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Preface

These lecture notes form the basis of an introductory course on differential geom-
etry which I first held in the summer term of 2006. Several boundary conditions
made the choice of material to be included quite delicate. On the one hand, in
the mathematics curriculum of the Faculty of Mathematics in Vienna, the course
‘Differential Geometry 1’ is the only compulsory course on the subject for students
not specializing in geometry and topology. On the other hand, the course duration
is only three hours per week. Therefore, an approach which first focuses on clas-
sical differential geometry and then gently moves on to the theory of differentiable
manifolds is ruled out by time constraints.

The course therefore puts its main emphasis on a concise introduction to modern
differential geometry in order to provide the necessary tools for applications in
other branches of mathematics or for a continued study of differential geometry.
Nevertheless, an introduction to local curve theory in chapter 1 and applications
to the theory of hypersurfaces in chapter 3 are intended to provide a link to more
classical aspects of the subject.

Throughout I have tried to motivate all basic concepts thoroughly. As a rule, all
proofs are given in full detail, and comprehensibility is given prevalence over ele-
gance whenever the need arises. I have also refrained from including more material
than can be covered in one semester in order to make a clear statement on what I
consider essential in an introductory course of this kind.

I would like to thank Christoph Marx who typed a first (German) version of these
notes and David Langer who supplied the beautiful pictures and diagrams included
here. Also, I am grateful for many comments of students participating in the course
which, I hope, have led to improvements in the text. Further comments and cor-
rections are always welcome!

Michael Kunzinger, summer term 2008
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Chapter 1

Curves in R"

1.1 Frenet Curves in R"

When studying curves as maps ¢ from some interval I in R to R™ analytically one
needs to make some regularity assumptions on c¢. Continuity is definitely to weak
a requirement as it does not exclude certain pathological examples (think of Peano
curves, i.e., continuous curves which completely cover areas in R?). In particular,
if we want to make use of analytical tools we should suppose ¢ to be differentiable.
However, even requiring ¢ to be C'"*° does not exclude certain unwanted phenomena
like edges (where the derivative of ¢ vanishes). Moreover, geometrically it is natural
to require the existence of a nonzero tangent vector in each point of the curve. One
is thus led to the following

1.1.1 Definition. A regular parametrized curve is a continuously differentiable
map ¢ : I — R™ defined on some interval I C R such that ¢(t) = %(t) # 0 for all
tel.

When interpreting ¢ as time and c as describing the physical movement of a particle
the above definition means that the velocity ¢ of ¢ is nowhere zero, i.e., the particle
never stops. We call the vector ¢(tp) the tangent vector of ¢ at tg and the line
t— c(to) + (t —to)c(to) the tangent of ¢ at ¢(tp). By Taylor’s theorem, the tangent
is a first order approximation to c¢ in tg:

c(to +1t) = c(to) + te(to) + oft) .

From the geometric point of view one is not interested in any particular parametriza-
tion of a given curve but rather in its shape (which is invariant under re-parametriza-
tion):

1.1.2 Definition. A regular curve is an equivalence class of reqular parametrized
curves with respect to the following equivalence relation: let ¢ : [y = R™, ¢co : I3 —
R™ be reqular parametrized curves. Then ¢ is called equivalent with co if there exists
a diffeomorphism ¢ : I — Iy (i.e., @ bijective and @, o~ C) such that co0p = c;
and ¢’ > 0 (such ¢ are called orientation preserving).

P

I —>IQ

Note that we include orientation in our definition of regular curve. One could distin-
guish between regular oriented curves (with ¢’ > 0) and regular curves without this



restriction on ¢ but we will not do this in the sequel and only consider orientation
preserving changes of parameter.
Let ¢ : [a,b] — R™ be a regular curve. The length of ¢ is defined as

b
Lh(©) = [ flete)]de

Here || .|| denotes the euclidean norm in R™. This notion of length is well defined,
i.e., independent of the parametrization. In fact, let ¢ : [o, 8] — [a, b] be a param-
eter transformation as in 1.1.2 above. Then

B B b
[ leoey@liar= [ leteenle ey = [ e

1.1.3 Definition. A parametrization of a curve c¢ is called parametrization by
arclength if [|¢(t)|| = 1 for all t.

Physically speaking, a curve parametrized by arclength has unit speed. Clearly, if
c: [a,b] = R™ is parametrized by arclength then L%(c) = b — a.

1.1.4 Lemma. FEvery reqular curve possesses a parametrization by arclength. Any
two such parametrizations are equivalent via a translation ¢ : t — t + a.

Proof. Set s(t) := L%(c). Then s : [a,b] — [0,]] with | := L%(c) and §'(t) =
[le(t)]] > 0 for all . Hence s is an orientation-preserving diffeomorphism and we
claim that ¢ := cos~! is a parametrization of ¢ by arclength. In fact, by the chain
rule we have

1 ¢

(s (w)  [le]

so [[¢(u)|| =1 for all u € (0,1), as claimed.
Suppose, finally, that ¢ and co ¢ are two parametrizations by arclength. Then since
¢’ > 0 we have

é(u) = (s~ (u)) - (st (u)),

1= l(cop) @l = lle(e)l - '(t) = &' (t),
S0 ¢ =t t+ a for some a € R. O

In what follows we shall employ the following notational conventions: by c¢(t) we
denote any regular parametrization, whereas we write ¢(s) for a parametrization
by arclength. Accordingly, we set ¢ = % for the tangent vector in an arbitrary
parametrization and ¢’ = % for the tangent vector in the parametrization by ar-
clength. Then we have:

d
e=cdZ = |¢|d, and ||| =1.

dt

1.1.5 Lemma. If ¢ is parametrized by arclength then ¢”’(s) L ¢(s) for all s.

Proof. If we differentiate the equation 1 = ||¢/(s)||? = (c/(s),(s)) we obtain

0= (c(5),c"(5)) + (" (s), ¢ (5)) = 2(c/(5), " (5)),

hence the claim. O

1.1.6 Examples.



(i) For the straight line ¢(t) = (at, bt) we have ¢(t) = (a,b). Hence c is parametri-
zed by arclength if and only if a?4+-b? = 1. Note also that, e.g., the parametriza-
tion t ~ (at3,bt?), although it describes the same geometric curve, is not
regular at ¢t = 0.

(ii) The assignment c(s) := 3 (cos(2s), sin(2s)) describes a circle of radius 3. Since
c(s) = (—sin(2s), cos(2s)) we have ||| = 1, i.e., ¢ is parametrized by ar-
clength.

(iii) Circular heliz: Let c(t) := (acos(at),asin(at),bt) with «, a, b € R. Then
¢(t) = (—aasin(at), aa cos(at),b), so ||¢|| = vVa?a? + b2. Thus ¢ has constant
velocity and s = tv/a?a? + b2 is the parameter of arclength. The circular helix
is given geometrically as the image of the point (a,0,0) under the following
one-parameter group of screw-motions:

x cos(at) —sin(at) 0 x 0

y | — | sin(at) cos(at) O] |y ] + 0

z 0 0 1 z bt
rotation translation

(iv) Neil’s parabola (or: semicubical parabola) is the curve c(t) = (t2,¢%). Here,
é(t) = (2t,3t?), so that ¢(0) = (0,0). Thus c is not a regular parametrization
at t = 0, although c¢ is of course smooth on all of R. Geometrically we see
that at the cusp ¢(0,0), ¢ does not have a well-defined tangent vector.




Using Taylor expansion, we may approximate any curve ¢ parametrized by arc
length as follows:

52 53
c(s) = ¢(0) + sc’(0) + ECH(O) + Ec’”(O) +0(s%).

Using this expansion up to first order we obtain the tangent ¢(0) + s¢’(0). Up to
2

second order we get the osculating conic c(0) + sc’(0) 4 % ¢”(0) which has second

order contact with ¢. Here, two curves are said to have k-th order contact at s if

their derivatives up to order k at s coincide.

The above considerations assign a distinguished role to the vectors ¢/, ¢’, ¢”/,... in
describing a given curve c. In particular, if these vectors are linearly independent
at each parameter value they fix a natural coordinate system in which to describe

c. In what follows we call an orthonormal basis in Euclidean space an n-frame.

1.1.7 Definition. Let ¢ : I — R"™ be a regular curve of class C™ parametrized
by arclength. c is called a Frenet curve if the vectors ¢ (s),c"(s),...,c™ D (s) are
linearly independent at each parameter value s. The corresponding Frenet n-frame
is then uniquely defined by the following conditions:

(i) e1(s),...,en(s) are orthonormal and positively oriented for each s € I.

(i4) span(ei(s),...,ex(s)) = span(c'(s),...,c®)(s)) for allk € {1,...,n—1} and
all sel.

(iii) (c®)(s),ex(s)) >0 for allk € {1,...,n—1} and all s € I.

To construct e;(s),...,e,_1(s) from ¢/(s),...,c" 1 (s) we use the Gram-Schmidt
orthogonalization procedure (where we omit the parameter s for the sake of brevity):

/

e; = ¢
e2 = /|||
es = (" —(" er)er — (" ex)ea) /... |
Jj—1
e = (D= S e/l |
=1
n—2
en1 = (D =N (Y ee) /|||
i=1

The vector e, is then uniquely determined by 1.1.7 (i).
1.1.8 Example.

(i) In the plane, every regular curve is Frenet since 1.1.7 does not pose any
restriction in case n = 2.

(ii) For n = 3, i.e., for regular space curves, the only condition remaining is ¢’ # 0,
i.e., the absence of inflection points.



1.2 Plane and Space Curves, Curvature

1.2.1 Plane Curves

Suppose that c is a regular (hence Frenet, cf. 1.1.8) curve in R2. Then e; = ¢’ is the
tangent vector of ¢ and es, which is constructed from e; by rotating by an angle of
7/2 to the left, is the normal vector of c. We also write e; = e7 for short.

€2

NIE]

€1

o

Since
0=(d,cY =2, ") =2(es, ")

it follows that ¢”” and e are in fact parallel, i.e., there exists some function x with
" (s) = k(s)ea(s) for all s. k is called the (oriented) curvature of c. The sign of
# indicates the direction in which ¢ (resp. ¢’) is turning: for x > 0, the tangent is
rotating to the left, for k < 0 to the right. For x = 0 the tangent is not turning at all.
Such points are called inflection points. Before turning to a geometric interpretation
of the absolute value of « let us first derive some useful relations.

By definition, ] = ¢ = kes. Since ey is constructed from e; through rotating by
/2, we conclude by rotating this identity that e, = —ke;. Hence we obtain the
so-called Frenet equations for plane curves:

(Z)/ B (—?@ g) <2> ' (1.2.1)

The Frenet equations allow to derive an explicit formula for the curvature of a curve
c(s) = (z(s),y(s)) in terms of ¢ and ¢”. In fact, we have

.%‘H(S)

K6 = (eeaeheate) = (oheao) = ( (30)) . (U)
det (58 ”ycg) = det(c'(s),c"(s)).

Heuristically, if we consider curves of constant curvature we expect to obtain either
straight lines (for k = 0) or circles (for x # 0) since a constant rate of turning of
the tangent vector corresponds to driving along a curve with the steering wheel set
to a fixed position. This intuitive picture is made precise in the following result.

1.2.1 Theorem. A regular curve in R? has constant curvature k if and only if it
is part of a straight line (for kK = 0) or of a circle of radius ﬁ (for k #0).

Proof. A straight line obviously has k = 0 and conversely x = 0 implies ¢/ =
keg =0, i.e., ¢ is a straight line. Suppose now that k(s) = M +r(cos(s/r),sin(s/r))
is a circle parametrized by arclength. Then |k(s)| = |k”(s)| = 1/r for all s. Note
that in this case

k//(s)

M = k(s) —r(cos(s/r),sin(s/r)) = k(s) + k" (s)r* = k(s) + ()2 (1.2.2)



If, conversely, the curvature  of a regular curve c is a nonzero constant, guided by
(1.2.2) we first note that M(s) := c(s) + (1/k)ea(s) is constant. In fact, M'(s) =0
for all s by (1.2.1). Moreover, |M — ¢(s)| = 1/|x| for all s. O

1.2.2 Definition. Let ¢ be a regular plane curve such that k(sg) # 0. Then the
circle which has second order contact with ¢ at sy is called the osculating circle of ¢
at ¢(sg).-

Let k denote the osculating circle of ¢ at sg. Then we have ¢(sg) = k(so), ¢'(so) =
k'(so), and ¢’ (sg) = k"' (s¢). By our calculations in the proof of 1.2.1, the osculating
circle at ¢(sg) therefore has its center at

"(s0) _ ooy €2(50)
(s ~ O

and has radius 1/|k(sg)|. In particular, it is uniquely determined. The curve formed
by the centers of all osculating circles of ¢ is called the evolute of c. It is given by

k//(SO) = C(So) +

M= ko) + g =

Note, however, that the evolute of a regular curve in general need not be regular
anymore (typically, it will display cusps, similar to Neil’s parabola).

So far, we have seen two interpretation of the curvature x of a regular curve c.
Originally, we defined x as the rate of change of the direction of the tangent vector.
Moreover, we established that 1/|x| is the radius of the osculating circle of ¢. A third,
physically motivated interpretation of curvature is as follows: for a particle following
a trajectory ¢ parametrized by arclength we have ||¢/|| = 1, i.e., acceleration can only
have the effect of changing the direction of the tangent vector, not of changing its
norm, i.e., the velocity of the curve. Thus acceleration can only occur orthogonal
to ¢’. Since ¢’ = key it follows (using Newton’s law ’force equals mass times
acceleration’) that we may interpret curvature as the force to be applied in the
normal direction of the trajectory to keep the particle (assumed to have unit mass)
on its curved path.

1.2.3 Remark. For a given curvature function x there is a unique (up to Euclidean
motion) Frenet curve ¢ whose curvature is precisely k. To construct ¢ we will employ
the Frenet equations (1.2.1). We first make the ansatz

e1 = (cos(a(s)), sin(a(s)))
with the function « to be determined. Then
ea(s) = e1 (s)L = (—sin(a(s)), cos(a(s)))

and by (1.2.1) we need to solve key = €] = d’es, i.e., k = o’. By choosing an
adapted coordinate system we may suppose that ¢(0) = (0,0) and e;(0) = (1,0), so
that «(0) = 0 and «(s) = [, (t) dt. Then c(s) = (x(s), y(s)) with

;z:(s)/oscos (/OTn(t)dt) dr, y(s)/ossin (/Orn(t)dt) dr

Note in particular that for k =const., this precisely reproduces 1.2.1.



1.2.2 Space Curves

As we noted in 1.1.8, a regular curve in R3 is Frenet if ¢’(s) # 0 for all s. Its
accompanying 3-frame is given by

en = (tangent vector)
C//
ey = m, (principal normal vector)
c
e3 = e X ey (binormal vector)
The curvature of ¢ is defined as x(s) := ||¢”’(s)||. For the derivatives of e, es, e3 we
calculate:
el = " = kes,
eh = (e, e1)er + (e, ea)es + (eh,e3)e3 = (—ea, € )er + (eh, e3)e3 = —key + Tes
N—— S—~—
=0 =7
eh = (es,e1)er + (€}, ea)ea + (€5, e3)es = — (e3, e} )er — (e, €h)ea = —Tey.

=0 =0 =T

We call 7 := (e}, e3) the torsion of ¢c. Summing up, we obtain the Frenet equations
for a space curve:

el 0 k 0 el
ea| =[-« 0 7 e | . (1.2.3)
es 0 —7 0 es

To obtain an intuitive understanding of the geometric meaning of torsion, note first
that a plane curve c(s) = (z(s),y(s)), when viewed as a space curve (z(s),y(s),0)
has vanishing torsion 7. Indeed, since es is constant, this is immediate from (1.2.3).
Conversely, if 7 = 0 for a space curve c it follows from (1.2.3) that es is constant.
Hence c lies in the (eq, es)-plane. Thus 7 measures the rate of departure of ¢ from
this plane.

As we have just seen, it is instructive to analyze the behavior of a curve by con-
sidering its projections onto certain planes spanned by subsets of its accompanying
3-frame, to wit: span(ey, ea), the osculating plane, span(es, e3), the normal plane,
and span(ey, e3), the rectifying plane.



€2
€3

€2

€1

€1

More precisely, we consider the following Taylor expansion of the curve c:

52 3
c(s) = ¢(0) + sc'(0) + ?c”(O) + EC”/(O) + o(s%)

We rewrite this in terms of the accompanying three frame as

c(s) = ¢(0) + a(s)e1(0) + B(s)e2(0) + y(s)es(0) + o(s”)

8



with a(s), B(s), 7(s) to be determined. Using (1.2.3), we calculate:

/

C = €1
= e = key
" = (kex)) = Keas+reh, = Key+ k(—ker +Te3).

Hence, c¢(s) has the expansion

c(0) + (5 _ 2 Héo) > e1(0) + (5 2(0) 42 Hé(O)) e2(0) + 5“(06&%(0) +o(s%).

The projection in the osculating ((eq, e2)-) plane is (up to order two in s) a parabola:

s2k(0)

5 e2(0) 4 o(s?).

¢(0) + se1(0) +

In the normal ((eq, e3)-) plane we obtain a Neil parabola (up to order three):

%k 3K s3k(0)T
c<0>+( 0, 6(0)>e2(o>+(‘2(‘”63<o>+0<83>.

Finally, the projection onto the (eq, e3)- (rectifying) plane takes the form of a cubical
parabola (up to order three):

s3k(0)2 s3k(0)T
c(0) + (5 - éO)) e1(0) + w@,@) +o(s%).

1.3 The Fundamental Theorem of the Local The-
ory of Curves

In this section we first want to generalize the Frenet equations (1.2.1), (1.2.3) for
plane and space curves to the general case of curves in R™. Thus let ¢ be a Frenet

curve in R™ with accompanying n-frame eq,...,e,. Then we have:
1.3.1 Theorem. There exist uniquely determined functions k1, ..., Kkn—1, the Frenet-
curvatures of ¢ with Ki,...,kn_2 > 0 and k; € C" 1% (for 1 < i < n—1) such

that the Frenet equations hold:

/

el 0 k1 0 0 .. 0 el
€9 . . €2
—K1 0 K2 0 : .
_| 0 e O ' : : (1.3.1)
0 0 ' - " 0 .
€n—1 0 Fn—1 €n—1
en 0 0 —Rnp—-1 0 en
Proof. We write €} in terms of the orthonormal basis ey, ..., ey:
n
e, = Z(eg,eﬁej . (1.3.2)
j=1
By construction, e; € span(c/,c”,...,c®) for each i < n — 1. Differentiating, we
obtain that e, € span(c’,c”,...,c*1)) = span(ey,ea,...,e;11). Hence the sum in
(1.3.2) only extends up to ¢ + 1, i.e.,

(s eiva) = (€}, €ir3) =+ = (ej,€a) = 0. (1.3.3)

9



We now set #; := (€}, e;11) (€ C"~0+D), Let e; = 23:1 ajc). Then by 1.1.7,

1= (e, ei) = a; (', ¢;),
———
>0

so each a; is positive. Since, by the product rule, e = 3%, bic) + a;clitD) | we
obtain that r; = (€}, e;41) = a;(c0TV, e;11) > 0 for i < n —2 (by 1.1.7). Since
0 = (ei,e5) = (e}, ej) + (e, €}), we conclude from (1.3.3) that in fact (e,e;) =0
for |i — j| # 1. Summing up, we obtain (1.3.1):
;= (e} ei1) €1+ (€}, eiy1)eiy1 = —Ki—1€i-1 + K€yl

———

:_<e;7175i>

That the x; are uniquely determined is immediate from (1.3.1) and the fact that
ée1,...,e, forms an orthonormal frame. O

Obviously, (1.3.1) contains (1.2.1) and (1.2.3) as special cases. We may give an
interpretation of x,_1 as torsion, similar to the three-dimensional situation. In
fact, since k; > 0 for i < n—2, ¢ will lie in a hyperplane (namely the (e1,...,e,—1)-
plane) if and only if the torsion k,_1 vanishes. This in turn is equivalent to e,
being constant, orthogonal to this plane.

Our next result shows that both the Frenet frame and the Frenet curvatures are
geometric concepts, i.e., they do not depend on any choice of coordinates. This
is to say that they do not change under Euclidean motions. A transformation
B : R™ — R™ is called a Euclidean motion if it is of the form B(z) = Ax + b for
A an orientation preserving rotation (an element of SL(n,R), i.e., A=t = A! and
det(A) = 1) and b a fixed translation vector.

1.3.2 Proposition. Let ¢ be a Frenet curve in R™. Then its Frenet frame and its
Frenet curvatures are invariant under Euclidean motions.

Proof. In the notation introduced above, we have to show that if e, ..., e, is the
Frenet frame of ¢ then Aeq,... Ae, is the Frenet frame of Boc and ¢ and Boc have
the same Frenet curvatures , ..., kn_1. In fact, we have (B o¢)® = Ac(® for all
i, so the claim about the Frenet frame follows immediately from the construction
of e1,...,ep (see 1.1.7). For the curvatures we calculate:

(Aei)/ = Ae; = A(—Ki,16i71 + H¢6i+1) = —Iiifl(Aeifl) + Iii(Aei+1) .
|

As the main result of this section we next show that a Frenet curve in R™ is entirely
determined by its curvatures.

1.3.3 Theorem. (Fundamental theorem of the local theory of curves)

Let k1,...,6n_1: (a,b) = R be given functions with k; € C" " 1(a,b) for 1 <i <
n—1 and K1,...,kn—o > 0. Let sy € (a,b), gqo € R™ and a fized set of positively
(10)7”.,620 be given. Then there exists a unique

Frenet curve c: (a,b) — R™ such that c¢(so) = qo, 6(10), o eEP) is the Frenet frame

of ¢ at qo, and K1,...,Kkn_1 are the Frenet curvatures of c.

oriented orthonormal wvectors e

Proof. We are trying to find a matrix-valued map F : (a,b) — R”27 s
(e1(8),-..,en(s))t, (ie., the e; are the rows of F) where ey, ...,e, is the Frenet
frame of our prospective solution curve ¢. Thus we want F(s) to be an orthogo-
nal matrix with determinant 1 for all parameter values s. Moreover, according to
(1.3.1), F should solve the matrix equation

F'(s) = K(s)F(s) (1.3.4)

10



with K (s) the skew-symmetric matrix of curvatures (in this case: the given functions

K1, ., Kn—1) on the right-hand side of (1.3.1).
Now (1.3.4) is a linear system of ordinary differential equations, so there exists a
unique solution F': (a,b) — R"* with initial condition F(so) = (6(10)’ cee e%o))t.

Since F' satisfies (1.3.4) we have
(FF'Y = F'F' + F(F') = F'F' + F(F') = KFF' + FF'K" .

Thus F'F? solves the system of linear ODEs X' = KX + X K with initial condition
F(s9)F(s9)t = I,,, the n x n unit matrix. However, since K +K7T = 0, I,, itself is the
unique solution to this system. It follows that F(s)F(s)! = I,, for all s € (a,b), i.e
F(s) is orthogonal for all s. Hence det(F(s)) = £1 for all s. Since s — det(F(s))
is continuous and det(F(sp)) = det(I,) = 1, it follows that det(F(s)) = 1 for all
s. Thus the rows e1(s),...,e,(s) of F(s) form a positively oriented orthonormal
frame, as desired.

If e1(s),...,en(s) is to be the accompanying n-frame of a Frenet curve ¢ we must
have ¢ = e;. Combined with the prescribed initial Condition c(sp) = qo this
uniquely determines the regular curve c as ¢(s) = go + f e1(t) dt. We next show
that e1(s),...,en(s) is in fact the Frenet frame of ¢. To this end we first show by
induction that for 1 < ¢ < n we have

D =f1 Ky Rii1e; + Za € (1.3.5)

for certain functions aé-. For ¢ = 1 this trivially holds since ¢/ = e;. Suppose the

result is true for 7. Then

A = (k. ki) €+ (K. Ril1) €Z+Z (af e] —l—aze’
’L
= (Hl - K)l;l)(—,‘@ifleifl + meiﬂ) + Z bjej
=1
= Ki1...Ki€;41 +ZCj€j,
=1
for certain functions b;, ¢;, as claimed. Since k1, ...kp—2 > 0 it follows that ¢/,

¢~V are linearly independent, i.e., ¢ is a Frenet curve. Moreover, (1.3.5) implies
that the e; constitute the accompanying Frenet frame of c. Finally, since F' = KF
it follows that the k; are precisely the Frenet curvatures of ¢ (cf. the uniqueness
part of 1.3.1). O
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Chapter 2

Differentiable Manifolds

The notion of a differentiable manifold is one of the central concepts of modern
mathematics. Among others it finds applications in analysis, differential geometry,
topology, the theory of Lie groups, ordinary and partial differential equations, as
well as in numerous branches of physics, e.g. in mechanics or general relativity.
We start out by studying the special case of submanifolds of R™, a direct gen-
eralization of the notion of surface in R?® which already displays all the essential
characteristics of the concept of abstract manifolds.

2.1 Submanifolds of R"

To begin with we recall some notions and results from analysis. For simplicity, from
now on we will assume all maps to be C*°.

2.1.1 Theorem. (Inverse Function Theorem) Let U C R™ open, f : U — R”
C™®, xg € U, yo := f(xg) and Df(xg) invertible (det Df(x¢) # 0). Then locally
around xo, f is a diffeomorphism, i.e., there exist Uy C U an open neighborhood
of xg, and V1 an open neighborhood of yo, such that f : Uy — Vi is bijective and
fil V1= Uy is C°.

2.1.2 Theorem. (Implicit Function Theorem) Let U C R™, V C R™ open,
f:UXV = R™C®, (20,50) € UXV, f(x0,90) =0 and let %’(mo,yo) :R™ — R™
be invertible (detg—i(xo,yo) £ 0). Then there exist open neighborhoods Uy C U of

xo, Vi CV of yo, such that: Yo € Uy 3y = y(z) € Vi with f(z,y(x)) = 0. The
map x — y(x) is C*.

2.1.3 Definition. Let U C R* be open and ¢ : U — R™ C*®. ¢ is called regular if
for all x € U the rank of the Jacobian Dp(x) is mazimal, hence equal to min(k,n).
Then for the rank tk(Dy) of Dy (also called the rank of p) we have

rk(Dp(z)) = dimim(Dg(z)) = dim(R*) — dim(ker Dg(z)).

Thus if k < n then ker Dp(z) = {0} and Dy(x) is injective for all x. In this case
¢ s called an immersion. For k > n, Dp(x) is surjective for all x and ¢ is called
a submersion.

Hence 2.1.1 says that a regular map f : U — V with U, V C R" open is a local
diffeomorphism.

2.1.4 Remark. (Properties of immersions). Let U C R* open and ¢ : U — R"™ an
immersion.

13



(i) tk(Dg(zg)) = k means that {g—ﬁ(a:), .., 22 ()} is linearly independent in

) 8ajk
R™.
(ii) Equivalently, there exist indices 1 <14y < iy < --+ < i < n such that

det 6(@1&7 .. aQOZk)

Dwr,. ) 070

Since det is continuous it follows that rk(De(z)) = k in a neighborhood of
Zg.

(iii) In particular for k =1, ¢ : U C R — R" is an immersion if ¢/(t) # 0 V¢, i.e.,
if ¢ is a regular curve.

2.1.5 Definition. A subset M of R" is called a k-dimensional submanifold of R™
(k<n)if

For each p € M there exists an open neighborhood W of p in R™,
(P){ an open subset U of R¥ and an immersion ¢ : U — R™ such that
v :U = p(U) is a homeomorphism and o(U) = M NW.

Such a ¢ s called a local parametrization of M.

RF R™

Thus ¢ is regular and identifies U and o(U) = M NW topologically (o(U) = MNW
carries the trace topology of R™). The following result gives an alternative criterion
which is sometimes used in the definition of submanifolds of R™.

2.1.6 Proposition. For each M C R™, property (P) is equivalent to

For each p € M there exists a smooth map ¢ : U — R™, where U
is an open neighborhood of 0 in R*, ©(0) = p and ¢ is regular at 0

(P') ] (i.e., Dp(0) is injective) and such that for any open neighborhood
Uy C U of 0 there exists an open neighborhood W1 of p in R™ with
@(Ul) = W1 NnM.

Proof. Obviously (P) implies (P’). Conversely, we first note that by 2.1.4 we
may without loss of generality suppose that ¢ is an immersion on all of U. By
assumption, ¢ is continuous. To establish (P) we will show that there exists an

14



open subset U; of U such that ¢|y, is a homeomorphism onto its image, equipped
with the trace topology from M.

Since D¢(0) is injective there exists a left inverse linear map A : R* — RF, i.e.,
idgs = A - Dp(0) = D(A-¢)(0). [Let B := Dg(0), then B : R¥ — im(B) is
bijective. Call A the inverse of this map. Then we may take A := Ao Plim(p)-] By
2.1.1 the map = — A - ¢(z) is a local diffeomorphism on R¥, so there exist open
neighborhoods U; C U of 0 and Us of A(p) such that h := (Ao )™t : Uy — Uy is

smooth.
Now set ¢ := ho A: A=Y(Uy) — U;. Then ¢ is smooth and

Yop(a)=(Aop) lodop(@) =z  VaeU,

so 9 is a left-inverse of ¢|y,. In particular, |y, is injective. Thus ¢ : Uy — ¢(Uy) =
W1 N M is bijective with inverse t|w,nar. The latter map is continuous w.r.t. the
trace topology, so ¢ : U1 — ¢(U;) is a homeomorphism. O

2.1.7 Examples.

(i) The unit circle S*.
Let ¢ : 6 — (cosf,sin@). Then for all (zg,y0) = (cosby,sinby), ¢ : (6o —
7,00 + ) — R? is a parametrization of S' around (zg,%0). Here W can be
taken, e.g., as R?\{(—x¢, —yo)}. Hence S! is a 1-dimensional submanifold of
R2. Note that no single parametrization can be used for all of S'! (There is
no homeomorphism from some open subset of R onto S* since S! is compact).

Sl
(%0, y0) = (cos b, sin by)

0o

(_l'O» _yO)

(ii) The 2-sphere S? in R3.
Let o(¢,8) = (cos ¢ cos b, sin ¢ cos 0, sin @). Then

—sin¢gcosf —cos@sinb
Dy = cospcosf  —singsind
0 cosf

¢ is a parametrization of S? e.g. on (0, 27) x (=%, %) Infact, on this domain
¢ is injective and rk(Dy) = 2, since cos # 0 on (—7, ). Again, more than
one parametrization is needed to cover S2.
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(iii) Figure eight manifold.
Let M := {(sin2s,sins)|s € (0,2m)}. The map ¢ : s — (sin2s,sins) is an
injective immersion: indeed, Dg(s) = ¢'(s) = (2cos2s,coss) # (0,0) on
(0,27).

However, M is not a submanifold of R?! In fact, suppose that there exists a
parametrization ¢ : (—e,e) — B-(0,0) of M around p = (0,0) with r < 1 such
that ¢ : (—¢,¢) = B,(0,0)N M is a homeomorphism. Then since (—¢,¢)\ {0}
has two connected components, while (M N B,.(0,0))\ (0, 0) has four, we arrive
at a contradiction. M is what is usually called an immersive submanifold of
R2. In what follows, we will restrict our attention to submanifolds in the sense
of 2.1.5.
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2.1.8 Theorem. Let M C R"™. The following are equivalent:

(P) (Local Parametrization) M is a k-dimensional submanifold of R™.

4 M
U
Rk Rn
(Z) (Local Zero Set) For every p € M there exist an open neighborhood W of p in
R™ and a C*®-map f : W — R"=* which is regular (i.e., tkDf(q) = n—k for
all g € W) satisfying
MOW = f~40)={x € W | f(x) = 0}.
0 Rnfk

R’I’L
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(G) (Local Graph) For each p € M there exist (after re-numbering the coordinates
if necessary) open neighborhoods U’ C R of p’ := (p1,...,pr) and U" C Rk
of p" := (Pk+1,---yPn) and a C®-map g : U' — U" such that

MU' xU") = {(z',2") € U'xU”]a’" = g(«')} = graph(g)

U/ X U//

U//

(T) (Local Trivialization) For each p € M there exist an open neighborhood W of p
in R™, an open set W' in R™ = R* xR"™* and a diffeomorphism ¥ : W — W'
such that

U(MNW) =W nN([RFx{0}) CR* x {0} =R".

Rn—k

& d

\

0

Rk‘
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Proof. (P) = (G):
Without loss of generality we may suppose that ¢(0) = p and det %(O) #0.
By 2.1.1 there exists some open neighborhood U; C U of 0 and some open V; C R*

such that ¢’ := (¢1,...,pk) is a diffeomorphism. Let ¢ : V; — U be the inverse of
¢ and G := po: Vi = R"™. Then with ¢” := (Yk+t1,-..,pn) we have

G(xy,...,x5) = (@ op(x1,...,28), " 0(x1,...,21)) = (', g(z"))

=(z1,...,2x) =9
N—_———

=/

with g : V; — R"~* smooth. Since ¢ is a homeomorphism, ¢(U;) is open in M,
i.e., there exists some W; open in R™ such that o(U;) = M N W;. Hence

MWy =¢((V1) = G) ={(2',9(z")) 2" € "1}

Uy

We now choose open sets U’ C V; and U” C R" % such that p € U’ x U” C Wh.
Then

MnNU xU"Y = MnWinU xU")={(z,g")|z" e i} n (U xU")
— {(x/, x//) € U/ X U//|g(x/) — x//

(G) = (2):
Set W:=U'xU" and f: W — Rk,

fi@e,own) = apgy — gj(@,. o) (L<j<n—k)

Then f € C* and % = I, _g, so f is regular. Moreover

F7H0) = {(@',a") €U x Ulgla’) ="} = MO (U x U") = MOW.

(Z2) = (T):
Without loss of generality we may suppose that det Mif""“)) (p) #0. Let ¥(z) :=

O(Zhg1s0sTn

(@, f(z)) = (z1,..., 2k, f1(x),. .., fnk(z)). Then

pup) - ™ ;
p)= A(f1,..s [

e )
is invertible.
By 2.1.1, there exists an open neighborhood W; C W of p in R", and some W’
open in R” = R¥ x R* %, such that ¥ : W; — W’ is a diffeomorphism. We show
that (M NW;) = (RF x {0}) nW":

C:U(MAWY) CU(W) =W andz € MAW; = f(z) =0
= U(z) = (2, f(x)) = (2/,0) € R* x {0}.

o:

oy eW' = y=U(z) = (2, f(z)) with z € W,
flz)=0=z€ f1(0)=WnM
=y="U(z) € ¥ (M NWh).

}:erlmM

Moreover, ¥ := ¥|yw,qar : Wi N M — W' N (R* x {0}) is a homeomorphism: it is
clearly continuous and bijective, and ¢! = \I!*I\(W/O(ka{o})) is continuous.

(T) = (P):

Let ® : W’ — W be the inverse of ¥ and denote by ¢ : (R¥ x {0}) N W' =: U C
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R* x {0} 2 R¥ — R"™ the map (z1,...,zx) — ®(z1,...,74,0,...,0), e, o =Poi
with ¢ : R¥ < R™. Then ¢ is an immersion since Dy = D® o Di is injective.
Moreover,

o(U) = (RF x {0H)NnW') =T H(RF x {0)NnW')=MnW.

Finally, ¢ : (R* x {0}) N W’ — M N'W is a homeomorphism, since it is bijective,
continuous, and: ¢! = |y is continuous. O

2.1.9 Examples. (cf. 2.1.7!)
(i) Circle M = {(z,y) | 2> + y* = R*}

e Local Zero Set: W = R%\ {(0,0)}, f: W = R, f(z,y) = 2% + 3> —
R?, MNW = f~40).

e Local Graph: M N (U x U") = graph(g), g : x — vV R? — 22

U//

V U xu”

o Local Trivialization: ¥ : (z,y) = (rcosp,rsing) — (p,r — R). Then
locally 9 := U|wnum = (Rcosp, Rsinp) — (p,0) (with suitable W).

(ii) Sphere in R3

o Local Zero Set: x2 + 3% + 22 = R2.

e Local Graph: (z,y) — /R? — 22 — y?

e Local Trivialization: Inverse spherical coordinates (with fixed radius).

(iii) Let U C R™ be open. Then U is a submanifold of R” with local parametriza-
tionid: U = U.

For example, GL(n,R) = {4 € R"'|det A # 0} is open in R™ since det :
R™* — R is continuous (even C*°) = GL(n,R) is an n?-dimensional subman-
ifold of R™".

(iv) An example of a matrix group as a submanifold.
Let SL(n,R) := {4 € R” |det A = 1} C GL(n,R). Hence SL(n,R) is given
as the zero set of the smooth map f(A) = det A—1. By 2.1.8 (Z) it therefore
remains to show that f is regular in any A € SL(n,R) (note that if a map is
regular in one point then it is regular in a whole neighborhood of that point
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since a sub-determinant of the Jacobian is nonzero in the point, hence in a
neighborhood by continuity). Thus let A € SL(n,R). Then

Df(A)-A4 = (iof((l—kt)A): % (et (DA

= n(1+t)""det A|t=0 =ndet A #0,

so for all r € R we have Df(A)(;q574) = 7, i.e., [ is regular near A.

By 2.1.8, SL(n,R) is a submanifold of R™ of dimension n? — 1 (in fact
GL(n,R), SL(n;R) are examples of Lie groups).

Our next aim is to do analysis on submanifolds of R™. We begin by introducing the
notion of smooth map on submanifolds:

2.1.10 Definition. Let M C R™ and N C R™ be submanifolds. A map f: M — N
is called smooth (or C*), if for all J S M there exists some open neighborhood U,

of p in R™ and some smooth map f Uy, — R™ with f\MnU f|MmUp
If f is bijective and both f and f~' are smooth, then f is called diffeomorphism.

2.1.11 Remark.
(i) The case N = R"™ is included as a special case of the above definition.

(ii) The composition of smooth maps is smooth: Let f1 : My — My, fo : My —
M3 be smooth, p € My, and f1 U, = R™, f5: Ufl(p — R™3 smooth
extensions. Then (since f is smooth, hence contlnuous) fr "Upp) NU, is
an open neighborhood of p and fs o f1 : f1 (Uf1 () NUp — R™3 is a smooth
extension of fa o fi.

2.1.12 Definition. Let M be a k-dimensional submanifold of R™. A chart (1, V)
of M is a diffeomorphism of an open set V.C M onto an open subset of RF.

Charts are the inverses of local parametrizations in the following sense:
2.1.13 Proposition. Let M be a k-dimensional submanifold of R™.

(i) Let ¢ : U C R¥ — R™ (U open) be a local parametrization of M, p(U) =
WM (W CR" open ). Then =@ t:WNM — U is a chart of M.

(ii) Conversely, if 1 : V. — U C R¥ is a chart of M, then ¢ = idysesgn 0 ™1 :
U — R" is a local parametrization of M.

Proof.

(i) By 2.1.10, ¢ is a smooth map from U to W N M. Also, ¢ is bijective. It
remains to prove that 1 = ¢~ : WNM — U is smooth in the sense of 2.1.10,
i.e., possesses a smooth extension to some neighborhood of any given point of
WnM.

Let p € W N M and set xf, := ¢(p) € U. Here we employ the notations of

/ /1

2.1.8: 2’ == (z1,...,2k), " = (Try1s--,Tn)y @ = (01,0, 08), ¢ =
(Pkt1y---»¥n). @ is an immersion, so without loss of generality we may

A(p1,--,01)
O(x1,...,2k)

Let @ : U x R*™F = R™ ®(2/,2") := (¢'(2'), " (z") + 2") = p(2) + (0,2").
In particular: ®(z’,0) = ¢(z’). Then

Dd(z}),0) = <D‘p(> 0 )

suppose that (xp) is invertible.

D(p”( /) It
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is invertible. By 2.1.1, ® is a local diffeomorphism of U; x Us onto some W7,
where Uy, U, are open neighborhoods of zf, in U respectively of 0 in R"~¥.
Since p = ®(x(,0) € W7 we may w.l.o.g. suppose that W; C W.

We have ¢(Uy) = ®(U; x {0}) € Wy € W. Since ¢ is a homeomorphism
there exists some open subset Wy of R™ with ¢(U;) = Won M. W.lo.g.
we may suppose that Wo C W; (otherwise replace Wo by Wo N W7). Let
U : Wy — U; x Uy be the inverse of ®.

Then for ¢ € Wo N M we have ¢ = p(z') = ®(a’,0) for some 2’ € U;. Since
(2/,0) € Uy x Uy we get (q) = ¢~ 1(q) = 2’ = pry o ¥(q). Hence pr; o ¥ is a
smooth extension of 1 to the neighborhood W5 of p, so ¢ is smooth at p, as
claimed.

(i) Let ¢ : V — U C R* be a chart, and set ¢ := idy;e gn 01~ ! : U — R™. Then
¢ is smooth and ¢ : U — V is a homeomorphism (since ¢ : V' — U is).

Finally, ¢ is an immersion: let 1[) be a smooth extension of 1 (to some open
neighborhood), then oy = 1o = idy, so Dy (p(z)) - De(x) = idy(x) YV €
U, so Dy(x) is injective.

2.1.14 Remark. If ¥ is a trivialization as in 2.1.8 (T), ¥ : W — W', ¥(WNM) =
W' N (R* x {0}), then 1 := ¥|nw is a chart of M (cf. the proof of 2.1.8, (T)=(P)
and 2.1.13 (i)).

If M is a k-dimensional submanifold of R™ and (1, V') is a chart of M, then forp € V
we may write ¥(p) = (Y1(p),...,¥x(p)) = (x1,...,2,). The smooth functions
1; = pr,; o are called local coordinate functions, the x; are called local coordinates
of p.

Let M™, N™ be submanifolds, f : M — N, p € M, ¢ a chart of M around p and
a chart of N around f(p). Then v o f o p~! is called local representation of f. We
have

Yofop™h i (w, mm) = (Vi(fleT (@), Yn(flo7  (2))))-
— —
=:f1 =:fn
The f; are called coordinate functions of f with respect to , .
By means of charts, smoothness of maps can be characterized without resorting to
the surrounding Euclidean space, hence intrinsically:

2.1.15 Proposition. Let M™ C R®, N C R be submanifolds and f : M — N.
TFAE:

(i) [ is smooth.

(i) For all p € M there exist charts (o,U) of M at p, (¢, V) of N at f(p) such
that the domain (U N f=1(V)) of the local representation 1o f o~ is open
and o fop™l:pUNfYV)) — (V) is smooth.

(i4i) f is continuous and for allp € M there exist charts (p,U) of M atp, (v, V) of
N at f(p) such that the local representation o fop™1 : o(UNFH(V)) — (V)
1s smooth.

(i) f is continuous and for all p € M, all charts (¢, U) of M at p and all charts
(1, V) of N at f(p), the local representation o fop™t: U N f~HV)) —
(V) is smooth.
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Proof. (i)=(iv): f is continuous since around any point it is the restriction of
a continuous map. Hence f~1(V) and therefore also o(U N f~1(V)) is open. By
2.1.11 (ii), the map ¥ o f o ¢~ (whose domain of definition is (U N f=1(V))) is
smooth.

(iv)=-(iii), and (iii)=-(ii) are clear.

(i))=-(i): On the open neighborhood U N f~1(V) of p we have f =91 o (po fo
o Yo, so fis smooth by 2.1.11 (ii). O

2.2 Abstract Manifolds

In what follows we want to extend the concept of differentiable manifolds to sets
which a priori are not realized as subsets of some R™. The key to this generalization
of the notion of submanifold of R™ is the formulation of the properties we derived
in the previous section in terms of charts. These will allow to dispense with the
surrounding Euclidean space.

2.2.1 Definition. Let M be a set. A chart (¢¥,V) of M is a bijective map b of
V C M onto an open subset U of R"™, ¢ : V. — U. Two charts (¢1,V1), (2, Va)
are called (C*°—) compatible if 1 (V4 NV3) and ¥ (Vi N Va) are open in R™ and
the change of charts 15 o wl_l 01 (Vi NVa) = (Vi N VR) ds a C*°-diffeomorphism
(note that this condition is symmetric in 11,2 ).

Rn

U,

Pa(V1NV)

A C>-atlas of M is a family A = {(¥a,Va) | @ € A} of pairwise compatible charts
such that M = {Jycn Va. Two atlasses Ay, As are called equivalent if Ay U Ay
itself is an atlas of M, i.e., if all charts of Ay U Ay are compatible. An (abstract)
differentiable manifold is a set M together with an equivalence class of atlasses.
Such an equivalence structure is called a differentiable (or C*°-)structure on M.
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2.2.2 Examples.

(i) LetSt = {(x,y) | 2®>+y? = 1} CR? and set V; := {(cos p,sinp) | 0 < p < 27}
and ¢ : Vi — (0,27), (cosy,sing) — ¢. Let Vo := {(cosp,siny) | -1 <
o < m}, Yo : Vo = (—m,7), (cos,sinp) — ¢. Then (1, V1) and (1ho, Va)
are charts for S' and S' = V; U V,. Moreover, 9; and 1y are compatible.
In fact, 1 (Vi NVa) = (0,7) U (m,27) and 3 o ¢*1|(07W) = ¢ — . We have
¢20¢1_1|(7T)27T) = ¢ — @ —2m, so the change of charts 1 ozp;l 0 (ViNVs) —
P2 (V1 NV3) is a diffeomorphism. Hence A := {(¢1, V1), (2, V2)} is an atlas
of St.

Vi Va

(ii) Let M be the following subset of R™: Let V5 := {(s5,0)] = 1 < s < 1}, ¢y :
Vi — (—1,1), ¥(s,0) = s. Further, let V2 := {(s5,0)| -1 < s < 0}U{(s, )]0 <
s < 1}7 Yo 1 Vo — (_1,1)7 ¢2(8»0) =S, wQ(SaS) =Ss.

(1,1)

_
[
N

Then 1,19 are bijective, hence charts, and ¥, o 1/);1 =S5 S.

However, ¥1 (V4 NV3) = (—1,0] is not open, so ¥1, 1 are not compatible. In
fact M also can’t be a submanifold of R™ (same argument as in 2.1.7(iii)).

(iii) As in 2.1.7 (iii) let M := {(sin2s,sins)|s € R} be the figure eight manifold.
Let Vi = M, 11 : V1 — (0,27), 9(sin2s,sins) = s. Then ¢, is a chart and
Ay :={(11,V1)} is an atlas defining a C*°-structure on M.
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On the other hand, let Vo = M, 2 : Vo — (=7, m), 12(sin2s,sin s) = s. Then
also Ay := {(2,V2)} is an atlas. However, A; and Ay are not equivalent:
¢2 © 1/171 : (0, 277) - (—’/T,’]T),

s 0 <s<m upper loop

P opH(s) = s—7 s=m origin
s—2m w<s<2m lower loop

=+ T

WV
O

S

Hence 15 0 91 ! is not even continuous.

Thus M can be endowed with different C*°-structures. With any such struc-
ture, M is an example of a C>°-manifold which is not a submanifold of R? (cf.
2.1.7 (iii)!).

(iv) One can show that for n # 4, up to diffeomorphism there is precisely one C>°-
structure on R™. On R* however, there are uncountably many inequivalent
smooth structures!

An atlas for a manifold is called maximal if it is not contained in any strictly larger
atlas.

2.2.3 Proposition. Let M be a C*°-manifold with atlas A. Then there is a unique
mazximal atlas on M which contains A.

Proof. Let A := {p|g is a chart of M and ¢ is compatible with every ¢y € A}.
Then A D A and we show that A itself is an atlas.

Let (o1, W1), (p2,Wa) € A with Wy N Wa # 0. Then since 1, o are bijective, so
is @g 0 <pf1 o1 (W NWa) = @a(Wy N Wa). Tt remains to show that ¢g o cpl’l is
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a diffeomorphism whose domain @1 (W; N W3) is open. Let © € @1 (W7 N W3) and
(), V) a chart in A with ¢;*(z) € V. By definition of A, @ 09~ : p(WoNV) —
Yo(Wo N V) and o o7t : o1 (W1 NV) — (W, NV) are diffeomorphisms between
open subsets of R™. Therefore, (g5 0 ¢p~1) o (1 o ¢7') is a diffeomorphism with
domain (¢ o o7 )M (WW(WaNV)) = o1 (Wi N W N V).

Note that

o1 (WiNWanV) = o (W(VNWINW2)) = o™ (p(V W) Nyp(VNW2))

is open. Summing up, for all z € p; (W7 N Ws) there exists an open neighborhood
e1(W1iNWonV) C (W1 NW3), on which ¢y 0 gpl_l is a diffeomorphism. Moreover,
cpgocpl_l is bijective on the open set @1 (W1 NW3). Thus ¢ ocpl_1 is a diffeomorphism,
so @1 and o are compatible.

Maximality and uniqueness of A are clear. O

From now on, whenever a smooth manifold M is given, by a chart of M we mean
an element of the maximal atlas of M.

Next we want to equip any smooth manifold with a natural topology induced by
its charts. We will make use of the following auxilliary result:

2.2.4 Lemma. Let M be a smooth manifold, (v,V) a chart of M and W C V
such that (W) is open in R™. Then also (¢|w, W) is a chart of M.

Proof. ¢|w : W — (W) is bijective. Let (¢, U) be another chart of M. We have
to show that |y and ¢ are compatible. Now |y o ™1 : p(UNW) — (U NW)
is bijective and is the restriction of the diffeomorphism o o~! to (U NW). Also,

pUNW) =poy™ (W(UNW)) =po™ (¥(UNV)NY(W))

is open. Thus |y o ! itself is a diffeomorphism, so 1|y € A. 0

2.2.5 Proposition. Let M be a manifold with mazimal atlas A = {(¢q, Va)|a €
A}. Then B = {V,]|a € A} is the basis of a topology, the so-called natural or
manifold topology of M.

Proof. Clearly J,cy Vo = M. For o, 3 € A, 9o (Vy NVp) is open in R (since
Yo and v are compatible), hence by 2.2.4, (ta|v,nvs, Va N V3) itself is an element
of A. Therefore, V,NVz € B and so B is the basis of a uniquely defined topology. O

2.2.6 Proposition. With respect to the manifold topology of M, any chart (1, V)
is a homeomorphism of the open subset V' of M onto the open subset ¥(V') of R™.

Proof. Let ¢y : V — U be a chart of M. Then by 2.2.5, V is open in M. We first
show that v is continuous. Let U; C U be open and Wy := ¢~ 1(U;). By 2.2.4,
(¥|w,,W1) is a chart of M, so Wy € B, hence open in M. It remains to show that
1 is open (so that ¢~1 is continuous). To this end it suffices to show that 1) maps
any W € B with W C V to an open subset of R".

For such a W, by 2.2.5 there exists a chart ¢ with domain W. Hence ¢ o 9~! :
YW NV) = o(WNV)is a diffeomorphism. In particular, (W NV) = (W) is
open. g

2.2.7 Lemma. Let M be a set, A a C*-atlas of M, T the manifold topology induced
by A and 7' another topology on M. TFAE:
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(i) T=1'

(i) If (¢, V) € A, then V € 7" and b : V — (V) is a homeomorphism with
respect to T'.

Proof. (i) = (i) is immediate from 2.2.6.

(17) = (i): Let pe M, (¢,V) € Awith p € V. Let U be a basis of neighborhoods
of ¥(p) in (V) C R™. Then (¢ "1 (U))yey is a basis neighborhoods of p with re-
spect to 7 and also with respect to 7/. It follows that every p € M has the same
neighborhoods with respect to 7 and 7/, so 7 = 7’. O

After these preparations we are now in a position to completely clarify the relation-
ship between submanifolds of R™ and abstract manifolds.

2.2.8 Theorem. Let M be an m-dimensional submanifold of R™. Then M is an
m-dimensional C*°-manifold in the sense of 2.2.1. The manifold topology of M
coincides with the trace topology of R™ on M.

Proof. As an atlas of M we pick the family of all ¥y = ¢!, where ¢ is a local
parametrization. By 2.1.13 these are precisely the charts in the sense of 2.1.12. By
2.1.15 (iii) (with f = idas) all changes of charts are diffeomorphisms, so M is a
smooth manifold in the sense of 2.2.1. According to 2.1.5, every ¢ is a homeomor-
phism with respect to the trace topology of R™ on M. Hence by 2.2.7 the trace
topology of R™ is precisely the manifold topology. O

From 2.1.15 we may distill an appropriate definition of smoothness for mappings
between abstract manifolds:

2.2.9 Definition. Let M, N be C*°-manifolds and f: M — N a map. f is called
smooth (C*®) if it is continuous and for all p € M there exists a chart ¢ of M
around p and a chart 1 of N around f(p) such that ¢ o f o o= is smooth. f is
called diffeomorphism if it is bijective and f and f~' are smooth.

2.2.10 Remark.

(i)

M f N
%
2 P
o = (O

Let (p,U), (3, V) be charts as above. Then the domain of definition of v o
foplis (U N f~1(V)). This set is open since f is continuous and ¢ is a
homeomorphism.

Conversely, if f: M — N is some map such that for all p € M there exists a
chart ¢ of M around p and a chart 1 of N around f(p) such that p(UNf~1(V))
is open and ) o f o ¢! is smooth, then f is smooth. In fact, f is continuous
since f = 1" to(ho fop 1) ow on the open set UN f~1(V) (cf. also 2.1.15(ii)).
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(i) If (g, U), (1;, f/) are further charts around p resp. f(p), then also o fo@~!
is smooth: near p we have

dofog t= oy Ho(pofop o(pog™).

1

Since p was arbitrary, 1/; o fo@™" is smooth on its entire domain of definition.

(iii) Obviously the composition of smooth maps is smooth.

2.3 Topological Properties of Manifolds
2.3.1 Proposition. Every manifold M satisfies the separation axiom Ti.

Proof. Let p; # ps € M. If there exists a chart (1, V') with p1, ps € V then there
exist Uy, Us open in (V) such that ¢ (p1) € Uy, ¥(p2) € Ua, Uy NUs = . Hence
¥~ Y(Uy) and ¥ ~1(Us) are disjoint neighborhoods of p; resp. ps. Otherwise there
exists a chart (¢, V1) with p; € V1 and ps ¢ V; and vice versa. O

2.3.2 Example. The natural topology of a manifold is not automatically T, (Haus-
dorff): Let M be the following set:

e (0,1)

0 R

Let Vi = {(s,0)|s € R}, Vo := {(s,0)|s # 0} U{(0,1)}, ¥1 : Vi = R, 91(s,0) =
s, a1 Vo = R, 1ha(5,0) = s (s #0), 1¥2(0,1) = 0. Then ¢pp o p7' : R\ {0} —
R\ {0}, s — s. Therefore A := {31,12} is a C*°-atlas for M. However, M is not
T; since (0,0) and (0,1) cannot be separated by open sets in M. In fact, let V, W
be open in M, (0,0) € V, (0,1) € W. Then ¢4 (V1 NV), 13(Vo N W) are open in
R and contain 0. Hence they contain some a # 0, so ¥; '(a) = (a,0) = ¥y *(a) €
VinVnVonW CVNW. Thus VNW # 0, so M is not Hausdorff.

2.3.3 Proposition. FEvery manifold satisfies the first axiom of countability, i.e.,
each of its points possesses a countable basis of neighborhoods.

Proof. Let p € M, and (¢,V) a chart around p. Then there exists a countable
basis of neighborhoods (U, )men of ¥(p) in (V). Hence (¥~ (Up))men is a count-
able basis of neighborhoods of p in M. O

2.3.4 Proposition. FEvery manifold is locally pathwise connected.

Proof. Let p € M and (v, V) a chart around p such that (V') is pathwise con-
nected (e.g., (V) a ball in R", cf. 2.2.4). For ¢ € V there exists a continuous
map c : [0,1] = (V) with ¢(0) = ¥(p), ¢(1) = 1(q), hence ¢ := =L oc:[0,1] —
M, ¢(0) =p, ¢(1) =q. O

2.3.5 Corollary. FEvery connected manifold is pathwise connected.
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2.3.6 Proposition. FEvery Hausdorff manifold is locally compact.

Proof. Let p € M and let (¢, V) be a chart around p. Let B be a closed ball with
center 1 (p) in R™ and B C 9 (V). Then since ¢ is a homeomorphism, ~!(B) is a
compact neighborhood of p in M. O

2.3.7 Proposition. Let M be a manifold. TFAE:

(i) M satisfies the second axiom of countability (i.e., M possesses a countable
basis of its topology, or: M is second countable).

(i) M possesses a countable atlas.

Proof. (i)=-(ii): Let B be a countable basis of the topology of M and let A =
{(tha, Va)|or € A} be an atlas of M. Then by 2.2.4, A := {(¢o|,B)|B € B, B C
Va for some a € A} is a countable atlas of M.

(ii)=(i): Let A = {(¢q, Vo)|a € N} be a countable atlas of M. Every U, = 1o (Va)
is open in R™. Since R™ is second countable there are open sets Uy, (i € N) in R”
such that {U,,|i € N} is a basis of U,. Hence every open subset V of V, is the
union of certain ¢ (U,,). Since any open W C M is the union of certain W NV,
{Va;|la € N7 € N} is a countable basis of the manifold topology of M. O

2.3.8 Corollary. FEvery compact manifold is second countable.
Proof. We may even select a finite atlas from any given atlas. O

In differential geometry and analysis on manifolds one frequently encounters prob-
lems which can easily be solved locally (in a chart domain). To obtain global state-
ments, one has to ‘patch together’ these local constructions. The most important
tool in this context are the so-called partitions of unity:

2.3.9 Definition. Let M be a manifold. The support of any f : M — R is defined
as the set supp(f) :={p € M|f(p) # 0}. A family V of subsets of M is called locally
finite if every p € M possesses a meighborhood which intersects only finitely many
V eV. LetU be an open cover of M. A partition of unity subordinate to U is a
family {x.|a € A} of smooth maps xo : M — R such that:

(i) {suppxa|a € A} is locally finite.
(i) For all o € A there exists some U € U such that supp(xa) C U.

(i) For allp € M, ZQGA Xa(p) =1

Note that by (i) the sum in (iii) is finite for any p € M.
Our next goal is to prove the following result:

2.3.10 Theorem. Let M be a second countable Hausdorff manifold. Then for any
open cover U of M there exists a partition of unity {x;|j € N} subordinate to U
such that, for all j, suppx; is compact and contained in a chart domain.

To prepare the proof we need several auxilliary results. To begin with, we show
that there exist smooth functions on R of arbitrarily small support:

2.3.11 Lemma. Let f:R — R,

0 z<0
fw) = { e"r x>0
Then f is smooth.
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Proof. By induction we obtain that

0 <0
() () ) <
F) (@) - {e—wm;) .

where P, is a polynomial. Hence lim, ~o f(™(2) = lim,~,o f™ (z) = 0 for all n. O

2.3.12 Lemma. Let M be a Hausdorff manifold, U an open subset of M andp € U.
Then there exists a chart neighborhood V' of p and a C*-function x : M — R* such
that V' is compact, V.C U, x >0 onV and x =0 on M\V.

Proof. Choose a chart (¢, W) around p such that W C U and ¢(p) = 0. Let
r > 0 such that for the open ball B,(0) around 0 we have B,(0) C ¢)(W). Then
V = ¢~}(B,(0)) is a neighborhood of p, and V = ¢~1(B,.(0)) is a compact subset
of W. Choose f as in 2.3.11 and let g : R® — RT, g(z) := f(r? — |z|?). Then g is
smooth, g > 0 on B,(0), and g =0 on R™ \ B,.(0). Now let

x(a) ::{ gog’@) ZEZ\V

Now W and M \ V are open, cover M and Yy is smooth on both sets, hence on M.
It follows that x has the desired properties. O

2.3.13 Lemma. Let M be a second countable Hausdorff manifold. Then M pos-
sesses an ezhaustion by compact sets: 3(Kj)jen, K; CC M, K; C K3, Vj and
M = UjeN Kj.

Proof. Since M is locally compact, there exists a cover V of M consisting of open
sets whose closure is compact. By second countability, we may extract from this
a countable cover (V;),en of M. (Let B be a countable basis of the topology and
B':={B € B|3Vp € V with B C Vp}. Then {Vp|B € B’} fulfills this purpose.)

Let Ky :=V; CC M. Choose 72 > 1 such that K; C |2, V; (possible since K;
is compact). Let Wy := |J2, Vi and Ko = Wy = (J;2,V; CC M. Then K, is
compact and K; C K3. For j > 2, suppose that K; = W; has already been defined.
Denote by 7,41 the first index with K; C (J;Z' V; and set W1 = U-jf(r”l’JH) Vi,

(2

Kji1 =Wyt = U9 DV Then Ky cc M, K, € K5, and U2, K 2
U(;il Vi=M. U

Proof of 2.3.10 Let (K;);en be as in 2.3.13.




Set K1 = Ko =0 and B; := K; \ K_;, so Bj CC M. For each p € B; there
exists a U € U with p € U and (by 2.3.12) a chart neighborhood V of p with V'
compact, VCUNM\ K;_5 = U \ K;_». Moreover, there exists x € C*°(M) with
X>0onVand x=0on M\ V.

Since B; is compact it is contained in a finite union of such V. Carrying out
this construction for each j € N we obtain a countable cover (Vi)reny of M with
corresponding C*-functions (x;)jen. The family (Vj)ren is locally finite. In fact,
those V, coming from the cover of B; are disjoint from K;_, hence disjoint from
K for I < j — 2. Hence every p € M possesses an open neighborhood K} which
intersects only finitely many Vj,. Now let x; : M — R,

= Xi
! ZieN )NCz
Then y; is well-defined since ), Xs > 0 (the (Vj)jen form a cover of M, and
- . SienXy
Xjlv, > 0). Summing up, x; € C*(M,R"), and 3}, yx; = % =1, so
(Xj)jen is the desired partition of unity subordinate to U. a

2.3.14 Corollary. Let M be a second countable Hausdorff manifold and U =
{Uala € A} an open cover of M. Then there exists a partition of unity {x.|a € A}
with suppxa C Uy Ya € A. (The xo will not have compact support in general).

Proof. Choose {x,|j € N} as in 2.3.10, subordinate to . Then Vj € N 3 a;; with
suppx; € Ua,;- Let xo = Z{j‘aj:a} X;. Then by 2.3.9 (i),

suppxa = {p [ Xa(p) # 0} € |J suppx; = |J swpx; = |J suppx; € Vs

Q= Q= Q=

2.3.15 Remark. More generally, one can show: for any manifold M, the following
are equivalent:

(a) For each cover U, M possesses a partition of unity subordinate to U.

(b) M is Hausdorff and every connected component of M is second countable.
(¢) M is metrizable.

(d) M is Hausdorff and paracompact.

Convention: From now on, by a smooth manifold we will always mean a manifold
(in the above sense) whose natural topology is Hausdorff and second countable.
Note that, in particular, every submanifold of R™ is a smooth manifold in this
sense (by 2.2.8 it carries the trace topology of R™, hence is Hausdorff and second
countable).

2.4 Differentiation, Tangent Space

After the topological interlude of the previous section we now turn to a study of
analysis on manifolds. From 2.2.9 and 2.2.10 we know what smooth maps between
manifolds are. However, so far we have not given a definition of the derivative of a
smooth map. In R”™, the derivative of a map is the optimal linear approximation to
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the map. This terminology only makes sense in the vector space setting. Manifolds,
on the other hand, in general do not carry a vector space structure. Differentiation
on manifolds therefore can be viewed (heuristically) as a two-step approximation
process: first, in any given point the manifold is approximated by a vector space
(the tangent space, corresponding to the tangent plane of a surface). The derivative
itself is then defined as a linear map on this tangent space. To motivate this general
procedure we first have a look at the special case of submanifolds of R™.

2.4.1 Theorem. Let M be a submanifold of R™ and p € M. Then the following
subsets of R™ coincide:

(i) imDp(0) where ¢ is a local parametrization of M with o(0) = p.
(i) {<(0)|c: I — M C®,ICR an interval, c(0) = p}

(iii) ker D f(p), where, locally around p, M is the zero set of the regular map f :
R™ — R % (with k = dim M ).

(iv) graph(Dg(p')), where, locally around p, M s the graph of the smooth map g
and p = (p', 9(p"))-

>

Proof. (i) C (i1): Given Dy(0) - v € imDp(0), let ¢(t) := ¢(t - v). Then for a
suitable interval I, ¢: I — M is smooth, ¢(0) = ¢(0) = p and ¢/(0) = %|0 p(t-v) =
Dp(0)v € (it).

(#7) C (4i1): Let ¢/(0) € (i1), ¢: I — M and f as in (i7). Then locally around 0 we
have f o ¢(t) = 0. Hence

d

0=—
dt |,

f(e(t)) = Df(c(0))c'(0) = ¢(0) € ker Df (p)

~—

=p

(#31) C (4): Since (¢) C (¢4) it suffices to prove that dim(imDy(0)) = dimker D f(p).
Since ¢ is an immersion, dim(imDp(0)) = k = dim M. Moreover, dim(imD f(p)) =
n—k,sodimkerDf(p) =n— (n—k) =k.
(t9i) = (iv): Let g as in (iv) (cf. 2.1.8, (Gr)=(Z)), and f;(z1,...,Tpn) = Tp4; —
g;(z") (4 1,...,n — k). Then locally around p, M is the zero set of f and

ker(D f (p))_= ker(q = ¢" — Dg(p')q') = {(¢', Dg(p')d')|¢’ € R*} = graph(Dg(p’)).
O

2.4.2 Definition. Let M be a submanifold of R™ and p € M. The linear subspace
of R™ characterized in 2.4.1 is called the tangent space of M at p and is denoted by
T,M (dimT,M =k = dim M ). The elements of T,M are called tangent vectors of
M at p.

If N is a submanifold of R™ and f+ M — N is smooth, then let T,f : T,M —
TN, ¢'(0) = (foc)'(0). Tpf is called the tangent map of f at p.

T,f is well-defined: let ¢1,¢2 : I — M, ¢1(0) = p = ¢2(0) be smooth with ¢;(0) =
c5(0). Since f is smooth, locally around p there exists some f: U — R"™ (U open
in R") with flynym = flunm- Then foce; = foe; (i =1,2), so

(foe)'(0) = (foe)(0) = Df(p)ei(0) = Df(p)csy(0) = --- = (f o c2)'(0).
Moreover, we conclude that T, f(c’(0)) = Df(p)c’(0), so T, f is linear.
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2.4.3 Lemma. (Chain Rule) Let M, N, P be submanifolds, f : M — N, g: N —
PC>® pe M. Then

Ty(go f) =TrpygoTpf

Proof. Let § and f be smooth extensions of ¢ and f. Then §o f is a smooth
extension of g o f and

Ty(go f)(C(0)) = (Gofo C):(O) =Dg(foc(0))((foc)(0) =
T 9(Df(p)c'(0)) = Tpyg o T, f(c'(0))

d

Next we want to extend the concept of tangent space also to abstract manifolds.
However, for M an abstract manifold and ¢ : I — M smooth, the derivative ¢/(0) at
the moment does not make sense due to the lack of a surrounding Euclidean space.
Instead, we will resort to charts:

2.4.4 Definition. Let M be a manifold, p € M and (1, V) a chart around p. Two
C*>®-curves c1, cg : I — M with ¢1(0) = p = c2(0) are called tangential at p with

respect to 1 if (1 o c1)'(0) = (¥ 0 c2)'(0).

U
Pocy W %ZJ(V)

2.4.5 Lemma. The notion of being tangent at a point is independent of the chart
used in 2.4.4

Proof. Let c¢i, co be smooth curves at p with ¢; tangent to co with respect to
the chart ;. Let ¥y be another chart around p. Then locally around 0 we have

Paoc¢; = (Paothy ) o (Yroc) (i=1,2), s0
(th2 0 ¢1)'(0) = D(h2 0 b7 ") (¥1(p)) (11 0 €1)'(0) = (1b2 0 ¢2)'(0).
—_———
:(1/11002)'(0)
O

On the space of smooth curves at p we define an equivalence relation by ¢; ~ ¢ &
1 tangential to ¢z at p with respect to one (hence any) chart. Forc: I — M, ¢(0) =
p we denote by [c], the equivalence class of ¢ with respect to ~. Then [¢], is called
a tangent vector at p.

2.4.6 Definition. The tangent space of a manifold M at p € M is T,M = {[c], |
c: I — M C*>®, I interval in R, ¢(0) = p}.

We first note that for submanifolds of R™ this definition reduces to 2.4.2 since in
this case the map ¢/(0) — [c], gives a bijection between ‘old’ and ‘new’ tangent

space. In fact, with ¢ a local smooth extension of 1,

[c1]p = [calp = (Yo c1)'(0) = (¥ 0ca)'(0),

D(p)c} (0) D(p)cy(0)
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so ¢1(0) = ¢4(0). Hence the map ¢'(0) — [c], is injective. Also, it obviously is
surjective.

2.4.7 Definition. Let M, N be manifolds and f : M — N a smooth map. Then
we call

Tpf : TpM — Tf(p)N
[clp = [fodsw
the tangent map of f at p.
2.4.8 Remark.

(i) T, f is well-defined:
Let ¢ be a chart of M at p, ¢ a chart of N at f(p), ¢1, ¢co : I — M curves
through p with ¢; ~ co. Then

(Yofoc)'(0) = (Wofop t)o(poe))(0)
= Do foe )(p(p) (woc) (0)
—_——
=(poc2)’(0)
= - =(ofor)(0),
so focy ~ypp) foc, le., [foalrp =[f ol

(ii) In the particular case where M, N are submanifolds, T}, f is precisely the map
from 2.4.2 in the sense of the above identification (¢/(0) < [c]p)-

d(0) = (fo)'(0)
~—~— ———
$ $
leln [focls ()

2.4.9 Proposition. (Chain Rule) Let M, N, P be manifolds, f : M — N and
g: N — P smooth, and p € M. Then

Tp(go f)=TrpgoTpf

Moreover, since T,(idar) = idr, s, for any diffeomorphism f : M — N, T,f is
bijective and (T,f)~! = Tf(p)ffl,

Proof. Let ¢ be a curve through p. Then

Tp(go F)dp) =go f)odlgrw) = Trma(lf o clrw) = Trwmyg o Tpf(lclp)-
O

So far we did not endow 7}, M with a vector space structure. In order to do this we
first analyze the local situation in more detail.

2.4.10 Lemma. Let U C R™ be open and p € U. Theni: T,U — R, i([d],) :=
c'(0) is bijective, so T,U can be identified with R™. In terms of this identification,
for any smooth map f:U — V with V C R™ open we have T,f = Df(p).

Proof. The map i is well-defined (choose the chart ¢ = idy) and injective (¢} (0) =
c5(0) = (Y oc1)'(0) = (¢ oce)(0) for any chart ). Also, ¢ is surjetive: Let v € R™
and ¢:t+— p+t-v. Then ¢/(0) = v. Now let f: U — V be smooth and consider

T,U o ? Tf(p)v
R™ Df(p) R™
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The diagram commutes since

ioTpf(lclp) = i([f o cly@) = (f 0 ¢)'(0) = Df(p) - (0) = Df(p) oi([c]p)-

2.4.11 Proposition. Let M be a manifold, p € M, and (,V) a chart around
p. The vector space structure induced on T,M by the bijection Tpp : T,M —
Ty (V) = R™ is independent of the chosen chart (¢, V).

Proof. By definition, T,V = T, M, so Ty : T,M — Ty, (V) = R™ (by 2.4.10).
Also, Ty is bijective by 2.4.9. Let [c1]p, [c2]p € TpM, o, 8 € R and ¢ another chart
at p, w.l.o.g. with the same domain V. Then

04[01]p+5[02]p = (pr) 1(0‘Tp7p([cl] )+6Tp¢([c2]p))
2L (Ty)” 1<awoc1> (0)+5<woc2 )'(0))
= (L) Ha@oyp T opoc)(0)+Boyp opoc)(0)
= (T)” 1<D<ww YY) (alpoer) (0 )+ﬂ(s0062)’(0)))
SEY () T (T (o ™)) (alp o 1) (0) + Bly o c2)'(0))
2 (L) N aTppe(laly) + BLe(lealp)),

which establishes our claim. O

In this way, T,,M is endowed with an intrinsic (chart independent) vector space
structure. Moreover, if f : M — N is smooth, then T,f : T,M — Ty, N is
linear with respect to the corresponding vector space structures on T, M, Ty, N:
it suffices to show that T,y o T}, f o Tw(p)gp_l is linear for any charts ¢ of M at p
and ¢ of N at f(p). This map is given by
2.4.1

Tppy(ho fop™) Do fop )(p(p),

hence is indeed linear.

Any chart of M allows to pick a particular basis of T,M: Let (¢, V) be a chart of
M at p, and let ¥ (p) = (z'(p),...,2"(p)) (the x* are called coordinate functions of
). For 1 < i < n let e; denote the i-th standard unit vector of R™. Let ¢ (p) = 0.
Then we set

0

_ 1,
5| = @) @) €T

More precisely, in the sense of 2.4.10 we have

0
ozt v

AT
a -

= (L) ([t v teio) = [t = ™ (ted)]-

?
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results from transporting the tangent vector of the coordinate line

Bp}

p7"'78aj‘n,

Hence %

<t lp
t — te; to M via the chart 1. Since T, is a linear isomorphism, { %
indeed forms a basis of T, M.

If, in particular, M is a submanifold of R™, and ¢ is a local parametrization of p
(with ¢(0) = p), then ¢ = ¢~ ! is a chart at p (cf. 2.1.13(i)) and we have

22 = Toete) = (9o (1)) (0) = De(O)e

o
Thus Era

The notation %

» is precisely the i-th column of the Jacobian of ¢ at ¢ (p) = 0.

already suggests another interpretation of tangent vectors,

namely as directional derivatives. In fact, any tangent vector can be viewed as
a directional derivative in the following sense:

Let v = [c], € T,M. Let f € C>°(M,R) (or C*>°(M), for short), the space of smooth
maps from M to R. Then define 9, : C*°(M,R) — R by 0, f := T, f(v). Since we
use the identification 2.4.10 we have:

Ou(f) =Tpf(v) = Tpf(Iclp) = [f o clyp) = (f 2 ©)(0), (24.1)

which corresponds to differentiation in the direction v.
In particular, for v = a?ci , we have (writing v instead of 9,):

0

(= ou 1)) () = Dilfou Hw),  (242)

SO % corresponds to partial differentiation in the chart .
P

2.4.12 Definition. A map 0 : C*°(M) — R is called derivation at p € M if O is
linear and satisfies the Leibniz-rule:

(i) O(f + ag) = 0f + ady

(i) O(f -g) = 0f - g(p) + f(p) - O

for all f,g € C*(M) and all « € R. The vector space of all derivations at p is
denoted by Der,(C>(M),R).

The following theorem shows that in fact, the tangent space T, M can be identified
with the space Der,(C*(M),R) of derivations at p.

2.4.13 Theorem. The map
A:T,M — Der,(C*(M),R)
v Oy
is a linear isomorphism.

Proof. To begin with we show that any 0, is a derivation at p: Linearity is obvious
(Ou(f +ag) =T,(f + ag)(v) = (T, f + aTpg)(v)) and letting v = [¢], we have

Ou(f-g9) = ((f-g9)00)(0)=((foc)-(g0¢))(0)

= f(c(0)) - (900) (0) + g(c(0)) - (f 2 ¢)'(0)
= f(p)ou(g) + 0u(f)9(p)

— —~

A is linear:
(A(v1 + aw2))(f) = Tp f(v1 + avz) = Ty, f(v1) + T f(v2) = (A(v1) + aA(v2))(f).
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A is injective:

We first show that any derivation 0 at p only ‘feels’ values of f near p. More
precisely, if U is an open neighborhood of p and f, fo € C*°(M) are such that
fily = f2ly, then O(f1) = O(f2). In fact, let f := fi — fo. Then f|, =0 and we
want to show that J(f)[, = 0.

Choose a neighborhood V' of p such that V' C U (cf. 2.3.6). Then by 2.3.14 there is
a partition of unity {x1, x2} subordinate to {U, M \ V'}. Then

0=0(00)=00x1-f) = &@'3(f) + 3(X1)@ =0(f).

=1 =0
X2 X1 X2
I>< L 1 )>< )

p V U

Since in this way any C°°-function defined locally at p can be extended to M it
follows that in fact any derivation at p is a map from all local C*°-functions at p
(the so called germs of smooth functions at p) into R.
Suppose that A(v) = 0, where v = [¢],, i.e., 0,f = 0 for all smooth functions
f locally defined at p. Let ¢ be a chart at p with ¢(p) = 0 and set f = a!
(where ¢ = (z',...,2™)). Then 0 = 9, f = T,f(v) = T, f([c]p) = (2" 0 ¢)'(0), so
(¢ 0 ¢)'(0) = 0. By 2.4.10, then, (T, (v)) = (¥ 0 ¢)’'(0) = 0 and therefore v = 0
since Tp is a linear isomorphism by 2.4.11.
A is surjective:
Let 0 € Der,(C>*(M),R). We first note that 0 vanishes on any constant function
=k

Ok)y=01-k)=1-0(k)+k-0(1)=20(k) = 9(k) =0.

Let ¢ : V — U be a chart of M at p, ¥(p) =0, v = (z',...,2") and B;(0) C U.
Let f € C>°(M) and g := f o1~!. Then for z € B1(0) we have:

g(z) —g(0) = /0 %g(tw)dt:/o Dg(tx)xdt:/o ;Dig(m).xidt

n 1
= le/ D;g(tx)dt .
i=1 0
—_—
=:h;(x)

Hence, on V,
F(q) = 9(¥(@) = 9(0) + > ¥*(q) hi(1(q)) -
im1 N——

=3;Lz'(Q)

Since 9 acts locally, we conclude:

] ——
=0
Now
- 1 1o}
hulp) = (0) = | Digf0)dt = Digl0) = Dilf 007 )00) = 5| (£)

p

Summing up, we get



where v =Y | 9(¢?) % . establishing that A is surjective. O

Due to this result we will henceforth identify T, M and Der,(C*°(M),R). In fact,
in the literature it is quite common to define T, M as Der,(C*>°(M),R). One of the
reasons for this approach is that formal manipulations become particularly simple:
let 0 € Der,(C*(M),R), f € C>*°(M). Then 0 = 9, for some v € T,M. Therefore,

(2.4.1)

Tpf(0) = Tpf(0s) =" 8u(f) = A(f),

and we obtain:

T, f(9) = o(f) (2.4.3)
Now let f € C*°(M,N). Then the tangent map of f in the derivation picture is
computed as follows:

Tpf : Derp(C*(M),R) — Ders,)(C*(N),R)

(2.4.4)
9 = (9= 03(gof))

In fact, by (2.4.3) we have

(T, £)(9) 2V Ty 9(T,£(9)) *2° T (g 0 £)(0) “2Y d(g o £)

2.4.14 Proposition. Let M™, N" be C*°-manifolds, f € C*°(M,N), p € M,
o= (x',...,2™) a chart of M around p, ) = (y',...,y") a chart of N around f(p).
Then the matriz representation of the linear map Ty f : TyM — Ty N with respect

9 _ 9 o .
pltt Bz, ’p} and BT.f(P)N = {Tyl o) geeesy W’f(p)} 18
precisely the Jacobian of the local representation fy, =1 o fo ™t of f. Thus,
L, 0
ozt Oyk

(2.4.3)

to the bases Br,m = { 522

)= Do o™ el)) 5

T,
k
k=1 y

pf(

(2.4.5)

fp) k=1

Proof. The i-th column of [Tpf]BTpM,BTf( v s [T, (2 Hence we want

p)IBr

to write T, f( %

. . o0 0
p) in the basis {871’ ,

ceey Bew . We have
i) Oy ‘f(p)}

Dfyo(p®) 7= Ty (o foo™) 222 Thpi o Ty f o (Tye) ™

Let Jy; := Di(f[/fw)(@(P)) = Di(¢k ofo 80_1)(80(11))- Then
0

i
8xp

T f( ) = Tf(Tre) 7€) = (Trpw) ™ (Dfpe(ep))e’) =

0

= Z Tri (Ty ) (") = Z ki DoF
k=1 k=1 Y

f(p)

2.4.15 Corollary. Let M"™ be a manifold, p € M and let ¢ = (z%,...,2") and
Y= (yl,...,y") be charts around p. Then

8 n B a n 6yk 8

=Y D;(Fop! — | = _ 2.4.6

o, ; (W% o) (w(p)) B |, = 2= Dot By (2.4.6)

Proof. Set f =idys in 2.4.14. O
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2.5 Tangent bundle, Vector Fields

A vector field on an open subset U of R™ is an assignment p — X, of a vector
X, € R" 2 T,U to each p € U. To analyze, e.g., differential equations with right
hand side X (i.e., ¢(t) = X(c(t))) one will typically assume X to be smooth (at
least C'). We want to extend such notions to the manifold setting. Thus we are
looking for maps X mapping points in a manifold M to vectors in T, M. At the
moment, however, we do not have a concept of smoothness for such maps: the
individual tangent spaces are not yet bundled together into one manifold. Our first
aim therefore is to remedy this deficiency.

2.5.1 Definition. Let M be a smooth manifold. The tangent bundle (or tangent
space) of M is defined as the disjoint union of the vector spaces TyM (p € M):

T™M = | | T,M = ] {p} x T,M
peEM peEM

The map wpr : TM — M, (p,v) — p is called the canonical projection. If f: M —
N is smooth, then the tangent map T'f of f is defined as T f(p,v) = (f(p), Tpf(v)).
2.5.2 Lemma. (Chain Rule) Let f : M — N, g : N — P be smooth. Then
T(go f) = TgoTf. Moreover, T(idps) = idrar, so for any diffeomorphism f :
M — N we have (Tf)~t=T(f1).

Proof. By 2.4.9,

T(go f)p,v) = (9(f(p),Tp(go [)()) = (9(f(P): Ttpyg o Tpf(v)))
= Tg(f(p),Tpf(v)) = (TgoTf)(p,v)
and
T(idm)(p,v) = (p, Tpidm (v)) = (p,v) = idram(p, v)
O
In order to turn T'M into a smooth manifold we have to endow it with a C°°-atlas.

Natural candidates for the charts of TM are the tangent maps T of charts (¢, V)
of M:

Ty TV = | J{p} x T,V = | {p} x T,M = TM|, = T(@(V)) = (V) x R"
peV peV
Here, T(¥(V)) = U,eyvy{z} x To(¥(V)) = ¢(V) x R™. Any such T is bijective.
———
—Rn
2.5.3 Proposition. Let M™ be a smooth manifold with atlas A = {(¢a, Va) | a €
A}, Then A = {(T¢a, TM|y, ) | a € A} is a C¥-atlas for TM. The natural

manifold topology of TM is Hausdorff and second countable, hence T M is a smooth
manifold of dimension 2n.

Proof. The TV, cover TM and any T, : TV, — ¥a(Va) x R™ is bijective. Let
TMly, N TM|V13 # 0, ie., Vo, NVg # 0. Then:

Tygo(Te)™ = T(poys"): T(a(VanVa)) = T(ts(Va N Va))
:wa(VaﬂVﬂ)xR" =13 (VoaNV B)xXR"
T(Wgoyp " )zw) = (Ygoy'(2), Tu(Wsory') w)
PE (g oy (@), D(vs oy ) () - w), (2.5.1)

Since any such map is smooth, T'M is a C*°-manifold of dimension 2n if we addi-
tionally verify that it is Hausdorff and second countable.
TM is Hausdorff: Let (p1,v1) # (p2,v2) € TM. Then there are two possibilities.
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1.) p1 # p2. Then since M is Hausdorff there exist chart neighborhoods V3, V5 of
p1, p2 with V1 NV4 = (. Then T'V;, TV, are neighborhoods of (p1,v1), (p2,v2)
in the natural manifold topology of TM with TV, N TV, = 0.

2.) p1 = pa2: Choose a chart (1, V') around p and separate T (p1,v1), T (p2, v2)
in TY(TV) = (V) xR™. Since T is a homeomorphism this gives the desired
separation in T'M.

T M is second countable: By 2.3.7 there exists a countable atlas {(¢n,, Vin) | m € N}
of M. Then {(T¢,,TV,,) | m € N} is a countable atlas of TM, so, again by 2.3.7,
the claim follows. O

2.5.4 Remark.

(i) If f: M™ — N™ is smooth, then sois T'f : TM — T'N. In fact, for (¢, V) a
chart of N, and (¢,U) a chart of M we have

TpoTfoTy™ (z,w) = T(ofop™)(z,w)
= (Wofop (x), Do foy)(x) w),
which is smooth on its open domain o(UNf~1(V))xR™ = T(p(UNf~1(V))).
This gives the result by 2.2.10 (ii).

(ii) mpr : TM — M is smooth. In fact, locally 7y, is a projection: let (¥, V) be a
chart of M™. Then

TM|y ML VCM

| I

TW(V)) = (V) x R* — (V)

YompyoTY Ha,w) = Yomy(v  (x), Ty (w))
= Py~ (z) =z = pri(z,w).

On closer examination it turns out that T'M in fact has more structure than a ‘pure’
manifold: the images of the charts T, (TV,) = 1o (Va) X R™ are cartesian products
of open subsets of R™ with vector spaces. The changes of charts (2.5.1) respect this
structure, as they are of the form (z,w) — (p1(x), p2(z) - w) with ¢a(z) a linear
map for each x. Thus T'M furnishes our first example of a vector bundle in the
sense of the following definition.

2.5.5 Definition.

(i) Local vector bundles: Let E, F be (finite dimensional, real) vector spaces,
and U C E open. Then U x F 1is called a local vector bundle with base
U. We identify U with U x {0}. For w € U we call {u} x F the fiber
over u. The fiber is equipped with the vector space structure of F. The map
7:UxF = U, (u,f)— u is called the projection of U x F. Then the fiber
over u is precisely w1 (u).

Amap p: UxF — U xF' of local vector bundles is called a local vector bundle
homomorphism (resp. a local vector bundle isomorphism) if ¢ is smooth (resp.
a diffeomorphism) and has the form

@(U,f) = (@1(u>7@2<u) : f)a
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where o (u) is linear (resp. a linear isomorphism) from F to (resp. onto) F’
for each u e U.

Fopy(u) F

1

U/

-

(#i) Vector bundles: Let E be a set. A local vector bundle chart (or vb-chart) of
E is a pair (U, W), where W C E and ¥ : W — W' x F' is a bijection onto a
local vector bundle W' x F' (with W', F' depending on V). A vector bundle
atlas is a family A = {(V, Wa) | o € A} of local vector bundle charts such
that the W, cover E and any two vector bundle charts (¥o, Wy), (¥, Ws)
in A with Wy, " Wg # 0 are compatible in the sense that

Pgo0 \I/;I : \IJQ(WQ n Wﬁ) — \Ifﬁ(Wa N Wg)
is a local vector bundle isomorphism (in particular, Uo,(Wo N Wg), Wa(Wy N

Wpg) are supposed to be local vector bundles).

E

Two vector bundle atlasses Ay, As are called equivalent if A1 U As is again
a vector bundle atlas. A wvector bundle structure V is an equivalence class
of vector bundle atlasses. A wvector bundle is a set E together with a vector
bundle structure. Since any vector bundle atlas is, in particular, a C*°-atlas,
FE is automatically a C°°-manifold. Again we require that the natural manifold
topology of E is Hausdorff and second countable.

2.5.6 Remark.

(i) In any vector bundle E there exists a distinguished subset B, the basis of E,
defined by:

B :={e € E |3 vb-chart (¥, W) s.t. e =¥ !(w’,0) for some w’' € W'}.

B is independent of the vector bundle charts used in the definition since any
change of vector bundle charts is linear in the second component (so 0 is
mapped to 0). If A = {(¥,,W,) | @ € A} is a vector bundle atlas for E,
then A" = {(Valy, g, Wa N B) | a € A} is a C*-atlas for B. Thus B is a

smooth manifold. In fact, if ¥ o0 ¥ 1 (w', f') = ( g{j (w’),wéza) (w') - f"), then
q’ﬁ'wﬁmB o (Valy.ng) H(w',0) = (w(ﬁg(w’),O), which is smooth. Thus the
changes of charts in B are exactly the z/Jéloz, if we identify W’ x {0} with W".
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There is a well-defined projection 7 : £ — B: let e € E, ¥, a vector bundle
chart around e and ¥, (e) = (w', f) (¥ : W — W' x F’). Then let w(e) :=
U (w’,0). This definition is independent of ¥,: Let (¥, Ws) be another
vector bundle chart around e, ¥g(e) = (w”, f”). Then

Wgo U (w!, f1) = (W5 (W), v (') - f) = (w", £,

so w” = wgcz(w’) and therefore ¥ o U '(w',0) = (w”,0). Hence 7(e) =
Ut (w',0) = \I!gl(w”, 0). Obviously, 7 is surjective. Moreover, 7 is smooth:

E — B
. o
W s B 20O oy

Since pr; is smooth, so is .

For b € B we call 771(b) the fiber over b. It carries a vector space struc-
ture induced by the vector bundle charts: Let ej,es € 7 1(b), ¥, a vector
bundle chart around b, ¥,(e;) = (w', f/) (i = 1,2). Then let e + dey =

3

W l(w', f{ + Af}). This is independent of the chosen vector bundle chart:
Let Uy be another vector bundle chart, ¥g(e;) = (v',¢g;) (i = 1,2). Then
oW (W', f1) = (W (w), 0 (w) 1) = (v, ), 50 WU (w', [{+Af}) =
(Vi (@), BG2) - S+ M) - fh) = (61 + Agh). Thus e + he =
Wy, fi 4 Af3) = W5 (' gf + Agh)-

For U C B open let E[; := Jycy{b} X Ep.

From (i) we may extract the following alternative description of vector bundles
which often is used as a definition:

A vector bundle is a triple (E, B, 7) consisting of two C*°-manifolds F, B and
a smooth surjection 7 : E — B such that for all b € B we have:

e The fiber 7~1(b) =: E} is a vector space.

e There exists an open neighborhood V of b in B and a diffeomorphism

U: W :=7"YV) = V x F’, which is fiberwise linear (i.e., ¥ is

i
m=1(b)
linear Vb € V') and such that the following diagram commutes:

V) —Y s VX P

dl [om

v 4,y

In our approach, U= ((¥],)"! xidp) o ¥).
B

2.5.7 Example. (TM, M, 7)) is a vector bundle:

Let A = {(¢a,Va) | @ € A} be an atlas of M. By 2.5.3, with ¥, = T,,
Wy, =TV, the family A’ := {(¥,, W,) | @ € A} is a vector bundle atlas of TM.
By 2.4.11, the fibers 7717/[1 (p) = {p} x T,M = T,M carry the vector space structure
induced by W,. Hence, locally TM has a product structure: T, : TM |Vu =
TV = ¥a(Vy) X R™ and we obtain the following commutative diagram:

TVy = 17 (Va) —22 4 (Va) x RP 2220y s R
Trl J{PH J{prl
Ya v,
Va — = Yua(Va) ——= Va
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After this clarification of the underlying structures we return to our original task of
defining vector fields on manifolds. Thus we are looking for maps which smoothly
assign to each p € M an element X, = X (p) of T, M.

2.5.8 Definition. Let (E, B, ) be a vector bundle. A map X : B — E is called a
section of E (more precisely: of m: E — B), if o X =idg. The set of all smooth
sections of E is denoted by I'(B, E) (or I'(E)).

Thus a vector field is a section of TM (m(X,) = p Vp). If (¥, V), = (z*,...,2") is
a chart of M then for any p € V the % » form a basis of T, M. Since X,, € T, M, for

each p there exist uniquely determined X*(p) € R such that X, = Y7 | X*(p) 52
This is called the local representation of X on V.

2.5.9 Proposition. Let X be a vector field on a manifold M. TFAE:
(1)) X : M — TM is smooth, i.e., X € [(TM).
(i1) For every f € C>°(M), pr— X,(f) : M — R is smooth.

P

(iii) For every chart (1, V) of M, ¢ = (2,...,2™) we have: in the local represen-
tation

X0) =Y X'() 5

Xt e C®(V,R) foralli=1,...,n.

Proof. (i)=(ii): X : M — TM is smooth by assumption. Also, if f € C>®(M),
then Tf : TM — TR = R x R is smooth by 2.5.4(i). Hence p — Tf(X,) =
(f(p), T, f(X,)) = (f(p), Xp(f)), and therefore also p — X, (f) is smooth by 2.4.3.
(ii)=(iii): Let po € V and let U be an open neighborhood of pg such that U C V.
By 2.3.14 we may choose a partition of unity {x1, x2} subordinate to {V, M \ U}.

X1 X2

)
p

U 14
Let 1 < j <nand set f:= x127 (extended by 0 outside of V). Then f € C*°(M)
and f|, = xj‘U. For p € U we obtain:

%) = > X'®) 88
= Y _X'(p)Di( 27 o™ )((p)) =
:pr].o’(/;o'(/)*l

(a7) =

p

i=1

= ZXi(p)fSi,j = X7(p)

Therefore, each X7 |U is smooth. Since py was an arbitrary point in V, each X7 is
smooth on V' (1 < j < mn).

(iii)= (i): Let (¢,V) be a chart at p € M. By 2.2.10 (i), it suffices to show that
T o X o)~ is smooth (on its open domain (V). Now

n

TooX(p) = Te(YX'0) o] ) =Tu(Y X ) (Ty) ™ (e0)
i=1 p i=1
= W)LY X)) ) = (i), Y X e,
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so, finally,

n

TyoXop ' (x) = (x, ) X'(v 7" (z))e:) (2.5.2)

i=1

is smooth, as claimed. O

2.5.10 Definition. The space of smooth vector fields on M is denoted by X(M).

2.5.11 Examples.

(i)

(i)

Vector fields on R"™:

Let U C R™ be open. From our analysis course we know: a vector field is a
C>®-map X : U = R", X(p) = (X' (p),...,X"(p)) = >, z'(p)e;. How does
this fit into the above framework?

U is a manifold with the single chart ¢ = idy and the corresponding atlas A =

{(idy,U)}. By 2.4.10 we have T,y = Dy(p) = id, so 2 p = (Tpy)~(e;) =
9

s 57|, acts as follows:
zt Ip

e;. As a derivation, according to (2.4.2)

0

i
&cp

_of
- 01t (p)-

(f) = Di(f oid™")(id(p)) = Dif(p)

Hence X, = Y"1 X¥(p)e; resp. X, = >0y X'(p) 5%
ing X as a vector or as a differential operator (directional derivative in the

direction (X1(p),..., X" (p))), respectively.

» correspond to view-

As in 2.2.2, let M = S' = {(z,y) € R? | 22 + y?> = 1}, and set V; =
{(cos,sinp) | ¢ € (0,2m)}, 1 : Vi — (0,27), 1(cos¢,sing) = ¢, and
‘/2 = {(COS¢7Sin¢) ‘ 95 € (—71',71’)}, 1P2 : VYQ — (_7T77T)7 ¢2(COS ¢7Sin¢) = 55

—singp
cos

p

V1 V2

With respect to the chart ¥y, at p = (cos ¢, sin ¢) the vector field % is given
by

0 - - - —sin

dp = (Tyyn)~H(er) = Ty H(1) = Dby H(p) -1 = ( 90)

cos
P ¥

Analogously, with respect to ¥s we have:

0] _ [—sing
6¢p_ cos @

at p = (cos @,sin@). By (2.4.6), on V3 N V2 we have

o 0p 0

dpl,  dp 0p

p
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and 95
5 — D(¢ha 0907 (W1 (p)) = 1

since

1 _ ¢ pe(0m)
V2o _WH{@—ZW @ € (m,2m)

Therefore, % = {% on Vi N V5 and we conclude that

9 V;

) G on Vi
X ls]

95 on Dg

is a well-defined vector field on S!. Often one simply writes X = %.

Let f : S1 — R be a smooth function. By (2.4.2) we have (for f a local
smooth extension of f):

(XH)p) = 8‘1 (f)=D(f0¢fl)(@@)=aif(cow,siw)=

= %(cos ©,8in @) - (—sinp) + g—‘;(cos ©,sin @) - cos p =

: 0 0
= (—sing- %—l—cosgw@—y)f.

It follows that % =—singp- 2 +cosp- 6% in the basis {2, a%} >~ ey, ea}
of R=.

In 2.4.13 we identified T, M with the space of derivations Der,(C*(M),R) at p.
Thus for any X € X(M) and any p € M, X, is a derivation at p. The map
C>®(M)> f— X(f), where X(f) :=p+> X,(f) is linear and satisfies

X(f-9)=X(f)-9g+f X(9)

In fact, for p € M we have:

(X(f-9)) = Xp(f-9)
f() X, (9) +9(p) Xy (f)
= (f-X(g9)+g X()p):

Consequently, X is a derivation in the following sense:

2.5.12 Definition. An R-linear map D : C*°(M) — C*(M) is called a derivation
of the algebra C> (M) if it satisfies the following product rule:

D(f-g)=[-D(g) +g-D(f).
The space of derivations on C(M) is denoted by Der(C>(M)).

2.5.13 Theorem. The derivations on C>°(M) are precisely the smooth vector
fields on M: Der(C>®(M)) = X(M). More precisely, every smooth vector field
is a derivation on C*° (M), and, conversely, every derivation on C*°(M) is given by
the action of a smooth vector field.
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Proof. X(M) C Der(C>*(M)) by 2.5.9 (ii) and the above considerations. Con-
versely, let D € Der(C*(M)). Then for any p € M the map C*(M) > f
(D(f))(p) is a derivation at p:
(D(f-9)p) = (D(f)-g+f D9)p) =
= (DN -9(p) + fp) - D(g)(p)-

By 2.4.13 it follows that there exists a unique X, € T, M with X,(f) = (D(f))(p).
Hence p — X, is a vector field on M with X (f) = D(f) Vf € C>(M). X is smooth
by 2.5.9 (ii). 0

2.5.14 Definition. Let X, Y € X(M). The Lie bracket of X and Y is defined as
(X, Y)(f) =XV ) =Y(Xf) (fel™(M))

It follows that [X,Y] : C®(M) — C°(M) is linear and satisfies the product rule, so
by 2.5.13, [X,Y] € X(M).

2.5.15 Proposition. (Properties of the Lie bracket) Let X, Y, Z € X(M), f, g €
C>®(M). Then:

(1) (X,Y)— [X,Y] is R-bilinear.
(i) [X,Y]==[V,X] ([, ] is skew-symmetric).
(i) (X, [V, Z)| +[Y,[Z, X]| +[Z,]X,Y]] =0 (Jacobi-identity).
(i) [£X,gY] = fgIX, Y]+ FX(g)Y — ¥ (/)X
(v) [, ] is local: If Vis open in M, then [X,Y]|, = [X]|,, Y]]
(vi) Local representation: If (1, V) is a chart, ¢ = (z',...,a"), X[, = 10 X' 52,

Yiy,=>r, Yi%, then:

L Y’ 0X* . 9
_ k vk
(X, Y], = ;(’;(X R Y Ok ))3331

Proof. (i), (ii) are immediate from the definition.
(iii) We calculate:

(X, [, 2]l f

Y, 12, X]1f
12, [X, YIS

a1
<

which sums to 0.
(iv) Let h € C*°(M). Then
FXg¥Ih = (FX)(gY ()~ (aY)(FX(h) =
= FX(9) Y+ f g XOYV(R) = £ g VX)) ~gV (£)X (1),
=fg[X.Y](h)
(v) Let f € C>(V). Then X,(f) is well-defined for all p € V (cf. the proof of
2.4.13). Thus the map p — X,(f) is defined on V" and coincides with X|,, (f). An
analogous statement holds for Y. For p € V' we therefore have:
(X Y(f) = XY[f)-Y(X[)= XP(Y|V (f) - YP(X‘V ()=
(X1 (Yly () = (Yl ) (X]y () =
[XTy s Yy lp(f)-
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(vi) Let f € C*°(V,R). Then:

o 0 9] 0 0 0
o 0 = | o)~ 5| (o)
Now
0|  0f | a2 _ —1 —
g o) T | € Do v ) w@) =
=:9;(q)
(2.4.2)

Di(gj o™ ")(¥(p)) =
S
D;Dj(foyp—1)

= D;Di(foy " )(W(p) =

0 0
= 5. Gl
p
S0 [82“ a?cj] =0 Vi, 5. Hence
(v)
[X,Y”V = [X|V’Y|V]*
SN RN
= D.ox &Ci,ZY o5l =
i=1 k=1
D00 S~ ik O O Y 00X 9
i,k=1 — ,
-0
o\ oY" oXt 9
- Z( (Xt =Y )5

In the theory of dynamical systems one analyzes solutions of autonomous ODEs
¢(t) = X(c(t)), where X is a vector field. In applications, X is often not defined
on an open subset of R™. For example, ¢ might be subject to certain ‘constraints’,
i.e., be constrained by some regular equation. By 2.1.8 this means that X is in fact
defined on some differentiable manifold M. Thus we are interested in the ODE

&(t) = X(c(t)) (2.5.3)

with X € X(M).

To begin with we have to clarify what we mean by é(t). For ¢ € C*(I,R"™), ¢(t) is
given by the vector De(t) -1 (where 1 = e; € R). For ¢ € C*°(I, M) we analogously
set

élt) = Tye(1) *2 th(g ).

tl

Since differentiation is a local operation we may write (2.5.3) in local coordinates:

let (¢,V) be a chart in M. The local representation of X with respect to ¥ =
(... 2") is v X :=Tpo X oL

™ T (V) xR

XT Tw*x

M2V —Y s (V)
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Here, 1. X is called push-forward of X under ¢. By (2.5.2), 1, X is the map

n

ze () X (@)e)

=1

(for X|;, = 327 X*52). One often drops the first component in this formula.

Hence locally X is a vector field with components (X' o1 ... X" oyp~1). We

also localize ¢, i.e., we write ¢(t) in the chart ¢: ¢ is the second component of Tc,

applied to 1 (& %). An application of T gives

(TyoTe)(t,1) =T(Yoc)(t,1) = (Y oc(t), D(oc)(t) - 1).
Now D(¢oc)(t) -1 = (¢p oc)(t). Thus with respect to the chart ¢, (2.5.3) reads:

(oc)y(t) = (¥ X)(¥oc(t)), (25.4)
so locally we obtain the autonomous ODE
(ztoc)(t) = (X orp™ ) (hoc(t)) (1<i<n) (2.5.5)
or, with &@ = 2ioc, X' = Xiogp~!
E(t) = XU(e(t)).

To study the global behavior of the solutions of (2.5.3) (the so-called integral curves
of X) we will need the following fundamental existence and uniqueness result for
ODEs:

2.5.16 Theorem. Let F': R x R®™ — R™ be smooth. Then there exists an open
interval I of 0 € R and an open ball U around 0 € R™ such that for each x € U
there is a unique solution c, : I — R™ of the initial value problem

ex(t) = F(t ()
c:(0) = =
The map (t,x) — c,(t), I x U — R™ is smooth.
Proof. See your favorite ODE-course or Dieudonne, Vol. 1, 10.8.1, 10.8.2. O

Based on this result we establish the following fundamental theorem on ODEs on
manifolds.

2.5.17 Theorem. Let M be a smooth manifold and X € X(M). Then

(i) Any p € M is contained in a unique mazimal integral curve of X, i.e., there
is a unique smooth solution ¢, of (2.5.3) with ¢,(0) = p and mazimal domain
of definition (t” ,t5).

(1) If t8 < oo, then limy cp(t) = oo. That is to say, for t — &, the curve

¢p(t) leaves every compact subset of M (and analogously for t* > —occ).

(iit) The set U = {(t,p) | t* <t < ¢} is an open neighborhood of {0} x M in
R x M. The flow of X, defined by FI*X : U — M, (t,p) = cp(t) is smooth

(U is the mazimal domain of definition of FIX). For every p € M the map
t FlX(t,p) = Flfg (p) satisfies the following semi-group property:

FI%, . (p) = FIY (FIX (p))

whenever the right hand side of this equation exists.
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Proof. (i) As we have seen in (2.5.4), in every chart domain (2.5.3) can be trans-
formed into a local autonomous ODE. Thus 2.5.16 implies the existence of smooth
solutions of (2.5.3), i.e., of integral curves of X. Moreover, again by 2.5.16 these
solutions are locally unique, i.e., if two solutions coincide in a ¢-value ty then they
in fact coincide on a neighborhood of tg.

Let pe M, and ¢ : I = M, ¢y : [r = M two integral curves of X with ¢;(0) =
p = c2(0). Then J :={t € 1 NI | c1(t) = c2(t)} is nonempty (since 0 € J) and
closed in I; N I5. By the above J is also open in I1 N 15, so J = I; N I5. Thus ¢; and
co can be combined into a single integral curve on I3 U Is. The maximal integral
curve ¢, through p therefore is defined on (¢, %) = [J{I | 3 integral curve ¢ : I —
M with ¢(0) = p}.

(iii) Since 0 € (t”,¢%) for all p € M it follows that {0} x M C U. Moreover,
FI*(0,p) = ¢,(0) = p. Suppose that FL* (FI1X (p))) exists, i.e., t — FIX(F1X (p)) is
the maximal integral curve of X through FIX (p). Since also ¢ Flf+t(p) is an inte-
gral curve of X with initial value F1* (p), it follows that F1,,(p) = FIX (F1X (p)). By
2.5.16, FI¥ is defined and smooth on a neighborhood of {0} x M. For p € M let I, :=
(t" ) and I/ := {t € R | F1* is defined and smooth in a neighborhood of [0,#] x
{p} (for t > 0) resp. of [t,0] x {p} (for t < 0)}

Then I, C I, 0 € I, and I, is an open interval. We will show that I, = I,,. Suppose
to the contrary that I, C I,.

a
—a~
=

\
0 I]’g 1,

Without loss of generality we may suppose that to := inf{t > 0|t € I, \ I} > 0.
Note that to ¢ I, since I,, is open.
We know that F1¥ is defined and smooth on a neighborhood W of (O,Flfg (p)) €
R x M. We choose some § with 0 < § < tg, and a neighborhood V of p in M such
that

(=6,28) x FIX _;(V) C W

(which is possible since (s, q) — F1X (¢) is continuous) and such that ¢ — Flfgﬂ;(q)
is smooth on V. Then the map

(5,q) — Flf(Fligfé(q)) = Fli:»t()f(s(q)

is smooth on the neighborhood (—d,28) x V of [0, 8] x {p}, so FI* is smooth on the
neighborhood (tg — 29, to +9) x V of [tg — 0, t9] X {p}. Moreover (by definition of ¢g)
to—0 € I, so FI¥ is smooth on a neighborhood of [0,ty — 6] x {p}. Summing up,
FI* is smooth on a neighborhood of ([0,ty — 0] U [to — 8, t0]) % {p} = [0,%0] x {p}.
But according to the definition of II’D this means that t, € I;,, contradicting the
definition of o, which establishes I, = I,.

Hence U = {(t,p) |t € I,} = {(t,p) | t € I,,} is open and F1¥ is smooth on U (both
according to the definition of I,).

(ii) Let p € M, t < co and K a compact subset of M. We want to show that
cp(t) ¢ K for t sufficiently close to ¢.. Suppose to the contrary that there exists
a sequence (t,) with ¢, ~ t} and ¢y(t,) € K for all n. Since K is compact, a
subsequence of (¢, (t,)), w.l.o.g. (¢p(t,)) itself, converges to some p’ € K.

There exists some € > 0 and some neighborhood V' of p’ such that F1* is smooth
on (—¢,e) x V. Choose ng such that ¢, (t,) € V Vn > ng. Since

F1¥ (cp(t,)) = FLY(FLY (p)) = F1Y, (p) = cp(t + tn),

cp(t + tn) exists for all [t| < ¢ and all n > ng. Thus ¢,(s) is defined for s €
(tn —&,tn +¢€) Yn > ng. Choose n > ng such that ¢, > 7 — 5. Then ¢,(s) is exists
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up to t, — 5§ +e =14 + 5 >t contradicting the definition of #/. O

2.5.18 Definition. Let M be a manifold and let X € X(M). X is called complete,
if F1* is defined on all of R x M (i.e., U = R x M).

Completeness of X therefore means that each integral curve of X exists for all times.
From 2.5.17 (ii) we conclude:
2.5.19 Corollary. FEvery vector field on a compact manifold is complete.

2.5.20 Examples.

(i) Let M = R?, and X = 2’2 + 22,2 To determine the integral curves of

X we have to solve the ODE ¢(t) = X (c(t)). Applying (2.5.5) with ¢ = idg:
gives: ¢ = ¢, X = X. Hence we consider

Ao = ael) = )
2) = 2el) = )
c(0) = (a,b) €R?
Thus c(t) = (ae’,be') = F1* (a,b). Obviously, FI, ,(a,b) = FIX(F1,(a,b)).

For (a,b) = (0,0) it follows that ¢(t) = 0 since X (0,0) = (0,0). (0,0) is called
a critical point of X (i.e., zero of X).

(a,b)

Every integral curve of X is defined on all of R, so X is complete.

(i) Let M =R? and X = e~* ;2. Using the chart ¢ = idg= we obtain

&) = e
At = 0
c(0) = (a,b)

Thus ¢(t) = (log(t + expa),b) = FI;* (a,b) (it is easily verified that the flow
property Flt)j_s(a,b) = FIX (F1¥ (a,b)) holds). ¢ is defined on (—e®, 00) C R,
so X is not complete.

(iii) (cf. 2.1.7 (ii)).
Let M = 52, 4 : (z,y,2) = (cos ¢ cosb,sinpcosb,sinh) — (4,0) = (1, 4?),

—_—

and M := ¢~ 1((0,27) x (=5, %)) Opgcn M. Let X on M be given, with respect
to v, by
0 0
X=¢—+ =
%96 T 90
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In (2.5.5) we have X'(¢,0) = ¢, X2(¢,0) = 1, &(t) = (6(t),0(t)). (Note that
X cannot be extended smoothly to S? since ¢ has a jump.) Hence (2.5.5)
reads:

o) = o)
(t

0t) = 1
(¢(0),0(0)) = (¢o,0b)

Thus ¢(t) = (¢(t),0(t)) = (¢oet, t + bp), so
c(t) =¥t o &(t) = (cos(gpet) cos(t + 0y), sin(poet) cos(t 4 b)), sin(t + 6p)).
X € X(M) is not complete.

2.5.21 Remark. Let M* be a k-dimensional submanifold of R". Then X(M) =
{X M —>R"|X C®and X, € T,M Vpe M}.

Proof. Let X € X(M). Then X, € T,M Vp. Locally (with respect to a
parametrization (¢,U)), X is given by

koo 9
ZX’(w(w)) o

X(p(x))

e(z)

k
> X(p(a) Digla)

(cf. the remark preceding 2.4.12). Hence X o ¢ is smooth since X¢ and ¢ are. But

then X is smooth by 2.1.13 (i) and 2.1.15.

Conversely, let X : M — R" be smooth and suppose that X, € T, M for all p € M.

Then X is a section of TM and it remains to show that X is smooth. To this end

we employ 2.5.9 (ii): let f € C°°(M) with local smooth extension f. Then X (f) is

locally given by p — X, (f) = T, f(X,) = Df(p)Xp which clearly is smooth on M.
O

Caution: Note that the X', ..., X* should not be confused with the n components
of X as a vector in R"!

2.6 Tensors

Heuristically, if we want to determine the area of a curved surface, or, more gen-
erally, the volume of some submanifold, we first have to approximate the surface
‘infinitesimally’ by its tangent space, then determine the area of these approximat-
ing spaces and then sum (resp. integrate) up the results.

/

Thus we first need a way of assigning volumes to parallelepipeds in vector spaces. A
map w which assigns a volume to a parallelepiped with edges u, v, w should possess
the following properties:

(i) w(ou,v,w,...)=w(u,v,w,...) ="+ =a- -w(u,v,w,...)
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(i) w(ug + ug,v,w,...) = w(uy,v,w...) + w(uz,v,w,...), and analogously for
v,w,. ..

(111) w(u,u,w7...)zw(u,v,v,,,,):...zo

Since 0 = w(u + v, u+v,w,...) =w(u,v,w,...)+w(v,u,w,...), (iii) is equivalent
to w being antisymmetric (or skew-symmetric).

Due to (i),(ii) we have to consider multilinear mappings on vector spaces (in partic-
ular, on T, M). The skew-symmetry (iii) will be taken into account in the following
section. We therefore begin this section with a crash-course in multilinear algebra.
In what follows let Eq,..., E, E, F' be finite-dimensional vector spaces. Then by

Lk(El, ..., Ei; F) we denote the space of multilinear maps from E; X --- X Ej, to
F. An important special case is (k = 1): L(E,R) = E*, the dual space of E, i.e.,
the vector space of linear functionals on E. If Bg = {e1,...,e,} is a basis of E,

then the functionals defined by

. 1 =4

...,n) form a basis of E*, the dual basis of Bg. For each e € E we have
e ', a‘(e)e; and for each o € E* we get o = Y- | a(e;)a’. The bidual space
E** = (E*)* is canonically isomorphic to E: the map

i:E — FE*
ile) = _a —ale)
€eE*

is a linear isomorphism.
2.6.1 Definition. Let E be a vector space. Then
TI(E):=L""(E*,...,E*,E,...,E;R)
———— ——

is called the space of r-times contra- and s-times covariant tensors, or, for short,
(7)-tensors. The elements of Tr (E) are called tensors of type (7).

S

Fort, € TI*(E), ty € T2(E), the tensor product t| ®ty € T2 (E) is defined by:

s1+52
tr @ta(BY, . B Y s fas Gl sy)
=18 B fry e fa) ct2 (Y Y01, sy)

(89,79 € E*, f;,9; € E).

Clearly, ® is associative and bilinear.

2.6.2 Example.

(i) By definition, T9(E) = L(E,R) = E* and T}(E) = L(E*,R) = E** = E.
Elements of E (vectors) therefore are (é)—tensors7 elements of E* (often called
co-vectors) are (V)-tensors.

(i1) Let E be a vector space with scalar product g(e, f) = (e, f). Then g is a
bilinear map g : F X E — R, i.e.; a (g)—tensor.

2.6.3 Proposition. Let dim(E) =n. Then dim(T7(E)) =n"*s. If {e1,...,en} is
a basis of E and {a?,... o™} is the corresponding dual basis, then

Bg ::{6i1®~~®eir®ajl®~~~®Ozj5

1 <iig, jr <n}

is a basis of Tt (E).
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Proof. B is linearly independent: let

Z t]l ]621 '®€ir®aj1®...®aj5:0
7’1) 77fr
J1y-erds  ER
Insertlng ( ...,akr’ el“...,els), then since ai(ej) _ ej(ozi) _ 5ij t follows that

all t“ Z]T vanish.
BL generates T7(E): each t € T7(E) can be written as follows:

t= Y ta",... a7 e, )6 @ e, @0 @ ®al.
To see this, it suffices to show that both sides of this equation define the same mul-

tilinear map. Let ' = Y Al o’ ..., 37 =3 A o' € E*, and x; = Sudteg s,
xs =y plre;, € E. Then

1 Is 2
(B, ..., 8", T E )\ . coplt(at A e, eg))
?17 11.7“
J1s--50s
i ir j js (81
= E tla', ... o' e, ..., )e, @ Qe ®alt@---@al(B7,..., )
215-- 717'
J1se0s
a

Every linear map ¢ : F — F possesses an adjoint map ¢* € L(F*, E*): for § €
F*, e € E one sets p*(B)(e) := B(p(e)). If A is the matrix of ¢ with respect to
bases of E resp. F, then A! is the matrix of ¢* with respect to the corresponding
dual bases of F* resp. E*.

More generally, we now want to assign to any ¢ € L(E,F) a linear map ¢! €
L(TI(E), Tr(F)). If ¢ is a linear isomorphism we may combine such a map from ¢
and ¢*:

2.6.4 Definition. Let p € L(E, F) be bijective. Then T () = ¢ € L(TTE,TT'F)
is defined as

(i) (B, BT, frye o fo) = (9 (BY), - 0™ (B), 07 (1), -, 907 (£))

forteTI(E), BY,....8" € F*, f1,...,fs € F.

2.6.5 Example. ¢ : E = Ty (E) = T5(F) = F, g5(e)(8) = e(¢*(8)) = ¢(e)(8).
Thus we may identify f with ¢.

VBT =TY(E) - TY(F) = F*, @) (f) = ale™(f)) = () (@)(f), so we
may identify ¢§ with (p=1)*.
It follows that TT¢ = ¢ is a simultaneous extension of ¢ and (¢~1)* to general
tensor spaces.

2.6.6 Proposition. Let ¢ : E — F, ¢ : F — G be linear isomorphisms. Then:
(i) (o), =l o]
(ZZ (ldE) ider(E)

1_

)
)
(iii) @ : T'E — TT'F is a linear isomorphism, and (¢7)~ = (p~1)7.

(iv) Ifty € TIH(E), ty € Ti2(E), then ¢ {2 (0 @ ta) = 5t (t1) © @22 (t2).
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Proof. (i) We first note that for v € G*, e € E we have
(@™ 0 ™)(V)(e) = (™ ("(M))(e) = P" (N (p(e)) = 1(¥(p(e))) = (¥ o ¥)"(7)(e)-
Now let 41, ....,v" € G*,g1,...,9s € G and t € T"(E). Then

(A ) [ O 91,---,98)

(SO ( ))( "'7w*7ra’l/}71(g1)7'"awil(gs))
= t(p (d)*Vl) @ (W) T W T ), e T (W T gs)))
—— —

(Pow)*y?t (Yow)~1(g1)
= ((w o @)Z(t))('}/l? s a’yragh s 798)'
(ii) Since id' = idg and id}, = idg- this is immediate from the definitions.

(%il) follows from (i) and (ii).

(iv)

EUT(t @) (B BT S fetss)
= (t ®t2)(<P Bl @ B 0T (1) 0 (ferrsn)
=t ("B @ B e ()T ()
ta(e* B e B 0T (fag1)s 0 (fertss)
= (pit1) ® (¢ ”152)(51 BT ferss)-

a

To simplify notations, in what follows we will employ Einstein’s summation con-
vention: for every index which appears both as an upper and as a lower index,
summation is carried out over its entire set of values. Thus, instead of

i . .
E tla 611 '®€ir®0¢ﬂ®"'®a]s

?17 'L'r

J15-e-90s

we simply write t;llzr i, ® - -®e;, @I ®- - -®ads. Deviations from this convention
will be mentioned explicitly.

Our next aim is to extend the above constructions of multilinear algebra to tangent
vectors, i.e., to elements of certain vector bundles. To carry out this transfer we
first consider the case of local vector bundles.

2.6.7 Definition. Let ¢ : U x F = U’ x F', ¢(u, f) = (¢1(u), p2(u)f) be a local
vector bundle isomorphism (cf. 2.5.5 (i)). Then define ¢ : U x T'F — U’ x TTF’
by

po(u,t) = (p1(u), (p2(u)s(t))  (teTF)

Note that @2 (u) is an isomorphism for each u, so (2 (u))% is well-defined.

S

2.6.8 Lemma. Under the assumptions of 2.6.7, o5 : U x TTF — U' x TTF' is a
local vector bundle isomorphism.

Proof. By 2.6.6 (iii), every (p2(u))?} is a linear isomorphism. Hence ¢} is bijective
and it remains to show that (u,t) — ¢ (u,t) is smooth (it then follows that also
(7)™t = (p~1)7 is smooth). Clearly, ¢; is smooth.

Concerning ¢, we first note that on the space L(F, F’) of linear maps (i.e., matrices)
the map ¢ — ¢* (= A — AY) is linear, hence smooth. Moreover, the space of
invertible matrices GL(F, F') is open in L(F, F") (since GL(F, F') = {A € L(F, F’) |
det(A) # 0}) and ¢ +— ¢! (corresponding to A — A~1)) is smooth on GL(F, F")

54



by the inversion formula for matrices. Thus the maps u + @2(u)* and u +— @o(u) ™!
are smooth. Moreover, the maps iy, i} : (8Y,... 8", fi,..., fs) = B¥ resp. — fy are
linear, hence smooth as well. Summing up,

(we) = (pa(w))i() = 1 1
(u?t) — (t7@2<u)*7"-a‘PQ(U)*54p2(u)_ 7"-a§02(u)_ )
B to(pa(u)  odr,. . pa(u)* 0dr, pa(u) o, pa(u) T o))
is smooth since also the last of the above maps is multilinear, hence C*°. a

After these preparations we may now assign to any vector bundle E the correspond-
ing (7) tensor bundle, which has precisely the (E})7 as fibers:

S

2.6.9 Definition. Let (E, B,7) be a vector bundle, with E, = w—1(b) the fiber over

b. Then let
TI(E) = || TI(By) = [J {0} x (By);
beB beB
be the (7)-tensor bundle over E. Let 77 : TT(E) — B, wi(e) = b for e € T (Ey)
denote the canonical projection. For A C B let T{(E)|, = |y 4 T3 (Eb).

We wish to turn T7 (F) itself into a vector bundle with basis B. To this end we will
produce vector bundle charts for T7 (E) from those of E, according to the following
pattern:

2.6.10 Definition. Let E, E' be vector bundles and f : E — E’. [ is called
a vector bundle homomorphism, if for each e € E there exists a vector bundle
chart (U, W) around e and a vector bundle chart (¥, W') around f(e), such that
fW) C W' and fyrg := W' o f oWt is a local vector bundle homomorphism (cf.
2.5.5 (i)). If f in addition is a diffeomorphism and f|g, : Ep — E} p is a linear
isomorphism for all b € B then f is called a vector bundle isomorphism. In this
case we define I : TTE — TTE' by

fsTITST(Eb) = (flg,)s Vb€ B

It is straightforward to check that a smooth map f : E — E’ is a vector bundle
homomorphism if and only if f is fiber-linear, i.e., if and only if f|Eb By — E}(b)
is linear for each b € B.

2.6.11 Examples.

(i) Let M, N be manifolds and f : M — N smooth. Then Tf : TM — TN is a
vector bundle homomorphism. In fact, by 2.5.4 we have:

ToTfoTe Hax,w) = T(pofop ') (z,w)
= (o fop Hz), Do fop ") (z)w).

If f is a diffeomorphism then T'f : TM — TN is a vector bundle isomorphism.

(ii) Let E be a vector bundle, and (¥, W) a vector bundle chart of E. Then
V. W — U x R" is a vector bundle isomorphism. This holds, in particular,
for E =TM and ¥ = T, where v is any chart of M.

2.6.12 Theorem. Let (E,B,w) be a vector bundle with vector bundle atlas A =
{(Po, Wy) |« € A}. Then (TTE, B, n%) is a vector bundle with vector bundle atlas
AL = {((Ya)s, (T3 E)lyw. ) | a € A}. (TYE, B, ) is called the tensor bundle of
type (1) over E.
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Proof. Clearly the (75 E)|y, ~p form a covering of Tj E. Let ¥,, Vg be vector
bundle charts from A with Wy := W,NWjg # (. Since Ely, .o = Upew,,np{b} <
Ey, it follows that ¥, is of the form U, (b,e) = (¥a1(b),a2(b) - €), with b € B,
e € Ey, and 1)42(b) linear for each b. Therefore, (¥,)" can be defined as (b, ) —

(a1 (b), (a2 (B))]8) (¢ € TT(E)). )
Then

VoW (z,w) = V(b (2),Paz(b)” w)
=:b
(Yp1(ar (2)), Y2 (b)haz(b) " w)
= (Vga1(T), Ypaz(®) - w).

Hence by 2.6.6 (i) and 2.6.7,

(T5)s 0 (o)) 7' (@,t) = (¥p)i(¥ai (2), (Wa(b)T)L(t)
= (W1 (V51 (@), (Ws2(b)Paz(b)TH)L(t))
= (¥go1(2), (Ypaz(2))i(t)) = (¥ 0 T1){(x, 1),

which, by 2.6.8, is a local vector bundle isomorphism. Thus 77 (E) is a vector
bundle. As in the proof of 2.5.3 (for TM) it follows that 77 (E) is Hausdorff and
second countable. O

For us the most important special case of this construction is £ = T M:

2.6.13 Definition. Let M be a manifold. Then TI (M) := TT(TM) is called the
bundle of r-times contra- and s-times covariant tensors on M (resp. of tensors of
type (7). T*M :=TY (M) is called the cotangent bundle of M.

By 2.6.5 we have Ty (M) = TM: in fact, 7~ !(p) = T,M Vp and T} (T,M) = T,M.
For each chart v of M, (Tv)} = T.
IfA={(¥a,Va) | a€ A} is an atlas of M, then by 2.6.12,

As = {(Ta)s, (TEM)y,) [ o € A}
is a vector bundle atlas of T M

2.6.14 Definition. Smooth sections of T*M (i.e., smooth maps t : M — TTM
with 77 ot = idar) are called (7)-tensors (resp. (7)-tensor fields) on M. The space
(M, TrM) of (%)-tensor fields is denoted by T (M). In particular, Tg-(M) =
X(M). We also write QY (M) instead of T (M). The elements of Q*(M) are called

differential forms of order 1 (1-forms, covector fields).

Ift € T (M) and f € C®(M), then ft:pw— f(p)t(p) € (T,M)7 is a tensor field on
M. Then 7] (M) with the pointwise operations +, f- is a C*°(M)-module.
As in the case of X(M) = T3 (M) we also want to derive local representations of

general tensor fields in charts. We first consider the special case Q' (M) = TP (M) =
T(M,TPM). As a set,

M = | | (T,M)" = | {p} * (

peM peEM

The vector bundle charts of TY M = T*M are of the form (T4)} : TP M|, — (V) x
(R™)? = (V) x (R™)* for any chart (,V) of M. As in the case of TM = T4 M
we want to use the vector bundle charts to define a basis of (T,M)*. Recall that
for T,M in this way we derived the basis { 52; » | 1 < i < n}, where 5% ,

(pr)_l(ei)v Le., % =pr (T’L/J)_l(’(/J(p),ei).
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In the case of TP M let {a? | 1 < j < n} be the dual basis of {e; | 1 < i < n} in
(R™)*. Then for any p € V the family

da’ = [(T)}] " (W (p),a’) (1 <i<n)
is a basis of (T, M)*. We have

da'| = [(T9)}) 7 (e(p), o) =
(. [(T)3) 1)) *2° (b, (L)~ 1))~ H(a?))

= (0 (L) (). (2.6.1)

Since dxj‘p € (T,M)* and 32

» € T,M, we can apply dxj|p to 6‘2,, e

0

dz’ |p ( p
P

) = (L) (@) (Tw) " (en) =
= A(LY((T) ™ (e))) =

= (&) =0y

It follows that {dz? ‘p | 1 < j < n}is precisely the dual basis of { 52
in (T, M)*.
Another way of looking at dz? results from the following definition:

p|1§i§n}

2.6.15 Definition. Let f € C>°(M). Then df : M — T*M, p— T, f is called the
exterior derivative of f.

2.6.16 Remark. (i) df € T°(M). In fact, for any p € M, T,,f € L(T,M,R) =
(T, M)*. Moreover, df is smooth since for any chart ¢ around p we have (setting

Y(p) = x):

(T odf o™ () = (2,(Ty) ) o Tpf) = (2, Tpf o (Tph) ™)
= (@, Te(foyp™") = (z,D(f oy~ ")(x))
(T)8

WM (V) x (R")*

dfT Tide(fow_l)
M2V —t (V)
(ii) If f € C*>°(M) and X € X(M), then for allp € M, X, € T,M and df|, € T, M*,
so df (X) :=p > df|,(Xp) : M — R is well-defined. We have:
df‘p (Xp) = Tpf(Xp) = X(f)'p .

Thus df (X) = X(f). In particular, df (X) € C>(M).
(iii) Let (v, V) be a chart, ¢ = (z',...,2"). Then d(x?) in the sense of 2.6.15 is
precisely the above dx’. Indeed, by (ii) we have

0 0

— I = §: s
8xi)_ 3:1:1'(&j ) =%

d(a7)(

ie., {d(@?) |,| 1 <j < n} is precisely the dual basis of {%
peV.

p|1§i§n}f0rall
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If (,V) is a chart of M, ¢ = (x!,...,2™), then for all p € M the tuple {% . |
1 < i< n}isa basis of T,M and {dxj|p | 1 < j < n} is the corresponding dual
basis of T, M*. Thus, by 2.6.3, for any p € M the tuple:

0
{ Oz

p

p|1Sik,ijn}

—| ®da’| ® - ® da’
axlrp p

is a basis of (T, M);. Hence if ¢ is a section of Ty M then there are uniquely
determined functions ¢} on V' such that

'.75
" _til..‘ir 9 d J1 d Js 2.6.2
|V_j1~~jsaxi1®”.®8xir® T Q- ar (2.6.2)

(cf. the special case of vector fields in 2.5.8: X||, = Xi%.) As for vector fields
we also have a characterization of smoothness for tensor fields in terms of local
coordinates:

2.6.17 Proposition. Let t be a section of the bundle TT(M). TFAE:
(i) t is smooth, i.e., t € T (M).

1.0y
J1--Js

Proof. Let (¢, V) be a chart of M. Then (T%)" is a vector bundle chart of 77 M.
By definition, t is smooth if and only if the push-forward 9.t := (T¥)" ot oap™! :
(V) = (V) x (R™)7 is smooth for every chart .

(i) In every chart representation (2.6.2) all coefficient functionst are smooth.

TIM AT (V) x (RY);

A I

MOV —Y (V)
For z € (V) we have (setting p := ¥ ~!(z)):

r - (2.6.2) P 9
(Ty)yotoyp™(x) =" (TY)5(t 7 (p) 5| @ ®da|)
P
= @ O () 2| @@ da] )
- ) p s\ j1...Js p 8mi1 x P
P
2.6.6(iv) i1 9 B
= (=t (p) (pr)é(ﬁ )@@ (L) (da?])
—— 0T p ——
=Ty (Tpw)*) -1
= (@t @)e, ®-- e, @ @@ al)
€(R™)7

This map is smooth if and only if all tjllé“; o4~! are smooth, i.e., if and only if all

ti ' are smooth on V. O

Ifte 7/ (M) and a?,...,a" € QY(M), X1,...,Xs € X(M), then

pt(p)(a'(p),....a"(p), X1(p),.... Xs(p))

is a well-defined function M — R which we denote by t(al,...,a", X1,...,X,).
For f € C*°(M) we have

t(fat,a?,...) =ta', fa?,...) = - =ta', ..., fX,) = ft(a',..., X,).

Thus (al,...,a", X1,..., X) = t(at, ..., X,) is C°°(M)-multilinear.
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2.6.18 Proposition. Let t be a section of the bundle T, (M). TFAE:
(i) t is smooth (i.e., t € T](M)).
(ii) Yal,...,a" € QY(M),VX,..., X, € X(M), the mapt(al,...,a", X1,..., X;)
is in C°(M).

Proof. Let (1,V) be a chart in M, ¢ = (z1,..., 2").
(i)=(ii): Let X\ = X Bfak (1<k<s),a™=ay dz’ (1 <m <r) be the local

representations with respect to 1. By 2.6.17, all coefficient functions X;-lj, aéi,

tgll ’j{ are smooth on V. Hence so is

0 0
1 — 1 s ai g by b, _ -
tla', ..., Xy) = ap, ooy X X t(da™ L de ’81”“1""’(%%)
(2.6.2) 1 T ay asbi...b
- abl ...OszXl "'XS tall___ars.

(ii)= (i): By 2.6.17 we have to show that t;llz’; is smooth on V for all iy,...,1,,

J1s---,Js- As in the proof of 2.5.9, (ii)=(iii), we extend dx™,..., % to elements
of Q1(M) resp. X(M). Then t;llz”; =t(dx™, ..., (’)m%) is smooth by (ii). O

The above observations lead to the following algebraic characterization of smooth
tensor fields. Let

LEES (1) x -+ QL(M) x X(M) x - x X(M),C>(M))

T S

be the space of C> (M )-multilinear maps from Q! (M) x - x QY (M) x X(M) x - - - x
X(M) to C*°(M). Then we have:

2.6.19 Theorem. The map
ACTIM) = Lgis,, (@UQ) x - x X(M),C%(M))
t = (o 0" Xy, X)) = el X))

is a C*°(M)-linear isomorphism.

Proof. By 2.6.18, for all t € T/ (M), A(t) € LZJ;S(M)(Ql(M) XX X(M),C°(M))
and clearly A is C*°(M)-linear.
A is injective: If A(t) = 0 then for all p € M and all o, ..., X, we have t(p)(a*(p),
.., Xs(p)) = 0. All elements of T, M resp. of (T, M)* can be written in this way
(i.e., are of the form X;(p) resp. o/ (p) for certain smooth fields X;, a’: this is seen
by extending any given constant (co-)vector to a smooth field using a partition of
unity, cf. the proof of 2.5.9, (ii)=(iii)). Hence it follows that t(p) = 0 Vp, i.e., t = 0.
A is surjective: Let ® € LZLS(M)(Ql(M) X o X X(M),C>®(M)). We have to show
that there exists some t € T (M) with A(t) = ®. To this end we first demonstrate
that ®(al,.. .,Xs)‘p depends only on al(p),..., X(p). It suffices to show that

at(p) = 0 implies ®(al,... ,XS)|p = 0 (and analogously for o?, ..., X,). This we
do in two steps
1) If V is an open neighborhood of p and 041"/ =0, then ®(al,... ,XS)|p =0
(i.e., ® depends only on the local behavior of al). Choose an open neigh-
borhood U of p such that U C V. By 2.3.14 there exists a partition of unity
(X1, X2) subordinate to {V, M \ U}. Then a! = x5 - a!, and therefore

CI)(ozl,...7Xs)|p = q)(xgal,a27...,Xs)’p = x2(p) <I>(a17a2,...,Xs)‘p =0
——

=0
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2) Now let al(p) = 0, let V be a chart neighborhood of p, and write a! v =
a]ldxj. Then by 1),
‘Il(ozl,...,Xs)| = @(ajl»dxj,()zQ,...,Xs)|p

1 i 2 —
aj(p) ®(dz’, ,...,XS)’p—O

Therefore, for each p € M we may define some ¢(p) € (T, M)" by

t(p)(at(p),..., Xs(p)) := ®(a,... ,Xs)|p.

(Recall that all elements of T,M* x --- x T, M can be written in this way, as
was demonstrated above). Thus ¢ is a section of TP M. By construction, for
all o' € Q(M) and all X; € X(M) we have t(al,..., X;) =®(al,..., X;) €
C>®(M),soteT](M) by 2.6.18. Obviously, A(t) = @, so A is onto.

d

All standard operations of multilinear algebra can be transferred fiber-wise to tensor
fields. We have already encountered the following:

o feCH(M), teT](M)= f-t:=p f(p)-tp) € TS (M)

ot c Tr(M), at,...,a" € QY (M), X1,..., X, € X(M) = t(at,...,X,) €
Co(M)

Moreover, for t; € T/ (M), tp € T/2(M) the tensor product ¢; ® to € T 42 (M)
is defined as
t1 Qto i pr—t1(p) @ ta(p)

t1 ® to is smooth by 2.6.17 or also by 2.6.18.

2.7 Differential Forms

In this section we wish to study alternating multilinear forms, first in the vector
space setting and later on vector bundles.

2.7.1 Definition. Let E be a finite dimensional vector space and A*E* := L’;lt(E, R)
the space of all multilinear alternating maps from E¥ = E x --- x E to R.

2.7.2 Remark.
(i) t € L*(E,R) is called alternating if
t(fla7fl)7f]aafk) :_t(flvf]77flaafk) (1 SZ<] Sk)

Let Sy = {¢ : {1,...,k} — {1,...,k} | © bijective } be the permutation
group of order k. Then for o € Sy and t € A¥E* we have

t(fo) s fory) = sgn(o)t(f1,. .., fx)

For 0,7 € Sk, sgn(oo7) = sgn(o) -sgn(r). Since Sy is a group, for all 79 € Sk
the map 7 — 707y : S, — Sk is a bijection.

(ii) We set A°E* = R. Moreover, A'E* = L1 (F,R) = L(E,R) = E*.

(iii) A¥E* is a subspace of T (E), the space of all multilinear maps Ex---xE — R.
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2.7.3 Definition. The map Alt : TP (E) — TP (E),
AW, fo) = 7 O (@) oty Fow)
oSk
15 called alternator.
2.7.4 Lemma. Alt is a linear projection of TP (E) onto A*E*, i.e.,
(i) Alt is linear, Alt(TQ(E)) C A*E*.
(ii) Alt|pn e = idprpe.
(iii) Alt o Alt = Alt.
(iv) AG(TY(E)) = AkE*.
Proof. (i) Clearly, Alt is linear. Let t € T{(E), 7 € Sg. Then

1
Al (frys- s Frm) = 4 > sgn(0)t(fro1)ys - Fra(r)

€Sk

1
= Z sgn(7)sgn(7 o o)t(froys-- - fra(k))

: oESk

= sgn(7)AL)(f1,--. fr)-
(ii) If t € AFE*, then
Alt(t)(fla vy fk) = % Z Sgn(o—)t(fa(l)a vy fo(k)) = t(fla ceey fk)
" o€eSy

(iii) and (iv) follow from (i) and (ii). O

2.7.5 Definition. Let o € TQ(E), 8 € TP (E). The exterior product (or wedge
product) of « and B is defined as

(k+1)!
el

Fora € TVE =AE* =R wesetaAf=LBANa=a-}f.

alp = Alt(a® )

2.7.6 Example. Let o, 3 € A'E* = TY(E) = E*. Then

21 1

g€Ss

(a®ﬁ)(f17f2) - (a®ﬁ)(f2afl) = (a®ﬁ_ﬁ®a)(fl7f2)'

2.7.7 Proposition. Let a € TQ(E), B8 € TP(E), and v € TS, (E). Then:

(aNB)(fi, f2) = sgn(o)(a ® B)(fo1), for2))

(i) aNB=Alt(a) A =aAnAl().

)
(i) A is bilinear.
(iii) a AB = (—1)*BAa.
)

(iv) A is associative: a A (BAY) = (aAB)A~.
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Proof. (i) For 7 € Sy and o € T (E) let (7o) (f1,---, fx) = a(fr(1)s---» frr))-
Then

Alt(Ta)(flv"‘vfk) = | Z Sgl’l flTT a"'?fn*r(k))
.UESk
= sen(r) sy 3 san(om)alfrrys - for)
’ g€Sk

sgn(7T)Alt(a)(f1,- .., fr)-
Therefore,
Alt(Ta) = sgn(r) - Alt(a). (2.7.1)

Using this, we obtain

Alt(Alt() @ B)(f1,- - forr) = ALL(AL (@) (f1, - fo)B(Fret1y - s frti))
= Alt(% > sen(r)alfrys o Fr)BUrits oo frir)

" TESK

= Alt(y Y senlr)(70) @ B)(fr, - fesr)

" TESK

_ % 3 sgn(r)Alt((7a) © B)(fi, -« -+ frrt) = (%)

.TGSk

We define 7/ € Sk, by
7. k40 = (), ..., 7(k),k+ 1, k+1).
Then sgn(7') = sgn(7) and (ta) ® 8 = 7/(a ® ). Therefore,

(x) = ,ngn JALE(r (@ @ B8))(f1s- -+ frsi)

" TESK

271) Alt(a ® B)(f1,-- - frtr)

so Alt(Alt(a) ® B) = Alt(a ® 8), and Alt(a) A B8 = a A 8. The second equation in
(i) follows in the same way.

(ii) is clear since ® is bilinear and Alt is linear.

(iii) Let 0¢ € Sk41 be given by oo(1,...,k+1) = (k+1,...,k+1,1,...,k). Then

sgn(og) = (—1)"" and a @ 3(f1,-~-,fk+l) B a(foo(1)s--s fooktt)). By (2.7.1)
this entails

ahfp= (kkml) Alt(a® B) = (kkwl) Alt(oo(f @ @) = (DB A a.
(iv)
rery = EE nansey @ LG A gy

4 m) (k14 m)!
= Tl R+m) Alt(%i,)@_@)
a®fB)Ry

(ke ltm) (k+ Dim)
= iml (heiem) AN
(k+ !

k!

—~
.
=

Alt(a® ) Ny = (@ AB) Ay

=aNnf
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2.7.8 Definition. AE* = @2020 A*E* with the operations +, \- and A is called
the exterior algebra (or Grassmann algebra) of E.

As we shall demonstrate in a moment, A¥E* = {0} for k > n, so in fact

E* = é} AFE™
k=0

To prove this we need the following auxilliary result:
2.7.9 Lemma. Leta',...,a* e A'E* = E* and fi,...,fr € E. Then
(@ A A (fryee fi) = D sen(0)at (fo) -+ - 0 (forry)
o€Sk

Proof. We have to show that
' A Ak =K Alt(er @ - @ aF)
This we do by induction, the case k = 1 being obvious. For k —1 — k we calculate:

2.7.7(iv)

ol Ao AR al A (a? ~/\ak):

E—1)lar AAlt(e? @ - ® aF) =

ind.hyp.
2.7.7(i)

(k; 1+ 1)

(
(k—Dla* A (e ® - ®ak) =
( (k—1)N!

k—1)! Alt(at @ ah)

2.7.10 Proposition. Let n = dim(E). Then dim(AFE*) = (}) for 0 < k < n.
For k > n, A*E* = {0}. Therefore, dim(AE*) = > () = 2" If {e1,...,en}
is a basis of E and {al,...,a"} is the corresponding dual basis, then B := {a’t A
CAQ 1<) < --- < < n}ois a basis of AKE*.

Proof. B spans A*E*: Let t € A¥E* C T?(E). By 2.6.3, t is of the form
t=tlei,...,e,)a" @ - @a

By 2.7.4 (ii) and 2.7.9,

A , 1 . ,
t=Alt(t) = t(ei, ..., e, )AlE(@" @ - @a™) = Steq, ... e )a A ANa'

k!

Since t is antisymmetric, all terms in this sum where two indices coincide vanish.
In particular, ¢t = 0 for k > n (so A*E* = {0} Vk > n). If all i; are distinct, then
for any o € S we have

t(eiy, .y eq )at A Aot = sgn(a)zt(eia(l) b ,eio(k))aif’(l) A Aade®

There are k! such terms, so:

t= E t(€iyy.-sei )™t Ao Aok
1< < <ipg<n
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B is linearly independent: let

Z tilmikail /\"‘/\Oéilc =0.
1<ip <+ <ip<n
We have to show that all ¢;, ;, vanish. Let 1 <4} < --- <4}, <n be some fixed k-
tuple and choose j;_ | < --- < j;, such that {7, ..., 4 }U{ji 1, 0} = {1,...,n}.
Then by 2.7.7,

0

. . -/ -/
= g biy in QP A Aa™* ANadR+t A Aadn =
1<ip < <ipg<n

Since a! A--- Aa™ # 0 (by 2.7.9, o' A -+ A a™(er,...,e,) = 1), it follows that
ty o =0. O
1%k

2.7.11 Definition. Let dim(E) =n, w € A"E*, w # 0. Then w is called a volume
element on E. Two volume elements wy, wo are called equivalent if wy = ¢ - ws for
some ¢ > 0 (recall that Aim(A"E*) = 1). An equivalence class of volume elements
on E is called an orientation of E.

2.7.12 Proposition. Let dim(E) = n, and ¢ € L(E, E). Then there is a unique
number det p € R, the determinant of ¢, such that for the pullback-map
e A"E* — A"E*
(P w)(fr, fu) = wle(f), - 0(fn)
we have p*w =det ¢ - w, for allw € A"E*.

Proof. Obviously, the map ¢* is linear: A"E* — A"E*. By 2.7.10, dim(A"E*) =
1. Thus with respect to any basis {wg} of A"E*, ¢* is given by a 1 x l-matrix
¢ € R. Hence for any w = a - wy we have p*w = ¢ - a - wg, and we obtain det ¢ := c.

O

2.7.13 Remark. The determinant in the sense of 2.7.12 is precisely the homony-
mous number from linear algebra: let B := {ey,...,e,} be abasis of E, {a!,...,a"}
the corresponding dual basis, and set w := a' A --- A a”. Then

deto = detpw(er,...,e,) =@ wler,...,en) =w(pler),...,plen))
2.7.9 n
= Z SgH(O’)Oll (‘p(ea(l))) """ « ((p(eo(n)))
ocES,
= Z sgn(0)P15(1) - - - Pro(n)
O’ESn
where (¢;5)i,; is the matrix representation of ¢ with respect to B. O

2.7.14 Definition. Let ¢ € L(E,F), a € TY(F). The pullback of a under ¢ is
defined as p* : T)(F) — TQ(E),

o (a)(er, ... ex) :==al(pler),...,pler)) (e1,...,ex € E).

If ¢ is bijective, then the push-forward ¢, : TX(E) — TP(F) is defined as ¢, =
(o™Y)*. Thus, for a € T)(E),

<P*(Oé)(f17~-~,fk) = O‘(‘pil(fl)v"'?(pil(fk)) (flﬁ"'vfk € F)
Then @. = @Y in the sense of 2.6.4.
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2.7.15 Proposition. Let ¢ € L(E,F), ¢» € L(F,G). Then:
(i) ¢* 1 TY(F) = TY(E) is linear and ¢*(A*F*) C AFE*.
(1) (o) =" oy
(iii) If p = idEg, then ¢* = idpo ().
(iv) If ¢ is bijective, then so is p* and (¢*)~t = (p~1)*.
)

(v) If ¢ is bijective, then so is ¢. and ()"t = (0™ Y)«. If 1 is bijective, then
(Yo @)s =ty 0@y

(vi) If o € AFF*, B € ALF*, then ¢*(a A B) = p*a A p*B.

Proof. (i) and (iii) are clear.

roof.
(il) (o) aler, ... ex) = a(@(pler)), ..., ¥(pler))) = (W a)(pler),.. ., plex)) =
e (Yra)(er,. .. ex).
(iv) follows from (ii) and (iii).

1 =1y —1 () v 1y—1
(V) ()7 = (7)) = ((¢") ) =¢"
(vi) @ (a A B)(er,.- . enpr) = (@ A B)(p(er), ... pler)) =2TP2T0= ((p*a) A
(¢*B)) (e1,- .. €xti). O
We are now going to transfer the above constructions to the vector bundle setting,
starting with the case of local vector bundles.

2.7.16 Definition. Let o : U x F — U’ x F’ be a local vector bundle isomorphism,
o(u, f) = (¢1(u), 2(u) - f). Then let o, : U x A*F* — U’ x AFF'*,

(1, w) = (p1(w), 2 (u)«(w))-

2.7.17 Remark. Since . = ¢}, by 2.6.8 (and 2.7.15) . is a local vector bundle
isomorphism.

2.7.18 Definition. Let (E, B, ) be a vector bundle, E, = 7~ *(b) the fiber over
be B. Then set

AE* = | | AE; = | {b} x A"E;

beB beB

and 7 : A¥E* — B, wd(e) = b for e € A*E;. For A C B set A*E* N
Lpea AP E; .
2.7.19 Theorem. Let (E, B,m) be a vector bundle with atlas A = {(Vo, W,,) | a €
A}. Then (A*E*, B,7?) is a vector bundle with atlas A := {((V4)«, A¥E*
a € A}, where (Uy), = (Vo)) (cf. 2.6.10), i.e., (¥ a)*‘A’“E{; = (VYalg, )s-

wans) |

Proof. Clearly the AkE*|W np cover AFE*. By 2.7.15 (v), the (\I/a)*|AkE;; are

linear isomorphisms with image {1,1(b)} x A¥(R™)*. The changes of vector bundle
chart are local vector bundle isomorphisms according to 2.6.12 and 2.7.15. In fact,
(Vo) = (¥,)2. That A*E* is Hausdorff and second countable follows again as in
2.5.3. O

Again our main interest is in the case F = TM:

2.7.20 Definition. Let M be a manifold. Then A¥T*M = AF(TM)* is called
the wvector bundle of exterior k-forms on TM. The space of smooth sections of
AFT*M s denoted by QF(M). Its elements are called differential forms of order k
or (exterior) k-forms on M.
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Note that Q(M) = C>®(M) and Q' (M) is the space of 1-forms (cf. 2.6.14).
2.7.21 Remark.

(i) Due to 2.7.2 (iii), every fiber of A¥T*M, i.e., every AkT;M is precisely the
subspace of (T, M )2 consisting of the alternating (2)—tensors. Thus, sections

of A¥T*M are certain (2)—tensor fields, namely those which in every p € M
are alternating multilinear maps.

(i) Let (¥, V) be a chart of M, ¢ = (x!,...,2"). By 2.7.10, for every p € V the
tuples { dx ’p/\~-~/\ dmi’“‘p |1 <4y <. <ip <n} form a basis of A*T,M*.

Hence every section w of A¥T*M can locally be written as

wly = Z Wiy i dr™ A A da (2.7.2)

1<iy<-<ip<n

with w;, 4, = w(ax%, e %). Since the vector bundle charts of A*T*M
are of the form (7T%)%, w is smooth if and only if for every chart (¢, V) the
map ,w = (TY){ cworp™! = (Ty), owop~! is smooth. As in the proof of
2.6.17 (only using 2.7.15 (vi) instead of 2.6.6 (iv)) it follows that

Y = Z Wiy i ot A Ak,

1<ip < <ip<n

Hence w is smooth if and only if for every chart all local components w;, .,
are smooth.

(iii) By (i) and 2.6.18, a section w of A¥T* M is smooth if and only if for all vector
fields X1,..., X € X(M), w(Xy,...,Xk) € C®(M).

(iv) By (i) and 2.6.19, QF(M) is precisely the space of all C>°(M )-multilinear and
alternating maps (X(M))* — C>(M).

(v) Apart from the operations +, f- and ® studied so far, for differential forms
also the exterior product is available: let a € Q¥(M), B € Q'(M). Then set
aAB:=pr alp) AB(p) € A*T,M*. Tt follows that a A B € QFF(M)
(smoothness follows from (ii) or (iii)).

QM) = P _, Q" (M) with these operations is called the algebra of differen-
tial forms on M.

In 2.6.15, 2.6.16 we introduced the exterior derivative df of a smooth function f.
We now wish to extend this operation from Q°(M) to general QF(M).

2.7.22 Theorem. Let M be a manifold. For every open U C M there exists a
uniquely determined family of maps d*(U) : QF(U) — QFYL(U), denoted simply by
d, such that:

(i) d is R-linear and for o € QF(U), B € QY(U) we have:

d(aAB) =daA B+ (=) aAdB.
(ii) For f € Q°(U) = C>=(U), df is the exterior derivative from 2.6.15.
(iii) dod=0.
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(iv) If U,V are open, U CV C M and o € Q*(V), then d(al,) = (da)ly, i.e.,

OHV) U k)

| |
Qk+1(v) lv Qk+1(U)

d 1s called exterior derivative.

Proof. Uniqueness: By (iv) it suffices to show that d is uniquely determined on
any chart (¢,U). Thus let w € Q¥(U). By 2.7.21 (ii),

w = Z wil,,,ikdx“ A« Adzte

1<ip < <ip<n

Hence due to (i), (ii), (iii) we necessarily have:

dv = Z d(wil.,,ikdaj“ A Adat)
1<ip<-<ix<n
= Z dwi, i, Ndx™ A - Ada'® (%)
1<iy < <ip<n
+ Z Wiy iy d(dz™) Adx® A - A da'
1<iy < <ip<n —
0+ -+ 0,

and uniqueness follows.

Ezistence: For any chart domain we define d by (x) above. We first show that this
d has the claimed properties (i)—(iv):

(i): Linearity being obvious, it suffices to calculate d(a A B) for o = fodfi A- - - Adfy,
B = godgr A -+ Adg;. We first note that for any X € X(U) we have d(fogo)(X) =

X (fogo) = X (fo) - 90+ X (g0) - fo = (godfo + fodgo)(X), so d(fogo) = godfo + fodgo.
Thus

danB) = d(fogodfi A--- Adfi Adgy A--- A dgy)

= d(fogo) Ndfs A--- Ndfi Adgi A -+ Adgy
= godfo Adfi A+~ Adg + fodgo Adfy A+ A Adg,
da A B+ (—1)*aAdp

(ii) and(iv) are obvious.
(iii): Tt suffices to show that d(df) = 0 for all f € C*(U). By (2.6.2), df =

i
i—1 ordz’. Hence,

n of
~ 0 ; 9 Of i o
atdh) =S a2y naw =3 L2y g pawi =0
=1 4] N—~—— antisymm

symm. in 4,j

It remains to show that the above gives a well-defined global object on M. To this
end, let ¢ = (y,...,9y™) be another chart, w.l.o.g. with the same domain U. Define
d by (%) (with = <> y). By the proof of uniqueness, it follows that

dw = ' Z dws, .. iy, /\@;/\"'/\@:dw.
1§z1<m<1kﬁn(ii) N —ain -~
=dwiq ...y,
Thus d looks the same in any chart, hence is globally well-defined. 0
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2.7.23 Example.

(i) Let w = P(z,y)dx + Q(z,y)dy be a 1-form on R2. Then

dv = dPANdx+dQANdy =
0P oP oQ 0Q _
= (axdm+aydy)/\dl’+(axdx+aydy)/\dy—
0Q 0P

(ii) Let w = P(x,y,2)dy Adz + Q(z,y,z)dz A dx + R(x,y, z)dx A dy. Then

oP 0Q OR
O +87y+5)d$/\dy/\dz.

dw = (

2.7.24 Definition. Let M, N be manifolds, and F : M — N smooth. For w €
TO(N), the pullback of w under F is defined as F*w(p) := (T,F)*(w(F(p))) (cf.
2.7.14). For X,..., Xy, € T,M we therefore have
Fru(p)(Xy,... X)) =w(F@)(T,F(X1),...,T,F (X))

In particular, F*f = f o F for f € C*®*(N) = Q°(N).
2.7.25 Lemma. Let F: M — N, G: N — P be smooth. Then

(i) F*: T2(N) — T2(M), F*: Q¥(N) — QF(M).

(ii) (Go F)* = F*oG*.

(iti) idy; = idgk(ary (resp. = idyo(ary)-

(iv) If F is a diffeomorphism, then F* is a linear isomorphism and (F*)~! =

(F1)".

Proof. (i) By 2.7.15 (i), (T, F)*(w(F(p))) € TP (T,M) resp. € A*(T,M)*. Thus we
only have to show that F*w is smooth. To this end, let (¢,U), (¢, V) be charts of
M resp. N with F(U) C V. Then both Fy, = ¢oFop~! and .w = (T¢),oworp™*
are smooth (see 2.6.17, 2.7.21 (ii)).

By 2.7.15 (ii) we get (setting p = ¢~ 1(z)):

(DFyp(2))" = (TaFyy)"
= (Tep¥oTpF o (Typ) ™)
= (L)) o(TF) o (Trpyd)” ()
—_————

2.7.1:5(v)(TpSD)*
Hence, by 2.6.17, 2.7.21 (ii), the local representation ¢, (F*w)(x) of F*w with re-
spect to ¢ is given by

(Tp)s 0 F*wo ™ (z)

(Tpp)s o (TpF)*(wo F oy~ (z))

(

(

Ty)s o (ToF)* o (Trp¥)* (Trpw)s cwop™  opo Fop(z))

DFyy ()" ($2) 0 Fyp ()
o= o= o=

—
*
Z

which is smooth by the chain rule.
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(GoF)' (W) = (T(GoF) (w(GoF(p)) =
= (TrpGeoT,F) (w(Go F(p)) =
TR0 o (T 6) (G R)) =
=  (LGE)(G'w(F(p)) = F*(G'w)(p
(iii) Obvious.
(iv) Follows from (ii) and (iii). O

2.7.26 Theorem. Let F': M — N be smooth. Then:

(#) F*: Q(N) — Q(M) is an algebra homomorphism, i.e., it is linear and F*(aA
B) = (Fra) A (F*p).

(#3) For allw € Q(N), F*(dw) = d(F*w).
Proof. (i) To begin with, let @ = f € Q°(N) = C>°(N). Then
FX(fAB)p) = F(f-B)p)=

)
(T ) (f(F(p)B(F(p))) =
= J(FP) (LF) (B(F(p)))

F* f(p) F*B(p)
= (F"fANF"B)(p).

In the general case we have

Flanp)p) = (LF)(a(F({p)ABFP)) =
T,F

()
FTE (I EY (a(F ) A (T,F) (B(F(p)) =
= ((Fra) A (F*B))(p).

(ii) By definition of F* and 2.7.22 (iv) it suffices to show that every p € M has
a neighborhood U with d( F*w|,) = (F*dw)|,, for all w € Q(N). Let (¢,V) be a
chart around F(p), and U a neighborhood of p with F(U) C V. Then for w € Q¥(V)

we have

©oT Z Wi, iy dz A - A dat
1<ig<-<ip<n
do = Z dwi, iy Ndz™ Ao Ada'®

1< < <ig<n

By (i),
Frwly =Y Frwi, i F*(da’) A+ A F*(da'*) (%)

In general, for f € C*(N), F*(df) = d(F*f). In fact, if X € T,M, then

FHdf)(p)(X) = df(F(p)NT,F (X)) = T f(T,F (X))
= Tp(fo F)(X) =d(f o F)(p)(X).
o
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Thus, from (*) we conclude that

d(F*w|y;)

= d()_ Frw,..
= ) d(Frw,..
= ) F(dw..
= F*(Zdwil...

W d(F* ) A Nd(F*2'*))
i) NA(F* L) A - Ad(F*a'™)
i) NF*(dz ) A -+ A F*(da'™)

i AT A A da)

(F*dw)] -

2.7.27 Proposition. Let M be a manifold, p € M, (¢,V), (¢, V) charts around

pop= (', ..., 2", = (y',...,y"). Then:
. n . n or’
(i) da'|, =" De(e’ o) (w(p)) dy*], = T; N
k=1

k=1 p

(i) dx* Ao A dx"|p =det D(@ o tp 1) (W(p)) dy* A--- A dy”|p

(iii) If w € Q"(M), psw = wea A+~ Aa™, how = wypal A---Aa™ (ab,... a" the
standard basis of (R™)*), then:
wy(y) = wp(po ™' (y)) -det D(wo ™ ')(y) Yy e p(V)

Proof. (i) Since {dzi|p | 1 < i < n} is the dual basis of {%L} |1 <j<n}it
suffices to show that

"L 91 5}
S| dyt| )(. ) =4,
% ij
(k_l y » p | Oxd »
In fact,
Y I - P ko1
ZW |p(@ ):ZDk(Sﬁ o)™ )(W(p) - D" oo™ )(0(p)) = bij-
k=1 P P k=1 ~
[D(pop=1)]ix [D(yo=1)]k;
81/k
= 007 |y
(ii) By (i) we obtain (recall the summation convention!):
Ox! oz"
1 n _ o1 L. On _

de' A - Adx ]p = (Tyalp ) A /\(Tyanpdy ) =

Oox! oz"

= dy°t A -+ A dyr
8y01 » ayan » y y ‘P
_{ sgn(o) dyl/\m/\dy"\p oes,
0 else
ozt dx™ n
- (Z Oyt " Oyon -sgn(0)>'dy1/\~-~/\dy P
ocES, Yy p Y P

=det(D(poy=1)(¥(p)))
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(iii) Let w = fdz* A--- Ada™ = gdy' A--- Ady". Then by 2.7.21 (ii), w, =
fop™, wy =gotyt. Thus (ii) gives

fp)dz' Ao Ada"| = f(p)det D(po ™! )(W(p)) dy' A+~ Ady"| =
= gp)dy' Ao ndy"|

Hence,

wy(y) = g () =f ' (y)det D(p oy~ ")(y)
wy(p o™ (y))det D(pop™")(y)

2.7.28 Remark. A direct proof of 2.7.27 (iii) can be based on 2.7.12: Let ¢),w =
wwal Ao ANa”, gp*w:w@al/\n-/\a". Then

wpg)at A At = (TN ot (weat A A "><y>
= (Ty(pod ™)) (welpo v (y))al A---Aa™)
P2 det(D(p o ™)) ()wolp o™ 1( Dal A Aat

50 wy (y) = wyu(p o™ (y)) - det D(w o~ 1)(y).

2.8 Integration, Stokes’ Theorem

Our aim in this section is to develop a theory of integrating differential forms on
manifolds. Based on this we will prove Stokes’ theorem, which provides a far-
reaching generalization of the classical integration theorems of analysis (Gauss,
Stokes, Green). As a fundamental tool we will need the transformation rule for
integrals:

2.8.1 Theorem. Let U,V CR™ be open, ® : U — V a diffeomorphism, f € C(V),
suppf compact. Then:

/f ))|det D®(x |dnx—/f (2.8.1)

Our strategy for defining [}, w for w € Q7 (V), (27 denoting the space of compactly
supported n-forms, V' a chart neighborhood) will be to set

/w::/ wy(z)d" .
M p(V)

To make this a well-defined expression it should be independent of the chosen chart.
The transformation behavior of w, according to 2.7.27 (iii), however, differs from
(2.8.1) (no absolute value of det D(¢o1~1)). We therefore consider manifolds with
distinguished atlasses:

2.8.2 Definition. A manifold M is called orientable if it possesses an oriented
atlas A = {(Ya,Va) | @ € A} such that det D(vg o ¢ 1)(z) > 0 Vo € 9o (Va N
Vs) Yo VB. As in the case of smooth manifolds, also for oriented manifolds one
can define corresponding C*-structures (allowing only oriented atlasses). Charts
in an oriented atlas are called positively oriented. A manifold M together with an
oriented atlas is called oriented.
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2.8.3 Remark.

(i) Not every manifold is orientable. The most famous example of a non-orientable
manifold is the Md&bius strip.

(ii) One can show that the following are equivalent:

e M is orientable.

e Jw e Q" (M) with w(p) # 0 Vp € M. Such an w is called volume form
on M (cf. 2.7.11).

e The C*(M)-module Q" (M) is one-dimensional (every volume form pro-
vides a basis).

In the special case M = R" we proceed as follows: For w = a(xy,...,z,)dzt A
.-+ Adz™ with compact support K C U, U open in R", let [, w := [} a(x)d"z. To
extend this definition to general manifolds we first consider the case w € QF(M)
such that supp(w) C U, where (o, U) is a chart of M. Then put

/w)w - /‘p*(‘*J'U) = L(U)ww(x)d"x

2.8.4 Lemma. Let M be an oriented manifold, w € Q2(M), (¢, U), (¥, V) posi-
tively oriented charts and supp(w) C UNV. Then f(w) w = f(w) w. Thus we may

simply write [w for this common value.

Proof. Let p.w =w,a' A Aa™, how =wypal Ao+ Aa™ Then

/ w = / wy(y)d"y = / wy(y)d"y =
() P(V) Y(UNV)

2.7.17(iii) / wo(p o™ (y))det D(p o) (y)d"y =
P(UNV)

=|det D(poyy=)(y)|

2.8.5 Definition. Let M be an oriented manifold and A = {(o, Vo) | @ € A} an
oriented atlas. Let {xo | « € A} be a partition of unity subordinate to {V, | « € A}.
Let w € QY (M) and wq := Xo-w (hence supp(wy) is compact and contained in V).

Then let
w = We -
Je=%/

a€cA
2.8.6 Proposition.
(i) The sum in 2.8.5 contains only finitely many non-vanishing terms.

(i) Definition 2.8.5 is independent of the chosen oriented atlas (in the given ori-
ented C*-structure) and partition of unity.

Proof. (i) Since {suppxa. | @ € A} is locally finite, only finitely many suppy, in-

tersect the compact set supp(w) (every p € supp(w) has a neighborhood intersecting
only finitely many suppxa, finitely many such neighborhoods cover supp(w)).
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(i) Let A" = {(pp,Up) | B € B} be another oriented atlas in the same oriented
C-structure, {ug | B € B} a partition of unity subordinate to {Ug | 8 € B}. Then

Z/wazﬁiﬁdZ/Zuﬂxaw:Z/uﬂxaw:m:Z/uﬂw

acA a€cA peB a,B BeB
O

In the integral theorems of vector analysis, typical domains of integration are n-
dimensional domains with boundary, where the boundary itself forms an (n — 1)-
dimensional domain of integration. Such domains are currently not covered by our
notion of manifold:

2.8.7 Example. Let M = {(z,y,2) € R® | 2 = 2% + %, 2 < 29,20 > 0}.

z 1/) 7 T2
? /\ b U(p1)
3 7%
Y ’ *\// z
x Y(p2)

( o |
e
M is not a manifold since points like p; do not have open neighborhoods in M
which are homeomorphic to R2. On the other hand it is quite obvious that M has
charts which are homeomorphic to relatively open subsets of a suitable half-space.

Points like p; form the boundary (but not in the topological sense!) of M, which
itself is a 1-dimensional manifold (without boundary).

We now want to make precise these observations in the following definition.

2.8.8 Definition. Let the half-space H" = {(z',...,2") € R" | 2} < 0} be
equipped with the trace topology of R™ (i.e., V.C H™ is open < U C R™ open s.t.
UNH"=V). Let V.C H" be open. Then f:V — R™ is called smooth on V if
there exists an open subset U 2 'V of R™ and a smooth extension f of f toU. For
any p € V we then set Df(p) := Df(p).

7

" We have to check that Df(p) is independent of
H f: This is clear if V' C (H")°. Thus let p =
(0,22,...,2") and f7 f be two extensions of f to
an open neighborhood U of p in R". Set g :=
f — f. We have to show that Dg(p) = 0. To this
end, pick a sequence of points p,, € (H™)° with
pm — p. Then Dg(p,,) = 0 for all m, so also

Dyg(p) = limy,—00 Dg(pm) = 0.

2.8.9 Definition. A manifold with boundary is a set M together with an atlas
A = {(Ya,Va) | @ € A} of bijective maps o @ Voo = Yo (Vo) C H™ (relatively)
open, such that J,c 4 Vo = M and for all o, B with Vo, N Vs # 0 we have ¥g ot
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Ya(Va N V) — Ya(Vy N Vp) is smooth in the sense of 2.8.8. As in the case of
manifolds without boundary we require M with its natural topology (induced by the
charts) to be Hausdorff and second countable.

2.8.10 Lemma. Let M be a manifold with boundary. A point p € M 1is called
boundary point of M if there exists a chart (v = (z',...,2™),V) with z'(p) = 0.
Ifp is a boundary point, denoted by p € OM then for any chart (p = (y*,...,y"),U)
around p we have y*(p) = 0.

Proof. Suppose to the contrary that there would exist a chart ¢ = (y!,...,9y")
with y!(p) < 0.

bl

/ N Yol 27N
P(p) I — | e 1o
1/ .~

U/
= o

Choose a neighborhood U’ of ¢(p) which is open in R™ and contained in ¢(UNV') C
H™. Since det(D( o o71))((p)) # 0, by 2.1.1, 9 o ¢~ ! is a diffeomorphism onto
a neighborhood of 1 o ¢~(¢(p)) = (p) which is open in R"™. This neighborhood
must therefore be contained in H", contradicting ¢! (p) = x'(p) = 0. O

All constructions we already know for manifolds without boundary like tangent
space, tensors, differential forms, orientability, etc. work out completely analogously
for manifolds with boundary. The next result shows that OM itself is a manifold
(without boundary).

2.8.11 Proposition. Let M be an n-dimensional manifold with boundary. Then
OM is an (n — 1)-dimensional manifold (without boundary). If M is oriented then
the orientation of M induces an orientation of OM.

Proof. Let A= {(¢a,V,) | @ € A} be an atlasof M. Set A’ := {a € A | V,NOM #
0}, A = {(Yaly, nons» Va NOM) | o € A’} We show that A’ is an atlas for OM.
Set V,, := Vo NOM, ’tZJa = 1/JQ|‘~/ Then ’l/NJa cV, & z/Ja(Va) is bijective and by
2.8.10 it follows that 1o (Va) = ¥a(Va) N {2} = 0}. Clearly, U,c 4 Va = OM.
Now let o, 8 € A’ such that V, N Vs # 0. Since 1 (V, N V) € H™ is open,
Va(Va NV3) = tha(Va N Vg) N {:E = 0} is open in {z! = 0} = R"~!. Moreover,
155 o z/?;l is smooth on z/JQ(V N Vg) as a restriction of the smooth map 15 o ¥ 1.

Suppose now that A, in addition, is 01riented7 i.e., that det D(yg 05 1) > 0 for all

a, B with Vo NV # 0. Let oo = (x4,,...,2%), g = (xp,...,x}). Then for every
(07xa""’ a) € wa(Vamvﬁ) ¢/3°1/) ( 9 av"'vxg) = (O’wﬂowtzl(x/a))'
————
=z,

Therefore,

1 —1

Qpova) g .. 0
*

D(vg oy ")(0,2,) =

(0,23)



- O o3t ;o

= det D(iys 00, 1)(0,2,) = =55 det D(dhp 0 3 1)(0,25) (%)

(0,24,)

Now ¢} 095 1(0,27,) = 0 and ¢} o ;' (z!,2,) < 0 for ' < 0 (since ¢g 0" :
1 -1

H™ — H™). Therefore, % > 0and # 0 (by (%)), hence > 0. Again by (*) it

follows that det D(¢5 095") > 0, so A’ is oriented. |

As the final ingredient for Stokes’ theorem we consider the restriction of differential
forms defined on M to OM: Let i : M < M be the natural inclusion. We first
note that i is smooth since for any chart ¢ = (2,...,2") of M we have:

oM —— M

! !

(V) —L (V)

<

where j : (z2,...,2") — (0,2%,...,2™). This is obviously smooth.

The restriction of any w € QF(M) is defined as i*w € QF(OM). As in (2.7.2), the
local representation of w with respect to ¥ can be written as

w= E Wiy i dx™ Ao Ndx'.
1<ii <<t <n
Then ¥,w is given by

E Wiy 0TI A A = E w;’ﬁ“_ika“ A Aok,
1<i < <ip<n 1<i < <ix<n

The local representation of i*w with respect to 15 therefore is

Du(i'w) = @Y (") = (o) w = (" 0 f)w=j* () w) =
= @) TEY ST Wl o @) A A (),
1< < <ig<n

Observing now that

e 2.7.24 . : 0 k=1
7@ ), “E ek ( D) (v) = a*(i(v) ‘{ vk =ok() K£1

=j by linearity

we finally arrive at

u(ifw)= > wl i ojalt A Ao (2.8.2)
1<ip < <ig<n

*

2.8.12 Theorem. (Stokes’ theorem) Let M be an oriented manifold with boundary,
we QY M), andi: OM < M. Then:

/ w = dw
oM M

Proof. Denote by K the compact support of w. We consider the following two
cases:
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1.) There exists a chart (v = (x!,...,2"),V) with K C V. Since w € Q"~}(M),
the local representation of w with respect to 1 reads

w= Zwkdxl Ao NdzFTE A daP T A A da (2.8.3)
where w; € C>°(V) for all j. Hence
k-1 0wk g n
dw = (Z(—l) w)dx A--oNdx (2.8.4)

with g‘;,’j = Dj(w o b~ (¢(.)). We now distinguish the following sub-cases:

la) VNOM = {. Then i*w = 0 (cf., e.g., (2.8.2)), hence [, i*w = 0 and we have
to show that also

n

2.8.4 (2.8.4),2.7.21 (i) e lawk L n
dw "= Py (dw) = / (-1 dz” ...dx" =0.
/M P(V) P(V) Z 83:’“

(V) We now choose a parallelepiped Q@ C H™ of the
_‘ form Q = {(z',...,2" | a* < 2F <VF (1 <k <
P/) 1 n)} such that ¢ (K) lies in the interior of Q. Then
. %) if we extend the (compactly supported) w;f by 0
to all of H™, we obtain (applying the fundamental
Q theorem of calculus):
/ i:( 1)k- 1aw2d1..dx": k1/8w2d1 0
P(V) 1 ox ox
= S [t et e
k=1 ~
—wg(xl, caPTl ek R ) dat L dat T e da
=0
=0

1b) Now suppose that V N OM # (). Then

/ rw 284 / 15* (I"w)
oM P(VNOM)

(2:8.3),(2.8.2) / W(0,2%, ... 2™ da? ... dz" (2.8.5)
b(VNOM)

:fzp(K)ﬁ{ml:O}
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H’fl
l/f(%/ Again we extend the w}f by 0 to all of H" and
@ x, choose a parallelepiped () C H", this time of the
K Y(K) form @ = [a',0] x [a®,b%] X - -+ x [a", b"] such that
Y(K) C Q° U {z! = 0}. Then as in the previous
Q case we obtain:

- dw?
— EEL N Ml n
/M dw = E (-1 / Bk dz* ...dz

=1

=

= w(0,22,...,2") —wf(al,xQ,...w”))de...dw”
a2,b2] - "yb"] (=Qn{z*=0}) ~
JrZ(fl)k*l/(w;f(xl,...,bk,...,x")
k= —
w;f( ..ab, ,x”))dxl.. daFYdak L da”

= / wW(0,22, ..., a")dz? .. da"
Y(K)N{z!=0}

(2.8.5) / .
= 17 W
oM

2.) The general case: Let {(1q,Vs) | @ € A} be an oriented atlas, {x, | @ € A}
a subordinate partition of unity. Then the w, := X, - w satisfy the assumptions of
case 1.). Also, >, dxa =d(>°, Xa) =d(1) =0. Thus w =)  w, and

Zdwa = Zd(xa ‘w) = Z(dxa)w + Zxadw = dw.

From this we finally obtain

T D o R 0 SR

2.8.13 Examples.

(i) Applying 2.8.12 to the w from 2.7.23 (i), we obtain Green’s theorem in the
plane:

oQ 0P
Pdx + Qd :/ — — —)dxd
/SM Qdy M(ax 6y) Yy

(ii) From 2.7.23 (ii) and 2.8.12 we derive Gauss’ divergence theorem (in R?):

P
(a—+a—Q+a—R)d d dz-/ Pdy AN dz + Qdz A dx + Rdz A dy
v Ox dy 0z oM

7
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Chapter 3

Hypersurfaces

As an application of the concepts introduced in chapters 1 and 2 we now turn to a
study of hypersurfaces in R".

3.1 Curvature of Hypersurfaces

3.1.1 Definition. A hypersurface of R™ is an (n — 1)-dimensional submanifold of
R™.

Locally a hypersurface is given by one of the equivalent descriptions in 2.1.8, e.g.
as the zero set of a regular map f : R — R. Since R" is equipped with the
standard scalar product (v, w) = Y"1 | v;w;, every tangent space T, M possesses a
one-dimensional orthogonal complement. This provides two possible unit normals
of M. To be able to pick one of these, we will suppose M to be oriented.

3.1.2 Lemma. Let M™ be an (abstract) oriented manifold and p € M. A basis
{vt, ..., o™} of T,M is called positively oriented, if in some positively oriented chart
o = (x',...,2™) of M around p we have: (dx'A---A dmm)’p (vt ..., 0™) > 0.
This notion is independent of the chosen chart.

Proof. Let ¢ = (y!,...,y™) be another positively oriented chart. Since by 2.7.27,
(dy' A~ Ady™)| = det D( 0 o™ )(p(p)) - (da’ A--- Ada™)| ,

>0

the claim follows. O

3.1.3 Definition. Let M be an oriented hypersurface of R™. The Gauss map p —
vy assigns to every p € M the unit normal vector v, for which det(vp, et, ..., e" 1) >
0 for any positively oriented basis {e*,...,e" "'} of T,M.

3.1.4 Remark.

(i) vp is well-defined: Let {f',..., f"~'} be any positively oriented basis of T}, M
and let ¢ = (2!,...,2" 1) be any positively oriented chart of M. Set e/ :=
%L} (1<j<n-—1)and fF = ZZ::ll agi e (1 <k <n-—1). Then

1 n—1y\ __
e =
= sgn( Z A1y - An1yi,  (dzt Ao A dx"_1)|

D1yeeeyn—1

1 = sgn(da' A+ Adz" )
(e,... e 1)) (%)

=sgn(i1,...,4n—1)

y4
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Therefore,
det(vp, f1,..., fv71) =

= Z sgn(it, ..., in—1)a14; - - - An—1yi, , det(vp, ety ..., e" ™).

T1yesbn—1

>0 by (*)
(ii) The Gauss map p — v, is smooth. Let ( = (a! 2"~ 1), V) be a posi-
tively oriented chart. Then { % ‘p ey am } isa posmvely oriented basis
3 1 -1 1o} 1o} —
of T, M since (dz' A---Adx™ )‘p(axl by W‘p) =1foralpelV.

By 2.1.8 and 2.4.1, locally around any py € V, M is given as the zero set
of some regular map f and for the gradient grad(f)(p) = Df(p) we get:
(gradf(p),v) = Df(p)(v) =0 Vv € T,M. Thus gradf(p)LT,M for all p near

po. W.lo.g. we may suppose det(gradf(po), %| ey ﬁ ’po) > 0 (other-
wise replace f by —f). By continuity, det(gradf( ), 22 32T | e #}p) >0
for p near py. Hence locally around pg the Gauss map is given by
_ gradf(p)
Vp =
[lgrad f (p)[|

which clearly is smooth.

To define the curvature of a hypersurface M in a point p € M we reduce this question
to the curvature of curves as considered in chapter 1. Let w € T, M, ||w| =1. We
consider the curve determined by the intersection of M with the plane spanned by
w and v,.

’»

This plane is given by: (¢,s) — p + tv, + sw. The curvature of the intersection
curve ¢ will be called the normal curvature of M in the direction w. Let M locally
be given as the zero set of the regular map f and recall that we suppose M to be
oriented. Then c is given implicitly by

flp+ty,+sw)=0 Vi, s (%)

rad
By 3.1.4 (ii), v, = % Hence

0

5 f(p+tv, + sw) = Df(p)v, = (gradf(p),vp) # 0.

(t,s)=(0,0)
Therefore, locally we can solve (x) for ¢t as a function of s (cf. 2.1.2). We obtain a
curve ¢ : s — p + t(s)vp + sw. Then ¢(0) = p, and
’ oy . _
d0)= t0)-v, + w w.

ET,M  eT,Mi==0 €TM
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W.l.o.g. we may suppose that c is parametrized by arclength. To calculate the
curvature of ¢ we need to determine the accompanying frame. As {v,,w} is pos-
itively oriented, e; = ¢/(0) = w, ez = —v,. Since ¢'(s) € Ty )M, it follows that
(c(5),ve(s)) = 0 Vs. Consequently,

0= di (d(s),voc(s)) = ("(0),v,) + (< (0), Tov - £ (0)),
Slo =~ e

and so the normal curvature x(w) of M in the direction w is given by:

K(w) = ke(0) (c"(0), e2) = —(c"(0),vp) = (w, Tpv - w) (3.1.1)

3.1.5 Definition. The Weingarten map (the shape-operator) L, is defined as:
Ly =Ty :T,M =T, 5" " =v =T,M.

Thus L,w is the infinitesimal change of the normal vector v in the direction w.
To further analyze the Weingarten map we need the following observation on vector
fields on submanifolds of R”.

3.1.6 Lemma. Let M* be a k-dimensional submanifold of R™. Then:

(i) For any X € X(M) and any p € M there exists a neighborhood U of p in R"
and a map X € C>(U,R"™) such that X |vnv= X|ynp-

(ii) If X,Y € X(M) and X, Y are smooth extensions as in (i), then

[X,Y], = DY (p)X(p) — DX (p)(Y(p)) Vpe€ M.

Proof. (i) By 2.5.21, X € C*(M,R™). Hence by 2.1.10 each of the n components
of X can be extended smoothly to a neighborhood of p in R™. This gives the desired
extension X (in a non-unique way).

(i) Let f € C*(R™,R) and f := f |ar, so f € C(M,R). Then T,f = Df(p) |7, m
(cf. the calculation preceding 2.4.3). Hence X (f)(p) = T, f(Xp) = Df(p) (Xp), S0

Y(X(f), = D(q+ Df(@)(X))lp(Vy) = D*f(p)(Xp, ;) + Df (p) DX (p) Yy,

and analogously for X (Y (f)). Since D?f(p) is symmetric, we conclude that

Df(p)([X,Y],) = [X,Y],(f) = (XY (f) = Y(X())
= Df(p)(DY (p)X(p) — DX(p)Y (p)).

Inserting in particular f = pr, : R — R, it follows that Df(p) = pr;, so [X,Y], =
DY (p)X(p) — DX(p)Y (p), as claimed. O

3.1.7 Proposition. The Weingarten map L, : T,M — T, M is symmetric, i.e.,
(Lpv, w) = (v, Lyw) Yo, w e T,M.

Proof. Choose X,Y € X(M) with X, = v, ¥, = w and choose smooth extensions
as in 3.1.6 (i). To also extend v to a neighborhood of p in R™ we note that v is
locally given as v, = % (where f = 0 is a local representation of M by a

regular map). Thus v is a C*°-map from M to R™ which, by 2.1.10, can locally
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be extended to a neighborhood of p in R™. Denote by 7 such an extension. Then
according to the calculation preceding 2.4.3, T, = Df/(p)|TpM.
Since ¢ — (X4, vq) =0, also T,(q — (X4, v4)) = 0. Therefore,

0 = Tplg— (Xq,vq))Yp = D(g— <an ﬁq>)?p
<DX<p)Y/p>ﬂp> + <Xp , Di(p) ﬁ) )
NGNS

=X, =L, Y,

and analogously for ¢ — (Y3, v,). Summing up, we obtain

(Xp, LpYp) — (LpXp, Yy) = <D§~/(p)X(p) - DX(P)?(ZU)’ \Vf_/ ) =0.

3.1.6(ii)

(X,Y],eT, M

3.1.8 Definition. Let M be an oriented hypersurface in R™.

(i) The Riemannian metric g, or first fundamental form I, is the (g) -tensor field

T,M x T,M 3 (v,w) — gp(v,w) := (v,w) (= I(v,w))

(ii) The second fundamental form I1 is the (g) -tensor field

T,M x T,M > (v,w) — II,(v,w) = (v, Lyw)

3.1.9 Remark.

(1)

g is a section of the bundle T¥ (M) since every g, is a bilinear map from
T,M x T,M to R, i.e., g, € T9(T,M) for all p € M. Moreover, g is smooth
by 2.6.18: Let X,Y € X(M), ie., X, Y : M - R" C>, X,,,Y, € T,M Vp (cf.
2.5.21). Then also p — (X,,,Y,) = gp(X,,Y}) is smooth.

gp is precisely the restriction of the standard scalar product { , ) on R™ to
TpyM x T,M. It allows to measure lengths and angles in T, M.

If  is a local parametrization of M around p and ¢=* = (z!,..., 2" 1) then,
by (2.6.2), g locally is of the form
9(p) = 9 (p) da'| @ da’| (3.1.2)
where
0 0
9ij(p) = gp(% p7 i p)
0 0 dp 4 dp 4
(| 57| ) = (e ) G5 W) 619

Dip(p~(p))  Dje(e~'(p))
Since g is symmetric, g;; = g;; V1, J.

For every p € M, the second fundamental form I, is a symmetric bilinear
map T, M x T,M — R, so II is a section of T9M. Smoothness again follows

from 2.6.18: Let X, X,Y,Y, v, be as in the proof of 3.1.7. Then

pr I1,(X,,Yy) = p—= —(DX(p)Yy, )

is smooth.
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(iii) In the classical differential geometry of surfaces in R3, the relevant special
case of (i) is that of a parametrization ¢ : (¢,8) — (p1(t, s), v2(t, ), p3(t, s)).
Setting E := (@1, 01), F := {1, 0s), G := {ps,ps) (with g, ¢; the partial
derivatives of @), then g is given by the matrix

E F
n-(% &)
with respect to the basis {¢s, s} of Ty oM. If v =v1 - @4 +v2 - s, w =
w1y + waps are vectors in Tw(tVS)M, then

(BEdt ® dt + Fdt ® ds + Fds @ dt + Gds ® ds)
(m% +U2%7w1% +w2%)
= Eviwi + Foiws + Foowi + Guaws

— (vl,vz)(g g><$>

3.1.10 Example. Let M = S! xR be a cylinder over the unit circle. A parametriza-

tion of M is given by ¢ : (0,2m) x R — R3, ©(t,s) = (cost,sint,s). Then

¢ = (—sint,cost,0), ps = (0,0,1), so E = 1, F = 0, G = 1. Therefore,
10

Hets) = ( 0 1 )

We now come back to the problem of determining the curvature of a hypersurface.
We are looking for those directions in which the normal curvatures become extremal:

gga(t,s)(va w)

By (3.1.1) we are therefore looking for the critical points of the map w — (w, Lyw) =
k(w) for w € "1

3.1.11 Theorem. (Rodriguez) The critical points of the normal curvature in p €
M are precisely the eigenvectors of the symmetric linear map L,. If w is such an
eigenvector, then the corresponding eigenvalue A is given by rk(w).

Proof. Let w € T,M with |Jw| = 1. w is a critical point of « if and only if
v = K(v) : S"! — R has a critical point in w. This we determine using the
method of Lagrange multipliers. Let ¢g : v — (v,v) — 1. Our problem then is to find
an extremal of x on {g = 0}.

Therefore, Dx(w) = ADg(w) has to be satisfied for some Lagrange multiplier A (on
{g=0}). By (3.1.1),

3.1.7
> =

De(w)(v) = (v, Lyw) + (w, L,yv 2(v, Lyw)

and Dg(w)(v) = 2(v,w). Thus the equation 2(v, L,w) = 2A(v,w) has to hold for
all v, i.e., Lyw = Aw and g(w) =0 (& ||w|| = 1). Thus w € S"~! is a critical point

83



iff w is an eigenvector of L,. Furthermore,

A= Mw,w) = (w, Lyw) = k(w)

3.1.12 Definition. Let M be a hypersurface in R™ and p € M. The eigenvalues
of L, are called principal curvatures. The corresponding eigenvectors are called
principal curvature directions. Since L, is symmetric, all principal curvatures are
real and there exists an orthonormal basis of TyM {w; | 1 <1i <n — 1} consisting
of principal curvature directions. A curve ¢ is called a line of curvature if ¢/ (t) is a
principal curvature direction for all t. The Gaussian curvature K of M is defined
as the product of the principal curvatures, i.e., K = H;le ki. The mean curvature
of M in p is the arithmetic mean of the principal curvatures, i.e., —tr(L,) (with
tr(Lp) denoting the trace of L,). p is called umbilic, if all principal curvatures
coincide in p, i.e., if L, = X -idg,p. An umbilic point is called level point, if, in
addition, A =0, i.e., if L, = 0.

3.1.13 Examples.

(i) Let M = v+ be a hypersurface of R". Then v, = v for all p and L, = T,v =0
for all p. Thus all principal curvatures vanish and every point p of M is a
level point.

(ii) Let M = S"~L. For any p € M, p itself is a normal vector to M, so v = id and
L, = idr,p. Therefore, all points of M are umbilic and all tangent vectors
are principal curvature directions.

Since the inception of differential geometry the distinction between intrinsic quanti-
ties which are determined entirely by M itself (which, in other words, are accessible
to the inhabitants of M) and extrinsic quantities, where additional information is
needed, has been a central object of study. As a rule, those quantities which can be
formulated for abstract manifolds are intrinsic, whereas extrinsic quantities directly
refer to the surrounding space, like, for example the Gauss map p — v,. Although
we have defined the Riemannian metric on hypersurfaces of R™ by using the scalar
product of the surrounding R™, one can define Riemannian metrics also for abstract
manifolds:

3.1.14 Definition. Let M be an abstract manifold. A smooth (g) -tensor field g €
TL(M) is called a Riemannian metric on M if g, : T,M x T,M — R is a (positive
definite) scalar product for allp € M. (M, g) is then called a Riemannian manifold.
If f : (M,g) — (N,h) is a (local) diffeomorphism of Riemannian manifolds such
that f*h = g, then f is called a (local) isometry. Two Riemannian manifolds are
called (locally) isometric if there exists a (local) isometry f : M — N.

By 2.7.24, a (local) diffeomorphism f is a (local) isometry if and only if for all
peM:
hyo)(Tpf -0, T f - w) = gp(v,w) Yo, w e T,M (3.1.4)

Thus if we transport tangent vectors v, w by means of f (more precisely, T}, f) from
M to N, then their lengths and their angle remain unchanged. For any given
Riemannian metric, quantities like length and angles are intrinsic. We now pose
the question which of the curvatures introduced so far are intrinsic. By the above,
intrinsic notions have to remain unchanged under the action of local isometries.
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3.1.15 Example. Let M be the cylinder from 3.1.10 and ¢ : (0,27) x R — R3,
©(t,s) = (cost,sint,s). We consider U := (0,27) x R C R? as a Riemannian
manifold with the standard scalar product g = (, ) of R? and M as a Riemannian
manifold with h = I as in 3.1.10.

Then by 3.1.9 (iii) and 3.1.10, ¢ : (U,g) — (M, I) is a local isometry:

Itp(t,s)( T(t,s)@ U, T(as)@ ‘w) = Iga(t,s)(rUl(pt + Vo, W1t + Waps) =
N——

= (Ulavz)( (1) (1) > (i)
- (@G-

= g5 (v,w)

:(S‘Jt Ws)

Hence M and U are locally isometric.

If (z,s) € M = S' xR, then v, = (z,0) and T,M = {(v,s) | v Lz}. Hence the
Gauss map in p is given by v, = id x 0|g1,p and therefore L, = id x 0. Thus
one principal curvature is 1 and the other is 0. Since on U (due to v =const,
hence L = 0) all curvatures vanish it follows that neither the normal curvatures
nor the mean curvature are intrinsic. The only remaining candidate for an intrinsic
curvature therefore is the Gauss curvature K, which vanishes for both manifolds.

The Theorema Egregium of Gauss states that the Gauss curvature in fact is intrinsic.
To prove this theorem we are going to derive a formula for K (in the case M C R3)
which depends exclusively on the quantities FE, F, G and their derivatives.

3.1.16 Lemma. Let V be a vector space with basis B = {g1,...,9m}, let { , ) be
a scalar product on' V and let T : V' — V be linear. Denote by G the matriz with
entries (gi, g;), by [T] the matriz of T with respect to B, and by A the matriz with
entries (Tgi,g;). Then [T] = (AG™1)t.

Proof. We first show that G is invertible: let B* = {g',...,¢g™} be the dual
basis to B and ® : V' — V* the linear isomorphism v — (v,.). Then ®(g;)(g;) =
(9i:95) =t gij» s0 @(gi) = >, gi;¢’, and therefore G (which is symmetric) is the
matrix of ® with respect to B and B*. Due to T'g; = >, Tj;g; we have:

Ajie = (Tg5,98) = > Ti {9 98) = > _(T")jigir = (T'G)

%

It follows that A = TG, so [T] = (AG™')!, as claimed. O
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3.1.17 Proposition. Let ¢ be a local parametrization of a hypersurface M in

2
R3. Let Pt = %) Ps = %7 Pt = %T;p; etc. Set E = <30t7§0t>7 F = <§0ta(p.$>7
G = (ps,ps), € .= —(V,0u), [ = —(V,015), § = —(V,0ss). Then the following
matriz representations are valid with respect to the basis {py, s} of T\ M :

i G- fF fE—eF
[I]:(F G)’H:(Je” g),[LFEGl_Fz(;G_J;F gE—;F>

Finally, the Gauss curvature K of M is given by K = %.

Proof. The matrix representation of I was already derived in 3.1.9 (iii). Concerning
L, for any hypersurface in R™ we have

I\ a7 o, Op Op Py
)= 0=(L 6xj78xi>+<yo<p78xiaxj>

Do Op, %
= Lo et = Vo9 g

Since L = L' it follows from 3.1.16 that

(3.1.5)

2
L= (o g, 5ot) - (8, 22y (316

In our case (n = 3) it follows from (3.1.5) that e = (Lyy, 1), f = (Lps, @), and
g = (Lgs, @s). Thus if v = v1¢; + Vas, W = w1 + waps € T,M, then

II(v,w) = (Lv,w)
= viwi(Lys, i) + viwa (L, @s) + vowi (Lgs, pr) + vowa(Lgs, ps) =

(7 1)) (5 1)

By (3.1.6) we conclude that

[L] = ¢/ EF 71—..._¥ eG — fF fE —¢eF
"\ f g F G T T EG_-F:\ fG-gF gE-fF )’
soK:detL:...:%. .

In the case n = 3, using the vector product, we may calculate v directly:

Pt X Ps
V= —
llor % @]

Then | X ps|| = VEG — F2, implying:

1
e=—(V,pu) = *\/ﬁ@t X Ps, Pit)

1
—_det(pr, 0, 010)-
m (Sot ® Satt)

Analogously,

f:_

1 1
———————det s Psy Pts)s = ——————det y PsyPss)-
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Set D :=+EG — F?. Then

K. pt 3T D (eg— f2)
(—eD)(—gD) — (—fD)?

det (e, @s, ie) det(r, @s, @ss) — det(pe, s, is)?
= det((pr, @5, 01)") det(r, @5, Pss)

— det((pr, @s, ots)") det(or, @s, Pts)

E F
—— —

(pr,0t)  (pt,05) (Pt Pss)
= det <8057 (Pt> <305a ‘ps> <<Psa Spss>
—— N——
F G
<S0tt, S0t> <90tt7 <Ps> <S0tt, Sﬁss>
E F

<(pt7@t> <<Pt7905> <30t790ts>
—det | (ps,00) (@5, 0s)  (©s,Pts)

F G
(Pts; 1) (PrssPs)  (Ptsr Pts)

E F (Qts Pss)
= det F G <gps7 (pss>
(Ptts0t)  (Ptt, s)  (Ptts Pss) — (Pts, Prs)
E F <Q0t7 Sat5>
— det F G (ps, Prs)
<@ts7 Spt> <<Pt5a (Ps> 0

where we have developed with respect to the third row in the last step. Now

By = 2(pu, pt) Fy = (@11, 0s) + (@1, st) Gt = 2{pst, ps)
ES = 2<90t57 th> Fs = <S0t57 <;05> + <§0ta SDSS> 1C7‘s = 2<Sassa SDS>
Ess = 2(<90tssv Sﬁt> + <§0tsa <)0t5>) Fts - <90tst; S05> + <S0tt7 Lpss> + §Ess

Fts - %(ESS + Gtt) - <90tt7 Soss> - <§Dst; Sost>

Summing up, we obtain :

E F F,—1ia, E F %E
KD*=det| F G 3G —det | F G 3G,
%Et F - %Es Fys — %(Ess + Git) %Es %Gt 0
Hence,
K is a function of E, F, G and their derivatives (up to order 2). (3.1.7)

Based on this we are finally in a position to prove

3.1.18 Theorem. (Theorema Egregium, Gauss, 1827) The Gauss curvature K is
intrinsic. Locally isometric hypersurfaces in R3 have the same Gauss curvature in
corresponding points.

Proof. K is intrinsic by (3.1.7). Let A : M — N be a local isometry of hy-
persurfaces M, N in R3, py € M and ¢ a local parametrization of M around py.

Then ¢ := Ao ¢ is a local parametrization of N around A(pg). Since A is a local
isometry, (T,A - v,T,A - w) = (v,w) Yv,w € T,M (cf. (3.1.4)). In particular, let
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v =Ty spler) = 0, w= Ty g ple2) = vs, p = ¢(t,s). Then:
(pr,00) = (v,v) = (T, Av, T, Av)
(Typt,s) Ao Ties)p (€1), Tpr,s)A 0 Ty, p(€1))
N—— ————
=T(t,5)(Aop)=T(s s)%

= <¢t7¢t>a

50 B¥| ;g = Ew|¢(t,8) and analogously for F' and G. Hence by (3.1.7), K(p) =

K(A(p))- =

3.2 Covariant Derivatives

Throughout this section we will assume M to be an oriented hypersurface in R”™.
The directional derivative of a smooth map f : U — R (U C R"™ open) in the
direction v € R™ (the rate of change of f in the direction of v) is

va(at):liml(f(x—i-tv)—f(a:)) 4 fx+1tv)=Df(z)-v.

t—0 ¢t - dt 0
Let M be a manifold, f € C>°(M), v € T,M. Then analogously (cf. (2.4.3)):
O f=v(f)=Tpf(v).

In particular, if M is a submanifold of R™ and f € C°°(M), we may choose a smooth
extension f of f to a neighborhood of p in R™. Then

0uf =Ty f(v) = Df(p) - v =: Dy f(p)- (3:2.1)

Again we call D, f the directional derivative of f in the direction v.

Analogously we want to study the rate of change of a vector field in the direction
of a tangent vector. Let M be a submanifold of R", Y € X(M), and v € T, M. By
2.5.21,Y : M — R™ is smooth and by 3.1.6 there exists a smooth extension ¥ of ¥’
to a neighborhood in R™ of any given point of M. We set

DY (p) == T,Y (v) = lim %(?(p +tv) — Y(p) = % Y (p + tv). (3.2.2)
0

D,Y is called the directional derivative of Y in the direction v. If Y = (YL, Y"),
then DY (p) = (DY *(p),...,DY"(p))!, so by 2.4.2

D,Y (p) = DY (p)-v = (DYY(p)-v,...,DY"(p)-v) = (v(Y}),...,0(Y™)). (3.2.3)

=T,Y'(v) TpY ™ (v)

D,Y is the rate of change of Y in the direction v. Note, however, that D,Y (p) &
T, M in generall If X € X(M), then let

be the directional derivative of Y in the direction X. By (3.2.3) we have
DxY (p) = DY (p)X (p),

so DxY € C>*(M,R"). In general, however, DxY & X(M) (since DxY (p) & T,M
in general).
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3.2.1 Example. Let ¢ be a local parametrization of M and ¢ = (a!,... 2

¢~ ! the corresponding chart. Then (with z := ¢~1(p)), % b= Djp(x). With ®
as in 2.1.8, (T) = (P), (%)N :=q+— D;®(®!(g)) is a smooth extension of %

to a neighborhood of p in R™. Hence, recalling that D;p(z) = D;®(z) = D®(x) - e;,
we obtain

o —aaj = % D;®(® ! (p+tDip(z))) = D(D;®)(z) - D& (p) - DO(z) - €;

To obtain an intrinsic quantity from DxY’, we project it orthogonally onto T, M:

3.2.2 Definition. Let M be an oriented hypersurface in R™, X, Y € X(M). The
covariant derivative of Y in the direction X is defined as the tangent part of DxY :

ny = (DXy)tang = DXy — <DX}/, V>V.
For f € C>°(M) we set Vxf:=Dxf.

3.2.3 Proposition. Let M be an oriented hypersurface in R™, X, Y € X(M).
Then:

(i) VxY € X(M).
(i) The normal part of DxY is (DxY)"" = (DxY,v) -v=—-II(X,Y) v.
(i) DxY =VxY — II(X,Y) v (Gauss equation).

Proof. (i) The smoothness of VxY : M — R follows from that of DxY and v.
Since clearly VxY(p) € T,M for all p, VxY € X(M) by 2.5.21.
(ii) Let ¢ be a local parametrization of M and

J(@) = (Y 0 p(a), v o o)) = 0.
N— N —
€T,M  eT,M~

Let v € T,M. Then by 2.4.1 (i) there exists some w € R"™! with v = Dy(z) - w
(¢(x) = p). Hence

0 = Df(e)-w= (DY op)(x) w,vop@)+(¥oplx), Dyop)r) w) =
= (DY (p) Do(x) - w,v(p)) + (Y(p), Du(p) - Dop(x) - w) =
=v =L, =v
= (D,Y(p),vp) + (Yp, Lpv).
In particular, for v = X, we conclude:

<DXpY(p)7Vp> = _<Yp7Lpo> = —]I(Xp,Y;,).

(iil) is immediate from 3.2.2 and (ii). O

3.2.4 Lemma. Let X, Y, X;, Y; € X(M), M an oriented hypersurface in R™. Let
fec>*(M), aeR. Then:

(Z) DfX1+X2Y = fDle + DX2Y
valJerY = vaIY + vX2YV
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(ZZ) DX aYy —l—Yé) =aDxY1 + DxYs
aY1 +Y2) =aVxY + VxY,

(
Vx(
(fY)=fDxY +Dxf-Y
Vx(fY)=fVxY +Vxf-Y
(
Vx(

(iv) DX Y1,Ys) = (DxY1,Y2) + (Y1, DxYs)
Y1,Ys) = (VxY1,Ys) + (Y1, VxYs)

(iii) DX

Proof. Since DxY (p) = DY (p) - X, and Dxf(p) = Df(p) - X,, (1)(iv) for D
follow directly from the usual rules of differentiation. By means of 3.2.2, (1)—(iii)
for V follow from the corresponding properties of D. Finally,

Vx(Y1,Ys) = Dx (Y1,Y5)
(DxY1,Ys) + (Y1,DxY53)

e (VxY1,Ys) + (Y1, VxYa).

v1Y:1,Ys

O
3.2.5 Proposition. Let M be a hypersurface, X, Y € X(M). Then:
[X,Y] = DxY — DyX = VxY — Vy X
Proof. [X,Y] = DxY — Dy X follows from 3.1.6 (ii) and (3.2.4). Moreover,
VxY —Vy X =DxY —DyX —<.D)(Yv7 I/> vV + <DyX, V> -V
=0 by3.2.3(t), since II symm.
O

To show that the covariant derivative V is intrinsic it suffices to show that it can be
expressed solely by means of the first fundamental form, i.e., the Riemannian metric.
To do this we first derive some local formulas. Let ¢ be a local parametrization
of M, and (¢p = ¢! = (a!,...,2" 1), V) the corresponding chart. Then (with

= ¢ (p)), % p = D;¢(x) and by (3.1.3) we have:
0 0
9ij(p) = <w oa p> = (Dip(x), Djp(z)).

Let X, Y € X(M) with local representations X = >\, ' XD, Y = i ! YIiDjp
Then according to 3.2.4,

0

VxY = ZXVa‘ZY Zleaz am])

1,7=1

n—1
aYyi 9 - 0
j
Z X! (8:131 O tY vaii acvj)'

ij=1

VxY is uniquely determined by all scalar products (VxY, 5= 00 (cf. 3.1.16). Tt
therefore suffices to show that all

0 [ € . )
<VXY7@> = Z X( opi Jik +YJ<V% - =)

4,5=1
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are intrinsic, i.e., depend exclusively on g. In this expression, the

o 0

P = (Vo 507 )

(3.2.5)

are called Christoffel symbols of the first kind. Since [Qw“ 8307] =0Vi,j (cf. 2.5.15)
and using 3.2.5,
0 0
Vo-—=V_ao— (%)

a2t Oxd 527 Ozt’

so I'yjx = L'jix Vi,j, k. Since
such that

Vaii % € X(V) there exist smooth functions I‘fj

n—

V.o 83@3 Z ”axk (3.2.6)

The I‘fj are called Christoffel symbols of the second kind. They, too, are symmetric
in i,j by (x): Tf; = T'% Vi, j, k. By (3.2.5) and (3.2.6) it follows that

Lijr = Z Fz]gmk (3.2.7)

It remains to show that the I';; 5 are intrinsic, i.e., depend only on g. We have:

0 o 0
ok Jid = D o gij =V o 9ij = Vﬁ<6ﬂ’@>
3.2.4(iv) o 0 0 0 | (3.2.5)

= Vg T e Viraw)

ik + Tjki-
Cyclic permutation gives
0
i ik = ik + i
0
F7 Iki = Crji+ Lijks

from which by adding resp. subtracting we obtain

RS VR B
ij,k — 9 63:’“9” 8xigjk axjgkz .

This expression in fact depends exclusively on g. Thus we have proved:

3.2.6 Theorem. The covariant derivative is an intrinsic quantity.

3.2.7 Remark. Keeping the above notations, let II(ai'i , %) =: hy;. Then with
p = p(x) we have:

3.2.1 0 3.2.3(iii) 0
Dijpz) "= Do z5() "= " Ve o p—hz‘j|pr
(3.2.6) 0
= ZFZ(P)@ = hijl, - vp (3.2.8)
k P
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3.3 Geodesics

A vector field Y on R™ is constant iff DY = 0, iff DxY = 0 for all vector fields
X on R™. Since Y, € T,R™ = R™ this is equivalent to all Y}, being parallel (and of
equal length). For hypersurfaces we analogously define:

3.3.1 Definition. Let M be a hypersurface in R™, Y € X(M). Y is called parallel,
if VxY =0 for all X € X(M).

Geodesics in R™, i.e., straight lines, have the property that their tangent vectors
are always parallel along the straight line. To generalize this notion, we need the
following concept:

3.3.2 Definition. Let M C R"™ be a hypersurface and c: I — M . A smooth map
X : I — R" is called a vector field along c if X (t) € TeyyM for allt € I. The space
of all vector fields along ¢ is denoted by X(c).

3.3.3 Example. Let c: I — M C*. Then ¢: I — R" € X(c) (¢(t) € TeryM V).

Let Y € X(M), p € M and Y a smooth extension of Y to some neighborhood of p
in R™. Let v € T,M. Then by (3.2.2), D,Y(p) = DY (p)-v. If c: I — M is a curve
with ¢(0) = p and ¢/(0) = v, then

d d| 8 .
| Y ) = | Flew) = DY (e0)) €0) = DY o)

To determine D, Y (p) it therefore suffices to know Y along any such curve ¢. Hence
the same is true for V,Y(p). Y € X(M) and ¢ : I — M is smooth, then by the
above, Depy)Y = 4 (Y oc). If Y € X(c), we analogously define:

DY () = =Y (t) (3.3.1)

dt
and

Vi (t) 1= (De) Y (£))" = Doy Y (t) — (DY (1), v(e(t)))v(e(t).  (3.3.2)

3.3.4 Lemma. Let ¢ be a local parametrization, o=t = (z%,..., 2" 1), and c =

pou a smooth curve in M with local representation t — u(t). Let Y € X(c) with

Y(t) =1 V) 2 o) Then:

n—1 k n—1
VeV @ =Y [ B0+ 3 v Sk e | o

k=1 i,j=1 c(t)

Proof. Since Y (t) = 77 Vi(t) Dip(¢ 1 (c(1))), by (3.3.1) we have
~————
=u(t)

n—1 i ;
dYZ(t) du?
DeyY(t) = > o Z Y (t)Dyjep(u ))E
i=1 4,j=1
(3.2.8) w2 0
= —|—ZY’ F(poult)) | Tl
k=1 ij=1 jcg’ e(t)
The claim therefore follows from (3.3.2). O
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3.3.5 Definition. A non-constant curvec: I — M is called geodesic, if V :4)¢(t) =
0 for all t.

Heuristically this means that ¢ is parallelly transported along c, i.e., the curve
goes as straight as the manifold allows. From the point of view of physics, note

that Dy c(t) e 4¢(t) = &(t) is the acceleration of a point particle moving
along c. V¢ is the tangential component of this acceleration. In this picture, a
geodesic is a curve in M which feels no acceleration in (any direction tangent to)
the hypersurface. The normal component of ¢ corresponds to the force (F' = md)
which is needed to hold the particle within M. Hence c is a geodesic iff ¢(t) LT M

for all ¢.

3.3.6 Proposition. Let ¢ be a local parametrization, ¢~' = (z%,...,2" 1), and
c = pou a smooth curve. c is a geodesic if and only if it satisfies
n—1 . .
iF () + > at ()l (O] (p(u(t) =0 k. (3.3.3)
i,j=1
Proof. This follows by applying 3.3.4 and 3.3.5t0 Y =¢é c=pou, so
: i 9 i
&(t) =y Dip(u(t)-a'(t) =Y m=| @' (b),
; 797 e
ie., Yi(t) =ua(t) Vi. O

(3.3.3) is called the system of geodesic equations. It is a second order system of
nonlinear ODEs. It always has local solutions, but not necessarily global ones.
The following result shows that geodesics are precisely the extremals of the arclength
functional. Tts proof uses standard methods of the calculus of variations (in fact it
shows that the geodesic equations are the Euler-Lagrange equations of the problem
of minimizing the arclength of curves connecting two given curves).

3.3.7 Theorem. Let p,q € M. A curve ¢ connecting p and q is a geodesic if and
only if its arclength is an extremal among all lengths of curves connecting p and q.

Proof. Let ¢ : [a,b] = M, c(a) = p, ¢(b) = ¢q. The length of ¢ is extremal if
%|OL(CS) = 0 for every family of curves (t,s) — ¢*(t) = c(t,s) with ¢*(a) = p,
c*(b) = q Vs and ? = c. Let ¢ be parametrized by arclength. Then

b
0
[ gees)l -
0Ja e —

—(e(t,5),6(t,5)) 2
/”1 2|, (et 5), é(t, )
o 2 [|0c(t,0) ||
——

=1

d d
2 Les - =
ds|, (c) ds

dt =

b
o 0 0
/a (5:9s OC(LS% 576 0)dt =
2 (2 ) Dewont- [ 2 L.
2 [<3s Oc(t,s), 8tc(t70)>]a ’ ( s Oc(t,s) ’8t2€(t’0)>dt —
—0. si C(b7 5) =q =m(t)€Tc(s,00M
=0, since c(a, 5) —»



If L(c) is extremal, we may freely choose c(t, s). In particular we may suppose that
n(t) = h(t)(E(t) — (E(t), Ve(r))Vew)) with b : [a,b] — RT smooth, h(a) = h(b) = 0.
Then .
(= [ hO((Evoa) — (6.
a ~~~

>0 <0 by CSI, since |[v]|=1

Since chs | 0 L(c®) = 0, we must in fact have equality in the Cauchy Schwarz inequality
(CSI) for all t. Therefore, ¢(t) must be proportional to v(c(t)) for all ¢, so &(t) €
ToyM*, and c is a geodesic.

. . . d 2112 . éeTc(t)ML TER
Conversely, if ¢ is a geodesic then % (||¢[|*) = 2(¢, &) = 0, so ||¢| is constant,

implying that ¢ is parametrized proportional to arclength. Hence the above calcu-
lation is applicable. Then in (%) we have n(t) € Tet)M, so (n(t),é(t)) = 0 for all ¢.
Therefore, %|0 L(c®?) =0, i.e., L(c) is extremal. O
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