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Preface

These lecture notes form the basis of an introductory course on differential geom-
etry which I first held in the summer term of 2006. Several boundary conditions
made the choice of material to be included quite delicate. On the one hand, in
the mathematics curriculum of the Faculty of Mathematics in Vienna, the course
‘Differential Geometry 1’ is the only compulsory course on the subject for students
not specializing in geometry and topology. On the other hand, the course duration
is only three hours per week. Therefore, an approach which first focuses on clas-
sical differential geometry and then gently moves on to the theory of differentiable
manifolds is ruled out by time constraints.
The course therefore puts its main emphasis on a concise introduction to modern
differential geometry in order to provide the necessary tools for applications in
other branches of mathematics or for a continued study of differential geometry.
Nevertheless, an introduction to local curve theory in chapter 1 and applications
to the theory of hypersurfaces in chapter 3 are intended to provide a link to more
classical aspects of the subject.
Throughout I have tried to motivate all basic concepts thoroughly. As a rule, all
proofs are given in full detail, and comprehensibility is given prevalence over ele-
gance whenever the need arises. I have also refrained from including more material
than can be covered in one semester in order to make a clear statement on what I
consider essential in an introductory course of this kind.
I would like to thank Christoph Marx who typed a first (German) version of these
notes and David Langer who supplied the beautiful pictures and diagrams included
here. Also, I am grateful for many comments of students participating in the course
which, I hope, have led to improvements in the text. Further comments and cor-
rections are always welcome!

Michael Kunzinger, summer term 2008
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Chapter 1

Curves in Rn

1.1 Frenet Curves in Rn

When studying curves as maps c from some interval I in R to Rn analytically one
needs to make some regularity assumptions on c. Continuity is definitely to weak
a requirement as it does not exclude certain pathological examples (think of Peano
curves, i.e., continuous curves which completely cover areas in R2). In particular,
if we want to make use of analytical tools we should suppose c to be differentiable.
However, even requiring c to be C∞ does not exclude certain unwanted phenomena
like edges (where the derivative of c vanishes). Moreover, geometrically it is natural
to require the existence of a nonzero tangent vector in each point of the curve. One
is thus led to the following

1.1.1 Definition. A regular parametrized curve is a continuously differentiable
map c : I → Rn defined on some interval I ⊆ R such that ċ(t) ≡ dc

dt
(t) 6= 0 for all

t ∈ I.

When interpreting t as time and c as describing the physical movement of a particle
the above definition means that the velocity ċ of c is nowhere zero, i.e., the particle
never stops. We call the vector ċ(t0) the tangent vector of c at t0 and the line
t 7→ c(t0) + (t− t0)ċ(t0) the tangent of c at c(t0). By Taylor’s theorem, the tangent
is a first order approximation to c in t0:

c(t0 + t) = c(t0) + tċ(t0) + o(t) .

From the geometric point of view one is not interested in any particular parametriza-
tion of a given curve but rather in its shape (which is invariant under re-parametriza-
tion):

1.1.2 Definition. A regular curve is an equivalence class of regular parametrized
curves with respect to the following equivalence relation: let c1 : I1 → Rn, c2 : I2 →
Rn be regular parametrized curves. Then c1 is called equivalent with c2 if there exists
a diffeomorphism ϕ : I1 → I2 (i.e., ϕ bijective and ϕ, ϕ−1 C1) such that c2 ◦ϕ = c1
and ϕ′ > 0 (such ϕ are called orientation preserving).

Rn

I1

c1

=={{{{{{{{

ϕ
// I2

c2

aaCCCCCCCC

Note that we include orientation in our definition of regular curve. One could distin-
guish between regular oriented curves (with ϕ′ > 0) and regular curves without this
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restriction on ϕ but we will not do this in the sequel and only consider orientation
preserving changes of parameter.
Let c : [a, b] → Rn be a regular curve. The length of c is defined as

Lba(c) :=

∫ b

a

‖ċ(t)‖ dt

Here ‖ . ‖ denotes the euclidean norm in Rn. This notion of length is well defined,
i.e., independent of the parametrization. In fact, let ϕ : [α, β] → [a, b] be a param-
eter transformation as in 1.1.2 above. Then

∫ β

α

‖(c ◦ ϕ)·(r)‖ dr =
∫ β

α

‖ċ(ϕ(r))‖ϕ′(r) dr =

∫ b

a

‖ċ(t)‖ dt

1.1.3 Definition. A parametrization of a curve c is called parametrization by
arclength if ‖ċ(t)‖ = 1 for all t.

Physically speaking, a curve parametrized by arclength has unit speed. Clearly, if
c : [a, b] → Rn is parametrized by arclength then Lba(c) = b− a.

1.1.4 Lemma. Every regular curve possesses a parametrization by arclength. Any
two such parametrizations are equivalent via a translation ϕ : t 7→ t+ a.

Proof. Set s(t) := Lta(c). Then s : [a, b] → [0, l] with l := Lba(c) and s′(t) =
‖ċ(t)‖ > 0 for all t. Hence s is an orientation-preserving diffeomorphism and we
claim that c̄ := c ◦ s−1 is a parametrization of c by arclength. In fact, by the chain
rule we have

˙̄c(u) = ċ(s−1(u)) · 1

s′(s−1(u))
=

ċ

‖ċ‖ (s
−1(u)) ,

so ‖ ˙̄c(u)‖ = 1 for all u ∈ (0, l), as claimed.
Suppose, finally, that c and c◦ϕ are two parametrizations by arclength. Then since
ϕ′ > 0 we have

1 = ‖(c ◦ ϕ)·(t)‖ = ‖ċ(ϕ(t))‖ · ϕ′(t) = ϕ′(t) ,

so ϕ = t 7→ t+ a for some a ∈ R. 2

In what follows we shall employ the following notational conventions: by c(t) we
denote any regular parametrization, whereas we write c(s) for a parametrization
by arclength. Accordingly, we set ċ = dc

dt
for the tangent vector in an arbitrary

parametrization and c′ = dc
ds

for the tangent vector in the parametrization by ar-
clength. Then we have:

ċ = c′
ds

dt
= ‖ċ‖c′ , and ‖c′‖ = 1 .

1.1.5 Lemma. If c is parametrized by arclength then c′′(s) ⊥ c′(s) for all s.

Proof. If we differentiate the equation 1 = ‖c′(s)‖2 = 〈c′(s), c′(s)〉 we obtain

0 = 〈c′(s), c′′(s)〉+ 〈c′′(s), c′(s)〉 = 2〈c′(s), c′′(s)〉 ,

hence the claim. 2

1.1.6 Examples.
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(i) For the straight line c(t) = (at, bt) we have ċ(t) = (a, b). Hence c is parametri-
zed by arclength if and only if a2+b2 = 1. Note also that, e.g., the parametriza-
tion t 7→ (at3, bt3), although it describes the same geometric curve, is not
regular at t = 0.

(ii) The assignment c(s) := 1
2 (cos(2s), sin(2s)) describes a circle of radius 1

2 . Since
c′(s) = (− sin(2s), cos(2s)) we have ‖c′‖ = 1, i.e., c is parametrized by ar-
clength.

(iii) Circular helix: Let c(t) := (a cos(αt), a sin(αt), bt) with α, a, b ∈ R. Then
ċ(t) = (−αa sin(αt), αa cos(αt), b), so ‖ċ‖ =

√
α2a2 + b2. Thus c has constant

velocity and s = t
√
α2a2 + b2 is the parameter of arclength. The circular helix

is given geometrically as the image of the point (a, 0, 0) under the following
one-parameter group of screw-motions:





x
y
z



 7→





cos(αt) − sin(αt) 0
sin(αt) cos(αt) 0

0 0 1





︸ ︷︷ ︸

rotation





x
y
z



+





0
0
bt





︸ ︷︷ ︸

translation

(iv) Neil’s parabola (or: semicubical parabola) is the curve c(t) = (t2, t3). Here,
ċ(t) = (2t, 3t2), so that ċ(0) = (0, 0). Thus c is not a regular parametrization
at t = 0, although c is of course smooth on all of R. Geometrically we see
that at the cusp c(0, 0), c does not have a well-defined tangent vector.
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Using Taylor expansion, we may approximate any curve c parametrized by arc
length as follows:

c(s) = c(0) + sc′(0) +
s2

2
c′′(0) +

s3

6
c′′′(0) + o(s3) .

Using this expansion up to first order we obtain the tangent c(0) + sc′(0). Up to

second order we get the osculating conic c(0) + sc′(0) + s2

2 c
′′(0) which has second

order contact with c. Here, two curves are said to have k-th order contact at s if
their derivatives up to order k at s coincide.

The above considerations assign a distinguished role to the vectors c′, c′′, c′′′, . . . in
describing a given curve c. In particular, if these vectors are linearly independent
at each parameter value they fix a natural coordinate system in which to describe
c. In what follows we call an orthonormal basis in Euclidean space an n-frame.

1.1.7 Definition. Let c : I → Rn be a regular curve of class Cn parametrized
by arclength. c is called a Frenet curve if the vectors c′(s), c′′(s), . . . , c(n−1)(s) are
linearly independent at each parameter value s. The corresponding Frenet n-frame
is then uniquely defined by the following conditions:

(i) e1(s), . . . , en(s) are orthonormal and positively oriented for each s ∈ I.

(ii) span(e1(s), . . . , ek(s)) = span(c′(s), . . . , c(k)(s)) for all k ∈ {1, . . . , n− 1} and
all s ∈ I.

(iii) 〈c(k)(s), ek(s)〉 > 0 for all k ∈ {1, . . . , n− 1} and all s ∈ I.

To construct e1(s), . . . , en−1(s) from c′(s), . . . , c(n−1)(s) we use the Gram-Schmidt
orthogonalization procedure (where we omit the parameter s for the sake of brevity):

e1 := c′

e2 := c′′/‖c′′‖
e3 := (c′′′ − 〈c′′′, e1〉e1 − 〈c′′′, e2〉e2)/‖ . . . ‖

...

ej := (c(j) −
j−1
∑

i=1

〈c(j), ei〉ei)/‖ . . . ‖

...

en−1 := (c(n−1) −
n−2∑

i=1

〈c(n−1), ei〉ei)/‖ . . . ‖

The vector en is then uniquely determined by 1.1.7 (i).

1.1.8 Example.

(i) In the plane, every regular curve is Frenet since 1.1.7 does not pose any
restriction in case n = 2.

(ii) For n = 3, i.e., for regular space curves, the only condition remaining is c′′ 6= 0,
i.e., the absence of inflection points.
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1.2 Plane and Space Curves, Curvature

1.2.1 Plane Curves

Suppose that c is a regular (hence Frenet, cf. 1.1.8) curve in R2. Then e1 = c′ is the
tangent vector of c and e2, which is constructed from e1 by rotating by an angle of
π/2 to the left, is the normal vector of c. We also write e2 = e⊥1 for short.

e2

e1

c

π
2

Since

0 = 〈c′, c′〉′ = 2〈c′, c′′〉 = 2〈e1, c′′〉
it follows that c′′ and e2 are in fact parallel, i.e., there exists some function κ with
c′′(s) = κ(s)e2(s) for all s. κ is called the (oriented) curvature of c. The sign of
κ indicates the direction in which c (resp. c′) is turning: for κ > 0, the tangent is
rotating to the left, for κ < 0 to the right. For κ = 0 the tangent is not turning at all.
Such points are called inflection points. Before turning to a geometric interpretation
of the absolute value of κ let us first derive some useful relations.
By definition, e′1 = c′′ = κe2. Since e2 is constructed from e1 through rotating by
π/2, we conclude by rotating this identity that e′2 = −κe1. Hence we obtain the
so-called Frenet equations for plane curves:

(
e1
e2

)′

=

(
0 κ

−κ 0

)(
e1
e2

)

. (1.2.1)

The Frenet equations allow to derive an explicit formula for the curvature of a curve
c(s) = (x(s), y(s)) in terms of c′ and c′′. In fact, we have

κ(s) = 〈κ(s)e2(s), e2(s)〉 = 〈c′′(s), e2(s)〉 =
〈(

x′′(s)
y′′(s)

)

,

(
−y′(s)
x′(s)

)〉

= det

(
x′(s) x′′(s)
y′(s) y′′(s)

)

= det(c′(s), c′′(s)) .

Heuristically, if we consider curves of constant curvature we expect to obtain either
straight lines (for κ = 0) or circles (for κ 6= 0) since a constant rate of turning of
the tangent vector corresponds to driving along a curve with the steering wheel set
to a fixed position. This intuitive picture is made precise in the following result.

1.2.1 Theorem. A regular curve in R2 has constant curvature κ if and only if it
is part of a straight line (for κ = 0) or of a circle of radius 1

|κ| (for κ 6= 0).

Proof. A straight line obviously has κ = 0 and conversely κ = 0 implies c′′ =
κe2 = 0, i.e., c is a straight line. Suppose now that k(s) =M +r(cos(s/r), sin(s/r))
is a circle parametrized by arclength. Then |κ(s)| = |k′′(s)| = 1/r for all s. Note
that in this case

M = k(s)− r(cos(s/r), sin(s/r)) = k(s) + k′′(s)r2 = k(s) +
k′′(s)

|k′′(s)|2 (1.2.2)

5



If, conversely, the curvature κ of a regular curve c is a nonzero constant, guided by
(1.2.2) we first note that M(s) := c(s) + (1/κ)e2(s) is constant. In fact, M ′(s) = 0
for all s by (1.2.1). Moreover, |M − c(s)| = 1/|κ| for all s. 2

1.2.2 Definition. Let c be a regular plane curve such that κ(s0) 6= 0. Then the
circle which has second order contact with c at s0 is called the osculating circle of c
at c(s0).

Let k denote the osculating circle of c at s0. Then we have c(s0) = k(s0), c
′(s0) =

k′(s0), and c
′′(s0) = k′′(s0). By our calculations in the proof of 1.2.1, the osculating

circle at c(s0) therefore has its center at

M = k(s0) +
k′′(s0)

|k′′(s0)|2
= c(s0) +

c′′(s0)

|c′′(s0)|2
= c(s0) +

e2(s0)

κ(s0)

and has radius 1/|κ(s0)|. In particular, it is uniquely determined. The curve formed
by the centers of all osculating circles of c is called the evolute of c. It is given by

s 7→ c(s) +
e2(s)

κ(s)
.

Note, however, that the evolute of a regular curve in general need not be regular
anymore (typically, it will display cusps, similar to Neil’s parabola).

So far, we have seen two interpretation of the curvature κ of a regular curve c.
Originally, we defined κ as the rate of change of the direction of the tangent vector.
Moreover, we established that 1/|κ| is the radius of the osculating circle of c. A third,
physically motivated interpretation of curvature is as follows: for a particle following
a trajectory c parametrized by arclength we have ‖c′‖ = 1, i.e., acceleration can only
have the effect of changing the direction of the tangent vector, not of changing its
norm, i.e., the velocity of the curve. Thus acceleration can only occur orthogonal
to c′. Since c′′ = κe2 it follows (using Newton’s law ’force equals mass times
acceleration’) that we may interpret curvature as the force to be applied in the
normal direction of the trajectory to keep the particle (assumed to have unit mass)
on its curved path.

1.2.3 Remark. For a given curvature function κ there is a unique (up to Euclidean
motion) Frenet curve c whose curvature is precisely κ. To construct c we will employ
the Frenet equations (1.2.1). We first make the ansatz

e1 = (cos(α(s)), sin(α(s)))

with the function α to be determined. Then

e2(s) = e1(s)
⊥ = (− sin(α(s)), cos(α(s)))

and by (1.2.1) we need to solve κe2 = e′1 = α′e2, i.e., κ = α′. By choosing an
adapted coordinate system we may suppose that c(0) = (0, 0) and e1(0) = (1, 0), so
that α(0) = 0 and α(s) =

∫ s

0
κ(t) dt. Then c(s) = (x(s), y(s)) with

x(s) =

∫ s

0

cos

(∫ r

0

κ(t) dt

)

dr , y(s) =

∫ s

0

sin

(∫ r

0

κ(t) dt

)

dr

Note in particular that for κ =const., this precisely reproduces 1.2.1.
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1.2.2 Space Curves

As we noted in 1.1.8, a regular curve in R3 is Frenet if c′′(s) 6= 0 for all s. Its
accompanying 3-frame is given by

e1 = c′, (tangent vector)

e2 =
c′′

‖c′′‖ , (principal normal vector)

e3 = e1 × e2 (binormal vector)

The curvature of c is defined as κ(s) := ‖c′′(s)‖. For the derivatives of e1, e2, e3 we
calculate:

e′1 = c′′ = κe2 ,

e′2 = 〈e′2, e1〉e1 + 〈e′2, e2
︸ ︷︷ ︸

=0

〉e2 + 〈e′2, e3〉e3 = 〈−e2, e′1〉e1 + 〈e′2, e3
︸ ︷︷ ︸

=:τ

〉e3 = −κe1 + τe3

e′3 = 〈e′3, e1〉e1 + 〈e′3, e2〉e2 + 〈e′3, e3
︸ ︷︷ ︸

=0

〉e3 = −〈e3, e′1
︸ ︷︷ ︸

=0

〉e1 − 〈e3, e′2
︸ ︷︷ ︸

=τ

〉e2 = −τe2 .

We call τ := 〈e′2, e3〉 the torsion of c. Summing up, we obtain the Frenet equations
for a space curve:





e1
e2
e3





′

=





0 κ 0
−κ 0 τ
0 −τ 0









e1
e2
e3



 . (1.2.3)

To obtain an intuitive understanding of the geometric meaning of torsion, note first
that a plane curve c(s) = (x(s), y(s)), when viewed as a space curve (x(s), y(s), 0)
has vanishing torsion τ . Indeed, since e3 is constant, this is immediate from (1.2.3).
Conversely, if τ = 0 for a space curve c it follows from (1.2.3) that e3 is constant.
Hence c lies in the (e1, e2)-plane. Thus τ measures the rate of departure of c from
this plane.

As we have just seen, it is instructive to analyze the behavior of a curve by con-
sidering its projections onto certain planes spanned by subsets of its accompanying
3-frame, to wit: span(e1, e2), the osculating plane, span(e2, e3), the normal plane,
and span(e1, e3), the rectifying plane.
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e1

e2

e2

e3

e1

e3

More precisely, we consider the following Taylor expansion of the curve c:

c(s) = c(0) + sc′(0) +
s2

2
c′′(0) +

s3

6
c′′′(0) + o(s3)

We rewrite this in terms of the accompanying three frame as

c(s) = c(0) + α(s)e1(0) + β(s)e2(0) + γ(s)e3(0) + o(s3)
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with α(s), β(s), γ(s) to be determined. Using (1.2.3), we calculate:

c′ = e1
c′′ = e′1 = κe2
c′′′ = (κe2)

′ = κ′e2 + κe′2 = κ′e2 + κ(−κe1 + τe3) .

Hence, c(s) has the expansion

c(0)+

(

s− s3κ(0)2

6

)

e1(0)+

(
s2κ(0)

2
+
s3κ′(0)

6

)

e2(0)+
s3κ(0)τ(0)

6
e3(0)+ o(s3) .

The projection in the osculating ((e1, e2)-) plane is (up to order two in s) a parabola:

c(0) + se1(0) +
s2κ(0)

2
e2(0) + o(s2) .

In the normal ((e2, e3)-) plane we obtain a Neil parabola (up to order three):

c(0) +

(
s2κ(0)

2
+
s3κ′(0)

6

)

e2(0) +
s3κ(0)τ(0)

6
e3(0) + o(s3) .

Finally, the projection onto the (e1, e3)- (rectifying) plane takes the form of a cubical
parabola (up to order three):

c(0) +

(

s− s3κ(0)2

6

)

e1(0) +
s3κ(0)τ(0)

6
e3(0) + o(s3) .

1.3 The Fundamental Theorem of the Local The-

ory of Curves

In this section we first want to generalize the Frenet equations (1.2.1), (1.2.3) for
plane and space curves to the general case of curves in Rn. Thus let c be a Frenet
curve in Rn with accompanying n-frame e1, . . . , en. Then we have:

1.3.1 Theorem. There exist uniquely determined functions κ1, . . . , κn−1, the Frenet-
curvatures of c with κ1, . . . , κn−2 > 0 and κi ∈ Cn−1−i (for 1 ≤ i ≤ n − 1) such
that the Frenet equations hold:
















e1
e2
...
...
...

en−1

en
















′

=















0 κ1 0 0 . . . 0

−κ1 0 κ2 0
. . .

...

0 −κ2 0
. . .

. . .
...

0 0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 0 κn−1

0 . . . . . . 0 −κn−1 0






























e1
e2
...
...
...

en−1

en
















(1.3.1)

Proof. We write e′i in terms of the orthonormal basis e1, . . . , en:

e′i =

n∑

j=1

〈e′i, ej〉ej . (1.3.2)

By construction, ei ∈ span(c′, c′′, . . . , c(i)) for each i ≤ n − 1. Differentiating, we
obtain that e′i ∈ span(c′, c′′, . . . , c(i+1)) = span(e1, e2, . . . , ei+1). Hence the sum in
(1.3.2) only extends up to i+ 1, i.e.,

〈e′i, ei+2〉 = 〈e′i, ei+3〉 = · · · = 〈e′i, en〉 = 0 . (1.3.3)
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We now set κi := 〈e′i, ei+1〉 (∈ Cn−(i+1)). Let ei =
∑i
j=1 ajc

(j). Then by 1.1.7,

1 = 〈ei, ei〉 = ai 〈c(i), ei〉
︸ ︷︷ ︸

>0

,

so each ai is positive. Since, by the product rule, e′i =
∑i
j=1 bjc

(j) + aic
(i+1), we

obtain that κi = 〈e′i, ei+1〉 = ai〈c(i+1), ei+1〉 > 0 for i ≤ n − 2 (by 1.1.7). Since
0 = 〈ei, ej〉′ = 〈e′i, ej〉 + 〈ei, e′j〉, we conclude from (1.3.3) that in fact 〈e′i, ej〉 = 0
for |i− j| 6= 1. Summing up, we obtain (1.3.1):

e′i = 〈e′i, ei−1〉
︸ ︷︷ ︸

=−〈e′i−1,ei〉

ei−1 + 〈e′i, ei+1〉ei+1 = −κi−1ei−1 + κiei+1

That the κi are uniquely determined is immediate from (1.3.1) and the fact that
e1, . . . , en forms an orthonormal frame. 2

Obviously, (1.3.1) contains (1.2.1) and (1.2.3) as special cases. We may give an
interpretation of κn−1 as torsion, similar to the three-dimensional situation. In
fact, since κi > 0 for i ≤ n−2, c will lie in a hyperplane (namely the (e1, . . . , en−1)-
plane) if and only if the torsion κn−1 vanishes. This in turn is equivalent to en
being constant, orthogonal to this plane.
Our next result shows that both the Frenet frame and the Frenet curvatures are
geometric concepts, i.e., they do not depend on any choice of coordinates. This
is to say that they do not change under Euclidean motions. A transformation
B : Rn → Rn is called a Euclidean motion if it is of the form B(x) = Ax + b for
A an orientation preserving rotation (an element of SL(n,R), i.e., A−1 = At and
det(A) = 1) and b a fixed translation vector.

1.3.2 Proposition. Let c be a Frenet curve in Rn. Then its Frenet frame and its
Frenet curvatures are invariant under Euclidean motions.

Proof. In the notation introduced above, we have to show that if e1, . . . , en is the
Frenet frame of c then Ae1, . . . Aen is the Frenet frame of B ◦ c and c and B ◦ c have
the same Frenet curvatures κ1, . . . , κn−1. In fact, we have (B ◦ c)(i) = Ac(i) for all
i, so the claim about the Frenet frame follows immediately from the construction
of e1, . . . , en (see 1.1.7). For the curvatures we calculate:

(Aei)
′ = Ae′i = A(−κi−1ei−1 + κiei+1) = −κi−1(Aei−1) + κi(Aei+1) .

2

As the main result of this section we next show that a Frenet curve in Rn is entirely
determined by its curvatures.

1.3.3 Theorem. (Fundamental theorem of the local theory of curves)
Let κ1, . . . , κn−1 : (a, b) → R be given functions with κi ∈ Cn−i−1(a, b) for 1 ≤ i ≤
n − 1 and κ1,. . . ,κn−2 > 0. Let s0 ∈ (a, b), q0 ∈ Rn and a fixed set of positively

oriented orthonormal vectors e
(0)
1 , . . . , e

(0)
n be given. Then there exists a unique

Frenet curve c : (a, b) → Rn such that c(s0) = q0, e
(0)
1 , . . . , e

(0)
n is the Frenet frame

of c at q0, and κ1, . . . , κn−1 are the Frenet curvatures of c.

Proof. We are trying to find a matrix-valued map F : (a, b) → Rn
2

, s 7→
(e1(s), . . . , en(s))

t, (i.e., the ei are the rows of F ) where e1, . . . , en is the Frenet
frame of our prospective solution curve c. Thus we want F (s) to be an orthogo-
nal matrix with determinant 1 for all parameter values s. Moreover, according to
(1.3.1), F should solve the matrix equation

F ′(s) = K(s)F (s) (1.3.4)
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withK(s) the skew-symmetric matrix of curvatures (in this case: the given functions
κ1, . . . , κn−1) on the right-hand side of (1.3.1).
Now (1.3.4) is a linear system of ordinary differential equations, so there exists a

unique solution F : (a, b) → Rn
2

with initial condition F (s0) = (e
(0)
1 , . . . , e

(0)
n )t.

Since F satisfies (1.3.4) we have

(FF t)′ = F ′F t + F (F t)′ = F ′F t + F (F ′)t = KFF t + FF tKt .

Thus FF t solves the system of linear ODEs X ′ = KX+XKt with initial condition
F (s0)F (s0)

t = In, the n×n unit matrix. However, since K+KT = 0, In itself is the
unique solution to this system. It follows that F (s)F (s)t = In for all s ∈ (a, b), i.e.,
F (s) is orthogonal for all s. Hence det(F (s)) = ±1 for all s. Since s 7→ det(F (s))
is continuous and det(F (s0)) = det(In) = 1, it follows that det(F (s)) = 1 for all
s. Thus the rows e1(s), . . . , en(s) of F (s) form a positively oriented orthonormal
frame, as desired.
If e1(s), . . . , en(s) is to be the accompanying n-frame of a Frenet curve c we must
have c′ = e1. Combined with the prescribed initial condition c(s0) = q0 this
uniquely determines the regular curve c as c(s) = q0 +

∫ s

s0
e1(t) dt. We next show

that e1(s), . . . , en(s) is in fact the Frenet frame of c. To this end, we first show by
induction that for 1 ≤ i ≤ n we have

c(i) = κ1 · κ2 · · · · · κi−1ei +

i−1∑

j=1

aijej (1.3.5)

for certain functions aij . For i = 1 this trivially holds since c′ = e1. Suppose the
result is true for i. Then

c(i+1) = (κ1 . . . κi−1) · e′i + (κ1 . . . κi−1)
′ · ei +

i−1∑

j=1

(aij
′
ej + aije

′
j) =

= (κ1 . . . κi−1)(−κi−1ei−1 + κiei+1) +

i∑

j=1

bjej

= κ1 . . . κiei+1 +

i∑

j=1

cjej ,

for certain functions bj , cj , as claimed. Since κ1, . . .κn−2 > 0 it follows that c′, . . . ,
c(n−1) are linearly independent, i.e., c is a Frenet curve. Moreover, (1.3.5) implies
that the ei constitute the accompanying Frenet frame of c. Finally, since F ′ = KF
it follows that the κi are precisely the Frenet curvatures of c (cf. the uniqueness
part of 1.3.1). 2
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Chapter 2

Differentiable Manifolds

The notion of a differentiable manifold is one of the central concepts of modern
mathematics. Among others it finds applications in analysis, differential geometry,
topology, the theory of Lie groups, ordinary and partial differential equations, as
well as in numerous branches of physics, e.g. in mechanics or general relativity.
We start out by studying the special case of submanifolds of Rn, a direct gen-
eralization of the notion of surface in R3 which already displays all the essential
characteristics of the concept of abstract manifolds.

2.1 Submanifolds of Rn

To begin with we recall some notions and results from analysis. For simplicity, from
now on we will assume all maps to be C∞.

2.1.1 Theorem. (Inverse Function Theorem) Let U ⊆ Rn open, f : U → Rn

C∞, x0 ∈ U, y0 := f(x0) and Df(x0) invertible (detDf(x0) 6= 0). Then locally
around x0, f is a diffeomorphism, i.e., there exist U1 ⊆ U an open neighborhood
of x0, and V1 an open neighborhood of y0, such that f : U1 → V1 is bijective and
f−1 : V1 → U1 is C∞.

2.1.2 Theorem. (Implicit Function Theorem) Let U ⊆ Rn, V ⊆ Rm open,
f : U×V → Rm C∞, (x0, y0) ∈ U×V, f(x0, y0) = 0 and let ∂f

∂y
(x0, y0) : R

m → Rm

be invertible (det∂f
∂y

(x0, y0) 6= 0). Then there exist open neighborhoods U1 ⊆ U of

x0, V1 ⊆ V of y0, such that: ∀x ∈ U1 ∃! y = y(x) ∈ V1 with f(x, y(x)) = 0. The
map x 7→ y(x) is C∞.

2.1.3 Definition. Let U ⊆ Rk be open and ϕ : U → Rn C∞. ϕ is called regular if
for all x ∈ U the rank of the Jacobian Dϕ(x) is maximal, hence equal to min(k, n).
Then for the rank rk(Dϕ) of Dϕ (also called the rank of ϕ) we have

rk(Dϕ(x)) = dim im(Dϕ(x)) = dim(Rk)− dim(kerDϕ(x)).

Thus if k ≤ n then kerDϕ(x) = {0} and Dϕ(x) is injective for all x. In this case
ϕ is called an immersion. For k ≥ n, Dϕ(x) is surjective for all x and ϕ is called
a submersion.

Hence 2.1.1 says that a regular map f : U → V with U , V ⊆ Rn open is a local
diffeomorphism.

2.1.4 Remark. (Properties of immersions). Let U ⊆ Rk open and ϕ : U → Rn an
immersion.

13



(i) rk(Dϕ(x0)) = k means that { ∂ϕ
∂x1

(x), . . . , ∂ϕ
∂xk

(x)} is linearly independent in
Rn.

(ii) Equivalently, there exist indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that

det
∂(ϕi1 , . . . , ϕik)

∂(x1, . . . , xk)
(x0) 6= 0

Since det is continuous it follows that rk(Dϕ(x)) = k in a neighborhood of
x0.

(iii) In particular for k = 1, ϕ : U ⊆ R → Rn is an immersion if ϕ′(t) 6= 0 ∀t, i.e.,
if ϕ is a regular curve.

2.1.5 Definition. A subset M of Rn is called a k-dimensional submanifold of Rn

(k ≤ n) if

(P )







For each p ∈ M there exists an open neighborhood W of p in Rn,
an open subset U of Rk and an immersion ϕ : U → Rn such that
ϕ : U → ϕ(U) is a homeomorphism and ϕ(U) =M ∩W .

Such a ϕ is called a local parametrization of M .

Rk

U

ϕ

Rn

W
M

PM ∩W

Thus ϕ is regular and identifies U and ϕ(U) =M∩W topologically (ϕ(U) =M∩W
carries the trace topology of Rn). The following result gives an alternative criterion
which is sometimes used in the definition of submanifolds of Rn.

2.1.6 Proposition. For each M ⊆ Rn, property (P) is equivalent to

(P ′)







For each p ∈ M there exists a smooth map ϕ : U → Rn, where U
is an open neighborhood of 0 in Rk, ϕ(0) = p and ϕ is regular at 0
(i.e., Dϕ(0) is injective) and such that for any open neighborhood
U1 ⊆ U of 0 there exists an open neighborhood W1 of p in Rn with
ϕ(U1) =W1 ∩M .

Proof. Obviously (P) implies (P’). Conversely, we first note that by 2.1.4 we
may without loss of generality suppose that ϕ is an immersion on all of U . By
assumption, ϕ is continuous. To establish (P ) we will show that there exists an

14



open subset U1 of U such that ϕ|U1
is a homeomorphism onto its image, equipped

with the trace topology from M .

Since Dϕ(0) is injective there exists a left inverse linear map A : Rn → Rk, i.e.,
idRk = A · Dϕ(0) = D(A · ϕ)(0). [Let B := Dϕ(0), then B : Rk → im(B) is
bijective. Call Ã the inverse of this map. Then we may take A := Ã ◦ prim(B).] By

2.1.1 the map x 7→ A · ϕ(x) is a local diffeomorphism on Rk, so there exist open
neighborhoods U1 ⊆ U of 0 and U2 of A(p) such that h := (A ◦ ϕ)−1 : U2 → U1 is
smooth.

Now set ψ := h ◦A : A−1(U2) → U1. Then ψ is smooth and

ψ ◦ ϕ(x) = (A ◦ ϕ)−1 ◦A ◦ ϕ(x) = x ∀x ∈ U1 ,

so ψ is a left-inverse of ϕ|U1
. In particular, ϕ|U1

is injective. Thus ϕ : U1 → ϕ(U1) =
W1 ∩M is bijective with inverse ψ|W1∩M . The latter map is continuous w.r.t. the
trace topology, so ϕ : U1 → ϕ(U1) is a homeomorphism. 2

2.1.7 Examples.

(i) The unit circle S1.
Let ϕ : θ 7→ (cos θ, sin θ). Then for all (x0, y0) = (cos θ0, sin θ0), ϕ : (θ0 −
π, θ0 + π) → R2 is a parametrization of S1 around (x0, y0). Here W can be
taken, e.g., as R2\{(−x0,−y0)}. Hence S1 is a 1-dimensional submanifold of
R2. Note that no single parametrization can be used for all of S1! (There is
no homeomorphism from some open subset of R onto S1 since S1 is compact).

S1

θ0

(x0, y0) = (cos θ0, sin θ0)

(−x0,−y0)

(ii) The 2-sphere S2 in R3.
Let ϕ(φ, θ) = (cosφ cos θ, sinφ cos θ, sin θ). Then

Dϕ =





− sinφ cos θ − cosφ sin θ
cosφ cos θ − sinφ sin θ

0 cos θ





ϕ is a parametrization of S2 e.g. on (0, 2π)× (−π
2 ,

π
2 ). In fact, on this domain

ϕ is injective and rk(Dϕ) = 2, since cos θ 6= 0 on (−π
2 ,

π
2 ). Again, more than

one parametrization is needed to cover S2.

15
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θ

φ

(iii) Figure eight manifold.
Let M := {(sin 2s, sin s)|s ∈ (0, 2π)}. The map ϕ : s 7→ (sin 2s, sin s) is an
injective immersion: indeed, Dϕ(s) = ϕ′(s) = (2 cos 2s, cos s) 6= (0, 0) on
(0, 2π).

However, M is not a submanifold of R2! In fact, suppose that there exists a
parametrization ψ : (−ε, ε) → Br(0, 0) ofM around p = (0, 0) with r < 1 such
that ψ : (−ε, ε) → Br(0, 0)∩M is a homeomorphism. Then since (−ε, ε)\{0}
has two connected components, while (M∩Br(0, 0))\(0, 0) has four, we arrive
at a contradiction. M is what is usually called an immersive submanifold of
R2. In what follows, we will restrict our attention to submanifolds in the sense
of 2.1.5.
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ψ

2.1.8 Theorem. Let M ⊆ Rn. The following are equivalent:

(P) (Local Parametrization) M is a k-dimensional submanifold of Rn.

Rk

U

ϕ

Rn

W
M

pM ∩W

(Z) (Local Zero Set) For every p ∈M there exist an open neighborhood W of p in
Rn and a C∞-map f :W → Rn−k which is regular (i.e., rkDf(q) = n− k for
all q ∈W ) satisfying

M ∩W = f−1(0) = {x ∈W | f(x) = 0}.

Rn

f−1(0)
f

0 Rn−k
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(G) (Local Graph) For each p ∈M there exist (after re-numbering the coordinates
if necessary) open neighborhoods U ′ ⊆ Rk of p′ := (p1, . . . , pk) and U

′′ ⊆ Rn−k

of p′′ := (pk+1, . . . , pn) and a C∞-map g : U ′ → U ′′ such that

M ∩ (U ′×U ′′) = {(x′, x′′) ∈ U ′×U ′′|x′′ = g(x′)} = graph(g)

U ′

U ′′

U ′ × U ′′

(T) (Local Trivialization) For each p ∈M there exist an open neighborhood W of p
in Rn, an open set W ′ in Rn ∼= Rk×Rn−k and a diffeomorphism Ψ :W →W ′

such that

Ψ(M ∩W ) =W ′ ∩ (Rk × {0}) ⊆ Rk × {0} ∼= Rk.

.

W
Ψ

W ′

Rk

Rn−k
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Proof. (P ) ⇒ (G):

Without loss of generality we may suppose that ϕ(0) = p and det ∂(ϕ1,...,ϕk)
∂(x1,...,xk)

(0) 6= 0.

By 2.1.1 there exists some open neighborhood U1 ⊆ U of 0 and some open V1 ⊆ Rk

such that ϕ′ := (ϕ1, . . . , ϕk) is a diffeomorphism. Let ψ : V1 → U1 be the inverse of
ϕ′ and G := ϕ ◦ ψ : V1 → Rn. Then with ϕ′′ := (ϕk+1, . . . , ϕn) we have

G(x1, . . . , xk) := (ϕ′ ◦ ψ(x1, . . . , xk)
︸ ︷︷ ︸

=(x1, . . . , xk)
︸ ︷︷ ︸

x′

, ϕ′′ ◦ ψ
︸ ︷︷ ︸

=:g

(x1, . . . , xk)) = (x′, g(x′))

with g : V1 → Rn−k smooth. Since ϕ is a homeomorphism, ϕ(U1) is open in M ,
i.e., there exists some W1 open in Rn such that ϕ(U1) =M ∩W1. Hence

M ∩W1 = ϕ(ψ(V1)
︸ ︷︷ ︸

U1

) = G(V1) = {(x′, g(x′))|x′ ∈ V1}.

We now choose open sets U ′ ⊆ V1 and U ′′ ⊆ Rn−k such that p ∈ U ′ × U ′′ ⊆ W1.
Then

M ∩ (U ′ × U ′′) = M ∩W1 ∩ (U ′ × U ′′) = {(x′, g(x′))|x′ ∈ V1} ∩ (U ′ × U ′′)

= {(x′, x′′) ∈ U ′ × U ′′|g(x′) = x′′}

(G) ⇒ (Z):
Set W := U ′ × U ′′ and f :W → Rn−k,

fj(x1, . . . , xn) := xk+j − gj(x1, . . . , xk) (1 ≤ j ≤ n− k)

Then f ∈ C∞ and ∂(f1,...,fn−k)
∂(xk+1,...,xn)

= In−k, so f is regular. Moreover

f−1(0) = {(x′, x′′) ∈ U ′ × U ′′|g(x′) = x′′} =M ∩ (U ′ × U ′′) =M ∩W.

(Z) ⇒ (T ):

Without loss of generality we may suppose that det ∂(f1,...,fn−k)
∂(xk+1,...,xn)

(p) 6= 0. Let Ψ(x) :=

(x′, f(x)) = (x1, . . . , xk, f1(x), . . . , fn−k(x)). Then

DΨ(p) =

(

Ik 0

∗ ∂(f1,...,fn−k)
∂(xk+1,...,xn)

(p)

)

is invertible.
By 2.1.1, there exists an open neighborhood W1 ⊆ W of p in Rn, and some W ′

open in Rn = Rk × Rn−k, such that Ψ : W1 → W ′ is a diffeomorphism. We show
that Ψ(M ∩W1) = (Rk × {0}) ∩W ′:

⊆: Ψ(M ∩W1) ⊆ Ψ(W1) =W ′ and x ∈M ∩W1 ⇒ f(x) = 0
⇒ Ψ(x) = (x′, f(x)) = (x′, 0) ∈ Rk × {0}.

⊇:
y ∈W ′ ⇒ y = Ψ(x) = (x′, f(x)) with x ∈W1

f(x) = 0 ⇒ x ∈ f−1(0) =W ∩M

}

⇒ x ∈W1 ∩M
⇒ y = Ψ(x) ∈ Ψ(M ∩W1).

Moreover, ψ := Ψ|W1∩M : W1 ∩M → W ′ ∩ (Rk × {0}) is a homeomorphism: it is
clearly continuous and bijective, and ψ−1 = Ψ−1|(W ′∩(Rk×{0})) is continuous.
(T ) ⇒ (P ):
Let Φ : W ′ → W be the inverse of Ψ and denote by ϕ : (Rk × {0}) ∩W ′ =: U ⊆
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Rk × {0} ∼= Rk → Rn the map (x1, . . . , xk) 7→ Φ(x1, . . . , xk, 0, . . . , 0), i.e., ϕ = Φ ◦ i
with i : Rk →֒ Rn. Then ϕ is an immersion since Dϕ = DΦ ◦ Di is injective.
Moreover,

ϕ(U) = Φ((Rk × {0}) ∩W ′) = Ψ−1((Rk × {0}) ∩W ′) =M ∩W.

Finally, ϕ : (Rk × {0}) ∩W ′ → M ∩W is a homeomorphism, since it is bijective,
continuous, and: ϕ−1 = Ψ|M∩W is continuous. 2

2.1.9 Examples. (cf. 2.1.7!)

(i) Circle M = {(x, y) | x2 + y2 = R2}

• Local Zero Set: W := R2 \ {(0, 0)}, f : W → R, f(x, y) = x2 + y2 −
R2, M ∩W = f−1(0).

• Local Graph: M ∩ (U ′ × U ′′) = graph(g), g : x 7→
√
R2 − x2.

.
U ′

U ′′

U ′ × U ′′

• Local Trivialization: Ψ : (x, y) = (r cosϕ, r sinϕ) 7→ (ϕ, r − R). Then
locally ψ := Ψ|W∩M = (R cosϕ,R sinϕ) 7→ (ϕ, 0) (with suitable W ).

(ii) Sphere in R3

• Local Zero Set: x2 + y2 + z2 = R2.

• Local Graph: (x, y) 7→
√

R2 − x2 − y2

• Local Trivialization: Inverse spherical coordinates (with fixed radius).

(iii) Let U ⊆ Rn be open. Then U is a submanifold of Rn with local parametriza-
tion id : U → U .

For example, GL(n,R) = {A ∈ Rn
2 | detA 6= 0} is open in Rn

2

since det :

Rn
2 → R is continuous (even C∞) ⇒ GL(n,R) is an n2-dimensional subman-

ifold of Rn
2

.

(iv) An example of a matrix group as a submanifold.

Let SL(n,R) := {A ∈ Rn
2 | detA = 1} ⊆ GL(n,R). Hence SL(n,R) is given

as the zero set of the smooth map f(A) = detA− 1. By 2.1.8 (Z) it therefore
remains to show that f is regular in any A ∈ SL(n,R) (note that if a map is
regular in one point then it is regular in a whole neighborhood of that point
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since a sub-determinant of the Jacobian is nonzero in the point, hence in a
neighborhood by continuity). Thus let A ∈ SL(n,R). Then

Df(A) ·A =
d

dt

∣
∣
∣
∣
0

f((1 + t)A) =
d

dt

∣
∣
∣
∣
0

(det (1 + t)A− 1)

= n(1 + t)n−1 detA
∣
∣
t=0

= ndetA 6= 0,

so for all r ∈ R we have Df(A)( r
n detAA) = r, i.e., f is regular near A.

By 2.1.8, SL(n,R) is a submanifold of Rn
2

of dimension n2 − 1 (in fact
GL(n,R), SL(n;R) are examples of Lie groups).

Our next aim is to do analysis on submanifolds of Rn. We begin by introducing the
notion of smooth map on submanifolds:

2.1.10 Definition. LetM ⊆ Rm and N ⊆ Rn be submanifolds. A map f :M → N
is called smooth (or C∞), if for all p ∈ M there exists some open neighborhood Up
of p in Rm and some smooth map f̃ : Up → Rn with f̃ |M∩Up = f |M∩Up

.

If f is bijective and both f and f−1 are smooth, then f is called diffeomorphism.

2.1.11 Remark.

(i) The case N = Rn is included as a special case of the above definition.

(ii) The composition of smooth maps is smooth: Let f1 : M1 → M2, f2 : M2 →
M3 be smooth, p ∈ M1, and f̃1 : Up → Rm2 , f̃2 : Uf1(p) → Rm3 smooth

extensions. Then (since f̃1 is smooth, hence continuous): f̃−1
1 (Uf1(p)) ∩ Up is

an open neighborhood of p and f̃2 ◦ f̃1 : f̃−1
1 (Uf1(p)) ∩ Up → Rm3 is a smooth

extension of f2 ◦ f1.

2.1.12 Definition. Let M be a k-dimensional submanifold of Rn. A chart (ψ, V )
of M is a diffeomorphism of an open set V ⊆M onto an open subset of Rk.

Charts are the inverses of local parametrizations in the following sense:

2.1.13 Proposition. Let M be a k-dimensional submanifold of Rn.

(i) Let ϕ : U ⊆ Rk → Rn (U open) be a local parametrization of M , ϕ(U) =
W ∩M (W ⊆ Rn open ). Then ψ := ϕ−1 :W ∩M → U is a chart of M .

(ii) Conversely, if ψ : V → U ⊆ Rk is a chart of M , then ϕ := idM →֒Rn ◦ ψ−1 :
U → Rn is a local parametrization of M .

Proof.

(i) By 2.1.10, ϕ is a smooth map from U to W ∩M . Also, ϕ is bijective. It
remains to prove that ψ = ϕ−1 :W ∩M → U is smooth in the sense of 2.1.10,
i.e., possesses a smooth extension to some neighborhood of any given point of
W ∩M .

Let p ∈ W ∩M and set x′0 := ψ(p) ∈ U . Here we employ the notations of
2.1.8: x′ := (x1, . . . , xk), x

′′ := (xk+1, . . . , xn), ϕ
′ := (ϕ1, . . . , ϕk), ϕ

′′ :=
(ϕk+1, . . . , ϕn). ϕ is an immersion, so without loss of generality we may

suppose that ∂(ϕ1,...,ϕk)
∂(x1,...,xk)

(x′0) is invertible.

Let Φ : U × Rn−k → Rn,Φ(x′, x′′) := (ϕ′(x′), ϕ′′(x′) + x′′) = ϕ(x′) + (0, x′′).
In particular: Φ(x′, 0) = ϕ(x′). Then

DΦ(x′0, 0) =

(
Dϕ′(x′0) 0
Dϕ′′(x′0) In−k

)
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is invertible. By 2.1.1, Φ is a local diffeomorphism of U1 × U2 onto some W1,
where U1, U2 are open neighborhoods of x′0 in U respectively of 0 in Rn−k.
Since p = Φ(x′0, 0) ∈W1 we may w.l.o.g. suppose that W1 ⊆W .

We have ϕ(U1) = Φ(U1 × {0}) ⊆ W1 ⊆ W . Since ϕ is a homeomorphism
there exists some open subset W2 of Rn with ϕ(U1) = W2 ∩ M . W.l.o.g.
we may suppose that W2 ⊆ W1 (otherwise replace W2 by W2 ∩ W1). Let
Ψ :W1 → U1 × U2 be the inverse of Φ.

Then for q ∈ W2 ∩M we have q = ϕ(x′) = Φ(x′, 0) for some x′ ∈ U1. Since
(x′, 0) ∈ U1 × U2 we get ψ(q) = ϕ−1(q) = x′ = pr1 ◦Ψ(q). Hence pr1 ◦Ψ is a
smooth extension of ψ to the neighborhood W2 of p, so ψ is smooth at p, as
claimed.

(ii) Let ψ : V → U ⊆ Rk be a chart, and set ϕ := idM →֒Rn ◦ψ−1 : U → Rn. Then
ϕ is smooth and ϕ : U → V is a homeomorphism (since ψ : V → U is).

Finally, ϕ is an immersion: let ψ̃ be a smooth extension of ψ (to some open
neighborhood), then ψ̃ ◦ϕ = ψ ◦ϕ = idU , so Dψ̃(ϕ(x)) ·Dϕ(x) = idU (x) ∀x ∈
U , so Dϕ(x) is injective.

2

2.1.14 Remark. If Ψ is a trivialization as in 2.1.8 (T), Ψ :W →W ′, Ψ(W ∩M) =
W ′ ∩ (Rk×{0}), then ψ := Ψ|M∩W is a chart of M (cf. the proof of 2.1.8, (T)⇒(P)
and 2.1.13 (i)).

IfM is a k-dimensional submanifold of Rn and (ψ, V ) is a chart ofM , then for p ∈ V
we may write ψ(p) = (ψ1(p), . . . , ψk(p)) = (x1, . . . , xk). The smooth functions
ψi = pri ◦ ψ are called local coordinate functions, the xi are called local coordinates
of p.
Let Mm, Nn be submanifolds, f :M → N, p ∈M , ϕ a chart of M around p and ψ
a chart of N around f(p). Then ψ ◦ f ◦ ϕ−1 is called local representation of f . We
have

ψ ◦ f ◦ ϕ−1 : (x1, . . . , xm) 7→ (ψ1(f(ϕ
−1

︸ ︷︷ ︸

=:f1

(x)), . . . , ψn(f(ϕ
−1

︸ ︷︷ ︸

=:fn

(x)))).

The fi are called coordinate functions of f with respect to ϕ, ψ.
By means of charts, smoothness of maps can be characterized without resorting to
the surrounding Euclidean space, hence intrinsically:

2.1.15 Proposition. Let Mm ⊆ Rs, Nn ⊆ Rt be submanifolds and f : M → N .
TFAE:

(i) f is smooth.

(ii) For all p ∈ M there exist charts (ϕ,U) of M at p, (ψ, V ) of N at f(p) such
that the domain ϕ(U ∩ f−1(V )) of the local representation ψ ◦ f ◦ϕ−1 is open
and ψ ◦ f ◦ ϕ−1 : ϕ(U ∩ f−1(V )) → ψ(V ) is smooth.

(iii) f is continuous and for all p ∈M there exist charts (ϕ,U) ofM at p, (ψ, V ) of
N at f(p) such that the local representation ψ◦f◦ϕ−1 : ϕ(U∩f−1(V )) → ψ(V )
is smooth.

(iv) f is continuous and for all p ∈M , all charts (ϕ,U) of M at p and all charts
(ψ, V ) of N at f(p), the local representation ψ ◦ f ◦ ϕ−1 : ϕ(U ∩ f−1(V )) →
ψ(V ) is smooth.
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M N

U
V

f

ϕ ψ

ψ ◦ f ◦ ϕ−1

ϕ(U ∩ f−1(V ))
ψ(V )

Proof. (i)⇒(iv): f is continuous since around any point it is the restriction of
a continuous map. Hence f−1(V ) and therefore also ϕ(U ∩ f−1(V )) is open. By
2.1.11 (ii), the map ψ ◦ f ◦ ϕ−1 (whose domain of definition is ϕ(U ∩ f−1(V ))) is
smooth.
(iv)⇒(iii), and (iii)⇒(ii) are clear.
(ii)⇒(i): On the open neighborhood U ∩ f−1(V ) of p we have f = ψ−1 ◦ (ψ ◦ f ◦
ϕ−1) ◦ ϕ, so f is smooth by 2.1.11 (ii). 2

2.2 Abstract Manifolds

In what follows we want to extend the concept of differentiable manifolds to sets
which a priori are not realized as subsets of some Rn. The key to this generalization
of the notion of submanifold of Rn is the formulation of the properties we derived
in the previous section in terms of charts. These will allow to dispense with the
surrounding Euclidean space.

2.2.1 Definition. Let M be a set. A chart (ψ, V ) of M is a bijective map ψ of
V ⊆ M onto an open subset U of Rn, ψ : V → U . Two charts (ψ1, V1), (ψ2, V2)
are called (C∞−) compatible if ψ1(V1 ∩ V2) and ψ2(V1 ∩ V2) are open in Rn and
the change of charts ψ2 ◦ ψ−1

1 : ψ1(V1 ∩ V2) → ψ2(V1 ∩ V2) is a C∞-diffeomorphism
(note that this condition is symmetric in ψ1, ψ2).

Rn

Rn

U1

U2

ψ1(V1 ∩ V2)
ψ2(V1 ∩ V2)

MV1

V2

ψ1 ψ2

ψ2 ◦ ψ−1
1

A C∞-atlas of M is a family A = {(ψα, Vα) | α ∈ A} of pairwise compatible charts
such that M =

⋃

α∈A Vα. Two atlasses A1,A2 are called equivalent if A1 ∪ A2

itself is an atlas of M , i.e., if all charts of A1 ∪ A2 are compatible. An (abstract)
differentiable manifold is a set M together with an equivalence class of atlasses.
Such an equivalence structure is called a differentiable (or C∞-)structure on M .
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2.2.2 Examples.

(i) LetS1 = {(x, y) | x2+y2 = 1} ⊆ R2 and set V1 := {(cosϕ, sinϕ) | 0 < ϕ < 2π}
and ψ1 : V1 → (0, 2π), (cosϕ, sinϕ) 7→ ϕ. Let V2 := {(cosϕ, sinϕ) | −π <
ϕ < π}, ψ2 : V2 → (−π, π), (cosϕ, sinϕ) 7→ ϕ. Then (ψ1, V1) and (ψ2, V2)
are charts for S1 and S1 = V1 ∪ V2. Moreover, ψ1 and ψ2 are compatible.
In fact, ψ1(V1 ∩ V2) = (0, π) ∪ (π, 2π) and ψ2 ◦ ψ−1

∣
∣
(0,π)

= ϕ 7→ ϕ. We have

ψ2 ◦ψ−1
1 |(π,2π) = ϕ 7→ ϕ−2π, so the change of charts ψ2 ◦ψ−1

1 : ψ1(V1∩V2) →
ψ2(V1 ∩ V2) is a diffeomorphism. Hence A := {(ψ1, V1), (ψ2, V2)} is an atlas
of S1.

V1 V2

(ii) Let M be the following subset of Rn: Let V1 := {(s, 0)| − 1 < s < 1}, ψ1 :
V1 → (−1, 1), ψ(s, 0) = s. Further, let V2 := {(s, 0)|−1 < s ≤ 0}∪{(s, s)|0 <
s < 1}, ψ2 : V2 → (−1, 1), ψ2(s, 0) = s, ψ2(s, s) = s.

−1 0 1

(1, 1)

Then ψ1, ψ2 are bijective, hence charts, and ψ2 ◦ ψ−1
1 = s 7→ s.

However, ψ1(V1 ∩ V2) = (−1, 0] is not open, so ψ1, ψ2 are not compatible. In
fact M also can’t be a submanifold of Rn (same argument as in 2.1.7(iii)).

(iii) As in 2.1.7 (iii) let M := {(sin 2s, sin s)|s ∈ R} be the figure eight manifold.
Let V1 = M, ψ1 : V1 → (0, 2π), ψ(sin 2s, sin s) = s. Then ψ1 is a chart and
A1 := {(ψ1, V1)} is an atlas defining a C∞-structure on M .
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ψ−1
1

0 2π

ψ−1
2

−π π

On the other hand, let V2 =M, ψ2 : V2 → (−π, π), ψ2(sin 2s, sin s) = s. Then
also A2 := {(ψ2, V2)} is an atlas. However, A1 and A2 are not equivalent:
ψ2 ◦ ψ−1 : (0, 2π) → (−π, π),

ψ2 ◦ ψ−1(s) =







s 0 < s < π upper loop
s− π s = π origin
s− 2π π < s < 2π lower loop

π

−π

0
π 2π

Hence ψ2 ◦ ψ−1
1 is not even continuous.

Thus M can be endowed with different C∞-structures. With any such struc-
ture, M is an example of a C∞-manifold which is not a submanifold of R2 (cf.
2.1.7 (iii)!).

(iv) One can show that for n 6= 4, up to diffeomorphism there is precisely one C∞-
structure on Rn. On R4 however, there are uncountably many inequivalent
smooth structures!

An atlas for a manifold is called maximal if it is not contained in any strictly larger
atlas.

2.2.3 Proposition. Let M be a C∞-manifold with atlas A. Then there is a unique
maximal atlas on M which contains A.

Proof. Let Ã := {ϕ|ϕ is a chart of M and ϕ is compatible with every ψ ∈ A}.
Then Ã ⊇ A and we show that Ã itself is an atlas.
Let (ϕ1,W1), (ϕ2,W2) ∈ Ã with W1 ∩W2 6= ∅. Then since ϕ1, ϕ2 are bijective, so
is ϕ2 ◦ ϕ−1

1 : ϕ1(W1 ∩W2) → ϕ2(W1 ∩W2). It remains to show that ϕ2 ◦ ϕ−1
1 is
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a diffeomorphism whose domain ϕ1(W1 ∩W2) is open. Let x ∈ ϕ1(W1 ∩W2) and
(ψ, V ) a chart in A with ϕ−1

1 (x) ∈ V . By definition of Ã, ϕ2 ◦ ψ−1 : ψ(W2 ∩ V ) →
ϕ2(W2 ∩ V ) and ψ ◦ ϕ−1

1 : ϕ1(W1 ∩ V ) → ψ(W1 ∩ V ) are diffeomorphisms between
open subsets of Rn. Therefore, (ϕ2 ◦ ψ−1) ◦ (ψ ◦ ϕ−1

1 ) is a diffeomorphism with
domain (ψ ◦ ϕ−1

1 )−1(ψ(W2 ∩ V )) = ϕ1(W1 ∩W2 ∩ V ).
Note that

ϕ1(W1∩W2∩V ) = ϕ1 ◦ψ−1(ψ(V ∩W1∩W2)) = ϕ1 ◦ψ−1(ψ(V ∩W1)∩ψ(V ∩W2))

is open. Summing up, for all x ∈ ϕ1(W1 ∩W2) there exists an open neighborhood
ϕ1(W1∩W2∩V ) ⊆ ϕ1(W1∩W2), on which ϕ2 ◦ϕ−1

1 is a diffeomorphism. Moreover,
ϕ2◦ϕ−1

1 is bijective on the open set ϕ1(W1∩W2). Thus ϕ2◦ϕ−1
1 is a diffeomorphism,

so ϕ1 and ϕ2 are compatible.
Maximality and uniqueness of Ã are clear. 2

From now on, whenever a smooth manifold M is given, by a chart of M we mean
an element of the maximal atlas of M .
Next we want to equip any smooth manifold with a natural topology induced by
its charts. We will make use of the following auxilliary result:

2.2.4 Lemma. Let M be a smooth manifold, (ψ, V ) a chart of M and W ⊆ V
such that ψ(W ) is open in Rn. Then also (ψ|W ,W ) is a chart of M .

Proof. ψ|W :W → ψ(W ) is bijective. Let (ϕ,U) be another chart of M . We have
to show that ψ|W and ϕ are compatible. Now ψ|W ◦ ϕ−1 : ϕ(U ∩W ) → ψ(U ∩W )
is bijective and is the restriction of the diffeomorphism ψ ◦ϕ−1 to ϕ(U ∩W ). Also,

ϕ(U ∩W ) = ϕ ◦ ψ−1(ψ(U ∩W )) = ϕ ◦ ψ−1(ψ(U ∩ V ) ∩ ψ(W ))

is open. Thus ψ|W ◦ ϕ−1 itself is a diffeomorphism, so ψ|W ∈ A. 2

2.2.5 Proposition. Let M be a manifold with maximal atlas A = {(ψα, Vα)|α ∈
A}. Then B := {Vα|α ∈ A} is the basis of a topology, the so-called natural or
manifold topology of M .

Proof. Clearly
⋃

α∈A Vα = M . For α, β ∈ A, ψα(Vα ∩ Vβ) is open in Rn (since
ψα and ψβ are compatible), hence by 2.2.4, (ψα|Vα∩Vβ , Vα ∩ Vβ) itself is an element
of A. Therefore, Vα∩Vβ ∈ B and so B is the basis of a uniquely defined topology. 2

2.2.6 Proposition. With respect to the manifold topology of M , any chart (ψ, V )
is a homeomorphism of the open subset V of M onto the open subset ψ(V ) of Rn.

Proof. Let ψ : V → U be a chart of M . Then by 2.2.5, V is open in M . We first
show that ψ is continuous. Let U1 ⊆ U be open and W1 := ψ−1(U1). By 2.2.4,
(ψ|W1

,W1) is a chart of M , so W1 ∈ B, hence open in M . It remains to show that
ψ is open (so that ψ−1 is continuous). To this end it suffices to show that ψ maps
any W ∈ B with W ⊆ V to an open subset of Rn.
For such a W , by 2.2.5 there exists a chart ϕ with domain W . Hence ϕ ◦ ψ−1 :
ψ(W ∩ V ) → ϕ(W ∩ V ) is a diffeomorphism. In particular, ψ(W ∩ V ) = ψ(W ) is
open. 2

2.2.7 Lemma. LetM be a set, A a C∞-atlas ofM , τ the manifold topology induced
by A and τ ′ another topology on M . TFAE:
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(i) τ = τ ′

(ii) If (ψ, V ) ∈ A, then V ∈ τ ′ and ψ : V → ψ(V ) is a homeomorphism with
respect to τ ′.

Proof. (i) ⇒ (ii) is immediate from 2.2.6.
(ii) ⇒ (i): Let p ∈ M, (ψ, V ) ∈ A with p ∈ V . Let U be a basis of neighborhoods
of ψ(p) in ψ(V ) ⊆ Rn. Then (ψ−1(U))U∈U is a basis neighborhoods of p with re-
spect to τ and also with respect to τ ′. It follows that every p ∈ M has the same
neighborhoods with respect to τ and τ ′, so τ = τ ′. 2

After these preparations we are now in a position to completely clarify the relation-
ship between submanifolds of Rn and abstract manifolds.

2.2.8 Theorem. Let M be an m-dimensional submanifold of Rn. Then M is an
m-dimensional C∞-manifold in the sense of 2.2.1. The manifold topology of M
coincides with the trace topology of Rn on M .

Proof. As an atlas of M we pick the family of all ψ = ϕ−1, where ϕ is a local
parametrization. By 2.1.13 these are precisely the charts in the sense of 2.1.12. By
2.1.15 (iii) (with f = idM ) all changes of charts are diffeomorphisms, so M is a
smooth manifold in the sense of 2.2.1. According to 2.1.5, every ϕ is a homeomor-
phism with respect to the trace topology of Rn on M . Hence by 2.2.7 the trace
topology of Rn is precisely the manifold topology. 2

From 2.1.15 we may distill an appropriate definition of smoothness for mappings
between abstract manifolds:

2.2.9 Definition. Let M, N be C∞-manifolds and f :M → N a map. f is called
smooth (C∞) if it is continuous and for all p ∈ M there exists a chart ϕ of M
around p and a chart ψ of N around f(p) such that ψ ◦ f ◦ ϕ−1 is smooth. f is
called diffeomorphism if it is bijective and f and f−1 are smooth.

2.2.10 Remark.

(i)

M N

U
V

f

ϕ ψ

ψ ◦ f ◦ ϕ−1

ϕ(U ∩ f−1(V ))
ψ(V )

Let (ϕ,U), (ψ, V ) be charts as above. Then the domain of definition of ψ ◦
f ◦ ϕ−1 is ϕ(U ∩ f−1(V )). This set is open since f is continuous and ϕ is a
homeomorphism.

Conversely, if f :M → N is some map such that for all p ∈M there exists a
chart ϕ ofM around p and a chart ψ ofN around f(p) such that ϕ(U∩f−1(V ))
is open and ψ ◦ f ◦ ϕ−1 is smooth, then f is smooth. In fact, f is continuous
since f = ψ−1◦(ψ◦f ◦ϕ−1)◦ϕ on the open set U∩f−1(V ) (cf. also 2.1.15(ii)).
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(ii) If (ϕ̃, Ũ), (ψ̃, Ṽ ) are further charts around p resp. f(p), then also ψ̃ ◦ f ◦ ϕ̃−1

is smooth: near p we have

ψ̃ ◦ f ◦ ϕ̃−1 = (ψ̃ ◦ ψ−1

︸ ︷︷ ︸

C∞

) ◦ (ψ ◦ f ◦ ϕ−1

︸ ︷︷ ︸

C∞

) ◦ (ϕ ◦ ϕ̃−1

︸ ︷︷ ︸

C∞

).

Since p was arbitrary, ψ̃ ◦ f ◦ ϕ̃−1 is smooth on its entire domain of definition.

(iii) Obviously the composition of smooth maps is smooth.

2.3 Topological Properties of Manifolds

2.3.1 Proposition. Every manifold M satisfies the separation axiom T1.

Proof. Let p1 6= p2 ∈M . If there exists a chart (ψ, V ) with p1, p2 ∈ V then there
exist U1, U2 open in ψ(V ) such that ψ(p1) ∈ U1, ψ(p2) ∈ U2, U1 ∩ U2 = ∅. Hence
ψ−1(U1) and ψ−1(U2) are disjoint neighborhoods of p1 resp. p2. Otherwise there
exists a chart (ψ1, V1) with p1 ∈ V1 and p2 6∈ V1 and vice versa. 2

2.3.2 Example. The natural topology of a manifold is not automatically T2 (Haus-
dorff): Let M be the following set:

0

(0, 1)

R

Let V1 = {(s, 0)|s ∈ R}, V2 := {(s, 0)|s 6= 0} ∪ {(0, 1)}, ψ1 : V1 → R, ψ1(s, 0) =
s, ψ2 : V2 → R, ψ2(s, 0) = s (s 6= 0), ψ2(0, 1) = 0. Then ψ2 ◦ ψ−1

1 : R \ {0} →
R \ {0}, s 7→ s. Therefore A := {ψ1, ψ2} is a C∞-atlas for M . However, M is not
T2 since (0, 0) and (0, 1) cannot be separated by open sets in M . In fact, let V, W
be open in M , (0, 0) ∈ V, (0, 1) ∈ W . Then ψ1(V1 ∩ V ), ψ2(V2 ∩W ) are open in
R and contain 0. Hence they contain some a 6= 0, so ψ−1

1 (a) = (a, 0) = ψ−1
2 (a) ∈

V1 ∩ V ∩ V2 ∩W ⊆ V ∩W . Thus V ∩W 6= ∅, so M is not Hausdorff.

2.3.3 Proposition. Every manifold satisfies the first axiom of countability, i.e.,
each of its points possesses a countable basis of neighborhoods.

Proof. Let p ∈ M , and (ψ, V ) a chart around p. Then there exists a countable
basis of neighborhoods (Um)m∈N of ψ(p) in ψ(V ). Hence (ψ−1(Um))m∈N is a count-
able basis of neighborhoods of p in M . 2

2.3.4 Proposition. Every manifold is locally pathwise connected.

Proof. Let p ∈ M and (ψ, V ) a chart around p such that ψ(V ) is pathwise con-
nected (e.g., ψ(V ) a ball in Rn, cf. 2.2.4). For q ∈ V there exists a continuous
map c : [0, 1] → ψ(V ) with c(0) = ψ(p), c(1) = ψ(q), hence c̃ := ψ−1 ◦ c : [0, 1] →
M, c̃(0) = p, c̃(1) = q. 2

2.3.5 Corollary. Every connected manifold is pathwise connected.
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2.3.6 Proposition. Every Hausdorff manifold is locally compact.

Proof. Let p ∈M and let (ψ, V ) be a chart around p. Let B be a closed ball with
center ψ(p) in Rn and B ⊆ ψ(V ). Then since ψ is a homeomorphism, ψ−1(B) is a
compact neighborhood of p in M . 2

2.3.7 Proposition. Let M be a manifold. TFAE:

(i) M satisfies the second axiom of countability (i.e., M possesses a countable
basis of its topology, or: M is second countable).

(ii) M possesses a countable atlas.

Proof. (i)⇒(ii): Let B be a countable basis of the topology of M and let A =
{(ψα, Vα)|α ∈ A} be an atlas of M . Then by 2.2.4, Ã := {(ψα|B , B)|B ∈ B, B ⊆
Vα for some α ∈ A} is a countable atlas of M .
(ii)⇒(i): Let A = {(ψα, Vα)|α ∈ N} be a countable atlas of M . Every Uα = ψα(Vα)
is open in Rn. Since Rn is second countable there are open sets Uαi (i ∈ N) in Rn

such that {Uαi |i ∈ N} is a basis of Uα. Hence every open subset V of Vα is the
union of certain ψ−1

α (Uαi). Since any open W ⊆M is the union of certain W ∩ Vα,
{Vαi |α ∈ N, i ∈ N} is a countable basis of the manifold topology of M . 2

2.3.8 Corollary. Every compact manifold is second countable.

Proof. We may even select a finite atlas from any given atlas. 2

In differential geometry and analysis on manifolds one frequently encounters prob-
lems which can easily be solved locally (in a chart domain). To obtain global state-
ments, one has to ‘patch together’ these local constructions. The most important
tool in this context are the so-called partitions of unity:

2.3.9 Definition. Let M be a manifold. The support of any f :M → R is defined
as the set supp(f) := {p ∈M |f(p) 6= 0}. A family V of subsets ofM is called locally
finite if every p ∈ M possesses a neighborhood which intersects only finitely many
V ∈ V. Let U be an open cover of M . A partition of unity subordinate to U is a
family {χα|α ∈ A} of smooth maps χα :M → R+ such that:

(i) {suppχα|α ∈ A} is locally finite.

(ii) For all α ∈ A there exists some U ∈ U such that supp(χα) ⊆ U .

(iii) For all p ∈M ,
∑

α∈A χα(p) = 1

Note that by (i) the sum in (iii) is finite for any p ∈M .
Our next goal is to prove the following result:

2.3.10 Theorem. Let M be a second countable Hausdorff manifold. Then for any
open cover U of M there exists a partition of unity {χj |j ∈ N} subordinate to U
such that, for all j, suppχj is compact and contained in a chart domain.

To prepare the proof we need several auxilliary results. To begin with, we show
that there exist smooth functions on R of arbitrarily small support:

2.3.11 Lemma. Let f : R → R,

f(x) :=

{
0 x ≤ 0

e−
1
x x > 0

Then f is smooth.
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Proof. By induction we obtain that

f (n)(x) :=

{
0 x ≤ 0

e−
1
xPn(

1
x
) x > 0

where Pn is a polynomial. Hence limxր0 f
(n)(x) = limxց0 f

(n)(x) = 0 for all n. 2

2.3.12 Lemma. LetM be a Hausdorff manifold, U an open subset ofM and p ∈ U .
Then there exists a chart neighborhood V of p and a C∞-function χ :M → R+ such
that V is compact, V ⊆ U , χ > 0 on V and χ ≡ 0 on M\V .

Proof. Choose a chart (ψ,W ) around p such that W ⊆ U and ψ(p) = 0. Let
r > 0 such that for the open ball Br(0) around 0 we have Br(0) ⊆ ψ(W ). Then
V := ψ−1(Br(0)) is a neighborhood of p, and V = ψ−1(Br(0)) is a compact subset
of W . Choose f as in 2.3.11 and let g : Rn → R+, g(x) := f(r2 − |x|2). Then g is
smooth, g > 0 on Br(0), and g = 0 on Rn \Br(0). Now let

χ(q) :=

{
g ◦ ψ(q) q ∈W

0 q ∈M \ V

Now W and M \ V are open, cover M and χ is smooth on both sets, hence on M .
It follows that χ has the desired properties. 2

2.3.13 Lemma. Let M be a second countable Hausdorff manifold. Then M pos-
sesses an exhaustion by compact sets: ∃(Kj)j∈N, Kj ⊂⊂ M, Kj ⊆ K◦

j+1 ∀j and
M =

⋃

j∈N
Kj.

Proof. Since M is locally compact, there exists a cover V of M consisting of open
sets whose closure is compact. By second countability, we may extract from this
a countable cover (Vj)j∈N of M . (Let B be a countable basis of the topology and
B′ := {B ∈ B|∃VB ∈ V with B ⊆ VB}. Then {VB |B ∈ B′} fulfills this purpose.)

Let K1 := V1 ⊂⊂ M . Choose r2 > 1 such that K1 ⊆ ⋃r2
i=1 Vi (possible since K1

is compact). Let W2 :=
⋃r2
i=1 Vi and K2 = W2 =

⋃r2
i=1 Vi ⊂⊂ M . Then K2 is

compact and K1 ⊆ K◦
2 . For j ≥ 2, suppose that Kj =Wj has already been defined.

Denote by rj+1 the first index withKj ⊆
⋃rj+1

i=1 Vi and setWj+1 =
⋃max(rj+1,j+1)
i=1 Vi,

Kj+1 :=Wj+1 =
⋃max(rj+1,j+1)
i=1 Vi. Then Kj+1 ⊂⊂M , Kj ⊆ K◦

j+1 and
⋃∞
j=1Kj ⊇

⋃∞
j=1 Vj =M . 2

Proof of 2.3.10 Let (Ki)i∈N be as in 2.3.13.

B1

B2

B3

K1

K2

K3

B4

K4
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Set K−1 = K0 = ∅ and Bj := Kj \ K◦
j−1, so Bj ⊂⊂ M . For each p ∈ Bj there

exists a U ∈ U with p ∈ U and (by 2.3.12) a chart neighborhood V of p with V
compact, V ⊆ U ∩M \Kj−2 = U \Kj−2. Moreover, there exists χ̃ ∈ C∞(M) with
χ̃ > 0 on V and χ̃ ≡ 0 on M \ V .
Since Bj is compact it is contained in a finite union of such V . Carrying out
this construction for each j ∈ N we obtain a countable cover (Vk)k∈N of M with
corresponding C∞-functions (χj)j∈N. The family (Vk)k∈N is locally finite. In fact,
those V k coming from the cover of Bj are disjoint from Kj−2, hence disjoint from
Kl for l ≤ j − 2. Hence every p ∈ M possesses an open neighborhood K◦

l which
intersects only finitely many Vk. Now let χj :M → R,

χj :=
χ̃j

∑

i∈N
χ̃i
.

Then χj is well-defined since
∑

i∈N
χ̃i > 0 (the (Vj)j∈N form a cover of M , and

χ̃j |Vj > 0). Summing up, χj ∈ C∞(M,R+), and
∑

j∈N
χj =

∑

j∈N
χ̃j

∑

i∈N
χ̃i

= 1, so

(χj)j∈N is the desired partition of unity subordinate to U . 2

2.3.14 Corollary. Let M be a second countable Hausdorff manifold and U =
{Uα|α ∈ A} an open cover of M . Then there exists a partition of unity {χα|α ∈ A}
with suppχα ⊆ Uα ∀α ∈ A. (The χα will not have compact support in general).

Proof. Choose {χj |j ∈ N} as in 2.3.10, subordinate to U . Then ∀j ∈ N ∃ αj with
suppχj ⊆ Uαj . Let χα =

∑

{j|αj=α}
χj . Then by 2.3.9 (i),

suppχα = {p | χα(p) 6= 0} ⊆
⋃

αj=α

suppχj =
⋃

αj=α

suppχj =
⋃

αj=α

suppχj ⊆ Uα.

2

2.3.15 Remark. More generally, one can show: for any manifold M , the following
are equivalent:

(a) For each cover U , M possesses a partition of unity subordinate to U .

(b) M is Hausdorff and every connected component of M is second countable.

(c) M is metrizable.

(d) M is Hausdorff and paracompact.

Convention: From now on, by a smooth manifold we will always mean a manifold
(in the above sense) whose natural topology is Hausdorff and second countable.
Note that, in particular, every submanifold of Rn is a smooth manifold in this
sense (by 2.2.8 it carries the trace topology of Rn, hence is Hausdorff and second
countable).

2.4 Differentiation, Tangent Space

After the topological interlude of the previous section we now turn to a study of
analysis on manifolds. From 2.2.9 and 2.2.10 we know what smooth maps between
manifolds are. However, so far we have not given a definition of the derivative of a
smooth map. In Rn, the derivative of a map is the optimal linear approximation to
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the map. This terminology only makes sense in the vector space setting. Manifolds,
on the other hand, in general do not carry a vector space structure. Differentiation
on manifolds therefore can be viewed (heuristically) as a two-step approximation
process: first, in any given point the manifold is approximated by a vector space
(the tangent space, corresponding to the tangent plane of a surface). The derivative
itself is then defined as a linear map on this tangent space. To motivate this general
procedure we first have a look at the special case of submanifolds of Rn.

2.4.1 Theorem. Let M be a submanifold of Rn and p ∈ M . Then the following
subsets of Rn coincide:

(i) imDϕ(0) where ϕ is a local parametrization of M with ϕ(0) = p.

(ii) {c′(0) | c : I →M C∞, I ⊆ R an interval, c(0) = p}
(iii) kerDf(p), where, locally around p, M is the zero set of the regular map f :

Rn → Rn−k (with k = dimM).

(iv) graph(Dg(p′)), where, locally around p, M is the graph of the smooth map g
and p = (p′, g(p′)).

p

Proof. (i) ⊆ (ii): Given Dϕ(0) · v ∈ imDϕ(0), let c(t) := ϕ(t · v). Then for a
suitable interval I, c : I →M is smooth, c(0) = ϕ(0) = p and c′(0) = d

dt

∣
∣
0
ϕ(t · v) =

Dϕ(0)v ∈ (ii).
(ii) ⊆ (iii): Let c′(0) ∈ (ii), c : I →M and f as in (iii). Then locally around 0 we
have f ◦ c(t) = 0. Hence

0 =
d

dt

∣
∣
∣
∣
0

f(c(t)) = Df(c(0)
︸︷︷︸

=p

)c′(0) ⇒ c′(0) ∈ kerDf(p)

(iii) ⊆ (i): Since (i) ⊆ (iii) it suffices to prove that dim(imDϕ(0)) = dimkerDf(p).
Since ϕ is an immersion, dim(imDϕ(0)) = k = dimM . Moreover, dim(imDf(p)) =
n− k, so dimkerDf(p) = n− (n− k) = k.
(iii) = (iv): Let g as in (iv) (cf. 2.1.8, (Gr)⇒(Z)), and fj(x1, . . . , xn) := xk+j −
gj(x

′) (j = 1, . . . , n − k). Then locally around p, M is the zero set of f and
ker(Df(p)) = ker(q 7→ q′′ −Dg(p′)q′) = {(q′, Dg(p′)q′)|q′ ∈ Rk} = graph(Dg(p′)).

2

2.4.2 Definition. Let M be a submanifold of Rn and p ∈M . The linear subspace
of Rn characterized in 2.4.1 is called the tangent space of M at p and is denoted by
TpM (dimTpM = k = dimM). The elements of TpM are called tangent vectors of
M at p.
If N is a submanifold of Rn

′

and f : M → N is smooth, then let Tpf : TpM →
Tf(p)N, c

′(0) 7→ (f ◦ c)′(0). Tpf is called the tangent map of f at p.

Tpf is well-defined: let c1, c2 : I → M, c1(0) = p = c2(0) be smooth with c′1(0) =

c′2(0). Since f is smooth, locally around p there exists some f̃ : U → Rn
′

(U open
in Rn) with f̃ |U∩M = f |U∩M . Then f̃ ◦ ci = f ◦ ci (i = 1, 2), so

(f ◦ c1)′(0) = (f̃ ◦ c1)′(0) = Df̃(p)c′1(0) = Df̃(p)c′2(0) = · · · = (f ◦ c2)′(0).

Moreover, we conclude that Tpf(c
′(0)) = Df̃(p)c′(0), so Tpf is linear.
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2.4.3 Lemma. (Chain Rule) Let M,N,P be submanifolds, f : M → N, g : N →
P C∞, p ∈M . Then

Tp(g ◦ f) = Tf(p)g ◦ Tpf

Proof. Let g̃ and f̃ be smooth extensions of g and f . Then g̃ ◦ f̃ is a smooth
extension of g ◦ f and

Tp(g ◦ f)(c′(0)) = (g̃ ◦ f̃ ◦ c)′(0) = Dg̃(f ◦ c(0))((f̃ ◦ c)′(0)) =
= Tf(p)g(Df̃(p)c

′(0)) = Tf(p)g ◦ Tpf(c′(0))

2

Next we want to extend the concept of tangent space also to abstract manifolds.
However, forM an abstract manifold and c : I →M smooth, the derivative c′(0) at
the moment does not make sense due to the lack of a surrounding Euclidean space.
Instead, we will resort to charts:

2.4.4 Definition. Let M be a manifold, p ∈M and (ψ, V ) a chart around p. Two
C∞-curves c1, c2 : I → M with c1(0) = p = c2(0) are called tangential at p with
respect to ψ if (ψ ◦ c1)′(0) = (ψ ◦ c2)′(0).

p
V

c1
c2

ψ

ψ ◦ c1
ψ ◦ c2

ψ(V )

2.4.5 Lemma. The notion of being tangent at a point is independent of the chart
used in 2.4.4

Proof. Let c1, c2 be smooth curves at p with c1 tangent to c2 with respect to
the chart ψ1. Let ψ2 be another chart around p. Then locally around 0 we have
ψ2 ◦ ci = (ψ2 ◦ ψ−1

1 ) ◦ (ψ1 ◦ ci) (i = 1, 2), so

(ψ2 ◦ c1)′(0) = D(ψ2 ◦ ψ−1
1 )(ψ1(p)) (ψ1 ◦ c1)′(0)

︸ ︷︷ ︸

=(ψ1◦c2)′(0)

= (ψ2 ◦ c2)′(0).

2

On the space of smooth curves at p we define an equivalence relation by c1 ∼ c2 :⇔
c1 tangential to c2 at p with respect to one (hence any) chart. For c : I →M, c(0) =
p we denote by [c]p the equivalence class of c with respect to ∼. Then [c]p is called
a tangent vector at p.

2.4.6 Definition. The tangent space of a manifold M at p ∈ M is TpM = {[c]p |
c : I →M C∞, I interval in R, c(0) = p}.
We first note that for submanifolds of Rn this definition reduces to 2.4.2 since in
this case the map c′(0) 7→ [c]p gives a bijection between ‘old’ and ‘new’ tangent

space. In fact, with ψ̃ a local smooth extension of ψ,

[c1]p = [c2]p ⇒ (ψ ◦ c1)′(0)
︸ ︷︷ ︸

Dψ̃(p)c′1(0)

= (ψ ◦ c2)′(0)
︸ ︷︷ ︸

Dψ̃(p)c′2(0)

,
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so c′1(0) = c′2(0). Hence the map c′(0) 7→ [c]p is injective. Also, it obviously is
surjective.

2.4.7 Definition. Let M,N be manifolds and f : M → N a smooth map. Then
we call

Tpf : TpM → Tf(p)N

[c]p 7→ [f ◦ c]f(p)
the tangent map of f at p.

2.4.8 Remark.

(i) Tpf is well-defined:
Let ϕ be a chart of M at p, ψ a chart of N at f(p), c1, c2 : I → M curves
through p with c1 ∼ c2. Then

(ψ ◦ f ◦ c1)′(0) = ((ψ ◦ f ◦ ϕ−1) ◦ (ϕ ◦ c1))′(0)
= D(ψ ◦ f ◦ ϕ−1)(ϕ(p)) (ϕ ◦ c1)′(0)

︸ ︷︷ ︸

=(ϕ◦c2)′(0)

= · · · = (ψ ◦ f ◦ c2)′(0),

so f ◦ c1 ∼f(p) f ◦ c2, i.e., [f ◦ c1]f(p) = [f ◦ c2]f(p).
(ii) In the particular case whereM, N are submanifolds, Tpf is precisely the map

from 2.4.2 in the sense of the above identification (c′(0) ↔ [c]p).

c′(0)
︸︷︷︸

l

[c]p

7→ (f ◦ c)′(0)
︸ ︷︷ ︸

l

[f◦c]f(p)

2.4.9 Proposition. (Chain Rule) Let M,N,P be manifolds, f : M → N and
g : N → P smooth, and p ∈M . Then

Tp(g ◦ f) = Tf(p)g ◦ Tpf

Moreover, since Tp(idM ) = idTpM , for any diffeomorphism f : M → N , Tpf is
bijective and (Tpf)

−1 = Tf(p)f
−1.

Proof. Let c be a curve through p. Then

Tp(g ◦ f)([c]p) = [(g ◦ f) ◦ c]g(f(p)) = Tf(p)g([f ◦ c]f(p)) = Tf(p)g ◦ Tpf([c]p).

2

So far we did not endow TpM with a vector space structure. In order to do this we
first analyze the local situation in more detail.

2.4.10 Lemma. Let U ⊆ Rn be open and p ∈ U . Then i : TpU → Rn, i([c]p) :=
c′(0) is bijective, so TpU can be identified with Rn. In terms of this identification,
for any smooth map f : U → V with V ⊆ Rm open we have Tpf = Df(p).

Proof. The map i is well-defined (choose the chart ψ = idU ) and injective (c′1(0) =
c′2(0) ⇒ (ψ ◦ c1)′(0) = (ψ ◦ c2)′(0) for any chart ψ). Also, i is surjetive: Let v ∈ Rn

and c : t 7→ p+ t · v. Then c′(0) = v. Now let f : U → V be smooth and consider

TpU
Tpf−−−−→ Tf(p)V

i



y



yi

Rn
Df(p)−−−−→ Rm
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The diagram commutes since

i ◦ Tpf([c]p) = i([f ◦ c]f(p)) = (f ◦ c)′(0) = Df(p) · c′(0) = Df(p) ◦ i([c]p).

2

2.4.11 Proposition. Let M be a manifold, p ∈ M , and (ψ, V ) a chart around
p. The vector space structure induced on TpM by the bijection Tpψ : TpM →
Tψ(p)ψ(V ) ∼= Rn is independent of the chosen chart (ψ, V ).

Proof. By definition, TpV = TpM , so Tpψ : TpM → Tψ(p)ψ(V ) ∼= Rn (by 2.4.10).
Also, Tpψ is bijective by 2.4.9. Let [c1]p, [c2]p ∈ TpM, α, β ∈ R and ϕ another chart
at p, w.l.o.g. with the same domain V . Then

α[c1]p + β[c2]p := (Tpψ)
−1(αTpψ([c1]p) + βTpψ([c2]p))

2.4.10
= (Tpψ)

−1(α(ψ ◦ c1)′(0) + β(ψ ◦ c2)′(0))
= (Tpψ)

−1(α(ψ ◦ ϕ−1 ◦ ϕ ◦ c1)′(0) + β(ψ ◦ ϕ−1 ◦ ϕ ◦ c2)′(0))
= (Tpψ)

−1(D(ψ ◦ ϕ−1)(ϕ(p))(α(ϕ ◦ c1)′(0) + β(ϕ ◦ c2)′(0)))
2.4.10
= (Tpψ)

−1(Tϕ(p)(ψ ◦ ϕ−1))(α(ϕ ◦ c1)′(0) + β(ϕ ◦ c2)′(0))
2.4.9
= (Tpϕ)

−1(αTpϕ([c1]p) + βTpϕ([c2]p)),

which establishes our claim. 2

In this way, TpM is endowed with an intrinsic (chart independent) vector space
structure. Moreover, if f : M → N is smooth, then Tpf : TpM → Tf(p)N is
linear with respect to the corresponding vector space structures on TpM , Tf(p)N :
it suffices to show that Tf(p)ψ ◦ Tpf ◦ Tϕ(p)ϕ−1 is linear for any charts ϕ of M at p
and ψ of N at f(p). This map is given by

Tϕ(p)(ψ ◦ f ◦ ϕ−1)
2.4.10
= D(ψ ◦ f ◦ ϕ−1)(ϕ(p)),

hence is indeed linear.
Any chart of M allows to pick a particular basis of TpM : Let (ψ, V ) be a chart of
M at p, and let ψ(p) = (x1(p), . . . , xn(p)) (the xi are called coordinate functions of
ψ). For 1 ≤ i ≤ n let ei denote the i-th standard unit vector of Rn. Let ψ(p) = 0.
Then we set

∂

∂xi

∣
∣
∣
∣
p

:= (Tpψ)
−1(ei) ∈ TpM.

More precisely, in the sense of 2.4.10 we have

∂

∂xi

∣
∣
∣
∣
p

= (Tpψ)
−1([t 7→ tei]0) = [t 7→ ψ−1(tei)]p.

ψ−1(tei) P
ψ−1

tei
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Hence ∂
∂xi

∣
∣
p
results from transporting the tangent vector of the coordinate line

t 7→ tei toM via the chart ψ. Since Tpψ is a linear isomorphism, { ∂
∂x1

∣
∣
p
, . . . , ∂

∂xn

∣
∣
p
}

indeed forms a basis of TpM .
If, in particular, M is a submanifold of Rn, and ϕ is a local parametrization of p
(with ϕ(0) = p), then ψ = ϕ−1 is a chart at p (cf. 2.1.13(i)) and we have

∂

∂xi

∣
∣
∣
∣
p

= T0ϕ(ei) = (ϕ ◦ (t · ei))′(0) = Dϕ(0)ei.

Thus ∂
∂xi

∣
∣
p
is precisely the i-th column of the Jacobian of ϕ at ψ(p) = 0.

The notation ∂
∂xi

∣
∣
p
already suggests another interpretation of tangent vectors,

namely as directional derivatives. In fact, any tangent vector can be viewed as
a directional derivative in the following sense:
Let v = [c]p ∈ TpM . Let f ∈ C∞(M,R) (or C∞(M), for short), the space of smooth
maps from M to R. Then define ∂v : C∞(M,R) → R by ∂vf := Tpf(v). Since we
use the identification 2.4.10 we have:

∂v(f) = Tpf(v) = Tpf([c]p) = [f ◦ c]f(p) = (f ◦ c)′(0), (2.4.1)

which corresponds to differentiation in the direction v.
In particular, for v = ∂

∂xi

∣
∣
p
we have (writing v instead of ∂v):

∂

∂xi

∣
∣
∣
∣
p

(f) = (f ◦ ψ−1(t 7→ tei))
′(0) = Di(f ◦ ψ−1)(ψ(p)), (2.4.2)

so ∂
∂xi

∣
∣
p
corresponds to partial differentiation in the chart ψ.

2.4.12 Definition. A map ∂ : C∞(M) → R is called derivation at p ∈ M if ∂ is
linear and satisfies the Leibniz-rule:

(i) ∂(f + αg) = ∂f + α∂g

(ii) ∂(f · g) = ∂f · g(p) + f(p) · ∂g

for all f, g ∈ C∞(M) and all α ∈ R. The vector space of all derivations at p is
denoted by Derp(C∞(M),R).

The following theorem shows that in fact, the tangent space TpM can be identified
with the space Derp(C∞(M),R) of derivations at p.

2.4.13 Theorem. The map

A : TpM → Derp(C∞(M),R)

v 7→ ∂v

is a linear isomorphism.

Proof. To begin with we show that any ∂v is a derivation at p: Linearity is obvious
(∂v(f + αg) = Tp(f + αg)(v) = (Tpf + αTpg)(v)) and letting v = [c]p we have

∂v(f · g) = ((f · g) ◦ c)′(0) = ((f ◦ c) · (g ◦ c))′(0)
= f(c(0)) · (g ◦ c)′(0) + g(c(0)) · (f ◦ c)′(0)
= f(p)∂v(g) + ∂v(f)g(p)

A is linear:

(A(v1 + αv2))(f) = Tpf(v1 + αv2) = Tpf(v1) + αTpf(v2) = (A(v1) + αA(v2))(f).
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A is injective:
We first show that any derivation ∂ at p only ‘feels’ values of f near p. More
precisely, if U is an open neighborhood of p and f1, f2 ∈ C∞(M) are such that
f1|U = f2|U , then ∂(f1) = ∂(f2). In fact, let f := f1 − f2. Then f |U = 0 and we
want to show that ∂(f)|U = 0.
Choose a neighborhood V of p such that V ⊆ U (cf. 2.3.6). Then by 2.3.14 there is
a partition of unity {χ1, χ2} subordinate to {U,M \ V }. Then

0 = ∂(0) = ∂(χ1 · f) = χ1(p)
︸ ︷︷ ︸

=1

·∂(f) + ∂(χ1) f(p)
︸︷︷︸

=0

= ∂(f).

χ2 χ1 χ2

p V U
Since in this way any C∞-function defined locally at p can be extended to M it
follows that in fact any derivation at p is a map from all local C∞-functions at p
(the so called germs of smooth functions at p) into R.
Suppose that A(v) = 0, where v = [c]p, i.e., ∂vf = 0 for all smooth functions
f locally defined at p. Let ψ be a chart at p with ψ(p) = 0 and set f := xi

(where ψ = (x1, . . . , xn)). Then 0 = ∂vf = Tpf(v) = Tpf([c]p) = (xi ◦ c)′(0), so
(ψ ◦ c)′(0) = 0. By 2.4.10, then, i(Tpψ(v)) = (ψ ◦ c)′(0) = 0 and therefore v = 0
since Tpψ is a linear isomorphism by 2.4.11.
A is surjective:
Let ∂ ∈ Derp(C∞(M),R). We first note that ∂ vanishes on any constant function
f ≡ k:

∂(k) = ∂(1 · k) = 1 · ∂(k) + k · ∂(1) = 2∂(k) ⇒ ∂(k) = 0.

Let ψ : V → U be a chart of M at p, ψ(p) = 0, ψ = (x1, . . . , xn) and B1(0) ⊆ U .
Let f ∈ C∞(M) and g := f ◦ ψ−1. Then for x ∈ B1(0) we have:

g(x)− g(0) =

∫ 1

0

d

dt
g(tx)dt =

∫ 1

0

Dg(tx)xdt =

∫ 1

0

n∑

i=1

Dig(tx) · xidt

=

n∑

i=1

xi
∫ 1

0

Dig(tx)dt

︸ ︷︷ ︸

=:hi(x)

.

Hence, on V ,

f(q) = g(ψ(q)) = g(0) +

n∑

i=1

ψi(q)hi(ψ(q))
︸ ︷︷ ︸

=:h̃i(q)

.

Since ∂ acts locally, we conclude:

∂(f) = 0 +

n∑

i=1

[∂(ψi)h̃i(p) + ψi(p)
︸ ︷︷ ︸

=0

∂(h̃i)].

Now

h̃i(p) = hi(0) =

∫ 1

0

Dig(0)dt = Dig(0) = Di(f ◦ ψ−1)(ψ(p)) =
∂

∂xi

∣
∣
∣
∣
p

(f)

Summing up, we get
∂(f) = ∂v(f) ∀f ∈ C∞(M)
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where v =
∑n
i=1 ∂(ψ

i) ∂
∂xi

∣
∣
p
, establishing that A is surjective. 2

Due to this result we will henceforth identify TpM and Derp(C∞(M),R). In fact,
in the literature it is quite common to define TpM as Derp(C∞(M),R). One of the
reasons for this approach is that formal manipulations become particularly simple:
let ∂ ∈ Derp(C∞(M),R), f ∈ C∞(M). Then ∂ = ∂v for some v ∈ TpM . Therefore,

Tpf(∂) = Tpf(∂v)
(2.4.1)
= ∂v(f) = ∂(f),

and we obtain:

Tpf(∂) = ∂(f) (2.4.3)

Now let f ∈ C∞(M,N). Then the tangent map of f in the derivation picture is
computed as follows:

Tpf : Derp(C∞(M),R) → Derf(p)(C∞(N),R)

∂ 7→ (g 7→ ∂(g ◦ f))
(2.4.4)

In fact, by (2.4.3) we have

(Tpf(∂))(g)
(2.4.3)
= Tf(p)g(Tpf(∂))

2.4.9
= Tp(g ◦ f)(∂)

(2.4.3)
= ∂(g ◦ f)

2.4.14 Proposition. Let Mm, Nn be C∞-manifolds, f ∈ C∞(M,N), p ∈ M ,
ϕ = (x1, . . . , xm) a chart ofM around p, ψ = (y1, . . . , yn) a chart of N around f(p).
Then the matrix representation of the linear map Tpf : TpM → Tf(p)N with respect

to the bases BTpM = { ∂
∂x1

∣
∣
p
, . . . , ∂

∂xm

∣
∣
p
} and BTf(p)N = { ∂

∂y1

∣
∣
∣
f(p)

, . . . , ∂
∂yn

∣
∣
∣
f(p)

} is

precisely the Jacobian of the local representation fψϕ := ψ ◦ f ◦ ϕ−1 of f . Thus,

Tpf(
∂

∂xi

∣
∣
∣
∣
p

) =

n∑

k=1

Di(ψ
k ◦ f ◦ ϕ−1)(ϕ(p))

∂

∂yk

∣
∣
∣
∣
f(p)

=

n∑

k=1

∂fkψϕ
∂xi

∂

∂yk
(2.4.5)

Proof. The i-th column of [Tpf ]BTpM ,BTf(p)N is [Tpf(
∂
∂xi

∣
∣
p
)]BTf(p)N . Hence we want

to write Tpf(
∂
∂xi

∣
∣
p
) in the basis { ∂

∂y1

∣
∣
∣
f(p)

, . . . , ∂
∂yn

∣
∣
∣
f(p)

}. We have

Dfψϕ(ϕ(p))
2.4.10
= Tϕ(p)(ψ ◦ f ◦ ϕ−1)

2.4.9
= Tf(p)ψ ◦ Tpf ◦ (Tpϕ)−1.

Let Jki := Di(f
k
ψϕ)(ϕ(p)) = Di(ψ

k ◦ f ◦ ϕ−1)(ϕ(p)). Then

Tpf(
∂

∂xi

∣
∣
∣
∣
p

) = Tpf((Tpϕ)
−1(ei)) = (Tf(p)ψ)

−1(Dfψϕ(ϕ(p))e
i) =

=
n∑

k=1

Jki(Tf(p)ψ)
−1(ek) =

n∑

k=1

Jki
∂

∂yk

∣
∣
∣
∣
f(p)

2

2.4.15 Corollary. Let Mn be a manifold, p ∈ M and let ϕ = (x1, . . . , xn) and
ψ = (y1, . . . , yn) be charts around p. Then

∂

∂xi

∣
∣
∣
∣
p

=
n∑

k=1

Di(ψ
k ◦ ϕ−1)(ϕ(p))

∂

∂yk

∣
∣
∣
∣
p

=
n∑

k=1

∂yk

∂xi
∂

∂yk
(2.4.6)

Proof. Set f = idM in 2.4.14. 2
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2.5 Tangent bundle, Vector Fields

A vector field on an open subset U of Rn is an assignment p 7→ Xp of a vector
Xp ∈ Rn ∼= TpU to each p ∈ U . To analyze, e.g., differential equations with right
hand side X (i.e., ċ(t) = X(c(t))) one will typically assume X to be smooth (at
least C1). We want to extend such notions to the manifold setting. Thus we are
looking for maps X mapping points in a manifold M to vectors in TpM . At the
moment, however, we do not have a concept of smoothness for such maps: the
individual tangent spaces are not yet bundled together into one manifold. Our first
aim therefore is to remedy this deficiency.

2.5.1 Definition. Let M be a smooth manifold. The tangent bundle (or tangent
space) of M is defined as the disjoint union of the vector spaces TpM (p ∈M):

TM :=
⊔

p∈M

TpM :=
⋃

p∈M

{p} × TpM

The map πM : TM →M , (p, v) 7→ p is called the canonical projection. If f :M →
N is smooth, then the tangent map Tf of f is defined as Tf(p, v) = (f(p), Tpf(v)).

2.5.2 Lemma. (Chain Rule) Let f : M → N, g : N → P be smooth. Then
T (g ◦ f) = Tg ◦ Tf . Moreover, T (idM ) = idTM , so for any diffeomorphism f :
M → N we have (Tf)−1 = T (f−1).

Proof. By 2.4.9,

T (g ◦ f)(p, v) = (g(f(p)), Tp(g ◦ f)(v)) = (g(f(p)), Tf(p)g ◦ Tpf(v)))
= Tg(f(p), Tpf(v)) = (Tg ◦ Tf)(p, v)

and
T (idM )(p, v) = (p, TpidM (v)) = (p, v) = idTM (p, v)

2

In order to turn TM into a smooth manifold we have to endow it with a C∞-atlas.
Natural candidates for the charts of TM are the tangent maps Tψ of charts (ψ, V )
of M :

Tψ : TV =
⋃

p∈V

{p} × TpV =
⋃

p∈V

{p} × TpM =: TM |V → T (ψ(V )) = ψ(V )× Rn

Here, T (ψ(V )) =
⋃

x∈ψ(V ){x} × Tx(ψ(V ))
︸ ︷︷ ︸

=Rn

= ψ(V )×Rn. Any such Tψ is bijective.

2.5.3 Proposition. Let Mn be a smooth manifold with atlas A = {(ψα, Vα) | α ∈
A}. Then Ã := {(Tψα, TM |Vα) | α ∈ A} is a C∞-atlas for TM . The natural
manifold topology of TM is Hausdorff and second countable, hence TM is a smooth
manifold of dimension 2n.

Proof. The TVα cover TM and any Tψα : TVα → ψα(Vα) × Rn is bijective. Let
TM |Vα ∩ TM |Vβ 6= ∅, i.e., Vα ∩ Vβ 6= ∅. Then:

Tψβ ◦ (Tψα)−1 = T (ψβ ◦ ψ−1
α ) : T (ψα(Vα ∩ Vβ))

︸ ︷︷ ︸

=ψα(Vα∩Vβ)×Rn

→ T (ψβ(Vα ∩ Vβ))
︸ ︷︷ ︸

=ψβ(Vα∩V β)×Rn

T (ψβ ◦ ψ−1
α )(x,w) = (ψβ ◦ ψ−1

α (x), Tx(ψβ ◦ ψ−1
α ) · w)

2.4.10
= (ψβ ◦ ψ−1

α (x), D(ψβ ◦ ψ−1
α )(x) · w), (2.5.1)

Since any such map is smooth, TM is a C∞-manifold of dimension 2n if we addi-
tionally verify that it is Hausdorff and second countable.
TM is Hausdorff: Let (p1, v1) 6= (p2, v2) ∈ TM . Then there are two possibilities.
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1.) p1 6= p2. Then since M is Hausdorff there exist chart neighborhoods V1, V2 of
p1, p2 with V1∩V2 = ∅. Then TV1, TV2 are neighborhoods of (p1, v1), (p2, v2)
in the natural manifold topology of TM with TV1 ∩ TV2 = ∅.

2.) p1 = p2: Choose a chart (ψ, V ) around p and separate Tψ(p1, v1), Tψ(p2, v2)
in Tψ(TV ) = ψ(V )×Rn. Since Tψ is a homeomorphism this gives the desired
separation in TM .

TM is second countable: By 2.3.7 there exists a countable atlas {(ψm, Vm) | m ∈ N}
of M . Then {(Tψm, TVm) | m ∈ N} is a countable atlas of TM , so, again by 2.3.7,
the claim follows. 2

2.5.4 Remark.

(i) If f : Mm → Nn is smooth, then so is Tf : TM → TN . In fact, for (ψ, V ) a
chart of N , and (ϕ,U) a chart of M we have

Tψ ◦ Tf ◦ Tϕ−1(x,w) = T (ψ ◦ f ◦ ϕ−1)(x,w)

= (ψ ◦ f ◦ ϕ−1(x), D(ψ ◦ f ◦ ϕ−1)(x) · w),

which is smooth on its open domain ϕ(U∩f−1(V ))×Rm = T (ϕ(U∩f−1(V ))).
This gives the result by 2.2.10 (ii).

(ii) πM : TM →M is smooth. In fact, locally πM is a projection: let (ψ, V ) be a
chart of Mn. Then

TM |V πM−−−−→ V ⊆M

Tψ



y



yψ

T (ψ(V )) = ψ(V )× Rn
pr1−−−−→ ψ(V )

ψ ◦ πM ◦ Tψ−1(x,w) = ψ ◦ πM (ψ−1(x), Txψ
−1(w))

= ψ(ψ−1(x)) = x = pr1(x,w).

On closer examination it turns out that TM in fact has more structure than a ‘pure’
manifold: the images of the charts Tψα(TVα) = ψα(Vα)×Rn are cartesian products
of open subsets of Rn with vector spaces. The changes of charts (2.5.1) respect this
structure, as they are of the form (x,w) 7→ (ϕ1(x), ϕ2(x) · w) with ϕ2(x) a linear
map for each x. Thus TM furnishes our first example of a vector bundle in the
sense of the following definition.

2.5.5 Definition.

(i) Local vector bundles: Let E, F be (finite dimensional, real) vector spaces,
and U ⊆ E open. Then U × F is called a local vector bundle with base
U . We identify U with U × {0}. For u ∈ U we call {u} × F the fiber
over u. The fiber is equipped with the vector space structure of F . The map
π : U × F → U, (u, f) 7→ u is called the projection of U × F . Then the fiber
over u is precisely π−1(u).

A map ϕ : U×F → U ′×F ′ of local vector bundles is called a local vector bundle
homomorphism (resp. a local vector bundle isomorphism) if ϕ is smooth (resp.
a diffeomorphism) and has the form

ϕ(u, f) = (ϕ1(u), ϕ2(u) · f),
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where ϕ2(u) is linear (resp. a linear isomorphism) from F to (resp. onto) F ′

for each u ∈ U .

F F ′

U U ′

ϕ1

ϕ2(u)

(ii) Vector bundles: Let E be a set. A local vector bundle chart (or vb-chart) of
E is a pair (Ψ,W ), where W ⊆ E and Ψ :W →W ′×F ′ is a bijection onto a
local vector bundle W ′ × F ′ (with W ′, F ′ depending on Ψ). A vector bundle
atlas is a family A = {(Ψα,Wα) | α ∈ A} of local vector bundle charts such
that the Wα cover E and any two vector bundle charts (Ψα,Wα), (Ψβ ,Wβ)
in A with Wα ∩Wβ 6= ∅ are compatible in the sense that

Ψβ ◦Ψ−1
α : Ψα(Wα ∩Wβ) → Ψβ(Wα ∩Wβ)

is a local vector bundle isomorphism (in particular, Ψα(Wα ∩Wβ), Ψβ(Wα ∩
Wβ) are supposed to be local vector bundles).

E

B

Ψα Ψβ

Ψ
β
◦ ψ−1

α

E′

α
E′

β

F ′

β
F ′

α

Two vector bundle atlasses A1, A2 are called equivalent if A1 ∪ A2 is again
a vector bundle atlas. A vector bundle structure V is an equivalence class
of vector bundle atlasses. A vector bundle is a set E together with a vector
bundle structure. Since any vector bundle atlas is, in particular, a C∞-atlas,
E is automatically a C∞-manifold. Again we require that the natural manifold
topology of E is Hausdorff and second countable.

2.5.6 Remark.

(i) In any vector bundle E there exists a distinguished subset B, the basis of E,
defined by:

B := {e ∈ E | ∃ vb-chart (Ψ,W ) s.t. e = Ψ−1(w′, 0) for some w′ ∈W ′}.

B is independent of the vector bundle charts used in the definition since any
change of vector bundle charts is linear in the second component (so 0 is
mapped to 0). If A = {(Ψα,Wα) | α ∈ A} is a vector bundle atlas for E,
then A′ = {(Ψα|Wα∩B

,Wα ∩ B) | α ∈ A} is a C∞-atlas for B. Thus B is a

smooth manifold. In fact, if Ψβ ◦Ψ−1
α (w′, f ′) = (ψ

(1)
βα(w

′), ψ
(2)
βα(w

′) · f ′), then
Ψβ |Wβ∩B

◦ (Ψα|Wα∩B
)−1(w′, 0) = (ψ

(1)
βα(w

′), 0), which is smooth. Thus the

changes of charts in B are exactly the ψ
(1)
βα , if we identify W ′ × {0} with W ′.
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There is a well-defined projection π : E → B: let e ∈ E, Ψα a vector bundle
chart around e and Ψα(e) = (w′, f ′) (Ψα : W → W ′ × F ′). Then let π(e) :=
Ψ−1
α (w′, 0). This definition is independent of Ψα: Let (Ψβ ,Wβ) be another

vector bundle chart around e, Ψβ(e) = (w′′, f ′′). Then

Ψβ ◦Ψ−1
α (w′, f ′) = (ψ

(1)
βα(w

′), ψ
(2)
βα(w

′) · f ′) = (w′′, f ′′),

so w′′ = ψ
(1)
βα(w

′) and therefore Ψβ ◦ Ψ−1
α (w′, 0) = (w′′, 0). Hence π(e) =

Ψ−1
α (w′, 0) = Ψ−1

β (w′′, 0). Obviously, π is surjective. Moreover, π is smooth:

E
π−−−−→ B

Ψα



y



yΨα|B

W ′ × F ′ pr1(×0)−−−−−→ W ′ × {0}
Since pr1 is smooth, so is π.

For b ∈ B we call π−1(b) the fiber over b. It carries a vector space struc-
ture induced by the vector bundle charts: Let e1, e2 ∈ π−1(b), Ψα a vector
bundle chart around b, Ψα(ei) = (w′, f ′i) (i = 1, 2). Then let e1 + λe2 :=
Ψ−1
α (w′, f ′1 + λf ′2). This is independent of the chosen vector bundle chart:

Let Ψβ be another vector bundle chart, Ψβ(ei) = (v′, g′i) (i = 1, 2). Then

Ψβ◦Ψ−1
α (w′, f ′i) = (ψ

(1)
βα(w

′), ψ
(2)
βα(w

′)f ′i) = (v′, g′i), so Ψβ◦Ψ−1
α (w′, f ′1+λf

′
2) =

(ψ
(1)
βα(w

′), ψ
(2)
βα(w

′) · f ′1 + λψ
(2)
βα(w

′) · f ′2) = (v′, g′1 + λg′2). Thus e1 + λe2 =

Ψ−1
α (w′

1, f
′
1 + λf ′2) = Ψ−1

β (w′, g′1 + λg′2).

For U ⊆ B open let E|U :=
⋃

b∈U{b} × Eb.

(ii) From (i) we may extract the following alternative description of vector bundles
which often is used as a definition:

A vector bundle is a triple (E,B, π) consisting of two C∞-manifolds E, B and
a smooth surjection π : E → B such that for all b ∈ B we have:

• The fiber π−1(b) =: Eb is a vector space.

• There exists an open neighborhood V of b in B and a diffeomorphism

Ψ̃ : W := π−1(V ) → V × F ′, which is fiberwise linear (i.e., Ψ̃
∣
∣
∣
π−1(b)

is

linear ∀b ∈ V ) and such that the following diagram commutes:

π−1(V )
Ψ̃−−−−→ V × F ′

π



y



ypr1

V
id−−−−→ V

(In our approach, Ψ̃ := ((Ψ|B)−1 × idF ′) ◦Ψ).

2.5.7 Example. (TM,M, πM ) is a vector bundle:
Let A = {(ψα, Vα) | α ∈ A} be an atlas of M . By 2.5.3, with Ψα := Tψα,
Wα := TVα the family A′ := {(Ψα,Wα) | α ∈ A} is a vector bundle atlas of TM .
By 2.4.11, the fibers π−1

M (p) = {p} × TpM ∼= TpM carry the vector space structure
induced by Ψα. Hence, locally TM has a product structure: Tψα : TM |Vα =
TVα → ψα(Vα)× Rn and we obtain the following commutative diagram:

TVα = π−1(Vα)
Tψα−−−−→ ψα(Vα)× Rn

ψ−1
α ×id−−−−−→ Vα × Rn

π



y



ypr1



ypr1

Vα
ψα−−−−→ ψα(Vα)

ψ−1
α−−−−→ Vα
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After this clarification of the underlying structures we return to our original task of
defining vector fields on manifolds. Thus we are looking for maps which smoothly
assign to each p ∈M an element Xp = X(p) of TpM .

2.5.8 Definition. Let (E,B, π) be a vector bundle. A map X : B → E is called a
section of E (more precisely: of π : E → B), if π ◦X = idB. The set of all smooth
sections of E is denoted by Γ(B,E) (or Γ(E)).

Thus a vector field is a section of TM (π(Xp) = p ∀p). If (ψ, V ), ψ = (x1, . . . , xn) is
a chart ofM then for any p ∈ V the ∂

∂xi

∣
∣
p
form a basis of TpM . SinceXp ∈ TpM , for

each p there exist uniquely determinedXi(p) ∈ R such thatXp =
∑n
i=1X

i(p) ∂
∂xi

∣
∣
p
.

This is called the local representation of X on V .

2.5.9 Proposition. Let X be a vector field on a manifold M . TFAE:

(i) X :M → TM is smooth, i.e., X ∈ Γ(TM).

(ii) For every f ∈ C∞(M), p 7→ Xp(f) :M → R is smooth.

(iii) For every chart (ψ, V ) of M , ψ = (x1, . . . , xn) we have: in the local represen-
tation

X(p) =

n∑

i=1

Xi(p)
∂

∂xi

∣
∣
∣
∣
p

,

Xi ∈ C∞(V,R) for all i = 1, . . . , n.

Proof. (i)⇒(ii): X : M → TM is smooth by assumption. Also, if f ∈ C∞(M),
then Tf : TM → TR ∼= R × R is smooth by 2.5.4(i). Hence p 7→ Tf(Xp) =
(f(p), Tpf(Xp)) = (f(p), Xp(f)), and therefore also p 7→ Xp(f) is smooth by 2.4.3.
(ii)⇒(iii): Let p0 ∈ V and let U be an open neighborhood of p0 such that U ⊆ V .
By 2.3.14 we may choose a partition of unity {χ1, χ2} subordinate to {V,M \ U}.

χ1 χ2

U V
Let 1 ≤ j ≤ n and set f := χ1x

j (extended by 0 outside of V ). Then f ∈ C∞(M)
and f |U = xj

∣
∣
U
. For p ∈ U we obtain:

Xp(f) =

n∑

i=1

Xi(p)
∂

∂xi

∣
∣
∣
∣
p

(xj) =

=
n∑

i=1

Xi(p)Di( x
j ◦ ψ−1

︸ ︷︷ ︸

=prj◦ψ◦ψ
−1

)(ψ(p)) =

=

n∑

i=1

Xi(p)δi,j = Xj(p)

Therefore, each Xj
∣
∣
U

is smooth. Since p0 was an arbitrary point in V , each Xj is
smooth on V (1 ≤ j ≤ n).
(iii)⇒ (i): Let (ψ, V ) be a chart at p ∈ M . By 2.2.10 (i), it suffices to show that
Tψ ◦X ◦ ψ−1 is smooth (on its open domain ψ(V )). Now

Tψ ◦X(p) = Tψ(

n∑

i=1

Xi(p)
∂

∂xi

∣
∣
∣
∣
p

) = Tψ(

n∑

i=1

Xi(p)(Tpψ)
−1(ei))

= (ψ(p), Tpψ(

n∑

i=1

Xi(p)(Tpψ)
−1(ei)) = (ψ(p),

n∑

i=1

Xi(p)ei),
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so, finally,

Tψ ◦X ◦ ψ−1(x) = (x,

n∑

i=1

Xi(ψ−1(x))ei) (2.5.2)

is smooth, as claimed. 2

2.5.10 Definition. The space of smooth vector fields on M is denoted by X(M).

2.5.11 Examples.

(i) Vector fields on Rn:

Let U ⊆ Rn be open. From our analysis course we know: a vector field is a
C∞-map X : U → Rn, X(p) = (X1(p), . . . , Xn(p)) =

∑n
i=1 x

i(p)ei. How does
this fit into the above framework?

U is a manifold with the single chart ψ = idU and the corresponding atlas A =
{(idU , U)}. By 2.4.10 we have Tpψ = Dψ(p) = id, so ∂

∂xi

∣
∣
p
= (Tpψ)

−1(ei) =

ei. As a derivation, according to (2.4.2), ∂
∂xi

∣
∣
p
acts as follows:

∂

∂xi

∣
∣
∣
∣
p

(f) = Di(f ◦ id−1)(id(p)) = Dif(p) =
∂f

∂xi
(p).

Hence Xp =
∑n
i=1X

i(p)ei resp. Xp =
∑n
i=1X

i(p) ∂
∂xi

∣
∣
p
correspond to view-

ing X as a vector or as a differential operator (directional derivative in the
direction (X1(p), . . . , Xn(p))), respectively.

(ii) As in 2.2.2, let M = S1 = {(x, y) ∈ R2 | x2 + y2 = 1}, and set V1 =
{(cosϕ, sinϕ) | ϕ ∈ (0, 2π)}, ψ1 : V1 → (0, 2π), ψ1(cosϕ, sinϕ) = ϕ, and
V2 = {(cos ϕ̃, sin ϕ̃) | ϕ̃ ∈ (−π, π)}, ψ2 : V2 → (−π, π), ψ2(cos ϕ̃, sin ϕ̃) = ϕ̃.

p

V1

(

− sinϕ
cosϕ

)

V2

With respect to the chart ψ1, at p = (cosϕ, sinϕ) the vector field ∂
∂ϕ

is given
by

∂

∂ϕ

∣
∣
∣
∣
p

= (Tpψ1)
−1(e1) = Tϕψ

−1
1 (1) = Dψ−1

1 (ϕ) · 1 =

(
− sinϕ
cosϕ

)

Analogously, with respect to ψ2 we have:

∂

∂ϕ̃

∣
∣
∣
∣
p

=

(
− sin ϕ̃
cos ϕ̃

)

at p = (cos ϕ̃, sin ϕ̃). By (2.4.6), on V1 ∩ V2 we have

∂

∂ϕ

∣
∣
∣
∣
p

=
∂ϕ̃

∂ϕ

∂

∂ϕ̃

∣
∣
∣
∣
p
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and
∂ϕ̃

∂ϕ
= D(ψ2 ◦ ψ−1

1 )(ψ1(p)) = 1

since

ψ2 ◦ ψ−1
1 = ϕ 7→

{
ϕ ϕ ∈ (0, π)

ϕ− 2π ϕ ∈ (π, 2π)

Therefore, ∂
∂ϕ

= ∂
∂ϕ̃

on V1 ∩ V2 and we conclude that

X :=

{
∂
∂ϕ

on V1
∂
∂ϕ̃

on V2

is a well-defined vector field on S1. Often one simply writes X = ∂
∂ϕ

.

Let f : S1 → R be a smooth function. By (2.4.2) we have (for f̃ a local
smooth extension of f):

(Xf)(p) =
∂

∂ϕ

∣
∣
∣
∣
p

(f) = D(f ◦ ψ−1
1 )(ψ1(p)

︸ ︷︷ ︸

=ϕ

) =
∂

∂ϕ
f̃(cosϕ, sinϕ) =

=
∂f̃

∂x
(cosϕ, sinϕ) · (− sinϕ) +

∂f̃

∂y
(cosϕ, sinϕ) · cosϕ =

= (− sinϕ · ∂
∂x

+ cosϕ · ∂
∂y

)f̃ .

It follows that ∂
∂ϕ

= − sinϕ · ∂
∂x

+ cosϕ · ∂
∂y

in the basis { ∂
∂x
, ∂
∂y

} ∼= {e1, e2}
of R2.

In 2.4.13 we identified TpM with the space of derivations Derp(C∞(M),R) at p.
Thus for any X ∈ X(M) and any p ∈ M , Xp is a derivation at p. The map
C∞(M) ∋ f 7→ X(f), where X(f) := p 7→ Xp(f) is linear and satisfies

X(f · g) = X(f) · g + f ·X(g)

In fact, for p ∈M we have:

(X(f · g))(p) = Xp(f · g)
= f(p)Xp(g) + g(p)Xp(f)

= (f ·X(g) + g ·X(f))(p).

Consequently, X is a derivation in the following sense:

2.5.12 Definition. An R-linear map D : C∞(M) → C∞(M) is called a derivation
of the algebra C∞(M) if it satisfies the following product rule:

D(f · g) = f ·D(g) + g ·D(f).

The space of derivations on C∞(M) is denoted by Der(C∞(M)).

2.5.13 Theorem. The derivations on C∞(M) are precisely the smooth vector
fields on M : Der(C∞(M)) = X(M). More precisely, every smooth vector field
is a derivation on C∞(M), and, conversely, every derivation on C∞(M) is given by
the action of a smooth vector field.
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Proof. X(M) ⊆ Der(C∞(M)) by 2.5.9 (ii) and the above considerations. Con-
versely, let D ∈ Der(C∞(M)). Then for any p ∈ M the map C∞(M) ∋ f 7→
(D(f))(p) is a derivation at p:

(D(f · g))(p) = (D(f) · g + f ·D(g))(p) =

= (D(f))(p) · g(p) + f(p) ·D(g)(p).

By 2.4.13 it follows that there exists a unique Xp ∈ TpM with Xp(f) = (D(f))(p).
Hence p 7→ Xp is a vector field onM with X(f) = D(f) ∀f ∈ C∞(M). X is smooth
by 2.5.9 (ii). 2

2.5.14 Definition. Let X, Y ∈ X(M). The Lie bracket of X and Y is defined as

[X,Y ](f) := X(Y f)− Y (Xf) (f ∈ C∞(M))

It follows that [X,Y ] : C∞(M) → C∞(M) is linear and satisfies the product rule, so
by 2.5.13, [X,Y ] ∈ X(M).

2.5.15 Proposition. (Properties of the Lie bracket) Let X, Y, Z ∈ X(M), f, g ∈
C∞(M). Then:

(i) (X,Y ) 7→ [X,Y ] is R-bilinear.

(ii) [X,Y ] = −[Y,X] ([ , ] is skew-symmetric).

(iii) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (Jacobi-identity).

(iv) [fX, gY ] = fg[X,Y ] + fX(g)Y − gY (f)X.

(v) [ , ] is local: If V is open in M , then [X,Y ]|V = [X|V , Y |V ].
(vi) Local representation: If (ψ, V ) is a chart, ψ = (x1, . . . , xn), X|V =

∑n
i=1X

i ∂
∂xi

,

Y |V =
∑n
i=1 Y

i ∂
∂xi

, then:

[X,Y ]|V =

n∑

i=1

(

n∑

k=1

(Xk ∂Y
i

∂xk
− Y k

∂Xi

∂xk
))

∂

∂xi

Proof. (i), (ii) are immediate from the definition.
(iii) We calculate:

[X, [Y,Z]]f = X(Y (Zf)−X(Z(Y f))− [Y,Z](Xf) =
= X(Y (Zf))−X(Z(Y f))− Y (Z(Xf)) + Z(Y (Xf))

[Y, [Z,X]]f = Y (Z(Xf))− Y (X(Zf))− Z(X(Y f)) +X(Z(Y f))
[Z, [X,Y ]]f = Z(X(Y f))− Z(Y (Xf))−X(Y (Zf)) + Y (X(Zf)),

which sums to 0.
(iv) Let h ∈ C∞(M). Then

[fX, gY ]h = (fX)(gY (h))− (gY )(fX(h)) =

= fX(g) · Y (h) + f · g ·X(Y (h))− f · g · Y (X(h))
︸ ︷︷ ︸

=fg[X,Y ](h)

−gY (f)X(h).

(v) Let f ∈ C∞(V ). Then Xp(f) is well-defined for all p ∈ V (cf. the proof of
2.4.13). Thus the map p 7→ Xp(f) is defined on V and coincides with X|V (f). An
analogous statement holds for Y . For p ∈ V we therefore have:

[X,Y ]p(f) = Xp(Y f)− Yp(Xf) = Xp(Y |V (f))− Yp(X|V (f)) =

= (X|V )p(Y |V (f))− (Y |V )p(X|V (f)) =

= [X|V , Y |V ]p(f).
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(vi) Let f ∈ C∞(V,R). Then:

[
∂

∂xi
,
∂

∂xj
]pf =

∂

∂xi

∣
∣
∣
∣
p

(
∂

∂xj
f)− ∂

∂xj

∣
∣
∣
∣
p

(
∂

∂xi
f)

Now

∂

∂xi

∣
∣
∣
∣
p

(
∂f

∂xj
)

(2.4.2)
=

∂

∂xi

∣
∣
∣
∣
p

(q 7→ Dj(f ◦ ψ−1)(ψ(q))
︸ ︷︷ ︸

=:gj(q)

) =

(2.4.2)
= Di(gj ◦ ψ−1)

︸ ︷︷ ︸

DiDj(f◦ψ−1)

(ψ(p)) =

= DjDi(f ◦ ψ−1)(ψ(p)) =

=
∂

∂xj

∣
∣
∣
∣
p

(
∂

∂xi
f),

so [ ∂
∂xi

, ∂
∂xj

] = 0 ∀i, j. Hence

[X,Y ]|V
(v)
= [X|V , Y |V ] =

= [

n∑

i=1

Xi ∂

∂xi
,

n∑

k=1

Y k
∂

∂xk
] =

(i),(iv)
=

n∑

i,k=1

(XiY k [
∂

∂xi
,
∂

∂xk
]

︸ ︷︷ ︸

=0

+Xi ∂Y
k

∂xi
∂

∂xk
− Y k

∂Xi

∂xk
∂

∂xi
) =

=
n∑

i=1

(
n∑

k=1

(Xk ∂Y
i

∂xk
− Y k

∂Xi

∂xk
))

∂

∂xi

2

In the theory of dynamical systems one analyzes solutions of autonomous ODEs
ċ(t) = X(c(t)), where X is a vector field. In applications, X is often not defined
on an open subset of Rn. For example, c might be subject to certain ‘constraints’,
i.e., be constrained by some regular equation. By 2.1.8 this means that X is in fact
defined on some differentiable manifold M . Thus we are interested in the ODE

ċ(t) = X(c(t)) (2.5.3)

with X ∈ X(M).
To begin with we have to clarify what we mean by ċ(t). For c ∈ C∞(I,Rn), ċ(t) is
given by the vector Dc(t) · 1 (where 1 = e1 ∈ R). For c ∈ C∞(I,M) we analogously
set

ċ(t) = Ttc(1)
2.5.11
= Ttc(

∂

∂t

∣
∣
∣
∣
t

).

Since differentiation is a local operation we may write (2.5.3) in local coordinates:
let (ψ, V ) be a chart in M . The local representation of X with respect to ψ =
(x1, . . . , xn) is ψ∗X := Tψ ◦X ◦ ψ−1:

TM
Tψ−−−−→ ψ(V )× Rn

X

x



x

ψ∗X

M ⊇ V
ψ−−−−→ ψ(V )
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Here, ψ∗X is called push-forward of X under ψ. By (2.5.2), ψ∗X is the map

x 7→ (x,

n∑

i=1

Xi(ψ−1(x))ei)

(for X|V =
∑n
i=1X

i ∂
∂xi

). One often drops the first component in this formula.
Hence locally X is a vector field with components (X1 ◦ ψ−1, . . . , Xn ◦ ψ−1). We
also localize ċ, i.e., we write ċ(t) in the chart ψ: ċ is the second component of Tc,
applied to 1 (∼= ∂

∂t
). An application of Tψ gives

(Tψ ◦ Tc)(t, 1) = T (ψ ◦ c)(t, 1) = (ψ ◦ c(t), D(ψ ◦ c)(t) · 1).

Now D(ψ ◦ c)(t) · 1 = (ψ ◦ c)�(t). Thus with respect to the chart ψ, (2.5.3) reads:

(ψ ◦ c)�(t) = (ψ∗X)(ψ ◦ c(t)), (2.5.4)

so locally we obtain the autonomous ODE

(xi ◦ c)�(t) = (Xi ◦ ψ−1)(ψ ◦ c(t)) (1 ≤ i ≤ n) (2.5.5)

or, with c̃i = xi ◦ c, X̃i = Xi ◦ ψ−1

˙̃ci(t) = X̃i(c̃(t)).

To study the global behavior of the solutions of (2.5.3) (the so-called integral curves
of X) we will need the following fundamental existence and uniqueness result for
ODEs:

2.5.16 Theorem. Let F : R × Rn → Rn be smooth. Then there exists an open
interval I of 0 ∈ R and an open ball U around 0 ∈ Rn such that for each x ∈ U
there is a unique solution cx : I → Rn of the initial value problem

ċx(t) = F (t, cx(t))

cx(0) = x

The map (t, x) 7→ cx(t), I × U → Rn is smooth.

Proof. See your favorite ODE-course or Dieudonne, Vol. 1, 10.8.1, 10.8.2. 2

Based on this result we establish the following fundamental theorem on ODEs on
manifolds.

2.5.17 Theorem. Let M be a smooth manifold and X ∈ X(M). Then

(i) Any p ∈ M is contained in a unique maximal integral curve of X, i.e., there
is a unique smooth solution cp of (2.5.3) with cp(0) = p and maximal domain
of definition (tp−, t

p
+).

(ii) If tp+ < ∞, then limt→t
p
+
cp(t) = ∞. That is to say, for t → tp+, the curve

cp(t) leaves every compact subset of M (and analogously for tp− > −∞).

(iii) The set U = {(t, p) | tp− < t < tp+} is an open neighborhood of {0} ×M in

R ×M . The flow of X, defined by FlX : U → M, (t, p) 7→ cp(t) is smooth

(U is the maximal domain of definition of FlX). For every p ∈ M the map
t 7→ FlX(t, p) ≡ FlXt (p) satisfies the following semi-group property:

FlXt+s(p) = FlXt (FlXs (p))

whenever the right hand side of this equation exists.
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Proof. (i) As we have seen in (2.5.4), in every chart domain (2.5.3) can be trans-
formed into a local autonomous ODE. Thus 2.5.16 implies the existence of smooth
solutions of (2.5.3), i.e., of integral curves of X. Moreover, again by 2.5.16 these
solutions are locally unique, i.e., if two solutions coincide in a t-value t0 then they
in fact coincide on a neighborhood of t0.
Let p ∈ M , and c1 : I1 → M , c2 : I2 → M two integral curves of X with c1(0) =
p = c2(0). Then J := {t ∈ I1 ∩ I2 | c1(t) = c2(t)} is nonempty (since 0 ∈ J) and
closed in I1∩ I2. By the above J is also open in I1∩ I2, so J = I1∩ I2. Thus c1 and
c2 can be combined into a single integral curve on I1 ∪ I2. The maximal integral
curve cp through p therefore is defined on (tp−, t

p
+) =

⋃{I | ∃ integral curve c : I →
M with c(0) = p}.
(iii) Since 0 ∈ (tp−, t

p
+) for all p ∈ M it follows that {0} × M ⊆ U . Moreover,

FlX(0, p) = cp(0) = p. Suppose that FlXt (FlXs (p))) exists, i.e., t 7→ FlXt (FlXs (p)) is

the maximal integral curve of X through FlXs (p). Since also t 7→ FlXs+t(p) is an inte-

gral curve ofX with initial value FlXs (p), it follows that FlXs+t(p) = FlXt (FlXs (p)). By

2.5.16, FlX is defined and smooth on a neighborhood of {0}×M . For p ∈M let Ip :=

(tp−, t
p
+) and I

′
p := {t ∈ R | FlX is defined and smooth in a neighborhood of [0, t] ×

{p} (for t ≥ 0) resp. of [t, 0]× {p} (for t < 0)}
Then I ′p ⊆ Ip, 0 ∈ I ′p and I

′
p is an open interval. We will show that I ′p = Ip. Suppose

to the contrary that I ′p ( Ip.

0 I ′p Ip

t0

Without loss of generality we may suppose that t0 := inf{t > 0 | t ∈ Ip \ I ′p} > 0.
Note that t0 6∈ I ′p since I ′p is open.

We know that FlX is defined and smooth on a neighborhood W of (0,FlXt0 (p)) ∈
R×M . We choose some δ with 0 < δ < t0, and a neighborhood V of p in M such
that

(−δ, 2δ)× FlXt0−δ(V ) ⊆W

(which is possible since (s, q) 7→ FlXs (q) is continuous) and such that q 7→ FlXt0−δ(q)
is smooth on V . Then the map

(s, q) 7→ FlXs (FlXt0−δ(q)) = FlXs+t0−δ(q)

is smooth on the neighborhood (−δ, 2δ)×V of [0, δ]×{p}, so FlX is smooth on the
neighborhood (t0−2δ, t0+ δ)×V of [t0− δ, t0]×{p}. Moreover (by definition of t0)
t0 − δ ∈ I ′p, so FlX is smooth on a neighborhood of [0, t0 − δ]× {p}. Summing up,

FlX is smooth on a neighborhood of ([0, t0 − δ] ∪ [t0 − δ, t0]) × {p} = [0, t0] × {p}.
But according to the definition of I ′p this means that t0 ∈ I ′p, contradicting the
definition of t0, which establishes Ip = I ′p.

Hence U = {(t, p) | t ∈ Ip} = {(t, p) | t ∈ I ′p} is open and FlX is smooth on U (both
according to the definition of I ′p).
(ii) Let p ∈ M , tp+ < ∞ and K a compact subset of M . We want to show that
cp(t) 6∈ K for t sufficiently close to tp+. Suppose to the contrary that there exists
a sequence (tn) with tn ր tp+ and cp(tn) ∈ K for all n. Since K is compact, a
subsequence of (cp(tn)), w.l.o.g. (cp(tn)) itself, converges to some p′ ∈ K.

There exists some ε > 0 and some neighborhood V of p′ such that FlX is smooth
on (−ε, ε)× V . Choose n0 such that cp(tn) ∈ V ∀n ≥ n0. Since

FlXt (cp(tn)) = FlXt (FlXtn(p)) = FlXt+tn(p) = cp(t+ tn),

cp(t + tn) exists for all |t| < ε and all n ≥ n0. Thus cp(s) is defined for s ∈
(tn− ε, tn+ ε) ∀n ≥ n0. Choose n ≥ n0 such that tn > tp+ − ε

2 . Then cp(s) is exists
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up to tp+ − ε
2 + ε = tp+ + ε

2 > tp+, contradicting the definition of tp+. 2

2.5.18 Definition. Let M be a manifold and let X ∈ X(M). X is called complete,
if FlX is defined on all of R×M (i.e., U = R×M).

Completeness of X therefore means that each integral curve of X exists for all times.
From 2.5.17 (ii) we conclude:

2.5.19 Corollary. Every vector field on a compact manifold is complete.

2.5.20 Examples.

(i) Let M = R2, and X = x1 ∂
∂x1 + x2 ∂

∂x2 . To determine the integral curves of
X we have to solve the ODE ċ(t) = X(c(t)). Applying (2.5.5) with ψ = idR2

gives: c̃ = c, X̃ = X. Hence we consider

ċ1(t) = x1(c(t)) = c1(t)

ċ2(t) = x2(c(t)) = c2(t)

c(0) = (a, b) ∈ R2

Thus c(t) = (aet, bet) = FlXt (a, b). Obviously, FlXs+t(a, b) = FlXs (FlXt (a, b)).
For (a, b) = (0, 0) it follows that c(t) ≡ 0 since X(0, 0) = (0, 0). (0, 0) is called
a critical point of X (i.e., zero of X).

(a, b)

Every integral curve of X is defined on all of R, so X is complete.

(ii) Let M = R2, and X = e−x
1 ∂
∂x1 . Using the chart ψ = idR2 we obtain

ċ1(t) = e−c
1(t)

ċ2(t) = 0

c(0) = (a, b)

Thus c(t) = (log(t + exp a), b) = FlXt (a, b) (it is easily verified that the flow
property FlXt+s(a, b) = FlXt (FlXs (a, b)) holds). c is defined on (−ea,∞) ( R,
so X is not complete.

(iii) (cf. 2.1.7 (ii)).

Let M̃ = S2, ψ : (x, y, z) = (cosφ cos θ, sinφ cos θ, sin θ) 7→ (φ, θ) = (ψ1, ψ2),

and M := ψ−1((0, 2π)× (−π
2 ,

π
2 ))

open

⊆ M̃ . Let X on M be given, with respect
to ψ, by

X = φ
∂

∂φ
+

∂

∂θ
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In (2.5.5) we have X̃1(φ, θ) = φ, X̃2(φ, θ) = 1, c̃(t) = (φ(t), θ(t)). (Note that
X cannot be extended smoothly to S2 since φ has a jump.) Hence (2.5.5)
reads:

φ̇(t) = φ(t)

θ̇(t) = 1

(φ(0), θ(0)) = (φ0, θ0)

Thus c̃(t) = (φ(t), θ(t)) = (φ0e
t, t+ θ0), so

c(t) = ψ−1 ◦ c̃(t) = (cos(φ0e
t) cos(t+ θ0), sin(φ0e

t) cos(t+ θ0), sin(t+ θ0)).

X ∈ X(M) is not complete.

2.5.21 Remark. Let Mk be a k-dimensional submanifold of Rn. Then X(M) =
{X :M → Rn | X C∞ and Xp ∈ TpM ∀p ∈M}.

Proof. Let X ∈ X(M). Then Xp ∈ TpM ∀p. Locally (with respect to a
parametrization (ϕ,U)), X is given by

X(ϕ(x)) =
k∑

i=1

Xi(ϕ(x))
∂

∂xi

∣
∣
∣
∣
ϕ(x)

=
k∑

i=1

Xi(ϕ(x))Diϕ(x)

(cf. the remark preceding 2.4.12). Hence X ◦ ϕ is smooth since Xi and ϕ are. But
then X is smooth by 2.1.13 (i) and 2.1.15.
Conversely, let X :M → Rn be smooth and suppose that Xp ∈ TpM for all p ∈M .
Then X is a section of TM and it remains to show that X is smooth. To this end
we employ 2.5.9 (ii): let f ∈ C∞(M) with local smooth extension f̃ . Then X(f) is
locally given by p 7→ Xp(f) = Tpf(Xp) = Df̃(p)Xp which clearly is smooth on M .

2

Caution: Note that the X1, . . . , Xk should not be confused with the n components
of X as a vector in Rn!

2.6 Tensors

Heuristically, if we want to determine the area of a curved surface, or, more gen-
erally, the volume of some submanifold, we first have to approximate the surface
‘infinitesimally’ by its tangent space, then determine the area of these approximat-
ing spaces and then sum (resp. integrate) up the results.

∂
∂x

∂
∂y

ψ

Thus we first need a way of assigning volumes to parallelepipeds in vector spaces. A
map ω which assigns a volume to a parallelepiped with edges u, v, w should possess
the following properties:

(i) ω(αu, v, w, . . . ) = ω(u, αv, w, . . . ) = · · · = α · ω(u, v, w, . . . )
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(ii) ω(u1 + u2, v, w, . . . ) = ω(u1, v, w . . . ) + ω(u2, v, w, . . . ), and analogously for
v, w, . . .

(iii) ω(u, u, w, . . . ) = ω(u, v, v, . . . ) = · · · = 0

Since 0 = ω(u+ v, u+ v, w, . . . ) = ω(u, v, w, . . . ) + ω(v, u, w, . . . ), (iii) is equivalent
to ω being antisymmetric (or skew-symmetric).
Due to (i),(ii) we have to consider multilinear mappings on vector spaces (in partic-
ular, on TpM). The skew-symmetry (iii) will be taken into account in the following
section. We therefore begin this section with a crash-course in multilinear algebra.
In what follows let E1, . . . , Ek, E, F be finite-dimensional vector spaces. Then by
Lk(E1, . . . , Ek;F ) we denote the space of multilinear maps from E1 × · · · × Ek to
F . An important special case is (k = 1): L(E,R) = E∗, the dual space of E, i.e.,
the vector space of linear functionals on E. If BE = {e1, . . . , en} is a basis of E,
then the functionals defined by

αj(ei) = δij =

{
1 i = j
0 i 6= j

(j = 1, . . . , n) form a basis of E∗, the dual basis of BE . For each e ∈ E we have
e =

∑n
i=1 α

i(e)ei and for each α ∈ E∗ we get α =
∑n
i=1 α(ei)α

i. The bidual space
E∗∗ = (E∗)∗ is canonically isomorphic to E: the map

i : E → E∗∗

i(e) = α
︸︷︷︸

∈E∗

7→ α(e)

is a linear isomorphism.

2.6.1 Definition. Let E be a vector space. Then

T rs (E) := Lr+s(E∗, . . . , E∗

︸ ︷︷ ︸

r

, E, . . . , E
︸ ︷︷ ︸

s

;R)

is called the space of r-times contra- and s-times covariant tensors, or, for short,
(
r
s

)
-tensors. The elements of T rs (E) are called tensors of type

(
r
s

)
.

For t1 ∈ T r1s1 (E), t2 ∈ T r2s2 (E), the tensor product t1 ⊗ t2 ∈ T r1+r2s1+s2 (E) is defined by:

t1 ⊗ t2(β
1, . . . , βr1 , γ1, . . . , γr2 , f1, . . . , fs1 , g1, . . . , gs2)

:= t1(β
1, . . . , βr1 , f1, . . . , fs1) · t2(γ1, . . . , γr2 , g1, . . . , gs2)

(βj , γj ∈ E∗, fj , gj ∈ E).

Clearly, ⊗ is associative and bilinear.

2.6.2 Example.

(i) By definition, T 0
1 (E) = L(E,R) = E∗ and T 1

0 (E) = L(E∗,R) = E∗∗ = E.
Elements of E (vectors) therefore are

(
1
0

)
-tensors, elements of E∗ (often called

co-vectors) are
(
0
1

)
-tensors.

(ii) Let E be a vector space with scalar product g(e, f) = 〈e, f〉. Then g is a
bilinear map g : E × E → R, i.e., a

(
0
2

)
-tensor.

2.6.3 Proposition. Let dim(E) = n. Then dim(T rs (E)) = nr+s. If {e1, . . . , en} is
a basis of E and {α1, . . . , αn} is the corresponding dual basis, then

Brs := {ei1 ⊗ · · · ⊗ eir ⊗ αj1 ⊗ · · · ⊗ αjs | 1 ≤ ik, jk ≤ n}

is a basis of T rs (E).
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Proof. Brs is linearly independent: let

∑

i1,...,ir
j1,...,js

ti1...irj1...js
︸ ︷︷ ︸

∈R

ei1 ⊗ · · · ⊗ eir ⊗ αj1 ⊗ · · · ⊗ αjs = 0

Inserting (αk1 , . . . , αkr , el1 , . . . , els), then since αi(ej) = ej(α
i) = δij it follows that

all ti1...irj1...js
vanish.

Brs generates T rs (E): each t ∈ T rs (E) can be written as follows:

t =
∑

i1,...,ir
j1,...,js

t(αi1 , . . . , αir , ej1 , . . . , ejs)ei1 ⊗ · · · ⊗ eir ⊗ αj1 ⊗ · · · ⊗ αjs .

To see this, it suffices to show that both sides of this equation define the same mul-
tilinear map. Let β1 =

∑
λ1i1α

i1 , . . . , βr =
∑
λrirα

ir ∈ E∗, and x1 =
∑
µj11 ej1 ,. . . ,

xs =
∑
µjss ejs ∈ E. Then

t(β1, . . . , βr, x1, . . . , xs) =
∑

i1,...,ir
j1,...,js

λ1i1 . . . λ
r
ir
µj11 . . . µjss t(α

i1 , . . . , αir , ej1 , . . . , ejs)

=
∑

i1,...,ir
j1,...,js

t(αi1 , . . . , αir , ej1 , . . . , ejs)ei1 ⊗ · · · ⊗ eir ⊗ αj1 ⊗ · · · ⊗ αjs(β1, . . . , xs)

2

Every linear map ϕ : E → F possesses an adjoint map ϕ∗ ∈ L(F ∗, E∗): for β ∈
F ∗, e ∈ E one sets ϕ∗(β)(e) := β(ϕ(e)). If A is the matrix of ϕ with respect to
bases of E resp. F , then At is the matrix of ϕ∗ with respect to the corresponding
dual bases of F ∗ resp. E∗.
More generally, we now want to assign to any ϕ ∈ L(E,F ) a linear map ϕrs ∈
L(T rs (E), T rs (F )). If ϕ is a linear isomorphism we may combine such a map from ϕ
and ϕ∗:

2.6.4 Definition. Let ϕ ∈ L(E,F ) be bijective. Then T rs (ϕ) ≡ ϕrs ∈ L(T rsE, T
r
s F )

is defined as

(ϕrs(t))(β
1, . . . , βr, f1, . . . , fs) := t(ϕ∗(β1), . . . , ϕ∗(βr), ϕ−1(f1), . . . , ϕ

−1(fs))

for t ∈ T rs (E), β1, . . . , βr ∈ F ∗, f1, . . . , fs ∈ F .

2.6.5 Example. ϕ1
0 : E = T 1

0 (E) → T 1
0 (F ) = F , ϕ1

0(e)(β) = e(ϕ∗(β)) = ϕ(e)(β).
Thus we may identify ϕ1

0 with ϕ.
ϕ0
1 : E∗ = T 0

1 (E) → T 0
1 (F ) = F ∗, ϕ0

1(α)(f) = α(ϕ−1(f)) = (ϕ−1)∗(α)(f), so we
may identify ϕ0

1 with (ϕ−1)∗.
It follows that T rs ϕ = ϕrs is a simultaneous extension of ϕ and (ϕ−1)∗ to general
tensor spaces.

2.6.6 Proposition. Let ϕ : E → F , ψ : F → G be linear isomorphisms. Then:

(i) (ψ ◦ ϕ)rs = ψrs ◦ ϕrs
(ii) (idE)

r
s = idT rs (E)

(iii) ϕrs : T
r
sE → T rs F is a linear isomorphism, and (ϕrs)

−1 = (ϕ−1)rs.

(iv) If t1 ∈ T r1s1 (E), t2 ∈ T r2s2 (E), then ϕr1+r2s1+s2(t1 ⊗ t2) = ϕr1s1(t1)⊗ ϕr2s2(t2).

53



Proof. (i) We first note that for γ ∈ G∗, e ∈ E we have

(ϕ∗ ◦ ψ∗)(γ)(e) = (ϕ∗(ψ∗(γ)))(e) = ψ∗(γ)(ϕ(e)) = γ(ψ(ϕ(e))) = (ψ ◦ ϕ)∗(γ)(e).

Now let γ1, . . . , γr ∈ G∗, g1, . . . , gs ∈ G and t ∈ T rs (E). Then

(ψrs(ϕ
r
s(t)))(γ

1, . . . , γr, g1, . . . , gs)

= (ϕrs(t))(ψ
∗γ1, . . . , ψ∗γr, ψ−1(g1), . . . , ψ

−1(gs))

= t(ϕ∗(ψ∗γ1)
︸ ︷︷ ︸

(ψ◦ϕ)∗γ1

, . . . , ϕ∗(ψ∗γr), ϕ−1(ψ−1)(g1)
︸ ︷︷ ︸

(ψ◦ϕ)−1(g1)

, . . . , ϕ−1(ψ−1(gs)))

= ((ψ ◦ ϕ)rs(t))(γ1, . . . , γr, g1, . . . , gs).

(ii) Since id−1
E = idE and id∗E = idE∗ this is immediate from the definitions.

(iii) follows from (i) and (ii).
(iv)

ϕr1+r2s1+s2(t1 ⊗ t2)(β
1, . . . , βr1+r2 , f1, . . . , fs1+s2)

= (t1 ⊗ t2)(ϕ
∗β1, . . . , ϕ∗βr1+r2 , ϕ−1(f1), . . . , ϕ

−1(fs1+s2))

= t1(ϕ
∗β1, . . . , ϕ∗βr1 , ϕ−1(f1), . . . , ϕ

−1(fs1)) ·
t2(ϕ

∗βr1+1, . . . , ϕ∗βr1+r2 , ϕ−1(fs1+1), . . . , ϕ
−1(fs1+s2))

= (ϕr1s1t1)⊗ (ϕr2s2t2)(β
1, . . . , βr1+r2 , f1, . . . , fs1+s2).

2

To simplify notations, in what follows we will employ Einstein’s summation con-
vention: for every index which appears both as an upper and as a lower index,
summation is carried out over its entire set of values. Thus, instead of

∑

i1,...,ir
j1,...,js

ti1,...,irj1,...,js
ei1 ⊗ · · · ⊗ eir ⊗ αj1 ⊗ · · · ⊗ αjs

we simply write ti1,...,irj1,...,js
ei1⊗· · ·⊗eir⊗αj1⊗· · ·⊗αjs . Deviations from this convention

will be mentioned explicitly.
Our next aim is to extend the above constructions of multilinear algebra to tangent
vectors, i.e., to elements of certain vector bundles. To carry out this transfer we
first consider the case of local vector bundles.

2.6.7 Definition. Let ϕ : U × F → U ′ × F ′, ϕ(u, f) = (ϕ1(u), ϕ2(u)f) be a local
vector bundle isomorphism (cf. 2.5.5 (i)). Then define ϕrs : U × T rs F → U ′ × T rs F

′

by
ϕrs(u, t) = (ϕ1(u), (ϕ2(u))

r
s(t)) (t ∈ T rs F )

Note that ϕ2(u) is an isomorphism for each u, so (ϕ2(u))
r
s is well-defined.

2.6.8 Lemma. Under the assumptions of 2.6.7, ϕrs : U × T rs F → U ′ × T rs F
′ is a

local vector bundle isomorphism.

Proof. By 2.6.6 (iii), every (ϕ2(u))
r
s is a linear isomorphism. Hence ϕrs is bijective

and it remains to show that (u, t) 7→ ϕrs(u, t) is smooth (it then follows that also
(ϕrs)

−1 = (ϕ−1)rs is smooth). Clearly, ϕ1 is smooth.
Concerning ϕ2 we first note that on the space L(F, F ′) of linear maps (i.e., matrices)
the map ϕ 7→ ϕ∗ (= A 7→ At) is linear, hence smooth. Moreover, the space of
invertible matrices GL(F, F ′) is open in L(F, F ′) (since GL(F, F ′) = {A ∈ L(F, F ′) |
det(A) 6= 0}) and ϕ 7→ ϕ−1 (corresponding to A 7→ A−1)) is smooth on GL(F, F ′)
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by the inversion formula for matrices. Thus the maps u 7→ ϕ2(u)
∗ and u 7→ ϕ2(u)

−1

are smooth. Moreover, the maps ik, i
′
k : (β1, . . . βr, f1, . . . , fs) 7→ βk resp. 7→ fk are

linear, hence smooth as well. Summing up,

(u, t) 7→ (ϕ2(u))
r
s(t) =

(u, t) 7→ (t, ϕ2(u)
∗, . . . , ϕ2(u)

∗, ϕ2(u)
−1, . . . , ϕ2(u)

−1)
7→ t ◦ (ϕ2(u)

∗ ◦ i1, . . . , ϕ2(u)
∗ ◦ ir, ϕ2(u)

−1 ◦ i′1, . . . , ϕ2(u)
−1 ◦ i′s)

is smooth since also the last of the above maps is multilinear, hence C∞. 2

After these preparations we may now assign to any vector bundle E the correspond-
ing

(
r
s

)
tensor bundle, which has precisely the (Eb)

r
s as fibers:

2.6.9 Definition. Let (E,B, π) be a vector bundle, with Eb = π−1(b) the fiber over
b. Then let

T rs (E) :=
⊔

b∈B

T rs (Eb) =
⋃

b∈B

{b} × (Eb)
r
s

be the
(
r
s

)
-tensor bundle over E. Let πrs : T rs (E) → B, πrs(e) = b for e ∈ T rs (Eb)

denote the canonical projection. For A ⊆ B let T rs (E)|A :=
⊔

b∈A T
r
s (Eb).

We wish to turn T rs (E) itself into a vector bundle with basis B. To this end we will
produce vector bundle charts for T rs (E) from those of E, according to the following
pattern:

2.6.10 Definition. Let E, E′ be vector bundles and f : E → E′. f is called
a vector bundle homomorphism, if for each e ∈ E there exists a vector bundle
chart (Ψ,W ) around e and a vector bundle chart (Ψ′,W ′) around f(e), such that
f(W ) ⊆ W ′ and fΨ′Ψ := Ψ′ ◦ f ◦ Ψ−1 is a local vector bundle homomorphism (cf.
2.5.5 (i)). If f in addition is a diffeomorphism and f |Eb : Eb → E′

f(b) is a linear
isomorphism for all b ∈ B then f is called a vector bundle isomorphism. In this
case we define frs : T rsE → T rsE

′ by

frs |T rs (Eb) := (f |Eb)
r
s ∀b ∈ B

It is straightforward to check that a smooth map f : E → E′ is a vector bundle
homomorphism if and only if f is fiber-linear, i.e., if and only if f |Eb : Eb → E′

f(b)

is linear for each b ∈ B.

2.6.11 Examples.

(i) Let M, N be manifolds and f :M → N smooth. Then Tf : TM → TN is a
vector bundle homomorphism. In fact, by 2.5.4 we have:

Tψ ◦ Tf ◦ Tϕ−1(x,w) = T (ψ ◦ f ◦ ϕ−1)(x,w)

= (ψ ◦ f ◦ ϕ−1(x), D(ψ ◦ f ◦ ϕ−1)(x)w).

If f is a diffeomorphism then Tf : TM → TN is a vector bundle isomorphism.

(ii) Let E be a vector bundle, and (Ψ,W ) a vector bundle chart of E. Then
Ψ : W → U × Rn is a vector bundle isomorphism. This holds, in particular,
for E = TM and Ψ = Tψ, where ψ is any chart of M .

2.6.12 Theorem. Let (E,B, π) be a vector bundle with vector bundle atlas A =
{(Ψα,Wα) | α ∈ A}. Then (T rsE,B, π

r
s) is a vector bundle with vector bundle atlas

Ar
s = {((Ψα)rs, (T rsE)|Wα∩B

) | α ∈ A}. (T rsE,B, π
r
s) is called the tensor bundle of

type
(
r
s

)
over E.
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Proof. Clearly the (T rsE)|Wα∩B
form a covering of T rsE. Let Ψα, Ψβ be vector

bundle charts fromA withWαβ :=Wα∩Wβ 6= ∅. Since E|Wαβ∩B
∼=
⋃

b∈Wαβ∩B
{b}×

Eb, it follows that Ψα is of the form Ψα(b, e) = (ψα1(b), ψα2(b) · e), with b ∈ B,
e ∈ Eb, and ψα2(b) linear for each b. Therefore, (Ψα)

r
s can be defined as (b, t) 7→

(ψα1(b), (ψα2(b))
r
st) (t ∈ T rs (Eb)).

Then

Ψβ ◦Ψ−1
α (x,w) = Ψβ(ψ

−1
α1 (x)
︸ ︷︷ ︸

=:b

, ψα2(b)
−1w)

= (ψβ1(ψ
−1
α1 (x)), ψβ2(b)ψα2(b)

−1w)

=: (ψβα1(x), ψβα2(x) · w).

Hence by 2.6.6 (i) and 2.6.7,

(Ψβ)
r
s ◦ ((Ψα)rs)−1(x, t′) = (Ψβ)

r
s(ψ

−1
α1 (x), (ψα2(b)

−1)rs(t
′))

= (ψβ1(ψ
−1
α1 (x)), (ψβ2(b)ψα2(b)

−1)rs(t
′))

= (ψβα1(x), (ψβα2(x))
r
s(t

′)) = (Ψβ ◦Ψ−1
α )rs(x, t

′),

which, by 2.6.8, is a local vector bundle isomorphism. Thus T rs (E) is a vector
bundle. As in the proof of 2.5.3 (for TM) it follows that T rs (E) is Hausdorff and
second countable. 2

For us the most important special case of this construction is E = TM :

2.6.13 Definition. Let M be a manifold. Then T rs (M) := T rs (TM) is called the
bundle of r-times contra- and s-times covariant tensors on M (resp. of tensors of
type

(
r
s

)
). T ∗M := T 0

1 (M) is called the cotangent bundle of M .

By 2.6.5 we have T 1
0 (M) = TM : in fact, π−1(p) = TpM ∀p and T 1

0 (TpM) = TpM .
For each chart ψ of M , (Tψ)10 = Tψ.
If A = {(ψα, Vα) | α ∈ A} is an atlas of M , then by 2.6.12,

Ar
s = {((Tψα)rs, (T rsM)|Vα) | α ∈ A}

is a vector bundle atlas of T rsM .

2.6.14 Definition. Smooth sections of T rsM (i.e., smooth maps t : M → T rsM
with πrs ◦ t = idM ) are called

(
r
s

)
-tensors (resp.

(
r
s

)
-tensor fields) on M . The space

Γ(M,T rsM) of
(
r
s

)
-tensor fields is denoted by T r

s (M). In particular, T 1
0 (M) =

X(M). We also write Ω1(M) instead of T 0
1 (M). The elements of Ω1(M) are called

differential forms of order 1 (1-forms, covector fields).

If t ∈ T r
s (M) and f ∈ C∞(M), then ft : p 7→ f(p)t(p) ∈ (TpM)rs is a tensor field on

M . Then T r
s (M) with the pointwise operations +, f · is a C∞(M)-module.

As in the case of X(M) = T 1
0 (M) we also want to derive local representations of

general tensor fields in charts. We first consider the special case Ω1(M) = T 0
1 (M) =

Γ(M,T 0
1M). As a set,

T 0
1M =

⊔

p∈M

(TpM)∗ =
⋃

p∈M

{p} × (TpM)∗.

The vector bundle charts of T 0
1M = T ∗M are of the form (Tψ)01 : T 0

1M
∣
∣
V
→ ψ(V )×

(Rn)01 = ψ(V ) × (Rn)∗ for any chart (ψ, V ) of M . As in the case of TM = T 1
0M

we want to use the vector bundle charts to define a basis of (TpM)∗. Recall that
for TpM in this way we derived the basis { ∂

∂xi

∣
∣
p
| 1 ≤ i ≤ n}, where ∂

∂xi

∣
∣
p
=

(Tpψ)
−1(ei), i.e.,

∂
∂xi

= p 7→ (Tψ)−1(ψ(p), ei).
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In the case of T 0
1M let {αj | 1 ≤ j ≤ n} be the dual basis of {ei | 1 ≤ i ≤ n} in

(Rn)∗. Then for any p ∈ V the family

dxi |p:= [(Tψ)01]
−1(ψ(p), αi) (1 ≤ i ≤ n)

is a basis of (TpM)∗. We have

dxi
∣
∣
p

= [(Tψ)01]
−1(ψ(p), αi) =

= (p, [(Tpψ)
0
1]

−1(αi)))
2.6.5
= (p, (((Tpψ)

−1)∗)−1(αi))

= (p, (Tpψ)
∗(αi)). (2.6.1)

Since dxj
∣
∣
p
∈ (TpM)∗ and ∂

∂xi

∣
∣
p
∈ TpM , we can apply dxj

∣
∣
p
to ∂

∂xi

∣
∣
p
:

dxj
∣
∣
p
(
∂

∂xi

∣
∣
∣
∣
p

) = (Tpψ)
∗(αj)((Tpψ)

−1(ei)) =

= αj(Tpψ((Tpψ)
−1(ei))) =

= αj(ei) = δij

It follows that {dxj
∣
∣
p
| 1 ≤ j ≤ n} is precisely the dual basis of { ∂

∂xi

∣
∣
p
| 1 ≤ i ≤ n}

in (TpM)∗.

Another way of looking at dxi results from the following definition:

2.6.15 Definition. Let f ∈ C∞(M). Then df : M → T ∗M, p 7→ Tpf is called the
exterior derivative of f .

2.6.16 Remark. (i) df ∈ T 0
1 (M). In fact, for any p ∈ M , Tpf ∈ L(TpM,R) =

(TpM)∗. Moreover, df is smooth since for any chart ψ around p we have (setting
ψ(p) = x):

(Tψ)01 ◦ df ◦ ψ−1(x) = (x, ((Tpψ)
−1)∗ ◦ Tpf) = (x, Tpf ◦ (Tpψ)−1)

= (x, Tx(f ◦ ψ−1)) = (x,D(f ◦ ψ−1)(x))

T 0
1M

(Tψ)01−−−−→ ψ(V )× (Rn)∗

df

x



x

id×D(f◦ψ−1)

M ⊇ V
ψ−−−−→ ψ(V )

(ii) If f ∈ C∞(M) and X ∈ X(M), then for all p ∈M , Xp ∈ TpM and df |p ∈ TpM
∗,

so df(X) := p 7→ df |p (Xp) :M → R is well-defined. We have:

df |p (Xp) = Tpf(Xp) = X(f)|p .

Thus df(X) = X(f). In particular, df(X) ∈ C∞(M).

(iii) Let (ψ, V ) be a chart, ψ = (x1, . . . , xn). Then d(xi) in the sense of 2.6.15 is
precisely the above dxi. Indeed, by (ii) we have

d(xj)(
∂

∂xi
) =

∂

∂xi
(xj) = δij ,

i.e., {d(xj) |p| 1 ≤ j ≤ n} is precisely the dual basis of { ∂
∂xi

∣
∣
p
| 1 ≤ i ≤ n} for all

p ∈ V .
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If (ψ, V ) is a chart of M , ψ = (x1, . . . , xn), then for all p ∈ M the tuple { ∂
∂xi

∣
∣
p
|

1 ≤ i ≤ n} is a basis of TpM and {dxj
∣
∣
p
| 1 ≤ j ≤ n} is the corresponding dual

basis of TpM
∗. Thus, by 2.6.3, for any p ∈M the tuple:

{ ∂

∂xi1

∣
∣
∣
∣
p

⊗ · · · ⊗ ∂

∂xir

∣
∣
∣
∣
p

⊗ dxj1
∣
∣
p
⊗ · · · ⊗ dxjs

∣
∣
p
| 1 ≤ ik, jk ≤ n}

is a basis of (TpM)rs. Hence if t is a section of T rsM then there are uniquely
determined functions ti1...irj1...js

on V such that

t|V = ti1...irj1...js

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs (2.6.2)

(cf. the special case of vector fields in 2.5.8: X|V = Xi ∂
∂xi

.) As for vector fields
we also have a characterization of smoothness for tensor fields in terms of local
coordinates:

2.6.17 Proposition. Let t be a section of the bundle T rs (M). TFAE:

(i) t is smooth, i.e., t ∈ T r
s (M).

(ii) In every chart representation (2.6.2) all coefficient functions ti1...irj1...js
are smooth.

Proof. Let (ψ, V ) be a chart of M . Then (Tψ)rs is a vector bundle chart of T rsM .
By definition, t is smooth if and only if the push-forward ψ∗t := (Tψ)rs ◦ t ◦ ψ−1 :
ψ(V ) → ψ(V )× (Rn)rs is smooth for every chart ψ.

T rsM
(Tψ)rs−−−−→ ψ(V )× (Rn)rs

t

x



x

ψ∗t

M ⊇ V
ψ−−−−→ ψ(V )

For x ∈ ψ(V ) we have (setting p := ψ−1(x)):

(Tψ)rs ◦ t ◦ ψ−1(x)
(2.6.2)
= (Tψ)rs(t

i1...ir
j1...js

(p)
∂

∂xi1

∣
∣
∣
∣
p

⊗ · · · ⊗ dxjs
∣
∣
p
)

= (x, (Tpψ)
r
s(t

i1...ir
j1...js

(p)
∂

∂xi1

∣
∣
∣
∣
p

⊗ · · · ⊗ dxjs
∣
∣
p
))

2.6.6(iv)
= (x, ti1...irj1...js

(p) (Tpψ)
1
0

︸ ︷︷ ︸

=Tpψ

(
∂

∂xi1

∣
∣
∣
∣
p

)⊗ · · · ⊗ (Tpψ)
0
1

︸ ︷︷ ︸

((Tpψ)∗)−1

(dxjs
∣
∣
p
))

= (x, ti1...irj1...js
(ψ−1(x)) ei1 ⊗ · · · ⊗ eir ⊗ αj1 ⊗ · · · ⊗ αjs

︸ ︷︷ ︸

∈(Rn)rs

)

This map is smooth if and only if all ti1...irj1...js
◦ ψ−1 are smooth, i.e., if and only if all

ti1...irj1...js
are smooth on V . 2

If t ∈ T r
s (M) and α1, . . . , αr ∈ Ω1(M), X1, . . . , Xs ∈ X(M), then

p 7→ t(p)(α1(p), . . . , αr(p), X1(p), . . . , Xs(p))

is a well-defined function M → R which we denote by t(α1, . . . , αr, X1, . . . , Xs).
For f ∈ C∞(M) we have

t(fα1, α2, . . . ) = t(α1, fα2, . . . ) = · · · = t(α1, . . . , fXs) = ft(α1, . . . , Xs).

Thus (α1, . . . , αr, X1, . . . , Xs) 7→ t(α1, . . . , Xs) is C∞(M)-multilinear.
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2.6.18 Proposition. Let t be a section of the bundle T rs (M). TFAE:

(i) t is smooth (i.e., t ∈ T r
s (M)).

(ii) ∀α1, . . . , αr ∈ Ω1(M), ∀X1, . . . , Xs ∈ X(M), the map t(α1, . . . , αr, X1, . . . , Xs)
is in C∞(M).

Proof. Let (ψ, V ) be a chart in M , ψ = (x1, . . . , xn).
(i)⇒(ii): Let Xk = Xak

k
∂

∂xak
(1 ≤ k ≤ s), αm = αmbmdx

bm (1 ≤ m ≤ r) be the local

representations with respect to ψ. By 2.6.17, all coefficient functions X
aj
j , α

i
bi
,

tb1...bra1...as
are smooth on V . Hence so is

t(α1, . . . , Xs) = α1
b1
. . . αrbrX

a1
1 . . . Xas

s t(dxb1 , . . . , dxbr ,
∂

∂xa1
, . . . ,

∂

∂xas
)

(2.6.2)
= α1

b1
. . . αrbrX

a1
1 . . . Xas

s tb1...bra1...as
.

(ii)⇒ (i): By 2.6.17 we have to show that ti1...irj1...js
is smooth on V for all i1, . . . , ir,

j1, . . . , js. As in the proof of 2.5.9, (ii)⇒(iii), we extend dxi1 , . . . , ∂
∂xjs

to elements

of Ω1(M) resp. X(M). Then ti1...irj1...js
= t(dxi1 , . . . , ∂

∂xjs
) is smooth by (ii). 2

The above observations lead to the following algebraic characterization of smooth
tensor fields. Let

Lr+sC∞(M)(Ω
1(M)× · · · × Ω1(M)
︸ ︷︷ ︸

r

×X(M)× · · · × X(M)
︸ ︷︷ ︸

s

, C∞(M))

be the space of C∞(M)-multilinear maps from Ω1(M)×· · ·×Ω1(M)×X(M)×· · ·×
X(M) to C∞(M). Then we have:

2.6.19 Theorem. The map

A : T r
s (M) → Lr+sC∞(M)(Ω

1(M)× · · · × X(M), C∞(M))

t 7→ [(α1, . . . , αr, X1, . . . , Xs) 7→ t(α1, . . . , Xs)]

is a C∞(M)-linear isomorphism.

Proof. By 2.6.18, for all t ∈ T r
s (M), A(t) ∈ Lr+sC∞(M)(Ω

1(M)×· · ·×X(M), C∞(M))

and clearly A is C∞(M)-linear.
A is injective: If A(t) = 0 then for all p ∈M and all α1, . . . , Xs we have t(p)(α

1(p),
. . . , Xs(p)) = 0. All elements of TpM resp. of (TpM)∗ can be written in this way
(i.e., are of the form Xi(p) resp. α

j(p) for certain smooth fields Xi, α
j : this is seen

by extending any given constant (co-)vector to a smooth field using a partition of
unity, cf. the proof of 2.5.9, (ii)⇒(iii)). Hence it follows that t(p) = 0 ∀p, i.e., t = 0.
A is surjective: Let Φ ∈ Lr+sC∞(M)(Ω

1(M)× · · · × X(M), C∞(M)). We have to show

that there exists some t ∈ T r
s (M) with A(t) = Φ. To this end we first demonstrate

that Φ(α1, . . . , Xs)
∣
∣
p
depends only on α1(p), . . . , Xs(p). It suffices to show that

α1(p) = 0 implies Φ(α1, . . . , Xs)
∣
∣
p
= 0 (and analogously for α2, . . . , Xs). This we

do in two steps

1) If V is an open neighborhood of p and α1
∣
∣
V

= 0, then Φ(α1, . . . , Xs)
∣
∣
p
= 0

(i.e., Φ depends only on the local behavior of α1). Choose an open neigh-
borhood U of p such that U ⊆ V . By 2.3.14 there exists a partition of unity
(χ1, χ2) subordinate to {V,M \ U}. Then α1 = χ2 · α1, and therefore

Φ(α1, . . . , Xs)
∣
∣
p
= Φ(χ2α

1, α2, . . . , Xs)
∣
∣
p
= χ2(p)
︸ ︷︷ ︸

=0

Φ(α1, α2, . . . , Xs)
∣
∣
p
= 0
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2) Now let α1(p) = 0, let V be a chart neighborhood of p, and write α1
∣
∣
V

=

α1
jdx

j . Then by 1),

Φ(α1, . . . , Xs)
∣
∣
p

= Φ(α1
jdx

j , α2, . . . , Xs)
∣
∣
p

= α1
j (p) Φ(dx

j , α2, . . . , Xs)
∣
∣
p
= 0

Therefore, for each p ∈M we may define some t(p) ∈ (TpM)rs by

t(p)(α1(p), . . . , Xs(p)) := Φ(α1, . . . , Xs)
∣
∣
p
.

(Recall that all elements of TpM
∗ × · · · × TpM can be written in this way, as

was demonstrated above). Thus t is a section of T rsM . By construction, for
all αi ∈ Ω1(M) and all Xj ∈ X(M) we have t(α1, . . . , Xs) = Φ(α1, . . . , Xs) ∈
C∞(M), so t ∈ T r

s (M) by 2.6.18. Obviously, A(t) = Φ, so A is onto.

2

All standard operations of multilinear algebra can be transferred fiber-wise to tensor
fields. We have already encountered the following:

• f ∈ C∞(M), t ∈ T r
s (M) ⇒ f · t := p 7→ f(p) · t(p) ∈ T r

s (M)

• t ∈ T r
s (M), α1, . . . , αr ∈ Ω1(M), X1, . . . , Xs ∈ X(M) ⇒ t(α1, . . . , Xs) ∈

C∞(M)

Moreover, for t1 ∈ T r1
s1

(M), t2 ∈ T r2
s2

(M) the tensor product t1 ⊗ t2 ∈ T r1+r2
s1+s2 (M)

is defined as
t1 ⊗ t2 : p 7→ t1(p)⊗ t2(p)

t1 ⊗ t2 is smooth by 2.6.17 or also by 2.6.18.

2.7 Differential Forms

In this section we wish to study alternating multilinear forms, first in the vector
space setting and later on vector bundles.

2.7.1 Definition. Let E be a finite dimensional vector space and ΛkE∗ := Lkalt(E,R)
the space of all multilinear alternating maps from Ek = E × · · · × E to R.

2.7.2 Remark.

(i) t ∈ Lk(E,R) is called alternating if

t(f1, . . . , fi, . . . , fj , . . . , fk) = −t(f1 . . . , fj , . . . , fi, . . . , fk) (1 ≤ i < j ≤ k).

Let Sk := {ϕ : {1, . . . , k} → {1, . . . , k} | ϕ bijective } be the permutation
group of order k. Then for σ ∈ Sk and t ∈ ΛkE∗ we have

t(fσ(1), . . . , fσ(k)) = sgn(σ)t(f1, . . . , fk)

For σ, τ ∈ Sk, sgn(σ ◦ τ) = sgn(σ) · sgn(τ). Since Sk is a group, for all τ0 ∈ Sk
the map τ 7→ τ ◦ τ0 : Sk → Sk is a bijection.

(ii) We set Λ0E∗ = R. Moreover, Λ1E∗ = L1
alt(E,R) = L(E,R) = E∗.

(iii) ΛkE∗ is a subspace of T 0
k (E), the space of all multilinear maps E×· · ·×E → R.
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2.7.3 Definition. The map Alt : T 0
k (E) → T 0

k (E),

Alt(t)(f1, . . . , fk) :=
1

k!

∑

σ∈Sk

sgn(σ)t(fσ(1), . . . , fσ(k))

is called alternator.

2.7.4 Lemma. Alt is a linear projection of T 0
k (E) onto ΛkE∗, i.e.,

(i) Alt is linear, Alt(T 0
k (E)) ⊆ ΛkE∗.

(ii) Alt|ΛkE∗ = idΛkE∗ .

(iii) Alt ◦Alt = Alt.

(iv) Alt(T 0
k (E)) = ΛkE∗.

Proof. (i) Clearly, Alt is linear. Let t ∈ T 0
k (E), τ ∈ Sk. Then

Alt(t)(fτ(1), . . . , fτ(k)) =
1

k!

∑

σ∈Sk

sgn(σ)t(fτσ(1), . . . , fτσ(k))

=
1

k!

∑

σ∈Sk

sgn(τ)sgn(τ ◦ σ)t(fτσ(1), . . . , fτσ(k))

= sgn(τ)Alt(t)(f1, . . . , fk).

(ii) If t ∈ ΛkE∗, then

Alt(t)(f1, . . . , fk) =
1

k!

∑

σ∈Sk

sgn(σ)t(fσ(1), . . . , fσ(k)) = t(f1, . . . , fk).

(iii) and (iv) follow from (i) and (ii). 2

2.7.5 Definition. Let α ∈ T 0
k (E), β ∈ T 0

l (E). The exterior product (or wedge
product) of α and β is defined as

α ∧ β :=
(k + l)!

k!l!
Alt(α⊗ β)

For α ∈ T 0
0E = Λ0E∗ = R we set α ∧ β = β ∧ α = α · β.

2.7.6 Example. Let α, β ∈ Λ1E∗ = T 0
1 (E) = E∗. Then

(α ∧ β)(f1, f2) =
2!

1!1!

1

2!

∑

σ∈S2

sgn(σ)(α⊗ β)(fσ(1), fσ(2))

= (α⊗ β)(f1, f2)− (α⊗ β)(f2, f1) = (α⊗ β − β ⊗ α)(f1, f2).

2.7.7 Proposition. Let α ∈ T 0
k (E), β ∈ T 0

l (E), and γ ∈ T 0
m(E). Then:

(i) α ∧ β = Alt(α) ∧ β = α ∧Alt(β).

(ii) ∧ is bilinear.

(iii) α ∧ β = (−1)k·lβ ∧ α.

(iv) ∧ is associative: α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.
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Proof. (i) For τ ∈ Sk and α ∈ T 0
k (E) let (τα)(f1, . . . , fk) := α(fτ(1), . . . , fτ(k)).

Then

Alt(τα)(f1, . . . , fk) =
1

k!

∑

σ∈Sk

sgn(σ)α(fστ(1), . . . , fστ(k))

= sgn(τ)
1

k!

∑

σ∈Sk

sgn(στ)α(fστ(1), . . . , fστ(k))

= sgn(τ)Alt(α)(f1, . . . , fk).

Therefore,
Alt(τα) = sgn(τ) ·Alt(α). (2.7.1)

Using this, we obtain

Alt(Alt(α)⊗ β)(f1, . . . , fk+l) = Alt(Alt(α)(f1, . . . , fk)β(fk+1, . . . , fk+l))

= Alt(
1

k!

∑

τ∈Sk

sgn(τ)α(fτ(1), . . . , fτ(k))β(fk+1, . . . , fk+l))

= Alt(
1

k!

∑

τ∈Sk

sgn(τ)((τα)⊗ β)(f1, . . . , fk+l))

=
1

k!

∑

τ∈Sk

sgn(τ)Alt((τα)⊗ β)(f1, . . . , fk+l) = (∗)

We define τ ′ ∈ Sk+l by

τ ′(1, . . . , k + l) := (τ(1), . . . , τ(k), k + 1, . . . , k + l).

Then sgn(τ ′) = sgn(τ) and (τα)⊗ β = τ ′(α⊗ β). Therefore,

(∗) =
1

k!

∑

τ∈Sk

sgn(τ ′)Alt(τ ′(α⊗ β))(f1, . . . , fk+l)

(2.7.1)
= Alt(α⊗ β)(f1, . . . , fk+l),

so Alt(Alt(α)⊗ β) = Alt(α ⊗ β), and Alt(α) ∧ β = α ∧ β. The second equation in
(i) follows in the same way.
(ii) is clear since ⊗ is bilinear and Alt is linear.
(iii) Let σ0 ∈ Sk+l be given by σ0(1, . . . , k + l) := (k + 1, . . . , k + l, 1, . . . , k). Then
sgn(σ0) = (−1)k·l and α ⊗ β(f1, . . . , fk+l) = β ⊗ α(fσ0(1), . . . , fσ0(k+l)). By (2.7.1)
this entails

α ∧ β =
(k + l)!

k!l!
Alt(α⊗ β) =

(k + l)!

k!l!
Alt(σ0(β ⊗ α)) = (−1)klβ ∧ α.

(iv)

α ∧ (β ∧ γ) =
(l +m)!

l!m!
α ∧Alt(β ⊗ γ)

(i)
=

(l +m)!

l!m!
α ∧ (β ⊗ γ)

=
(l +m)!

l!m!

(k + l +m)!

k!(l +m)!
Alt(α⊗ (β ⊗ γ)

︸ ︷︷ ︸

(α⊗β)⊗γ

)

=
(k + l +m)!

k!l!m!

(k + l)!m!

(k + l +m)!
(α⊗ β) ∧ γ

(i)
=

(k + l)!

k!l!
Alt(α⊗ β)

︸ ︷︷ ︸

=α∧β

∧γ = (α ∧ β) ∧ γ.
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2

2.7.8 Definition. ΛE∗ :=
⊕∞

k=0 Λ
kE∗ with the operations +, λ· and ∧ is called

the exterior algebra (or Grassmann algebra) of E.

As we shall demonstrate in a moment, ΛkE∗ = {0} for k > n, so in fact

ΛE∗ =

n⊕

k=0

ΛkE∗.

To prove this we need the following auxilliary result:

2.7.9 Lemma. Let α1, . . . , αk ∈ Λ1E∗ = E∗ and f1, . . . , fk ∈ E. Then

(α1 ∧ · · · ∧ αk)(f1, . . . , fk) =
∑

σ∈Sk

sgn(σ)α1(fσ(1)) · · · · · αk(fσ(k))

Proof. We have to show that

α1 ∧ · · · ∧ αk = k! ·Alt(α1 ⊗ · · · ⊗ αk)

This we do by induction, the case k = 1 being obvious. For k− 1 → k we calculate:

α1 ∧ · · · ∧ αk 2.7.7(iv)
= α1 ∧ (α2 ∧ · · · ∧ αk) =

ind.hyp.
= (k − 1)!α1 ∧Alt(α2 ⊗ · · · ⊗ αk) =

2.7.7(i)
= (k − 1)!α1 ∧ (α2 ⊗ · · · ⊗ αk) =

= (k − 1)!
(k − 1 + 1)!

(k − 1)!1!
Alt(α1 ⊗ · · · ⊗ αk)

2

2.7.10 Proposition. Let n = dim(E). Then dim(ΛkE∗) =
(
n
k

)
for 0 ≤ k ≤ n.

For k > n, ΛkE∗ = {0}. Therefore, dim(ΛE∗) =
∑n
k=0

(
n
k

)
= 2n. If {e1, . . . , en}

is a basis of E and {α1, . . . , αn} is the corresponding dual basis, then B := {αi1 ∧
· · · ∧ αik | 1 ≤ i1 < · · · < ik ≤ n} is a basis of ΛkE∗.

Proof. B spans ΛkE∗: Let t ∈ ΛkE∗ ⊆ T 0
k (E). By 2.6.3, t is of the form

t = t(ei1 , . . . , eik)α
i1 ⊗ · · · ⊗ αik .

By 2.7.4 (ii) and 2.7.9,

t = Alt(t) = t(ei1 , . . . , eik)Alt(α
i1 ⊗ · · · ⊗ αik) =

1

k!
t(ei1 , . . . , eik)α

i1 ∧ · · · ∧ αik .

Since t is antisymmetric, all terms in this sum where two indices coincide vanish.
In particular, t = 0 for k > n (so ΛkE∗ = {0} ∀k > n). If all ij are distinct, then
for any σ ∈ Sk we have

t(ei1 , . . . , eik)α
i1 ∧ · · · ∧ αik = sgn(σ)2t(eiσ(1) , . . . , eiσ(k))α

iσ(1) ∧ · · · ∧ αiσ(k)

There are k! such terms, so:

t =
∑

1≤i1<···<ik≤n

t(ei1 , . . . , eik)α
i1 ∧ · · · ∧ αik
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B is linearly independent: let
∑

1≤i1<···<ik≤n

ti1...ikα
i1 ∧ · · · ∧ αik = 0.

We have to show that all ti1...ik vanish. Let 1 ≤ i′1 < · · · < i′k ≤ n be some fixed k-
tuple and choose j′k+1 < · · · < j′n such that {i′1, . . . , i′k}∪{j′k+1, . . . , j

′
n} = {1, . . . , n}.

Then by 2.7.7,

0 =
∑

1≤i1<···<ik≤n

ti1...ikα
i1 ∧ · · · ∧ αik ∧ αj′k+1 ∧ · · · ∧ αj′n =

= ±ti′1...i′kα
1 ∧ · · · ∧ αn.

Since α1 ∧ · · · ∧ αn 6= 0 (by 2.7.9, α1 ∧ · · · ∧ αn(e1, . . . , en) = 1), it follows that
ti′1...i′k = 0. 2

2.7.11 Definition. Let dim(E) = n, ω ∈ ΛnE∗, ω 6= 0. Then ω is called a volume
element on E. Two volume elements ω1, ω2 are called equivalent if ω1 = c · ω2 for
some c > 0 (recall that dim(ΛnE∗) = 1). An equivalence class of volume elements
on E is called an orientation of E.

2.7.12 Proposition. Let dim(E) = n, and ϕ ∈ L(E,E). Then there is a unique
number detϕ ∈ R, the determinant of ϕ, such that for the pullback-map

ϕ∗ : ΛnE∗ → ΛnE∗

(ϕ∗ω)(f1, . . . , fn) := ω(ϕ(f1), . . . , ϕ(fn))

we have ϕ∗ω = detϕ · ω, for all ω ∈ ΛnE∗.

Proof. Obviously, the map ϕ∗ is linear: ΛnE∗ → ΛnE∗. By 2.7.10, dim(ΛnE∗) =
1. Thus with respect to any basis {ω0} of ΛnE∗, ϕ∗ is given by a 1 × 1-matrix
c ∈ R. Hence for any ω = a · ω0 we have ϕ∗ω = c · a · ω0, and we obtain detϕ := c.

2

2.7.13 Remark. The determinant in the sense of 2.7.12 is precisely the homony-
mous number from linear algebra: let B := {e1, . . . , en} be a basis of E, {α1, . . . , αn}
the corresponding dual basis, and set ω := α1 ∧ · · · ∧ αn. Then

detϕ = detϕω(e1, . . . , en) = ϕ∗ω(e1, . . . , en) = ω(ϕ(e1), . . . , ϕ(en))
2.7.9
=

∑

σ∈Sn

sgn(σ)α1(ϕ(eσ(1))) · · · · · αn(ϕ(eσ(n)))

=
∑

σ∈Sn

sgn(σ)ϕ1σ(1) . . . ϕnσ(n)

where (ϕij)i,j is the matrix representation of ϕ with respect to B. 2

2.7.14 Definition. Let ϕ ∈ L(E,F ), α ∈ T 0
k (F ). The pullback of α under ϕ is

defined as ϕ∗ : T 0
k (F ) → T 0

k (E),

ϕ∗(α)(e1, . . . , ek) := α(ϕ(e1), . . . , ϕ(ek)) (e1, . . . , ek ∈ E).

If ϕ is bijective, then the push-forward ϕ∗ : T 0
k (E) → T 0

k (F ) is defined as ϕ∗ :=
(ϕ−1)∗. Thus, for α ∈ T 0

k (E),

ϕ∗(α)(f1, . . . , fk) = α(ϕ−1(f1), . . . , ϕ
−1(fk)) (f1, . . . , fk ∈ F )

Then ϕ∗ = ϕ0
k in the sense of 2.6.4.
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2.7.15 Proposition. Let ϕ ∈ L(E,F ), ψ ∈ L(F,G). Then:

(i) ϕ∗ : T 0
k (F ) → T 0

k (E) is linear and ϕ∗(ΛkF ∗) ⊆ ΛkE∗.

(ii) (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

(iii) If ϕ = idE, then ϕ
∗ = idT 0

k
(E).

(iv) If ϕ is bijective, then so is ϕ∗ and (ϕ∗)−1 = (ϕ−1)∗.

(v) If ϕ is bijective, then so is ϕ∗ and (ϕ∗)
−1 = (ϕ−1)∗. If ψ is bijective, then

(ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.

(vi) If α ∈ ΛkF ∗, β ∈ ΛlF ∗, then ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β.

Proof. (i) and (iii) are clear.
(ii) (ψ ◦ ϕ)∗α(e1, . . . , ek) = α(ψ(ϕ(e1)), . . . , ψ(ϕ(ek))) = (ψ∗α)(ϕ(e1), . . . , ϕ(ek)) =
ϕ∗(ψ∗α)(e1, . . . , ek).
(iv) follows from (ii) and (iii).

(v) (ϕ∗)
−1 = ((ϕ−1)∗)−1 (iv)

= ((ϕ∗)−1)−1 = ϕ∗.
(vi) ϕ∗(α ∧ β)(e1, . . . , ek+l) = (α ∧ β)(ϕ(e1), . . . , ϕ(ek+l)) =2.7.3,2.7.5. . . = ((ϕ∗α) ∧
(ϕ∗β)) (e1, . . . , ek+l). 2

We are now going to transfer the above constructions to the vector bundle setting,
starting with the case of local vector bundles.

2.7.16 Definition. Let ϕ : U ×F → U ′×F ′ be a local vector bundle isomorphism,
ϕ(u, f) = (ϕ1(u), ϕ2(u) · f). Then let ϕ∗ : U × ΛkF ∗ → U ′ × ΛkF ′∗,

(u, ω) 7→ (ϕ1(u), ϕ2(u)∗(ω)).

2.7.17 Remark. Since ϕ∗ = ϕ0
k, by 2.6.8 (and 2.7.15) ϕ∗ is a local vector bundle

isomorphism.

2.7.18 Definition. Let (E,B, π) be a vector bundle, Eb = π−1(b) the fiber over
b ∈ B. Then set

ΛkE∗ :=
⊔

b∈B

ΛkE∗
b =

⋃

b∈B

{b} × ΛkE∗
b

and π0
k : ΛkE∗ → B, π0

k(e) = b for e ∈ ΛkE∗
b . For A ⊆ B set ΛkE∗

∣
∣
A

=
⊔

b∈A ΛkE∗
b .

2.7.19 Theorem. Let (E,B, π) be a vector bundle with atlas A = {(Ψα,Wα) | α ∈
A}. Then (ΛkE∗, B, π0

k) is a vector bundle with atlas Ã := {((Ψα)∗, ΛkE∗
∣
∣
Wα∩B

) |
α ∈ A}, where (Ψα)∗ = (Ψα)

0
k (cf. 2.6.10), i.e., (Ψα)∗|ΛkE∗

b
= (Ψα|Eb)∗.

Proof. Clearly the ΛkE∗
∣
∣
Wα∩B

cover ΛkE∗. By 2.7.15 (v), the (Ψα)∗|ΛkE∗
b
are

linear isomorphisms with image {ψα1(b)}×Λk(Rn)∗. The changes of vector bundle
chart are local vector bundle isomorphisms according to 2.6.12 and 2.7.15. In fact,
(Ψα)∗ = (Ψα)

0
k. That ΛkE∗ is Hausdorff and second countable follows again as in

2.5.3. 2

Again our main interest is in the case E = TM :

2.7.20 Definition. Let M be a manifold. Then ΛkT ∗M := Λk(TM)∗ is called
the vector bundle of exterior k-forms on TM . The space of smooth sections of
ΛkT ∗M is denoted by Ωk(M). Its elements are called differential forms of order k
or (exterior) k-forms on M .
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Note that Ω0(M) = C∞(M) and Ω1(M) is the space of 1-forms (cf. 2.6.14).

2.7.21 Remark.

(i) Due to 2.7.2 (iii), every fiber of ΛkT ∗M , i.e., every ΛkT ∗
pM is precisely the

subspace of (TpM)0k consisting of the alternating
(
0
k

)
-tensors. Thus, sections

of ΛkT ∗M are certain
(
0
k

)
-tensor fields, namely those which in every p ∈ M

are alternating multilinear maps.

(ii) Let (ψ, V ) be a chart of M , ψ = (x1, . . . , xn). By 2.7.10, for every p ∈ V the
tuples {dxi1

∣
∣
p
∧ · · · ∧ dxik

∣
∣
p
| 1 ≤ i1 < · · · < ik ≤ n} form a basis of ΛkTpM

∗.

Hence every section ω of ΛkT ∗M can locally be written as

ω|V =
∑

1≤i1<···<ik≤n

ωi1...ikdx
i1 ∧ · · · ∧ dxik (2.7.2)

with ωi1...ik = ω( ∂
∂xi1

, . . . , ∂
∂xik

). Since the vector bundle charts of ΛkT ∗M

are of the form (Tψ)0k, ω is smooth if and only if for every chart (ψ, V ) the
map ψ∗ω = (Tψ)0k ◦ ω ◦ ψ−1 = (Tψ)∗ ◦ ω ◦ ψ−1 is smooth. As in the proof of
2.6.17 (only using 2.7.15 (vi) instead of 2.6.6 (iv)) it follows that

ψ∗ω =
∑

1≤i1<···<ik≤n

ωi1...ik ◦ ψ−1αi1 ∧ · · · ∧ αik .

Hence ω is smooth if and only if for every chart all local components ωi1...ik
are smooth.

(iii) By (i) and 2.6.18, a section ω of ΛkT ∗M is smooth if and only if for all vector
fields X1, . . . , Xk ∈ X(M), ω(X1, . . . , Xk) ∈ C∞(M).

(iv) By (i) and 2.6.19, Ωk(M) is precisely the space of all C∞(M)-multilinear and
alternating maps (X(M))k → C∞(M).

(v) Apart from the operations +, f · and ⊗ studied so far, for differential forms
also the exterior product is available: let α ∈ Ωk(M), β ∈ Ωl(M). Then set
α ∧ β := p 7→ α(p) ∧ β(p) ∈ Λk+lTpM

∗. It follows that α ∧ β ∈ Ωk+l(M)
(smoothness follows from (ii) or (iii)).

Ω(M) :=
⊕n

k=0 Ω
k(M) with these operations is called the algebra of differen-

tial forms on M .

In 2.6.15, 2.6.16 we introduced the exterior derivative df of a smooth function f .
We now wish to extend this operation from Ω0(M) to general Ωk(M).

2.7.22 Theorem. Let M be a manifold. For every open U ⊆ M there exists a
uniquely determined family of maps dk(U) : Ωk(U) → Ωk+1(U), denoted simply by
d, such that:

(i) d is R-linear and for α ∈ Ωk(U), β ∈ Ωl(U) we have:

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ.

(ii) For f ∈ Ω0(U) = C∞(U), df is the exterior derivative from 2.6.15.

(iii) d ◦ d = 0.
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(iv) If U , V are open, U ⊆ V ⊆M and α ∈ Ωk(V ), then d(α|U ) = (dα)|U , i.e.,

Ωk(V )
|U−−−−→ Ωk(U)

d



y



yd

Ωk+1(V )
|U−−−−→ Ωk+1(U)

d is called exterior derivative.

Proof. Uniqueness: By (iv) it suffices to show that d is uniquely determined on
any chart (ψ,U). Thus let ω ∈ Ωk(U). By 2.7.21 (ii),

ω =
∑

1≤i1<···<ik≤n

ωi1...ikdx
i1 ∧ · · · ∧ dxik

Hence due to (i), (ii), (iii) we necessarily have:

dω =
∑

1≤i1<···<ik≤n

d(ωi1...ikdx
i1 ∧ · · · ∧ dxik)

=
∑

1≤i1<···<ik≤n

dωi1...ik ∧ dxi1 ∧ · · · ∧ dxik (∗)

+
∑

1≤i1<···<ik≤n

ωi1...ik d(dx
i1)

︸ ︷︷ ︸

=0

∧dxi2 ∧ · · · ∧ dxik

+0 + · · ·+ 0,

and uniqueness follows.
Existence: For any chart domain we define d by (∗) above. We first show that this
d has the claimed properties (i)–(iv):
(i): Linearity being obvious, it suffices to calculate d(α∧β) for α = f0df1∧· · ·∧dfk,
β = g0dg1 ∧ · · · ∧ dgl. We first note that for any X ∈ X(U) we have d(f0g0)(X) =
X(f0g0) = X(f0) · g0 +X(g0) · f0 = (g0df0 + f0dg0)(X), so d(f0g0) = g0df0 + f0dg0.
Thus

d(α ∧ β) = d(f0g0df1 ∧ · · · ∧ dfk ∧ dg1 ∧ · · · ∧ dgl)
(∗)
= d(f0g0) ∧ df1 ∧ · · · ∧ dfk ∧ dg1 ∧ · · · ∧ dgl
= g0df0 ∧ df1 ∧ · · · ∧ dgl + f0dg0 ∧ df1 ∧ · · · ∧ · · · ∧ dgl
= dα ∧ β + (−1)kα ∧ dβ

(ii) and(iv) are obvious.
(iii): It suffices to show that d(df) = 0 for all f ∈ C∞(U). By (2.6.2), df =
∑n
i=1

∂f
∂xi

dxi. Hence,

d(df) =

n∑

i=1

d(
∂f

∂xi
) ∧ dxi =

∑

i,j

∂

∂xj
(
∂f

∂xi
)

︸ ︷︷ ︸

symm. in i,j

dxj ∧ dxi
︸ ︷︷ ︸

antisymm

= 0.

It remains to show that the above gives a well-defined global object on M . To this
end, let ψ̃ = (y1, . . . , yn) be another chart, w.l.o.g. with the same domain U . Define
d̃ by (∗) (with x↔ y). By the proof of uniqueness, it follows that

d̃ω =
∑

1≤i1<···<ik≤n

d̃ωi1...ik
︸ ︷︷ ︸

(ii)
= dωi1...ik

∧ d̃xi1
︸︷︷︸

=dxi1

∧ · · · ∧ d̃xik
︸︷︷︸

=dxik

= dω.

Thus d looks the same in any chart, hence is globally well-defined. 2
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2.7.23 Example.

(i) Let ω = P (x, y)dx+Q(x, y)dy be a 1-form on R2. Then

dω = dP ∧ dx+ dQ ∧ dy =

= (
∂P

∂x
dx+

∂P

∂y
dy) ∧ dx+ (

∂Q

∂x
dx+

∂Q

∂y
dy) ∧ dy =

= (
∂Q

∂x
− ∂P

∂y
)dx ∧ dy.

(ii) Let ω = P (x, y, z)dy ∧ dz +Q(x, y, z)dz ∧ dx+R(x, y, z)dx ∧ dy. Then

dω = (
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
)dx ∧ dy ∧ dz.

2.7.24 Definition. Let M , N be manifolds, and F : M → N smooth. For ω ∈
T 0
k (N), the pullback of ω under F is defined as F ∗ω(p) := (TpF )

∗(ω(F (p))) (cf.
2.7.14). For X1, . . . , Xk ∈ TpM we therefore have

F ∗ω(p)(X1, . . . Xk) = ω(F (p))(TpF (X1), . . . , TpF (Xk))

In particular, F ∗f = f ◦ F for f ∈ C∞(N) = Ω0(N).

2.7.25 Lemma. Let F :M → N , G : N → P be smooth. Then

(i) F ∗ : T 0
k (N) → T 0

k (M), F ∗ : Ωk(N) → Ωk(M).

(ii) (G ◦ F )∗ = F ∗ ◦G∗.

(iii) id∗M = idΩk(M) (resp. = idT 0
k
(M)).

(iv) If F is a diffeomorphism, then F ∗ is a linear isomorphism and (F ∗)−1 =
(F−1)∗.

Proof. (i) By 2.7.15 (i), (TpF )
∗(ω(F (p))) ∈ T 0

k (TpM) resp. ∈ Λk(TpM)∗. Thus we
only have to show that F ∗ω is smooth. To this end, let (ϕ,U), (ψ, V ) be charts of
M resp. N with F (U) ⊆ V . Then both Fψϕ = ψ◦F ◦ϕ−1 and ψ∗ω = (Tψ)∗◦ω◦ψ−1

are smooth (see 2.6.17, 2.7.21 (ii)).
By 2.7.15 (ii) we get (setting p = ϕ−1(x)):

(DFψϕ(x))
∗ = (TxFψϕ)

∗

= (TF (p)ψ ◦ TpF ◦ (Tpϕ)−1)∗

= ((Tpϕ)
−1)∗

︸ ︷︷ ︸

2.7.15(v)
= (Tpϕ)∗

◦(TpF )∗ ◦ (TF (p)ψ)
∗ (∗)

Hence, by 2.6.17, 2.7.21 (ii), the local representation ϕ∗(F
∗ω)(x) of F ∗ω with re-

spect to ϕ is given by

(Tϕ)∗ ◦ F ∗ω ◦ ϕ−1(x)

= (Tpϕ)∗ ◦ (TpF )∗(ω ◦ F ◦ ϕ−1(x))

= (Tpϕ)∗ ◦ (TpF )∗ ◦ (TF (p)ψ)
∗
(
(TF (p)ψ)∗ ◦ ω ◦ ψ−1 ◦ ψ ◦ F ◦ ϕ−1(x)

)

(∗)
= (DFψϕ(x))

∗

︸ ︷︷ ︸

C∞

((ψ∗ω)
︸ ︷︷ ︸

C∞

◦Fψϕ
︸︷︷︸

C∞

(x))

which is smooth by the chain rule.
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(ii)

(G ◦ F )∗(ω)(p) = (Tp(G ◦ F ))∗(ω(G ◦ F (p))) =
= (TF (p)G ◦ TpF )∗(ω(G ◦ F (p))) =

2.7.15(ii)
= (TpF )

∗ ◦ (TF (p)G)
∗(ω(G(F (p)))) =

= (TpF )
∗(G∗ω(F (p))) = F ∗(G∗ω)(p)

(iii) Obvious.

(iv) Follows from (ii) and (iii). 2

2.7.26 Theorem. Let F :M → N be smooth. Then:

(i) F ∗ : Ω(N) → Ω(M) is an algebra homomorphism, i.e., it is linear and F ∗(α∧
β) = (F ∗α) ∧ (F ∗β).

(ii) For all ω ∈ Ω(N), F ∗(dω) = d(F ∗ω).

Proof. (i) To begin with, let α = f ∈ Ω0(N) = C∞(N). Then

F ∗(f ∧ β)(p) = F ∗(f · β)(p) =
= (TpF )

∗(f(F (p))β(F (p))) =

= f(F (p))
︸ ︷︷ ︸

F∗f(p)

(TpF )
∗(β(F (p)))

︸ ︷︷ ︸

F∗β(p)

= (F ∗f ∧ F ∗β)(p).

In the general case we have

F ∗(α ∧ β)(p) = (TpF )
∗(α(F (p)) ∧ β(F (p))) =

2.7.15(vi)
= (TpF )

∗(α(F (p))) ∧ (TpF )
∗(β(F (p))) =

= ((F ∗α) ∧ (F ∗β))(p).

(ii) By definition of F ∗ and 2.7.22 (iv) it suffices to show that every p ∈ M has
a neighborhood U with d(F ∗ω|U ) = (F ∗dω)|U for all ω ∈ Ω(N). Let (ψ, V ) be a
chart around F (p), and U a neighborhood of p with F (U) ⊆ V . Then for ω ∈ Ωk(V )
we have

ω =
∑

1≤i1<···<ik≤n

ωi1...ikdx
i1 ∧ · · · ∧ dxik

dω =
∑

1≤i1<···<ik≤n

dωi1...ik ∧ dxi1 ∧ · · · ∧ dxik

By (i),

F ∗ω|U =
∑

F ∗ωi1...ikF
∗(dxii) ∧ · · · ∧ F ∗(dxik) (∗)

In general, for f ∈ C∞(N), F ∗(df) = d(F ∗f). In fact, if X ∈ TpM , then

F ∗(df)(p)(X) = df(F (p))(TpF (X)) = TF (p)f(TpF (X))

= Tp(f ◦ F )(X) = d(f ◦ F
︸ ︷︷ ︸

=F∗f

)(p)(X).
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Thus, from (∗) we conclude that

d(F ∗ω|U ) = d(
∑

F ∗ωi1...ikd(F
∗xi1) ∧ · · · ∧ d(F ∗xik))

=
∑

d(F ∗ωi1...ik) ∧ d(F ∗xi1) ∧ · · · ∧ d(F ∗xik)

=
∑

F ∗(dωi1...ik) ∧ F ∗(dxi1) ∧ · · · ∧ F ∗(dxik)

= F ∗(
∑

dωi1...ik ∧ dxi1 ∧ · · · ∧ dxik)
= (F ∗dω)|U .

2

2.7.27 Proposition. Let M be a manifold, p ∈ M , (ϕ, V ), (ψ, V ) charts around
p, ϕ = (x1, . . . , xn), ψ = (y1, . . . , yn). Then:

(i) dxi
∣
∣
p
=

n∑

k=1

Dk(ϕ
i ◦ ψ−1)(ψ(p)) dyk

∣
∣
p
=

n∑

k=1

∂xi

∂yk

∣
∣
∣
∣
p

dyk
∣
∣
p

(ii) dx1 ∧ · · · ∧ dxn
∣
∣
p
= detD(ϕ ◦ ψ−1)(ψ(p)) dy1 ∧ · · · ∧ dyn

∣
∣
p

(iii) If ω ∈ Ωn(M), ϕ∗ω = ωϕα
1 ∧ · · · ∧αn, ψ∗ω = ωψα

1 ∧ · · · ∧αn (α1, . . . , αn the
standard basis of (Rn)∗), then:

ωψ(y) = ωϕ(ϕ ◦ ψ−1(y)) · detD(ϕ ◦ ψ−1)(y) ∀y ∈ ψ(V )

Proof. (i) Since {dxi
∣
∣
p
| 1 ≤ i ≤ n} is the dual basis of { ∂

∂xj

∣
∣
p
| 1 ≤ j ≤ n} it

suffices to show that
(

n∑

k=1

∂xi

∂yk

∣
∣
∣
∣
p

dyk
∣
∣
p

)

(
∂

∂xj

∣
∣
∣
∣
p

) = δij .

In fact,

n∑

k=1

∂xi

∂yk

∣
∣
∣
∣
p

dyk
∣
∣
p
(
∂

∂xj

∣
∣
∣
∣
p

)

︸ ︷︷ ︸

= ∂yk

∂xj

∣

∣

∣

p

=

n∑

k=1

Dk(ϕ
i ◦ ψ−1)(ψ(p))

︸ ︷︷ ︸

[D(ϕ◦ψ−1)]ik

·Dj(ψ
k ◦ ϕ−1)(ϕ(p))

︸ ︷︷ ︸

[D(ψ◦ϕ−1)]kj

= δij .

(ii) By (i) we obtain (recall the summation convention!):

dx1 ∧ · · · ∧ dxn
∣
∣
p

= (
∂x1

∂yσ1

∣
∣
∣
∣
p

dyσ1 |p) ∧ · · · ∧ (
∂xn

∂yσn

∣
∣
∣
∣
p

dyσn |p) =

=
∂x1

∂yσ1

∣
∣
∣
∣
p

. . .
∂xn

∂yσn

∣
∣
∣
∣
p

dyσ1 ∧ · · · ∧ dyσn |p
︸ ︷︷ ︸

=







sgn(σ)dy1∧···∧dyn|p σ∈Sn

0 else

=

(
∑

σ∈Sn

∂x1

∂yσ1

∣
∣
∣
∣
p

· . . . ∂x
n

∂yσn

∣
∣
∣
∣
p

· sgn(σ)
)

︸ ︷︷ ︸

=det(D(ϕ◦ψ−1)(ψ(p)))

· dy1 ∧ · · · ∧ dyn
∣
∣
p
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(iii) Let ω = f dx1 ∧ · · · ∧ dxn = g dy1 ∧ · · · ∧ dyn. Then by 2.7.21 (ii), ωϕ =
f ◦ ϕ−1, ωψ = g ◦ ψ−1. Thus (ii) gives

f(p) dx1 ∧ · · · ∧ dxn
∣
∣
p

= f(p) detD(ϕ ◦ ψ−1)(ψ(p)) dy1 ∧ · · · ∧ dyn
∣
∣
p
=

= g(p) dy1 ∧ · · · ∧ dyn
∣
∣
p
.

Hence,

ωψ(y) = g(ψ−1(y)) = f(ψ−1(y)) detD(ϕ ◦ ψ−1)(y)

= ωϕ(ϕ ◦ ψ−1(y)) detD(ϕ ◦ ψ−1)(y)

2

2.7.28 Remark. A direct proof of 2.7.27 (iii) can be based on 2.7.12: Let ψ∗ω =
ωψα

1 ∧ · · · ∧ αn, ϕ∗ω = ωϕα
1 ∧ · · · ∧ αn. Then

ωψ(y)α
1 ∧ · · · ∧ αn = (ψ−1)∗ ◦ ϕ∗(ωϕα

1 ∧ · · · ∧ αn)(y)
= (Ty(ϕ ◦ ψ−1))∗(ωϕ(ϕ ◦ ψ−1(y))α1 ∧ · · · ∧ αn)

2.7.12
= det(D(ϕ ◦ ψ−1))(y)ωϕ(ϕ ◦ ψ−1(y))α1 ∧ · · · ∧ αn,

so ωψ(y) = ωϕ(ϕ ◦ ψ−1(y)) · detD(ϕ ◦ ψ−1)(y).

2.8 Integration, Stokes’ Theorem

Our aim in this section is to develop a theory of integrating differential forms on
manifolds. Based on this we will prove Stokes’ theorem, which provides a far-
reaching generalization of the classical integration theorems of analysis (Gauss,
Stokes, Green). As a fundamental tool we will need the transformation rule for
integrals:

2.8.1 Theorem. Let U, V ⊆ Rn be open, Φ : U → V a diffeomorphism, f ∈ C(V ),
suppf compact. Then:

∫

U

f(Φ(x))|detDΦ(x)|dnx =

∫

V

f(y)dny (2.8.1)

Our strategy for defining
∫

M
ω for ω ∈ Ωnc (V ), (Ωnc denoting the space of compactly

supported n-forms, V a chart neighborhood) will be to set

∫

M

ω :=

∫

ϕ(V )

ωϕ(x)d
nx.

To make this a well-defined expression it should be independent of the chosen chart.
The transformation behavior of ωϕ according to 2.7.27 (iii), however, differs from
(2.8.1) (no absolute value of detD(ϕ ◦ψ−1)). We therefore consider manifolds with
distinguished atlasses:

2.8.2 Definition. A manifold M is called orientable if it possesses an oriented
atlas A = {(ψα, Vα) | α ∈ A} such that detD(ψβ ◦ ψ−1

α )(x) > 0 ∀x ∈ ψα(Vα ∩
Vβ) ∀α ∀β. As in the case of smooth manifolds, also for oriented manifolds one
can define corresponding C∞-structures (allowing only oriented atlasses). Charts
in an oriented atlas are called positively oriented. A manifold M together with an
oriented atlas is called oriented.

71



2.8.3 Remark.

(i) Not every manifold is orientable. The most famous example of a non-orientable
manifold is the Möbius strip.

(ii) One can show that the following are equivalent:

• M is orientable.

• ∃ω ∈ Ωn(M) with ω(p) 6= 0 ∀p ∈ M . Such an ω is called volume form
on M (cf. 2.7.11).

• The C∞(M)-module Ωn(M) is one-dimensional (every volume form pro-
vides a basis).

In the special case M = Rn we proceed as follows: For ω = a(x1, . . . , xn)dx
1 ∧

· · · ∧ dxn with compact support K ⊆ U , U open in Rn, let
∫

U
ω :=

∫

K
a(x)dnx. To

extend this definition to general manifolds we first consider the case ω ∈ Ωnc (M)
such that supp(ω) ⊆ U , where (ϕ,U) is a chart of M . Then put

∫

(ϕ)

ω :=

∫

ϕ∗(ω|U ) =
∫

ϕ(U)

ωϕ(x)d
nx

2.8.4 Lemma. Let M be an oriented manifold, ω ∈ Ωnc (M), (ϕ,U), (ψ, V ) posi-
tively oriented charts and supp(ω) ⊆ U ∩ V . Then

∫

(ϕ)
ω =

∫

(ψ)
ω. Thus we may

simply write
∫
ω for this common value.

Proof. Let ϕ∗ω = ωϕα
1 ∧ · · · ∧ αn, ψ∗ω = ωψα

1 ∧ · · · ∧ αn. Then
∫

(ψ)

ω =

∫

ψ(V )

ωψ(y)d
ny =

∫

ψ(U∩V )

ωψ(y)d
ny =

2.7.17(iii)
=

∫

ψ(U∩V )

ωϕ(ϕ ◦ ψ−1(y)) detD(ϕ ◦ ψ−1)(y)
︸ ︷︷ ︸

=|detD(ϕ◦ψ−1)(y)|

dny =

=

∫

ϕ(U∩V )

ωϕ(x)d
nx =

∫

ϕ(U)

ωϕ(x)d
nx =

∫

(ϕ)

ω.

2

2.8.5 Definition. Let M be an oriented manifold and A = {(ψα, Vα) | α ∈ A} an
oriented atlas. Let {χα | α ∈ A} be a partition of unity subordinate to {Vα | α ∈ A}.
Let ω ∈ Ωnc (M) and ωα := χα ·ω (hence supp(ωα) is compact and contained in Vα).
Then let ∫

M

ω :=
∑

α∈A

∫

ωα.

2.8.6 Proposition.

(i) The sum in 2.8.5 contains only finitely many non-vanishing terms.

(ii) Definition 2.8.5 is independent of the chosen oriented atlas (in the given ori-
ented C∞-structure) and partition of unity.

Proof. (i) Since {suppχα | α ∈ A} is locally finite, only finitely many suppχα in-
tersect the compact set supp(ω) (every p ∈ supp(ω) has a neighborhood intersecting
only finitely many suppχα, finitely many such neighborhoods cover supp(ω)).
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(ii) Let A′ = {(ϕβ , Uβ) | β ∈ B} be another oriented atlas in the same oriented
C∞-structure, {µβ | β ∈ B} a partition of unity subordinate to {Uβ | β ∈ B}. Then

∑

α∈A

∫

ωα

∑

β µβ=1
=

∑

α∈A

∫
∑

β∈B

µβχαω =
∑

α,β

∫

µβχαω = · · · =
∑

β∈B

∫

µβω.

2

In the integral theorems of vector analysis, typical domains of integration are n-
dimensional domains with boundary, where the boundary itself forms an (n − 1)-
dimensional domain of integration. Such domains are currently not covered by our
notion of manifold:

2.8.7 Example. Let M = {(x, y, z) ∈ R3 | z = x2 + y2, z ≤ z0, z0 > 0}.

x

y

z

ψ

x1

x2

ψ(p1)

ψ(p2)

M is not a manifold since points like p1 do not have open neighborhoods in M
which are homeomorphic to R2. On the other hand it is quite obvious that M has
charts which are homeomorphic to relatively open subsets of a suitable half-space.
Points like p1 form the boundary (but not in the topological sense!) of M , which
itself is a 1-dimensional manifold (without boundary).

We now want to make precise these observations in the following definition.

2.8.8 Definition. Let the half-space Hn = {(x1, . . . , xn) ∈ Rn | x1 ≤ 0} be
equipped with the trace topology of Rn (i.e., V ⊆ Hn is open ⇔ ∃U ⊆ Rn open s.t.
U ∩Hn = V ). Let V ⊆ Hn be open. Then f : V → Rm is called smooth on V if
there exists an open subset U ⊇ V of Rn and a smooth extension f̃ of f to U . For
any p ∈ V we then set Df(p) := Df̃(p).

bbbbbbbbbbb

Hn U

p

We have to check that Df(p) is independent of
f̃ : This is clear if V ⊆ (Hn)◦. Thus let p =

(0, x2, . . . , xn) and f̃ ,
˜̃
f be two extensions of f to

an open neighborhood U of p in Rn. Set g :=

f̃ − ˜̃
f . We have to show that Dg(p) = 0. To this

end, pick a sequence of points pm ∈ (Hn)◦ with
pm → p. Then Dg(pm) = 0 for all m, so also
Dg(p) = limm→∞Dg(pm) = 0.

2.8.9 Definition. A manifold with boundary is a set M together with an atlas
A = {(ψα, Vα) | α ∈ A} of bijective maps ψα : Vα → ψα(Vα) ⊆ Hn (relatively)
open, such that

⋃

α∈A Vα =M and for all α, β with Vα ∩Vβ 6= ∅ we have ψβ ◦ψ−1
α :
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ψα(Vα ∩ Vβ) → ψβ(Vα ∩ Vβ) is smooth in the sense of 2.8.8. As in the case of
manifolds without boundary we require M with its natural topology (induced by the
charts) to be Hausdorff and second countable.

2.8.10 Lemma. Let M be a manifold with boundary. A point p ∈ M is called
boundary point of M if there exists a chart (ψ = (x1, . . . , xn), V ) with x1(p) = 0.
If p is a boundary point, denoted by p ∈ ∂M then for any chart (ϕ = (y1, . . . , yn), U)
around p we have y1(p) = 0.

Proof. Suppose to the contrary that there would exist a chart ϕ = (y1, . . . , yn)
with y1(p) < 0.

x1 y1

ψ(p)

ψ

ψ ◦ ϕ−1

ϕ

ϕ(p)

p

U ′

Choose a neighborhood U ′ of ϕ(p) which is open in Rn and contained in ϕ(U ∩V ) ⊆
Hn. Since det(D(ψ ◦ ϕ−1))(ϕ(p)) 6= 0, by 2.1.1, ψ ◦ ϕ−1 is a diffeomorphism onto
a neighborhood of ψ ◦ ϕ−1(ϕ(p)) = ψ(p) which is open in Rn. This neighborhood
must therefore be contained in Hn, contradicting ψ1(p) = x1(p) = 0. 2

All constructions we already know for manifolds without boundary like tangent
space, tensors, differential forms, orientability, etc. work out completely analogously
for manifolds with boundary. The next result shows that ∂M itself is a manifold
(without boundary).

2.8.11 Proposition. Let M be an n-dimensional manifold with boundary. Then
∂M is an (n− 1)-dimensional manifold (without boundary). If M is oriented then
the orientation of M induces an orientation of ∂M .

Proof. LetA = {(ψα, Vα) | α ∈ A} be an atlas ofM . Set A′ := {α ∈ A | Vα∩∂M 6=
∅}, A′ := {(ψα|Vα∩∂M , Vα ∩ ∂M) | α ∈ A′}. We show that A′ is an atlas for ∂M .

Set Ṽα := Vα ∩ ∂M , ψ̃α := ψα|Ṽα . Then ψ̃α : Ṽα → ψα(Ṽα) is bijective and by

2.8.10 it follows that ψ̃α(Ṽα) = ψα(Vα) ∩ {x1 = 0}. Clearly,
⋃

α∈A′ Ṽα = ∂M .

Now let α, β ∈ A′ such that Ṽα ∩ Ṽβ 6= ∅. Since ψα(Vα ∩ Vβ) ⊆ Hn is open,

ψ̃α(Ṽα ∩ Ṽβ) = ψα(Vα ∩ Vβ) ∩ {x1 = 0} is open in {x1 = 0} ∼= Rn−1. Moreover,

ψ̃β ◦ ψ̃−1
α is smooth on ψα(Ṽα ∩ Ṽβ) as a restriction of the smooth map ψβ ◦ ψ−1

α .

Suppose now that A, in addition, is oriented, i.e., that detD(ψβ ◦ ψ−1
α ) > 0 for all

α, β with Vα ∩ Vβ 6= ∅. Let ψα = (x1α, . . . , x
n
α), ψβ = (x1β , . . . , x

n
β). Then for every

(0, x2α, . . . , x
n
α) ∈ ψ̃α(Ṽα ∩ Ṽβ), ψβ ◦ ψ−1

α (0, x2α, . . . , x
n
α

︸ ︷︷ ︸

=:x′
α

) = (0, ψ̃β ◦ ψ̃−1
α (x′α)).

Therefore,

D(ψβ ◦ ψ−1
α )(0, x′α) =








∂(ψ1
β◦ψ

−1
α )

∂x1 0 . . . 0
∗
...
∗

D(ψ̃β ◦ ψ̃−1
α )








∣
∣
∣
∣
∣
∣
∣
∣
∣

(0,x′
α)
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⇒ detD(ψβ ◦ ψ−1
α )(0, x′α) =

∂(ψ1
β ◦ ψ−1

α )

∂x1

∣
∣
∣
∣
∣
(0,x′

α)

detD(ψ̃β ◦ ψ̃−1
α )(0, x′α) (∗)

Now ψ1
β ◦ ψ−1

α (0, x′α) = 0 and ψ1
β ◦ ψ−1

α (x1, x′α) < 0 for x1 < 0 (since ψβ ◦ ψ−1
α :

Hn → Hn). Therefore,
∂(ψ1

β◦ψ
−1
α )

∂x1 ≥ 0 and 6= 0 (by (∗)), hence > 0. Again by (∗) it
follows that detD(ψ̃β ◦ ψ̃−1

α ) > 0, so A′ is oriented. 2

As the final ingredient for Stokes’ theorem we consider the restriction of differential
forms defined on M to ∂M : Let i : ∂M →֒ M be the natural inclusion. We first
note that i is smooth since for any chart ψ = (x1, . . . , xn) of M we have:

∂M
i−−−−→ M

ψ̃



y



yψ

ψ̃(Ṽ )
j−−−−→ ψ(V )

where j : (x2, . . . , xn) 7→ (0, x2, . . . , xn). This is obviously smooth.
The restriction of any ω ∈ Ωk(M) is defined as i∗ω ∈ Ωk(∂M). As in (2.7.2), the
local representation of ω with respect to ψ can be written as

ω =
∑

1≤i1<···<ik≤n

ωi1...ikdx
i1 ∧ · · · ∧ dxik .

Then ψ∗ω is given by

∑

1≤i1<···<ik≤n

ωi1...ik ◦ ψ−1αi1 ∧ · · · ∧ αik =:
∑

1≤i1<···<ik≤n

ωψi1...ikα
i1 ∧ · · · ∧ αik .

The local representation of i∗ω with respect to ψ̃ therefore is

ψ̃∗(i
∗ω) = (ψ̃−1)∗(i∗ω) = (i ◦ ψ̃−1)∗ω = (ψ−1 ◦ j)∗ω = j∗((ψ−1)∗ω) =

= j∗(ψ∗ω)
2.7.26(i)

=
∑

1≤i1<···<ik≤n

ωψi1...ik ◦ j j
∗(αi1) ∧ · · · ∧ j∗(αik).

Observing now that

j∗(αk)(v)
∣
∣
x

2.7.24
= αk( Dj(x)

︸ ︷︷ ︸

=j by linearity

(v)) = αk(j(v)) =

{
0 k = 1

vk = αk(v) k 6= 1

we finally arrive at

ψ̃∗(i
∗ω) =

∑

1<i1<···<ik≤n

ωψi1...ik ◦ j α
i1 ∧ · · · ∧ αik

6

(2.8.2)

2.8.12 Theorem. (Stokes’ theorem) LetM be an oriented manifold with boundary,
ω ∈ Ωn−1

c (M), and i : ∂M →֒M . Then:

∫

∂M

i∗ω =

∫

M

dω

Proof. Denote by K the compact support of ω. We consider the following two
cases:
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1.) There exists a chart (ψ = (x1, . . . , xn), V ) with K ⊆ V . Since ω ∈ Ωn−1(M),
the local representation of ω with respect to ψ reads

ω =

n∑

k=1

ωkdx
1 ∧ · · · ∧ dxk−1 ∧ dxk+1 ∧ · · · ∧ dxn (2.8.3)

where ωj ∈ C∞(V ) for all j. Hence

dω = (

n∑

k=1

(−1)k−1 ∂ωk
∂xk

)dx1 ∧ · · · ∧ dxn (2.8.4)

with ∂ωk
∂xk

= Dk(ωk ◦ ψ−1)(ψ(.)). We now distinguish the following sub-cases:

1a) V ∩ ∂M = ∅. Then i∗ω = 0 (cf., e.g., (2.8.2)), hence
∫

∂M
i∗ω = 0 and we have

to show that also

∫

M

dω
2.8.4
=

∫

ψ(V )

ψ∗(dω)
(2.8.4),2.7.21(ii)

=

∫

ψ(V )

n∑

k=1

(−1)k−1 ∂ω
ψ
k

∂xk
dx1 . . . dxn = 0.

x1

Q

ψ(V )

ψ(K)

We now choose a parallelepiped Q ( Hn of the
form Q = {(x1, . . . , xn | ak ≤ xk ≤ bk (1 ≤ k ≤
n)} such that ψ(K) lies in the interior of Q. Then

if we extend the (compactly supported) ωψk by 0
to all of Hn, we obtain (applying the fundamental
theorem of calculus):

∫

ψ(V )

n∑

k=1

(−1)k−1 ∂ω
ψ
k

∂xk
dx1 . . . dxn =

n∑

k=1

(−1)k−1

∫

Q

∂ωψk
∂xk

dx1 . . . dxn

=

n∑

k=1

(−1)k−1

∫

(ωψk (x
1, . . . , xk−1, bk, xk+1, . . . , xn)

︸ ︷︷ ︸

=0

−ωψk (x
1, . . . , xk−1, ak, xk+1, . . . , xn)

︸ ︷︷ ︸

=0

)dx1 . . . dxk−1dxk+1 . . . dxn

= 0

1b) Now suppose that V ∩ ∂M 6= ∅. Then

∫

∂M

i∗ω
2.8.4
=

∫

ψ̃(V ∩∂M)

ψ̃∗(i
∗ω)

(2.8.3),(2.8.2)
=

∫

ψ̃(V ∩∂M)

ωψ1 (0, x
2, . . . , xn)dx2 . . . dxn

︸ ︷︷ ︸

=
∫

ψ(K)∩{x1=0}

(2.8.5)

76



x1

Q

ψ(V )

ψ(K)

Hn

Again we extend the ωψk by 0 to all of Hn and
choose a parallelepiped Q ⊆ Hn, this time of the
form Q = [a1, 0]× [a2, b2]× · · ·× [an, bn] such that
ψ(K) ⊆ Q◦ ∪ {x1 = 0}. Then as in the previous
case we obtain:

∫

M

dω =

n∑

k=1

(−1)k−1

∫

Q

∂ωψk
∂xk

dx1 . . . dxn

=

∫

[a2,b2]×···×[an,bn] (=Q∩{x1=0})

(
ωψ1 (0, x

2, . . . , xn)− ωψ1 (a
1, x2, . . . , xn)

︸ ︷︷ ︸

=0

)
dx2 . . . dxn

+

n∑

k=2

(−1)k−1

∫
(
ωψk (x

1, . . . , bk, . . . , xn)
︸ ︷︷ ︸

=0

−ωψk (x
1, . . . , ak, . . . , xn)

︸ ︷︷ ︸

=0

)
dx1 . . . dxk−1dxk+1 . . . dxn

=

∫

ψ(K)∩{x1=0}

ωψ1 (0, x
2, . . . , xn)dx2 . . . dxn

(2.8.5)
=

∫

∂M

i∗ω

2.) The general case: Let {(ψα, Vα) | α ∈ A} be an oriented atlas, {χα | α ∈ A}
a subordinate partition of unity. Then the ωα := χα · ω satisfy the assumptions of
case 1.). Also,

∑

α dχα = d(
∑

α χα) = d(1) = 0. Thus ω =
∑

α ωα and

∑

α

dωα =
∑

α

d(χα · ω) =
∑

α

(dχα)ω +
∑

α

χαdω = dω.

From this we finally obtain

∫

M

dω =
∑

α

∫

M

dωα
1.)
=
∑

α

∫

∂M

i∗ωα =

∫

∂M

i∗(
∑

α

ωα) =

∫

∂M

i∗ω.

2

2.8.13 Examples.

(i) Applying 2.8.12 to the ω from 2.7.23 (i), we obtain Green’s theorem in the
plane: ∫

∂M

Pdx+Qdy =

∫

M

(
∂Q

∂x
− ∂P

∂y
)dxdy

(ii) From 2.7.23 (ii) and 2.8.12 we derive Gauss’ divergence theorem (in R3):

∫

M

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
)dxdydz =

∫

∂M

Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy
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Chapter 3

Hypersurfaces

As an application of the concepts introduced in chapters 1 and 2 we now turn to a
study of hypersurfaces in Rn.

3.1 Curvature of Hypersurfaces

3.1.1 Definition. A hypersurface of Rn is an (n− 1)-dimensional submanifold of
Rn.

Locally a hypersurface is given by one of the equivalent descriptions in 2.1.8, e.g.
as the zero set of a regular map f : Rn → R. Since Rn is equipped with the
standard scalar product 〈v, w〉 = ∑n

i=1 viwi, every tangent space TpM possesses a
one-dimensional orthogonal complement. This provides two possible unit normals
of M . To be able to pick one of these, we will suppose M to be oriented.

3.1.2 Lemma. Let Mm be an (abstract) oriented manifold and p ∈ M . A basis
{v1, . . . , vm} of TpM is called positively oriented, if in some positively oriented chart
ϕ = (x1, . . . , xm) of M around p we have: (dx1 ∧ · · · ∧ dxm)

∣
∣
p
(v1, . . . , vm) > 0.

This notion is independent of the chosen chart.

Proof. Let ψ = (y1, . . . , ym) be another positively oriented chart. Since by 2.7.27,

(dy1 ∧ · · · ∧ dym)
∣
∣
p
= detD(ψ ◦ ϕ−1)(ϕ(p))
︸ ︷︷ ︸

>0

· (dx1 ∧ · · · ∧ dxm)
∣
∣
p
,

the claim follows. 2

3.1.3 Definition. Let M be an oriented hypersurface of Rn. The Gauss map p 7→
νp assigns to every p ∈M the unit normal vector νp for which det(νp, e

1, . . . , en−1) >
0 for any positively oriented basis {e1, . . . , en−1} of TpM .

3.1.4 Remark.

(i) νp is well-defined: Let {f1, . . . , fn−1} be any positively oriented basis of TpM
and let ψ = (x1, . . . , xn−1) be any positively oriented chart of M . Set ej :=
∂
∂xj

∣
∣
p
(1 ≤ j ≤ n− 1) and fk =

∑n−1
ik=1 akike

ik (1 ≤ k ≤ n− 1). Then

1 = sgn(dx1 ∧ · · · ∧ dxn−1)
∣
∣
p
(f1, . . . , fn−1) =

= sgn(
∑

i1,...,in−1

a1i1 . . . a(n−1)in−1
(dx1 ∧ · · · ∧ dxn−1)

∣
∣
p
(ei1 , . . . , ein−1)

︸ ︷︷ ︸

=sgn(i1,...,in−1)

) (∗)
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Therefore,

det(νp, f
1, . . . , fn−1) =

=
∑

i1,...,in−1

sgn(i1, . . . , in−1)a1i1 . . . a(n−1)in−1

︸ ︷︷ ︸

>0 by (∗)

det(νp, e
1, . . . , en−1).

(ii) The Gauss map p 7→ νp is smooth. Let (ψ = (x1, . . . , xn−1), V ) be a posi-
tively oriented chart. Then { ∂

∂x1

∣
∣
p
, . . . , ∂

∂xn−1

∣
∣
p
} is a positively oriented basis

of TpM since (dx1 ∧ · · · ∧ dxn−1)
∣
∣
p
( ∂
∂x1

∣
∣
p
, . . . , ∂

∂xn−1

∣
∣
p
) = 1 for all p ∈ V .

By 2.1.8 and 2.4.1, locally around any p0 ∈ V , M is given as the zero set
of some regular map f and for the gradient grad(f)(p) = Df(p) we get:
〈gradf(p), v〉 = Df(p)(v) = 0 ∀v ∈ TpM . Thus gradf(p)⊥TpM for all p near
p0. W.l.o.g. we may suppose det(gradf(p0),

∂
∂x1

∣
∣
p0
, . . . , ∂

∂xn−1

∣
∣
p0
) > 0 (other-

wise replace f by −f). By continuity, det(gradf(p), ∂
∂x1

∣
∣
p
, . . . , ∂

∂xn−1

∣
∣
p
) > 0

for p near p0. Hence locally around p0 the Gauss map is given by

νp =
gradf(p)

‖gradf(p)‖
which clearly is smooth.

To define the curvature of a hypersurfaceM in a point p ∈M we reduce this question
to the curvature of curves as considered in chapter 1. Let w ∈ TpM, ‖w‖ = 1. We
consider the curve determined by the intersection of M with the plane spanned by
w and νp.

νp

c
w

p

This plane is given by: (t, s) 7→ p + tνp + sw. The curvature of the intersection
curve c will be called the normal curvature of M in the direction w. Let M locally
be given as the zero set of the regular map f and recall that we suppose M to be
oriented. Then c is given implicitly by

f(p+ tνp + sw) = 0 ∀t, s (∗)

By 3.1.4 (ii), νp =
gradf(p)

‖gradf(p)‖ . Hence

∂

∂t

∣
∣
∣
∣
(t,s)=(0,0)

f(p+ tνp + sw) = Df(p)νp = 〈gradf(p), νp〉 6= 0.

Therefore, locally we can solve (∗) for t as a function of s (cf. 2.1.2). We obtain a
curve c : s 7→ p+ t(s)νp + sw. Then c(0) = p, and

c′(0)
︸︷︷︸

∈TpM

= t′(0) · νp
︸ ︷︷ ︸

∈TpM⊥⇒=0

+ w
︸︷︷︸

∈TpM

= w.
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W.l.o.g. we may suppose that c is parametrized by arclength. To calculate the
curvature of c we need to determine the accompanying frame. As {νp, w} is pos-
itively oriented, e1 = c′(0) = w, e2 = −νp. Since c′(s) ∈ Tc(s)M , it follows that
〈c′(s), νc(s)〉 = 0 ∀s. Consequently,

0 =
d

ds

∣
∣
∣
∣
0

〈c′(s), ν ◦ c(s)〉 = 〈c′′(0), νp〉+ 〈c′(0)
︸︷︷︸

=w

, Tpν · c′(0)
︸︷︷︸

=w

〉,

and so the normal curvature κ(w) of M in the direction w is given by:

κ(w) = κc(0)
(1.2.1)
= 〈c′′(0), e2〉 = −〈c′′(0), νp〉 = 〈w, Tpν · w〉 (3.1.1)

3.1.5 Definition. The Weingarten map (the shape-operator) Lp is defined as:

Lp := Tpν : TpM → TνpS
n−1 = ν⊥p = TpM.

Thus Lpw is the infinitesimal change of the normal vector ν in the direction w.
To further analyze the Weingarten map we need the following observation on vector
fields on submanifolds of Rn.

3.1.6 Lemma. Let Mk be a k-dimensional submanifold of Rn. Then:

(i) For any X ∈ X(M) and any p ∈M there exists a neighborhood U of p in Rn

and a map X̃ ∈ C∞(U,Rn) such that X̃ |U∩M= X|U∩M .

(ii) If X,Y ∈ X(M) and X̃, Ỹ are smooth extensions as in (i), then

[X,Y ]p = DỸ (p)X̃(p)−DX̃(p)(Ỹ (p)) ∀p ∈M.

Proof. (i) By 2.5.21, X ∈ C∞(M,Rn). Hence by 2.1.10 each of the n components
of X can be extended smoothly to a neighborhood of p in Rn. This gives the desired
extension X̃ (in a non-unique way).
(ii) Let f̃ ∈ C∞(Rn,R) and f := f̃ |M , so f ∈ C∞(M,R). Then Tpf = Df̃(p) |TpM
(cf. the calculation preceding 2.4.3). Hence X(f)(p) = Tpf(Xp) = Df̃(p)(X̃p), so

Y (X(f))|p = D(q 7→ Df̃(q)(X̃q))|p(Ỹp) = D2f̃(p)(X̃p, Ỹp) +Df̃(p)DX̃(p)Ỹp,

and analogously for X(Y (f)). Since D2f̃(p) is symmetric, we conclude that

Df̃(p)([X,Y ]p) = [X,Y ]p(f) = (X(Y (f))− Y (X(f)))p

= Df̃(p)(DỸ (p)X̃(p)−DX̃(p)Ỹ (p)).

Inserting in particular f̃ = pri : R
n → R, it follows that Df̃(p) = pri, so [X,Y ]p =

DỸ (p)X̃(p)−DX̃(p)Ỹ (p), as claimed. 2

3.1.7 Proposition. The Weingarten map Lp : TpM → TpM is symmetric, i.e.,

〈Lpv, w〉 = 〈v, Lpw〉 ∀v, w ∈ TpM.

Proof. Choose X,Y ∈ X(M) with Xp = v, Yp = w and choose smooth extensions
as in 3.1.6 (i). To also extend ν to a neighborhood of p in Rn we note that ν is

locally given as νp = gradf(p)
‖gradf(p)‖ (where f = 0 is a local representation of M by a

regular map). Thus ν is a C∞-map from M to Rn which, by 2.1.10, can locally
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be extended to a neighborhood of p in Rn. Denote by ν̃ such an extension. Then
according to the calculation preceding 2.4.3, Tpν = Dν̃(p)|TpM .

Since q 7→ 〈Xq, νq〉 ≡ 0, also Tp(q 7→ 〈Xq, νq〉) = 0. Therefore,

0 = Tp(q 7→ 〈Xq, νq〉)Yp = D(q 7→ 〈X̃q, ν̃q〉)Ỹp
= 〈DX̃(p)Ỹp, ν̃p〉+ 〈 X̃p

︸︷︷︸

=Xp

, Dν̃(p)
︸ ︷︷ ︸

=Lp

Ỹp
︸︷︷︸

Yp

〉

and analogously for q 7→ 〈Yq, νq〉. Summing up, we obtain

〈Xp, LpYp〉 − 〈LpXp, Yp〉 = 〈DỸ (p)X̃(p)−DX̃(p)Ỹ (p)
︸ ︷︷ ︸

3.1.6(ii)
= [X,Y ]p∈TpM

, νp
︸︷︷︸

∈TpM⊥

〉 = 0.

2

3.1.8 Definition. Let M be an oriented hypersurface in Rn.

(i) The Riemannian metric g, or first fundamental form I, is the
(
0
2

)
-tensor field

TpM × TpM ∋ (v, w) 7→ gp(v, w) := 〈v, w〉 (= Ip(v, w))

(ii) The second fundamental form II is the
(
0
2

)
-tensor field

TpM × TpM ∋ (v, w) 7→ IIp(v, w) := 〈v, Lpw〉

3.1.9 Remark.

(i) g is a section of the bundle T 0
2 (M) since every gp is a bilinear map from

TpM × TpM to R, i.e., gp ∈ T 0
2 (TpM) for all p ∈ M . Moreover, g is smooth

by 2.6.18: Let X,Y ∈ X(M), i.e., X,Y : M → Rn C∞, Xp, Yp ∈ TpM ∀p (cf.
2.5.21). Then also p 7→ 〈Xp, Yp〉 = gp(Xp, Yp) is smooth.

gp is precisely the restriction of the standard scalar product 〈 , 〉 on Rn to
TpM × TpM . It allows to measure lengths and angles in TpM .

If ϕ is a local parametrization of M around p and ϕ−1 = (x1, . . . , xn−1) then,
by (2.6.2), g locally is of the form

g(p) = gij(p) dx
i
∣
∣
p
⊗ dxj

∣
∣
p

(3.1.2)

where

gij(p) = gp(
∂

∂xi

∣
∣
∣
∣
p

,
∂

∂xj

∣
∣
∣
∣
p

)

= 〈 ∂

∂xi

∣
∣
∣
∣
p

,
∂

∂xj

∣
∣
∣
∣
p

〉 = 〈 ∂ϕ
∂xi

(ϕ−1(p))
︸ ︷︷ ︸

Diϕ(ϕ−1(p))

,
∂ϕ

∂xj
(ϕ−1(p))

︸ ︷︷ ︸

Djϕ(ϕ−1(p))

〉. (3.1.3)

Since g is symmetric, gij = gji ∀i, j.

(ii) For every p ∈ M , the second fundamental form IIp is a symmetric bilinear
map TpM × TpM → R, so II is a section of T 0

2M . Smoothness again follows

from 2.6.18: Let X, X̃, Y, Ỹ , ν, ν̃ be as in the proof of 3.1.7. Then

p 7→ IIp(Xp, Yp) = p 7→ −〈DX̃(p)Ỹp, ν̃p〉

is smooth.
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(iii) In the classical differential geometry of surfaces in R3, the relevant special
case of (i) is that of a parametrization ϕ : (t, s) 7→ (ϕ1(t, s), ϕ2(t, s), ϕ3(t, s)).
Setting E := 〈ϕt, ϕt〉, F := 〈ϕt, ϕs〉, G := 〈ϕs, ϕs〉 (with ϕs, ϕt the partial
derivatives of ϕ), then g is given by the matrix

[I] =

(
E F
F G

)

with respect to the basis {ϕt, ϕs} of Tϕ(t,s)M . If v = v1 · ϕt + v2 · ϕs, w =
w1ϕt + w2ϕs are vectors in Tϕ(t,s)M , then

gϕ(t,s)(v, w) = (Edt⊗ dt+ Fdt⊗ ds+ Fds⊗ dt+Gds⊗ ds)

(v1
∂
∂t

+ v2
∂
∂s
, w1

∂
∂t

+ w2
∂
∂s
)

= Ev1w1 + Fv1w2 + Fv2w1 +Gv2w2

= (v1, v2)

(
E F
F G

)(
w1

w2

)

3.1.10 Example. LetM = S1×R be a cylinder over the unit circle. A parametriza-
tion of M is given by ϕ : (0, 2π) × R → R3, ϕ(t, s) = (cos t, sin t, s). Then
ϕt = (− sin t, cos t, 0), ϕs = (0, 0, 1), so E = 1, F = 0, G = 1. Therefore,

[I]ϕ(t,s) =

(
1 0
0 1

)

We now come back to the problem of determining the curvature of a hypersurface.
We are looking for those directions in which the normal curvatures become extremal:

By (3.1.1) we are therefore looking for the critical points of the map w 7→ 〈w,Lpw〉 =
κ(w) for w ∈ Sn−1.

3.1.11 Theorem. (Rodriguez) The critical points of the normal curvature in p ∈
M are precisely the eigenvectors of the symmetric linear map Lp. If w is such an
eigenvector, then the corresponding eigenvalue λ is given by κ(w).

Proof. Let w ∈ TpM with ‖w‖ = 1. w is a critical point of κ if and only if
v 7→ κ(v) : Sn−1 → R has a critical point in w. This we determine using the
method of Lagrange multipliers. Let g : v 7→ 〈v, v〉− 1. Our problem then is to find
an extremal of κ on {g = 0}.
Therefore, Dκ(w) = λDg(w) has to be satisfied for some Lagrange multiplier λ (on
{g = 0}). By (3.1.1),

Dκ(w)(v) = 〈v, Lpw〉+ 〈w,Lpv〉 3.1.7
= 2〈v, Lpw〉

and Dg(w)(v) = 2〈v, w〉. Thus the equation 2〈v, Lpw〉 = 2λ〈v, w〉 has to hold for
all v, i.e., Lpw = λw and g(w) = 0 (⇔ ‖w‖ = 1). Thus w ∈ Sn−1 is a critical point
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iff w is an eigenvector of Lp. Furthermore,

λ = λ〈w,w〉 = 〈w,Lpw〉 = κ(w)

2

3.1.12 Definition. Let M be a hypersurface in Rn and p ∈ M . The eigenvalues
of Lp are called principal curvatures. The corresponding eigenvectors are called
principal curvature directions. Since Lp is symmetric, all principal curvatures are
real and there exists an orthonormal basis of TpM {wi | 1 ≤ i ≤ n − 1} consisting
of principal curvature directions. A curve c is called a line of curvature if c′(t) is a
principal curvature direction for all t. The Gaussian curvature K of M is defined
as the product of the principal curvatures, i.e., K =

∏n−1
i=1 κi. The mean curvature

of M in p is the arithmetic mean of the principal curvatures, i.e., 1
n−1 tr(Lp) (with

tr(Lp) denoting the trace of Lp). p is called umbilic, if all principal curvatures
coincide in p, i.e., if Lp = λ · idTpM . An umbilic point is called level point, if, in
addition, λ = 0, i.e., if Lp = 0.

3.1.13 Examples.

(i) LetM = ν⊥ be a hypersurface of Rn. Then νp = ν for all p and Lp = Tpν = 0
for all p. Thus all principal curvatures vanish and every point p of M is a
level point.

(ii) LetM = Sn−1. For any p ∈M , p itself is a normal vector toM , so ν = id and
Lp = idTpM . Therefore, all points of M are umbilic and all tangent vectors
are principal curvature directions.

Since the inception of differential geometry the distinction between intrinsic quanti-
ties which are determined entirely byM itself (which, in other words, are accessible
to the inhabitants of M) and extrinsic quantities, where additional information is
needed, has been a central object of study. As a rule, those quantities which can be
formulated for abstract manifolds are intrinsic, whereas extrinsic quantities directly
refer to the surrounding space, like, for example the Gauss map p 7→ νp. Although
we have defined the Riemannian metric on hypersurfaces of Rn by using the scalar
product of the surrounding Rn, one can define Riemannian metrics also for abstract
manifolds:

3.1.14 Definition. Let M be an abstract manifold. A smooth
(
0
2

)
-tensor field g ∈

T 0
2 (M) is called a Riemannian metric on M if gp : TpM × TpM → R is a (positive

definite) scalar product for all p ∈M . (M, g) is then called a Riemannian manifold.
If f : (M, g) → (N,h) is a (local) diffeomorphism of Riemannian manifolds such
that f∗h = g, then f is called a (local) isometry. Two Riemannian manifolds are
called (locally) isometric if there exists a (local) isometry f :M → N .

By 2.7.24, a (local) diffeomorphism f is a (local) isometry if and only if for all
p ∈M :

hf(p)(Tpf · v, Tpf · w) = gp(v, w) ∀v, w ∈ TpM (3.1.4)

Thus if we transport tangent vectors v, w by means of f (more precisely, Tpf) from
M to N , then their lengths and their angle remain unchanged. For any given
Riemannian metric, quantities like length and angles are intrinsic. We now pose
the question which of the curvatures introduced so far are intrinsic. By the above,
intrinsic notions have to remain unchanged under the action of local isometries.
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3.1.15 Example. Let M be the cylinder from 3.1.10 and ϕ : (0, 2π) × R → R3,
ϕ(t, s) = (cos t, sin t, s). We consider U := (0, 2π) × R ⊆ R2 as a Riemannian
manifold with the standard scalar product g ≡ 〈 , 〉 of R2 and M as a Riemannian
manifold with h = I as in 3.1.10.

ϕt

ϕs

Then by 3.1.9 (iii) and 3.1.10, ϕ : (U, g) → (M, I) is a local isometry:

Iϕ(t,s)( T(t,s)ϕ
︸ ︷︷ ︸

=(ϕt ϕs)

·v, T(t,s)ϕ · w) = Iϕ(t,s)(v1ϕt + v2ϕs, w1ϕt + w2ϕs) =

= (v1, v2)

(
1 0
0 1

)
(
w1

w2

)

= 〈
(
v1
v2

)
,
(
w1

w2

)
〉 =

= g(t,s)(v, w)

Hence M and U are locally isometric.

If (x, s) ∈ M = S1 × R, then νp = (x, 0) and TpM = {(v, s) | v⊥x}. Hence the
Gauss map in p is given by νp = id× 0|S1×R

and therefore Lp = id × 0. Thus
one principal curvature is 1 and the other is 0. Since on U (due to ν =const,
hence L ≡ 0) all curvatures vanish it follows that neither the normal curvatures
nor the mean curvature are intrinsic. The only remaining candidate for an intrinsic
curvature therefore is the Gauss curvature K, which vanishes for both manifolds.

The Theorema Egregium of Gauss states that the Gauss curvature in fact is intrinsic.
To prove this theorem we are going to derive a formula for K (in the case M ⊆ R3)
which depends exclusively on the quantities E, F , G and their derivatives.

3.1.16 Lemma. Let V be a vector space with basis B = {g1, . . . , gm}, let 〈 , 〉 be
a scalar product on V and let T : V → V be linear. Denote by G the matrix with
entries 〈gi, gj〉, by [T ] the matrix of T with respect to B, and by A the matrix with
entries 〈Tgi, gj〉. Then [T ] = (AG−1)t.

Proof. We first show that G is invertible: let B∗ = {g1, . . . , gm} be the dual
basis to B and Φ : V → V ∗ the linear isomorphism v 7→ 〈v, .〉. Then Φ(gi)(gj) =
〈gi, gj〉 =: gij , so Φ(gi) =

∑

j gijg
j , and therefore G (which is symmetric) is the

matrix of Φ with respect to B and B∗. Due to Tgj =
∑

i Tijgi we have:

Ajk = 〈Tgj , gk〉 =
∑

i

Tij〈gi, gk〉 =
∑

i

(T t)jigik = (T tG)jk

It follows that A = T tG, so [T ] = (AG−1)t, as claimed. 2
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3.1.17 Proposition. Let ϕ be a local parametrization of a hypersurface M in

R3. Let ϕt = ∂ϕ
∂t

, ϕs = ∂ϕ
∂s

, ϕtt = ∂2ϕ
∂t2

, etc. Set E = 〈ϕt, ϕt〉, F = 〈ϕt, ϕs〉,
G = 〈ϕs, ϕs〉, e := −〈ν, ϕtt〉, f := −〈ν, ϕts〉, g = −〈ν, ϕss〉. Then the following
matrix representations are valid with respect to the basis {ϕt, ϕs} of Tϕ(t,s)M :

[I] =

(
E F
F G

)

, II =

(
e f
f g

)

, [L] = 1
EG−F 2

(
eG− fF fE − eF
fG− gF gE − fF

)

Finally, the Gauss curvature K of M is given by K = eg−f2

EG−F 2 .

Proof. The matrix representation of I was already derived in 3.1.9 (iii). Concerning
L, for any hypersurface in Rn we have

0 = 〈 ν ◦ ϕ
︸ ︷︷ ︸

∈TpM⊥

,
∂ϕ

∂xi
︸︷︷︸

∈TpM

〉
∂

∂xj⇒ 0 = 〈L · ∂ϕ
∂xj

,
∂ϕ

∂xi
〉+ 〈ν ◦ ϕ, ∂2ϕ

∂xi∂xj
〉

⇒ 〈L ∂ϕ
∂xj

,
∂ϕ

∂xi
〉 = −〈ν ◦ ϕ, ∂2ϕ

∂xi∂xj
〉. (3.1.5)

Since L = Lt it follows from 3.1.16 that

[L] = −(〈ν ◦ ϕ, ∂2ϕ

∂xi∂xj
〉) · (〈 ∂ϕ

∂xi
,
∂ϕ

∂xj
〉)−1 (3.1.6)

In our case (n = 3) it follows from (3.1.5) that e = 〈Lϕt, ϕt〉, f = 〈Lϕs, ϕt〉, and
g = 〈Lϕs, ϕs〉. Thus if v = v1ϕt + v2ϕs, w = w1ϕt + w2ϕs ∈ TpM , then

II(v, w) = 〈Lv,w〉
= v1w1〈Lϕt, ϕt〉+ v1w2〈Lϕt, ϕs〉+ v2w1〈Lϕs, ϕt〉+ v2w2〈Lϕs, ϕs〉 =

= (v1, v2)

(
e f
f g

)(
w1

w2

)

⇒ [II] =

(
e f
f g

)

By (3.1.6) we conclude that

[L] =

(
e f
f g

)(
E F
F G

)−1

= · · · = 1

EG− F 2

(
eG− fF fE − eF
fG− gF gE − fF

)

,

so K = detL = · · · = eg−f2

EG−F 2 . 2

In the case n = 3, using the vector product, we may calculate ν directly:

ν =
ϕt × ϕs

‖ϕt × ϕs‖
.

Then ‖ϕt × ϕs‖ =
√
EG− F 2, implying:

e = −〈ν, ϕtt〉 = − 1√
EG− F 2

〈ϕt × ϕs, ϕtt〉 = − 1√
EG− F 2

det(ϕt, ϕs, ϕtt).

Analogously,

f = − 1√
EG− F 2

det(ϕt, ϕs, ϕts), g = − 1√
EG− F 2

det(ϕt, ϕs, ϕss).
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Set D :=
√
EG− F 2. Then

K ·D4 3.1.17
= D2(eg − f2)

= (−eD)(−gD)− (−fD)2

= det(ϕt, ϕs, ϕtt) det(ϕt, ϕs, ϕss)− det(ϕt, ϕs, ϕts)
2

= det((ϕt, ϕs, ϕtt)
t) det(ϕt, ϕs, ϕss)

− det((ϕt, ϕs, ϕts)
t) det(ϕt, ϕs, ϕts)

= det









E
︷ ︸︸ ︷

〈ϕt, ϕt〉
F

︷ ︸︸ ︷

〈ϕt, ϕs〉 〈ϕt, ϕss〉
〈ϕs, ϕt〉
︸ ︷︷ ︸

F

〈ϕs, ϕs〉
︸ ︷︷ ︸

G

〈ϕs, ϕss〉

〈ϕtt, ϕt〉 〈ϕtt, ϕs〉 〈ϕtt, ϕss〉









− det









E
︷ ︸︸ ︷

〈ϕt, ϕt〉
F

︷ ︸︸ ︷

〈ϕt, ϕs〉 〈ϕt, ϕts〉
〈ϕs, ϕt〉
︸ ︷︷ ︸

F

〈ϕs, ϕs〉
︸ ︷︷ ︸

G

〈ϕs, ϕts〉

〈ϕts, ϕt〉 〈ϕts, ϕs〉 〈ϕts, ϕts〉









= det





E F 〈ϕt, ϕss〉
F G 〈ϕs, ϕss〉

〈ϕtt, ϕt〉 〈ϕtt, ϕs〉 〈ϕtt, ϕss〉 − 〈ϕts, ϕts〉





− det





E F 〈ϕt, ϕts〉
F G 〈ϕs, ϕts〉

〈ϕts, ϕt〉 〈ϕts, ϕs〉 0





where we have developed with respect to the third row in the last step. Now

Et = 2〈ϕtt, ϕt〉 Ft = 〈ϕtt, ϕs〉+ 〈ϕt, ϕst〉
Es = 2〈ϕts, ϕt〉 Fs = 〈ϕts, ϕs〉+ 〈ϕt, ϕss〉
Ess = 2(〈ϕtss, ϕt〉+ 〈ϕts, ϕts〉) Fts = 〈ϕtst, ϕs〉+ 〈ϕtt, ϕss〉+ 1

2Ess

Gt = 2〈ϕst, ϕs〉
Gs = 2〈ϕss, ϕs〉

Fts − 1
2 (Ess +Gtt) = 〈ϕtt, ϕss〉 − 〈ϕst, ϕst〉

Summing up, we obtain :

KD4 = det





E F Fs − 1
2Gt

F G 1
2Gs

1
2Et Ft − 1

2Es Fts − 1
2 (Ess +Gtt)



−det





E F 1
2Es

F G 1
2Gt

1
2Es

1
2Gt 0





Hence,

K is a function of E, F, G and their derivatives (up to order 2). (3.1.7)

Based on this we are finally in a position to prove

3.1.18 Theorem. (Theorema Egregium, Gauss, 1827) The Gauss curvature K is
intrinsic. Locally isometric hypersurfaces in R3 have the same Gauss curvature in
corresponding points.

Proof. K is intrinsic by (3.1.7). Let A : M → N be a local isometry of hy-
persurfaces M , N in R3, p0 ∈ M and ϕ a local parametrization of M around p0.
Then ψ := A ◦ ϕ is a local parametrization of N around A(p0). Since A is a local
isometry, 〈TpA · v, TpA · w〉 = 〈v, w〉 ∀v, w ∈ TpM (cf. (3.1.4)). In particular, let
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v = T(t,s)ϕ(e1) = ϕt, w = T(t,s)ϕ(e2) = ϕs, p = ϕ(t, s). Then:

〈ϕt, ϕt〉 = 〈v, v〉 = 〈TpAv, TpAv〉
= 〈 Tϕ(t,s)A ◦ T(t,s)ϕ

︸ ︷︷ ︸

=T(t,s)(A◦ϕ)=T(t,s)ψ

(e1), Tϕ(t,s)A ◦ T(t,s)ϕ(e1)〉

= 〈ψt, ψt〉,

so Eϕ|ϕ(t,s) = Eψ
∣
∣
ψ(t,s)

and analogously for F and G. Hence by (3.1.7), K(p) =

K(A(p)). 2

3.2 Covariant Derivatives

Throughout this section we will assume M to be an oriented hypersurface in Rn.
The directional derivative of a smooth map f : U → R (U ⊆ Rn open) in the
direction v ∈ Rn (the rate of change of f in the direction of v) is

Dvf(x) = lim
t→0

1

t
(f(x+ tv)− f(x)) =

d

dt

∣
∣
∣
∣
0

f(x+ tv) = Df(x) · v.

Let M be a manifold, f ∈ C∞(M), v ∈ TpM . Then analogously (cf. (2.4.3)):

∂vf = v(f) = Tpf(v).

In particular, ifM is a submanifold of Rn and f ∈ C∞(M), we may choose a smooth
extension f̃ of f to a neighborhood of p in Rn. Then

∂vf = Tpf(v) = Df̃(p) · v =: Dvf(p). (3.2.1)

Again we call Dvf the directional derivative of f in the direction v.
Analogously we want to study the rate of change of a vector field in the direction
of a tangent vector. Let M be a submanifold of Rn, Y ∈ X(M), and v ∈ TpM . By

2.5.21, Y :M → Rn is smooth and by 3.1.6 there exists a smooth extension Ỹ of Y
to a neighborhood in Rn of any given point of M . We set

DvY (p) := TpY (v) = lim
t→0

1

t
(Ỹ (p+ tv)− Ỹ (p)) =

d

dt

∣
∣
∣
∣
0

Ỹ (p+ tv). (3.2.2)

DvY is called the directional derivative of Y in the direction v. If Ỹ = (Ỹ 1, . . . , Ỹ n),
then DỸ (p) = (DỸ 1(p), . . . , DỸ n(p))t, so by 2.4.2

DvY (p) = DỸ (p) · v = (DỸ 1(p) · v
︸ ︷︷ ︸

=TpY 1(v)

, . . . , DỸ n(p) · v
︸ ︷︷ ︸

TpY n(v)

) = (v(Y 1), . . . , v(Y n)). (3.2.3)

DvY is the rate of change of Y in the direction v. Note, however, that DvY (p) 6∈
TpM in general! If X ∈ X(M), then let

DXY := p 7→ DXpY (p) (3.2.4)

be the directional derivative of Y in the direction X. By (3.2.3) we have

DXY (p) = DỸ (p)X(p),

so DXY ∈ C∞(M,Rn). In general, however, DXY 6∈ X(M) (since DXY (p) 6∈ TpM
in general).
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3.2.1 Example. Let ϕ be a local parametrization of M and ψ = (x1, . . . , xn−1) =
ϕ−1 the corresponding chart. Then (with x := ϕ−1(p)), ∂

∂xj

∣
∣
p
= Djϕ(x). With Φ

as in 2.1.8, (T ) ⇒ (P ),
(
∂
∂xj

)∼
:= q 7→ DjΦ(Φ

−1(q)) is a smooth extension of ∂
∂xj

to a neighborhood of p in Rn. Hence, recalling that Diϕ(x) = DiΦ(x) = DΦ(x) · ei,
we obtain

D ∂

∂xi

∂

∂xj
=

d

dt

∣
∣
∣
∣
0

DjΦ(Φ
−1(p+ tDiϕ(x))) = D(DjΦ)(x) ·DΦ−1(p) ·DΦ(x) · ei

= D(DjΦ)(x) · ei = DijΦ(x) =
∂2

∂xi∂xj
ϕ(x).

To obtain an intrinsic quantity from DXY , we project it orthogonally onto TpM :

3.2.2 Definition. Let M be an oriented hypersurface in Rn, X, Y ∈ X(M). The
covariant derivative of Y in the direction X is defined as the tangent part of DXY :

∇XY := (DXY )tang = DXY − 〈DXY, ν〉ν.

For f ∈ C∞(M) we set ∇Xf := DXf .

3.2.3 Proposition. Let M be an oriented hypersurface in Rn, X, Y ∈ X(M).
Then:

(i) ∇XY ∈ X(M).

(ii) The normal part of DXY is (DXY )nor = 〈DXY, ν〉 · ν = −II(X,Y ) · ν.

(iii) DXY = ∇XY − II(X,Y ) · ν (Gauss equation).

Proof. (i) The smoothness of ∇XY : M → Rn follows from that of DXY and ν.
Since clearly ∇XY (p) ∈ TpM for all p, ∇XY ∈ X(M) by 2.5.21.
(ii) Let ϕ be a local parametrization of M and

f(x) := 〈Y ◦ ϕ(x)
︸ ︷︷ ︸

∈TpM

, ν ◦ ϕ(x)
︸ ︷︷ ︸

∈TpM⊥

〉 ≡ 0.

Let v ∈ TpM . Then by 2.4.1 (i) there exists some w ∈ Rn−1 with v = Dϕ(x) · w
(ϕ(x) = p). Hence

0 = Df(x) · w = 〈D(Y ◦ ϕ)(x) · w, ν ◦ ϕ(x)〉+ 〈Y ◦ ϕ(x), D(ν ◦ ϕ)(x) · w〉 =
= 〈DỸ (p)Dϕ(x) · w

︸ ︷︷ ︸

=v

, ν(p)〉+ 〈Y (p), Dν̃(p)
︸ ︷︷ ︸

=Lp

·Dϕ(x) · w
︸ ︷︷ ︸

=v

〉 =

= 〈DvY (p), νp〉+ 〈Yp, Lpv〉.

In particular, for v = Xp we conclude:

〈DXpY (p), νp〉 = −〈Yp, LpXp〉 = −II(Xp, Yp).

(iii) is immediate from 3.2.2 and (ii). 2

3.2.4 Lemma. Let X, Y, Xi, Yi ∈ X(M), M an oriented hypersurface in Rn. Let
f ∈ C∞(M), α ∈ R. Then:

(i) DfX1+X2
Y = fDX1

Y +DX2
Y

∇fX1+X2
Y = f∇X1

Y +∇X2
Y
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(ii) DX(αY1 + Y2) = αDXY1 +DXY2
∇X(αY1 + Y2) = α∇XY1 +∇XY2

(iii) DX(fY ) = fDXY +DXf · Y
∇X(fY ) = f∇XY +∇Xf · Y

(iv) DX〈Y1, Y2〉 = 〈DXY1, Y2〉+ 〈Y1, DXY2〉
∇X〈Y1, Y2〉 = 〈∇XY1, Y2〉+ 〈Y1,∇XY2〉

Proof. Since DXY (p) = DỸ (p) · Xp and DXf(p) = Df̃(p) · Xp, (i)–(iv) for D
follow directly from the usual rules of differentiation. By means of 3.2.2, (i)–(iii)
for ∇ follow from the corresponding properties of D. Finally,

∇X〈Y1, Y2〉 = DX〈Y1, Y2〉
= 〈DXY1, Y2〉+ 〈Y1, DXY2〉

3.2.2, ν⊥Y1,Y2
= 〈∇XY1, Y2〉+ 〈Y1,∇XY2〉.

2

3.2.5 Proposition. Let M be a hypersurface, X, Y ∈ X(M). Then:

[X,Y ] = DXY −DYX = ∇XY −∇YX

Proof. [X,Y ] = DXY −DYX follows from 3.1.6 (ii) and (3.2.4). Moreover,

∇XY −∇YX = DXY −DYX −〈DXY, ν〉 · ν + 〈DYX, ν〉 · ν
︸ ︷︷ ︸

=0 by3.2.3(ii), since II symm.

.

2

To show that the covariant derivative ∇ is intrinsic it suffices to show that it can be
expressed solely by means of the first fundamental form, i.e., the Riemannian metric.
To do this we first derive some local formulas. Let ϕ be a local parametrization
of M , and (ψ = ϕ−1 = (x1, . . . , xn−1), V ) the corresponding chart. Then (with
x = ϕ−1(p)), ∂

∂xi

∣
∣
p
= Diϕ(x) and by (3.1.3) we have:

gij(p) = 〈 ∂

∂xi

∣
∣
∣
∣
p

,
∂

∂xj

∣
∣
∣
∣
p

〉 = 〈Diϕ(x), Djϕ(x)〉.

LetX, Y ∈ X(M) with local representationsX =
∑n−1
i=1 X

iDiϕ, Y =
∑n−1
j=1 Y

jDjϕ.
Then according to 3.2.4,

∇XY =

n−1∑

i=1

Xi∇ ∂

∂xi
Y =

n−1∑

i,j=1

Xi∇ ∂

∂xi
(Y j

∂

∂xj
)

=

n−1∑

i,j=1

Xi(
∂Y j

∂xi
∂

∂xj
+ Y j∇ ∂

∂xi

∂

∂xj
).

∇XY is uniquely determined by all scalar products 〈∇XY,
∂
∂xk

〉 (cf. 3.1.16). It
therefore suffices to show that all

〈∇XY,
∂

∂xk
〉 =

n−1∑

i,j=1

Xi(
∂Y j

∂xi
gjk + Y j〈∇ ∂

∂xi

∂

∂xj
,
∂

∂xk
〉)
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are intrinsic, i.e., depend exclusively on g. In this expression, the

Γij,k := 〈∇ ∂

∂xi

∂

∂xj
,
∂

∂xk
〉 (3.2.5)

are called Christoffel symbols of the first kind. Since [ ∂
∂xi

, ∂
∂xj

] = 0 ∀i, j (cf. 2.5.15)
and using 3.2.5,

∇ ∂

∂xi

∂

∂xj
= ∇ ∂

∂xj

∂

∂xi
, (∗)

so Γij,k = Γji,k ∀i, j, k. Since ∇ ∂

∂xi

∂
∂xj

∈ X(V ) there exist smooth functions Γkij
such that

∇ ∂

∂xi

∂

∂xj
=
n−1∑

k=1

Γkij
∂

∂xk
. (3.2.6)

The Γkij are called Christoffel symbols of the second kind. They, too, are symmetric

in i, j by (∗): Γkij = Γkji ∀i, j, k. By (3.2.5) and (3.2.6) it follows that

Γij,k =

n−1∑

m=1

Γmij gmk. (3.2.7)

It remains to show that the Γij,k are intrinsic, i.e., depend only on g. We have:

∂

∂xk
gij = D ∂

∂xk
gij = ∇ ∂

∂xk
gij = ∇ ∂

∂xk
〈 ∂

∂xi
,
∂

∂xj
〉

3.2.4(iv)
= 〈∇ ∂

∂xk

∂

∂xi
,
∂

∂xj
〉+ 〈 ∂

∂xi
,∇ ∂

∂xk

∂

∂xj
〉 (3.2.5)

= Γik,j + Γjk,i.

Cyclic permutation gives

∂

∂xi
gjk = Γji,k + Γki,j

∂

∂xj
gki = Γkj,i + Γij,k,

from which by adding resp. subtracting we obtain

Γij,k =
1

2
(− ∂

∂xk
gij +

∂

∂xi
gjk +

∂

∂xj
gki).

This expression in fact depends exclusively on g. Thus we have proved:

3.2.6 Theorem. The covariant derivative is an intrinsic quantity.

2

3.2.7 Remark. Keeping the above notations, let II( ∂
∂xi

, ∂
∂xj

) =: hij . Then with
p = ϕ(x) we have:

Dijϕ(x)
3.2.1
= D ∂

∂xi

∂

∂xj
(p)

3.2.3(iii)
= ∇ ∂

∂xi

∂

∂xj

∣
∣
∣
∣
p

− hij |pνp

(3.2.6)
=

∑

k

Γkij(p)
∂

∂xk

∣
∣
∣
∣
p

− hij |p · νp (3.2.8)

91



3.3 Geodesics

A vector field Y on Rn is constant iff DY = 0, iff DXY = 0 for all vector fields
X on Rn. Since Yp ∈ TpR

n ∼= Rn this is equivalent to all Yp being parallel (and of
equal length). For hypersurfaces we analogously define:

3.3.1 Definition. Let M be a hypersurface in Rn, Y ∈ X(M). Y is called parallel,
if ∇XY = 0 for all X ∈ X(M).

Geodesics in Rn, i.e., straight lines, have the property that their tangent vectors
are always parallel along the straight line. To generalize this notion, we need the
following concept:

3.3.2 Definition. Let M ⊆ Rn be a hypersurface and c : I →M . A smooth map
X : I → Rn is called a vector field along c if X(t) ∈ Tc(t)M for all t ∈ I. The space
of all vector fields along c is denoted by X(c).

3.3.3 Example. Let c : I →M C∞. Then ċ : I → Rn ∈ X(c) (ċ(t) ∈ Tc(t)M ∀t).

Let Y ∈ X(M), p ∈ M and Ỹ a smooth extension of Y to some neighborhood of p
in Rn. Let v ∈ TpM . Then by (3.2.2), DvY (p) = DỸ (p) · v. If c : I →M is a curve
with c(0) = p and c′(0) = v, then

d

dt

∣
∣
∣
∣
0

Y (c(t)) =
d

dt

∣
∣
∣
∣
0

Ỹ (c(t)) = DỸ (c(0)
︸︷︷︸

=p

) ċ(0)
︸︷︷︸

=v

= DvY (p).

To determine DvY (p) it therefore suffices to know Y along any such curve c. Hence
the same is true for ∇vY (p). If Y ∈ X(M) and c : I → M is smooth, then by the
above, Dċ(t)Y = d

dt
(Y ◦ c). If Y ∈ X(c), we analogously define:

Dċ(t)Y (t) :=
d

dt
Y (t) (3.3.1)

and

∇ċ(t)Y (t) := (Dċ(t)Y (t))tang = Dċ(t)Y (t)− 〈Dċ(t)Y (t), ν(c(t))〉ν(c(t)). (3.3.2)

3.3.4 Lemma. Let ϕ be a local parametrization, ϕ−1 = (x1, . . . , xn−1), and c =
ϕ ◦ u a smooth curve in M with local representation t 7→ u(t). Let Y ∈ X(c) with

Y (t) =
∑n−1
i=1 Y

i(t) ∂
∂xi

∣
∣
c(t)

. Then:

∇ċ(t)Y (t) =
n−1∑

k=1




dY k

dt
+

n−1∑

i,j=1

Y i(t)
duj

dt
Γkij(c(t))




∂

∂xk

∣
∣
∣
∣
c(t)

.

Proof. Since Y (t) =
∑n−1
i=1 Y

i(t)Diϕ(ϕ
−1(c(t))
︸ ︷︷ ︸

=u(t)

), by (3.3.1) we have

Dċ(t)Y (t) =
n−1∑

i=1

dY i(t)

dt
Diϕ(u(t)) +

n−1∑

i,j=1

Y i(t)Dijϕ(u(t))
duj

dt

(3.2.8)
=

n−1∑

k=1





dY k(t)

dt
+

n−1∑

i,j=1

Y i(t)
duj

dt
Γkij(ϕ ◦ u(t)

︸ ︷︷ ︸

=c(t)

)






∂

∂xk

∣
∣
∣
∣
c(t)

+ (. . . ) · ν.

The claim therefore follows from (3.3.2). 2
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3.3.5 Definition. A non-constant curve c : I →M is called geodesic, if ∇ċ(t)ċ(t) =
0 for all t.

Heuristically this means that ċ is parallelly transported along c, i.e., the curve
goes as straight as the manifold allows. From the point of view of physics, note

that Dċ(t)ċ(t)
(3.3.1)
= d

dt
ċ(t) = c̈(t) is the acceleration of a point particle moving

along c. ∇ċċ is the tangential component of this acceleration. In this picture, a
geodesic is a curve in M which feels no acceleration in (any direction tangent to)
the hypersurface. The normal component of c̈ corresponds to the force (F = mc̈)
which is needed to hold the particle withinM . Hence c is a geodesic iff c̈(t)⊥Tc(t)M
for all t.

3.3.6 Proposition. Let ϕ be a local parametrization, ϕ−1 = (x1, . . . , xn−1), and
c = ϕ ◦ u a smooth curve. c is a geodesic if and only if it satisfies

ük(t) +

n−1∑

i,j=1

u̇i(t)u̇j(t)Γkij(ϕ(u(t))) = 0 ∀k. (3.3.3)

Proof. This follows by applying 3.3.4 and 3.3.5 to Y = ċ: c = ϕ ◦ u, so

ċ(t) =
∑

i

Diϕ(u(t)) · u̇i(t) =
∑

i

∂

∂xi

∣
∣
∣
∣
c(t)

u̇i(t),

i.e., Y i(t) = u̇i(t) ∀i. 2

(3.3.3) is called the system of geodesic equations. It is a second order system of
nonlinear ODEs. It always has local solutions, but not necessarily global ones.
The following result shows that geodesics are precisely the extremals of the arclength
functional. Its proof uses standard methods of the calculus of variations (in fact it
shows that the geodesic equations are the Euler-Lagrange equations of the problem
of minimizing the arclength of curves connecting two given curves).

3.3.7 Theorem. Let p, q ∈ M . A curve c connecting p and q is a geodesic if and
only if its arclength is an extremal among all lengths of curves connecting p and q.

Proof. Let c : [a, b] → M , c(a) = p, c(b) = q. The length of c is extremal if
d
ds

∣
∣
0
L(cs) = 0 for every family of curves (t, s) 7→ cs(t) ≡ c(t, s) with cs(a) = p,

cs(b) = q ∀s and c0 = c. Let c be parametrized by arclength. Then

d

ds

∣
∣
∣
∣
0

L(cs) =
d

ds

∣
∣
∣
∣
0

∫ b

a

‖ ∂
∂t
c(t, s)‖

︸ ︷︷ ︸

=〈ċ(t,s),ċ(t,s)〉
1
2

=

=

∫ b

a

1

2

∂
∂s

∣
∣
0
〈ċ(t, s), ċ(t, s)〉
‖∂tc(t, 0)‖
︸ ︷︷ ︸

=1

dt =

=

∫ b

a

〈 ∂
∂t

∂

∂s

∣
∣
∣
∣
0

c(t, s),
∂

∂t
c(t, 0)〉dt =

p.I.
= [〈 ∂

∂s

∣
∣
∣
∣
0

c(t, s),
∂

∂t
c(t, 0)〉

︸ ︷︷ ︸

=0, since
c(b, s) ≡ q
c(a, s) ≡ p

]ba −
∫ b

a

〈 ∂

∂s

∣
∣
∣
∣
0

c(t, s)

︸ ︷︷ ︸

=:η(t)∈Tc(t,0)M

,
∂2

∂t2
c(t, 0)〉dt =

= −
∫ b

a

〈η(t), c̈(t)〉dt = (∗)

93



If L(c) is extremal, we may freely choose c(t, s). In particular we may suppose that
η(t) = h(t)(c̈(t)− 〈c̈(t), νc(t)〉νc(t)) with h : [a, b] → R+ smooth, h(a) = h(b) = 0.
Then

(∗) =
∫ b

a

h(t)
︸︷︷︸

≥0

( (〈c̈, ν ◦ c〉)2 − 〈c̈, c̈〉
︸ ︷︷ ︸

≤0 by CSI, since ‖ν‖=1

)dt.

Since d
ds

∣
∣
0
L(cs) = 0, we must in fact have equality in the Cauchy Schwarz inequality

(CSI) for all t. Therefore, c̈(t) must be proportional to ν(c(t)) for all t, so c̈(t) ∈
Tc(t)M

⊥, and c is a geodesic.

Conversely, if c is a geodesic then d
dt
(‖ċ‖2) = 2〈ċ, c̈〉 c̈∈Tc(t)M

⊥

= 0 , so ‖ċ‖ is constant,
implying that c is parametrized proportional to arclength. Hence the above calcu-
lation is applicable. Then in (∗) we have η(t) ∈ Tc(t)M , so 〈η(t), c̈(t)〉 = 0 for all t.

Therefore, d
ds

∣
∣
0
L(cs) = 0, i.e., L(c) is extremal. 2
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