime ideals p are free Ap-modules.

Proof. We claim that if M is projective as an A-module, then Mp is a projective Ap-module.
Suppose p : K → L is a surjective morphism of Ap-modules and f : Mp → L any morphism of
Ap-modules. Denote i : M → Mp the canonical morphism associated to the localization. Then K
and L can also be viewed as A-modules, where the action of A goes via i. We thus find a morphism
ϕ : M → K such that p ◦ ϕ = f ◦ i. For all elements a ∈ A − p the linear homothety la : K → K
along a is invertible and hence by the universal property of localization (see 5.1.14) there is a unique
morphism ψ : Mp → K such that the following diagram commutes:

K
h - L - 0

M

ϕ

6

i
- Mp

f

6

ψ

�

. (6.54)

This proves thatMp is projective. Since Ap is local we know by lemma 6.4.6 thatMp is a free module.
Conversely, suppose that for all prime ideals p the localized module Mp is a free Ap-module. If
f : K → L is a surjective morphism of A-modules, then using the maps αK : HomA(M,K)⊗AAp →
HomAp

(Mp,Kp) and αL : HomA(M,L)⊗AAp → HomAp
(Mp, Lp) defined in theorem 6.5.9 give rise

to the following commutative diagram:

HomAp
(Mp,Kp)

(fp)∗ - HomAp
(Mp, Lp) - 0

HomA(M,K)⊗A Ap

αK

6

f̌p - HomA(M,L)⊗A Ap

αL

6
, (6.55)

where fp is the induced morphism Kp → Lp, f̌p sends a
s ⊗ ϕ ∈ HomA(M,K) ⊗A Ap to a

s ⊗ f ◦ ϕ
and (fp)

∗ is given by (fp)
∗(u) = fp ◦ u for u ∈ HomAp

(Mp,Kp). The upper row of diagram (6.55)
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is exact since free modules are projective. The vertical arrows are isomorphisms, as Ap is a flat
A-module and M is finitely presented by proposition 6.5.6. Hence the morphism f̌p is surjective for
all prime ideals. But then by lemma 5.1.21 the sequence

HomA(M,K) - HomA(M,L) - 0 (6.56)

is exact. Hence M is projective.





Chapter 7

Dimension theory of superrings

In this chapter we discuss dimension theory of superrings. First we investigate the dimension of
the Zariski tangent space m/m2 for a local superring with maximal ideal m. Then we use Hilbert
functions to give some more general results.

7.1 Dimension parameters

Definition 7.1.1. Let A be a local Noetherian superring with maximal ideal m and with canonical
ideal J = (A1̄). We call the total dimension of A the minimal numbers of generators for m and
we write T (A) for the total dimension. We call the bare dimension of A the minimal number of
generators of m̄ in Ā and we denote the bare dimension of A by B(A). We call the odd dimension of
A the minimal number of generators for J and we denote it by O(A). We call the Krull dimension
of A the maximal chain length of prime ideals in A, which is thus equivalent to the Krull dimension
of Ā and we denote it by K(A).

An immediate consequence of the definition is:

Lemma 7.1.2. We have K(A) ≤ B(A) and equality if and only if Ā is regular.

In the present section we try to relate the dimension parameters defined in definition 7.1.1. For
the remainder of the section we write

p|q = dimA/m

(
m/m2

)
. (7.1)

Furthermore we fix a set of even elements {e1, . . . , ep} and a set of odd elements {η1, . . . , ηq} such
that the images of these elements in m/m2 are a basis of m/m2 over A/m. Using the lemma of
Nakayama we know that the set {ei, ηα} generate m (also see the proof of lemma 6.4.6). We
conclude that p + q = T (A). We now claim that eimod J 6= 0; indeed, if ei ∈ J then as the ei
are even, we must have ei ∈ J2 ⊂ m2. But that is impossible. Furthermore, the images of ei in Ā
span m̄; indeed, if x ∈ m̄, then x = ymod J for some y ∈ m0. We can write y =

∑
λiei, where no

ηα-terms appear as the ηα are in J . Hence x =
∑
λ̄iēi. In other words, we have p ≥ B(A) and we

have proved first half of the lemma:

Lemma 7.1.3. We have B(A) = p.

Proof. Write r = B(A) and assume f1, . . . , fr are elements such that the images in Ā generate

m̄ minimally. We may assume fi ∈ m0̄. Let v ∈
(
m/m2

)
0̄

and write v = wmod m2 for some
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w ∈ m0̄. Then there are λi ∈ A such that w̄ =
∑
λ̄if̄i, and we may assume the λi to be even. Then

w −∑
λifi lies in J ∩ m0̄. But J ∩ A0̄ ⊂ (A1̄)

2 ⊂ J2 ⊂ m2 and hence (w −∑
λifi)mod m2 = 0.

Hence the fi span
(
m/m2

)
0̄

and thus r ≥ p.

As in the proof of lemma 7.1.3, let f1, . . . , fr be even elements such that the images in Ā generate
m̄ minimally. Further, let ξ1, . . . , ξt be a set of homogeneous elements that generate J minimally;
then we have O(A) = t. By proposition 3.3.5 we know that the ξα are odd. Now let x ∈ m, then
we now that there are λi ∈ A such that x ≡∑

λifimod J and hence the set {fi, ξα} generates m.
It thus follows that r + t ≤ p + q = T (A), from which we conclude that O(A) ≥ q. However, we
even have:

Lemma 7.1.4. We have O(A) = q.

Proof. Write s = O(A) and assume that θ1, . . . , θs generate J minimally. We will prove that the
θimod m2 are linearly independent over A/m and hence O(A) = s ≤ q = dim(m/m2)1̄.

Suppose
∑
αiθi mod m2 = 0 for some αi ∈ R/m, which are not all zero. Then there are ai ∈ A0̄

such that
∑
aiθi ∈ m2 and not all ai are in m. We may assume a1 /∈ m and thus a1 is invertible. It

follows that θ1 +
∑
i≥2 biθi ∈ m2 ∩A1̄ = m0̄A1̄. This implies there are λi ∈ m0̄ such that

θ1 +
∑

i≥2

biθi =

s∑

i=1

λiθi , (7.2)

and hence we can write

(1 − λ1)θ1 =

s∑

i=2

ciθi , (7.3)

for some numbers ci. But since λ1 ∈ m, the element 1 − λ1 is invertible and we can express θ1 in
terms of the other θi, which is contradicting the assumption that the θi are a minimal generating
set.

Summarizing we have

Theorem 7.1.5. Let A be a local superring with maximal ideal m and denote p|q = dimA/m(m/m2),
then O(A) = q, B(A) = p and T (A) = p+ q.

As an aside, we propose the following definition of smoothness for superrings:

Definition 7.1.6. Let A be a local superring with maximal ideal m such that A contains a copy of
k = A/m. Let dimkm/m

2 = p|q. Then we call A a regular local superring if the completion Â of A
with respect to the m-adic grading is isomorphic to the superring k[[x1, . . . , xp|η1, . . . , ηq]].

An immediate consequence is that A is regular if and only if Â is regular. Some other con-
sequences are that any regular local superring is a super domain and that the body of a regular
local superring is a regular local ring. For a general superring A we say that A is regular if all
localizations at prime ideals are regular local superrings.

The above definition of smoothness was also used by Fioresi [59] to show that affine algebraic
groups are smooth. In other words, any affine algebraic supergroup is a Lie supergroup, see for
example [5, 8].
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7.2 Hilbert functions

In this section we define Hilbert functions for superrings. We let A be a Noetherian Z-graded
superring A =

⊕
i≥0Ai. Call A+ =

⊕
i≥0, then A+ is a finitely generated ideal. Therefore, A is

finitely generated as an A0-superalgebra. Since A0 = A/A+ is a quotient of A, the superring A0 is
also Noetherian. We assume that A is generated as an A0-superalgebra by the elements of A1.

We consider the category C of finitely generated Z-graded modules. Any such module M is
bounded in degree below, that is, there is an integer d such that M =

⊕
k≥dMk. We claim that

any summand Md of M in C is a finitely generated A0-module: If A is generated as an A0-module
by homogeneous generators x1, . . . , xr and M is generated by homogeneous elements m1, . . . ,ms,
then Md is generated as an A0-module by all elements m =

∑
aimi, where ai are monomials in

the xi of Z-degree d − deg(mi). But there are only finitely many such monomials, hence Md is a
finitely generated A0-module. The morphisms in the category C are those A-module morphisms
that preserve the Z- and the Z2-grading. There is a natural functor T in this category that shifts
the Z-degree of each module M in C: (TM)k = Mk+1. We use the notation M [i] = T iM .

Definition 7.2.1. We call additive function, any function on the class of finitely generated of A0-
modules with values in Z, such that if 0 → M ′ → M → M ′′ → 0 is an exact sequence of finitely
generated A0-modules, then λ(M ′)− λ(M) + λ(M ′′) = 0.

Some immediate consequences are: λ(0) = 0 and if M ∼= M ′ then λ(M) = λ(M ′). To see the
first claim: we note that 0→ 0→ 0→ 0→ 0 is exact. Applying λ then gives λ(0) = 0. If M ∼= M ′,
then 0 → M → M ′ → 0 → 0 is a short exact sequence. Applying λ and using λ(0) = 0 gives
λ(M) = λ(M ′).

Given an additive function λ we introduce a formal Laurent series Hλ
M (t) for each A-module M

in C by the formula

Hλ
M (t) =

∑

µ∈Z

λ(Mµ)t
µ . (7.4)

The power series Hλ
M (t) is bounded below by the assumptions on M . We call Hλ

M (t) the Hilbert
function of M with respect to the additive function λ. We write Kλ

M (t) for the function Hλ
M (t) +

Hλ
ΠM (t). The following lemma gives the most elementary properties of Hilbert functions.

Lemma 7.2.2.

(i) For any M in C we have Hλ
M [d](t) = t−dHλ

M (t).

(ii) Suppose we have a finite exact sequence of finitely generated A0-modules

0 - M1
f1 - . . . - Mk−1

fk−1- Mk
- 0 , (7.5)

then we have
k∑

i=1

(−1)iλ(Mi) = 0 . (7.6)

(iii) Let M be in C and let ϕ : M [−d]→M be a morphism, then we have

Hλ
M (t)− tdHλ

M (t) = Hλ
Coker(ϕ)(t)− tdHλ

Ker(ϕ)(t) . (7.7)

Proof. The proof of (i) is standard and follows directly from the definitions. For (ii) we remark
that for 1 ≤ i ≤ k all sequences

0 - Kerfi - Mi
- Imfi - 0 (7.8)
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are exact. But since the sequence (7.5) is exact we have Kerfi = Imfi−1. Applying λ to all
short exact sequences (7.8) and adding up the results we obtain equation (7.6). Then (iii) readily
follows.

We would like to know what the possible Hilbert functions are for a given additive function λ
and a given A-module M in C. The following proposition only uses the formal properties of the
functors T and Π to reduce the possible Hilbert function to a rational function with at most three
different poles.

Proposition 7.2.3. Let A be a Noetherian Z-graded superring that is graded as an A0-superalgebra
by A1 and let M be a finitely generated Z-graded A-module. Then the Hilbert function Hλ

M (t) is of
the form:

Hλ
M (t) = td

Q(t)

(1− t)m(1 + t)n
, (7.9)

for some polynomial Q(t) ∈ Z[t] and some integers d,m, n, with m,n nonnegative.

Proof. We use induction on the number of generators of A as an A0-superalgebra. If there are zero
generators, the module M is just an A0-module, and since M is finitely generated, we may assume
that there is an integer e such that Mµ contains no generators for any µ ≥ e. Hence Mµ = 0 for all
µ ≥ e and thus Hλ

M (t) is polynomial times a power of t.
Assume that A is generated by r even elements in A1 and s odd elements of A1, and r + s ≥ 0.

Then we pick one generator x and consider the maps ϕ : M → M [1] given by multiplication
with x; ϕ(m) = xm. We write N for the A-module M/xM whose dth graded component is
Nd = Md/xMd−1. There are two cases to distinguish; x even or x odd. If x is even we have an
exact sequence

0 - Kerϕ - M - M [1] - N [1] - 0 . (7.10)

Both the Kerϕ and the cokernel N are finitely generated A/(x)-modules and we may apply the
induction hypothesis to get:

(1 − t)Hλ
M (t) = Hλ

N (t)− tHλ
Kerϕ(t) = td

Q(t)

(1− t)m(1− t)n . (7.11)

In the case that x is odd, we get two exact sequences

0 - ΠKerϕ - ΠM - M [1] - N [1] - 0

0 - Kerϕ - M - ΠM [1] - ΠN [1] - 0

. (7.12)

Consequently, we get two equations upon applying λ:

0 = λ((ΠKerϕ)µ)− λ((ΠM)µ) + λ(Mµ+1)− λ(Nµ+1) (7.13)

0 = λ((Kerϕ)µ)− λ(Mµ) + λ((ΠM)µ+1)− λ((ΠN)µ+1) . (7.14)

After multiplying eqns.(7.13,7.14) with tµ+1 and adding up, we can use the induction hypothesis
to obtain:

tc
Q1(t)

(1 − t)a(1 + t)b
= tHλ

ΠM (t)−Hλ
M (t) a, b, c ∈ Z , a, b ≥ 0 , (7.15)

tk
Q2(t)

(1− t)m(1 + t)n
= tHλ

M (t)−Hλ
ΠM (t) m,n, k ∈ Z , m, n ≥ 0 . (7.16)

Solving the above system of equations finishes the proof.
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We have not yet used that a superring is super commutative, and it is this property that ensures
that the Hilbert function is regular at t = −1.

Theorem 7.2.4. Let A be a Noetherian Z-graded superring that is generated as an A0-superalgebra
by A1 and let M be a finitely generated Z-graded A-module. Then the Hilbert function is a rational
function f(t)/g(t) with f(t) ∈ Z[t] and g(t) = tm(1 − t)n for some nonnegative integers m,n.

Proof. Assume that A is generated as an A0-superalgebra by even elements x1, . . . , xp ∈ A1,0̄ and
odd elements η1, . . . , ηq ∈ A1,1̄. We will do induction on the number p.

Assume first that p = 0, then A = A0[η1, . . . , ηq] and we have a finite decomposition A =⊕q
i=0 Ai. Then M is also finitely generated as an A0-module. Indeed, if M is generated by elements

m1, . . . ,mk with Z-degrees d1, . . . , dk respectively, then M is generated over A0 by all products miu
where u is a monomial in the ηα. Since there are only finitely many of such monomials u - their
number being 2q - we conclude that Me = 0 for all e ≥ maxi(di + q). In this case, the Hilbert
function is just a finite sum of powers of t with coefficients in Z.

If p > 0 we proceed as in the proof of proposition 7.2.3. If x is an even generator of A,
consider the morphism lx : M → M given by lx(m) = xm. Then we have an exact sequence
0 → K → M → M [1] → N [1] → 0 of finitely generated A-modules, where K = Ker(lx) and
N = M/xM . We have the following relation between the Hilbert functions:

(1− t)Hλ
M (t) = Hλ

N (t)− tHλ
K(t) . (7.17)

Since K and N are finitely generated A/(x)-modules, we can apply the induction and we are
done.

Corollary 7.2.5. Let A =
⊕

dAd be a Noetherian Z-graded superring that is generated as an
A0-superalgebra by elements x1, . . . , xp ∈ A1,0̄ and η1, . . . , ηq ∈ A1,1̄. Let M be a finitely generated
Z-graded A-module. Then for any additive function λ on the class of finitely generated A0-modules,
there is an integer N such that the λ(Mµ) are given by a polynomial of a degree less than or equal
to p for µ ≥ N .

Proof. By theorem 7.2.4 the Hilbert function of M with respect to λ is given by Hλ
M (t) = f(t)

tm(1−t)n

with n ≤ p and with f(t) a polynomial with integer coefficients. We have the expansions

Hλ
M (t) =

∑

µ∈Z

λ(Mµ)t
µ ,

1

(1− t)n =
∑

k≥0

(
n− 1 + k

n− 1

)
tk . (7.18)

Let N be the degree of f and write f(t) =
∑N

0 flt
l, then for µ ≥ N we have

λ(Mµ−m) =

N∑

k=0

fk

(
n− 1 +N − k

N − k

)
, (7.19)

which is obviously polynomial in µ and of degree less than or equal to n.

Remark 7.2.6. The reason we first proved proposition 7.2.3 and not theorem 7.2.4 right away is
to clarify the role of the super-commutativity. If we change the setting to commutative rings with a
Z×Z2-grading the Hilbert function can get poles at t = −1. Consider for example the commutative
ring R = k[x1, . . . , xp, y1, . . . , yq] over a field k generated by elements xi and yj with 1 ≤ i ≤ p
and 1 ≤ j ≤ q. We give the generators xi the Z × Z2-grading (0, 0̄) and the generators yj the
Z×Z2-grading (0, 1̄). Thus R0 = k, so that the category of Z2-graded R0-modules is the category
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of super vector spaces and we consider the additive function λ(V ) = dimk(V0̄). The dimension of

Rn,0̄ is given by the number of different monomials XY with X = xa1
1 · · ·x

ap
p and Y = yb11 · · · y

bq
q

such that a =
∑

i ai and b =
∑

j bj add up to n and such that 2 divides b. Hence we have

dimk(Rn,0̄) =
∑

a+b=n,2|b

(
p− 1 + a

p− 1

)(
q − 1 + b

b

)
. (7.20)

It follows that ∑

n≥0

tndimk(Rn,0̄) =
1

(1− t)p
( 1

2(1− t)q +
1

2(1 + t)q

)
. (7.21)

Another interesting case is obtained when we replace the Z2-grading by a Z3-grading. Consider the
commutative polynomial ring S = k[xi, yj, zk] where 1 ≤ i ≤ p, 1 ≤ j ≤ q and 1 ≤ k ≤ r. We give
all generators Z-degree 1 and the xi we give Z3-degree 0 mod 3, the yj we give Z3-degree 1 mod3
and the zj we give Z3-degree 2 mod3. Now let ω 6= 1 be a third root of unity, then

∑

n≥0

tndimk(Sn,0 mod3) =
1

3(1− t)p+q+r +
1

3(1− t)p(1 − ωt)q(1− ω2t)r

+
1

3(1− t)p(1− ω2t)q(1− ωt)r .
(7.22)

Example 7.2.7. Let A be k[x1, . . . , xp|η1, . . . , ηq]. Consider the additive function λ(Mµ) =
dimk(Mµ,0̄). There are

(
µ+p−1
p−1

)
monomials of the form xm1

1 · · ·xmp
p where

∑
imi = µ, there are(

µ+p−2
p−1

)(
q
1

)
binomials of the form xm1

1 · · ·xmp
p ηα where

∑
imi = µ − 1, and

(
µ+p−3
p−1

)(
q
2

)
binomials

of the form xm1
1 · · ·xmp

p ηαηβ where
∑

imi = µ− 2. Continuing in this way we see that

λ(Aµ) + λ(ΠAµ) =
∑

α+β=µ

(
α+ p− 1

p− 1

)(
q

β

)
. (7.23)

The function Kλ
A(t) = Hλ

A(t) +Hλ
ΠA(t) is thus given by

Kλ
A(t) =

(1 + t)q

(1 − t)p . (7.24)

To calculate the dimension of the even part of Aµ we only should take those monomials with an
even number of ηα’s, hence

λ(Aµ,0̄) =
∑

j≥0

(
µ+ p− 1− 2j

p− 1

)(
q

2j

)
. (7.25)

which is a finite sum as
(
q
2j

)
is zero if 2j > q. We then obtain the following formula for the Hilbert

function of A:

Hλ
A(t) =

(1 + t)q + (1− t)q
2(1 + t)p

. △ (7.26)

An even element x ∈ A0̄ is a nonzerodivisor of M if xm = 0 implies m = 0 for all m ∈ M . An
l-tuple (x1, . . . , xl) in (A0̄)

l is an even M -regular sequence if x1 is a nonzerodivisor of M and xi
is a nonzerodivisor of M/(x1M + . . .+ xi−1M) for 2 ≤ i ≤ l. We generalize these notions for odd
elements as follows:
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Definition 7.2.8. We call an odd element η ∈ A1̄ an odd M -regular element if ηm = 0 implies
m ∈ ηM . We call an n-tuple (η1, . . . , ηn) ∈ (A1̄)

n an odd M -regular sequence if η1 is an odd M -
regular element is and ηi an odd M (i)-regular element is for 2 ≤ i ≤ n, where M (i) = M/(η1M +
. . .+ ηi−1M).

Proposition 7.2.9. Let A be a Noetherian Z-graded superring generated as A0-superalgebra by A1

and let M be a finitely generated A-module.

(i) If x ∈ A1,0̄ is a nonzerodivisor on M , then (1− t)Hλ
M (t) = Hλ

M/xM (t).

(ii) If η ∈ A1,1̄ is an odd M -regular element, then Kλ
M (t) = (1 + t)Kλ

M/ηM (t).

Proof. (i): Under the assumptions the kernel of the morphism ϕ : M → M , ϕ(m) = xm, is zero
and the exact sequence of eqn.(7.10) becomes

0 - M - M [1] - M/xM [1] - 0 . (7.27)

Hence λ(Mn)− λ(Mn+1) + λ((M/xM)n+1) = 0 which gives rise to (1− t)Hλ
M (t) = Hλ

M/xM (t).

(ii): Under the assumptions the following sequences are exact

0 - (ηM)n - Mn
m 7→ηm- ΠMn+1

- Π(M/ηM)n+1
- 0

0 - (ΠηM)n - ΠMn
m 7→ηm- Mn+1

- (M/ηM)n+1
- 0

0 - (ηM)n - Mn
m 7→ηm- (ηΠM)n+1

- 0

0 - (ΠηM)n - ΠMn
m 7→ηm- (ηM)n+1

- 0

, (7.28)

where in all cases the first map is the canonical injection. Applying λ, multiplying with tn+1 and
adding up one obtains

0 = tHλ
ηM (t)− tHλ

M (t) +Hλ
ΠM (t)−Hλ

Π(M/ηM)(t) ,

0 = tHλ
ηΠM (t)− tHλ

ΠM (t) +Hλ
M (t)−Hλ

M/ηM (t) ,

0 = tHλ
ηM (t)− tHλ

M (t) +Hλ
ηΠM (t) ,

0 = tHλ
ηΠM (t)− tHλ

ΠM (t) +Hλ
ηM (t) .

(7.29)

From the last two equations of eqn.(7.29) we obtain

(1− t2)Hλ
ηM (t) = tHλ

ΠM (t)− t2Hλ
M (t) ,

(1− t2)Hλ
ηΠM (t) = tHλ

M (t)− t2Hλ
ΠM (t) ,

(7.30)

from which we get
(1 + t)Kλ

ηM (t) = tKλ
M (t) . (7.31)

From the first two equations of eqn.(7.29) we obtain

(1− t2)Hλ
ΠM (t) = tHλ

M/ηM (t) +Hλ
Π(M/ηM)(t)− tHλ

ηM (t)− t2Hλ
ηΠM (t) ,

(1− t2)Hλ
M (t) = tHλ

Π(M/ηM)(t) +Hλ
M/ηM (t)− tHλ

ηΠM (t)− t2Hλ
ηM (t) ,

(7.32)

and thus we get
(1− t)Kλ

M (t) = Kλ
M/ηM (t)− tKλ

ηM(t) . (7.33)

Combining the eqns.(7.31,7.33) we get Kλ
M (t) = (1 + t)Kλ

M/ηM (t).
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Corollary 7.2.10. Let M , A be as before and suppose that there exists an odd M -regular sequence
(η1, . . . , ηs) with all ηi ∈ A1,1̄, then Kλ

M (t) has a zero at t = −1 of order at least s. If (x1, . . . , xl)
is an even M -regular sequence, then (1− t)lHλ

M (t) = Hλ
M/N (t) for N = x1M + . . .+ xlM .

Proof. We use inductively Kλ
M (t) = (1+t)iKλ

M(i)(t) where M (0) = M and M (i) = M (i−1)/ηiM
(i−1)

so that for i > 1 we have M (i) = M/(η1M + . . . ηi−1M). The second statement is trivial.

7.3 Application to local superrings

Let (A,m) be a Noetherian local superring, let q be m-primary and write k = A/m for the residue
field of A. LetM be a finitely generated A-module with a q-stable filtrationM = M0 ⊃M1 ⊃M2 ⊃
. . . (also see section 5.7). The superring A has a natural q-stable filtration A = q0 ⊃ q1 ⊃ q2 ⊃ ...
Let gr(A) =

⊕
k≥0 ql/ql+1 and gr(M) =

⊕
k≥0Ml/Ml+1 be the associated graded superring and

associated graded module respectively.

Lemma 7.3.1. Let (A,m) be a Noetherian local superring, and let q be m-primary. Then A/q is
an Artinian superring.

Proof. Since m is finitely generated and q is m-primary, there is an integer l such that ml ⊂ q.
Clearly then ml ⊂ q ⊂ m. Since

tdimk(m/m
l+1) =

l−1∑

i=1

tdimkm
i/mi+1 ,

where tdim is the total dimension (sum of dimension of even part and of odd part), and each
of the total dimensions on the right-hand side is finite, we see that the vector space m/ml is
finite-dimensional over k = A/m. Therefore m/q is finite-dimensional over k and tdimk(A/q) =
tdimk(A/m)+tdimkm/q is finite. Thus A/q is a finite-dimensional superring over k, hence Artinian.

For a fixed A-module M with a q-stable filtration {Mi} we write ln(M) for the length of
(M/Mn)0̄ when viewed as an (A/q)0̄-module. For convenience we write B = (A/q)0̄. We write
lB(M) for the length of a B-module. Thus ln(M) = lB(M/Mn).

Lemma 7.3.2. Let A be a local superring with maximal ideal m and let q be m-primary. If M is
a finitely generated A-module with a q-stable filtration, then ln(M) <∞.

Proof. Let B = (A/q)0̄. Since each Mn is a finitely generated A-module and qMn ⊂ Mn+1, each
Mn/Mn+1 is a finitely generated A/q-module. Therefore (Mn/Mn+1)0̄ is finitely generated B-
module. Since A is Noetherian, JA is finitely generated and thus Mn/Mn+1 is a finitely generated
B-module. Since B is Artinian by lemma 7.3.1, the B-module Mn/Mn+1 is an Artinian module.

Since A/q is Noetherian, so is its even part B by proposition 3.3.6. Hence Mn/Mn+1 has finite
length as an B-module by theorem 3.4.9. In [16] it is shown that the length is additive on the class
of all finite length modules of an Artinian commutative ring. Hence the length lB(M/Mn) is given
by the sum

∑n
i=1 lB(Mi/Mi+1). This shows that lB(M/Nn) is finite. But (M/Mn)0̄ is a submodule

of M/Mn and thus also has finite length. Thus ln(M) = lB((M/Mn)0̄) is finite.

The following lemma assures that assigning a finitely generated A/q-module M the value of the
length of M0̄ as a B-module gives rise to an additive function on the class of finitely generated
A/q-modules.
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Lemma 7.3.3. Let A be a Noetherian and Artinian superring, the function that assigns to each
finitely generated A-module M the length of M0̄ as an A0̄-module, is additive on the class of finitely
generated A-modules.

Proof. Clearly, as the canonical ideal of A is finitely generated, A is a finite A0̄-module. Hence any
finitely generated A-module is finitely generated as an A0̄-module. And thus any finitely generated
A-module is an Artinian A0̄-module.

Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of A-module maps, with all morphisms
preserving the Z-grading. Then we can restrict to the even parts and thus 0→M ′

0̄ →M0̄ →M ′′
0̄ →

0 is an exact sequence of A0̄-modules. Applying proposition 6.9 of [16] gives the required result.

Lemma 7.3.4. Let M be a finitely generated A-module with a q-stable filtration M = M0 ⊃M1 ⊃
M2 ⊃ . . .. Then there is a polynomial f(t) ∈ Z[t] such that lB(M/Mn) = f(n) for n large enough.

Proof. The Z-graded superring gr(A) is generated by the elements of Z-degree 1. By corollary 7.2.5
there is a polynomial g(t) ∈ Z[t] such that for large enough n we have

g(n) = lB(Mn/Mn+1) . (7.34)

The following sequence is exact

0 - Mn/Mn+1
- M/Mn+1

- M/Mn
- 0 , (7.35)

as a sequence of B-modules. Hence

lB(M/Mn+1) = lB(M/Mn) + lB(M/Mn) . (7.36)

By induction we then see that there is a polynomial f(t) such that f(n) = ln(M) for large enough
n.

Lemma 7.3.5. Let M be a finitely generated A-module with a q-stable filtration M = M0 ⊃M1 ⊃
M2 ⊃ . . .. Let f(t) ∈ Z be such that for large enough n we have f(n) = ln(M). The degree and the
leading coefficient of f are independent of the q-stable filtration on M .

Proof. Let M = M̃0 ⊃ M̃1 ⊃ M̃2 ⊃ . . . be another q-stable filtration on M and let f̃(t) ∈ Z[t] be
such that f̃(n) = lB(M/Mn) for large enough n. As both filtrations are q-stable, there is an integer
N such that Mk+1 = qMk and M̃k+1 = qM̃k for all k ≥ N . It follows that MN+k = qkMN ⊂
qkM0 ⊂ M̃k, and similarly M̃N+k ⊂ Mk for all k ≥ 0. Hence lB(M/MN+k) ≥ lB(M/M̃k) and
lB(M/M̃N+k) ≥ lB(M/Mk) for all k ≥ 0. It follows that

1 ≤ lB(M/M̃N+k)

lB(M/Mk)
≤ lB(M/M2N+k)

lB(M/Mk)
. (7.37)

Taking the limit k → ∞ the right-hand side of eqn.(7.37) goes tends to 1 as lB(M/Mk) becomes
polynomial in k. Hence also the middle term of eqn.(7.37) tends to 1, which can only happen of
f̃(t) and f(t) have the same leading coefficient and the same degree.

For any finitely generated A-module M with a q-stable filtration M = M0 ⊃M1 ⊃ . . . we define
the characteristic function χMq (t) ∈ Z[t] to be that polynomial for which χMq (n) = ln(M) for n large

enough. We write χAq (t) = χq(t) and χΠA
q (t) = χ̌q(t).

Lemma 7.3.6. Let A be a local superring with maximal ideal m and q an m-primary ideal. Then
the degrees of the characteristic functions χm(t) and χq(t) are the same. Similarly, the degrees of
χ̌q(t) and χ̌m(t) are the same.
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Proof. We have mr ⊂ q ⊂ m for some r. Hence mrn ⊂ qn ⊂ mn for all n. Then χm(n) ≤ χq(n) ≤
χm(nr) and similarly χ̌m(n) ≤ χ̌q(n) ≤ χ̌m(nr); taking n→∞ proves the lemma.

Proposition 7.3.7. Let (A,m) be a local regular superring with residue field k. Suppose dimk(m/m
2) =

p|q and that A contains a field. Then χm(t) has degree p.

Proof. Let Â be the completion with respect to the m-adic filtration, and let m̂ be the maximal
ideal of Â. Then by proposition 5.5.1 we have Â/m̂k ∼= A/mk for all k. Hence we may replace A by
Â. Since A is regular and contains a field, we have by theorem 5.12.4

gr(A) = k[x1, . . . , xp|η1, . . . , ηq] , (7.38)

where gr(A) is the associated Z-graded superring to the filtration A = m0 ⊃ m1 ⊃ m2 ⊃ . . .. By
example 7.2.7 we have

dimk(m
l/ml+1)0̄ =

∑

a+b=l,2|b

(
p− 1 + a

p− 1

)(
q

b

)
. (7.39)

Any summand of eqn.(7.39) is of the form

((l − 2j) + 1)((l − 2j) + 2) · · · ((l − 2j) + p− 1)

(p− 1)!

(
q

2j

)
=

lp−1

(p− 1)!

(
q

2j

)
+Op−1(l) , (7.40)

for some j with 0 ≤ 2j ≤ l and where Or(l) stands for a polynomial in l of degree less than r.
Noting that

∑
2|j

(
q
2j

)
= 2q−1 we obtain the following expression:

dimk(m
l/ml+1)0̄ =

2q−1lp−1

(p− 1)!
+Op−1(l) . (7.41)

But then

dimk(A/m
l)0̄ =

2q−1lp

p!
+Op(l) . (7.42)

The proof of proposition 7.3.7 shows that the degree of χ̌m(t) also equals p if A is a regular
local ring with dimk(m/m

2) = p|q and A contains a field. The odd dimension q can be read off
from the leading term. This is related to the fact that Â is as a module over the commutative ring
R = k[x1, . . . , xp] isomorphic to a free module with 2q copies of R.



Chapter 8

Algebraic supergroups and super

Hopf algebras

The goal of this chapter is to introduce algebraic supergroups and discuss their relation with super
Hopf algebras. The first part of this section is devoted to introduce the notion of a super Hopf
algebra. The discussion is parallel to the presentation in standard textbooks such as [20–22], with
perhaps the main difference that here care is taken that all notions respect the Z2-grading. We
first recall some basics of linear algebra for infinite dimensional super vector spaces over a fixed
base field k. We note that in this chapter not all algebras are commutative, and hence we need to
distinguish on occasion between left and right ideals.

8.1 Linear algebra

With Sgn(a) we mean (−1)a. We fix a ground field k. For two super vector spaces A,B, the set
of k-linear maps A→ B forms a super vector space HomsVec (A,B). If A,B,C,D are super vector
spaces and f : A → C and g : B → D are linear maps, then f ⊗ g : A ⊗ B → C ⊗D is given by
f ⊗ g(x⊗ y) = Sgn(|x||g|)f(x) ⊗ g(y).

Given a super vector space V we denote V ∗ = HomsVec (V, k) the dual space, consisting of all
k-linear maps V → k, where k is interpreted as the super vector space k = k1|0. V ∗ is in a natural
way Z2-graded. Since all super vector spaces are free modules, any super vector space is projective.
Any super vector space admits a homogeneous basis, since both the even part and the odd part
admit a (Hamel) basis. If V,W are super vector spaces and V ⊂W , then since W/V and V admit
a homogeneous basis, there exists a homogeneous basis of W containing a homogeneous basis of
V . This shows that any super vector space is injective, and for any exact sequence of super vector
spaces 0 → U → V → W → 0 the sequence 0 → W ∗ → V ∗ → U∗ → 0 is exact. Often we will use
an asterisk and write v∗, w∗, . . . for elements of V ∗.

For a sub super vector space X ⊂ V we denote X⊥ the set of elements w ∈ V ∗ such that
w(x) = 0 for all x ∈ X . If X is Z2-graded,then X⊥ is Z2-graded. For a sub super vector space
Y ⊂ V ∗ we denote Y ⊥ the set of all vectors v in V such that y(v) = 0 for all y ∈ Y . When Y isZ2-graded, then Y ⊥ is Z2-graded. If X ⊂ V is a sub super vector space, then one easily shows that
(V/X)∗ ∼= X⊥. This observation gives the following lemma:

Lemma 8.1.1. Let V be a super vector space and let X be a sub super vector space. Then X⊥⊥ = X.
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Proof. Clearly X ⊂ X⊥⊥. The lemma follows if we can show that if v /∈ X , then v /∈ X⊥⊥.
Suppose v /∈ X , then vmodX 6= 0. Hence there exists w ∈ (V/X)∗ such that w(vmodX) 6= 0 and
hence composing w with the projection V → V/X defines a nonzero element w′ in X⊥ such that
w′(v) 6= 0.

We say a subspace Y ⊂ V ∗ is dense if Y ⊥ = 0.

Lemma 8.1.2. Let V be a super vector space, then the canonical morphism d : V → V ∗∗ given by
d(v)(v∗) = (−1)|v||v

∗|v∗(v), for all v ∈ V and v∗ ∈ V ∗, is injective and d(V ) is dense in V ∗∗, that
is, d(V )⊥ = 0.

Proof. Suppose that d(v) = 0 for some homogeneous v, then v∗(v) = 0 for all v∗ ∈ V ∗. Let U be
a complement in V to k · v such that V = k · v ⊕ U (this can always be achieved, since the super
vector space V/k · v admits a basis). Take any nonzero λ ∈ k∗ ∼= (k · v)∗ and p : V → V/U the
canonical projection. Then we can define v∗ = λ ◦ p ∈ V ∗. As λ(vmodU) = 0, we need v ∈ U ,
which forces v ∈ k · v ∩ U = 0. Hence d is injective.

For the second claim we compute

d(V )⊥ = {v∗ ∈ V ∗ | d(v)(v∗) = 0 , ∀v ∈ V }
= {v∗ ∈ V ∗ | v∗(v) = 0 , ∀v ∈ V }
= 0 .

Lemma 8.1.3. Let V be a super vector space. Let X be a finite-dimensional sub super vector space
of V ∗. Then the morphism V → X∗ induced by the inclusion X → V ∗, is an epimorphism.

Proof. Let d : V → V ∗∗ be the inclusion of lemma 8.1.2, i : X → V ∗ be the inclusion of X in V ∗ and
let p : V ∗∗ → X∗ be the projection given by p(w)(x) = w(i(x)) for all w ∈ V ∗∗, x ∈ X . Consider the
composite map ϕ = p◦d : V → V ∗∗ → X∗. Then ϕ(v)(x) = Sgn(|x||v|)x(v) for all x ∈ X and v ∈ V .
Decompose X∗ as X∗ = ϕ(V )⊕Z. Consider the subspace ϕ(V )⊥ = {x ∈ X | x(v) = 0 , ∀v ∈ V } ⊂
X . Then i(ϕ(V )⊥) lies in d(V )⊥. Hence ϕ(V )⊥ = 0, but dimkϕ(V )⊥ = dimkZ. Hence ϕ(V ) =
X∗.

Lemma 8.1.4. Let V and W be super vector spaces, then the morphism e : V ∗⊗W ∗ → (V ⊗W )∗

given by e(v∗ ⊗ w∗)(v ⊗ w) = (−1)|v||w
∗|v∗(v)w∗(w) is injective and the image is dense.

Proof. Suppose u ∈ V ∗⊗W ∗. Then by definition of the tensor product, u is a finite sum
∑
i v

∗
i ⊗w∗

i

with v∗i ∈ V ∗ and w∗
i ∈W ∗ and we may assume that the v∗i and w∗

i are homogeneous.
Take X ⊂ V ∗ to be the span of the v∗i and Y ⊂ W ∗ to be the span of the w∗

i . The inclusion
X → V ∗ induces an epimorphism V → X∗ by lemma 8.1.3. Similarly, we have an epimorphism
W → Y ∗. Take v ∈ V such that d(v)(v∗1 ) = 1 and d(v)(v∗i ) = 0 for i > 1, where d : V → V ∗∗ is
the inclusion of lemma 8.1.2. Similarly, find w ∈ W such that d′(w)(w∗

1 ) = 1 and d(w)(w∗
i ) = 0 for

i > 1, where d′ : W →W ∗∗ is the inclusion of lemma 8.1.2. Then u(v ⊗ w) = 1, hence e(u) 6= 0.
For the second claim, suppose x ∈ (e(V ∗ ⊗W ∗))⊥. Write x =

∑
i vi ⊗ wi, which is a finite

sum, and suppose the wi are linearly independent. Call Y the span of the wi, then Y is finite-
dimensional and the inclusion Y → W induces an epimorphism W ∗ → Y ∗. Thus we can choose
w∗ ∈ W ∗, such that w∗(w1) = 1 and w∗(wi) = 0 for i ≥ 2. But then for all v∗ ∈ V ∗ we have
v∗ ⊗ w∗(x) = v∗(v1) = 0. Hence v1 = 0 and choosing different w we see that x = 0.

In the proof of lemma 8.1.4 we have seen some important techniques how to deal with infinite-
dimensional super vector spaces. A corollary to the proof is that if X is a finite-dimensional sub
super vector space in V ∗, then X∗ ∼= V/X⊥.



8.2 Super coalgebras 107

Lemma 8.1.5. Let V1, V2,W1,W2 be super vector spaces and f1 : V1 → W1, f2 : V2 → W2

two homogeneous linear maps, then f1 ⊗ f2 : V1 ⊗ V2 → W1 ⊗ W2 given by f1 ⊗ f2(v ⊗ v′) =
(−1)|f2||v|f1(v) ⊗ f2(v′) has Z2-grading |f1 ⊗ f2| = |f1| + |f2| and Ker(f1 ⊗ f2) = Ker(f1) ⊗ V2 +
V1 ⊗Ker(f2).

Proof. The inclusion Ker(f1)⊗V2+V1⊗Ker(f2) ⊂ Ker(f1⊗f2) is obvious. For the converse, suppose∑
v1,i⊗v2,i is in the kernel of Ker(f1⊗f2). We may assume that the images of v1,i in V1/Ker(f1) are

linearly independent over k (this perhaps needs some substraction of an element in Ker(f1)⊗ V2).
Then the elements f(v1,i) are linearly independent in W1 and then from

∑
i f1(v1,i)⊗ f2(v2,i) = 0

it follows that v2,i ∈ Ker(f2) for all i.

Lemma 8.1.6. Let V,W be super vector spaces and X ⊂ V ∗ and Y ⊂W ∗ sub super vector spaces
in the dual spaces. Then (X ⊗ Y )⊥ = X⊥ ⊗W + V ⊗ Y ⊥.

Proof. Define r : V → X∗ and s : W → Y ∗ by r(v)(x) = (−1)|x||v|x(v) and s(w)(y) = (−1)|y||w|y(w).
Then X⊥ = Ker(r) and Y ⊥ = Ker(s) and since r, s are even maps, the kernels are Z2-graded. The
morphism f : V ⊗W → (X ⊗ Y )∗ factors over r ⊗ s : V ⊗W → X∗ ⊗ Y ∗ as f = i ◦ r ⊗ s, where i
is the injective map i : X∗⊗ Y ∗ → (X ⊗ Y )∗. We have (X ⊗ Y )⊥ = Ker(f) = Ker(r⊗ s) and thus
by lemma 8.1.5 we have (X ⊗ Y )⊥ = X⊥ ⊗W + V ⊗ Y ⊥.

8.2 Super coalgebras

A super coalgebra is a super vector space C over k together with morphisms of super vector spaces
∆ : C → C ⊗ C and ǫ : C → k that satisfy:

id⊗ ǫ ◦∆ = ǫ⊗ id ◦∆ = id , (8.1)

where we identify k ⊗ C ∼= C ⊗ k ∼= C. The map ∆ is called the coproduct, or comultiplication,
and ǫ is called the counit. We always assume that a super coalgebra is co-associative, which means:
∆⊗ id ◦∆ = id⊗∆ ◦∆. The properties of ǫ and ∆ required by eqn.(8.1) and the co-associativity,
can be summarized by saying that the following diagrams commute

C
∆ - C ⊗ C C ⊗ C id⊗ǫ - C � ǫ⊗id

C

C ⊗ C

∆

?

id⊗∆
- C ⊗ C ⊗ C

∆⊗id

?
C

id

6
∆

-

∆

�

. (8.2)

We will often use Sweedler notation, where one writes ∆(c) =
∑
c′ ⊗ c′′, and we will often

omit the summation sign when we use Sweedler notation. It is important to note that the c′ and
c′′ that appear in ∆(c) = c′ ⊗ c′′ are not unique. In Sweedler notation equation (8.1) reads as:
c = c′ǫ(c′′) = ǫ(c′)c′′, for all c ∈ C. For more on Sweedler notation we refer to for example [20, 22].

Example 8.2.1. Consider the superalgebra A of endomorphisms of kp|q. We can identify A with
the superalgebra of (p+ q)× (p+ q)-matrices with entries in k, where A0̄ consists of all matrices of
the form (

X 0
0 Y

)
, (8.3)
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where X is a p × p-matrix and Y a q × q-matrix. The odd part A1̄ consists of all matrices of the
form (

0 U
V 0

)
, (8.4)

where U is a p× q-matrix and V a q × p-matrix. Consider now the super vector space C = A∗ =
HomsVec (A, k). Then C has a basis of elements Xij , where for any x ∈ A we define Xij(x) to
be the (i, j)-entry of the matrix of x. The basis element Xij is even when 1 ≤ i, j ≤ p or when
p + 1 ≤ i, j ≤ p + q and odd otherwise. The matrix multiplication A ⊗ A → A induces a map
∆ : C → C ⊗C defined by ∆(α)(x⊗ y) = α(xy) for all α ∈ C and x, y ∈ A. For the basis elements
Xij one finds

∆ : Xij 7→
p+q∑

k=1

Xik ⊗Xkj . (8.5)

Furthermore, we have a map ǫ : C → k defined ǫ(α) = α(1), which for the basis elements is given
by ǫ(Xij) = 0 if i 6= j and ǫ(Xij) = 1 when i = j. One easily verifies that C is a super coalgebra
with comultiplication ∆ and counit ǫ. △

Definition 8.2.2. Let C be a super coalgebra. We say that a sub super vector space V of C is a if
∆V ⊂ V ⊗ C + C ⊗ V and ǫ(V ) = 0. We call a sub super vector space of C a sub super coalgebra
if ∆V ⊂ V ⊗ V (the counit works automatically).

Remark 8.2.3. For superalgebras the even part is a subalgebra. For super coalgebras this need
not be the case since ∆(C0̄) ⊂ C0̄⊗C0̄ +C1̄ ⊗C1̄. On the other hand, every coalgebra can be seen
as a super coalgebra with trivial odd part.

Definition 8.2.4. Let C,D be super coalgebras with comultiplications ∆C and ∆D respectively and
counits ǫC and ǫD respectively. A morphism of super vector spaces f : C → D is a morphism of
super coalgebras if ∆D ◦ f = f ⊗ f ◦∆C and ǫD ◦ f = ǫC.

We will often omit the subscripts on the symbols for comultiplication and counit and simply
write ∆ for ∆C , ǫ for ǫC , etcetera, when a clear reading is not at risk.

The sum of two sub super coalgebras is again a sub super coalgebra. One easily checks that
with the given definitions, if C is a sub super coalgebra of D, then the inclusion C → D is a
morphism of super coalgebras. Note that lemma 8.1.5 implies that (CmodV ) ⊗ (C modV ) ∼=
C ⊗ Cmod (C ⊗ V + V ⊗ C). This observation proves the following lemma:

Lemma 8.2.5. If C is a super coalgebra and V a coideal, then C/V becomes in a natural way a super
coalgebra with super coalgebra structure maps ∆̄ and ǭ defined by: ∆̄(cmodV ) = (∆c)mod (C⊗V +
V ⊗C) =

∑
c′ modV ⊗ c′′ modV and ǭ(cmodV ) = ǫ(c). In particular, the projection C → C/V is

a morphism of super coalgebras.

Proposition 8.2.6. Let C be a super coalgebra. The odd part C1̄ is a coideal and we can make C0̄

into a coalgebra.

Proof. Note that as super vector spaces C0̄
∼= C/C1̄. Hence the second statement follows from the

first statement and lemma 8.2.5. The first statement follows from the fact that ∆ is a morphism of
super vector spaces (also see remark 8.2.3).

The morphism C → C0̄ is the super coalgebra equivalent of the projection to the body A→ Ā
of superrings. We therefore write C̄ = C/C1̄. If f : C → D is a morphism of super coalgebras, then
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f(C1̄) ⊂ D1̄ and thus there is an induced morphism f̄ : C/C1̄ → D/D1̄ such that the following
diagram commutes

C
f - D

C̄
?

f̄
- D̄

?

. (8.6)

As in the case of superrings we have the following adjointness theorem:

Theorem 8.2.7. Let C denote the category of coalgebras and D the category of super coalgebras.
Let S be the functor S : C → D that assigns to any coalgebra C the super coalgebra C, but then
viewed as a super coalgebra with trivial odd part and that is the identity on morphisms of coalgebras.
Let B be the functor B : D → C that assigns to each super coalgebra C the coalgebra C̄ and that
assigns to a morphism of super coalgebras f : C → D the morphism of coalgebras f̄ : C̄ → D̄ defined
by diagram (8.6). Then B is left-adjoint to S.

Proof. Let C be a coalgebra and D a super coalgebra. Any morphism of super coalgebras f : D →
S(C) factors uniquely over f ′ : D̄ → C(S) as f(D1̄) ∈ Ker(f). But f ′ : D̄ → S(C) can be viewed
as a morphism in the category of coalgebras. Conversely, any morphism f ′ : D̄ → C of coalgebras
gives rise to a morphism f : D → S(C) of super coalgebras by composing f ′ with the projection
D → D̄. This establishes HomD(D,S(C)) ∼= HomC(D̄, C). Using the commutativity of diagram
(8.6), naturality is straightforwardly verified.

Proposition 8.2.8. If f : C → D is a morphism of super coalgebra, then the image of f is a sub
super coalgebra of D.

Proof. Let d ∈ f(C), we have to show that there are di and ei in f(C) such that ∆(d) =
∑

i di⊗ ei.
This is obvious since d = f(c) for some c ∈ C and thus, using Sweedler notation for c, ∆d =
f ⊗ f ◦∆(c) = f ⊗ f(c′ ⊗ c′′) = f(c)′ ⊗ f(c)′′.

Proposition 8.2.9. Let f : C → D be a morphism of super coalgebras. Then Ker(f) is a coideal
in C.

Proof. Let c ∈ Ker(f), then 0 = ∆(f(c)) = f ⊗ f ◦ ∆(c) and hence ∆(c) ∈ Ker(f ⊗ f) =
Ker(f)⊗ C + C ⊗Ker(f), where we used lemma 8.1.5. Clearly, Ker(f) is Z2-graded.

Definition 8.2.10. We say a super coalgebra C is cocommutative if T ◦ ∆ = ∆, where T is the
braiding map T : C ⊗ C → C ⊗ C given by T (c⊗ d) = Sgn(|c||d|)d ⊗ c.

Lemma 8.2.11. Let C be a super coalgebra. Then C∗ is in natural way an associative unital
superalgebra. The product is defined by v · w(c) = Sgn(|w||c′|)v(c′)w(c′′) = m ◦ v ⊗ w ◦∆(c) where
m is the multiplication k ⊗ k → k. The unit element of C∗ is the counit. If C is cocommutative,
then C∗ is commutative.

Proof. Let µ : C∗ ⊗ C∗ → C∗ be the map defined by µ(c∗ ⊗ d∗)(c) = c∗ ⊗ d∗ ◦∆(c), then µ is the
multiplication in C∗. We have

µ(c∗, ǫ)(c) = c∗(c′)ǫ(c′′) = c∗(c′ǫ(c′′)) = c∗(c) , (8.7)



110 Algebraic supergroups and super Hopf algebras

showing that µ(c∗, ǫ) = c∗. Similarly one finds µ(ǫ, c∗) = c∗. Hence C∗ is a unital superalgebra.
Writing idX for identity map on a super vector space X , we have for any c∗, d∗, e∗ ∈ C∗

µ(c∗, µ(d∗, e∗)) = m ◦ c∗ ⊗ µ(d∗, e∗) ◦∆

= m ◦ c∗ ⊗ (m ◦ d∗ ⊗ e∗ ◦∆) ◦∆

= m ◦ idk ⊗m ◦ c∗ ⊗ d∗ ⊗ e∗ ◦ idC ⊗∆ ◦∆ .

(8.8)

Using associativity of m and coassociativity of ∆ one recognizes that the expression on the final
line of eqn.(8.8) equals µ(µ(c∗, d∗), e∗). Hence C∗ is associative. Distributivity is obvious.

The last claim follows from the identity

c∗ ⊗ d∗ ◦ T (c⊗ d) = T ∗(c∗ ⊗ d∗)(c⊗ d) , (8.9)

where T ∗ is the braiding map T ∗ : C∗ ⊗C∗ → C∗ ⊗C∗ sending c∗⊗ d∗ to Sgn(|c∗||d∗|)d∗ ⊗ c∗.

The converse of lemma 8.2.11 is not true: If A is any associative unital superalgebra, then the
dual need not be a super coalgebra. This problem already shows up for non-Z2-graded coalgebras.
The problem lies in the fact that A∗⊗A∗ is a proper subspace of (A⊗A)∗ in the infinite-dimensional
case. For finite-dimensional algebras howeverA∗⊗A∗ ∼= (A⊗A)∗ and the dual of a finite-dimensional
superalgebra is a super coalgebra.

Lemma 8.2.12. Let C be a super coalgebra and D ⊂ C a sub super coalgebra, then D⊥ is aZ2-graded two-sided ideal in C∗.

Proof. We write c∗ · d∗ for the product in C∗. Suppose x ∈ C∗ and y, z ∈ D⊥. Then we have for
any d ∈ D:

x · (y + z)(d) = m ◦ (x⊗ y + x⊗ z) ◦∆(c) = 0 , (8.10)

where m is the multiplication map k⊗k → k. Hence D⊥ is a left ideal. A similar calculation shows
that I⊥ is a right ideal.

Lemma 8.2.13. Let C be a super coalgebra and let I be a two-sided Z2-graded ideal in C∗, then
I⊥ is a sub super coalgebra of C.

Proof. It is obvious that I⊥ is closed under taking k-linear sums. We have to show that ∆(I⊥) ⊂
I⊥ ⊗ I⊥. Take x ∈ I⊥ and write ∆(x) =

∑
xi ⊗ yi and choose the yi homogeneous and linearly

independent. Choose y∗ ∈ C∗ with y∗(yi) = 0 for i 6= 1 and y∗(y1) = 1, then for all c∗ ∈ I we have
c∗ · y∗(x) = 0 and thus c∗(x1) = 0. Hence all xi lie in I⊥ and we have shown that ∆(x) ∈ I⊥⊗C∗.
In a similar fashion one shows ∆(x) ∈ C∗ ⊗ I⊥ and hence ∆(x) ∈ I⊥ ⊗ C∗ ∩ C∗ ⊗ I⊥. Using
the fact that one can find a basis of I⊥ that can be extended to a basis of C, one shows that
(I⊥ ⊗ C∗) ∩ (C∗ ⊗ I⊥) = I⊥ ⊗ I⊥.

Corollary 8.2.14. A Z2-graded subspace D ⊂ C of a super coalgebra C is a sub super coalgebra if
and only if D⊥ is a Z2-graded two-sided ideal in C∗.

Proof. The proof is found by combining lemma 8.2.12, lemma 8.2.13 and lemma 8.1.1.

The following proposition is the dual statement to corollary 8.2.14:

Proposition 8.2.15. Let C be a super coalgebra and V a sub super vector space, then V is aZ2-graded coideal in C if and only if V ⊥ is a sub superalgebra of C∗.
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Proof. If V is a Z2-graded coideal, then ∆(V ) ⊂ V ⊗ C + C ⊗ V and thus if c∗ and d∗ are in V ⊥,
then so is c∗ · d∗. Hence V ⊥ is a sub superalgebra of C∗.

Now suppose A ⊂ C∗ is a sub superalgebra. We have to show that ∆(A⊥) ⊂ A⊥⊗C+C⊗A⊥,
since then lemma 8.1.1 proves the proposition. If c ∈ A⊥ then ∆(c) ∈ (A ⊗ A)⊥. But by lemma
8.1.6 this equals A⊥ ⊗ C + C ⊗A⊥. Now apply lemma 8.1.1 to A = V ⊥.

Proposition 8.2.16. The intersection of sub super coalgebras is again a sub super coalgebra.

Proof. Let {Ci}i∈I be a set of sub super coalgebras in C. Then C⊥
i is a Z2-graded two-sided ideal

of C∗. We have (∩iCi)⊥ =
∑
i C

⊥
i , which is a Z2-graded two-sided ideal of C∗.

Definition 8.2.17. Let C be a super coalgebra and S a set of homogeneous elements of C. Then we
call the intersection of all sub super coalgebras of C that contain S the sub super coalgebra generated
by S.

A notion that we will only use on occasion is that of a left , which is defined as follows: Let C
be a super coalgebra, then a sub super vector space L is a left coideal if ∆L ⊂ L ⊗ C. Using the
same techniques as to prove corollary 8.2.14 and proposition 8.2.16, one shows

Proposition 8.2.18. Let C be a super coalgebra, then a sub super vector space L ⊂ C is a left
coideal if and only if L⊥ is a right Z2-graded ideal, that is L⊥C∗ ⊂ L⊥.

Proposition 8.2.19. Let C be a super coalgebra and let {Lα} be a collection of left coideals. Then
the intersection ∩αLα is also a left .

Proof. Each L⊥
α is a Z2-graded right ideal in C∗ and (∩αCα)⊥ =

∑
α L

⊥
α is a Z2-graded right

ideal.

Let {Ci}i∈I be a collection of super coalgebras with comultiplications ∆i and counits ǫi. The
direct sum of super coalgebras {Ci}i∈I is as a super vector space the direct sum

⊕
i∈I Ci. The

comultiplication and counit of the direct sum are given by the componentwise action: ∆((xi)i) =
(∆i(xi))i ⊂

⊕
i∈I Ci⊗Ci ⊂

⊕
i∈I Ci ⊗

⊕
i∈I Ci and ǫ((xi)i) =

∑
i ǫ(xi), where the last summation

makes sense as any element (xi)i ∈
⊕

i∈I Ci only has finitely many nonzero components. The
injections Cj →

⊕
i∈I Ci are easily seen to be morphisms of super coalgebras. However, the

projections
⊕

i∈I Ci → Cj are not morphisms of super coalgebras.
Let C and D be super coalgebra with structure maps ∆C , ǫC and ∆D, ǫD respectively. Then

define a linear map ∆ : C ⊗D → C ⊗D ⊗ C ⊗D and ǫ : C ⊗D by

∆ : c⊗ d 7→
∑

Sgn(|c′′||d′|)c′ ⊗ d′ ⊗ c′′ ⊗ d′′ , ǫ(c⊗ d) = ǫC(c)ǫD(d) , (8.11)

for all homogeneous c ∈ C and d ∈ D and extend ∆ and ǫ by linearity. We can write ∆ =
T23◦∆C⊗∆D, where T23 exchanges the second and third factor in the tensor product C⊗C⊗D⊗D
with the appropriate sign. The following lemma is then easily obtained by using the definitions.

Lemma 8.2.20. Let C, D be super coalgebras, then C ⊗ D becomes a super coalgebra with the
structure maps ∆ and ǫ as defined in eqn.(8.11).

We call the super vector space C⊗D of two super coalgebras, equipped with the comultiplication
and counit from eqn.(8.11), the tensor product super coalgebras of C and D. The tensor product
of C and D has the following universal property: Define the projections π1 : C ⊗ D → C and
π2 : C⊗D → D given by π1 : c⊗ d 7→ cǫD(d) and π2(c⊗ d) = ǫC(c)d. Then for any two morphisms
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of super coalgebras x : E → C and y : E → D, there is a unique morphism f : E → C ⊗D such
that x = π1 ◦ f and y = π2 ◦ f ; that is, the following diagram commutes:

C � π1
C ⊗D π2 - D

E

f

6

y

-

x

�

. (8.12)

The morphism f is given explicitly by f(e) = x⊗ y ◦∆(e).
We close this introduction to super coalgebras by introducing two special kinds of elements in a

super coalgebra, grouplike elements and primitive elements. In chapter 9 we will proceed with the
discussion of the structure of super coalgebras. Then the role of primitive and grouplike elements
will be essential in discussing properties of representations of algebraic supergroups.

Definition 8.2.21. Let C be a super coalgebra. We say an element g of a super coalgebra C is
grouplike if ∆c = c⊗ c.

It is not too hard to think of an example of an inhomogeneous grouplike element. However,
no odd grouplike elements exist, as is obvious. The even grouplike elements correspond to one-
dimensional sub super coalgebras, which have no odd part. If g is an even grouplike element in C,
we have ǫ(g)g = g and hence either g = 0, or ǫ(g) = 1.

Definition 8.2.22. Let C be a super coalgebra and let g be a nonzero even grouplike element of
C. We call an element h of a super coalgebra C primitive over g if ∆h = h⊗ g + g ⊗ h. We write
Pg(C) for the set of all primitive elements over g.

The sum of two primitive elements over an even grouplike element g is again primitive over g.
Hence Pg(C) is a sub super vector space of C. If h is primitive over g, then ǫ(h)g + ǫ(g)h = h and
thus we have ǫ(h) = 0.

8.3 Super bialgebras

When one combines the notion of a superalgebra and that of a super coalgebra, one obtains a super
bialgebra. To give the definition of a super bialgebra, we need the notion of the tensor product
algebra of two superalgebras. For any two superalgebras A,B over a field k, the tensor product
A⊗B = A⊗kB becomes a superalgebra with the multiplication a⊗b ·a′⊗b′ = Sgn(|b||a′|)aa′⊗bb′.

Definition 8.3.1. A super bialgebra is an associative superalgebra B over a field k that is at the
same time a super coalgebra, such that the comultiplication ∆ : B → B⊗B and the counit ǫ : B → k
are superalgebra morphisms: ∆(xy) = ∆(x)∆(y) and ǫ(xy) = ǫ(x)ǫ(y).

From the requirement that in a super bialgebra B the comultiplication is a morphism of su-
peralgebras it follows that ∆(1) = 1 ⊗ 1. The zero super vector space {0} cannot be given the
structure of a super bialgebra. As 0 is the unit element of the multiplication in {0}, we need that
ǫ(0) = 1, but then ǫ(0) = ǫ(0 + 0) = ǫ(0) + ǫ(0) = 2. In contrary, {0} can be given the structure of
a superalgebra, but in {0} we then have 1 = 0 and the map k → {0} is not injective. Often this
construction is excluded by hand; on the other hand, it is not possible to make {0} into a super
bialgebra.



8.3 Super bialgebras 113

Example 8.3.2. Consider the superalgebra A from example 8.2.1 and the dual super coalgebra
C = A∗. Now define B as the superalgebra generated by the elements Xij of C, that is, B =
k[C]. Then any element b ∈ B is a polynomial in the Xij . There is only one way to extend the
comultiplication ∆ and ǫ to maps B → B⊗B and B → k respectively in such a way that B becomes
a super bialgebra. Namely we require for any positive integer s

∆
( s∏

l=1

Xiljl

)
=

s∏

l=1

∆Xiljl , ǫ
( s∏

l=1

Xiljl

)
=

s∏

l=1

ǫ(Xiljl) . (8.13)

One can view the obtained super bialgebra as the super bialgebra of regular functions on the
superalgebra A. △

Definition 8.3.3. Let B be a super bialgebra. A bi-ideal in a B is a super sub vector space I that
is a two-sided Z2-graded ideal of B as a superalgebra and a coideal of B as a super coalgebra.

If B is a super bialgebra and I is a bi-ideal, then one easily verifies that the quotient B/I
becomes a super bialgebra with the obvious multiplication, comultiplication and counit.

Proposition 8.3.4. Let B be a super bialgebra and let g be an even grouplike element of B. Then
Pg(B) becomes a Lie superalgebra with the bracket [x, y] = xy − (−1)|x||y|yx.

Proof. The proof is a matter of writing out: Let x, y be in Pg(B), then

∆(xy) = (x⊗ g + g ⊗ x)(y ⊗ g + g ⊗ y) . (8.14)

One then easily verifies that

∆([x, y]) = ∆(x)∆(y) − (−1)|x||y|∆(y)∆(x) = ∆([x, y])⊗ g + g ⊗∆([x, y]) . (8.15)

We already noted that in a super bialgebra the element 1 is grouplike and even. One then calls
an element of a super bialgebra primitive if it is primitive over 1.

Lemma 8.3.5. Let C be a superalgebra and let T : C ⊗ C → C ⊗ C the swapping map sending
c ⊗ d to Sgn(|c||d|)d ⊗ c, then T is an algebra map: T (c ⊗ c′ · d ⊗ d′) = T (c ⊗ c′)T (d ⊗ d′) for all
c, c′, d, d′ ∈ C.

Proof. This is a matter of writing out both sides of T (c⊗ c′ · d⊗ d′) = T (c⊗ c′)T (d⊗ d′).

Proposition 8.3.6. Suppose B is a super bialgebra and let C be a sub super coalgebra of B, which
generates B as a superalgebra. Then if C is cocommutative, B is cocommutative.

Proof. Any element in B is a sum of monomials c1 ·c2 · · · ck. It suffices to show that for all monomials
T ◦∆ = ∆, where T : B ⊗B → B ⊗B is the map T (b⊗ b′) = Sgn(|b||b′|)b′ ⊗ b. One calculates

T ◦∆(c1 · · · ck) = T (∆(c1) ·∆(c2) · · ·∆(ck)) , (8.16)

which by lemma 8.3.5 and the assumption on C equals ∆(c1) ·∆(c2) · · ·∆(ck).

Let B and B′ be two super bialgebras. We can turn B ⊗ B′ into a superalgebra with product
b⊗b′ ·h⊗h′ = Sgn(|b′||h|)bh⊗b′h′. But on the other hand we can turn B⊗B′ into a super coalgebra

by defining ∆⊗(b⊗ b′) = T
(4)
23 ∆(b)⊗∆(b′), where T

(4)
23 : B⊗B⊗B′⊗B′ → B⊗B′⊗B⊗B′ is the

morphism that sends a⊗ b ⊗ a′ ⊗ b′ to Sgn(|b||a′|)a⊗ a′ ⊗ b ⊗ b′, and ǫ(b ⊗ b′) = ǫ(b)ǫ(b′). In fact
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these two structures are compatible and B⊗B is a super bialgebra. That the counit is a morphism
of superalgebras, is trivial. Hence we need to check that ∆⊗ is a super-algebra morphism. We
calculate ∆⊗(a⊗ b · c⊗ d):

∆⊗(a⊗ b · c⊗ d) = ∆⊗(Sgn(|b||c|)ac⊗ bd)
= Sgn(|b||c|)T (4)

23 ◦∆⊗∆(ac⊗ bd)
= Sgn(|b||c|)T (4)

23 ∆(ac)⊗∆(bd)

= Sgn(|b||c|)T (4)
23 ∆a∆c⊗∆b∆d

= Sgn(|b||c|)T (4)
23 ((a′ ⊗ a′′ · c′ ⊗ c′′)⊗ (b′ ⊗ b′′ · d′ ⊗ d′′))

= L a′c′ ⊗ b′d′ ⊗ a′′c′′ ⊗ b′′d′′ ,

(8.17)

where we defined

L = Sgn(|b||c|+ |a′′||c′|+ |b′′||d′|+ (|a′′|+ |c′′|)(|b′|+ |d′|)) . (8.18)

On the other hand we have:

∆⊗(a⊗ b)∆⊗(c⊗ d) = Sgn(|a′′||b′|+ |c′′||d′|)a′ ⊗ b′ ⊗ a′′ ⊗ b′′ · c′ ⊗ d′ ⊗ c′′ ⊗ d′′
= R a′c′ ⊗ b′d′ ⊗ a′′c′′ ⊗ b′′d′′ (8.19)

where we defined

R = Sgn(|a′′||b′|+ |c′′||d′|+ |c′||b′′|+ |c′||a′′|+ |c′||b′|+ |d′||b′′|+ |d′||a′′|+ |c′′||b′′|) . (8.20)

After comparing the terms in exponents one concludes R = L and hence ∆⊗ is a superalgebra
morphism.

8.3.1 The algebra of linear maps

Let B1 and B2 be two super bialgebras over a field k. We denote the multiplication map of B2 by
µ, given by µ : a⊗ b 7→ ab for all a, b ∈ B2, and the comultiplication of B1 by ∆. We consider the
k-linear maps from B1 to B2 and we provide this super vector space with a product structure:

f ∗ g = µ ◦ f ⊗ g ◦∆ , f ∗ g(x) = Sgn(|g||x′|)f(x′)g(x′′) (8.21)

We view the map ǫ : B1 → k as a map to B2 by considering the image of ǫ within B2. We have

f ∗ ǫ(x) = f(x′)ǫ(x′′) = f(x′ǫ(x′′)) = f(x) , (8.22)

and similarly ǫ ∗ f = f , hence ǫ is an identity element with respect to the product ∗. We denote by
A(B1, B2) the algebra of linear maps from B1 to B2 with the product ∗ and identity element ǫ.
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The following calculation shows that A(B1, B2) is an associative algebra:

(f ∗ g) ∗ h = µ ◦ (f ∗ g)⊗ h ◦∆

= µ ◦ (µ ◦ f ⊗ g ◦∆)⊗ h ◦∆

= µ ◦ µ⊗ id ◦ f ⊗ g ⊗ id ◦∆⊗ id ◦ id⊗ h ◦∆

= µ ◦ µ⊗ id ◦ f ⊗ g ⊗ id ◦ id⊗ h ◦∆⊗ id ◦∆

= µ ◦ µ⊗ id ◦ f ⊗ g ⊗ h ◦ id⊗∆ ◦∆

= µ ◦ id⊗ µ ◦ f ⊗ g ⊗ h ◦ id⊗∆ ◦∆

= µ ◦ id⊗ µ ◦ id⊗ g ⊗ h ◦ f ⊗ id ◦ id⊗∆ ◦∆

= µ ◦ id⊗ µ ◦ id⊗ g ⊗ h ◦ id⊗∆ ◦ f ⊗ id ◦∆

= µ ◦ id⊗ (g ∗ h) ◦ f ⊗ id ◦∆

= µ ◦ f ⊗ (g ∗ h) ◦∆

= f ∗ (g ∗ h) .

(8.23)

We note that:

|f ∗ g(x)| = |f(x′)|+ |g(x′′)| = |f |+ |g|+ |x′|+ |x′′| = |f |+ |g|+ |x| , (8.24)

from which it follows that |f ∗ g| = |f | + |g| and hence A(B1, B2) is an associative superalgebra
with identity. We call A(B1, B2) the superalgebra of linear maps from B1 to B2.

Remark 8.3.7. The calculation 8.23 is typical for calculations involving super Hopf algebras and
might not be familiar to a broad audience. We therefore have chosen to display all steps. In
the following chapters we will omit some steps in such calculations, but try to be very explicit in
this chapter, which should serve as an introduction. The advantage of manipulating expressions
with maps, such as the comultiplication and the multiplications, instead of dealing with elements
is twofold. Working with tensor products that involve multiple factors becomes readily clumsy.
For super bialgebras the bookkeeping of the signs becomes rather involved; encapsulating the sign-
changes in the linear operators bypasses this difficulty.

8.4 Super Hopf algebras

Definition 8.4.1. A super Hopf algebra is a super bialgebra H together with an even linear map
S : H → H, called the antipode, such that for all x ∈ H we have x′S(x′′) = S(x′)x′′ = ǫ(x).

Let H and H ′ be two super Hopf algebras with antipodes S and S′, comultiplications ∆ and ∆′

and counits ǫ and ǫ′ respectively. A morphism of super Hopf algebras is a morphism of superalgebras
f : H → H ′ that is also a morphism of super coalgebras and that satisfies S′ ◦ f = f ◦ S.

A Hopf ideal is a bi-ideal that is stable under the action of S. If H is super Hopf algebra and
I a Hopf ideal, then ∆I ⊂ I ⊗ H +H ⊗ I, ǫ(I) = 0 and S(I) ⊂ (I). The quotient H/I is again
a super Hopf algebra with the structure maps: ∆̄(x̄) = ∆xmod (I ⊗H +H ⊗ I), ǭ(x̄) = ǫ(x) and
S̄(x̄) = S(x), where we wrote x̄ = xmod I. Below, in lemma 8.4.2, we will see that the antipode is
unique and hence S̄ is the only choice to make H/I into a super Hopf algebra. If f : H → H ′ is a
morphism of super Hopf algebras, then the kernel of f is a Hopf ideal.

We now discuss some elementary properties of a super Hopf algebra, which are similar, if not
identical, to the corresponding properties of ordinary Hopf algebras. From subsection 8.3.1 we
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conclude that a super bialgebra H is an super Hopf algebra if there is an inverse to the identity
map idH : h 7→ h on H , when viewed as an element in the algebra of linear maps A(H,H);

S ∗ idH(x) = S(x′)x′′ = ǫ(x) , idH ∗ S(x) = x′S(x′′) = ǫ(x) . (8.25)

From this observation the following lemma is an easy result, which is often paraphrased by saying
that the antipode is unique:

Lemma 8.4.2. Let H be a super bialgebra. There exists at most one way to make H into a super
Hopf algebra.

Proof. Since A(H,H) is associative, any inverse to idH is uniquely determined. That is, there is at
most one inverse to idH in A(H,H).

Lemma 8.4.3. The antipode S of a super Hopf algebra H satisfies: S(xy) = Sgn(|x||y|)S(y)S(x),
for all x, y ∈ H.

Proof. We consider the algebra A(H ⊗H,H) and claim that ρ : x⊗ y 7→ S(xy) is a left inverse of
µ : x ⊗ y 7→ xy and that ν : x ⊗ y 7→ Sgn(|x||y|)S(y)S(x) is a right inverse of µ. The claim then
follows from the uniqueness of inverses and equality of left and right inverses.

We have

ρ ∗ µ(x ⊗ y) = Sgn(|x′′||y′|)ρ(x′ ⊗ y′)x′′y′′
= Sgn(|x′′||y′|)S(x′y′)x′′y′′

= S ⊗ id (x′ ⊗ x′′ · y′ ⊗ y′′)
= S ⊗ id (∆(xy))

= ǫ(xy) ,

(8.26)

and, writing ∆⊗ for the comultiplication in the super bialgebra H ⊗H , we have

µ ∗ ν(x ⊗ y) = µ ◦ µ⊗ ν ◦∆⊗(x⊗ y)
= Sgn(|x′′||y′|)µ ◦ µ⊗ ν(x′ ⊗ y′ ⊗ x′′ ⊗ y′′)
= Sgn(|x′′||y′|+ |x′′||y′′|)µ(x′y′ ⊗ S(y′′)S(x′′))

= Sgn(|x′′||y|)x′ǫ(y)S(x′′)

= x′S(x′′)ǫ(y)

= ǫ(xy) ,

(8.27)

where we used that |ǫ(y)| = |y|.

If A is a superalgebra with multiplication map µ : A ⊗ A → A, then we define the opposite
superalgebra Aopp to be the same super vector space as A, but with multiplication map µopp :
Aopp ⊗ Aopp → Aopp given by µopp = µ ◦ T , where T : A ⊗ A → A ⊗ A is the swapping map
T : a⊗ b 7→ Sgn(|a||b|)b⊗ a.

Theorem 8.4.4. Let H be a super Hopf algebra. Then the antipode is a morphism of superalgebras
H → Hopp.

Proof. Lemma 8.4.3 shows that S, interpreted as a morphism of superalgebras H → Hopp preserves
the product. The final step is achieved by proving S(1) = 1, which follows from: idH ∗ S(1) =
1 · S(1) = ǫ(1) = 1.
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An immediate consequence from theorem 8.4.4 is that in a commutative super Hopf algebra H ,
the antipode is a superalgebra morphism. It is well-known that there is an intimate relation between
groups and commutative Hopf algebras, see for example [21,22,60]. In the next section we establish
this relation for commutative super Hopf algebras, where commutative means commutative as
superalgebras in the sense of eqn.(3.1). The following results are intimately related to more familiar
properties of groups: proposition 8.4.5 is the super Hopf algebra equivalent of the statement that
the inverse of the unit element of a group is the unit element, proposition 8.4.6 is related to the
fact that in any group G the inverse of the inverse of g ∈ G is g, and theorem 8.4.8 is the super
Hopf algebra version of the statement that (gh)−1 = h−1g−1 for all g, h in a group G.

Proposition 8.4.5. In a super Hopf algebra the antipode satisfies: ǫ ◦ S = ǫ.

Proof. ǫ(S(x)) = ǫ(S(x′ǫ(x′′))) = ǫ(S(x′))ǫ(x′′) = ǫ(S(x′)x′′) = ǫ(ǫ(x)) = ǫ(x).

Proposition 8.4.6. If H is a commutative super Hopf algebra - meaning that it is commutative
as a superalgebra -, then S2 = idH .

Proof. We show that in A(H,H) the map S2 is also an inverse to S, implying it must be idH . Using
commutativity, we have

S ∗ S2(x) = S(x′)S2(x′′) = S(x′S(x′′)) = S(ǫ(x)) = ǫ(x)S(1) = ǫ(x) , (8.28)

and similarly S2 ∗ S = ǫ.

Lemma 8.4.7. Let x be an element of a super bialgebra, then we have the identity:

(x′)′ ⊗ (x′)′′ ⊗ (x′′)′ ⊗ (x′′)′′ = x′ ⊗ ((x′′)′)′ ⊗ ((x′′)′)′′ ⊗ (x′′)′′ . (8.29)

Proof. The equality follows from applying the identity

∆⊗∆ ◦∆ = ∆⊗ id⊗ id◦ = id⊗∆⊗ id ◦ id⊗∆ ◦∆ , (8.30)

to x ∈ H .

Theorem 8.4.8. Let H be a super Hopf algebra, then for all x ∈ H we have:

∆(S(x)) =
∑

(−1)|x
′||x′′|S(x′′)⊗ S(x′) . (8.31)

Proof. We consider A(H,H ⊗ H) and claim that ρ = ∆ ◦ S is a left inverse to ∆ and that ν =
S ⊗ S ◦ T ◦∆ is a left inverse to ∆, where T : x⊗ y 7→ Sgn(|x||y|)y ⊗ x. The theorem then follows.
Multiplication and counit in H ⊗H will also be denoted µ and ǫ respectively.

We have:

ρ ∗∆(x) = ρ(x′)∆(x′′) = ∆(S(x′))∆(x′′) = ∆(S(x′)x′′) = ∆(ǫ(x)) = ǫ(x) . (8.32)

On the other hand, using lemma 8.4.7 we have

∆ ∗ ν(x) = ∆(x′)ν(x′′)

= Sgn(|(x′′)′||(x′′)′′|)∆(x′)S((x′′)′′)⊗ S((x′′)′)

= Sgn(|(x′′)′||(x′′)′′|)µ ◦ id2 ⊗ S ⊗ S ((x′)′ ⊗ (x′)′′)⊗ (x′′)′′ ⊗ (x′′)′

= µ ◦ (id2 ⊗ S ⊗ S) ◦ T (4)
34 ((x′)′ ⊗ (x′)′′ ⊗ (x′′)′ ⊗ (x′′)′′)

= µ ◦ (id2 ⊗ S ⊗ S) ◦ T (4)
34 (x′ ⊗ ((x′′)′)′ ⊗ ((x′′)′)′′ ⊗ (x′′)′′)

= Sgn(|(x′′)′′||(x′′)′|)x′S((x′′)′′)⊗ ((x′′)′)′S(((x′′)′)′′)

= Sgn(|(x′′)′′||(x′′)′|)x′S((x′′)′′)⊗ ǫ((x′′)′)
= x′S(ǫ((x′′)′)(x′′)′′)

= x′S(x′′) = ǫ(x) ,

(8.33)
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where we used id2 to denote the identity map on H ⊗H and the map T
(4)
34 is the swapping map

T
(4)
34 : x⊗ y ⊗ z ⊗ w 7→ Sgn(|z||w|)x ⊗ y ⊗ w ⊗ z.

8.5 Affine algebraic supergroups

This section gives the basic definitions of affine algebraic supergroups and gives some of their
elementary properties. In chapter 9, when we discuss comodules of super coalgebras, we can say
more on representations of affine algebraic supergroups.

In this section the following notational convention for natural transformations is in use: Let
F,G : A → B be two functors from the category A to the category B and suppose φ : F → G is a
natural transformation. Then φ is a collection of B-morphisms φA : F (A) → G(A) for all objects
A in A. In this section all superalgebras will be commutative, unless otherwise stated.

Let sAlg denote the category of commutative (as in the sense of eqn.(3.1) superalgebras over
a fixed ground field k and Sets the category of sets. We call a functor G : sAlg → Sets a
group functor if G factors over the category of groups, by which we mean that G(A) is a group
for all superalgebras A and any morphism of superalgebras A → B induces a group morphism
G(A) → G(B). Another way of saying this, is that G is a group functor if there are natural
transformations µ : G × G → G, ι : G → G and u : E → G with E : sAlg → Grp given by
E(A) = {1A}. Thus E is the functor that assigns to each superalgebra A the identity element of
the group G(A). The natural transformations have to satisfy the following commutative diagrams:

G×G×G µ×id - G×G

G×G

id×µ

?
µ - G

µ

?

G
(id,ι) - G×G � (ι,id)

G

E
?

u - G

µ

?
� u

E
?

G× E id×u - G×G � u×id
E ×G

G

µ

?
proj2

�

proj1

-

(8.34)

We call u the identity transformation, µ the multiplication transformation and ι the inverse trans-
formation. If G is a group functor, then a subfunctor H is a subgroup functor is a subfunctor such
that for all commutative superalgebras H(A) is a subgroup of G(A). Recall that H a subfunctor
of G if for all commutative superalgebras we have H(A) ⊂ G(A) and if f : A → B is a morphism
of superalgebras, then H(f) : H(A)→ H(B) is the restriction of G(f) to H(A).

For any superalgebraAwe have a functor FA : sAlg → Sets , given by FA(B) = HomsAlg (A,B).
We say a functor is F representable if there is an object A such that there is a natural isomorphism
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F (B) ∼= FA(B) for all B. One then says that A represents the functor F . The object that repre-
sents a representable functor is unique up to isomorphism by the lemma of Yoneda. We call a group
functor G an affine algebraic supergroup if G is a representable group functor and the representing
superalgebra is finitely generated. The following theorem relates affine algebraic supergroups to
super Hopf algebras.

Theorem 8.5.1. Let G : sAlg → Sets be a representable group functor and suppose k[G] repre-
sents G. Then k[G] is a commutative super Hopf algebra. Conversely, if A is a super Hopf algebra,
then the functor B 7→ HomsAlg (A,B) defines a representable group functor.

Proof. Let G be a representable group functor, represented by k[G]. The functor E : A 7→ {1A} is
representable by k. The functor G ×G is representable by k[G] ⊗ k[G]. By the lemma of Yoneda,
the natural transformation u : E → G corresponds to a superalgebra morphism ǫ : k[G] → k and
the natural transformation µ : G × G → G corresponds to a superalgebra morphism ∆ : k[G] →
k[G] ⊗ k[G]. The natural transformation ι corresponds likewise to a morphism of superalgebras
S : k[G] → k[G]. The diagrams (8.34) commute if and only if ∆, ǫ and S satisfy the conditions
that make them a comultiplication, a counit and an antipode respectively.

The isomorphism between the functors defined by A 7→ HomsAlg (k[G], A) ×HomsAlg (k[G], A)
and A 7→ HomsAlg (k[G]⊗ k[G], A) is given by

i : Hom(k[G], A)×Hom(k[G], A)→ Hom(k[G]⊗ k[G], A) ,

i(x, y) : p⊗ q 7→ x(p)y(q) , for all x, y ∈ Hom(k[G], A) ,
(8.35)

with the inverse

j :Hom(k[G]⊗ k[G], A)→ Hom(k[G], A)×Hom(k[G], A) ,

j :X 7→ (j1(X), j2(X)) , j1(X)(p) = X(p⊗ 1) , j2(X)(q) = X(1⊗ q) . (8.36)

We now briefly make the group structure alluded in theorem 8.5.1 explicit. Let H be a super
Hopf algebra and suppose A is a superalgebra. Write µA : A⊗A→ A for the multiplication in A.
Then the multiplication in HomsAlg (H,A) is given by

x · y(h) = µA · x⊗ y ◦∆(h) , x, y ∈ HomsAlg (H,A) , h ∈ H . (8.37)

The inverse of x ∈ HomsAlg (H,A) is given by

x−1(h) = x ◦ S(h) , h ∈ H . (8.38)

The unit element in HomsAlg (H,A) is given by composing ǫ with the inclusion k → A.
Let G and H be two group functors from sAlg to Sets . We define a morphism of group

functors φ : G→ H to be a natural transformation from G to H that respects the group structure.
To respect the group structure means that for any superalgebra A, the map φA : G(A) → H(A)
is a group morphism. The following lemma then shows that for affine algebraic supergroups the
morphisms of group functors are in one-to-one correspondence with super Hopf algebra morphisms:

Lemma 8.5.2. Let G and H be affine algebraic supergroups represented by k[G] and k[H ] respec-
tively. Suppose that φ : G→ H is a morphism of group functors, then there is a morphism of super
Hopf algebras ψ : k[H ]→ k[G] such that φA : G(A)→ H(A) is given by φA(x) = x◦ψ. Conversely,
any super Hopf algebra morphism ψ : k[H ]→ k[G] induces a morphism of group functors G→ H,
by composing with ψ.
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Proof. By the lemma of Yoneda, there exists a morphism of superalgebras ψ : k[H ] → k[G] such
that φA : G(A) → H(A) is given by φA(x) = x ◦ ψ. We need to check that ψ is a morphism of
super Hopf algebras. Let µG : G × G → G and µH : H × H → H be the group multiplication
transformations of G and H . Let ∆G and ∆H be the comultiplication of G and H respectively.
From φA ◦ µG = µH ◦ (φA × φA) we see that the following diagram has to commute

Hom(k[G]⊗ k[G], A)
ψ⊗ψ - Hom(k[H ]⊗ k[H ], A)

Hom(k[G], A)

◦∆G

?
φA

- Hom(k[H ], A)

◦∆H

?

. (8.39)

Applying the diagram to A = k[G]⊗ k[G] and on the element idk[G]⊗k[G], we immediately obtain

ψ ⊗ ψ ◦∆H = ∆G ◦ ψ . (8.40)

Let uG : E → G and uH : E → H denote the identity transformations of G and H respectively.
Preserving the identity elements requires that the diagram

Hom(k,A) - Hom(k[G], A)

Hom(k[H ], A)
?-

(8.41)

commutes. Applying to A = k and the element 1 7→ 1 of Hom(k, k) (as superalgebra morphisms)
gives

εG ◦ ψ = εH . (8.42)

Let ιG and ιH be the inverse transformations of G and H respectively. Preservation of the inverse
requires that ιH ◦ φ = φ ◦ ιG, or in terms of diagrams: the following diagram has to commute for
all superalgebras A

Hom(k[G], A)
◦ψ - Hom(k[H ], A)

Hom(k[G], A)

◦SG

?
◦ψ - Hom(k[H ], A)

◦SH

?

. (8.43)

Putting A = k[G] and applying to the identity map on k[G], we get

SG ◦ ψ = ψ ◦ SH . (8.44)

Conversely, using the explicit description in eqns.(8.37,8.38) of the group structure on G(A) and
H(A) for any superalgebra A, it is not hard to show that any morphism of super Hopf algebras
induces a morphism ϕ : G→ H of group functors by composition ϕA(x) 7→ x ◦ ψ.

Corollary 8.5.3. Let H,H ′ be commutative super Hopf algebras, with comultiplications ∆ and ∆′

respectively, and let f : H → H ′ be a morphism of superalgebras satisfying f ⊗f ◦∆ = ∆′ ◦f . Then
f is a morphism of super Hopf algebras.
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Proof. Let ǫ and ǫ′ be the counits of H and H ′ respectively and let S and S′ be the antipodes of
H and H ′ respectively. We have to show that ǫ′ ◦ f = ǫ and that S′ ◦ f = f ◦ S. This follows from
the fact that ϕ : G → G′ is a morphism of groups if and only ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ G.
Indeed, if ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ G, then it follows that ϕ preserves the identity and
ϕ(a)−1 = ϕ(a−1) for all a ∈ G.

Let G be the group functor represented by H and G′ be the group functor represented by H ′ and
let ϕ : G′ → G be the natural transformation induced by f : H → H ′. Then from f⊗f ◦∆ = ∆′ ◦f
it follows that ϕA : G′(A) → G(A) is a morphism of groups for all superalgebras A. Indeed, write
µA for the multiplication in A and let x, y ∈ G′(A) and h ∈ H , then

ϕA(x · y)(h) = µA ◦ x⊗ y ◦∆′ ◦ f(h) = µA ◦ (x ◦ f)⊗ (y ◦ f) ◦∆(h) = ϕA(x) · ϕA(y)(h) . (8.45)

But then ϕA preserves the identity element for all A. Take A = k, then ǫ′ ∈ G′(k) and ǫ ∈ G(k)
are the identity elements. Hence we have ϕk(ǫ′) = ǫ′ ◦ f = ǫ. Now take A = H ′, then S′ ∈ G′(H ′)
by 8.4.4 as H ′ is commutative. But S′ is the inverse to idH′ and is mapped to S′ ◦ f , where idH′

is mapped to f . We conclude that in the group G(H ′), the element S ◦ f is the inverse of f . Thus
we have µH′ ◦ (S′ ◦ f)⊗ f ◦∆ = ǫ. On the other hand, since f is k-linear and preserves products,
we have for all h ∈ H

ǫ(h) = f(µH ◦ S ⊗ idH ◦∆(h)) = µH′ ◦ (f ◦ S)⊗ f ◦∆(h) , (8.46)

which shows that f ◦ S is an inverse to f . Hence we conclude that S′ ◦ f = f ◦ S.

Let G be an affine algebraic supergroup represented by k[G]. Write X = Spec(k[G]) and let OX
be the structure sheaf on X . In the category of affine superschemes over k, the product X ×k X
is represented by Spec(k[G] ⊗ k[G]). Since for commutative super Hopf algebras, the antipode
S : k[G] → k[G], the comultiplication ∆ : k[G] → k[G] ⊗ k[G] and the counit ǫ : k[G] → 1 are all
morphism of superalgebras, we can conclude that X is a group superscheme. In other words, X is
a group object in the category of superschemes over k. We therefore will use the name affine group
superscheme for affine algebraic supergroups.

Let G be an affine algebraic supergroup with representing super Hopf algebra k[G]. Suppose a

is a Hopf ideal. Then k[G]/a is again a super Hopf algebra and thus defines an affine group super-
scheme. Let H be the affine algebraic supergroup defined by k[G]/a. We have for all superalgebras
A

H(A) ∼= {g ∈ G(A) | g(a) = 0} , (8.47)

and thus H can be viewed as a subgroup of G. This leads us to define the following:

Definition 8.5.4. Let G and H be two affine algebraic supergroups with representing super Hopf
algebras k[G] and k[H ] respectively. We call a morphism i : H → G a closed embedding if k[H ] ∼=
k[G]/a for some Hopf ideal a and i is induced by the projection k[G]→ k[G]/a. In this case we call
H a closed subgroup of G.

The group defined by E : A 7→ {1A} is a closed subgroup of any affine algebraic supergroup G.
The morphism E → G is defined by the counit ǫ : k[G] → k of G. We have k[E] = k ∼= Ker(ǫ).
The ideal Ker(ǫ) is called the augmentation ideal of G and one easily checks that it is a Hopf ideal.

Proposition 8.5.5. Let f : G → H be a morphism of affine algebraic supergroups. Let k[G] and
k[H ] be the super Hopf algebras representing G and H respectively. The kernel of f is a closed
subgroup of G and Ker(f) is represented by the super Hopf algebra k[G]/a, where a is the Z2-graded
ideal in k[G] generated by the image of the augmentation ideal of k[H ].
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Proof. We need the fibred product in this proof; also see the discussion after definition 5.4.11: The
kernel of f is the fibred product of G and E over H . Thus we have a commutative diagram

Ker(f) - E

G
?

f
- H

?

, (8.48)

and Ker(f) has the appropriate universal property. Let k[H ] and k[G] be the super Hopf algebras
for H and G respectively and suppose that f is induced by a morphism of super Hopf algebras
φ : k[H ]→ k[G]. Then the dual picture in terms of super Hopf algebras is given by

k[H ]
ǫ - k

k[G]

φ

?

. (8.49)

The tensor product gives the required universal property and hence the kernel is represented by the
super Hopf algebra k[G]⊗k[H] k. The map p : k[G]→ k[G]⊗k[H] k, given by a 7→ a⊗ 1, defines the
embedding of the kernel as a subgroup in G. As p is surjective and the kernel of p is an ideal, we
have shown that the kernel of f is a closed subgroup of G.

Define the ideal a = φ(IH) · k[G], where IH is the augmentation ideal of H , and let q : k[G] →
k[G]/a be the canonical projection. One easily checks that k[G]/a makes the diagram

k[H ]
ǫ - k

G

φ

?

q
- k[G]/a

i

?

(8.50)

commute, where i : k → k[G]/a is the inclusion x 7→ x · 1. Suppose A is any superalgebra over k
and that g : k[G] → A is a morphism of superalgebras such that g ◦ f = i ◦ ǫ. Then g maps a to
zero and g factors over k[G]/a. Hence k[G]/a has the same universal property as k[G]⊗k[H] k and
thus a ∼= Ker(p). Furthermore, using that IH is a Hopf ideal in k[H ], one easily checks that a is a
Hopf ideal.

It can be quite tedious to check whether a given Z2-graded ideal in a super Hopf algebra is a
Hopf ideal. In order to facilitate the recognition of closed subgroups, we state the following lemma:

Lemma 8.5.6. Let G be an affine algebraic supergroup represented by the super Hopf algebra k[G]
and let H be a group subfunctor. If a is a Z2-graded ideal in k[G] such that

H(A) ∼= {g ∈ G(A) | g(a) = 0} , (8.51)

for all superalgebras A, then H is a closed subgroup and a is a Hopf ideal.
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Proof. Since H is a subgroup functor, the identity of G is the identity of H . Since ǫ is the unit of
G(k), it follows that a ∈ Kerǫ. Now take A = k[G]/a, then the canonical projection π : k[G] → A
is an element of H(A), hence also its inverse, as H is a subgroup functor. Therefore π−1 = π ◦ S
annihilates a. Consider now the map g : k[G]→ A⊗A given by g : x 7→ π(x)⊗1 and h : k[G]→ A⊗A
given by h : x 7→ 1 ⊗ π(x). Then g, h ∈ H(A ⊗ A) and thus also their product, which is the map
π ⊗ π ◦ ∆. Hence ∆a ⊂ Ker(π ⊗ π) = a ⊗ k[G] + k[G] ⊗ a. Thus a is indeed a Hopf ideal and
H(B) ∼= HomsAlg (k[G]/a, B) for any superalgebra B.

Remark 8.5.7. There is a slight generalization to lemma 8.5.6: H(A) needs only be a subgroup
for finitely generated commutative superalgebras A. And in fact, H(A) only needs to be a group
for A = k, A = k[G]a and A = k[G]/a⊗ k[G]/a, as they were the only ones we needed to conclude
that a is Hopf ideal.

Definition 8.5.8. Let G be an affine algebraic supergroup represented by the super Hopf algebra
k[G]. A closed subgroup H ⊂ G is called a normal subgroup if for all superalgebras A the subgroup
H(A) is a normal subgroup of G(A).

In section 9.1.1 we will say more on normal subgroups and give a characterization on the level
of super Hopf algebras. Notice that if f : G→ H is a morphism of affine algebraic supergroups, the
kernel of f is a normal subgroup. We say a morphism of group functors f : G→ H is surjective if
the morphism fA : G(A)→ H(A) is surjective for all superalgebras A.

Proposition 8.5.9. Let G and H be affine algebraic supergroups represented by super Hopf algebras
k[G] and k[H ] respectively. Then a morphism f : G→ H is surjective if and only if the morphism
of super Hopf algebras ϕ : k[H ] → k[G] that induces f , has a left inverse as a morphism of
superalgebras. In particular, if f is surjective, then ϕ is injective.

Proof. If f is surjective, which by definition means that fA : G(A) → H(A) is surjective, there is
a morphism of superalgebras χ : k[G] → k[H ] such that f(χ) = χ ◦ ϕ = idk[H]. Then χ is a left
inverse to ϕ. This implies that ϕ is injective.

Conversely, suppose that ϕ has a left inverse χ ◦ ϕ = idk[H]. Let A be any superalgebra and
suppose h ∈ H(A) = HomsAlg (k[H ], A) is given. Then h′ = h ◦ χ ∈ HomsAlg (k[G], A) and
f(h′) = h′ ◦ ϕ = f .

Definition 8.5.10. Let G be an affine algebraic group. We call G an abelian group if for each
superalgebra A, the group G(A) is abelian.

Lemma 8.5.11. Let G be an affine algebraic group represented by the super Hopf algebra k[G].
Then G is an abelian group superscheme if and only if k[G] is cocommutative.

Proof. Let τ : G×G→ G×G be the morphism of groups that interchanges the two factors. Then
τ is induced by the morphism T : k[G] ⊗ k[G] → k[G] ⊗ k[G] given by a ⊗ b 7→ Sgn(|a||b|)b ⊗ a.
Let µ : G⊗G 7→ G be the multiplication transformation, then µ is induced by the comultiplication
∆ : k[G]→ k[G]⊗ k[G] of k[G]. The group G is commutative if and only if the diagram

G×G µ - G

G×G

µ

-

τ
-

(8.52)
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commutes, which means that the diagram obtained by application to a superalgebra A must com-
mute for all A. If the corresponding diagram

k[G]× k[G] � ∆
k[G]

k[G]× k[G]

∆

�

T

�

(8.53)

commutes, then surely G is commutative. Conversely, if diagram (8.52) commutes, then in partic-
ular, the diagram applied to k[G] ⊗ k[G] commutes. That is, for all morphisms g : k[G] ⊗ k[G] →
k[G] ⊗ k[G] we have g ◦ T ◦ ∆ = g ◦ ∆. Taking g = idk[G]⊗k[G] shows that diagram (8.53) com-
mutes.

An example of an abelian algebraic supergroup is given by the affine algebraic supergroup T 1,
which is the affine group superscheme defined by the super Hopf algebra A1 = k[x, x−1] with
comultiplication ∆(x) = x ⊗ x, antipode S(x) = x−1 and counit ǫ(x) = 1. We give A1 the Z2-
grading where (A1)1̄ = 0. We call the affine algebraic supergroup defined by A1 the one-dimensional
torus and denote it by T 1. Let G be an affine algebraic supergroup. A torus in G is an abelian
subgroup in G isomorphic to a direct product of several copies of T 1. We write (T 1)n = T n for the
n-fold fibred product of T 1 over k. We call T n ⊂ G an n-torus in G.

Lemma 8.5.12. Let G be an affine algebraic supergroup with representing super Hopf algebra k[G].
Then the body A = k[G] is a commutative Hopf algebra over k.

Proof. Let J be the ideal in k[G] generated by the odd elements. Then clearly we have ǫ(J) = 0
and S(J) ⊂ J . Since ∆(k[G]1̄) ⊂ k[G]1̄⊗k[G]0̄ +k[G]0̄⊗k[G]1̄ we conclude that ∆(J) ⊂ J⊗k[G]+
k[G]⊗ J . Hence J is a Hopf ideal and A = k[G] = k[G]/J is a Hopf algebra.

Definition 8.5.13. Let G be an affine algebraic supergroup represented by the super Hopf algebra
k[G]. The affine algebraic group defined by the body of k[G] is called the underlying algebraic group
of G.

The morphism k[G] → k[G] defines a subgroup of G. Hence the underlying algebraic group of
G is a closed subgroup of G. In general, it is not a normal subgroup. The commutative diagram
(3.2) from section 3.1 applies to give the following statement:

Lemma 8.5.14. Let G,H be two affine algebraic supergroups and f : G → H be a morphism of
group functors. If G′ and H ′ are the underlying algebraic groups of G and H respectively, then
there is a morphism f ′ : G′ → H ′ such that the following diagram commutes

G′ f ′

- H ′

G
?

f
- H

?

, (8.54)

where the vertical arrows are the injections of the underlying algebraic groups into the algebraic
supergroups.



8.5 Affine algebraic supergroups 125

If T n is a torus insideG for some number n, then there is also a T n inside the underlying algebraic
group of G. This can be seen as follows. Suppose a is a Hopf ideal in k[G] such that k[G]/a ∼=
k[x1, x

−1
1 , . . . , xn, x

−1
n ]. Then, by definition of a torus, all the xi are even in k[x1, x

−1
1 , . . . , xn, x

−1
n ]

and are not nilpotent. Thus the ideal a has to contain J and there is a projection p : k[G]/J →
k[G]/a, where J is the ideal in k[G] generated by the odd elements. But then p realizes the
torus T n as a closed subgroup in the underlying algebraic group of G. Conversely, let T n be
a torus in the underlying algebraic group G′ of G. Then there is an ideal b ⊂ k[G] such that
k[x1, x

−1
1 , . . . , xn, x

−1
n ] ∼= k[G]. Consider the projection π : k[G] → k[G] and take the preimage

a = π−1(b). Then a contains J and k[G]/a ∼= k[G]/b and hence the torus T n is also a closed
subgroup of G. All in all we have proved the following lemma:

Lemma 8.5.15. Let k[G] be a super Hopf algebra representing an affine algebraic supergroup G.
There is a one-to-one correspondence between the n-tori in G and the n-tori in the underlying affine
algebraic group represented by k[G].

Example 8.5.16. Consider the group functor GLp|q : A 7→ GLp|q(A), which was already defined in
section 3.7. For the moment, fix a commutative superalgebra A over k. Any element g ∈ GLp|q(A)
can be written in matrix form as

g =

(
a00 a01

a10 a11

)
, (8.55)

where a00 is a p × p-matrix with entries in A0̄, a10 and a01 are q × p-, respectively p× q-matrices
with entries in A1̄ and where a11 is a q×q-matrix with entries in A0̄. However, not all matrices with
this prescribed form are elements of GLp|q(A); g has to be invertible as well. From lemma 3.7.3 it
follows that g is invertible if and only if det(a00) and det(a11) are invertible elements in A0̄. We
will now show that any g ∈ GLp|q(A) determines a morphism of superalgebras from a superalgebra
k[GLp|q] to A.

Let A be the free superalgebra over k generated by the even elements xij , yαβ , λ and µ and
by the odd elements ξiα and ηαi where 1 ≤ i, j ≤ p and 1 ≤ α, β ≤ q. Let X be the p × p-matrix
with entries Xij = xij and let Y be the q× q-matrix with entries Yαβ = yαβ . For any superalgebra
A, any morphism φ : A → A is completely determined by choosing for each generator of A an
element in A with the same Z2-grading. All morphisms φ : A → A such that det(X) and det(Y )
are invertible elements in A0̄ can be described as those morphisms that satisfy φ(det(X))φ(λ) = 1
and φ(det(Y ))φ(µ) = 1. Let us call I the Z2-graded ideal in A generated by det(X)λ − 1 and
det(Y )µ− 1. Then any morphism g : A/I → A maps det(X)mod I and det(Y )mod I to invertible
elements in A. But that means that the matrix

(
g(xij) g(ξia)
g(ηai) g(yab)

)
, (8.56)

is an element of GLp|q(A). Hence there is a one-to-one correspondence between the morphisms
A/I → A and the elements of the group GLp|q(A). We have thus shown

GLp|q(A) ∼= HomsAlg (A/I,A) , (8.57)

for all superalgebras A. If f : A → B is a morphism of superalgebras, then there is a natural
morphism GLp|q(A) → GLp|q(B) by applying f componentwise to each invertible matrix g ∈
GLp|q(A). But if φ is the morphism φ : A/I → A corresponding to g, then the element of GLp|q(B)
obtained by applying f componentwise to g is precisely that element of GLp|q(B) representing the
morphism f◦φ : A/I → A. Hence, the functor GLp|q is isomorphic to the functor HomsAlg (A/I,−),
and GLp|q is representable by the superalgebra k[GLp|q] = A/I. Since GLp|q(A) is a group for each
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A, it is guaranteed that k[GLp|q] is a super Hopf algebra. For a calculational verification and
explicit expressions of the antipode we refer to [61]. It is clear by the group structure, which is
matrix multiplication, and by example 8.2.1 that the comultiplication on the generators xij is given
by

∆xij =
∑

k

xik ⊗ xkj +
∑

α

ξiα ⊗ ηαj . (8.58)

The tori inside GLp|q are well-studied, see for instance [62, 63]. △

Example 8.5.17. Let Ω be the (p+ 2q)× (p+ 2q)-matrix defined by

Ω =

(1p 0
0 Jq

)
, Jq =

(
0 −1q1q 0

)
, (8.59)

where for any natural number m, 1m denotes the m×m identity matrix. Define the group functor
Ospp|2q by

Ospp|2q(A) =
{
X ∈ GLp|2q(A) | XSTΩX = Ω

}
, (8.60)

which is a group subfunctor of GLp|2q. If f : A → B is a morphism of superalgebras over k, then
by applying f to each matrix entry we obtain a morphism of groups Ospp|2q(A) → Ospp|2q(B).
To show that Ospp|2q is representable is straightforward: The equations in eqn.(8.60) define a Z2-
graded ideal in k[GLp|2q], which one can check (but there is no need to) to be a Hopf ideal. Hence
Ospp|2q is a closed subgroup of GLp|2q. △

8.6 Lie algebras to algebraic supergroups

In this section we associate to any affine algebraic supergroup G a super vector space, called the
Lie superalgebra of G. Later we will define a functor for an affine algebraic supergroup that asso-
ciates a Lie algebra to each superalgebra. We first consider tangent spaces to affine superschemes,
derivations and differentials.

8.6.1 Differentials

Let R be a superring and let A be an R-superalgebra. We may assume without loss of generality
that R is a sub superring of A. For any A-module M we define a derivation of A into M to be an
R-linear map D : A→M such that for all a, b ∈ A and all r ∈ R we have

D(ab) = D(a)b+ (−1)|a||b|D(b)a , D(ar + b) = D(a)r +D(b) . (8.61)

The sum of two derivations of A into M is again a derivation of A into M and if D is a derivation
of A into M and a ∈ A, then aD is also an derivation of A into M . We can thus also define Da
to be the derivation (Da)(a′) = (−1)|a||a

′|(Da′)a. We call a derivation D : A → M of A into M
even (resp. odd) if D(Ax̄) ⊂ Mx̄ (resp. D(Ax̄) ⊂ Mx̄+1) for x̄ ∈ Z2. Hence, in a natural way, the
derivations of A into M make up an A-module. We denote the module of derivations of A into M
by DerR(A,M).

We define the A-module UA/R to be the free right A-module generated by the elements da where
a runs over all elements of A and where d is just an abstract symbol. Consider the submodule N in
UA/R generated by all elements of the form d(ab) − (da)b − (−1)|a||b|(db)a and all elements of the
form d(ar+ b)− (da)r− db, where a, b run over all elements of A and r runs over all elements of R.
We define the A-module of Kähler differentials relative to R to be the A-module ΩA/R = UA/R/N .
We have a canonical map d : A→ ΩA/R given by a 7→ da, which we call the canonical derivation.
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Lemma 8.6.1. Let A be an R-superalgebra and ΩA/R be the module of Kähler differentials relative
to R. Then ΩA/R has the following universal property: The map d : A → ΩA/R is a derivation
of A into ΩA/R and if D ∈ DerR(A,M) is any derivation of A into M , then there is a unique
homomorphism of A-modules f : ΩA/R →M such that the following diagram commutes

A
D - M

ΩA/R

f

-

d

-
. (8.62)

In other words, HomA(ΩA/R,M) ∼= DerR(A,M) holds as an isomorphism of right A-modules.

Proof. The first assertion is obvious: by construction d is a derivation of A into ΩA/R. Suppose
D ∈ DerR(A,M) is an even derivation of A into M , then we define f(da) = Da. Then because D is
a derivation of A into M , f is well-defined and defines a homomorphism of A-modules. Uniqueness
is clear as f(da) = Da is the only possibility.

Now suppose that D is an odd derivation of A into M , we replace M by ΠM and then D is
an even derivation of A into ΠM . For general D we decompose D into its homogeneous parts
D = D0̄ +D1̄. We can use the isomorphism of right A-modules ΠHomA(M,N) ∼= HomA(M,ΠN)
from section 6.1.2 to conclude DerR(A,M) ∼= HomA(ΩA/R,M).

Example 8.6.2. Let R = k and A = k[x1, . . . , xp|η1, . . . , ηq], then ΩA/k is the free A-module on
the generators dxi and dηα. The generators dxi are even and the generators dηα are odd. △

Now we specialize to superschemes over a field k. For a superalgebra A over k we write ΩA for
the module of Kähler differentials ΩA/k. If A and B are two superalgebras over k and f : A → B
is a morphism of superalgebras over k, we obtain an induced morphism Tf : ΩA → ΩB as follows:
Let dA : A→ ΩA and dB : B → ΩB be the canonical derivations, then dB ◦ f is easily seen to be a
derivation of A into B. Hence by lemma 8.6.1 we obtain a morphism of A-modules Tf : ΩA → ΩB
such that Tf ◦ dA = f ◦ dB.

Let f : A → B be a morphism of superalgebras over k. We define the super vector space of
derivations of A into B over f as the super vector space Derfk(A,B), where we view B as an A-
module via f . When the morphism f is clear, we sometimes simply write Derk(A,B). Of particular
interest to us will be those morphisms f that factor over k. More specifically, letX be a superscheme
over k. Then a k-point on X is a closed point such that the residue field of the structure sheaf
on X is k. If k is algebraically closed and there is a covering of X by open affine superschemes
Spec(A), with each such A being a finitely generated k-superalgebra, then all closed points are in
fact k-points. A k-point x ∈ X defines a morphism π : OX,x → k given by π(a) = amod mx, where
mx is the maximal ideal of OX,x.
Definition 8.6.3. If x ∈ X is a k-point and π : OX,x → k the projection to the residue field at x,
then we define the tangent space of X at x to be the super vector space Derπk (OX,x, k). We denote
the tangent space of X at x by TxX.

Let x ∈ X be a k-point of X and mx the maximal ideal of OX,x, then by lemma 8.6.1 we have
TxX ∼= HomOX,x

(ΩOX,x
, k), where k becomes an OX,x-module via the map OX,x → OX,x/mx

∼= k.
Since OX,x is a k-superalgebra, we identify the residue field at x with k. Since the action of OX,x
factors over k, describing TxX as an OX,x-module or as a super vector space makes no difference.
The next lemma formalizes this:
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Lemma 8.6.4. Let X be a superscheme over k and let x be a k-point of X. If mx is the maximal
ideal in the local superring OX,x then there is an isomorphism of super vector spaces

TxX ∼= HomsVec (mx/m
2
x, k) . (8.63)

Proof. Write A = OX,x, m = mx and write π for the canonical projection A→ A/m = k, where we
use that we identify the residue field at x with k. The superring A is a superalgebra over k and
writing a ∈ A as a − π(a) + π(a) gives a decomposition A = k ⊕ m. Let a derivation D ∈ TxX =
Derπk (A, k) over π be given, then we can associate to D the super vector space homomorphism
φD : amodm2 7→ D(a), which is well-defined as D(m2) = 0. Conversely, if φ : m/m2 → k is a super
vector space homomorphism, then we can assign to φ the derivation Dφ : a 7→ φ(a− π(a))mod m2.
Then Dφ is indeed a derivation since

Dφ(ab) =φ((ab− π(ab))mod m2) = φ(((a − π(a))π(b) + π(a)(b − π(b)))mod m2)

=Dφ(a)π(b) + π(a)Dφ(b) .
(8.64)

Clearly, the assignments D 7→ φD and φ 7→ Dφ are k-linear, preserve the Z2-grading and are inverse
to each other.

We can thus identify the tangent space of X at x with the dual of the super vector space mx/m
2
x.

For this reason, we call mx/m
2
x the cotangent space of X at x.

For any superalgebra A write A+ for the augmented superalgebra A+ = A[x]/(x2), where we
define x to be an even element of A+. If f : A → B is a morphism of superalgebras, there is a
natural map f+ : A+ → B+, namely, f+(a+a′x) = f(a)+f(a′)x. If pA : A+ → A is the projection
pA : a+ a′x 7→ a and iA : A→ A+ is the inclusion i : a 7→ a, then for any morphism f : A→ B we
have f+ ◦ iA = iB ◦ f and pB ◦ f+ = f ◦ pA.

Definition 8.6.5. We call the functor TA : B 7→ HomsAlg (A,B+) the total tangent bundle functor
associated to the representable functor B 7→ HomsAlg (A,B). For the action of the total tangent
bundle functor on morphisms f : B → C, we define TA(f) : HomsAlg (A,B+) → HomsAlg (A,C+)
by TA(f)(g) = f+ ◦ g.

Lemma 8.6.6. Let A and B be superalgebras over k and let the augmented superalgebra of B
be defined by B+ = B[x]/(x2), where x is given the Z2-grading |x| = 0̄. Then HomsAlg (A,B+)
consists of all tuples (ϕ,D), where ϕ ∈ HomsAlg (A,B) and D is an even derivation of A into B
over ϕ.

Proof. Let f : A → B+ be a morphism of superalgebras, then we write f as a sum f(a) =
f ′(a)+ f ′′(a)x. Then f(ab) = f(a)f(b) = f ′(a)f ′(b)+ f ′(a)f ′′(b)x+ f ′′(a)f ′(b)x, which shows that

f ′ ∈ HomsAlg (A,B) and that f ′′ ∈ Derf
′

k (A,B)0̄, where B carries the A-module structure defined
by f ′. Conversely, if f ∈ HomsAlg (A,B) and D is an even derivation of A into B over f , then
a 7→ f(a) +D(a)x defines an element of HomsAlg (A,B+).

Remark 8.6.7. In the previous lemma 8.6.6 one can also incorporate the odd derivations as follows:
One defines for any superalgebra B the superalgebra B† = B[x, η]/(x2, xη), where x is Z2-even and
η is Z2-odd. It is easily verified that HomsAlg (A,B†) consists off all triples (f,D+, D−) where
f : A → B is a morphism of superalgebras, D+ : A → B is an even derivation of A into B over f
and where D− is an odd derivation of A into B over f .
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8.6.2 Derivations on super Hopf algebras

An affine algebraic supergroup G over k has a distinguished k-point, the identity element, which
is defined by the counit on the super Hopf algebra k[G] representing G. The tangent space at this
point will play the role of the Lie superalgebra. All affine algebraic supergroups are superschemes
over a fixed ground field k.

Definition 8.6.8. Let A be a super Hopf algebra over k, and let M be an A-module. Let ǫ be the
counit of A. We call a derivation of A into M over ǫ any k-linear map D : A → M such that
D(ab) = D(a)ǫ(b) + (−1)|a||b|D(b)ǫ(a).

If M is a module over a super Hopf algebra A, then M admits a second A-module structure,
namely m · a = mǫ(a). The derivations of A into M over ǫ are the derivations of A into M
with respect to this alternative A-module structure. We write Derǫk(A,M) for the A-module of
derivations of A into M over ǫ. The proof of lemma 8.6.4 can be repeated to show the following
lemma:

Lemma 8.6.9. Suppose A is a super Hopf algebra and M is an A-module. Let mE be the augmenta-
tion ideal of A and write π : A→ mE/m

2
E for the projection that sends a ∈ A to (a− ǫ(a))mod m2

E.
Then the map HomsVec (mE/m

2
E ,M) → Derǫk(A,M) that sends φ to φ ◦ π, is an isomorphism of

super vector spaces.

The following proposition shows that the new object Derǫk(A,M) is actually not that new.

Proposition 8.6.10. Let A be a commutative super Hopf algebra and let M be an A-module. Then
we have an isomorphism of super vector spaces Derk(A,M) ∼= Derǫk(A,M).

Proof. Let m : M ⊗A→M be the multiplication from the right of A on M , µ : A⊗A→ A be the
multiplication of A, ∆ : A→ A⊗A be the comultiplication and S : A→ A be the comultiplication
of A. We have the identity

m ◦m⊗ idA = m ◦ idM ⊗ µ . (8.65)

We define a map f : Derk(A,M)→ Derǫk(A,M) as follows

f(D) = m ◦D ⊗ S ◦∆ , f(D)(a) = D(a′) · S(a′′) . (8.66)

Clearly, f(D) is k-linear and for a, b ∈ A we have

f(D)(ab) = Sgn(|a′′||b′|)D(a′b′) · S(a′′b′′)

= D(a′) · (S(a′)b′S(b′′)) + Sgn(|a||b′|)D(b′) · (a′S(a′′)S(b′′))

= f(D)(a)ǫ(b) + Sgn(|a||b|)f(D)(b)ǫ(a) ,

(8.67)

which proves that f(D) ∈ Derǫk(A,M). We define a map g : Derǫk(A,M)→ Derk(A,M) as follows

g(δ) = m ◦ δ ⊗ idA ◦∆ , g(δ)(a) = δ(a′) · (a′′) . (8.68)

To show that g(δ) is an element of Derk(A,M) we calculate

m ◦ δ ⊗ idA ◦∆(ab) = (−1)|a
′′||b′|δ(a′b′) · (a′′b′′)

= δ(a′) · (a′′ǫ(b′)b′′) + (−1)|a||b|δ(b′) · (b′′ǫ(a′)a′′)
= g(δ)(a) · b+ (−1)|a||b|g(δ) · a .

(8.69)
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Furthermore, if δ ∈ Derǫk(A,M) then we have

f(g(δ)) = m ◦ g(δ)⊗ S ◦∆

= m ◦m⊗ idA ◦ δ ⊗ idA ⊗ idA ◦∆⊗ idA ◦ idA ⊗ S ◦∆

= m ◦ idM ⊗ µ ◦ δ ⊗ idA ⊗ idA ◦ idA ⊗ idA ⊗ S ◦ idA ⊗∆ ◦∆

= m ◦ δ ⊗ idA ◦ idA ⊗ (µ ◦ idA ⊗ S ◦∆) ◦∆

= m ◦ δ ⊗ ǫ ◦∆

= δ ,

(8.70)

where we used eqn.(8.66) and elementary properties of super Hopf algebras. The proof that for any
D ∈ Derk(A,M) we have g ◦ f(D) = D is similar.

Lemma 8.6.11. Let A be a super Hopf algebra over a field k. Write mE for the augmentation
ideal of A. The module of Kähler differentials relative to k is given by ΩA = mE/m

2
E ⊗ A, where

the tensor product is over k. The canonical derivation d : A→ ΩA is given by π ⊗ idA ◦∆, where
π : A→ mE/m

2
E is the projection π : a 7→ (a− ǫ(a))mod m2

E.

Proof. We show that the A-module mE/m
2
E ⊗A has the required universal property.

Suppose D : A → M is any k-linear derivation of A into M . By proposition 8.6.10 there is a
unique δ ∈ Derǫk(A,M) such that D = m ◦ δ ⊗ idA ◦∆, where m : M ⊗A→M is the right action
of A on M . By lemma 8.6.9 δ is given by δ = f ◦ π for a unique f ∈ HomsVec (mE/m

2
E,M). Hence

we find that D = m ◦ f ⊗ idA ◦ d. Define fD = m ◦ f ⊗ idA, then fD makes the following diagram
commute

A
D - M

mE/m
2
E ⊗A

fD

-

d
-

. (8.71)

For uniqueness of fD, we note that we have an isomorphism of super vector spaces HomA(mE/m
2
E⊗

A,M) ∼= HomsVec (mE/m
2
E ,M), as any homomorphism φ : mE/m

2
E ⊗A→M is completely deter-

mined by its action on the elements of the form x ⊗ 1, with x ∈ mE/m
2
E. The isomorphism thus

sends g ∈ HomA(mE/m
2
E ⊗ A,M) to the map m ◦ g ⊗ idA ∈ HomA(mE/m

2
E ⊗A,M). Hence fD is

uniquely determined by f , which was uniquely determined by D.

Definition 8.6.12. Let A be a super Hopf algebra over k with comultiplication ∆. We call a
k-linear map L : A→ A left-invariant if idA ⊗ L ◦∆ = ∆ ◦ L.

We write XLA for the super vector space of left-invariant derivations from A into A. As to be
expected from the experience of left-invariant vector fields on Lie groups, we expect that a left-
invariant derivation of A into A is completely determined by its “value at the origin”. For super
Hopf algebras, to be determined by the value at the origin, means that a left-invariant derivation
D : A→ A is completely determined by ǫ ◦D.

Lemma 8.6.13. Let A be a super Hopf algebra over k and write XLA for the super vector space of
left-invariant derivations of A into A. Then the map σ : XLA → Derǫk(A, k) that sends D ∈ XLA to
ǫ ◦D is an isomorphism of super vector spaces.
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Proof. The proof is similar to the proof of proposition 8.6.10. The inverse of σ is given by

σ−1 : Derǫk(A, k)→ XLA , σ−1(δ) = idA ⊗ δ ◦∆ , (8.72)

where we identify A⊗ k ∼= A. Indeed, we have for D ∈ XLA

idA ⊗ (ǫ ◦D) ◦∆ = idA ⊗ ǫ ◦ idA ⊗D ◦∆

= idA ⊗ ǫ ◦∆ ◦D
= idA ◦D = D .

(8.73)

For the converse, again identifying A⊗ k ∼= A we have for any δ ∈ Derǫk(A, k)

ǫ ◦ idA ⊗ δ ◦∆ = δ ◦ ǫ⊗ idA ◦∆ = δ . (8.74)

Theorem 8.6.14. Let A be a Noetherian super Hopf algebra over a field k, XLA the super vector
space of left-invariant derivations of A into A, β : A → k any superalgebra morphism and let mE

be the augmentation ideal of A. Then we have isomorphisms

(mE/m
2
E)∗ ∼= XLA

∼= Derǫk(A, k)
∼= Derβk (A, k) (8.75)

Proof. Since A is Noetherian, the super vector space mE/m
2
E is finite-dimensional and for finite-

dimensional super vector spaces HomsVec (V,W ) ∼= W ⊗ V ∗. Taking this into account, the proof
follows from lemmas 8.6.11, 8.6.13 and proposition 8.6.10.

Another variation of theorem 8.6.14 is the following theorem:

Theorem 8.6.15. Let A be a Noetherian super Hopf algebra over k, mE the augmentation ideal
of A, ǫ the counit of A and ΩA the module of Kähler differentials of A relative to k. Suppose B is
a superalgebra over k and that we are given a morphism A → B, by which we can view B as an
A-module. Then we have isomorphisms of super vector spaces

HomA(ΩA, B) ∼= Derk(A,B) ∼= Derǫk(A,B) ∼= HomsVec (mE/m
2
E, B) ∼= B ⊗ (mE/m

2
E)∗ (8.76)

Proof. The proof follows immediately from lemmas 8.6.11, 8.6.13 and proposition 8.6.10 together
from the observation that mE/m

2
E is a finite-dimensional super vector space over k.

8.6.3 Lie superalgebras of supergroups

In this section we fix a ground field k and all superalgebras are over this ground field k.

Definition 8.6.16. Let G be an affine algebraic supergroup with representing super Hopf algebra
k[G]. We define the Lie superalgebra of G to be the super vector space Derǫk(k[G], k). The Lie
bracket is given as follows: for homogeneous x, y ∈ Derǫk(k[G], k) we define [x, y] = m ◦ (x ⊗ y −
(−1)|x||y|y ⊗ x) ◦∆, where m is the multiplication k ⊗ k → k.

One easily sees that the Lie bracket on Derǫk(k[G], k) makes Derǫk(k[G], k) into a Lie superalgebra.
The Lie bracket on the left-invariant derivations is given by a similar formula: If D,D′ ∈ XLA are left-

invariant derivations, then [D,D′] = µ◦(D⊗D′−(1)|D||D′|D′⊗D)◦∆, where µ is the multiplication
map µ : A ⊗ A → A. If β : k[G] → k is a morphism of superalgebras, then β defines the k-point
xβ = Ker(β). The tangent space at xβ is then by theorem 8.6.14 isomorphic to the tangent space
at the counit and carries an isomorphic Lie superalgebra structure. An easy consequence of the
definition of the Lie bracket is the following lemma:
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Lemma 8.6.17. Let G be an abelian affine algebraic supergroup, then the Lie superalgebra of G is
abelian.

Proposition 8.6.18. Let G and H be affine algebraic supergroups with Lie superalgebras g and h

respectively. If φ : G→ H is a morphism of supergroups, then we have an induced natural morphism
of Lie superalgebras dφ : g → h. In particular, if G is a closed subgroup of H, then g is a Lie sub
superalgebra of h.

Proof. Suppose that ϕ : k[H ]→ k[G] is the morphism of super Hopf algebras that induces φ, then
we define the map dφ : Derǫk(k[G], k)→ Derǫk(k[H ], k) by

dφ(D) = D ◦ ϕ , D ∈ Derǫk(k[H ], k) . (8.77)

It follows from the properties of ϕ that dφ is linear and preserves the Z2-grading. Writing m :
k ⊗ k → k for the multiplication map of k we have for x, y ∈ Derǫk(k[H ], k)

dφ[x, y] = m ◦ (x ⊗ y − (−1)|x||y|y ⊗ x) ◦∆ ◦ ϕ
= m ◦ (x ⊗ y − (−1)|x||y|y ⊗ x) ◦ ϕ⊗ ϕ ◦∆

= [dφ(x), dφ(y)] .

(8.78)

Hence dφ is a morphism of Lie superalgebras. For the last claim we note that, if G is a closed
subgroup of H , then ϕ is a surjective map and for that reason the map dφ is injective.

Combining the last results, one sees that the Lie superalgebra of a torus in an affine algebraic
supergroup G is an abelian Lie sub superalgebra of the Lie superalgebra of G. For an affine
algebraic supergroupG, the underlying affine algebraic group Ḡ is a closed subgroup. Therefore from
proposition 8.6.18 we conclude that the Lie algebra of Ḡ is a Lie subalgebra of the Lie superalgebra
of G. The following proposition singles out which Lie algebra.

Proposition 8.6.19. Let G be an affine algebraic supergroup with representing super Hopf algebra
k[G] and with Lie superalgebra g = g0̄ ⊕ g1̄. Then the Lie algebra of the underlying affine algebraic
group Ḡ, represented by the Hopf algebra k[G], has Lie algebra ḡ = g0̄.

Proof. It suffices to show that Derǫk(k[G], k)0̄ ∼= Derǫk(k[G], k) as super vector spaces. Since k[G] ∼=
k[G]0̄/(k[G]1̄)

2 this is obvious: any even derivation D : k[G] → k is zero on (k[G]1̄)
2 and hence

descends to a derivation D̄ : k[G] → k. Conversely, any derivation D̄ : k[G] → k can be lifted for
the same reason to a derivation D : k[G]→ k that is zero on the odd part, hence is even.

Suppose G,H are affine algebraic supergroups with underlying affine algebraic groups Ḡ, H̄ and
with Lie superalgebras g, h respectively. If f : G → H is a morphism of groups, then we have an
induced morphism of underlying groups f̄ : Ḡ→ H̄ and by commutativity of the diagram (3.2) we
have a commutative diagram

Ḡ - G

H̄
?

- H
?

. (8.79)

If g and h are the Lie superalgebras of G and H respectively, the morphism df : g → h of Lie
superalgebras maps g0̄ into h0̄.
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Remark 8.6.20. Let A be a superalgebra and let β : A→ k be an morphism of superalgebras. It
is tempting to think that Derβk (A, k)0̄ = Derβk (A0̄, k). Clearly, we have the inclusion Derβk (A, k)0̄ ⊂
Derβk (A0̄, k). But in general the inclusion is proper: Consider A = k[η1, η2] and β : A→ k given by
β(η1) = β(η2) = 0. Then A0̄

∼= k[x]/(x2) and the k-linear map D : ax+bmodx2 7→ a is a derivation
of A0̄ that cannot be lifted to an even derivation of A, as D(η1η2) = β(η1)D(η2)+D(η1)β(η2) = 0.
Intuitively, the derivations of A0̄ don’t see that (A1̄)

2 ⊂ A0̄.

Proposition 8.6.21. Let G1, G2 and G3 be affine algebraic supergroups and suppose f : G1 → G2

and g : G2 → G3 are morphisms of affine super groupschemes. Then d(g ◦ f) = dg ◦ df .

Proof. Let A1, A2 and A3 be the super Hopf algebras representing G1, G2 and G3 respectively and
write ϕ : A2 → A1 and χ : A3 → A2 for the super Hopf algebra morphisms that induces f and g.
Then if D ∈ Derǫk(A1, k), we have d(g ◦ f)(D) = D ◦ ϕ ◦ χ = (D ◦ ϕ) ◦ χ = dg(df(D)).

Lemma 8.6.22. Let f : G→ H be a morphism of affine algebraic supergroups and let g and h be
the Lie superalgebras of G and H respectively. Then the Lie superalgebra of the kernel of f is the
kernel of df .

Proof. Let A, B be the super Hopf algebras representing H and G respectively and let mA and
mB denote the augmentation ideal of A and B respectively. Furthermore, let ϕ : A → B be the
morphism of super Hopf algebras inducing f . The kernel of f is by proposition 8.5.5 represented
by the super Hopf algebra C = B/mA · B. Since ϕ(mA) ⊂ mB the augmentation ideal of C, which
we denote mC , is given by the image of mB under the projection π : B → B/mA · B. We conclude
that

mC/m
2
C
∼= mB/(m

2
B + mA · B) . (8.80)

The morphisms ϕ and π induce morphisms of super vector spaces ϕ∗ : mA/m
2
A → mB/m

2
B and

π∗ : mB/m
2
B → mC/m

2
C . The map π∗ is clearly surjective and π∗ ◦ ϕ∗ = 0. We claim that the

sequence

mA/m
2
A

ϕ∗

- mB/m
2
B

π∗

- mC/m
2
C

- 0 (8.81)

is exact. To prove the claim, we only need to verify that the kernel of π∗ is contained in the
image of ϕ∗. Let b ∈ mB be such that π∗(bmodm2

B) = 0, then b ∈ m2
B + mA · B, and thus there

are ai ∈ mA and bi ∈ B such that b ≡ ∑
ϕ(ai)bimod m2

B. Using that ϕ(ai) ∈ mB we see that
ϕ(ai)bi ≡ ϕ(ai)ǫ(bi)mod m2

B, where ǫ is the counit of B, and we conclude that b ∈ m2
B + ϕ(mA).

This proves the claim. The lemma then follows by dualizing the exact sequence (8.81) and noting
that the kernel of a morphism of Lie superalgebras is a Lie sub superalgebra.

Proposition 8.6.23. Let E → G′ → G → G′′ → E be an exact sequence of affine algebraic
supergroups with E the trivial group and where exact means that for all superalgebras A the sequence
1→ G′(A)→ G(A)→ G′′(A)→ 1 is exact. Let g′, g, and g′′ denote the Lie superalgebras of G′, G
and G′′ respectively. Then we have an exact sequence of super vector spaces 0→ g′ → g→ g′′ → 0.

Proof. Since G′ is the kernel of the morphism G→ G′′, G′ is a closed subgroup of G and by lemma
8.6.22 the sequence 0 → g′ → g → g′′ is exact. We thus only need to prove that df : g → g′′ is
surjective if f : G → G′′ is surjective. Let A and B be the super Hopf algebras representing G′′

and G respectively and let ϕ : A → B be the morphism of super Hopf algebras inducing f . From
proposition 8.5.9 it follows that ϕ has a left inverse χ : B → A. Let D′ be a derivation of A into
k over the counit, then D = D′ ◦ χ : B → k is a derivation of B into k over ǫA ◦ χ, where ǫA is
the counit of A. Denote m : k ⊗ B → k the map that sends 1 ⊗ b to ǫA(χ(b)) and write S for the
antipode of B and ∆ for the comultiplication of B. Then from proposition 8.6.10 we know that
D̃ = m ◦D ⊗ S ◦∆ is a derivation of B to k over the counit of B. A short calculation shows that
df(D̃) = D̃ ◦ ϕ = D′ and thus df is surjective.
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Example 8.6.24. Let G = GLp|q be the general linear supergroup introduced in example 8.5.16.
We write k[G] = k[Xij , λ, µ]/I, where I is the ideal generated by det(X00)λ− 1 and det(X11)µ− 1
and where X00 = (Xij)1≤i,j≤p and X11 = (Xij)p+1≤i,j≤p+q ; also see example 8.5.16. The comulti-
plication in k[G] is determined by ∆(Xij) =

∑
kXik ⊗Xkj .

Any derivation on k[G] is uniquely determined by its values on the Xij . Denote ∂
∂Xij

the

derivation from k[G] to k sending Xkl to 1 if k = i, j = l and zero otherwise. Thus the parity of
∂

∂Xij
is |i|+ |j|.

Any element of glp|q = Derǫk(k[G], k) can be expanded in terms of the ∂
∂Xij

. We consider the

map ϕ : Matp|q(k)→ glp|q that sends any matrix M = (Mij) to the derivation ϕ(M) given by

ϕ(M) =
∑

ij

(−1)|i|(|i|+|j|)Mij
∂

∂Xij
. (8.82)

For all M,N ∈ Matp|q(k) the map ϕ satisfies ϕ(M) ∗ ϕ(N) = ϕ(MN), where ∗ is the product
introduced in section 8.3.1 and MN is the matrix product of M and N . Hence the map ϕ sets
up an isomorphism of Lie superalgebras glp|q

∼= Matp|q(k). (We introduced the Lie superalgebra
structure on Matp|q(k) in section 2.2.)

Now we consider the Lie algebra functor to G. It is easy to see that any derivation D ∈
glp|q(A) = Derǫk(k[G], A)0̄ can be written as

D =
∑

i,j

Dij
∂

∂Xij
, (8.83)

where Dij ∈ A0̄ if 1 ≤ i, j ≤ p or when p + 1 ≤ i, j ≤ p + q and Dij ∈ A1̄ in the other cases.
When we consider the map that sends the derivation D to the matrix D = (Dij) ∈Matp|q(A)0̄, we
obtain an isomorphism of A0̄-modules glp|q(A) ∼= Matp|q(A)0̄. In fact, this is an isomorphism of Lie
algebras over A0̄ since the Lie bracket in glp|q(A) is given by

[D1, D2] =
∑

ij

[D1, D2]ij
∂

∂Xij
=

∑

ij

[D1, D2](Xij)
∂

∂Xij
, (8.84)

and
[D1, D2](Xij) =

∑

k

D1(Xik)D2(Xkj)−D2(Xik)D2(Xkj) . (8.85)

Thus, upon the identification of glp|q(A) with Matp|q(A)0̄, the Lie bracket of glp|q(A) becomes the
Lie bracket of Matp|q(A)0̄. △

8.6.4 Lie algebra functors

As we defined affine algebraic supergroups as representable functors, it turns out to be convenient
to have a functorial definition of Lie algebras of affine algebraic supergroups as well. In order to do
so, we need to broaden the concept of a Lie algebra to a Lie algebra over some ring.

Let R be a commutative ring. A Lie algebra over a ring R is an A-module L together with an
R-bilinear map [, ] : L×L→ L satisfying [x, y] = −[y, x] and [x, [y, z]]+ [y, [z, x]]+ [z, [x, y]] = 0 for
all x, y, z ∈ L. The only thing different from ordinary Lie algebras is that the vector space structure
relative to some field is replaced by the module structure with respect to some ring and that we
do not require [x, x] = 0 but the more stringent condition [x, y] = −[y, x]. If L is a Lie algebra
over the ring R and L′ is a Lie algebra over the ring R′, then we define a morphism of Lie algebras
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f : L→ L′ to be a pair of (f, φ) where φ : R→ R′ is a morphism of rings and where f : L→ L′ is
a morphism of abelian groups satisfying f(rx) = φ(r)f(x) for all r ∈ R and x ∈ L and satisfying
f([x, y]) = [f(x), f(y)] for all x, y ∈ L.

Definition 8.6.25. Let G be an affine algebraic supergroup represented by a super Hopf algebra
k[G]. We define the Lie algebra functor of G to be the functor LG : sAlg → sVec that associates
to a superalgebra B over k the super vector space Derǫk(k[G], B)0̄ and that associates to a morphism
f : B → C the morphism LG(f) : Derǫk(k[G], B)0̄ → Derǫk(k[G], C)0̄ given by LG(f) : D 7→ f ◦D.

Let A be a super Hopf algebra with comultiplication ∆ and B a superalgebra with multiplication
map µ : B ⊗ B → B. The Lie algebra structure on Derǫk(A,B)0̄ is the following: For D1, D2 ∈
Derǫk(A,B) we put [D1, D2] = µ◦ (D1⊗D2−D2⊗D1)◦∆. Then Derǫk(A,B)0̄ is a Lie algebra over
B0̄. We now briefly explore the relation with the total tangent bundle functor and the definition of
Fioresi and Lledó [64] of the Lie algebra to an affine algebraic supergroup.

Lemma 8.6.26. Let G be an affine algebraic supergroup represented by a super Hopf algebra k[G].
Write TG for the total tangent bundle functor TG(A) = HomsAlg (k[G], A+). Then there is a
natural isomorphism TG(A) ∼= G(A) × LG(A).

Proof. The proof is essentially the same as the proof of proposition 8.6.10. By lemma 8.6.6 an
element of HomsAlg (k[G], B+) is a pair (f,D) with f ∈ HomsAlg (k[G], B) and D ∈ Derfk(k[G], B).
Let µB be the multiplication in B, ∆ the comultiplication of k[G] and S the antipode of k[G]. Then
define a map σB : HomsAlg (k[G], B+)→ G(B)× LG(B) as follows

σB : (f,D) 7→ (f, µB ◦D ⊗ (f ◦ S) ◦∆) . (8.86)

To show that µB ◦D ⊗ (f ◦ S) ◦∆ is an element of Derǫk(A,B) is practically the same calculation
as is done in proposition 8.6.10. The inverse to σB is given by

σ−1
B : (f, δ) 7→ (f, µB ◦ δ ⊗ f ◦∆) . (8.87)

Suppose we have a morphism of superalgebras χ : B → C, then there is an induced morphism χ∗ :
HomsAlg (k[G], B+) → HomsAlg (k[G], C+) sending (f,D) ∈ HomsAlg (k[G], B+) to (χ ◦ f, χ ◦D).
Similarly, we have an induced morphism χ# : G(B) × LG(B) → G(C) × LG(C) sending (f, δ) ∈
G(B) × LG(B) to (χ ◦ f, χ ◦ δ). One easily sees that σC ◦ χ∗ = χ# ◦ σB , proving naturality.

Geometrically, the last lemma says that the tangent bundle of an affine algebraic supergroup is
trivial. Let G be an affine algebraic supergroup represented by a Noetherian super Hopf algebra
k[G] and let g be the Lie superalgebra of G. By theorem 8.6.15 we have Derǫk(k[G], B) ∼= (g⊗B)0̄.
In fact, it is not hard to see that the isomorphism is natural in the second variable, so that any
morphism of superalgebras ϕ : B → C induces the map ϕ∗ : (g ⊗ B)0̄ → (g ⊗ C)0̄ given by
ϕ∗ : x⊗ b 7→ x⊗ ϕ(b). We thus have

Lemma 8.6.27. Let G be an affine algebraic supergroup represented by a Noetherian super Hopf
algebra k[G] and with Lie superalgebra g. Then the Lie algebra functor LG is isomorphic to the
functor that assigns to each superalgebra B the Lie algebra (g⊗B)0̄.

The Lie algebra structure on (g ⊗ B)0̄ is in fact more transparent. If x ⊗ b and y ⊗ b′ are
elements of (g⊗B)0̄, then we have [x⊗ b, y ⊗ b′] = (−1)|y||b|[x, y]⊗ bb′. Thus LG(B) and (g⊗B)0̄
are isomorphic as Lie algebras over the ring B0̄. We will therefore often write g for the functor LG
if no confusion is possible.

Let G and H be affine algebraic supergroups with Lie superalgebras g and h. We have seen
above that a morphism f : G → H of group functors induces a morphism of Lie superalgebras
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df : g → h. However, there is also an induced natural transformation LG → LH , given by
composition with f . One easily checks that for any superalgebra B this natural transformation is
given by df ⊗ idB : (g⊗B)0̄ → (h⊗B)0̄. By the theorem of Deligne and Morgan 3.6.1 these are the
only natural transformations LB → LC that respect the Lie algebra structure. In fact, the theorem
provides an alternative proof that shows that the natural transformation LG → LH induced by f
is in fact of the form h⊗ idB : (g⊗B)0̄ → (h⊗B)0̄ for all superalgebras B and for some morphism
of Lie superalgebras h : g→ h.

The morphism f : G → H induces a natural transformation Tf : TG → TH between the
total tangent bundle functors. If A is any superalgebra, then α ∈ TG(A) = HomsAlg (k[G], A+) we
define Tf(α) = α ◦ ϕ : HomsAlg (k[G], A+) → HomsAlg (k[H ], A+), where ϕ : k[H ] → k[G] is the
morphism of super Hopf algebras that induces f . Evaluating Tf at the counit of G we obtain a
morphism LG → LH , which is the derived transformation df :

Lemma 8.6.28. Let G and H be affine algebraic supergroups represented by super Hopf algebras
k[G] and k[H ] respectively and let g and h be their Lie algebra functors. Suppose we have a morphism
f : G→ H, then if Tf : TG→ TH is the induced morphism between total tangent bundle functors,
then the differential df : g→ h is given by

(ǫ, df(D)) = Tf(ǫ,D) . (8.88)

Proof. The proof follows immediately from the definition of the total tangent bundle functor and
of the way we constructed Tf .

When B is a superalgebra over k, then we have maps pB : B+ → B and iB : B → B+,
see subsection 8.6.1. Then if A is a super Hopf algebra, we have a morphism of groups ρB :
HomsAlg (A,B+) → HomsAlg (A,B). In [64] the Lie algebra of an affine algebraic supergroup is
defined as the functor that assigns to B the kernel of ρB. Remembering that HomsAlg (A,B+)
consisted of all pairs (f,D) with f ∈ HomsAlg (A,B) and D an even derivation of A into B over f ,
we easily see that Ker(ρB) = Derǫk(A,B)0̄. Therefore, our definition of a Lie algebra of an affine
algebraic supergroup coincides with the definition of Fioresi and Lledó. For the case of an algebraic
group scheme the use of the total tangent bundle functor was used and developed extensively in for
example [65, 66].

Example 8.6.29. Consider the group functor SLp|q that is defined as the functor that assigns to
any superalgebra A the set of all elements M of GLp|q(A) with Ber(M) = 1. One calls SLp|q the
special linear supergroup. Writing M ∈ GLp|q(A) in block-matrices as

M =

(
m00 m01

m10 m11

)
, (8.89)

we can rewrite Ber(M) = 1 as

det(m00 −m01m
−1
11 m10) = det(m11) . (8.90)

We conclude that SLp|q is a closed subgroup of GLp|q. We use the notation of example 8.5.16
and introduce the matrices X00 = (xij), X01 = (xia), X10 = (xai) and X11 = (xab). To obtain
the Lie superalgebra Derǫk(k[SLp|q], k) we note that Derǫk(k[SLp|q], k) consists of all derivations
of k[GLp|q] to k over the counit ǫ that vanish on the Z2-graded ideal in k[GLp|q] generated by

det(X00−X01X
−1
11 X10)−det(X11) ∈ k[GLp|q]. Noting that any matrix element of X01X

−1
11 X10 lies

in (Kerǫ)2, and using example 8.6.24 we see that the Lie superalgebra slp|q consists of all elements
in Matp|q(k) with zero supertrace:

slp|q =
{
N ∈ Matp|q(k) | str(N) = 0

}
. (8.91)
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For the Lie algebra functor slp|q : A 7→ slp|q = Derǫk(k[SLp|q], A)0̄ we then get

slp|q(A) =
{
Y ∈ Matp|q(A)0̄ | str(Y ) = 0

}
. (8.92)

The Lie bracket is the same as in glp|q, see for example 8.6.24. △

Example 8.6.30. Let Ω be the (p + 2q) × (p + 2q)-matrix defined in eqn.(8.59). Then for any
superalgebra A, the group Ospp|2q(A) is given by all (p+ 2q)× (p+ 2q)-matrices M that satisfy

MSTΩM = Ω . (8.93)

It follows that each M ∈ Ospp|2q(A) is invertible and hence is a subgroup of GLp|2q(A). Writing
M ∈ GLp|q(A) in block-matrices as

M =

(
m00 m01

m10 m11

)
, (8.94)

we see that M ∈ Ospp|2q(A) if and only if we have

mT
00m00 −mT

10Jm10 = 1 , mT
00m01 −mT

10Jm11 = 0 , mT
01m01 +mT

11Jm11 = J . (8.95)

The equations MSTΩM − Ω = 0 clearly define a Z2-graded ideal in k[GLp|2q] and thus Ospp|2q
is a closed subgroup of GLp|2q. We can now proceed as in the case of SLp|q to calculate the Lie
superalgebra ospp|2q and the Lie algebra functor. Using the explicit isomorphism glp|2q

∼= Matp|2q(k)
constructed in example 8.6.24 one finds

ospp|2q
∼=

{(
a b
c d

)
∈Matp|2q(k) | aT + a = b+ cTJ = dTJ + Jd = 0

}
, (8.96)

which is the super vector space of all matrices M ∈ Matp|2q(k) satisfying MSTΩ + ΩM = 0.
Hence we see that ospp|2q is indeed isomorphic to the orthosymplectic Lie superalgebra ospp|2q(k)

defined in section 2.2. Note that when we write an element D ∈ ospp|2q as
∑
Dij

∂
∂Xij

the matrix

(Dij) satisfies D+Ω + ΩD = 0 as a super vector space, where D+ stands for ((DST )ST )ST . The
appearance of D+ is due to the asymmetry between the supertranspose for odd and even elements.

Taking A any superalgebra, tensoring ospp|2q with A, and using lemma 3.7.7 and example 8.6.24
one finds that we have a further isomorphism

ospp|2q(A) ∼=
{
Y ∈Matp|2q(A)0̄ | Y STΩ + ΩY = 0

}
. (8.97)

Computing Derǫk(k[Ospp|2q], A) directly also gives the result of eqn.(8.97). The Lie bracket is the
same as for glp|2q. We remark that ospp|2q ⊂ slp|2q. △

Remark 8.6.31. In the previous example we have seen there is an asymmetry between the signs in
the definition of the Lie superalgebra and in the definition of the Lie algebra functor. Most authors
seem to notice this asymmetry, but solve the problem by simply redefining the supertranspose (see
for example [5]).





Chapter 9

Representations and comodules

In this chapter we will study some aspects of representations of affine algebraic supergroups. This
will give insight into the structure of affine algebraic supergroups. To discuss representations of
supergroups, we will need to develop a little bit of machinery to deal with comodules of super
coalgebras and we will need to know more about the structure of super coalgebras. Because of the
duality between superalgebras and super coalgebras, we are forced to consider not only commutative
superalgebras. Therefore, in this chapter, a superalgebra will not be commutative unless otherwise
mentioned.

The first section 9.1 will be devoted to define representations of affine algebraic supergroups and
to establish the link between comodules of super coalgebras and representations of affine algebraic
supergroups. In section 9.2 we study the structure of super coalgebras and comodules. In section
9.3 this will be used to derive some properties of representations and to show that all affine algebraic
supergroups are closed subgroups of the general linear supergroup GLp|q for some p and q. Then
we end this chapter with a section on the representations of the Lie algebra of an affine algebraic
supergroup and on the adjoint representation of the supergroup in its Lie algebra. We work over a
fixed field k of characteristic zero.

9.1 Representations versus comodules

Let V be a super vector space over k. The super vector space can be viewed as the functor that
assigns to any commutative superalgebraA the Grassmann envelop V (A) = (V ⊗A)0̄. We define the
group functor GLV : sAlg → Sets to be the functor that assigns to each commutative superalgebra
A the even invertible elements of EndA(V ⊗ A). If V is finite-dimensional and if we fix a basis of
V , we have an isomorphism V ∼= kp|q for some p and q, which induces an isomorphism of group
functors GLV ∼= GLp|q. Therefore, GLV is an affine algebraic supergroup for finite-dimensional V .
The action of GLV (A) on (V ⊗A)0̄ is easily seen to be a natural transformation GLV × V → V .

Definition 9.1.1. Let G be a group functor and V a super vector space, viewed as a functor. A
linear representation of G in V is a morphism of group functors G→ GLV . Equivalently, a linear
representation of G in V is a natural transformation G× V → V that factors over GLV × V → V .

Often we will omit the adjective linear and just write representation. If G is an affine algebraic
supergroup represented by k[G], then for finite-dimensional V a representation is equivalently de-
scribed by a morphism of super Hopf algebras φ : k[GLV ]→ k[G]. If G has a linear representation
in V , we call V a G-module. If W ⊂ V is a sub super vector space, we call W a submodule of
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V if the action of G on V restricts to an action on W . In other words, for each commutative
superalgebra A, the image of W (A) under the map G(A)× V (A)→ V (A) lies in W (A). If W is a
submodule of V , then there is a natural representation of G in V/W .

Let V and V ′ be super vector spaces. By the theorem of Deligne and Morgan 3.6.1 there is a
one-to-one correspondence between the natural transformation from V to V ′, when we view the
super vector spaces as functors, and the super vector space morphisms from V to V ′. Suppose
that G has a representation in V and in V ′. We call a super vector space morphism f : V → V ′ a
morphism of G-modules if for all commutative superalgebras the diagram

G(A) × V (A) - V (A)

G(A)× V ′(A)

id×fA

?
- V ′(A)

fA

?

(9.1)

commutes, where the horizontal rows are the actions of G on V and V ′, and where fA is the induced
morphism f ⊗ idA : (V ⊗A)0̄ → (V ′ ⊗A)0̄. Note that an action of G on V can easily be extended
to an representation on V ⊕ΠV by using the embedding (V ⊗A)0̄ → V ⊗A for each commutative
superalgebra A. Indeed, GLV (A) naturally acts on V ⊗A.

We want to relate representations of the affine algebraic supergroup G to comodules of k[G],
which we will now define.

Definition 9.1.2. Let C be a super coalgebra with comultiplication map ∆ and counit ǫ. A left
comodule over C is a super vector space V together with a morphism of super vector spaces ψ : V →
V ⊗C such that ψ ⊗ idC ◦ ψ = idV ⊗∆ ◦ ψ and idV ⊗ ǫ ◦ ψ = idV , where we identified V ⊗ k ∼= V .

The conditions on the morphisms ψ, ∆ and ǫ can be compactly formulated by requiring the
commutativity of the following diagrams:

V
∼=- V ⊗ k V

ψ - V ⊗ C

V ⊗ C

ψ

?

id⊗ǫ

-

V ⊗ C

ψ

?

ψ⊗id
- V ⊗ C ⊗ C

id⊗∆

?

. (9.2)

A right comodule is defined in a similar way as a left comodule, replacing ψ : V → V ⊗ C by
ψ : V → C ⊗ V and so on.

Let V be a left comodule over a super coalgebra C with the structure map ψ : V → V ⊗ C. If
W is a sub super vector space in V such that ψ(W ) ⊂ W ⊗ C, then we call W a sub comodule of
V . One easily verifies that W is indeed a left comodule over C with structure map the restriction
of ψ to W . If V ′ is a second comodule over C with structure map ψ′ : V ′ → V ′ ⊗ C, then we call
a super vector space morphism f : V → V ′ a morphism of comodules if ψ′ ◦ f = f ⊗ idC ◦ ψ. The
image f(V ) is easily seen to be a sub comodule of V ′, and the kernel of f is a sub comodule of V .
For a submodule W ⊂ V , there is an induced comodule structure on the quotient V/W and one
easily checks that the projection π : V → V/W is a morphism of comodules.

Theorem 9.1.3. Let G be an affine algebraic supergroup represented by the super Hopf algebra
k[G]. Then a linear representation Φ : G → GLV on V corresponds to a unique k-linear map
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ρ : V → V ⊗ k[G] such that the following diagrams commute:

V
ρ- V ⊗ k[G]

V ⊗ k

idV ⊗ǫ

?

∼=

-
,

V
ρ - V ⊗ k[G]

V ⊗ k[G]

ρ

?
idV ⊗∆ - V ⊗ k[G]⊗ k[G]

ρ⊗idk[G]

?

. (9.3)

Conversely, given a map ρ : V → V ⊗ k[G] such that the above diagrams commute, then ρ defines
a representation. In other words, there is a one-to-one correspondence between G-modules and left
k[G]-comodules.

Proof. The proof is actually no more than Yoneda’s lemma. We follow the approach of [60]. We
extend for each commutative superalgebra A the action of GLV (A) on V (A) to an action on V ⊗A.

We write X = k[G] and define for each v ∈ V a k-linear map ρ(v) = ΦX(idX)(v ⊗ 1). Let A be
any commutative superalgebra and g ∈ G(A) = HomsAlg (X,A), then the action of g is determined
by ρ as the commutative diagram shows:

V (X)
ΦX (idX ) - V (X)

V (A)

idV ⊗g

?
ΦA(g) - V (A)

idV ⊗g

?

. (9.4)

We indeed have for any v ⊗ a ∈ V ⊗A

ΦA(g)(v ⊗ a) = ΦA(g)(v ⊗ 1)a

= ΦA(g)(idV ⊗ g)(v ⊗ 1)a

= idV ⊗ g ◦ ΦX(idX)(v ⊗ 1)a

= (idV ⊗ g ◦ ρ(v))a .

(9.5)

Requiring ΦA(e) = idV (A), where e is the identity element of the group G(A) and is the composition
of the counit with the inclusion k→ A, we obtain immediately the first commutative diagram. To
see what happens when we require ΦA(gh) = ΦA(g)ΦA(h) we first write out the action of ΦA(gh):

ΦA(gh)(v ⊗ 1) = idV ⊗ µA ◦ idV ⊗ g ⊗ h ◦ idV ⊗∆ ◦ ρ(v) (9.6)

where µA : A⊗A→ A is the multiplication map of A. The action of ΦA(g)ΦA(h) is given by

ΦA(g)ΦA(h)(v ⊗ 1) = idV ⊗ µA ◦ idV ⊗ g ⊗ h ◦ ρ⊗ idX ◦ ρ(v) . (9.7)

If the second diagram in (9.3) commutes the actions of ΦA(g)ΦA(h) and ΦA(gh) are the same. For
the converse, we take A = X ⊗ X and g and h the superalgebra morphisms g : a 7→ a ⊗ 1 and
h : a 7→ 1⊗a. Then µA ◦g⊗h : X⊗X⊗X⊗X is the identity map on X⊗X . Therefore the second
diagram in (9.3) commutes if and only if ΦA(g)ΦA(h) = ΦA(gh) for all A and for all g, h ∈ G(A).

On the other hand, if we have an even k-linear map ρ : V → V ⊗X such that the diagrams (9.3)
commute, we get a natural transformation G→ End(V ) by putting ΦA(g)(v⊗ a) = idV ⊗ g ◦ ρ(v)a.
We only need to check that the image lies in GLV , which is obvious since ΦA(g−1)ΦA(g) = idV (A).
This completes the proof.



142 Representations and comodules

Proposition 9.1.4. Let G be an affine algebraic supergroup represented by the super Hopf algebra
k[G] and let V and V ′ be two G-modules. A morphism f : V → V ′ is a morphism of G-modules if
and only if f is a morphism of left k[G]-comodules.

Proof. Let ψ : V → V ⊗ k[G] and ψ′ : V ′ → V ′⊗ k[G] be the structure maps that induce the repre-
sentations of G in V and V ′ respectively. Clearly, if f is a morphism of left k[G]-comodules, then
the diagram (9.1) commutes. Conversely, suppose that diagram (9.1) commutes for all commutative
superalgebras A. Then extending the action of G(A) to V ⊗ A, the diagram still commutes. Now
take A = k[G], idk[G] ∈ G(k[G]) and consider v⊗ 1 ∈ V ⊗ k[G], then the commutativity of diagram
(9.1) implies that

idV ⊗ idk[G] ◦ ψ′(f(v)) = f ⊗ idk[G] ◦ ψ(v) . (9.8)

As v was arbitrary, we conclude that f is a morphism of left k[G]-comodules.

An immediate consequence is that if W ⊂ V is a submodule of V , then W is a sub comodule
as well. Even more, by proposition 9.1.4 there is an equivalence of categories of G-modules and
k[G]-comodules. Due to its importance, we state this as a corollary:

Corollary 9.1.5. Let G be an affine algebraic supergroup represented by a super Hopf algebra k[G].
There is an equivalence of categories between G-modules and k[G]-comodules. In particular, if V is
a G module, and W ⊂ V is a sub super vector space, then W is a G-submodule if and only if W is
a k[G]-subcomodule.

Consider a finite-dimensional super vector space V of dimension p|q and equip V with a standard
homogeneous basis {ei}1≤i≤p+q. Then we may identify k[GLV ] with k[Xij , λ, µ]/I, where I is the
ideal generated by det(X00)λ − 1 and det(X11)µ − 1 and where X00 = (Xij)1≤i,j≤p and X11 =
(Xij)p+1≤i,j≤p+q ; also see example 8.5.16. We write Φ : GLV × V → V for the natural action of
GLV on V . For the comodule structure map ψ : V → V ⊗ k[GLV ] we then find

ψ(ei) = Φk[GLV ](idk[GLV ])(ei ⊗ 1) = ej ⊗Xji , (9.9)

since the identity map on k[GLV ] is given by Xkl 7→ Xkl and is therefore represented by the matrix
(Xkl). Now we consider any affine algebraic supergroup G. If we have a linear representation of
G on V , then that corresponds to a morphism of super Hopf algebras ϕ : k[GLV ] → k[G]. Let us
denote by aij the image of the Xij under the morphism ϕ. If ∆ is the comultiplication of k[G],
then since ϕ commutes with comultiplication, we have ∆aij =

∑
k aik ⊗ akj . If g ∈ G(A) for some

commutative superalgebra A, then the image of g in GLV (A) is represented by the matrix with
entries g(aij).

An important representation of an affine group superscheme is given by the regular represen-
tation, where the vector space is the super Hopf algebra k[G] and the comodule map ψ is the
comultiplication ∆. It is easy to see that the map ∆ : k[G] → k[G] ⊗ k[G] indeed makes the
diagrams (9.3) commute. Although k[G] is in general not finite-dimensional, we will see later that
each element in k[G] is contained in a finite-dimensional submodule inside k[G]. In other words,
k[G] is as a comodule the sum of its finite-dimensional sub comodules.

If V and W are G-modules, then V ⊕ W can also be equipped with the structure of a G-
module. If φV : G → GLV and φW : G → GLW are the natural transformations defining the
representations, we define φ : G → GLV⊕W by mapping g ∈ G(A) to the linear transformation
that maps (v, w) ∈ V ⊕ W to (φAV (g)(v), φAW (g)(w)) for all commutative superalgebras A. Let
ψV : V → V ⊗ k[G] and ψW : W → W ⊗ k[G] be the comodule structure maps corresponding to
φV and φW respectively. One easily checks that the comodule structure map corresponding to φ is
given by ψ : (v, w) 7→ (ψV (v), ψW (w)).
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Given super vector space V and W , then to V ⊗W corresponds the functor A 7→ (V ⊗W ⊗A)0̄.
We have isomorphisms

r : (V ⊗A)⊗A (V ⊗A)→ V ⊗W ⊗A ,
r((v ⊗ a)⊗A (w ⊗ b)) = v ⊗ w ⊗ (−1)|a||w|ab , and

s : V ⊗W ⊗A→ (V ⊗A)⊗A (V ⊗A) ,

s(v ⊗ w ⊗ a) = (v ⊗ 1)⊗A (w ⊗ a) .

(9.10)

Given representations φ1 and φ2 of G on V and W respectively, then for a representation φ⊗ on
V ⊗W we require

φA⊗(g)(v ⊗ w ⊗ 1) = r
(
φA1 (g)(v ⊗ 1)⊗A φA2 (g)(w ⊗ 1)

)
, (9.11)

for any commutative superalgebra A and g ∈ G(A). The corresponding comodule map ψ⊗ :
V ⊗W → V ⊗W ⊗ k[G] is calculated to be

ψ⊗(v ⊗ w) = r
(
ψ1 ⊗ ψ2(v ⊗ w)

)
, (9.12)

where ψ1 and ψ2 are the comodule maps corresponding to φ1 and φ2 respectively. Using the
isomorphisms r and s it is an easy matter to verify that ψ⊗ makes the diagrams (9.3) commute,
and therefore defines a representation.

Proposition 9.1.6. Let G be an affine algebraic supergroup and let V be a G-module. If U is a
sub super vector space of V , the subfunctors StabUG : sAlg → Sets and GU : sAlg → Sets defined
by

StabUG(A) = {g ∈ G(A) | g(U(A)) ⊂ U(A)} ,
GU (A) = {g ∈ G(A) | g · u⊗ 1 = u⊗ 1 , ∀u ∈ U} ,

(9.13)

for all commutative superalgebras A, are closed subgroups of G.

Proof. Clearly, for all commutative superalgebras A, GU (A) is a subgroup of G(A). To show that
StabUG(A) is also a subgroup, we first remark that clearly, the identity of G(A) is in StabUG(A) and
for any pair g, g′ ∈ StabUG(A) also g ·g′ ∈ StabUG(A). From g ∈ StabUG(A) it follows that U ⊂ g−1(U)
and we obtain a chain of A0̄ modules U ⊂ g−1U(A) ⊂ g−2U(A) · · · . If A0̄ is a finitely generated
superalgebra and V is finite-dimensional, then V (A) is a Noetherian A0̄-module and thus the chain
has to become stable. Let N be such that g−NU(A) = g−N−1U(A). Then for any u ∈ U we have
g−1(u⊗1) = gN(g−N−1(u⊗1) = gNg−Nu′ = u′ for some u′ ∈ U(A). Hence g−1 ∈ StabUG(A). Thus
for all finitely generated A, StabUG(A) is a subgroup of G(A).

Let {ui}i be a homogeneous basis for U in V and choose any complement W ⊂ V such that
W ⊕ U = V . Choose a homogeneous basis {wa}a of W and write k[G] for the super Hopf algebra
representing G. There are σia ∈ k[G] and τij ∈ k[G] such that the comodule morphism ψ : V →
V ⊗k[G] satisfies ψ(ui) =

∑
a wa⊗σia+

∑
j uj⊗τji. Then g ∈ StabUG(A) if and only if g vanishes on

the Z2-graded ideal generated by the σia. Further, g ∈ GU (A) if and only if g vanishes on the Z2-
graded ideal generated by the elements σia, τij−δij, where δij is 1 if i = j and zero otherwise. Hence
by lemma 8.5.6 and remark 8.5.7 these ideals are Hopf ideals and the proposition is proved.
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9.1.1 Application to normal subgroups

Let G be an affine algebraic supergroup with representing super Hopf algebra k[G]. Write ∆ :
k[G] → k[G] ⊗ k[G] for the comultiplication, µ : k[G] ⊗ k[G] → k[G] for the multiplication and
S : k[G] → k[G] for the antipode. We have a natural transformation C : G × G → G given
by CA : (g, h) 7→ ghg−1 for any superalgebra A and g, h ∈ G(A). For any superalgebra A and
g, h ∈ G(A), the morphism C(g, h) : k[G]→ A is given by

C(g, h) = µA ◦ µA ⊗ idA ◦ g ⊗ h⊗ (g ◦ S) ◦∆⊗ idk[G] ◦∆

= µA ◦ g ⊗ h ◦ idk[G] ⊗ T ◦ idk[G] ⊗ idk[G] ⊗ S ◦∆⊗ idk[G] ◦∆ ,
(9.14)

where µA : A⊗A→ A is the multiplication in A and T : k[G]⊗k[G]→ k[G]⊗k[G] is the map given
by T : x ⊗ y 7→ (−1)|x||y|y ⊗ x. Hence we find that the corresponding morphism of superalgebras
c : k[G]→ k[G]⊗ k[G] is given by

c = µ⊗ idk[G] ◦ idk[G] ⊗ T ◦ idk[G] ⊗ idk[G] ⊗ S ◦∆⊗ idk[G] ◦∆ . (9.15)

Now let H be a closed subgroup of G with representing super Hopf algebra k[H ] = k[G]/a for some
Hopf ideal a. We say H is a normal subgroup if C restricts to a map C : G × H → H . That is,
if i : H → G is the closed embedding induced by the projection π : k[G] → k[H ], we require the
existence of a map C′ : G×H → H such that the following diagram commutes

G×H C◦(idG,i) - G

H

i

-

C′

-
. (9.16)

On the level of super Hopf algebras we thus need that there is a map c′ : k[H ]→ k[G]⊗ k[H ] such
that the following diagram commutes

k[G]⊗ k[H ] � idk[G]⊗π◦c
G

k[H ]

π

�

c′

�

. (9.17)

In other words, we require that c′ : k[H ]→ k[G]⊗k[H ] defined c′(xmod a) = idk[G]⊗π◦c(x) is well-
defined and turns k[H ] into a left k[G]-comodule. In particular, we need that a ⊂ Ker(idk[G]⊗π◦c).
Using lemma 8.1.5 we conclude that c has to satisfy c(a) ⊂ Ker(idk[G]⊗ π) = k[G]⊗ a. Conversely,
if c(a) ⊂ k[G] ⊗ a, then c′ is well-defined. One calls a Z2-graded Hopf ideal a of k[G] with the
property c(a) ⊂ k[G] ⊗ a a normal Hopf ideal. The preceding discussion thus establishes a one-to-
one correspondence between normal Hopf ideals and closed normal subgroups.

Let f : G→ H be a morphism of affine algebraic supergroups. Then the kernel of f is a normal
closed subgroup of G. Indeed, for each superalgebra A, the kernel of fA : G(A)→ H(A) is a normal
subgroup. In proposition 8.5.5 we showed that the kernel of f is a closed subgroup. If follows that
the Hopf ideal defining the kernel must be a normal Hopf ideal, but we will show this now using
(super) Hopf techniques and following [21].



9.2 Structure of comodules and super coalgebras 145

Let k[G] and k[H ] be the super Hopf algebras representing G and H respectively. Suppose
φ : k[H ] → k[G] is the morphism of super Hopf algebras that induces the group morphism f . By
proposition 8.5.5 the kernel is a closed subgroup of G defined by the Hopf ideal φ(IH)k[G], where
IH is the augmentation ideal of k[H ].

Let a be the kernel of φ and let furthermore ∆G, SG, ǫG and ∆H , SH , ǫH be the comultiplication,
antipode and counit of k[G] respectively k[H ]. Since ǫH = ǫG ◦ φ, SG ◦ φ = φ ◦ SH and ∆G ◦ φ =
φ⊗φ ◦∆H , we conclude that ǫH(a) = 0, SH(a) ⊂ a and ∆(a) ⊂ Ker(φ⊗φ) = a⊗ k[H ] + k[H ]⊗ a.
Hence a is a Hopf ideal and defines a closed subgroup of H . Since the kernel of f is defined by the
ideal generated by the image under φ of the augmentation ideal of k[H ] and since the augmentation
ideal of k[H ] contains a, we may replace k[H ] by k[H ]/a. (One can think of the affine algebraic
supergroup defined by k[H ]/a as the image of G.) We thus think of k[H ] as being a sub super Hopf
algebra of k[G].

Under the assumption that k[H ] is a sub super Hopf algebra of k[G] with augmentation ideal
IH , we now show that IH ·k[G] is a normal Hopf ideal. Let c : k[G]→ k[G]⊗k[G] be the morphism
defined in eqn.(9.15) and let a ∈ IH , then writing ∆⊗ idk[G] ◦∆ =

∑
ai ⊗ bi ⊗ ci gives

idk[G] ⊗ ǫ ◦ c(a) =
∑

(−1)|bi||ci|aiS(ci)ǫ(bi) . (9.18)

Using coassociativity, commutativity and the identity idk[G] = idk[G] ⊗ ǫ ◦∆, one obtains

∑
(−1)|bi||ci|aiS(ci)ǫ(bi) = µ ◦ idk[G] ⊗ S ◦∆(a) = ǫ(a) = 0 . (9.19)

Therefore c(IH) ⊂ Ker(idk[G]⊗ǫ) = k[G]⊗IG, where IG is the augmentation ideal of k[G]. However,
since k[H ] is a sub super Hopf algebra, we have c(k[H ]) ⊂ k[H ]⊗k[H ] and thus c(IH) ⊂ k[H ]⊗ IH .
But then

c(IH · k[G]) ⊂ (k[H ]⊗ IH)(k[G] ⊗ k[G]) ⊂ k[G]⊗ (IH · k[G]) , (9.20)

which shows that IH · k[G] is a normal Hopf algebra.

9.2 Structure of comodules and super coalgebras

In this section we will introduce some notions to study the structure of super coalgebras. As
guidelines for this section served the references [21, 22]. Having studied the structure of super
coalgebras, we can say more on the form of the representations of affine algebraic supergroups in
section 9.3.

9.2.1 Rational modules

Let C be a super coalgebra and suppose M is a left comodule over C with structure map ψ : M →
M ⊗ C. We can make M into a left C∗-module by the following action:

ρψ(c∗ ⊗m) =
∑

(−1)|mi||ci|c∗(ci)mi , where ψ(m) =
∑

mi ⊗ ci . (9.21)

Our first task is to consider which left C∗-modules arise in this way.

Proposition 9.2.1. Let ψ be any even linear map M → M ⊗ C and define ρω as above. Then
(M,ψ) is a right C-comodule if and only if (M,ρψ) is a left C∗-module.
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Proof. Suppose ψ : M → M ⊗ C makes M into a left C-comodule. Recall that the 1 of C∗ is the
counit map. For all m ∈M we have ρψ(ǫ⊗m) = idM ⊗ ǫ(m) = m. Let a, b ∈ C∗, then

ρψ(ab⊗m) = idM ⊗ ab ◦ ψ(m) = idM ⊗ a⊗ b ◦ idM ⊗∆ ◦ ψ(m) , (9.22)

where we identify M ⊗ k ⊗ k ∼= M . On the other hand, we have

ρψ(a⊗ ρψ(b⊗m)) = idM ⊗ a⊗ b ◦ ψ ⊗ idC ◦ ψ , (9.23)

using the same identification M ⊗ k ⊗ k ∼= M . Using the definition of a comodule, we see that
ρψ(a⊗ ρψ(b⊗m)). Thus M is a C∗-module with structure map ρψ : C∗ ⊗M →M .

Conversely, if ρψ makes M into a left C∗-module, then acting on M with ǫ we see that idM ⊗
ǫ ◦ ψ(m) = m for all m ∈M . If for all a, b ∈ C∗ we have ρψ(a ⊗ ρψ(b ⊗m)), then for all a, b ∈ C∗

we have
idM ⊗ a⊗ b ◦ (idM ⊗∆ ◦ ψ − ψ ⊗ idC ◦ ψ) = 0 , (9.24)

as linear map M →M ⊗ k ⊗ k ∼= M . Take m ∈M and expand (idM ⊗∆ ◦ ψ − ψ ⊗ idC ◦ ψ)(m) =∑
mi⊗ci⊗di with mi ∈M and ci, di ∈ C. Then the sum is in fact finite and we may assume the mi

are linearly independent. This implies that for each i and for all a, b ∈ C∗ we have a⊗b(ci⊗di) = 0.
Thus for all i, ci ⊗ di is in (C∗ ⊗ C∗)⊥. But by lemma 8.1.4 the image of C∗ ⊗ C∗ in (C ⊗ C)∗ is
dense. Hence for all i, we have ci ⊗ di = 0.

Consider the natural inclusions M ⊗C →M ⊗C∗∗ → HomsVec (C∗,M). We consider M ⊗C as
a subspace in Hom(C∗,M) and the action of m⊗ c on c∗ is given by m⊗ c(c∗) = (−1)|c||c

∗|mc∗(c).
Suppose that the map ρ : C∗ ⊗M → M makes M into a left C∗-module, then we have a map
ψρ : M → HomsVec (C∗,M) defined by

ψρ(m)(c∗) = (−1)|m||c∗|ρ(c∗ ⊗m) . (9.25)

Definition 9.2.2. Let C be a super coalgebra and M a left C∗-module with structure map ρ : C∗⊗
M →M . We say that M is a rational C∗-module if the associated map ψρ : M → HomsVec (C∗,M)
has image in M ⊗ C, where we view M ⊗ C as a subspace of HomsVec (C∗,M).

Proposition 9.2.3. If M is a rational C∗-module with structure map ρ : C∗ ⊗M → M , then
the associated map ψρ : M → M ⊗ C determines a comodule structure on C. Furthermore, the
C∗-module structure derived from ψρ is again ρ.

Proof. By proposition 9.2.1 the associated map ψρ : M →M ⊗C makes M into a left C-comodule.
By construction, the C∗-action on M derived from ψρ is given by:

c∗ ⊗m 7→ idM ⊗ c∗ ◦ ψρ(m) , (9.26)

but by definition, the right-hand side coincides with ρ(c∗ ⊗m).

Proposition 9.2.4. Let M be a rational C∗-module, then any submodule or quotient of M is also
a rational C∗-module.

Proof. Let ρ : C∗ ⊗M → M be the multiplication map and let σ : M → HomsVec (C∗,M) be
the map σ(m)(c∗) = (−1)|c

∗||m|ρ(c∗ ⊗ m). By assumption, σ(M) lies in the image of M ⊗ C in
HomsVec (C∗,M). Therefore, if N is a submodule, then so lies σ(N) in the image of M ⊗ C in
HomsVec (C∗,M). Since in addition ρ(C∗⊗N) ⊂ N , it follows that σ(N) lies in the image of N⊗C
in HomsVec (C∗,M). Writing σ′ : M/N 7→ HomsVec (C∗,M/N) for the morphism determined by
σ′(mmodN)(c∗) = σ(m)(c∗)modN , then σ′ is well-defined and can be written as σ′ = π⊗ idC ◦ σ
and thus has image in M/N ⊗ C.
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Proposition 9.2.5. Let M,N be rational C∗-modules and f : M → N a linear even map, then f
is a morphism of modules if and only if f is a morphism of comodules.

Proof. Let ψ : M → M ⊗ C and ψ′ : N → N ⊗ C be the associated comodule structure maps.
We simply write c∗ ·m for the action of c∗ on m. Let m ∈ M and write ψ(m) =

∑
mi ⊗ ci and

ψ′(f(m)) =
∑
nj ⊗ dj . Then

f(c∗ ·m) =
∑

(−1)|ci||mi|c∗(ci)f(mi) , (9.27)

and on the other hand
c∗ · f(m) =

∑
(−1)|dj||nj |c∗(di)ni . (9.28)

If f is a comodule map, then clearly eqns.(9.27,9.28) coincide. For the converse, we observe that if
f is a module map, then the element x =

∑
f(mi) ⊗ ci −

∑
nj ⊗ di is annihilated by all elements

idN ⊗ c∗. A basis argument then shows that x = 0.

Proposition 9.2.6. Let M be a rational C∗-module, then any submodule that is generated by a
finite number of elements is finite-dimensional.

Proof. It suffices to show that a single element m ∈ M lies in a finite submodule. Let ψ : M →
M ⊗ C be the associated comodule morphism, and write ψ(m) =

∑
imi ⊗ ci. Then the sum is

finite and the super vector space V , defined as the span of the mi, is finite-dimensional. Since
idM ⊗ ǫ ◦ ψ(m) = m, we have m ∈ V and therefore C∗ ·m ⊂ V .

From the correspondence between the rational modules and the comodules (propositions 9.2.3
and 9.2.1) it follows that each comodule is the sum of its finite-dimensional sub comodules. Applying
proposition 9.2.6 to the regular representation of an affine algebraic supergroup on its representing
super Hopf algebra, shows that the super Hopf algebra is the sum of its finite-dimensional sub
comodules.

Corollary 9.2.7. Let G be an affine algebraic supergroup with representing super Hopf algebra
k[G]. Then the regular representation of G on k[G] is locally finite, that is, each element a ∈ k[G]
is contained in a finite-dimensional submodule.

We now move one step further to show that not only comodules are locally finite, but super
coalgebras as well. Recall that we defined the sub super coalgebra generated by a set S as the
intersection of all sub super coalgebras containing S, see for example proposition 8.2.16.

Theorem 9.2.8. Let C be a super coalgebra and S a finite set of homogeneous elements of C, then
the sub super coalgebra of C generated by S is finite-dimensional.

Proof. We proof that any element c ∈ C generates a finite-dimensional sub super coalgebra. The
theorem then follows, since if D1, D2 ⊂ C are finite-dimensional sub super coalgebras, then so is
D1 +D2.

With respect to the comultiplication ∆ : C → C⊗C, C is a left C-comodule. We write c∗ · c for
the associated action of c∗ ∈ C∗ on c ∈ C. Thus c∗ · c = idC ⊗ c∗ ◦∆(c). Then C is a rational left
C∗-module. Hence for any c ∈ C, the submodule X = C∗ · c is finite-dimensional. The action of
C∗ on X induces a map f : C∗ → Endk(X) and since Endk(X) is a finite-dimensional superalgebra
over k, the kernel of f is a two-sided Z2-graded ideal such that C∗/Ker(f) is finite-dimensional.
Therefore Ker(f)⊥ is a finite-dimensional sub super coalgebra of C. For any y ∈ Ker(f) we have
ǫ(y · c) = 0, which equals ǫ ⊗ y ◦ ∆(c) = y(c). Hence c ∈ Ker(f)⊥ and thus c is contained in a
finite-dimensional sub super coalgebra.
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9.2.2 Simplicity and irreducibility

One defines an algebra to be simple if it has no nontrivial two-sided ideals. We say a superalgebra
is simple if it has no nontrivial two-sided Z2-graded ideals. A commutative simple superalgebra is
easily seen to be a commutative simple algebra, as the ideal generated by the odd part must be
zero.

Definition 9.2.9. We say a super coalgebra is irreducible if any two nonzero sub super coalge-
bras have a nonzero intersection. We call a super coalgebra C simple, if it contains no sub super
coalgebras except 0 and C itself.

By Zorn’s lemma, any super coalgebra contains a simple sub super coalgebra. Let now C be
an irreducible super coalgebra. Then the intersection of all sub super coalgebras is nonempty and
hence C contains a unique sub super coalgebra, which necessarily is simple. Conversely, suppose
C contains a unique simple sub super coalgebra D. Then the intersection of two arbitrary sub
super coalgebras C1, C2 ⊂ C cannot be empty, since C1 and C2 both contain a simple sub super
coalgebra. Hence we have shown that a super coalgebra is irreducible if and only if there is a unique
simple sub super coalgebra.

Lemma 9.2.10. Let C be a super coalgebra.

(i) C is irreducible if and only if all its sub super coalgebras are irreducible.

(ii) If D,E are nonzero simple sub super coalgebras then either E ∩D = 0 or E = D.

(iii) Any simple super coalgebra is finite-dimensional.

Proof. The third claim follows from theorem 9.2.8. The second claim is obvious as the intersection
of two sub super coalgebras is a sub super coalgebra. For the first claim, if all sub super coalgebras
are irreducible, then so C. For the converse, if D is a sub super coalgebra and E1, E2 are two
nonzero sub super coalgebras of D, then they are two nonzero sub super coalgebras of C and thus
have nonempty intersection.

Proposition 9.2.11. Let C be a super coalgebra. The map that sends any sub super vector space
D ⊂ C to D⊥ ⊂ C∗ sets up a one-to-one correspondence between the simple sub super coalgebras
of C and the non-dense maximal Z2-graded two-sided ideals of C∗.

Proof. Let D be a simple sub super coalgebra of C. Then D is finite-dimensional and D∗ is a
finite-dimensional algebra. Suppose that I is a two-sided Z2-graded ideal in D∗, then I⊥ ⊂ D
is by corollary 8.2.14 a sub super coalgebra of D and hence I⊥ = 0 or I⊥ = D. Since D is
finite-dimensional, I⊥ = 0 implies I = D∗ and I⊥ = D implies I = 0. Therefore D∗ is a simple
superalgebra.

If I is a two-sided Z2-graded ideal of C∗ containing D⊥, then ImodD⊥ is an ideal in C∗/D⊥,
which is isomorphic to D∗. Hence I modD⊥ = 0 or ImodD⊥ = C∗ modD⊥; in the first case,
D⊥ = I and in the second case C∗/I ∼= (C∗ modD⊥)/(I modD⊥) = 0. Hence D⊥ is a maximalZ2-graded two-sided ideal in C∗. As (D⊥)⊥ = D by lemma 8.1.1 is nonzero, D⊥ is not dense.

Is m is a non-dense maximal Z2-graded two-sided ideal of C∗, then m⊥ is a sub super coalgebra
of C. If D is a nonzero simple sub super coalgebra of m⊥, then D⊥ is a non-dense maximal Z2-
graded two-sided ideal of C∗ and contains m⊥⊥. Since m⊥⊥ ⊃ m we must have m⊥⊥ = m = D⊥

and thus D = D⊥⊥ = m⊥. Hence m⊥ is a simple sub super coalgebra.
If D is any sub super coalgebra, we have D⊥⊥ = D by lemma 8.1.1. If m is a two-sided non-

dense Z2-graded maximal ideal of C∗, then m⊥ is a nonzero sub super coalgebra, and thus m⊥⊥ is
not dense, as m⊥⊥⊥ equals m⊥ by lemma 8.1.1. But m⊥⊥ is Z2-graded and two-sided. Therefore
m⊥⊥ = m. Hence we indeed have a bijection.
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An easy consequence of proposition 9.2.11 is that if C is an irreducible super coalgebra, then
C∗ has only one non-dense two-sided Z2-graded maximal ideal. In the finite-dimensional case, this
implies that C∗ is an Artinian local superalgebra.

Lemma 9.2.12. If C is a super coalgebra and C̄ is irreducible as a coalgebra, then C is irreducible.

Proof. Let D,E be sub super coalgebras of C. Since it is not possible that D ∩ C0̄ = 0 or that
E∩C0̄, we conclude that D̄ and Ē are both nonzero. Hence they have a nonzero intersection. Since
as super vector spaces C̄ ∼= C0̄, E and D contain an element e = e0̄+e1̄ and d = d0̄ +d1̄ respectively
with e0̄ = d0̄. But since D and E are sub super coalgebras, we have e0̄ ∈ E and d0̄ ∈ D.

Remark 9.2.13. Consider the finite-dimensional superalgebra A of (1+1)× (1+1)-supermatrices
with entries in k. Then A is a simple superalgebra. As in the proof of proposition 9.2.11 we conclude
that A∗ is a simple super coalgebra. However, Ā∗ is not simple, as it consists of two copies of the
unique one-dimensional super coalgebra. Also, as these two copies are disjoint, the converse of
lemma 9.2.12 is false in general.

On the other hand, consider the super vector space C spanned by elements g, θ, η, where we
define g to be even and θ and η to be odd. Define a comultiplication and counit by ∆(g) = g ⊗ g,
∆(θ) = θ ⊗ g + g ⊗ θ, ∆(η) = g ⊗ η + η ⊗ g, ǫ(g) = 1 and ǫ(η) = ǫ(θ) = 0. Then C is a super
coalgebra and is not simple, since g and η span a sub super coalgebra. On the other hand, C̄ is
one-dimensional and thus simple.

We conclude that C being simple does not imply that C̄ is simple, and conversely, that simplicity
of C̄ does not guarantee that C is simple.

Definition 9.2.14. We call a super coalgebra C pointed if all simple sub super coalgebras of C are
one-dimensional.

Any even grouplike element defines a simple one-dimensional sub super coalgebra, and thus if a
super coalgebra is pointed and irreducible, there is only one grouplike element.

Proposition 9.2.15. Let C be a super coalgebra and suppose we can write C as a sum C =
∑

α Cα,
where Cα are sub super coalgebra.

(i) Any simple sub super coalgebra of C lies in one of the Cα.

(ii) C is irreducible if and only if each Cα is irreducible and ∩αCα 6= 0.

(iii) C is pointed if and only if each Cα is pointed.

(iv) C is pointed irreducible if and only if all Cα are pointed irreducible and ∩αCα 6= 0.

Proof. (i): If D is simple, then D is finite-dimensional and is contained in finitely many Cα.
Therefore it suffices to consider D ⊂ C1 +C2. If d ∈ D, we may assume d to be homogeneous, and
we write d = d1 +d2, with di ∈ Ci. As D is simple, we have D∩C1 = D∩C2 = 0. Hence the image
of D under the projection C → C/C2 is nonzero and we can view D as a sub super vector space
in C/C2. Hence the induced morphism (C/C2)

∗ → D∗ is surjective. It follows that we can find c∗

in C∗ such that c∗|D is the counit of D and such that c∗|C2 = 0. But then d = idC ⊗ c∗ ◦ ∆(d)
lies in D1, where ∆ is the comultiplication of C. (ii): Lemma 9.2.10(i) shows that all Cα are
irreducible and that ∩αCα is not empty if C is irreducible. Conversely, if all Cα are irreducible
and R = ∩αCα 6= 0, then any simple sub super coalgebra lies in R and hence is unique. (iii): If
C is pointed, then clearly, all Cα must be pointed. Conversely, if all Cα are pointed and D ⊂ C is
simple, then (i) shows that D ⊂ Cβ for some β and hence D is one-dimensional. (iv) follows from
(ii) and (iii).
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If C is a super coalgebra and {Dα}α is a set of irreducible sub super coalgebras with nonempty
intersection, then the sum

∑
αDα is again irreducible by the previous proposition 9.2.15. Hence

by Zorn’s lemma, if D ⊂ C is an irreducible sub super coalgebra, their exists a maximal irreducible
sub super coalgebra of C containing C.

Definition 9.2.16. A sub super coalgebra D of C is an irreducible component of C if it is a
maximal irreducible sub super coalgebra. D is a pointed irreducible component if in addition the
unique simple sub super coalgebra of D is one-dimensional.

Theorem 9.2.17. Let C be any super coalgebra.

(i) Any irreducible sub super coalgebra lies in an irreducible component.

(ii) The sum of irreducible components of C is direct.

(iii) If C is cocommutative, then C is the direct sum of its irreducible components.

Proof. (i): Is proved in the paragraph above definition 9.2.16. (ii): If C1, C2 are two irreducible
components having a nonzero intersection, then C1+C2 is irreducible and contains C1 and C2. (iii):
As the sum of irreducible components is direct, it suffices to show that C is the sum of its irreducible
components and we have to show that any element is contained in an a sum of irreducible sub super
coalgebra. If c is in C, then by theorem 9.2.8 there is a finite-dimensional sub super coalgebra D
containing c. It will be sufficient to show that D contains some irreducible sub super coalgebras
that contain c. Since D is finite-dimensional and commutative, D∗ is an Artinian commutative
superalgebra and by corollary 5.2.3 D∗ is a direct sum of local Artinian superalgebras. Thus we
write D∗ =

⊕n
i=1 Ai, where the Ai are local, from which it follows that D ∼=

⊕n
i=1A

∗
i as super

vector spaces. But in fact, one easily verifies that the Ai are Z2-graded ideals in D∗ and thus the
A∗
i are sub super coalgebras and since the Ai are local, the A∗

i are irreducible.

Corollary 9.2.18. Let C be any super coalgebra.

(i) The sum of distinct simple sub super coalgebras is direct.

(ii) C is irreducible of and only if any element of C lies in an irreducible sub super coalgebra.

(iii) C is pointed irreducible if and only if any element of C lies in a pointed irreducible sub super
coalgebra.

(iv) A pointed cocommutative super coalgebra is the direct sum of its pointed irreducible compo-
nents.

Proof. (i): Since distinct simple sub super coalgebras lie in distinct irreducible components, this
follows from theorem 9.2.17(ii). (ii): This follows immediately from proposition 9.2.15(ii). (iii):
Follows from (ii) and proposition 9.2.15(iv). (iv): This follows from theorem 9.2.17(iii) and propo-
sition 9.2.15(iii).

If C is a super bialgebra, then C contains the simple sub super coalgebra 1. Hence if a super
bialgebra is irreducible, it is automatically pointed. Even more, using the same techniques as
in [22] one shows that an irreducible super bialgebra always has an antipode and is thus a super
Hopf algebra. We close this exhibition on irreducibility and simplicity by the following theorem:

Theorem 9.2.19. Let C be an irreducible super coalgebra, R its unique simple sub super coalgebra
and f : C → E a super coalgebra epimorphism.
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(i) If F is a nonzero sub super coalgebra of E, then F ∩ f(R) is nonzero.

(ii) The image f(R) contains all the simple sub super coalgebras of E.

(iii) E is irreducible if and only if f(R) is irreducible.

(iv) If R is cocommutative, then E is irreducible with unique simple sub super coalgebra f(R).

(v) The homomorphic image of a pointed irreducible super coalgebra is pointed irreducible.

Proof. (i): For each x ∈ F , there is a y ∈ C with f(y) = x. We can replace C by a finite-
dimensional sub super coalgebra containing y, since this sub super coalgebra automatically contains
R and f(C) ∩ F is a sub super coalgebra of E containing x. Hence we assume that C and E are
finite-dimensional. It follows that C∗ is a local ring with Z2-graded two-sided maximal ideal R⊥

- it is two-sided as it is the kernel of the surjective map C∗ 7→ R∗. We note that we can use the
proofs of lemmas 4.1.15 and 6.4.5 for Z2-graded anticommutative superalgebras as well and thus we
conclude that if M is a finitely generated module over C∗ with R⊥M = M , then M = 0. Since R⊥

is finite-dimensional, there must be a positive integer such that (R⊥)n = 0. But then m = E∗ ∩R⊥

is an ideal in E∗, which we can view as a subalgebra of C as C → E is surjective, so that E∗ → C∗

is injective. Thus m is a nilpotent ideal in E∗ and is thus contained in any Z2-graded maximal
ideal in E∗. We conclude that m⊥ is a sub super coalgebra of E containing all simple sub super
coalgebras of E. Viewing E∗ as a sub superalgebra of C∗ and thus E as a quotient of C shows that
m⊥ = f(R), and since any simple sub super coalgebra of F is contained in m⊥, this proves (i). (ii):
This we proved on the way in proving (i). (iii): Follows from (i). (iv): As R is finite-dimensional,
cocommutative and simple, R∗ is a simple, finite-dimensional commutative k-superalgebra, and
thus a simple finite-dimensional commutative k-algebra, and hence a finite field extension of k.
Thus all subalgebras of R∗ are also simple, and thus all quotients of R are simple. Hence f(R) is
simple and in particular irreducible, hence E is irreducible. (v): Follows from (iii).

9.3 Properties of group representations

Proposition 9.3.1. Let G be an affine algebraic supergroup. Then every finite-dimensional repre-
sentation of G is isomorphic to a submodule of a finite number of copies of the regular representation.

Proof. The proof follows the presentation of [60]. Let V be a finite-dimensional G-module and
let ψ : V → V ⊗ k[G] be the corresponding k[G]-module structure map, where k[G] is the super
Hopf algebra representing G. Consider the super vector space W = V ⊗ k[G] and equip W with
the comodule structure defined by the map ψ′ = idV ⊗ ∆ : W → W ⊗ k[G], where ∆ is the
comultiplication of k[G]. As a G-module, W consists of a finite number of copies of k[G]. Since V
is a k[G]-comodule, we have idV ⊗∆ ◦ ψ = ψ ⊗ idk[G] ◦ ψ, which now reads ψ′ ◦ ψ = ψ ⊗ idk[G] ◦ ψ.
But the last equality says that ψ : V →W is a morphism of k[G]-comodules, and thus a morphism
of G-modules. As idV ⊗ ǫ ◦ ψ = idV , where ǫ is the counit of k[G], it follows that ψ is an injective
map. Hence, we can identify V with a sub G-module of W .

The previous proposition 9.3.1 says that in order to study representations of G, it suffices to
study k[G]-subcomodules of the regular representation. For ordinary affine algebraic groups, one
can proceed to construct all representations by taking submodules, direct sums and tensor products
of the regular representation. It would be interesting to extend this technique for affine algebraic
supergroups, but here a difficulty arises. Consider the super Hopf algebra of GLp|q: we can write it
as k[Xij , 1/det(X00)], 1/det(X11), where X00 is the matrix (Xij) where 1 ≤ i, j ≤ p and where X11

is the matrix (Xij) for p+ 1 ≤ i, j ≤ p+ q. In contrast to the case for affine algebraic groups, the
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elements 1/det(X00) and 1/det(X11) do not define one-dimensional comodules. However, Ber(X),
where X is the matrix (Xij) with 1 ≤ i, j ≤ p+ q, does define a one-dimensional comodule.

The following theorem says that as for the ordinary non-super case, any affine algebraic super-
group is a closed subgroup of GLp|q for some positive integers p and q. The key ingredient for its
proof lies again in the regular representation.

Theorem 9.3.2. Let G be an affine algebraic supergroup. Then there are positive integers p and q
such that G is a closed subgroup of GLp|q.

Proof. Since the super Hopf algebra representing G is finitely generated there exists by corollary
9.2.7 a finite-dimensional k[G]-subcomodule V in k[G] containing all generators. Thus V is a finite-
dimensional G-module inside the regular representation, say dimV = p|q. This means that we have
a morphism of super Hopf algebras f : k[GLp|q]→ k[G]. Let {ei}1≤i≤p+q be a homogeneous basis of
V . The comodule structure map ψ : V → V ⊗ k[G] is the comultiplication ∆ : k[G]→ k[G]⊗ k[G]
restricted to V . We can write ψ(ei) =

∑
j ej ⊗ aji and the aij are the images of the elements

Xij of k[GLp|q] under the morphism f (see example 8.6.24 and the discussion around eqn.(9.9) for
the conventions on GLp|q). In particular, the aij are contained in f(k[GLp|q]). Now consider the
identity

ei = idk[G] ⊗ ǫ ◦∆(ei) = ǫ⊗ idk[G] ◦∆(ei) =
∑

j

ǫ(ej)aji , (9.29)

from which we conclude that all ei are in the image of f . But then f : k[GLp|q] → k[G] is a
surjective morphism and thus k[G] ∼= k[GLp|q]/a for some Hopf ideal a, which shows that G is a
closed subgroup of GLp|q.

Let G be an affine algebraic supergroup and let V be a G-module. We call the representation of
G in V irreducible if there is no nontrivial submodule. If the representation is not irreducible, we
call it reducible. If V is a representation, such that for all submodules W , there exists a submodule
W ′ ⊂ V such that W ⊕W ′ = V , we call V completely reducible. We call a representation in V
diagonalizable if V splits as a sum of one-dimensional submodules. For a comodule over a super
coalgebra we use the same nomenclature, so for example, a comodule is irreducible if it contains no
nontrivial sub comodules. And in fact, we use the same nomenclature for modules of superalgebras.
The justification for this overall use of the same names is due to corollary 9.1.5, and propositions
9.2.5 and 9.2.1, the last two of which state that the category of rational C∗-modules is equivalent
to the category of C-comodules.

Remark 9.3.3. For superalgebras there are two equivalent definitions of complete reducibility: A
module is completely reducible if (1) it is a sum of irreducible submodules, or (2) it is a direct sum
of irreducible submodules. We omit the proof, which can be found in for example [50, XVII§2] and
requiring that all submodules are Z2-graded and all elements homogeneous. Similarly, for the proof
of the claim that any submodule of a completely irreducible module is again completely irreducible,
we refer to [50, XVII§2].

Let C be a super coalgebra and let V be a left C-comodule, with structure map ψ : V → V ⊗B.
Then V is a rational left C∗-module. If C is even a super bialgebra, so that 1 ∈ C, then we define
a vector v ∈ V to be invariant if ψ(v) = v ⊗ 1. It follows, that the sub super vector space V inv

spanned by the invariant vectors is Z2-graded.

Theorem 9.3.4. Let C be a super bialgebra with its dual superalgebra C∗ and assume V is a
rational left C∗-algebra. Denote ψ : V → V ⊗ C the corresponding comodule structure map. Then:

{v ∈ V |f · v = f(1)v, ∀f ∈ C∗} = {v ∈ V |ψ(v) = v ⊗ 1} . (9.30)
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Proof. By the definition of the action of C∗ on V , it is clear that the right-hand side is contained in
the left-hand side. Suppose that v is homogeneous and that f · v = f(1)v for all f ∈ C∗ and write
ψ(v) =

∑
vi ⊗ ci. We may assume the ci are linearly independent. Then we can choose f ∈ C∗

such that f(c1) = 1 and f(ci) = 0 for i 6= 1. It follows that v1 is a multiple of v, and similarly, each
vi is a multiple of v, so that we can write ψ(v) = v ⊗ c for some c ∈ C. By the assumption on v it
follows that f(c− 1) = 0 for all f ∈ C∗, hence c = 1.

We call a comodule V of a super bialgebra trivial if for all v ∈ V , the comodule structure map
is given by ψ : v 7→ v ⊗ 1. If G is an affine algebraic supergroup, we say that a representation in V
is trivial if V is a trivial comodule of the super Hopf algebra representing G.

Definition 9.3.5. Let C be a super coalgebra and let V be a comodule over C with structure map
ψ : V → V ⊗ C. We call the support of V the smallest sub super coalgebra D of C such that
ψ(V ) ⊂ V ⊗D. We write C(V ) for the support of V .

Lemma 9.3.6. Let C be a super coalgebra and let V be a left comodule over C with structure map
ψ : V → V ⊗ C. Let {vi}i be a homogeneous basis of V , then the support of V is given by

C(V ) = Span
{
ci ∈ C|ψ(v) =

∑
vi ⊗ ci, ∀v ∈ V

}
. (9.31)

Proof. Clearly, the right-hand side of eqn.(9.31) is contained in the left-hand side of eqn.(9.31), so
it suffices to show that the right-hand side of eqn.(9.31) is a sub super coalgebra. But the identity
ψ ⊗ idC ◦ ψ = idV ⊗∆ ◦ ψ, where ∆ is the comultiplication of C, just tells us that the right-hand
side of eqn.(9.31) is indeed a sub super coalgebra. In particular, the right-hand side of eqn.(9.31)
is independent of the choice of the basis.

The properties of the support that are important for us, are summarized in the following lemma:

Lemma 9.3.7. Let C be a super coalgebra and let V be a left comodule over C. Then:

(i) If V is one-dimensional, then so is C(V ).

(ii) If V is a sub comodule of W , then C(V ) ⊂ C(W ).

(iii) If V = V1 + V2, then C(V ) = C(V1) + C(V2).

(iv) If V is an irreducible comodule, then C(V ) is a simple sub super coalgebra of C.

(v) If D is a simple sub super coalgebra of C, then there exists an irreducible left C-comodule W ,
such that C(W ) = D.

Proof. (i): This is obvious. (ii): Choose a basis of V and then extend it to a basis of W , then use
lemma 9.3.6. (iii): Clearly, C(V1) + C(V2) ⊂ C(V ). Choose a basis for V1 and a basis for V2, then
the union of the basis spans V , and we can delete some elements to obtain a basis for V . Since
any v ∈ V can be written as v = v1 + v2 with vi ∈ Vi, lemma 9.3.6 proves the claim. (iv): We
fix a homogeneous basis {vi} of V , and write ψ(vi) =

∑
j vj ⊗ cji. Then C(V ) is spanned by the

cji. We write c∗ · v for the action of C∗ on V defined by c∗ · v = idV ⊗ c∗ ◦ ψ(v). Then V is a
rational left C∗-module and the two-sided Z2-graded ideal I of all elements c∗ ∈ C∗ that annihilate
V consists precisely of those elements c∗ ∈ C∗ such that c∗(ckl) = 0 for all k, l. Hence C(V ) ⊂ I⊥.
Since V is irreducible and V ∼= C∗/I, we conclude that I is a maximal two-sided Z2-graded ideal,
and since C(V ) ⊂ I⊥, I is not dense. Hence proposition 9.2.11 says that I⊥ is a simple sub super
coalgebra of C. Since C(V ) ⊂ I⊥ and C(V ) 6= 0, we conclude that C(V ) = I⊥ and C(V ) is simple.
(v): The claim follows if we can show that D has a minimal left coideal (see proposition 8.2.18 and
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the preceding paragraph). By proposition 8.2.19 the arbitrary intersection of left coideals is again
a left coideal. But then a standard application of Zorn’s lemma, shows that minimal left coideals
exist.

We now come to study the relations between certain properties of super coalgebras, like simplic-
ity and irreducibility, and properties of comodules, such as irreducibility and complete reducibility.

Corollary 9.3.8. Let C be a super coalgebra. Then the following are equivalent:

(i) All rational left C∗-modules that are irreducible, are one-dimensional.

(ii) All minimal left coideals of C are one-dimensional.

(iii) C is a pointed super coalgebra.

Proof. (i) ⇒ (ii): Let V be a minimal left coideal, then V is a rational left C∗-module and
irreducible. Therefore, V is one-dimensional. (ii) ⇒ (iii): If D is a simple sub super coalgebra
of C, then D is in particular a left coideal, and hence one-dimensional. (iii) ⇒ (i): Let V be an
irreducible rational left C∗-module. Then V is an irreducible left C-comodule. By lemma 9.3.7
the support of V is a simple sub super coalgebra of C. Hence C(V ) is one-dimensional. Using the
identity idV ⊗ ǫ ◦ψ = idV , we see that this implies that for any v ∈ V , the comodule structure map
ψ : V → V ⊗C is given by ψ(v) = λv⊗ g, where g spans C(V ) and λ ∈ k. Thus each homogeneous
vector in V defines a sub comodule, and thus, as V is supposed to be irreducible, V has to be
one-dimensional.

Let C be a super coalgebra. We define the coradical of C to be the sum of all simple sub
super coalgebras. By corollary 9.2.18 the sum is direct. The coradical plays a role, similar to the
nilradical of a superalgebra. In fact, proposition 9.2.11 shows that if R is the coradical of C, then R⊥

is the intersection of all non-dense Z2-graded two-sided maximal ideals of C∗. For noncommutative
superalgebras, we define the nilradical to be the intersection of all Z2-graded maximal left ideals.
Thus R⊥ is contained in the nilradical of C∗. We call a superalgebra semi-simple if the nilradical
is zero. Note that a noncommutative superalgebra is simply a noncommutative algebra with the
additional structure of a Z2-grading. Therefore, if the intersection of all maximal Z2-graded left
ideals is zero, then so is the intersection of all maximal left ideals. Hence if a superalgebra is
semi-simple, then it is also semi-simple as an algebra.

Proposition 9.3.9. Let C be a super coalgebra and let R be its coradical.

(i) C is the sum of all supports C(V ) where V ranges over all finite-dimensional left C-comodules.

(ii) R is the sum of all supports C(V ), where V ranges over all irreducible sub super coalgebras.

Proof. (i): By theorem 9.2.8 every element is contained in a finite-dimensional sub super coalgebra.
Thus for every homogeneous element c ∈ C, there is a finite-dimensional sub super coalgebra D,
with c ∈ D. The comultiplication makes D into a left C-comodule, and clearly C(D) = D. (ii) By
lemma 9.3.7(v) each simple sub super coalgebra is the support of some irreducible comodule. By
lemma 9.3.7(iv) each C(V ) is simple whenever V is an irreducible left comodule.

Theorem 9.3.10. Let C be a super coalgebra, then the following are equivalent:

(i) All left C-comodules are completely reducible.

(ii) C equals its coradical.
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Proof. (i) ⇒ (ii): As a C∗-module, C itself has to be a direct sum of irreducible submodules.
Hence C is the direct sum of its simple sub super coalgebras, hence equals its coradical. (ii)⇒ (i):
Any C-comodule is the sum of its finite-dimensional sub comodules by proposition 9.2.6. Hence by
remark 9.3.3 it suffices to prove that any finite-dimensional comodule V is completely reducible.
Let V be a finite-dimensional comodule over C. One easily sees that then the support of V is a
finite-dimensional sub super coalgebra D′ ⊂ C. Hence D′ is contained in a finite direct sum of
simple sub super coalgebras, and we write D for this direct sum. Then D∗ is a semi-simple finite-
dimensional superalgebra. Thus V is a finite-dimensional D∗-module and is thus by lemma 9.3.11
below, which is a slightly adapted version of a theorem of Wedderburn, completely reducible. But
the action of C∗ on V ′ factors over the action of D∗ on V ′, hence V ′ is completely reducible as a
C∗-module.

Lemma 9.3.11. Let A be a finite-dimensional semisimple superalgebra. Then any left module over
A is completely reducible.

Proof. As the intersection of all Z2-graded maximal left ideals is zero and as A is finite-dimensional,
we can choose finitely many Z2-graded maximal left ideals mi such that ∩imi = 0. Say, we choose n
of them. Then the canonical morphism of left A-modules A→⊕n

i=1 A/mi is injective. Each A/mi

is irreducible and hence
⊕n

i=1A/mi is completely reducible. Thus A is a completely reducible left
A-module. For a general left A-module M , let f : F →M be a surjective left A-module morphism.
Then F is completely reducible as it is a sum of copies of A. Hence F = ker(f) ⊕ N for some
submodule N . But N ∼= M , and since N is a submodule of F , N is also completely reducible.

Theorem 9.3.12. Let G be an affine algebraic group, represented by a Hopf algebra H. Then we
have:

(i) Any representation of G is completely reducible if and only if k[G] equals its coradical.

(ii) Any irreducible representation of G is one-dimensional, if and only if k[G] is pointed.

(iii) Any representation of G is diagonalizable if and only if k[G] is pointed and equals its coradical.

(iv) Any irreducible representation of G is trivial if and only if k[G] is irreducible.

Proof. Due to corollary 9.1.5 all four claims can be reduced to properties of the comodules of
k[G]. (i): By theorem 9.3.10 any representation is completely irreducible if and only if C equals
its nilradical. (ii): Corollary 9.3.8 claims that all irreducible comodules are one-dimensional if
and only if k[G] is pointed. (iii): In order that a representation be diagonalizable, it suffices and
is necessary that all representations are completely reducible and all irreducible representations
are one-dimensional. Hence this follows from (i) and (ii). (iv): If k[G] is irreducible, it contains
only one simple sub super coalgebra, which is 1. Hence by (ii) all irreducible representations are
one-dimensional. Thus if V is a one-dimensional representation, then also the support C(V ) is
automatically one-dimensional, hence C(V ) = k · 1. Hence V is a trivial representation. If all
irreducible representations are trivial, they are all one-dimensional and hence k[G] is pointed. Thus
the only simple sub super coalgebras are those of the grouplike elements. If g is a grouplike element,
then ∆g = g ⊗ g, which, by triviality, must equal g ⊗ 1. Hence g = 1 and k[G] is irreducible.

For ordinary algebraic groups, one calls a group all of whose representations are completely
reducible a linearly reductive group. Nagata classified the linearly reductive algebraic groups for
arbitrary characteristic [67]. We are not aware of any such classification for affine algebraic super-
groups.
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Remark 9.3.13. We have restricted to finitely generated super Hopf algebras. This is in fact
not a severe restriction for most results. The techniques as for example displayed in [60] apply
equally well to conclude that a super Hopf algebra is a directed union of its finitely generated sub
super Hopf algebras. Thus, any representable group functor is an inverse limit of affine algebraic
supergroups.

Remark 9.3.14. We have focussed on linear actions of affine algebraic supergroups. Most of the
arguments apply as well to make statements on actions of affine algebraic supergroups on affine
superschemes. We briefly sketch the situation.

Let G = Spec(k[G]) be an affine algebraic supergroup and let X = Spec(k[X ]) be an affine
superscheme. Then an action of G on X is a natural transformation ρ : G × X → X satisfying
ρ(g, ρ(h, x) = ρ(g · h, x) and ρ(e, x) = x, where e is the identity element.

Since in the affine case, any natural transformation Spec(k[G]) × Spec(k[X ]) → Spec(k[X ]) is
equivalent to a morphism of superalgebras ρ∗ : k[X ]→ k[X ]⊗k[G], the same conclusion of theorem
9.1.3 applies and thus k[X ] is a comodule over k[G]. We call the invariant sub superalgebra of k[X ]
under G the sub superalgebra consisting of the elements a ∈ k[X ] such that ρ∗(a) = a⊗ 1 and we
denote it k[X ]G. We define the natural quotient to be the morphism p : Spec(k[X ])→ Spec(k[X ]G)
induced by the inclusion k[X ]G → k[X ].

Let k[X ] be finitely generated, say by homogeneous elements a1, . . . , aN . Then the sub comodule
generated by the ai is finite-dimensional. If we write V for the sub comodule generated by the ai,
we have linearized the action of G: the inclusion of V in k[X ] is a morphism of comodules and
induces a G-equivariant morphism of superschemes Spec(k[X ])→ Spec(k[V ]). Hence the restriction
to linear representations is not a severe restriction when one only considers affine superschemes.

9.4 Lie superalgebras and representations

9.4.1 The adjoint representation

Let G be an affine algebraic supergroup with representing super Hopf algebra k[G] and with Lie
superalgebra g = Derǫk(k[G], k). Then as g is a super vector space, we can view it as a functor
g : A 7→ (g⊗A)0̄ ∼= Derǫk(k[G], A)0̄ for any commutative superalgebra A. To define the adjoint rep-
resentation of the group G with module g, we first note that the usual approach does not work: We
cannot fix an element g ∈ G(A), and then differentiate ghg−1 with respect to h, since we have to be
able to change A in a functorial way. In [64] they then used a trick to get something that is close to
differentiating functorially. We will present an equivalent approach that gives a simple and equiv-
alent formula in the end. Recall the total tangent bundle functor, TG : A 7→ HomsAlg (k[G], A+),
where A+ was the augmented superalgebra obtained by adding one even variable to A and requiring
that it squares to zero: A+ = A[x]/(x2). By lemma 8.6.6, TG(A) consists of all pairs (g,D) with
g ∈ G(A) and D : k[G] → A is a derivation over g. Hence we have a natural inclusion G → TG,
sending g to (g, 0). Similarly, we can embed the Lie algebra in TG, as follows: to any derivation
D : k[G]→ A over the counit ǫ, we assign (ǫ,D) ∈ TG(A). Now let C : G×G→ G be the natural
transformation defined by C(g, h) = ghg−1 for any g, h ∈ G(A) for any commutative superalgebra
A. The natural transformation C is already defined in eqn.(9.14) and the associated morphism
c : k[G]→ k[G]⊗ k[G] was given in eqn.(9.15). We can now define the adjoint action of G on g.

Definition 9.4.1. Let G be an affine algebraic supergroup G with representing super Hopf algebra
k[G] and with Lie superalgebra g = Derǫk(k[G], k), which we view as a Lie algebra functor. The
adjoint action AdG : G × g → g is defined as follows: Fix a commutative superalgebra A for each
g ∈ G(A) and D ∈ Derǫk(k[G], A) and consider their images (g, 0) and (ǫ,D) in TG(A). One then
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easily shows using the explicit formulae that

C((g, 0), (ǫ,D)) = (g, 0) · (ǫ,D) · (g, 0) (9.32)

is again of the form (ǫ,D′) ∈ TG(A) for some D ∈ Derǫk(k[G], A). We then define AdGg (D) =

AdG(g,D) = D′ so that we have

C((g, 0), (ǫ,D)) = (ǫ,AdGg (D)) . (9.33)

We remark that if ∗ denotes the product in the algebra of linear map HomsVec (k[G], A) given
by x∗y = µA ◦x⊗y ◦∆ (also see section 8.3.1), where µA is the multiplication in A, then in TG(A)
we have

(g,D) · (g′, D′) = (g · g′, g ∗D′ +D ∗ g) . (9.34)

Using the explicit expressions for the conjugation morphism C, we immediately obtain the following
lemma that provides an explicit formula for the adjoint representation:

Lemma 9.4.2. Let G be an affine algebraic supergroup with representing super Hopf algebra k[G]
and Lie superalgebra g = Derǫk(k[G], k). Let c : k[G] → k[G] ⊗ k[G] be the morphism defined by
eqn.(9.15). Then for any commutative superalgebra A, g ∈ G(A) and D ∈ Derǫk(k[G], A) we have

AdGg (D) = µA ◦ g ⊗D ◦ c , (9.35)

where µA : A⊗A→ A is the multiplication in A. In particular, Ad is a natural transformation.

Proof. Using the explicit multiplication in TG(A) for any commutative superalgebra A, one finds
that

AdGg (D) = µA ◦ µA ⊗ idA ◦ g ⊗D ⊗ (g ◦ S) ◦∆⊗ idk[G] ◦∆ , (9.36)

where ∆ : k[G] → k[G] ⊗ k[G] is the comultiplication of k[G] and S : k[G] → k[G] the antipode
of k[G]. Using eqn.(9.15) one finds eqn.(9.35). For any morphism of superalgebras f : A → B we
have µB ◦ f ⊗ f = f ◦ µA, where µA and µB are the multiplication maps of A and B respectively,
that AdGf◦g(f ◦D) = f ◦AdGg (D). This proves that AdG is a natural transformation.

Lemma 9.4.3. Let G be an affine algebraic supergroup. For any commutative superalgebra A and
for any g, h ∈ G(A) we have AdGgh(D) = AdGg ◦AdGh .

Proof. Let g be the Lie algebra functor of G and fix a commutative superalgebra A. Write µA for
the multiplication in A and let k[G] be the super Hopf algebra representing G. We first remark
that it follows from theorem 8.4.8 that for g, h ∈ G(A) we have (g · h) ◦ S = (h ◦ S) · (g ◦ S), where
S is the antipode and where we wrote a dot for multiplication in the group G(A). Using this and
the explicit formula eqn.(9.36) one finds for g, h ∈ G(A) and D ∈ g(A) that

AdGgh(D) = µ(4) ◦ g ⊗ h⊗D ⊗ (h ◦ S)⊗ (g ◦ S) ◦∆(4) , (9.37)

where
µ(4) = µA ◦ µ⊗ idA ◦ µA ⊗ idA ⊗ idA ◦ µA ⊗ idA ⊗ idA ⊗ idA ⊗ idA , (9.38)

and
∆(4) = ∆⊗ idk[G] ⊗ idk[G] ⊗ idk[G] ◦∆⊗ idk[G] ⊗ idk[G] ◦∆⊗ idk[G] ◦∆ . (9.39)

But we also have

AdGg (AdGh (D)) = µA ◦ µA ⊗ idA ◦ g ⊗AdGh ⊗ (g ◦ S) ◦∆⊗ idk[G] ◦∆ , (9.40)

and expanding AdGh (D) in this equation gives again eqn.(9.37).
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Lemma 9.4.4. Let φ : G→ H be a morphism of supergroups. Suppose g and h are the Lie algebra
functors of G and H respectively. The induced map dφ : g→ h satisfies

dφ(AdGg (D)) = AdHφ(g)(dφ(D)) . (9.41)

Proof. This follows from the fact that if ϕ : k[H ] → k[G] is the morphism of super Hopf algebras
that induces φ, then the we have ϕ⊗ ϕ ◦ c = c ◦ ϕ.

The result of lemma 9.4.4 is of great importance. With the notation as in the lemma, it says
that the following diagram commutes:

G× g
AdG

- g

H × h

(φ,dφ)

?

AdH

- h

dφ

?

. (9.42)

When no confusion is clear, we will write Ad instead of AdG. One should however not forget
that Ad is always defined with respect to a certain group structure.

Example 9.4.5. Let G = GLp|q and consider its Lie algebra functor glp|q. We use the notation
introduced in example 8.6.24.

If g ∈ GLp|q(A), we can write g in a matrix form g = (gij), where gij = g(Xij). When we write

g−1 for the inverse of g, then g−1 has the matrix representation g−1
ij = g(S(Xij)), where S is the

antipode of k[G]. Using the explicit expressions from lemma 9.4.2 one obtains:

Adg(D) = Adg(
∑

Dij
∂

∂Xij
) =

∑

ijmn

gimDmng
−1
nj

∂

∂Xij
. (9.43)

We can thus identify Adg with a matrix (Zij,mn(g)) given by

Adg(D) =
∑

DijZij,mn(g)
∂

∂Xmn
, (9.44)

where
Zij,mn(g) = (−1)|gij ||gmi|gmig

−1
jn . (9.45)

Let us write W for the super vector space Derǫk(k[G], k), then W is spanned by the ∂
∂Xij

and any

element Ω in GLW (A) can be written as a matrix (Ωij,mn) according to

Ω(
∂

∂Xij
) =

∑

mn

Ωij,mn
∂

∂Xmn
. (9.46)

Then we can proceed as in example 8.5.16 to write k[GLW ] as a quotient of k[Zij,mn, s, t], where
s and t are even variables, and are used to impose the invertibility constraint (we do not write
out the details here, which are cumbersome, since the procedure is clear; the interested reader
can for example figure out when Zij,mn is even or odd). Tracing back the steps, which amounts
to taking A = k[GLp|q] and g = idk[GLp|q] in eqn.(9.45), we find that the adjoint representation
Ad : GLp|q → GLW is given by the morphism of super Hopf algebras φ : k[GLW ] → k[GLp|q] that
is uniquely determined by

φ(Zij,mn) = (−1)|Xij ||Xmi|XmiS(Xjn) . (9.47)

△
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The importance of the previous example 9.4.5 lies in the fact that every affine algebraic su-
pergroup is isomorphic to a closed subgroup of GLp|q for some p and q. Therefore also the Lie
algebra is isomorphic to a Lie subalgebra of glp|q by proposition 8.6.18. Let G be a closed sub-
group of GLp|q, and suppose the embedding i : G → GLp|q is induced by the morphism of super
Hopf algebras π : k[GLp|q] → k[G]. Then, using the notation of example 9.4.5, the adjoint ac-
tion of G is determined by the morphism of super Hopf algebras ψ : k[GLW ] → k[G] given by
ψ : Zij,mn 7→ (−1)|Xij ||Xmi|π(Xmi)π(S(X)jn). By lemma 9.4.4 we have di ◦Adg = Adi(g) ◦ di and
thus G acts on its Lie algebra by restriction of the adjoint action of GLp|q.

9.4.2 Derived representations

Consider a finite-dimensional Lie superalgebra g and view g as a functor g : sAlg → Sets defined by
g(A) = (g⊗A)0̄. Then g(A) is a Lie algebra for each commutative superalgebraA. For a super vector
space V the Lie superalgebra glV can in a natural way be seen as a functor: glV (A) = End((V ⊗
A)0̄) ∼= HomA-mod(V ⊗A, V ⊗A). Note that glV (A) is a Lie algebra (also see section 2.2, section 3.7
and the discussion around lemma 3.7.7) with Lie bracket [X,Y ] = X ◦Y −Y ◦X . Note that the form
of the Lie bracket is very similar to the Lie bracket of a Lie algebra related to an affine algebraic
group. By the Deligne–Morgan theorem 3.6.1, there is a one-to-one correspondence between the
representations of Lie superalgebra in a super vector space V and the natural transformations
g → glV . We will therefore not distinguish the two. The representations of Lie superalgebras
are quite well-known, see for example [29, 31, 33, 68–74], which is by no means a complete list of
references but can be used to trace more references.

Given a representation φ : G→ GLV of the supergroup G in V , induced by a morphism of super
Hopf algebras ϕ : k[GLV ] → k[G] we have a comodule map ψ : V → V ⊗ k[G]. Let dφ : g → glV
be the morphism of Lie superalgebras dφ : D 7→ D ◦ ϕ for any D ∈ Derǫk(k[G], k). In proposition
8.6.18 it was proved that dφ is a morphism of Lie superalgebras. We will call this representation the
derived representation associated to φ. If we fix a basis homogeneous vi of V , then as in eqn.(9.9),
we know that the comodule structure map is given by ψ(vi) =

∑
k vk⊗ϕ(Xki), where Xij ∈ k[GLV ]

are as in examples 8.6.24 and 9.4.5. If g ∈ G(A), then the action of g on V (A) is determined by
g(vi ⊗ 1) =

∑
k vk ⊗ g(ϕ(Xki)). Thus, if D is an element of the Lie algebra Derǫk(k[G], A), then

dφ(D) is the derivation that acts on vi ⊗ 1 by dφ(D)(vi ⊗ 1) =
∑

k vk ⊗D(ϕ(Xki)). This follows
since, as in example 9.4.5, dφ(D) is identified with the matrix (D(ϕ(Xij))). We summarize:

Proposition 9.4.6. Let G be an affine algebraic supergroup with representing super Hopf algebra
k[G] and with Lie algebra functor g. If V is a G-module, with comodule morphism ψ : V → V ⊗k[G]
and with natural transformation φ : G→ GLV , then the associated derived representation is given
by the formula:

dφ(D) : v ⊗ 1 7→ 1⊗D ◦ ψ(v) , v ∈ V , D ∈ g(A) = Derǫk(k[G], A) , (9.48)

for any commutative superalgebra A.

We get an immediate corollary:

Corollary 9.4.7. Let G,G′ be affine algebraic supergroups with Lie algebra functors g and g′

respectively. Suppose we have natural transformations Φ : G× V → V and Φ′ : G′ ×W → W that
define linear representations, a super vector space morphism f : V → W and a morphism of groups
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φ : G→ H such that the following diagram commutes:

G× V Φ - V

G′ ×W

(φ,f)

?

Φ′
- W

f

?

. (9.49)

Then also the following diagram commutes

g× V dΦ - V

g′ ×W

(φ,f)

?

dΦ′
- W

f

?

, (9.50)

where dΦ : g× V → V and dΦ : g′ ×W →W are the derived representations.

Proof. Let ψ : V → V ⊗ k[G] and ψ′ : W → k[G′] be the associated comodule morphisms and
ϕ : k[G′] → k[G] the morphism of super Hopf algebras that induces φ. The commutativity of the
first diagram (9.49) is equivalent to the identity f⊗idk[G]◦ψ = idW ⊗ϕ◦ψ′◦f ; the identity is clearly
sufficient, that it is necessary follows from applying the diagram to the commutative superalgebra
k[G] and the group element g = idk[G]. Using this identity and proposition 9.4.6 one easily verifies
that the second diagram (9.50) commutes for all commutative superalgebras A.

Remark 9.4.8. Let G,G′ be affine algebraic supergroups and φ : G→ G′ a morphism of groups.
The adjoint representation of G and G′ on their Lie algebras g and g′ respectively, and the morphism
f = dφ : g→ g′ satisfy the premises of corollary 9.4.7.

Proposition 9.4.9. Let G be an affine algebraic group, represented by the super Hopf algebra
k[G], and let g be the Lie algebra functor g : A 7→ Derǫk(k[G], A)0̄. Write C : G × G → G for
the conjugation morphism C : (g, h) 7→ ghg−1 and TC : TG × TG → TG for the associated
morphism between total tangent bundle functors. Then for any fixed commutative superalgebra A
and D1, D2 ∈ Derǫk(k[G], A)0̄

TCA((ǫ,D1), (ǫ,D2)) = [D1, D2] = D1 ∗D2 −D2 ∗D1 . (9.51)

Proof. If S is the antipode of k[G], then for any derivation D : k[G]→ A over the counit, we have
D ◦ S = −D. Then inserting the definitions in the formulae proves the proposition.

Let G be an affine algebraic supergroup with Lie algebra functor g. Then g admits a natural
Lie algebra representation on itself ad : g → glg defined by adA(D1)(D2) = [D1, D2] for any
commutative superalgebra A and D1, D2 ∈ Derǫk(k[G], A) = g(A). The previous proposition 9.4.9
and lemma 8.6.28 suggest that we have the identity dAd = ad. We first check this for G = GLp|q.

Example 9.4.10. We use the same notation as in example 9.4.5. The adjoint representation
Ad : GLp|q → GLW is induced by the morphism of super Hopf algebras φ : k[GLW ]→ k[GLp|q]

φ : Zij,mn 7→ (−1)|Xij ||Xmi|XmiS(Xjn) . (9.52)
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See example 9.4.5 for a description of the Zij,mn and W . Let then D =
∑

ij Dij
∂

∂Xij
be any even

derivation from k[GLp|q] to A, for some commutative superalgebra A. Then dφ(D) ∈ glW (A) is
identified with the matrix (D(φ(Zij,mn))). Using D ◦ S = −D we find that

dφ(D)(Zij,mn) = D((−1)|Xij ||Xmi|XmiS(Xjn)) =
(
(−1)|Xij ||Xmi|Dmiδjn −Djnδmi

)
. (9.53)

This means that if E =
∑
mnEmn

∂
∂Xmn

∈ glp|q(A) is a second even derivation, we have

dφ(D)(E) =
∑

i,m,n

(
DmiEin − EmiDin

) ∂

∂Xmn
, (9.54)

which equals [D,E]. △

Corollary 9.4.11. Let G be an affine algebraic supergroup with Lie superalgebra g. For any
commutative superalgebra A and D1, D2 ∈ g(A) = Derǫk(k[G], A)0̄ we have

dAdD1(D2) = [D1, D2] = ad(D1)(D2) . (9.55)

Proof. Since any affine algebraic supergroup is isomorphic to a closed subgroup of GLp|q for some
p and q, we can reduce the problem to showing the claim for closed subgroups of GLp|q. Let
i : G → GLp|q be a closed embedding and write di : g → glp|q for the induced embedding of Lie
algebra functors. By lemma 9.4.4 the adjoint representation satisfies the premises of corollary 9.4.7.
Hence we have

di(dAdG(D1)(D2)) = dAdGLp|q(di(D1))(di(D2)) = [di(D1), d(D2)] = di([D1, D2]) . (9.56)

As di is injective, the claim follows.





Chapter 10

Rational supergeometry

In this section we scratch the surface of the theory of rational geometry of superschemes. Most
notions of rational geometry carry over without problems to superschemes. This task will be
initiated in the second section, after having said something on the different pictures of superschemes.
In the third section we apply the results from the first section to give a sensible definition of Cayley
supergroups and give an example of a family of Cayley supergroups.

10.1 A note on pictures

In the previous two chapters 8 and 9 we have treated superrings as certain representable functors.
In section 5.4 we have treated superrings as locally ringed spaces. By proposition 5.4.5 these are
the same things: Any morphism of superrings f : A → B corresponds uniquely with a morphism
of superschemes φ : Spec(A) → Spec(B) and, by the Yoneda lemma, corresponds uniquely with
a natural transformation ϕ : HomsRng (B,−) → HomsRng (A,−). Furthermore, any superscheme
X gives rise to a functor hX : sRng → Sets by putting hX(A) = HomSsch (Spec(A), X). Thus
superrings can be viewed as different objects, as a covariant and a contravariant representable
functor from sRng to Sets , as topological spaces and as superrings of course. These different
pictures are in a certain, not to be specified, sense equivalent. It is not always clear how to go from
one picture to the other and what the relations between the different pictures are. For example: Let
X,Y be two superschemes, not necessarily affine ones, and consider the functors fX , fY : sRng →
Sets defined by fX(A) = HomSsch (Spec(A), X) and fY (A) = HomSsch (Spec(A), Y ). Now suppose
we have a surjective morphism φ : X → Y , in the sense that the continuous map of topological
spaces X → Y is surjective. Is it then also true that for all superrings A, the induced morphism
φA : fX(A)→ fY (A) is surjective? We are not aware of conclusive answers in this direction.

In this chapter we think of superrings as the space of prime ideals together with a sheaf, that is,
as affine superschemes. When possible we try to relate to the other pictures. The functor picture
is commonly used for algebraic groups, see for example [60, 66, 75] or the more recent [76].

10.2 Rational functions and rational maps

We call a superscheme X integral, if X is connected and if there exists an affine open covering
X = ∪Xi, with Xi = Spec(Ai) such that all Ai are super domains. Recall that a superring B
is a super domain if the body B̄ is an integral domain. Thus equivalently, a superscheme X is
integral if the underlying scheme X̄ is integral. But X̄ is integral if and only if any open affine
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subscheme is the spectrum of an integral domain if and only if X̄ is irreducible and the open affine
sub superschemes are the spectra of reduced rings.

Recall that a superring A is a super domain if and only if the Z2-graded ideal JA generated by the
odd elements, is a prime ideal. In that case we can build the superring of fractions Frac(A) = AJA

,
see section 5.1. It follows from proposition 5.1.3 that if A is a super domain and S is a multiplicative
set in A0̄, then Frac(S−1A) ∼= Frac(A). For an integral superscheme X we can define a sheaf of
rational functions by putting for all affine U ∼= Spec(A) K : U 7→ Frac(A). However, as the next
lemma shows, this is not really an exciting sheaf:

Lemma 10.2.1. Let X be an integral superscheme. Suppose U = Spec(A) and V = Spec(B) are
affine open sub superschemes of X. Then K(U) ∼= K(V ).

Proof. We note that by proposition 5.1.12 we can write the superring of fractions of A as an
inductive limit over localizations Aa with a even and ā 6= 0. Furthermore, any two open affine sub
superschemes intersect in an open dense subset. We write Ua = Spec(Aa) ⊂ U for any even a ∈ A
with ā 6= 0 and similarly Vb = Spec(Bb) ⊂ V whenever b ∈ B is even and b̄ 6= 0. Then for any
such Ua, there is a Vb contained in Ua and there is a Ua′ contained in Vb. The inclusions Ua′ → Ua,
Ua′ → Vb and Vb → Ua induce a commutative triangle:

Aa′ - Aa

Bb

-

-
. (10.1)

Hence we conclude as in lemma 5.5.2 that the category of cones over the direct system (Aa → Aa′ :
a′ ∈

√
(a)) is equivalent to the category of cones over the direct system (Bb → Bb′ : b′ ∈

√
(b)).

Hence the limits are isomorphic.

Remark 10.2.2. On occasion it is useful to know the isomorphism K(U) → K(V ) from lemma
10.2.1. We use the same notation as in lemma 10.2.1 and its proof. For a/s ∈ K(U) there is t ∈ B
with Vt ⊂ Us, and hence there is a morphism χ : As → Bt induced by the inclusion Vt ⊂ Us. Thus
we can map χ(a/s) into K(V ) and one easily checks that this is the sought for isomorphism.

The sheaf K is thus rather uninteresting on an integral superscheme. In particular, when X is
affine, the sheaf K is a constant sheaf. For non-affine but integral X , we define the superring of
rational functions on X to be not the sheaf K, but to be the superring K(X) = K(U) for any affine
sub superscheme U .

Definition 10.2.3. Let X be an integral superscheme. We say a point ξ ∈ X is a generic point if
the closure of ξ is the whole of X.

Lemma 10.2.4. If X is an integral superscheme, there is precisely one generic point.

Proof. First we proof existence. Let U = Spec(A) be an open affine sub superscheme ofX . Then theZ2-graded ideal JA ⊂ A is a prime ideal and is contained in all prime ideals of A. Hence {JA} = U
in U . But {JA} is a closed subset in X containing an open dense subset, hence {JA} = X .

Now for uniqueness, let ξ1 and ξ2 be two generic points inside U = Spec(A), then ξ1 ⊂ {ξ2} =
V (ξ2) and thus ξ2 ⊂ ξ1. Exchanging ξ1 and ξ2 we get ξ1 = ξ2. Now suppose ξ1 and ξ2 are generic
points in X , then ξ1 is contained in an open affine sub superscheme U1 and ξ2 is contained in an
open affine sub superscheme. The intersection U1∩U2 also contains an open affine sub superscheme
and by the existence part contains a generic point ξ3. But then ξ1 and ξ3 are generic points in U1

and hence ξ1 = ξ3. Similarly, ξ2 = ξ3 and thus ξ1 = ξ2.
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The notion of a generic point provides an alternative definition of the superring of rational
functions. If X is an integral superscheme with generic point ξ, then we define K(X) to be the
local superring OX,ξ. This is indeed equivalent to the previous definition: the generic point ξ can
be seen in any chart U = Spec(A) where it equals the prime ideal JA.

Suppose f : X → Y is a morphism of superschemes and X and Y are integral. Then take
any open affine sub superscheme U = Spec(A) of Y and consider an affine open sub superscheme
V = Spec(B) ⊂ f−1(U). We have an induced morphism f̃ : V → U , which induces a morphism
φ : A→ B. We want to extend φ to a morphism ψ : Frac(A) → Frac(B), which is only possible if
a /∈ JA, where JA is the Z2-graded ideal in A generated by the odd elements, implies φ(a) /∈ JB. This
is equivalent to requiring that the induced morphism φ̄ : Ā→ B̄ be injective, which is equivalent to
Ker(φ) ⊂ JB. This in turn means that the image of V in U is dense in U , and hence dense in Y .

Definition 10.2.5. Let X and Y be integral superschemes. We call a morphism f : X → Y
dominant if the image of X is dense in Y .

Now suppose X and Y are integral superschemes and f : X → Y is a dominant morphism.
Then we can choose an open dense affine sub superscheme U ∼= Spec(A) ⊂ Y and an affine open
sub superscheme V ∼= Spec(B) ⊂ f−1(U) and obtain an extension

φK : K(Y ) ∼= Frac(A)→ Frac(B) ∼= K(X) . (10.2)

Using lemma 10.2.1 and remark 10.2.2 one easily checks that this is independent of the choices
made. Alternatively, one uses the next lemma:

Lemma 10.2.6. Let X and Y be integral superschemes with generic points ξ and η respectively.
If f : X → Y is a dominant morphism, then f(ξ) = η.

Proof. Let V = Spec(A) be an open affine sub superscheme of Y , then Y contains ξ and takes the
form JA. Now take any open affine sub superscheme U = Spec(B) in f−1(V ). Then the restriction
of f to U induces a morphism φ : A→ B. As f is dominant, the morphism φ̄ : Ā→ B̄ is injective.
In any way, we have φ(JA) ⊂ JB, so that φ−1(JB) contains JA, but if a ∈ A does not lie in a, then
φ̄(ā) 6= 0 and thus φ(a) /∈ JB . Hence φ−1(JB) = JA, which means f(ξ) = η.

It follows from lemma 10.2.6 that if f : X → Y is a dominant morphism between integral
superschemes with generic points ξ ∈ X and η ∈ Y we have an induced morphism φξ : OY,η → OX,ξ.
The induced morphism is precisely the morphism φK : K(Y )→ K(X) of equation (10.2).

Definition 10.2.7. We call two integral superschemes X and Y birational if K(X) ∼= K(U).

We have seen that a dominant morphism f : X → Y induces a morphism K(X) → K(Y ), but
there are more ways to get such morphisms:

Definition 10.2.8. Let X and Y be integral superschemes. We define a rational map to be a
dominant morphism from an open dense sub superscheme U ⊂ X to Y .

By the same procedure as above, a rational map induces a morphism K(X) ∼= K(U) → K(Y ).
If X is an integral superscheme, the body of the superring of rational functions is a field. If
furthermore X is birational to Y , then K(X) ∼= K(Y ), and thus:

Lemma 10.2.9. Let X and Y be two integral superschemes. If X and Y are birational, then X̄
and Ȳ are birational in the sense of ordinary schemes.
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Remark 10.2.10. Now that we have introduced rational maps, we can in fact go further and define
Cartier divisors on superschemes. We will however not do so in this thesis, but leave this for future
research.

We close this section by introducing some terminology that can be useful when discussing
rational maps between affine superschemes. Let f : X = Spec(A)→ Y = Spec(B) be a rational map
between X and Y . We say f is a principal rational map if f is defined on a principal open subset of
X . Thus, there is an even element a ∈ A such that f is a dominant morphism Spec(Aa)→ Spec(B).
Let X and Y be two representable functors from the category of superalgebras over a field k
represented by k[X ] and k[Y ] respectively. We call a rational transformation between X and
Y any natural transformation HomsAlg (U,−) → HomsAlg (k[Y ],−) ∼= Y , where U is an open
set of Spec(k[X ]). We call such a rational transformation fine, if there is a multiplicative set
S ∈ k[X ]0̄ such that U = Spec(S−1k[X ]). We call a fine rational transformation a principal
rational transformation if S = 〈s〉 is the multiplicative set of powers of a single element of k[X ]0̄.

10.3 Cayley maps

Let G be an affine algebraic supergroup with representing super Hopf algebra k[G] and Lie algebra
functor g. We can view G as an affine superscheme by writing G = Spec(k[G]). When the underlying
group Spec(k[G]) is irreducible, then G is an integral superscheme. It is natural to ask, whether
we can also view the Lie algebra functor as a superscheme. In other words, is there a superscheme
X , such that for all superalgebras A over k we have g(A) ∼= HomSsch (Spec(A), X)? If X would
be affine with representing superalgebra k[X ], then we would have g(A) ∼= HomsAlg (k[X ], A). But
then it is obvious what X should be, as the functor g is of the form A 7→ (V ⊗ A)0̄ for a finite-
dimensional super vector space V . And for any such super vector space and any superalgebra A
we have

(V ⊗ A)0̄ ∼= HomsVec (V ∗, A) ∼= HomsAlg (k[V ], A) . (10.3)

Thus the superscheme representing the Lie algebra functor is a rather simple object; if Derǫk(k[G], k)
has dimension p|q, then g is represented by the superscheme Spec(k[p|q]), where

k[p|q] = k[X1, . . . , Xp|η1, . . . , ηq] . (10.4)

We will on occasion write k[g] for the affine superscheme representing g. When viewing g as a
superscheme, one loses the Lie algebra structure: The Lie algebra structure can be enforced in the
linear part of k[g], but there seems to be no canonical way to enlarge the Lie algebra structure to
the whole of k[g]. However, viewing g as a superscheme makes it possible to study rational maps
of a certain kind.

Definition 10.3.1. Let G be an integral affine algebraic supergroup with representing super Hopf
algebra k[G] and with Lie algebra functor g. A Cayley map is a rational map transformation
Φ : G→ g such that for all superalgebras A and all g, h ∈ G(A) we have ΦA(ghg−1) = Adg(Φ

A(h)).

If an integral affine algebraic supergroup admits a Cayley map, then its superring of rational
functions is of a very simple kind: it is isomorphic to Frac(k[p|q]) for some positive integers p and
q. We call an integral affine algebraic supergroup that admits a Cayley map a Cayley supergroup.
The following theorem shows that they exist:

Theorem 10.3.2. For any positive integers the integral affine algebraic supergroup Ospp|2q∩SLp|2q
is a Cayley supergroup.
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Proof. Let us recall the definitions and properties of the affine algebraic supergroup Ospp|2q from
example 8.6.30. For any fixed superalgebra the group Ospp|2q(A) corresponds to all matrices X ∈
Matp|2q(A)0̄ satisfying

XSTΩX = Ω , (10.5)

where Ω is defined in eqn.(8.59). The Lie algebra functor assigns to A all even elements Y ∈
Matp|2q(A) such that

Y STΩ + ΩY = 0 . (10.6)

It is clear that the underlying algebraic group of Ospp|2q is the direct product of Op × Sp2q. This
is not an irreducible variety, and hence Ospp|2q is not integral as a superscheme. However, the
intersection Ospp|2q ∩ SLp|2q has underlying variety SOp× Sp2q, which is an irreducible variety and
hence Ospp|2q ∩ SLp|2q is an integral superscheme. For a fixed superalgebra A, we now define the

map ΦA : Ospp|2q(A)→ Derǫk(k[Ospp|2q], A)0̄ by

ΦA : X 7→ (1−X)(1 +X)−1 , (10.7)

where 1 denotes the (p + 2q) × (p + 2q) identity matrix. Clearly, when ΦA is defined, then ΦA ◦
ΦA(M) = M for any M ∈ Matp|2q(A)0̄. Furthermore, when X satisfies eqn.(10.5) then ΦA(X)
satisfies eqn.(10.6) and vice versa. The whole construction is functorial in the superalgebra A
and thus Φ defines a rational transformation. As ΦA(X) is only not defined when (1 + X) is
not invertible, Φ is a principal rational transformation. We conclude that Φ sets up a birational
equivalence between a principal open subset of Spec(k[Ospp|2q]) and a principal open subset of

Spec(k[ 12p(p− 1) + q(2q + 1)|2pq]).
It remains to check the Ad-equivariance. This is straightforward as the adjoint action from the

group Ospp|2q(A) on the Lie algebra is given by matrix conjugation and we easily verify that

ΦA(MNM−1) = M(1−N)M−1(1 +MNM−1)−1

= M(1−N)(1 +N)−1M−1 = AdM (ΦA(N)) ,
(10.8)

for any M,N ∈ Ospp|2q(A).

From the defining equation of Ospp|2q one easily sees that if X ∈ Ospp|2q(A) for some super-

algebra A, then Ber(X) = ±1; indeed, Ber(XSTΩX) = (Ber(X))2Ber(Ω), which should equal
Ber(Ω) = ±1, hence dividing by Ber(Ω) gives the statement. We now apply the Cayley map to
prove the following property of Ospp|2q:

Lemma 10.3.3. If X ∈ Ospp|2q(A) for some superalgebra A and Ber(X) = −1, then 1 +X is not
invertible.

Proof. If X were invertible, then X = ΦA(Y ) for some Y ∈ ospp|2q(A) and thus

Ber(X) =
Ber(1− Y )

Ber(1 + Y )
=

BerΩST (1 − Y )Ω

Ber(1 + Y )

=
Ber(1− Y )

Ber(1 + Y )
= 1 ,

(10.9)

where we used that ΩSTΩ = 1, (ΩST )ST = Ω and that Y satisfies Y STΩ + ΩY = 0, whence
ΩSTY Ω = −Y . Thus if 1 +X is invertible, then the Berezinian is positive.
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Remark 10.3.4. The Cayley map is named after Arthur Cayley who was the first to introduce
such a map for the orthogonal groups [77]. In [78] the Cayley map was defined slightly differently,
however, one can also extend their definition and show that the natural transformation from theorem
10.3.2 makes Ospp|2q into a Cayley group in their sense. However, the definition of [78] is not
functorial and hence not well-suited for affine algebraic supergroups. In [79] all simple reductive
algebraic groups that are Cayley were classified.

We have not succeeded in classifying all affine algebraic supergroups that admit a Cayley map.
But, the following result at least gives a first test:

Proposition 10.3.5. Let G be an irreducible affine algebraic supergroup that admits a Cayley map.
Then the underlying affine algebraic group is a Cayley group.

Proof. We apply the rational transformation Φ : G → g to the field k, which we then view as a
superalgebra. Then we get a rational map between varieties, that satisfies the definition of a Cayley
map in the sense of [79].
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Abstract

This thesis is concerned with extending the theory of commutative rings to a theory of superrings.
The goal is to develop enough machinery to do algebraic geometry with superrings. Special attention
is given to a suitable definition of algebraic supergroups and their basic properties.

A superring A is an associative ring with unit that admits a Z2-decomposition A = A0̄⊕A1̄ such
that for two homogeneous elements a ∈ Aα and b ∈ Aβ , with α, β ∈ Z2 we have ab = (−1)αβba. In
particular, a general superring is not commutative and any odd element is nilpotent. That the odd
elements are nilpotent, guarantees that many theorems of commutative algebra can be extended to
superrings. The goal of this thesis is to carry out the programm of extending as much commutative
algebra theorems as possible to superrings, to find a suitable setting to do algebraic geometry based
on the set of prime ideals of a superring and to define and discuss algebraic supergroups.

The motivation to study superrings and to develop a framework to do supergeometry mainly
comes from physics. Mirror symmetry and supersymmetry play an important role in modern
theoretical physics and are promising research areas when it comes to fundamental deep results in
string theory, or more general particle physics, and in mathematics. Both concepts use algebraic
varieties with additional ‘anticommuting coordinates’, that is, the local coordinates are elements
of superrings. Another motivation comes from the trend in mathematics to try to construct a
framework for noncommutative geometry, a quest which is also based on modern particle physics.

In the first few chapters of the thesis, the foundations for the theory of superrings are spelled out.
In particular, prime ideals are discussed and studied, which leads to the notion of a superscheme.
A superscheme is a locally ringed space with a sheaf of superrings. We also define projective
superschemes and show that they are examples of superschemes. We define fibred products and
show that arbitrary fibred products exist in the category of superschemes. There is a functor from
the category of superschemes to the category of schemes, which does not change the topological
space, but only the sheaf. One chapter is devoted to study the concept of dimension of a superring.
Since the Krull dimension, which is defined by means of chains of prime ideals, does not give a
reasonable concept of dimension for superrings, we first define dimension for local superrings. We
show that the dimension of a local regular superring can be read off from its Hilbert function.

After having given the rudiments of a theory of superring, we turn to algebraic supergroups. By
restricting ourselves to affine algebraic supergroups, we can reduce the problem of studying algebraic
supergroups to the study of super Hopf algebras. We extend the theory of Hopf algebras to super
Hopf algebras and deduce elementary properties of affine algebraic supergroups. A fundamental
result is that any affine algebraic supergroup is a closed subgroup of the general linear supergroup.
The relation between an affine algebraic supergroup and its Lie algebra, which we define as a
functor, is extensively studied.

In the last chapter we briefly discuss some aspects of rational supergeometry. As an application
we show that the Cayley map, which is a birational morphism between an affine algebraic supergroup
and its Lie algebra and that is equivariant with respect to conjugation, exists for the supergroups
Ospp|2q.





Zusammenfassung

Diese Dissertation beschäftigt sich mit der Erweiterung der Theorie der kommutativen Ringe zu
einer Theorie der Superringe. Das Ziel ist ausreichend viel Theorie der Superringe aufzubauen so,
dass mit dieser Theorie algebraische Geometrie basierend auf Superringen entwickelt werden kann.
Einer geeigneten Definition algebraischer Supergruppen und ihren elementaren Eigenschaften wird
im besonderen Aufmerksamkeit gegeben.

Ein Superring A ist ein assoziativer Ring mit Eins, der eine Z2-Zerlegung zulässt A = A0̄⊕A1̄ so,
dass für je zwei homogene Elemente a ∈ Aα und b ∈ Aβ , mit α, β ∈ Z2, gilt, dass ab = (−1)αβba. Im
Besonderen sind Superringe generell nicht kommutativ und jedes ungerade Element ist nilpotent.
Die Nilpotenz der ungeraden Elemente garantiert, dass sich viele Theoreme aus der kommutativen
Algebra zu Superringen erweitern lassen. Das Ziel dieser Dissertation ist es, das Programm des
Erweiterns von möglichst vielen Theoremen aus der kommutativen Algebra durchzuführen, einen
Rahmen für algebraische Geometrie basierend auf der Menge der Primideale eines Superringes zu
finden und algebraische Supergruppen zu definieren und zu besprechen.

Die Motivation Superringe zu studieren und einen Rahmen für Supergeometrie zu entwickeln
kommt hauptsächlich aus der Physik. Spiegelsymmetrie und Supersymmetrie spielen eine wichti-
ge Rolle in der modernen theoretischen Physik und sind vielversprechende Forschungsgebiete, was
das Finden tiefer Ergebnisse in Stringtheorie, oder allgemeiner in der Teilchenphysik, und in der
Mathematik betrifft. Beide Konzepte benützen algebraische Varietäten mit zusätzlichen ‘antikom-
mutierenden Koordinaten’, das heißt, die lokalen Koordinaten sind Elemente eines Superringes. Eine
andere Motivation ist die Bestrebung in der Mathematik, einen Rahmen für nichtkommutative Geo-
metrie zu entwickeln, eine Bestrebung, die wieder ihre Wurzeln in der modernen Quantenfeldtheorie
findet.

In den ersten Kapiteln der Dissertation werden die Grundlagen der Theorie der Superringe
genau ausgearbeitet. Im Besonderen werden Primideale besprochen und ihre elementaren Eigen-
schaften untersucht, was zu dem Begriff der Superschemata führt. Ein Superschema ist ein lokal
geringter Raum mit einer Garbe von Superringen. Wir definieren auch projektive Superschemata
und zeigen, dass diese Beispiele von Superschemata sind. Weiter definieren wir gefaserte Produkte
und zeigen, dass in der Kategorie der Superschemata beliebige gefaserte Produkte existieren. Es
gibt einen Funktor von der Kategorie der Superschemata in die Kategorie der Schemata, sodass der
topologische Raum erhalten bleibt und nur die Garbe geändert wird. Ein Kapitel ist dem Begriff
der Dimension eines Superringes gewidmet. Weil die Krulldimension, die mittels Ketten von Prim-
idealen definiert ist, sich nicht zu einem aussagekräftigen Begriff für Superringe erweitern lässt,
definieren wir zunächst die Dimension für lokale Superringe. Wir zeigen dass die Dimension eines
lokalen regulären Superringes aus der zugehörigen Hilbertschen Funktion abgelesen werden kann.

Nachdem wir die Grundlagen einer Theorie der Superringe präsentiert haben, widmen wir uns
den algebraischen Supergruppen. Dadurch, dass wir uns auf affine algebraische Supergruppen ein-
schränken, reduziert sich das Problem algebraische Supergruppen zu studieren, auf die Untersu-
chung von Superhopfalgebren. Wir erweitern die Theorie der Hopfalgebren zu Superhopfalgebren
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und leiten elementare Eigenschaften affiner algebraischer Gruppen her. Ein fundamentales Resultat
besagt, dass jede affine algebraische Supergruppe eine abgeschlossene Untergruppe der allgemeinen
linearen Supergruppe ist. Der Zusammenhang zwischen einer affinen algebraischen Supergruppe
und ihrer Lie Algebra, die wir als einen Funktor definieren, ist gründlich untersucht.

Im letzten Kapitel besprechen wir kurz einige Aspekte der rationalen Supergeometrie. Als eine
Anwendung zeigen wir, dass die Cayley Abbildung, die ein birationaler Morphismus zwischen einer
affinen algebraischen Supergruppe und ihrer Lie Algebra ist und äquivariant bezüglich Konjugation
in der Gruppe ist, für die Supergruppen Ospp|2q existiert.
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