
Alexandrov Spaces

Lecture notes

Spring term 2018

Michael Kunzinger
michael.kunzinger@univie.ac.at

http://www.mat.univie.ac.at/~mike

and

Roland Steinbauer
roland.steinbauer@univie.ac.at

http://www.mat.univie.ac.at/~stein

University of Vienna
Faculty of Mathematics

Oskar-Morgenstern-Platz 1
A-1090 Wien
AUSTRIA

Jannuary 21, 2021

mailto:michael.kunzinger@univie.ac.at
http://www.mat.univie.ac.at/~mike
mailto:roland.steinbauer@univie.ac.at
http://www.mat.univie.ac.at/~stein


Preface

The central idea of metric geometry is to describe geometric concepts such as length, angles,
and curvature purely in terms of metric distances. As it turns out, many notions familiar from
differential geometry can indeed be captured in such ‘synthetic’ terms alone.

The foundational concept is that of a length space, i.e., a metric space where the metric distance
between two points is given by the infimum of the length of all connecting curves. Key examples are
Riemannian manifolds and polyhedra. Curvature bounds in such spaces are based on comparison
with triangles in certain model spaces. E.g., the sphere has positive curvature because triangles
are fatter than Euclidean triangles of the same sidelengths. Spaces with a curvature bound in this
sense are called Alexandrov spaces.

Metric geometry, and, in particular, the theory of length spaces, is a vast and very active field
of research that has found applications in diverse mathematical disciplines, such as differential
geometry, group theory, dynamical systems and partial differential equations. It has led to identi-
fying the ‘metric core’ of many results in differential geometry, to clarifying the interdependence of
various concepts, and to generalizations of central notions in the field to low regularity situations.

These notes were written to accompany our lecture course in the spring term of 2018. The main
source we have drawn from is the monograph [BBI01], A course in metric geometry by Dmitri and
Yuri Burago, and Sergei Ivanov. While beeing the textbook on the subject it is not an easy read
and we have strived to be more verbose to benefit our students. However, in general we rather
closely follow its account, covering the main threads of approximately the first half of the book,
that is, Chapters 1–6.

In some more detail the contents is as follows: In chapter 1 we lay the foundations by discussing
in detail the notion of a length structure and by introducing the theory of length spaces. Chapter
2 is devoted to basic constructions of length spaces and introduces the main classes of examples
to be used later on. The central topic of curavture bounds is introduced and extensively studied
in Chapter 3. Finally, in Chapter 4, we connect Riemannian geometry to metric geometry by
establishing that any Riemannian manifold is a length space.

We are greatful to our students for pointing out the inevitable lapses in earlier versions of these
notes. Special thanks go to Benedict Schinnerl who revised the earlier LATEX-file and coded many
of the figures.

M.K. & R.S.
January 2021
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Chapter 1

Length Spaces

The general theme of this chapter is the measurement of length. To begin with, consider two
points on the surface of the earth, say Vienna and Auckland, New Zealand. Then the information
that the distance between these two cities is approximately 12.000 km, while technically correct,
is not very useful in every day terms. In fact, this distance is just the length of a tunnel right
through the middle of the earth. Similarly, the information that the two cities are approximately
18.000 km apart as measured by great circle distance is not of big practical value either. In fact,
the cheaper flights at the time of writing, feature two stops at e.g. London and Chongqing, China
and the actual distance to be traveled is much greater. The message of course is, that “distances”
actually depend on the path taken between the point of departure and the final destination.
More abstractly, consider two points on a surface in Euclidean space. Then we can measure their
Euclidean distance, but we can also introduce a new distance which is measured by the shortest
path within the surface. This is the key idea of this section: A distance function in a metric
space is called (strictly) intrinsic, if the distance between two points is given by the length of the
shortest path connecting them.
In this approach the length of paths becomes the primary notion and we begin our endeavour by
abstractly defining a minimal mathematical structure which allows formulation of such a notion.

1.1 Length structures and length spaces

We begin by introducing the basic notion of a length structure. Loosely speaking it consists of a
class of so-called admissible paths in a topological space together with a notion of length associated
with each admissible path that together satisfy a number of “natural” properties. Before making
these notions precise we fix some basic notations and conventions.

1.1.1 Convention (Interval, path). By an interval I we mean any connected subset of R may
it be open or closed, finite or infinite. Also a single point counts as an interval. A path in a
topological space X is a continuous map γ : I → X defined on an interval I.

1.1.2 Definition (Length structure). A length structure on a topological space X is a subset
A of all paths in X, called the admissible paths, together with a function

L : A → [0,∞], (1.1.1)

called the length, which satisfy the following list of properties:

(A1) The class A is closed under restrictions, i.e., if γ : [a, b]→ X is admissible and a ≤ c ≤ d ≤ b
then the restriction γ|[c,d] of γ to [c, d] is also admissible.

(A2) A is closed under concatenations, that is if γ : [a, b]→ X is a path such that the restrictions
γ1 = γ|[a,c] and γ2 = γ|[c,d] are admissible for some a ≤ c ≤ b, then so is their concatenation
γ.

1



2 Chapter 1. Length Spaces

(A3) A is closed under linear reparametrisations, i.e., for A 3 γ : [a, b] → X and a homeomor-
phism ϕ : [c, d]→ [a, b] of the form ϕ(t) = αt+β (α, β ∈ R) the composition γ◦ϕ : [c, d]→ X
is also an admissible path.

(L1) L is additive: If γ : [a, b] → X is admissible then L(γ) = L(γ|[a,c]) + L(γ|[c,d]) for any
c ∈ [a, b].

(L2) L depends continuously on the parameter of the path. Formally, if γ : [a, b]→ X is admis-
sible and of finite length we set L(γ, a, t) := L(γ|[a,t]). We then require t 7→ L(γ, a, t) to be
continuous and the length of all constant paths to vanish, L(t 7→ x) = 0 1

(L3) L is invariant under linear reparametrisations, i.e., for γ, ϕ as in (A3) we require L(γ ◦ϕ) =
L(γ).

(L4) The length structure respects the topology of X in the following sense: For any neighbour-
hood Ux of a point x ∈ X the length of paths connecting x with a point in the complement
of Ux is uniformly bounded away from zero, i.e.,

inf{L(γ) : γ(a) = x, γ(b) ∈ X \ Ux} > 0. (1.1.2)

1.1.3 Example (Admissible paths and length structures). There is an abundant variety
of natural examples of admissible paths and length structures. A simple one is the piecewise
smooth paths in Rn with the usual length L(γ) =

∫
|γ̇(t)|. (Recall that γ : [a, b] → X is called a

piecewise smooth path, if it is continuous and there is a finite partition a = t0 < t1 < · · · < tk = b
of the domain such that all γ|ti,ti+1 are smooth. Also observe that the smooth paths do not form
an admissible class, since (A2) fails.) Also piecewise C1-paths on Rn form a class of admissible
paths and a length structure with the usual length.

1.1.4 Remark (On reparametrisations). Every class of paths comes with its own ‘natural’
class of reparametrisations, e.g. smooth paths in Rn with the class of diffeomorphisms. Note,
however, that in (A3) and (L3) we only require compatibility with the class of linear reparametri-
sations. Hence if we deal with such a natural class it is sufficient to know that the natural class
of reparametrisations includes all linear ones.

1.1.5 Notation (Length). We will often use the notation L(γ, a, b) introduced in (L2). Explic-
itly, if γ : I → X is admissible and a ≤ b ∈ I then L(γ, a, b) denotes the length of the restriction
γ|[a,b], i.e., L(γ, a, b) = L(γ|[a,b]).
We will also set L(γ, b, a) = −L(γ, a, b). With these conventions we have for all a, b, c ∈ I that
L(γ, a, b) = L(γ, a, c) + L(γ, c, b).

Given the notion of a length structure we can define a metric on X associated with this structure,
the so-called length metric. Note that following [BBI01] we generally allow metrics to take on the
value ∞. To avoid trivialities it is reasonable to assume that the topology of X is Hausdorff (see
1.1.7 below) and we will henceforth do so.

1.1.6 Definition (Length metric). Let (X,A,L) be a length structure with X Hausdorff and
let x, y ∈ X. We define the associated distance or length metric to be the infimum of lengths of
admissible paths connecting x and y, i.e.,

dL(x, y) := inf{L(γ) : A 3 γ : [a, b]→ X, γ(a) = x, γ(b) = y}. (1.1.3)

If it is clear from the context which length we are dealing with, we will often drop the subscript
in dL and simply write d.

1Note that, if we already knew a constant path γ to be of finite length, then by (L1) L(γ, a, a) = L(γ, a, a) +
L(γ, a, a) and hence L(γ, a, a) = 0.



1.1. LENGTH STRUCTURES AND LENGTH SPACES 3

1.1.7 Lemma (Length metric). Let (X,A,L) be a length structure with X Hausdorff and with
length metric dL. Then (X, dL) is a metric space.

Proof. We simply check the metric properties.
First dL is positive definite since for x ∈ X we have 0 ≤ dL(x, x) = inf{L(γ) : A 3 γ : [a, b] →
X, γ(a) = x, γ(b) = x} ≤ L(t 7→ x) = 0. Moreover, if dL(x, y) = 0 but x 6= y, then by the
Hausdorff property there are disjoint neigbourhoods Ux, Uy of x, y. Now every path connecting x
and y has to leave Ux and by (L4) the infimum of the length of all such paths is non-vanishing2.
The symmetry of dL is obvious (by (L3)).
Finally the triangle inequality holds since for x, y, z ∈ X we have (in an informal notation, see
Figure 1.1)

dL(x, z) = inf{L(γ) : γ connects x with z} ≤ inf{L(γ) : γ connects x with z via y}
= inf{L(γ1) + L(γ2) : γ1 connects x with y and γ2 connects y with z}
= inf{L(γ1) : γ1 connects x with y} + inf{L(γ2) : γ2 connects y with z}
= dL(x, y) + dL(y, z) .

2

x y

z

γ1 γ2

Figure 1.1: paths connecting x and z via y

In the following we will be concerned with properties of metric spaces that arise via the above
construction from a length structure. Let’s give it a name.

1.1.8 Definition (Length space & metric). A metric space (X, d) is called a length space if
the metric d can be obtained as the length metric dL of a length structure (X,A,L). In this case
we call d intrinsic or length metric.

1.1.9 Remark (dL may be infinite). Note that, if X possesses two connected components
there will be no continuous paths between points in different components thus the set in the
infimum is empty and we use the convention inf{∅} = ∞. Also there might be points in X that
can be joined by continuous paths but they are all of infinite length. Hence the following notion
turns out to be useful.

1.1.10 Definition (Accessibility component). Let (X,A,L) be a length structure. We say
two points x, y ∈ X belong to the same accessibility component if they can be connected by an
admissible path of finite length.

Before deriving the basic properties of accessibility components we prove the following technical
but important results.

1.1.11 Lemma (Continuity of admissible paths). In a length structure (X,A,L) any admis-
sible path of finite length is continuous also with respect to the length metric dL.

2Observe that is is actually sufficient for this argument to suppose the topology of X to satisfy the separation
axiom T0.
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Proof. Let γ : [a, b] → X be admissible with L(γ) < ∞. We show that γ is continuous in
t0 ∈ [a, b] w.r.t. dL. Let t ∈ [a, b] then

dL(γ(t0), γ(t)) ≤ L(γ, t0, t) = |L(γ, a, t0)− L(γ, a, t)|. (1.1.4)

Now by (L2), L(γ, a, t)→ L(γ, a, t0) for t→ t0 and hence the claim follows. 2

1.1.12 Lemma (Local path connectedness). Any length space is locally path connected, that
is, every neighbourhood of any point contains a path connected neighbourhood (i.e., a neighbourhood
such that any two points can be connected by a path in this neighbourhood).

Proof. Let (X, d = dL) be a length space. We show that any open ball Bη(x) is path connected.
Indeed for any y ∈ Bη(x) we have dL(x, y) =: δ < η. Then there exists an admissible γxy from x
to y of length L(γxy) = δ + ε, where ε can be chosen such that δ + ε < η. Now by Lemma 1.1.11
γxy is continuous w.r.t. dL and it is entirely contained in Bη(x). 2

1.1.13 Lemma (Accessibility). Let X be a length space. Then we have

(i) Accessibility by paths is an equivalence relation.

(ii) Accessibility components coincide with components of finiteness of dL.

(iii) Accessibility components are contained in path connected components (which agree with con-
nected components) but in general are not equal to them.3

Proof. (i): By definition x ∼ y, if there is an admissible finite path γxy from x to y. It is easy
to see that this actually is an equivalence relation: Reflexivity is clear and so is symmetry (using
(A3) and (L3)). Finally transitivity is immediate from (A2) and (L1).

(ii) is clear.

(iii) To begin with, recall that any locally path connected topological space is connected iff it is
path connected (see, e.g. [Wil04, Thms. 27.2, 27.5]).
Now if y is in the accessibility component of x, then there is an admissible path γxy connecting x
with y which is of finite length. By Lemma 1.1.11, γxy is continuous also w.r.t. dL and so y is in
the path connected component of x. 2

1.1.14 Remark (Accessibility components vs. path connected components). In general
path connected components are larger than accessibility components: If a point y is in the path
connected component of x then there is a continuous (in (X, d)) path γxy connecting these two
points. Although γxy will in general be continuous w.r.t. the topology of X, see Lemma 1.1.15,
below, it need not be of finite length! As an example consider X to be the union of the graph of
the function f(x) = x sin(1/x) (x > 0) with (0, 0) with the trace topology of R2. Then any point y
on the graph is in the path connected component of (0, 0) but every connecting path is of infinite
length, see Figure 1.2.

0

x

Figure 1.2: The graph of x sin
(

1
x

)
.

0
x

Figure 1.3: The graph of sin
(

1
x

)
.

3contrary to the respective statement in [BBI01, Ex. 2.1.3(3)], see also Remark 1.1.14, below.
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Observe that in general the topology induced by the length metric dL on X will be different
from the original Hausdorff topology on X. A number of respective examples will appear later.
However, the topology induced by the length metric is always the finer one.

1.1.15 Lemma (dL is finer). Let (X,A,L) be a length structure with length metric dL. Then
any open set in X (w.r.t. its original topology) is also open in (X, dL). Hence the topology induced
by dL is finer than the original topology on X.

Proof. Let U be open in X, x ∈ U and set εx := inf{dL(x, y) : y 6∈ U}. Then by (L4) εx > 0 and
since εx = dL(x,X \ U) we have that Bεx(x) ⊆ U so that U is open in (X, dL). 2

It is a fact that not every metric space is a length space. A simple example is R2 with the unit
disc removed, see Figure 1.4. Hence even if (X, d) is a length space and Y ⊆ X then (Y, d|Y ) need
not be a length space. An example is the unit circle in R2: while R2 with the Euclidean metric is
a length space, restricting this metric to the unit circle does not yield a length metric, see Figure,
1.5.

Another relevant obstruction is given by Lemma 1.1.12. In fact, if a metric space is not locally path
connected, its metric cannot be induced by any length structure. This is the reason underlying
the following examples.

x y

Figure 1.4: R2 \B1(0) with the induced met-
ric of R2 is not a length space. The infimum
of the length of paths connecting e.g. x =
(−1.5, 0) and y = (1.5, 0) is not d(x, y) = 3.

x y

π

2

Figure 1.5: The unit circle with the metric
induced from R2 is not a length space. The
distance of e.g. antipodal points is 2 whereas
any connecting path has at least length π.

1.1.16 Example (Not a length space).

(i) The set of rational numbers Q ⊆ R is not homeomorphic to a length space.

(ii) The union of the y-axis in R2 with the graph of the function f(x) = sin(1/x) (x > 0) with
the trace topology of R2 is not homeomorphic to a length space, see Figure 1.3. In fact, this
space is a standard example of a space which is connected but not (locally) path connected.

(iii) The ‘fan’, i.e., the union of segments X =
⋃∞
n=1[(0, 0), (cos(1/n), sin(1/n))] ∪ [(0, 0), (1, 0)]

with the induced topology of R2 is not a length space, see Figure 1.6. The distance of the
endpoints of the segments and the point (1, 0) goes to zero while the length of any connecting
curve is at least 2. Moreover, X is not locally path connected, hence not homeomorphic to
any length space.
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Figure 1.6: The ‘fan’ is not a length space.

0x y

Figure 1.7: R2 with the origin removed gives
an incomplete length structure.

Finally we remark that it is essential to use the infimum in Definition 1.1.6 rather than the
minimum: there need not exist a shortest path between two arbitrary points. Just consider the
plane with the origin removed. This is obviously a length space, but there is no shortest path
connecting e.g. any point on the positive x-axis to any point on the negative x-axis. However,
it is still possible to approximate the intrinsic distance of such points with arbitrary precision
by the length of curves connecting them, see Figure 1.7. (Note that this is the essential feature
distinguishing this example from the one with the whole unit disc removed from R2 above, which
does not even yield a length space.)

However, in many applications such a nuisance will be ruled out by some completeness or com-
pactness condition. Hence it is often useful to consider complete length structures in the following
sense.

1.1.17 Definition (complete length structure). A length structure (X,A,L) is called
complete, if for any pair of points x, y ∈ X there is a path γxy ∈ A connecting x and y with
L(γxy) = dL(x, y).

In other words a length structure is complete, if there is an admissible shortest path between any
pair of its points. An intrinsic metric associated with a complete length structure is often called
strictly intrinsic. A length space induced by a complete length structure is often called a geodesic
space and shortest paths are called geodesics. These notions will be of great importance later.

In the following we list several key examples of length structures and intrinsic metrics to give an
impression how wide the zoo of examples actually is.

1.1.18 Example (Key length structures, 1).

(i) Driving in Manhattan. We consider the plane R2 with the usual length of paths but we only
consider paths admissible if they are broken lines with all edges parallel to the coordinate
axes, see Figure 1.8. A ball in the induced metric is a diamond.

(ii) Living on an island. We consider a connected subset U of R2 and again the usual length
of paths which we consider to be admissible if they are piecewise smooth. Then if U is
convex, this length structure induces the Euclidean distance. However, if U is not convex
the resulting length structure gives a distance which corresponds to the one measured by an
individual living on the island U and which cannot swim. Balls w.r.t. the intrinsic metric
have a distorted shape, see Figure 1.9. This metric is not intrinsic unless U is closed.
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x

y

Figure 1.8: Driving in Manhattan: Admissi-
ble paths are parallel to the coordinate axes.
The (open) unit ball is diamond-shaped.

x

y

Figure 1.9: Living on an island: The dis-
tance balls from x are distorted and there is
no shortest path between x and y.

(iii) Crossing a swamp, conformal length. We again consider the Euclidean plane R2 with all
piecewise smooth paths. Given a positive continuous function f on R2 we define the length
via

L(γ) =

b∫
a

f(γ(t)) |γ′(t)| dt (1.1.5)

The corresponding length structure can be thought of as a weighted Euclidean distance.
Intuitively a traveler would assign a high value to f in a region which is hard to traverse,
e.g. a swamp. This is the first example of a Riemannian length structure and, in particular,
a so-called conformally flat one and hence the title.

(iv) Finslerian length. We consider a modification of the above example by allowing f to also
depend on the velocity resp. direction of the traveler and define the length by

L(γ) =

b∫
a

f(γ(t), γ′(t)) dt (1.1.6)

To have the length parametrisation invariant we have to ask for

f(x, kv) = |k|f(x, v) for all x, v ∈ R2 and k ∈ R. (1.1.7)

A somewhat stronger condition is that at every x ∈ R2 the function f(x, .) is a norm on R2

in which case one speaks of a Finslerian length.

1.1.19 Remark (Uphill vs. downhill). We remark the following fact just to set straight
our intuition of the traveler measuring length used in the above examples. One feature of such
a scenario cannot be built into a length structure, namely that is easier to walk downhill than it
is to walk uphill (or vice versa, depending on the condition of your knees). In fact distance in a
metric space must be symmetric!

We discuss several further examples in a quite informal way. These are nevertheless key examples
and we are going to discuss them in a more precise fashion later on—meanwhile, we want to guide
the intuition of the reader.

1.1.20 Example (Key length structures, 2).

(i) Induced length structure. Consider topological Hausdorff spaces X,Y with Y endowed with
a length structure and f : X → Y a continuous function. Then one may define a length



8 Chapter 1. Length Spaces

structure on X induced by the one of Y . Indeed admissible paths γ in X are defined as
those for which f ◦ γ is admissible in Y and the length in X is defined to be the length in
Y of the composition. However, condition (L4) is not automatic and we only use the term
induced length structure, if it indeed holds.

Observe that an induced length structure on X can be dramatically different from say a
metric which was used to define the topology on X. A historically important key example is
that of a surface in R3. We also mention the following fact which is surprising and not easy
to prove: Every Riemannian length structure on Rn can be induced by a map f : Rn → Rn
(which is not smooth).

(ii) Cobweb. Begin with several disjoint line segments in Euclidean space and glue (some of)
their endpoints together. You obtain the picture of a cobweb. It is natural to consider the
length structure given by all (continuous) paths. The length of each segment is just the
Euclidean length. And the length of a path is defined to be the sum of the (countable many)
restrictions to intervals such that the image is contained in one of the segments only, see
figure 1.10. This is an example of so-called metric graph and the construction is a particular
case of gluing which we will discuss further in 2.1.2

(iii) Notebook. A similar example can be constructed by ‘gluing’ several closed half-spaces in
Euclidean space along their boundary lines. This gives rise to a so-called polyhedral length
space (see section 2.2) and can be visualised like an open notebook.

Figure 1.10: Length in a cobweb: The length of the green path is the summed up length of the
green segments.

1.2 Length structures induced by metrics

In this section we will consider a special class of examples that have already frequently occurred
above: Those in which the original topology on X on which the length structure is built upon is
given by a metric. Indeed this class contains some of the most important length spaces of all.
In this case the class of admissible paths can be taken to be just all (continuous) paths. Sometimes
it is, however, preferable to use Lipschitz paths which we define now.

1.2.1 Definition (Lipschitz maps & paths). A map f : X → Y between metric spaces is
called Lipschitz continuous with Lipschitz constant C(> 0) if

dY (f(x1), f(x2)) ≤ C dX(x1, x2) for all x1, x2 ∈ X. (1.2.1)

In particular, a Lipschitz path γ : I → X satisfies d(γ(t), γ(s)) ≤ C|t− s| for all s, t ∈ I.

1.2.1 Length of curves in metric spaces

To begin with we define the length of a path in a metric space. Observe that the following is a
direct generalization of the notion of length of paths in Euclidean space, which is given in terms
of the length of inscribed polygons.
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1.2.2 Definition (Variational length). Let γ : [a, b] → X be a path in a metric space. By a
partition of [a, b] we mean a finite set of points σ = {t0, . . . , tn} such that a = t0 < t1 < · · · <
tn = b. We define the total variation of γ with respect to a partition σ by

Vσ(γ) :=

n−1∑
i=0

d(γ(ti), γ(ti+1)). (1.2.2)

The (variational) length of γ is defined as the supremum over all total variations, i.e.,

Ld(γ) = sup
σ
Vσ(γ) = sup

{
n−1∑
i=0

d(γ(ti), γ(ti+1)) :
σ = {t0, . . . , tn} a partition
of [a, b], and n in N

}
. (1.2.3)

Finally γ is said to be rectifiable if Ld(γ) is finite.

The idea behind the definition of the variational length, i.e., approximation of a path γ by polygons
is illustrated in Figure 1.11. We note the following simple fact, which is immediate from the triangle
inequality: For a path γ : [a, b]→ X the length Ld(γ) is always bounded below by the distance of
its endpoints d(γ(a), γ(b)) which is the length of the ‘zeroth approximation’.

1.2.3 Lemma (Generalized triangle inequality). The variational length of a path γ in a
metric space (X, d) satisfies

Ld(γ) ≥ d(γ(a), γ(b)). (1.2.4)

γ(b) = γ(t4)

γ(a) = γ(t0)

γ(t1)

γ(t2)

γ(t3)

Figure 1.11: The idea behind the variational length is approximation by polygons.

We also have the following useful observation.

1.2.4 Lemma (Constant paths & zero length). The length of a path γ : [a, b]→ X vanishes
iff γ is a constant path, (i.e., iff there is x ∈ X such that γ(t) = x for all t ∈ [a, b]).

Proof. If γ is constant then Vσ(γ) = 0 for any partition and so the length vanishes.
Conversely suppose that L(γ) = 0. Choose some t ∈ (a, b) and consider the partition σ = {a, t, b}.
Then

Vσ(γ) = d(γ(a), γ(t)) + d(γ(t), γ(b)) ≤ L(γ) = 0. (1.2.5)

So d(γ(a), γ(t)) = 0 hence γ(t) = γ(a) for all t ∈ (a, b), which gives that γ is constant. 2

While the above definition makes sense for any metric space it only gives something really useful
if (X, d) is chosen appropriately. In fact, if X is a discrete space then any path in X is constant
with zero length.
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Also there exist non-rectifiable curves in nice spaces as e.g. γ : [0, 1] → R with γ(t) = x sin(1/x)
for x 6= 0 and γ(0) = 0, see Figure 1.2 above, or Koch’s curve in R2, see e.g. [Pap14, Ex. 1.1.11].

As in the Euclidean case the variational length actually is the limit of the total variation as the
edges of the polygons approach each other. To formalise this we call the number

|σ| := max
1≤i≤n−1

|ti − ti+1| (1.2.6)

the modulus of the partition σ = {t0, . . . , tn}. We then have the following statement.

1.2.5 Lemma (Variational length as a limit). For every path in a metric space γ : [a, b]→ X
the length is given by

Ld(γ) = lim
|σ|→0

Vσ(γ). (1.2.7)

Proof. Let M < Ld(γ) (which we have not supposed to be finite). It suffices to show that there
is η > 0 such that for all σ with |σ| < η we have M ≤ Vσ(γ) ≤ Ld(γ). Since the right inequality
always holds we only have to prove the left one.
To this end let ε > 0 such that M + ε < Ld(γ). By definition of L there is a partition τ =
{t0, . . . , tn} of [a, b] with Vτ (γ) > M + ε. Moreover since γ is uniformly continuous on [a, b] there
is 0 < η < (1/4) inf(ti+1 − ti) such that

d(γ(r), γ(s)) ≤ ε

2(n− 1)
provided that |r − s| ≤ η. (1.2.8)

Let now σ be a partition of [a, b] with |σ| ≤ η and define for all 1 ≤ i ≤ n− 1

• t′i to be the vertex of σ closest to ti with t′i ≤ ti, and

• t′′i to be the vertex of σ closest to ti with t′′i > ti.

Now by the choice of |σ| we have

t′i ≤ ti < t′′i < t′i+1 ≤ ti+1 < t′′i+1, (1.2.9)

see Figure 1.12. Then since ‘between’ t′′i and
t′i+1 the two partitions σ∪τ and σ coincide we
have

t′i

ti

t′′i t′i+1

ti+1

t′′i+1

< η < η
> 4η

Figure 1.12: The choice of ti, t
′
i and t′′i .

Vσ∪τ (γ)− Vσ(γ) =

n−1∑
i=1

(
d
(
γ(t′i), γ(ti)

)
+ d
(
γ(ti), γ(t′′i )

)
− d
(
γ(t′i), γ(t′′i )

))
≤
n−1∑
i=1

(
d
(
γ(ti), γ(t′′i )

)
+ d
(
γ(ti), γ(t′′i )

))
(1.2.10)

≤ 2(n− 1)
ε

2(n− 1)
= ε ,

by (1.2.8) and hence Vσ∪τ (γ) ≤ Vσ(γ) + ε.
Now since τ ⊆ σ ∪ τ we have by the triangle inequality Vτ (γ) ≤ Vσ∪τ (γ) and so

M + ε ≤ Vτ (γ) ≤ Vσ∪τ (γ) ≤ Vσ(γ) + ε, (1.2.11)

which gives M ≤ Vσ(γ) as desired. 2

Next we note the fact that the variational length of differentiable curves in Euclidean space is also
compatible with the usual length, i.e., the formula saying that ‘length is the integral of the speed’.
More precisely we have.
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1.2.6 Proposition (Length as integral of speed). Let (V, | |) be a finite-dimensional normed
vector space and let γ : [a, b]→ V be a differentiable map. Then the variational length is given by

Ld(γ) =

b∫
a

|γ′(t)| dt. (1.2.12)

We will not prove this statement, since we will later deal with a more general situation in section
4.1 and in particular in theorem 4.1.2. A direct proof can be found in any textbook on elementary
differential geometry, see e.g. [Bär10, Prop. 2.1.18], and in [Pap14, Prop. 1.3.1].

1.2.2 Length structures induced by metric spaces

The variational length introduced above for (continuous) paths in metric spaces gives rise to a
length structure. In this section we are going to investigate the properties of this structure which
we now make explicit.
To begin with we specify the class of reparametrizations we are going to use. For reasons that will
be discussed below in Section 1.4.1 we will not use the seemingly natural class of homeomorphisms,
but rather the more general one of (not necessarily strictly) monotonous surjective maps. We will
also prove invariance of the variational length under these reparametrizations although that would
not strictly be needed at this stage.

1.2.7 Definition & Lemma (Length structure induced by a metric). Let (X, d) be
a metric space. Then the class of all (continuous) paths C in X with (monotonous surjective
reparametrisations and) the variational length Ld defines a length structure (X,C,Ld) which we
call the length structure induced by d.

Proof. We briefly check that all the required properties hold. Clearly (A1)–(A3) hold for C.
(L1): We show that for all c ∈ [a, b] we have Ld(γ) = Ld(γ|[a,c]) + Ld(γ|[c,b]). Note that by the
triangle inequality we have for any partition σ of [a, b] that Vσ∪{c}(γ) ≥ Vσ(γ) and hence

Ld(γ) = sup
σ
Vσ(γ) = sup

σ
Vσ∪{c}(γ)

= sup
σ

(
Vσ∪{c}∩[a,c](γ|[a.c]) + Vσ∪{c}∩[c,b](γ|[c.b])

)
(1.2.13)

= sup
σ

(
Vσ∪{c}∩[a,c](γ|[a.c])

)
+ sup

σ

(
Vσ∪{c}∩[c,b](γ|[c.b])

)
= Ld(γ|[a,c]) + Ld(γ|[c,b]).

(L2): We even show that for a rectifiable path γ, Ld(γ|[r,s]) = Ld(γ, r, s) is continuous w.r.t. r, s
(with a ≤ r < s ≤ b). Since γ is rectifiable we may choose a partition σ with Ld(γ)−Vσ(γ) < ε/2
and suppose w.l.o.g. that r, s ∈ σ. But then by splitting the length up as in (1.2.13), one obtains
Ld(γ, r, s) − d(γ(r), γ(s)) < ε/2. Further by uniform continuity of γ we have d(γ(r), γ(s)) < ε/2
provided |r − s| is small enough. Hence in this case Ld(γ, r, s) < ε and we are done.
(L3): Let ψ : [c, d] → [a, b] be monotonous and surjective and set γ′ = γ ◦ ψ. Any partition σ′

of [c, d] gives rise to a partition σ of [a, b] (via ti = ψ(t′i)) with Vσ′(γ
′) = Vσ(γ) (since for t′i ∈ σ′

we have γ′(t′i) = γ(ψ(t′i)). Now Vσ′(γ
′) ≤ Ld(γ) and by taking supremum over σ′ we obtain

Ld(γ
′) ≤ Ld(γ).

For the converse inequality4 note that for any partition σ = {t0 < · · · < tn} of [a, b] we may
associate a partition σ′ of [c, d] by choosing t′i for all i arbitrarily from ψ−1(ti). Then again
Vσ(γ) = Vσ′(γ

′) (since γ′(t′i) = γ(ψ(t′i) = γ(ti)). Now we may proceed as above.
(L4) is immediate from the generalized triangle inequality, Lemma 1.2.3. 2

From now on any metric space (X, d) will always be equipped with the length structure from
Definition 1.2.7, unless explicitly stated otherwise.
The variational length has the following remarkable property.

4This argument is only needed for this general class of reparametrisations. If we take homeomorphisms instead,
the above argument is symmetric.
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1.2.8 Proposition (Lower semi-continuity of the length). Let (X,C,Ld) be a length struc-
ture induced by the metric space (X, d). If a sequence of paths γk : [a, b]→M converges pointwise
to a path γ : [a, b]→ X then

Ld(γ) ≤ lim inf Ld(γk). (1.2.14)

In particular, the length Ld is a lower semi-continuous5 functional on the space of paths from [a, b]
to X w.r.t. uniform convergence.

Proof. Let γ, γk be as in the statement. First note that for any partition σ = {a = t0, . . . , tn = b}
the variations of the γk converge, i.e., Vσ(γk)→ Vσ(γ): Indeed we have

Vσ(γk)− Vσ(γ) =

n−1∑
i=0

(
d
(
γk(ti), γk(ti+1)

)
− d
(
γ(ti), γ(ti+1)

))
≤
n−1∑
i=0

(
d
(
γk(ti), γ(ti)

)
+ d
(
γ(ti), γ(ti+1)

)
+ d
(
γ(ti+1), γk(ti+1)

)
− d
(
γ(ti), γ(ti+1)

))
=

n−1∑
i=0

(
d
(
γk(ti), γ(ti)

)
+ d
(
γ(ti+1), γk(ti+1)

))
→ 0 . (1.2.15)

Now suppose L(γ) <∞, fix ε > 0 and choose σ such that L(γ)− ε < Vσ(γ). By the above there
is k0 such that for all k ≥ k0

L(γ)− ε < Vσ(γk) ≤ L(γk) , (1.2.16)

and so
L(γ)− ε ≤ inf

k≥k0
L(γk) ≤ sup

k0

inf
k≥k0

L(γk) = lim inf
k→∞

L(γk) . (1.2.17)

Since ε was arbitrary, (1.2.14) follows.
In case γ is non-rectifiable6 we replace L(γ) − ε in the above argument by an arbitrary large
number N and obtain lim infk→∞ L(γk) =∞.
Finally if γk → γ uniformly then γ is a path and the above arguments apply, in particular the
space of paths with the topology of uniform convergence is a metric space, so 1.2.14 implies that
the length is lower semi-continuous. 2

1.2.9 Remark (The length is not continuous). A simple counterexample to the continuity
of the length is given by stairs-like paths in R2, see Figure 1.13. The intuition behind the semi-
continuity from below is that one cannot approximate a given path by ones which are uniformly
shorter.

γ

γ3

γ2

γ1

Figure 1.13: The length is not continuous:
The γk have all length 2 and converge uni-
formly to γ which has length

√
2.

x

y

Figure 1.14: The induced intrinsic metric on
S1: The variational length Ld is the length of
the arc and so d̂ is just the (smaller) angle
between two points.

5Recall that a map f : X → R ∪ {∞} on a metric space is called lower semi-continuous at x ∈ X if for any
sequence xn → x we have f(x) ≤ lim inf f(xn), cf. e.g. [Pap14, p. 25f]

6Observe that the proof in [BBI01, 2.3.4(iv)] fails in case of infinite length of the limiting path.
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1.2.3 The induced intrinsic metric

A metric space (X, d) induces a length structure (X,C,Ld) by 1.2.7, with Ld the variational length
of 1.2.2. By 1.1.6 this length structure induces a length metric dLd on X, which gives rise to a
length space. So we obtain a natural construction of an induced intrinsic metric on X

(X, d) ; (X,C,Ld) ; (X, dLd = d̂) . (1.2.18)

We first take a look at some key examples.

1.2.10 Example (Induced intrinsic metrics).

(i) The angular metric on the circle. We start with the unit circle S1 with the restriction of the
Euclidean metric d of R2. The variational length of a path γ on S1 is the length of the arc,
see Figure 1.14. So the induced intrinsic metric d̂(x, y) of points on S1 is just given by the
length of the shorter arc between x and y, hence the angle between x and y.

(ii) Union of segments. Consider the following union of segments in R2

U =
∞⋃
n=1

[(0, 1), (
1

n
, 0)] ∪ [(0, 1), (0, 0)] (1.2.19)

(Figure 1.15) with the restriction of the Euclidean metric d of R2. One can go from one point
to any other by traveling along the segments via (0, 1). The induced intrinsic metric clearly
is the Euclidean distance traveled along these segments, but its topology dramatically differs
from the original metric topology. The sequence of points (1/n, 0) converges to the origin in
the Euclidean topology but does not w.r.t. the topology of the induced intrinsic metric. In
fact, the distance between these points is constant 2.

(iii) Cone over a non-rectifiable curve.7 We begin with an injective non-rectifiable path in the xy-plane

in R3 with its restriction to any nontrivial interval being non-rectifiable. Now construct the cone

over it with vertex say in (0, 0, 1), that is, we connect the vertex with any point on the curve with

a straight line segment and again we start with the Euclidean metric, see Figure 1.16. As in the

previous example the induced intrinsic distance is given by the Euclidean length of the path from

one point to the other via the vertex. Now we remove the vertex. Then the space is disconnected

(i.e., it is the union of disjoint open sets) in the topology of the induced intrinsic metric by the

properties of the ‘base curve’ but it is still connected in the original topology.

Figure 1.15: The sequence (0, 1/n) con-
verges to (0, 0) in the original topology but
is divergent in the topology of the induced
intrinsic metric.

Figure 1.16: A hint at a cone over a non-
rectifiable curve with the vertex removed.
(Note that on any segment the curve would
have to be non-rectifiable, as is hinted here
in its center)

7The few parts appearing in small print have not been included in the lecture course.
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Returning to the construction of the induced intrinsic metric d̂ on a metric space (X, d) expressed

in (1.2.18), we see that this construction can be iterated. The metric space (X, d̂) gives rise to

“second stage” induced intrinsic metric ˆ̂d. However, before the reader starts worrying about an
emerging hierarchy of induced intrinsic metrics we can give an all-clear signal: the length induced
by the induced intrinsic metric d̂ is the same as the one induced by the original metric d.

1.2.11 Proposition ( ˆ̂d = d̂). Let (X, d) be a metric space and let d̂ be its induced intrinsic
metric, then the following holds:

(i) Let γ be rectifiable in (X, d) then Ld̂(γ) = Ld(γ).

(ii) The intrinsic metric induced by d̂ coincides with d̂.

In other words the proposition essentially says that inducing a length metric is an idempotent
operation.

Proof. (i) Let γ : [a, b]→ (X, d) be any rectifiable path.

By the generalized triangle inequality 1.2.3, Ld(γ) ≥ d(γ(a), γ(b)) hence d̂ ≥ d and so Ld̂(γ) ≥
Ld(γ) since both lengths are variational.

To prove the converse estimate first note that by 1.1.11 γ is also a path in (X, d̂). Now let

σ = {t0, . . . , tn} be a partition of [a, b] then (since d̂ is intrinsic) d̂(γ(ti), γ(ti+1)) ≤ Ld(γ, ti, ti+1)
which gives

V d̂σ (γ) =
∑

d̂(γ(ti), γ(ti+1)) ≤ Ld(γ) , (1.2.20)

and so Ld̂(γ) ≤ Ld(γ).

(ii) To begin with, note that again by the generalized triangle inequality 1.2.3, Ld̂(γ) ≥ d̂(γ(a), γ(b))

for all rectifiable paths γ in (X, d̂) and so ˆ̂d ≥ d̂.

To prove the converse inequality the main issue is to keep track of the respective classes of paths:
ˆ̂d is constructed by using all rectifiable paths γ in (X, d̂) which by 1.1.11 contains all rectifiable
paths in (X, d) for which the respective lengths agree by (i). So we obtain

ˆ̂d(x, y) = inf{Ld̂(γ) : γ rectifiable in (X, d̂) from x to y}
≤ inf{Ld̂(γ) : γ rectifiable in (X, d) from x to y} (1.2.21)

= inf{Ld(γ) : γ rectifiable in (X, d) from x to y} = d̂(x, y).

2

1.2.12 Remark (Rectifiability is essential). Observe that the assumption that γ is rectifiable

is not superfluous. In fact a path in (X, d) may fail to be continuous w.r.t. d̂, cf. Lemma 1.1.15.

So the set of all paths in (X, d̂) in general is a subset of all paths in (X, d) but it contains all
rectifiable paths in (X, d) by Lemma 1.1.11.

1.3 Characterizing intrinsic metrics

We have called a metric intrinsic, if it can be constructed as the length metric from a length
structure, cf. Definition 1.1.8, hence if it can be given by a certain construction. From that
definition it is hard to tell whether a given metric is intrinsic or not. The aim of this section is to
discuss properties that distinguish intrinsic metrics from general ones and to find criteria which
allow to identify intrinsic metrics.
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1.3.1 An alternative definition of length spaces

To begin with, note that Proposition 1.2.11 gives a constructive criterion in the above sense. A
metric is induced by a length structure coming from a metric, iff it induces itself. Indeed the
‘only if’-part is just 1.2.11(ii) while the ‘if’-statement is immediate since then d = d̂ which clearly
is induced. In fact the restriction to length structures coming from a metric themselves is not
necessary as we show next.

1.3.1 Proposition (d̂ = d). Let (X, d) be a length space and let d̂ be the intrinsic metric induced

by d. Then d̂ = d and Ld(γ) ≤ L(γ) for all paths γ ∈ A of finite L-length, where (X,A,L) is a
length structure inducing (X, d).

Proof. Basically we just observe that the respective parts of the proof of 1.2.11 still apply in this
situation.

First the generalized triangle inequality 1.2.3 gives d̂ ≥ d.

Conversely any admissible path γ in the length structure defining d which is of finite length is also
a path in (X, d), again by 1.1.11 and so the analogue of (1.2.20) leads to Ld(γ) ≤ L(γ), and so

the analogue of (1.2.21) gives d̂ ≤ d.

2

Note that (as in the above discussion of the special case) the equality d = d̂ implies that d

is intrinsic (since d̂ is!). This leads us to the following alternative characterisation of intrinsic
metrics and length spaces:

(X, d) is a length space, iff d̂ = d (1.3.1)

This statement translates into the following criterion which can be seen as an alternative definition
of length spaces.

1.3.2 Corollary (Characterization of (strictly) intrinsic spaces8). Let (X, d) be a metric
space, then we have:

(i) (X, d) is a length space, iff for all pairs of points x, y ∈ X and for all ε > 0 there is a
connecting path γ with Ld(γ) ≤ d(x, y) + ε.

(ii) (X, d) is strictly intrinsic, iff for all pairs of points x, y ∈ X there is a connecting path γ
with Ld(γ) = d(x, y).

Proof. (i) ⇒: If (X, d) is a length space then by definition there is a connecting path γ for any
pair of points with L(γ) ≤ d(x, y) + ε and since by Prop. 1.3.1 Ld ≤ L, the assertion follows.

(ii) ⇒: In this case we even have L(γ) = d(x, y) and then, again by Proposition 1.3.1,

d(x, y) = d̂(x, y) ≤ Ld(γ) ≤ L(γ) = d(x, y). (1.3.2)

(i)⇐: If such a path γ exists we obtain d̂ ≤ d and since d̂ ≥ d always holds (see the proof of 1.3.1)
we are done, thanks to (1.3.1).

(ii) ⇐: In this case we still have d̂ ≤ d and hence d = d̂, which is strictly intrinsic. 2

8This statement was changed after the lecture: (i) is item 1.3.2 of the lecture, while (ii) was added to display
the argument occurring at the end of the proof of 1.3.12(i) in a more prominent place. Also the proof has been
streamlined.
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1.3.2 Recovering the length structure

Now we address another natural question: Given a length space (X, d), can we recover the initial
length structure (X,A,L)?
While this is impossible, since clearly many different length structures may give rise to the same
intrinsic metric, there is at least one natural candidate length structure that induces d: (X,C,Ld)
as suggested by 1.3.1. So we better rephrase our question to: Under which condition is L = Ld?
We already know parts of the answer: Since Ld is always lower semi-continuous by 1.2.8, this is a
necessary condition for L = Ld to hold. We will see below that it is also sufficient.
Apart from the general issue raised here, it is also practically relevant, to know that L = Ld. In
case that L is known, one can then use the specific properties of L and combine it with the general
properties of the variational length Ld.

1.3.3 Theorem (Semi-continuity of the length is characterizing). Let (X,A,L) be a
length structure with lower semi-continuous length L (where A is equipped with the topology of
uniform convergence). Then L coincides with the length induced by its intrinsic metric dL, i.e.,
L(γ) = LdL(γ) for all γ ∈ A of finite L-length.

Proof. Since LdL(γ) ≤ L(γ) holds for any length structure by 1.3.1 we only have to show the
converse inequality. To begin with observe that by (L2) the function L(t) = L(γ|[a,t]) is uniformly
continuous on [a, b] for any γ ∈ A of finite length. Hence for any ε > 0 there is a partition
σ = {t0, . . . , tn} such that

dL
(
γ(ti), γ(ti+1)

)
≤ |L(ti+1)− L(ti)| < ε for all 0 ≤ i ≤ n− 1. (1.3.3)

By the definition of dL, for all i there is a path σi : [ti, ti+1] → X with endpoints σ(ti) = γ(ti)
and σ(ti+1) = γ(ti+1) such that

L(σi) ≤ dL
(
γ(ti), γ(ti+1)

)
+
ε

n
. (1.3.4)

Denoting by hε the concatenation of all σi we obtain

L(hε) =
∑

L(σi) ≤
∑

dL
(
γ(ti), γ(ti+1)

)
+ ε ≤ LdL(γ) + ε . (1.3.5)

Now by the triangle inequality we have for all t ∈ [a, b] (choosing ti such that ti < t ≤ ti+1)

dL
(
γ(t), hε(t)

)
≤ dL

(
γ(t), γ(ti)

)
+ dL

(
σi(ti), hε(t)

)
≤ ε+ Ld(σi|[ti,t]) ≤ ε+ d

(
γ(ti), γ(ti+1)

)
+
ε

n
≤ 3ε , (1.3.6)

where we have used (1.3.3) twice and (1.3.4) together with LdL ≤ L. Since the topology induced
by dL is finer than the original one (by 1.1.15) we obtain that hε → γ uniformly. Now the lower
semi-continuity of L (see 1.2.8) gives

L(γ) ≤ lim inf
ε→0

L(hε) ≤ LdL(γ) , (1.3.7)

where we have used (1.3.5) in the final estimate. 2

1.3.4 Example (Not a semi-continuous length). On R2 we consider the Finslerian length
of 1.1.18(iv), i.e.,

L(γ) =

∫
f(γ(t), γ′(t))dt ,

where we now choose f to be independent of the first variable. (Intuitively this means that the
speed of our travel only depends on the direction but not on the position; think of a sailing
boat in a constant wind field.) Moreover we assume that f(x, (1, 0)) = f(x, (0, 1)) = 1/10 and
f(x, (1, 1)) = 1, see Figure 1.17.
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This length structure is not lower semi-continuous. To see this consider a sequence of stair like
paths of broken lines with its pieces parallel to the axes approaching the segment [(0, 0), (1, 1)],
see Figure 1.18. Now the length of the latter segment is 1 while the stair like paths all have length
1/5. Hence this length structure is not lower semi-continuous and by 1.3.3 does not come from
a metric. (The intuitive reason is that traveling along the diagonal is too fast; think of it as the
prevailing wind direction.)

1
10

1
10

1

Figure 1.17: The function f . Figure 1.18: The length of the stair like paths
is constant 1/5 while the length of the diagonal
is 1.

1.3.3 Midpoints

The next topic to be discussed is midpoints and their existence. Here we will find another way of
characterizing (strictly) intrinsic (complete) metrics. We start by making the key-notion precise.

1.3.5 Definition (Midpoint). A point y in a metric space (X, d) is called a midpoint between
x, z ∈ X if

d(x, y) = d(y, z) =
1

2
d(x, z). (1.3.8)

The next lemma should be interpreted as giving a necessary condition for a metric to be strictly
intrinsic. In fact, under the assumption of completeness, it is also sufficient, as will see below.

1.3.6 Lemma (Existence of midpoints). If d is strictly intrinsic on X then for any pair of
points x, z ∈ X there is a midpoint y.

Proof. Let γ : [a, c] → X be a shortest path between x and z. Then L(γ) = d(x, z) and
L(t) := L(γ[a,t]) is continuous in t with L(a) = 0 and L(c) = L(γ) = d(x, z). Hence there is a

b ∈ [a, c] with L(b) = 1
2L(c) and we set y = γ(b), see Figure 1.19.

γ(a) = x

γ(b) = y

γ(c) = z

Figure 1.19: The midpoint y = γ(b), where L(b) = 1
2L(c).

Now we use the fact that the length of a path is not less that the distance between its endpoints
to write

d(x, y) ≤ L(γ|[a,b]) = L(b) =
1

2
d(x, z)

d(y, z) ≤ L(γ|[b,c]) = L(c)− L(b) =
1

2
L(c) =

1

2
d(x, z). (1.3.9)
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Using the latter estimate and the triangle inequality we obtain

d(x, y) ≥ d(x, z)− d(y, z) ≥ d(x, z)− 1

2
d(x, z) =

1

2
d(x, z) (1.3.10)

and similarly for d(y, z). 2

Another way to interpret the assertion of Lemma 1.3.6 is to say that in a strictly intrinsic metric
space the closed balls B̄d(x,y)/2(x)(:= {z : d(x, z) ≤ d(x, y)/2}) and B̄d(x,y)/2(y) are not disjoint.
Note that the intersection can be much bigger than just one point, e.g. on S2, choosing x, y to be
the poles, it is the entire equator.
Also observe that it is not essential to deal with midpoints or with balls of the radius d(x, z)/2.
In fact, the poof 1.3.6 literally works the same if we choose d1, d2 ∈ R with d1 + d2 = d(x, z) to
provide the existence of a point y with d(x, y) = d1 and d(y, z) = d2. Iterating this procedure one
further obtains the following statement9

1.3.7 Corollary (Measuring distance by small jumps). Let (X, d) be strictly intrinsic.
Given any pair of points x, y ∈ X and any finite sequence of positive numbers d1, . . . , dk with
d1 + · · · + dk = d(x, y), there is a sequence of points x = x0, x1, . . . , xk = y with d(xi−1, xi) = di
for all i = 1, . . . , k.

Note that in this case we have
k−1∑
i=0

d(xi, xi+1) = d(x, y). (1.3.11)

which (informally) says that in a strictly intrinsic space we can measure lengths (not only by the
length of connecting paths but also) by the use of dotted lines or small jumps.

Finally, we mention that there is a notion equivalent to the existence of midpoints called Menger convexity.

More precisely ([Pap14, Def. 2.6.1]), a metric space (X, d) is called Menger convex if for all pairs of points

x, z ∈ X there is a point y ∈ X between x and z, i.e., x 6= y 6= z and d(x, y) + d(y, z) = d(x, y). Clearly,

the existence of midpoints implies Menger convexity; for a proof of the converse see the proof of (i)⇒(ii)

in [Pap14, Prop. 2.6.2, p. 72].

For (merely) intrinsic metrics we have analogous statements based on the notion of ε-midpoints.

1.3.8 Definition (ε-midpoint). A point y in a metric space (X, d) is an ε-midpoint for
x, z ∈ X if

|2d(x, y)− d(x, z)| ≤ ε and |2d(y, z)− d(x, z)| ≤ ε.

1.3.9 Lemma (Existence of ε-midpoints). If d is intrinsic on X then for any positive ε and
for any pair of points x, z ∈ X there is an ε-midpoint y. In other words if 2r > d(x, z) then the
(open) balls Br(x) and Br(z) are not disjoint.

Proof. We may essentially repeat the above proof with a path γ from x to z such that L(γ) ≤
d(x, z) + ε. Then again defining y = γ(b), where L(b) = 1

2L(c) does the trick. Indeed we obtain

d(x, y) ≤ L(γ|[a,b]) = L(b) =
L(c)

2
≤ d(x, z)

2
+
ε

2
, i.e., 2d(x, y)− d(x, z) ≤ ε

and similarly 2d(y, z)− d(x, z) ≤ ε. So by the triangle inequality

d(x, y) ≥ d(x, z)− d(y, z) ≥ d(x, z)− d(x, z)

2
− ε

2
≥ d(x, z)

2
− ε

2
,

hence −2d(x, y) + d(x, z) ≤ ε and similarly for d(y, z). 2

Tweaking the proof of 1.3.9 in an analogous way we may first replace d(x, z)/2 by d1 +d2 = d(x, z)
and then by iterating obtain the following version of Corollary 1.3.7.

9This is actually [Pap14, Cor. 2.6.3] which generalizes [BBI01, Cor. 2.4.12].
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1.3.10 Corollary (Measuring distance by small jumps, 2). Let (X, d) be intrinsic. Given
any pair of points x, y ∈ X, any ε > 0, and any finite sequence of positive numbers d1, . . . , dk with
d1 + · · ·+dk ≤ d(x, y)+ε, there is a sequence of points x = x0, x1, . . . , xk = y with d(xi−1, xi) = di
for all i = 1, . . . , k.

In this case we now have
k−1∑
i=0

d(xi, xi+1) ≤ d(x, y) + ε. (1.3.12)

The essential feature of (1.3.11) and (1.3.12) is that, in many situations, it allows one to turn local
properties into global ones.

1.3.11 Corollary (Global Lipschitz functions on length spaces). Let (X, d) be a length
space, Y a metric space and let f : X → Y be a locally Lipschitz map with Lipschitz constant C.
Then f is globally Lipschitz with Lipschitz constant C.

Proof. Let x, y ∈ X, ε > 0 and choose a connecting path γ : [a, b]→ X with L(γ) ≤ d(x, y) + ε.
We cover γ([a, b]) by finitely many neighbourhoods Ui (1 ≤ i ≤ k) on which the Lipschitz property
holds. Now we introduce a partition a = t1 < t2 < · · · < tk+1 = b of [a, b] such that γ([ti, ti+1]) ⊆
Ui (1 ≤ i ≤ k) and set xi = γ(ti).

Ui

γ([ti, ti+1])

γ

Then we have
k∑
i=1

d(xi, xi+1) ≤ L(γ) ≤ d(x, y) + ε (1.3.13)

which further gives

d(f(x), f(y)) ≤
k∑
i=1

d(f(xi), f(xi+1)) ≤ C
k∑
i=1

d(xi, xi+1) ≤ C(d(x, y) + ε). (1.3.14)

Since ε was arbitrary we are done. 2

In many cases a converse of Lemma 1.3.6 holds true: The existence of midpoints (resp. ε-midpoints)
implies that a complete metric is strictly intrinsic (resp. intrinsic). In particular, we have a criterion
that tells us whether a complete metric space is a length space.

1.3.12 Theorem (Complete length spaces from midpoints). Let (X, d) be a complete
metric space. Then we have

(i) If for every x, z ∈ X there is a midpoint, then d is strictly intrinsic.

(ii) If for every x, z ∈ X and every ε > 0 there is an ε-midpoint, then d is intrinsic.

Before proving the theorem, we note that it has the following immediate consequence which gives
another criterion10 for a complete metric space to be a length space.

10Again this is a slight generalization of [BBI01, Cor. 2.4.17].
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1.3.13 Corollary (Complete length spaces from small jumps). A complete metric space
(X, d) is a length space iff, given any pair of points x, y ∈ X, any ε > 0, and any finite sequence of
positive numbers d1, . . . , dk with d1 + · · ·+ dk ≤ d(x, y) + ε there are points x = x0, x1, . . . , xk = y
with d(xi−1, xi) = di for all 1 ≤ i ≤ k.

To see the meaning of this statement more clearly set all di = ε. Then the complete metric space
(X, d) is a length space iff we can reach any y from x by hopping with small jumps of length ε
and the total length of the jumps does not exceed d(x, y) by more than ε.

Proof of Theorem 1.3.12. We first prove (i) by showing that x and y can be joined by a path
γ of length d(x, y). To construct such a path we start by setting γ(0) = x and γ(1) = y. Then we
use the existence of a midpoint to obtain some x 1

2
with

d(x, x 1
2
) = d(x 1

2
, y) =

1

2
d(x, y). (1.3.15)

We set γ( 1
2 ) := x 1

2
and again by existence of midpoints we obtain x 1

4
= γ( 1

4 ), x 3
4

=: γ( 3
4 ) such

that

d
(
γ
( j

4

)
, γ
(j + 1

4

))
= d(x j

4
, x j+1

4
) =

1

4
d(x, y) (0 ≤ j ≤ 3). (1.3.16)

In this way we inductively assign the values of γ for all dyadic rational numbers k/2m for m ∈ N
and 0 ≤ k ≤ 2m in a way such that

d
(
γ
( j

2m
)
, γ
(j + 1

2m
))

= d(x j
2m
, x j+1

2m
) =

1

2m
d(x, y) (0 ≤ j ≤ m− 1). (1.3.17)

By construction we hence have for any two dyadics t, t′ that

d(γ(t), γ(t′)) = |t− t′| d(x, y), (1.3.18)

implying that the map γ defined on the dyadics is Lipschitz, and in particular uniformly continuous.
Since the dyadic rationals are dense in [0, 1] and (X, d) is complete, γ can be extended uniquely
to a (uniformly) continuous map on the entire interval [0, 1] (see e.g. [Wil04, Thm. 39.10]). Hence
we obtain a path γ : [0, 1] → X connecting x and y. Moreover (1.3.18) extends to all t, t′ ∈ [0, 1]
and so

Ld(γ) = sup
σ={t0,...,tk}

∑
d(γ(ti), γ(ti+1)) =

∑
|ti − ti+1| d(x, y) = d(x, y), (1.3.19)

and by 1.3.2(ii) we are done.

To prove (ii) we only need a minor modification. Instead of assigning γ(k/2m) to be the respective
midpoints we have to use the respective ε-midpoints. Then equations (1.3.15) and (1.3.16) turn
into d(x, x 1

2
) = 1

2d(x, y) ± ε, d(x 1
2
, y) = 1

2d(x, y) ± ε and d(γ( j4 ), γ( j+1
4 ) = 1

4d(x, y) ± 1
2ε ± ε.

Consequently (1.3.17) turns into the estimate∣∣∣∣d(γ( j2m ), γ(j + 1

2m
))
− 1

2m
d(x, y)

∣∣∣∣ ≤ m−1∑
j=0

1

2j
ε ≤ 2ε, (1.3.20)

which still gives uniform continuity of γ on the dyadic rationals. Hence we obtain a path γ :
[0, 1]→ X with Ld(γ) ≤ d(x, y) + ε and by 1.3.2(i) we are done. 2

Theorem 1.3.12 is a valuable tool to prove that certain constructions involving length spaces are
again length spaces, just by showing the existence of ε-midpoints. E.g one can show that the finite
product of complete length spaces (equipped with the 2-metric d2(x, y) = (

∑m
i=1(dj(xj , yj)

2)(1/2))
is again a length space (cf. [BBI01, Prop. 3.6.1]) and that the completion of a length space is a
length space as we will explicitly show next.



1.4. SHORTEST PATHS 21

1.3.14 Proposition (Completion of length spaces). The completion X ′ of a length space
X is a length space again.

Proof. Let x, z ∈ X ′ and xn → x, zn → z be approximating sequences in X. Choose ε > 0 and
fix n so large that d(xn, x), d(zn, z) ≤ ε/8. By Lemma 1.3.9 there is an ε/2-midpoint yn of xn,
zn, i.e.,

|2d(xn, yn)− d(xn, zn)| ≤ ε

2
, |2d(yn, zn)− d(xn, zn)| ≤ ε

2
. (1.3.21)

We show that yn is an ε-midpoint for x, z. By the above estimate we have d(xn, yn) ≤ 1
2 (d(xn, zn)+

ε
2 ) and so

d(x, yn) ≤ d(x, xn) + d(xn, yn) ≤ ε

8
+

1

2
d(xn, zn) +

ε

4

≤ 3ε

8
+

1

2
(d(xn, x) + d(x, z) + d(z, zn)) ≤ ε

2
+

1

2
d(x, z) (1.3.22)

hence 2d(x, yn) − d(x, z) ≤ ε. The other estimates follow similarly. Hence by Theorem 1.3.12(ii)
X ′ is a length space. 2

1.4 Shortest paths

In this section we will deal with shortest paths, that is paths realizing the metric distance between
their endpoints. In particular, we will consider the question of existence of shortest paths between
a pair of given points. Moreover, we will state and prove the theorem of Hopf-Rinow-Cohn-
Vossen, which generalizes the Hopf-Rinow theorem of Riemannian geometry and relates metric
completeness to the possibility of extending shortest paths. We start, however, by introducing the
notion of a curve.

1.4.1 Curves & natural parametrizations

So far we have always dealt with paths, that is continuous maps I → X. However, geometrically
one is more often interested in the image γ(I) of a path than in the actual map γ. To adequately
describe the geometric object itself one defines the notion of a curve as an equivalence class of
paths. The underlying equivalence relation is given by a suitable notion of reparametrizations,
i.e., two paths γ1 : I1 → X and γ2 : I2 → X are called equivalent if there is a suitable change
of parameter ϕ : I1 → I2 such that γ1 = γ2 ◦ ϕ. In analysis, when studying piecewise C1-paths
a convenient family of changes of parameter are all C1-diffeomorphims, for continuous paths one
often uses homeomorphisms or, more generally, increasing and surjective (hence continuous) maps.
Here we will also follow this road, but admit a(n unusually) general class of reparametrisations—
as announced already at the beginning of Section 1.2.2. In particular, we want to also include
parametrisations where a path is constant on some subinterval. The associated picture one should
have in mind is that of a path that stops for a while at one point and then moves on. We formalize
this in the following way.

1.4.1 Definition (Curve). A curve is an equivalence class of the minimal equivalence relation
satisfying the following: Two paths γi : Ii → X (i = 1, 2) are equivalent if there is a nondecreasing
surjective map ϕ : I1 → I2 such that γ1 = γ2 ◦ ϕ.

Paths are hence representatives of curves and also sometimes called parametrized curves or para-
metrizations of a curve and reparametrizations of each other. Moreover, we call a ϕ as in the
definition a (nondecreasing) change of parameter. Such a map ϕ automatically is continuous:
Suppose ϕ is discontinuous at some t0 then limt↗t0 ϕ(t) < ϕ(t0) and surjectivity fails.

1.4.2 Remark (Curves as equivalence classes).
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(i) Observe that the existence of a non-strictly monotone change of variables does not lead to
an equivalence relation: due to the lack of an inverse change of variables, symmetry of the
relation fails.

Now, the minimal equivalence relation generated by a given relation R on a set B (seen as
subset R ⊆ B ×B) is defined as the intersection of all equivalence relations containing R11.
In the ensuing equivalence relation we have x ∼ y if x = y or there are x = x1, x2, . . . , xk = y
for some k ∈ N such that (xi, xi+1) ∈ R or (xi+1, xi) ∈ R for all 1 ≤ i ≤ k − 1.

In our situation this means that two paths γ, γ̃ are equivalent if there is a finite sequence
of paths γ = γ1, . . . , γk = γ̃ and each γi and γi+1 are related by a nondecreasing change of
parameter or vice versa.

(ii) We can, however, simplify this description by introducing the notion of a never-locally-
constant reparametrization of a curve. More precisely, we call a path γ : I → X never-
locally-constant if there is no interval [a, b] ⊆ I such that a 6= b and γ|[a,b] is constant.

Now every curve allows for such a parametrization: Let γ : I → X be an arbitrary path and
introduce an equivalence relation on I by s ∼ t if γ is constant on [s, t]. Then the quotient
J : I/ ∼ is an interval and there is a unique map γ̃ : J → X such that γ = γ̃ ◦ π, where
π : I → J is the quotient map. By construction γ̃ is never-locally-constant.

Then two paths γi : Ii → X (i = 1, 2) are equivalent iff both can be reparametrized to the
same never-locally-constant path, that is if there is such a path γ : J → X and ϕi : Ii → J
with γi = γ ◦ ϕi.

1.4.3 Remark (Length of a curve). We have already shown in 1.2.7 (cf. the remark above
it) that all (monotonous surjective) parametrizations of a curve have the same length. Hence we
can speak of the length of a curve.

In the following we will follow the widely used sloppiness to denote a curve and (one of) its
parametrization(s) by the same letter. In particular, we will speak of a curve γ : I → X meaning
the curve defined by the class of the path γ.

Next we make precise the notion of a curve without ‘self intersections’.

1.4.4 Definition (Simple curve). A curve γ : [a, b] → X is called simple if the pre-image of
every point is an interval.

The idea is that although we have allowed our paths to stop for a while at one point and then to
go on, we now want to exclude them from ever returning to this point again.
Observe that the above definition makes sense because every parametrization of a simple curve
is itself simple, since continuous images of connected sets are connected. Moreover, if two simple
curves have the same image then they coincide up to a change of variable.

Our next goal is to introduce a parametrization for each curve that is analogous to unit speed
parametrization in differential geometry.

1.4.5 Definition (Natural parametrization). A parametrization γ : I → X is natural if
L(γ, s, t) = t− s for all s, t ∈ I.

Other names for natural parametrizations are arc-length parametrizations or parametrizations by
arc length.
Observe that a parametrization γ is natural iff L(γ, a, t) = t− a for some fixed a ∈ I and all t ∈ I
by additivity of length (L1). Another equivalent condition is that

d

dt
L(γ, a, t) = 1. (1.4.1)

11It obviously holds that the intersection of any collection of equivalence relations is also an equivalence relation.
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[Indeed if γ is natural then L(γ, a, t) = t − a and hence L′ = 1 and the converse follows from
integrating (1.4.1) and using L(γ, a, a) = 0.]
Observe that by (1.4.1) a natural parametrization of a curve is unique up to translations t 7→ t+ c
for some c ∈ R. Moreover, motivated by (1.4.1) we call natural parametrizations also unit speed
parametrizations. More generally we call γ a constant speed parametrization if

L(γ, s, t) = v(t− s) (1.4.2)

for all s, t ∈ I and some 0 ≤ v ∈ R.

We can always find a unit speed parametrization for any curve.

1.4.6 Proposition (Existence of natural parametrizations). Every rectifiable curve γ :
[a, b]→ X can be represented in the form

γ = γ̄ ◦ ϕ, where γ̄ : [0, L(γ)]→ X is a natural parametrization (1.4.3)

and ϕ : [a, b]→ [0, L(γ)] is a nondecreasing surjective map.

We will explicitly construct a natural reparametrization for rectifiable paths. The key idea is to
define γ̄(t) as the point on the image of γ for which L(γ, a, t) = t. We formalize this idea explicitly.

1.4.7 Lemma (Constructing a natural parametrization). Let γ : [a, b]→ X be a rectifiable
path.

(i) For each l ∈ [0, L(γ)] there is a unique point x ∈ X and some parameter value t ∈ [a, b] such
that

x = γ(t) and L(γ, a, t) = l. (1.4.4)

Moreover, the set of all such values t is a closed subinterval of [a, b] and γ is constant on it.

(ii) We define the map γ̄ : [0, L(γ)] → X by γ̄(l) = x = γ(t), where x = γ(t) is the unique
point provided by (i). Then γ̄ is Lipschitz continuous and hence a path. Furthermore, γ̄
is obtained from γ as γ = γ̄ ◦ ϕ via the nondecreasing and surjective change of parameter
ϕ : [a, b]→ [0, L(γ)] defined by ϕ(t) = L(γ, a, t).

Proof. (i) By (L2) L(γ, a, .) is continuous and so by the mean value theorem for any l ∈ [0, L(γ)]
there is t ∈ [a, b] such that L(γ, a, t) = l and we set x := γ(t).
Now if a ≤ t < t′ ≤ b are two such parameter values, i.e., L(γ, a, t) = l = L(γ, a, t′) then by (L1)
L(γ, t, t′) = L(γ, a, t′) − L(γ, a, t) = 0. By Lemma 1.2.4 γ is constant on [t, t′], proving that x is
unique and that the set of parameter values t′ such that γ(t′) = x is an interval. Finally, again by
continuity of L(γ, a, .) this interval is closed.

(ii) Let l1 ≤ l2 ∈ [0, L(γ)] and t1, t2 ∈ [a, b] with L(γ, a, ti) = li (i = 1, 2). Then by definition
γ̄(li) = γ(ti) and by the generalized triangle inequality Lemma 1.2.3

d(γ̄(l1), γ̄(l2)) = d(γ(t1), γ(t2)) ≤ L(γ, t1, t2) = |l1 − l2|, (1.4.5)

establishing the Lipschitz property of γ̄.
Finally, ϕ is obviously nondecreasing and surjective, and by the uniqueness statement in (i) we
have γ = γ̄ ◦ ϕ. 2

Proof of 1.4.6. Using the construction of 1.4.7(ii) it only remains to check that γ̄ is a natural
parametrization, i.e., that L(γ̄, 0, l) = l for all l ∈ [0, L(γ)]. Choose such an l and choose t ∈ [a, b]
such that ϕ(t) = L(γ, a, t) = l. Now, since γ̄|[0,l] is just a reparametrization of γ|[a,t] we obtain
from (L3) that they are of the same length, namely L(γ̄, 0, l) = L(γ, a, t) = l. 2

We note that since all arguments employed in the previous proofs only refer to compact subintervals
of the domain of γ, Proposition 1.4.6 remains valid also for half-open or open intervals and non-
rectifiable curves (however, the natural parametrization then might be defined on an infinite
interval).
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Also, from the natural parametrization obtained in this way we may via scaling obtain a parametriza-
tion of any prescribed constant speed. Moreover, we note the following geometric consequence of
the existence of natural parametrizations.

1.4.8 Remark (One-dimensional intrinsic geometry is trivial). Proposition 1.4.6 implies
that if a length space is homeomorphic to a segment, then it is already isometric to a segment.
This implies the fundamental fact that all intrinsic metrics on a line are locally indistinguishable
and parallels the fact from Riemannian geometry that all one-dimensional manifolds are flat.
However, we will see that already two-dimensional surfaces behave completely different and carry
a rich geometric structure.

1.4.2 Existence of shortest paths

This section is devoted to proving the following: Every complete and locally compact length space
is strictly intrinsic, i.e., there is a shortest path between any two of its points. The proof will be
built upon a suitable version of the Arcelà-Ascoli theorem. To begin with, we define the notion of
uniform convergence for curves.

1.4.9 Definition (Uniform convergence of curves). A sequence of curves γn into a metric
space is said to converge uniformly to a curve γ if all γn admit parametrizations with the same
domain that uniformly converge to a parametrization of γ.

Already the next step is to invoke a version of the Arcelà-Ascoli theorem. To formulate it we
recall some notions from (functional) analysis. Let X,Y be metric spaces. A sequence of maps
fn : X → Y is called uniformly equicontinuous12 if

∀ε > 0 ∃η > 0 : ∀x1, x2 ∈ X, ∀n : d(x1, x2) < η ⇒ d(fn(x1), fn(x2)) < ε. (1.4.6)

The space X is called proper if every closed and bounded subset is compact. This property is
sometimes also referred to as finitely compact or boundedly compact13 or also as the Heine-Borel
property. The following version of the theorem is taken from [Pap14, Thm. 1.4.9].

1.4.10 Theorem (Arcelà-Ascoli). Let X,Y be metric spaces, where X is separable and Y
is proper. Let fn : X → Y be a uniformly equicontinuous sequence of maps that is pointwise
bounded.14 Then there exists a subsequence of (fn) that converges uniformly on compact subsets
of X to a uniformly continuous map f : X → Y .

We will use the following result for curves.

1.4.11 Corollary (Arcelà-Ascoli for curves). Let γn be a sequence of curves into a compact
metric space X. If the lengths of the γn are uniformly bounded then they possess a uniformly
convergent subsequence.

Proof. For each γk there is a unique constant speed parametrization on the unit interval [0, 1]
and by uniform boundedness of their lengths the speeds of these parametrizations are uniformly
bounded. But this implies

d(γk(t), γk(t′)) ≤ L(γk, t, t
′) ≤ C|t− t′| (1.4.7)

for all k, all t, t′ ∈ [0, 1], and some C > 0. So the γk are uniformly equicontinuous. Furthermore,
by compactness of X the sequences (γk(t))k are bounded and X is proper, so Theorem 1.4.10
applies to give a uniformly convergent subsequence. 2

Although we have already informally used the term shortest path we now give an official definition
of this key notion.

12Sometimes this property is just called equicontinuity. We prefer, however, to reserve the term equicontinuity
at some point for the version of condition1.4.6 where one point is fixed.

13E.g., in [BBI01].
14That is, (fn(x))n is bounded in Y for each x ∈ X.
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1.4.12 Definition (Shortest path). A curve γ : [a, b] → X is called a shortest path if L(γ) ≤
L(γ̃) for any curve γ̃ connecting γ(a) to γ(b).

It is a trivial but noteworthy fact that the restriction of a shortest path to any subinterval is
still a shortest path. In length spaces we have the following reformulation of Definition 1.4.12:
γ : [a, b]→ X is a shortest path if and only if

L(γ) = d(γ(a), γ(b)). (1.4.8)

Hence one often refers to shortest paths in length spaces as distance minimizers or distance realizing
paths. They enjoy some properties which do not hold for shortest paths in general metric spaces,
e.g. the following one.

1.4.13 Proposition (Convergence of distance minimizers). If a sequence of distance min-
imizers γn in a length space (X, d) converges pointwise to a path γ, then γ is also a distance
minimizer.

Proof. Since the endpoints of the γn converge to the endpoints x, y of γ and all γn are shortest
paths we have L(γn)→ d(x, y). Now by the lower semicontinuity of length 1.2.8 we have

L(γ) ≤ lim
n
L(γn) = d(x, y) (1.4.9)

and we are done. 2

1.4.14 Example (Counterexample to 1.4.13 in metric spaces). Consider the ‘fan’, which
is not a length space (1.1.16(iii)) and the curves connecting the endpoints of two consecutive
segments in the ‘fan’, see Figure 1.6. Then the limiting curve is twice the segment [(0, 0), (1, 0)]
with L = 2 but the endpoints converge both to (0, 1) and hence their distance converges to zero.

We now approach the question of existence of shortest paths. We have already discussed below
Example 1.1.16 that in a length space there need not be any shortest path between a given pair
of points, e.g. R2 \ {0}. Also if there is a shortest path, it need not be unique. Just consider
antipodal points on a sphere.
Given a pair of points x, y in a metric space we will denote a shortest path connecting them by
[x, y]. This notion, of course, is only convenient in a situation where shortest paths are unique or
where the actual choice of an specific shortest path is not relevant. Also this notation fits with
the one applied to segments in Euclidean space since there segments are (unique) shortest paths.
We now have the following basic existence result:

1.4.15 Proposition (Existence of shortest paths, 1). Let (X, d) be a proper metric space.
Then for any two points x, y ∈ X which can be connected by a rectifiable path at all, there is also
a shortest path connecting them.

Proof. Let L be the length of some rectifiable path connecting x and y. This path and any
shorter path are hence contained in the closed ball B̄L(x), which is compact by properness of X.
We now exclusively work in the compact metric space (B̄L(x), d|B̄L(x)).
Let L′ be the infimum of the lengths of rectifiable paths connecting x and y. Then there is a
sequence γk of connecting paths with L(γk)→ L′. Hence their lengths are uniformly bounded and
Corollary 1.4.11 applies to provide a convergent subsequence, again denoted by γk, and a limit
path γ. Clearly γ connects x and y and by the lower semi-continuity of the length (Proposition
1.2.8) we obtain

L(γ) ≤ limL(γk) = L′, (1.4.10)

hence the result L′ = L(γ). 2

The final building block in establishing the main result of this section is again about (topological)
properties of length spaces that do not hold in general. Recall that a metric space is called locally
compact if every point possesses a compact neighbourhood.
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1.4.16 Proposition (The Heine-Borel property in length spaces). Every complete and
locally compact length space is proper.

This proposition fails to hold e.g. in discrete metric spaces (i.e., the distance of all pairs of distinct
points equals 1): Such a space is locally compact and complete but the closed unit ball is not
compact unless the space is finite.

Next we collect some basic facts on balls in length spaces, which will be used repeatedly in the
following. Recall that while in Rn the boundary of open balls are the spheres, i.e., ∂Br(x) =
Sr(x) := {y : d(x, y) = r} and the closures of the open balls are the closed ones, i.e. Br(x) =
B̄r(x) := {y : d(x, y) ≤ r}, this is not true in general. Indeed in the discrete space we have
B1(x) = {x} and B1(x) = {x} ( B̄1(x) = X and ∂B1(x) = ∅ ( S1(x) = X \ {x}. However, these
phenomena do not occur in length spaces, as we prove next.

1.4.17 Lemma (Balls in length spaces). In a length space (X, d) we have for all x ∈ X,
r,R > 0:

(i) Br(x) = B̄r(x) and ∂Br(x) = Sr(x)

(ii) Br(B̄R(x)) = BR+r(x).

(iii) B̄r(B̄R(x)) = B̄R+r(x).

Proof. (i): ⊆ in both cases holds true in any metric space: For y ∈ Br(x) there is yn → y with
d(x, yn) < r and so d(x, y) ≤ r. Moreover, if y ∈ ∂Br(x) then d(x, y) ≥ r and so d(x, y) = r.

⊇: Let y ∈ B̄r(x) and suppose w.l.o.g. that d(x, y) = r. We construct a sequence of points
yn ∈ Br(x) with yn → y: Since X is a length space we can choose paths γn : [0, 1]→ X connecting
x and y with L(γn) =: rn ≤ r + 1/(2n). Choose tn ∈ [0, 1] such that L(γn|[0,tn]) = rn − 1/n and
set yn = γn(tn). Then we have

d(x, yn) ≤ L(γn|[0,tn]) = rn −
1

n
≤ r +

1

2n
− 1

n
< r (1.4.11)

and so yn ∈ Br(x). Moreover,

d(yn, y) ≤ L(γn|[tn,1]) = rn − L(γn|[0,tn]) = rn −
(
rn −

1

n

)
=

1

n
, (1.4.12)

and so yn → y and y ∈ Br(x). Finally, ∂Br(x) = Br(x) \Br(x) = B̄r(x) \Br(x) = Sr(x).

(ii)⊆ holds in any metric space. Let z ∈ Br(B̄R(x)), then by definition there exists some y ∈ B̄R(x)
with d(z, y) < r and so d(x, z) ≤ d(x, y) + d(y, z) < R+ r.

⊇: Let z ∈ BR+r(x) and assume without loss of generality that z 6∈ B̄r(x). There is a curve γ
from x to z with L(γ) < R+ r. Now call γ1 the part of γ starting at x up to its first intersection
with ∂BR(x), see Figure 1.20. Then L(γ1) ≥ R. Writing γ2 for the remainder of γ we have

d(z, B̄R(x)) ≤ L(γ2) = L(γ)− L(γ1) < R+ r −R = r. (1.4.13)

(iii) Analogous to (ii), only choosing γ from x to z with L(γ) < R+ r + η for any given η > 0. 2
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Figure 1.20: The construction used in the proof
of Lemma 1.4.17(ii)

p q

cn

Figure 1.21: The space of Example 1.4.19.

To prepare the proof of Proposition 1.4.16, recall from topology (e.g. [Wil04, Thm. 39.9]) that
a metric space X is compact iff it is complete and totally bounded. The latter property (often
called precompactness) means that for any ε > 0 there are finitely many open balls of radius ε
that cover the space. More formally, for any ε > 0 there is a finite set of points called an ε-mesh
(or ε-net) S = {x1, . . . , xk} such that

⋃
iBε(xi) = X.

Proof of Proposition 1.4.16. First observe that it suffices to prove that every closed ball is
compact and furthermore that if the closed ball Br(x) is compact, so is every Br′(x) with r′ ≤ r.
To begin with let x ∈ X be arbitrary and define

R = sup{r > 0 : Br(x) is compact}. (1.4.14)

Since x has a compact neighbourhood we have R > 0 and we will prove the proposition by showing
that R =∞. We assume by contradiction that R <∞ and proceed in two steps.

(1) We prove that B := BR(x) is compact.
Since B is closed it suffices to show that for any ε > 0 there is an ε-mesh. Assuming w.l.o.g. that
ε < R we set B′ := BR−ε/3(x). Since B′ is compact there is an ε/3-mesh S for B′.
Next we apply Lemma 1.4.17(iii) to obtain

B = B̄R(x) = B̄ε/3(B̄R−ε/3(x)) = B̄ε/3(B′), (1.4.15)

and so for any y ∈ B we have d(y,B′) ≤ ε/3.
Hence there is a point y′ ∈ B′ with d(y, y′) < ε/2. Also d(y′, S) < ε/2 and so d(y, S) < ε and we
have established compactness of B.

(2) We derive a contradiction to the finiteness of R.
Since every x ∈ X has a compact neighbourhood Ux we can cover B by a finite subcover of⋃
x∈B Ux providing us with a compact neighbourhood U of B. Since for compact sets A the Bε(A)

form a basis of neighbourhoods ([Die69, 3.17.11]) there is some ε with Bε(B) ⊆ U . Now again
applying Lemma 1.4.17(ii) we have Bε(B) = BR+ε(x), and so B̄R+ε(x) is a closed subset of the
compact set U and hence compact itself. This contradicts the definition of R. 2

Now we combine the Propositions 1.4.15 and 1.4.16 to immediately obtain the main result.

1.4.18 Theorem (Existence of shortest paths, 2). Let (X, d) be a complete and locally
compact length space. Then for any two points x, y ∈ X that can be connected by a rectifiable path
at all, there is also a shortest path connecting them.

The example of R2 \ {0} shows that completeness is essential in the above theorem. So is local
compactness, as we show now, ending this section.
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1.4.19 Example (A complete but not strictly intrinsic length space). We consider the
subspace X ⊆ R2 consisting of p = (−1, 0) and q = (1, 0) and all connecting broken straight lines
cn that go via the point (0, 1/n) (n ∈ N) (see Figure 1.21) with its intrinsic metric coming from
the usual length structure of R2. Then this space is complete but not locally compact, since no
neighbourhood of p or q is compact. Indeed such a neighbourhood can be covered by small pieces
of each cn, which possess no finite subcover. Clearly there is no path from p to q realizing the
distance, which is 2 = inf L(cn).

1.4.3 The Hopf-Rinow theorem

In this section we will state and prove a generalization of the well-known Hopf-Rinow theorem
of Riemannian geometry ([KS20, Th. 2.4.2] or [O’N83, 5 Thm. 21]) to length spaces. Roughly
speaking this theorem connects completeness of a Riemannian manifold as a metric space (w.r.t.
Riemannian distance) to geodesic completeness.

To formulate its generalization to our present setting we first introduce some more notation. To
begin with we extend the notion of shortest paths to also include non-closed intervals as domains.

1.4.20 Definition (Geodesics). Let I be an arbitrary interval and X a metric space and let
γ : I → X be a path.

(i) γ is called a shortest path (or sometimes a minimal geodesic), if its restriction to any
subinterval [a, b] ⊆ I is a shortest path (in the sense of Definition 1.4.12).

(ii) γ is called a geodesic, if each point t ∈ I is contained in a relatively open subinterval J ⊆ I
such that γ|J is a shortest path.

Hence we may say that a geodesic is a curve that locally is a distance minimizer. Geodesics need
not be shortest paths. Indeed great circle segments on the sphere are geodesics, but if they are
longer that π they are not minimizing. The example of the sphere also shows that shortest paths
need not be unique: all great circles joining antipodal points are shortest paths. On the other
hand shortest paths on the sphere are locally unique and this is a general feature in Riemannian
geometry, see e.g. [O’N83, 5, Prop 16(2)]. However, this is not true in general length spaces.

1.4.21 Example (Non-unique shortest paths on the cube). We consider the surface of a
cube in R3 with its intrinsic metric induced by the Euclidean metric of the ambient space. This
is a complete and locally compact length space. Let A and B be points at a distance η from the
vertex E along the diagonal of the top face and the right front edge respectively, see Figure 1.22.
Then the path γ from A along the diagonal to the vertex E and down the edge to B has length
L(γ) = 2η.

However, as we shall see, it is shorter to go via the edge and the front face. To determine the
shortest such path α we first consider a path αε passing the edge at a point Pε at a distance ε
from the corner E. Using the law of cosines we calculate the length of αε to be

L(αε) =

√
ε2 + η2 −

√
2εη +

√
ε2 + η2, (1.4.16)

which becomes minimal for ε0 = (
√

2 − 1)η. We write α := αε0 and P := Pε0 and calculate the
length of the shortest path connecting A and B via the front edge and face to be

L(α) = η(1 +
√

2)

√
2−
√

2 = η

√
2 +
√

2. (1.4.17)
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Figure 1.22: The two shortest paths α and
β connecting a point A on the diagonal of the
top face with a point B on the front right edge
via P resp. Q.
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Figure 1.23: The geodesics γn converge to the
curve γ̃ which is not a geodesic. In fact, the
vertex E has no neighbourhood where γ̃ is a
shortest curve— the curve αε on the right face
is always shorter between any two points Aε,
Bε on γ̃.

By symmetry there is also a path β connecting A and B via the point Q at a distance ε0 from E
on the right upper edge, which is of the same length as α. Hence we obtain

L(α) = L(β) = η

√
2 +
√

2 < 2η = L(γ), (1.4.18)

and so we have found two shortest paths connecting A and B. Moreover, since we clearly can
make η as small as we wish, we have established that the vertex E has no neighbourhood where
shortest paths are unique.

Another natural conjecture about shortest paths turns out to be wrong on the cube as well: The
limit of geodesics in general fails to be a geodesic—contrary to the situation for shortest paths, cf.
Proposition 1.4.13.

1.4.22 Example (Limit of geodesics on the cube). We again consider the cube of Example
1.4.21 and fix the side length to be 1. We now look at the straight path γ connecting the midpoint
A of the top face to the midpoint B of the front face, see Figure 1.23. This is a geodesic of length
L(γ) = 1. Indeed any point on the curve that lies on either of the two faces obviously has a
neighbourhood where γ is minimizing. Moreover, the same holds true for the point F on the edge.
Now consider the sequence of points An andBn on the top and front face respectively that approach
the right edge of the cube at a distance of 1/2 from the front edge. Denote the corresponding
connecting curves by γn, again see Figure 1.23. Then the γn are again geodesics of length L(γn) =
1. They converge to the curve γ̃ connecting the midpoints of the edges Ã and B̃ along the edges
via the vertex E. However, this curve is not a geodesic since E possesses no neighbourhood where
γ̃ is a shortest path. Indeed, the points Aε and Bε on γ̃ at distance ε from E can be joined by
a path αε on the right face, which is of length L(αε) =

√
2ε. Hence αε clearly is shorter than γ̃

between A(ε) and B(ε), which is of length 2ε.
Now you might start worrying that this even is a counterexample to Proposition 1.4.13. This
is, however, not the case: The curves γn are not distance minimizing for n large enough. More
precisely, let us consider points Aη,δ and Bη,δ which have x-distance δ from the right face and
distance η from the top edge, see Figure 1.24. Then we can connect Aη,δ and Bη,δ via the geodesic
γη,δ of length L(γη,δ) = 2η (clearly independent of δ).
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But we can also connect them by a curve ‘around the corner’, that is, around the vertex E via
the right face of the cube. We first want to detect the shortest such path and then compute its
length. To this end, we consider the points Aε and Bε at distance ε from the vertex E along the
edges and the path αεη,δ from Aη,δ to Bη,δ via Aε, Bε. We find its length to be

L(αεη,δ) = 2
√
δ2 + (η − ε)2 +

√
2ε. (1.4.19)

Now L(αεη,δ) takes its minimum for ε0 = η − δ and we set A′ := Aε0 , B′ := Bε0 , and αη,δ := αε0η,δ.

Also we easily find that L(αη,δ) =
√

2(η + δ).
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Figure 1.24: The curve αη,δ ‘around the cor-
ner’ is shorter than that the curve γη,δ, if
η > (1 +

√
2)δ.
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Figure 1.25: The lines σ1, σ2 bound the re-
gion where the distance η from the top edge
is smaller than (1 +

√
2)δ, with δ the distance

from the right edge. Inside that region the
geodesics γn are also shortest curves.

Now we can solve the following issue: Given a distance δ from the right face of the cube we
determine the distance η from the front edge for which the curve γη,δ ceases to be a shortest path,
that is L(γη,δ) > L(αη,δ). Indeed we have

L(γη,δ) = 2η > L(αη,δ) =
√

2(η + δ) ⇔ η > (1 +
√

2)δ. (1.4.20)

That is, there is a neighbourhood of the front edge of the cube bounded by the line σ1 on the top
face and the line σ2 on the front face, where the curves γη,δ are local minimizers, see Figure 1.25.
Outside of that neighbourhood the curves αη,δ passing around the corner E on the right face are
shorter.
Finally we see that the curves γn from An to Bn from the beginning of this example, while being
geodesics and shortest curves for small n, cease to be shortest curves for large n.

Finally, we motivate the main result of this section, respectively its formulation. Intuitively a
space X fails to be complete if a point is ‘missing’, as e.g. in R2 \ {0}. However, intuitively
the removal of a point would be noticed by geodesics passing through that point. Indeed such a
geodesic would be defined on a maximal open interval 6= R and could not be extended further.
The precise formulation of this idea is as follows.

1.4.23 Theorem (Hopf-Rinow-Cohn-Vossen). For a locally compact length space X the
following four conditions are equivalent:
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(i) X is complete.

(ii) X is proper.

(iii) Every rectifiable geodesic γ : [0, a)→ X can be extended to a continuous path γ̄ : [0, a]→ X.

(iv) There is a point x ∈ X such that every rectifiable geodesic γ : [0, a)→ X with γ(0) = x can
be extended to a continuous path γ̄ : [0, a]→ X.

Proof. (ii) ⇒ (i) is a standard argument valid in any metric space: The point set of a Cauchy
sequence in X is bounded and by (ii) its closure is compact. Hence the sequence possesses a
convergent subsequence, and being Cauchy, converges itself.

(i)⇒ (iii) By the remark following the proof of Proposition 1.4.6 we may assume that γ is naturally
parametrized. Since γ is rectifiable, a = L(γ) <∞ and we pick any sequence an ↗ a. Then γ(an)
is a Cauchy sequence and converges by completeness. Moreover the limit is unique as is seen from
mixing two sequences an, bn ↗ a.

(iii) ⇒ (iv) is trivial, and we are left with proving

(iv)⇒ (ii): The general lay out of the argument is similar to the one used in the proof of Proposition
1.4.16. However, the details are more complicated, since instead of using completeness we have to
use condition (iv).
Let x be the point in condition (iv). Since X is locally compact, small closed balls B̄r(p) are
compact and we define

R := sup{r : B̄r(p) is compact}. (1.4.21)

We indirectly assume R to be finite and derive at a contradiction. Observe that this indeed proves
(ii): For any arbitrary y ∈ X the closed balls B̄r(y) are contained in a large closed and compact
ball centered at x and hence are compact themselves.

Again proceed in two steps:

(1) We prove that the closed ball B̄R(p) is compact. To do so we will prove:

any sequence xn ∈ BR(p) has a subsequence converging in X to some x ∈ B̄R(p) (1.4.22)

This really suffices: Let yn be a sequence in B̄R(p). Then for all n there exists xn ∈ BR(p) with
d(xn, yn) < 1/n. By (1.4.22) xn has a converging subsequence xnk → x ∈ B̄R(p) and so the
subsequence ynk → x as well, and B̄R(p) is compact.

Now we prove (1.4.22): Set rn = d(p, xn). We may assume that rn ↗ R since otherwise a
subsequence of xn is contained in a smaller closed ball B̄r(p) with r < R, which is compact by
assumption and hence xn possesses a convergence subsequence (even in BR(p)). Moreover we may
assume w.l.o.g. that rn is increasing.

By Proposition 1.4.15 there are shortest paths γn : [0, rn]→ X connecting p to xn. Indeed, since
xn lies in some B̄r(p) for r < R which is compact and since X is a length space, the proposition
applies. Also we may assume the γn to be naturally parametrized.
Next we restrict the γn to [0, r1] and apply Corollary 1.4.11 to extract a converging subsequence.
Restricting this subsequence to [0, r2] we may, again by Corollary 1.4.11 extract a converging
subsequence. Now we proceed iteratively and apply the Cantor diagonal method. More precisely
we pick the n-th element form the n-th subsequence to obtain a sequence γnk with the following
property: for any t ∈ [0, R) the point γnk(t) is defined for large enough k and the sequence γnk(t)
converges in X.
Define γ(t) := limk γnk(t) (0 ≤ t < R). Then γ : [0, R) → X is Lipschitz and hence a path, since
the γnk are naturally parametrized. Indeed, for all ε > 0 there is k such that the estimate

d(γ(t), γ(s)) ≤ d(γ(t), γnk(t)) + d(γnk(t), γnk(s)) + d(γnk(s), γ(s)) ≤ 2ε+ |t− s| (1.4.23)
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holds. Moreover, applying Proposition 1.4.13 on any [0, r] with r < R it follows that the length of
γ is less than R on any such subinterval, hence so is its total length. The same result also implies
that γ is a geodesic.
Consequently, condition (iv) applies to γ and there is a continuous extension γ̄ : [0, R] → X
of γ. Finally, the points xnk that are the endpoints γnk(rnk) of the converging curves γnk con-
verge to γ̄(R) by the following argument: For any ε > 0 choose r < R such that R − r < ε/3
and d(γ̄(r), γ̄(R)) < ε/3. Then choose k0 such that for k ≥ k0 we have rnk ∈ (r,R) and
d(γnk(r), γ̄(r)) < ε/3. Then

d(γnk(rnk), γnk(r)) ≤ |r − rnk | ≤ R− r ≤
ε

3
, (1.4.24)

and so

d(γnk(rnk), γ̄(R)) (1.4.25)

≤ d(γnk(rnk), γnk(r)) + d(γnk(r), γ̄(r)) + d(γ̄(r), γ̄(R)) ≤ ε

3
+
ε

3
+
ε

3
= ε.

(2) We derive a contradiction just as in step (2) of the proof of Proposition 1.4.16: Since X is
locally compact, every x ∈ X has a compact neighbourhood Ux and we cover the compact closed
ball B̄R(p) by a finite collection of these to obtain a compact neighbourhood U of B̄R(p). U in
turn contains a Bε(B) = BR+ε(x). So B̄R+ε(x) is a closed subset of U , hence compact. This
contradicts the definition of R. 2

1.5 Length and Hausdorff measure

Since the length of a curve in a metric space (X, d) is independent of its parametrization one may
expect that it should be feasible to determine it merely from knowledge of the image of the curve
as a subset of X. In this section we show that this is indeed the case. In fact, the length of the
curve equals the (one dimensional) Hausdorff measure of its image. We therefore start out by
recalling some basic facts about Hausdorff measures (cf., e.g., [Els05]).

1.5.1 Definition. Let (X, d) be a metric space and let r ≥ 0 be a real number. For any countable
cover (Si)i∈I of X, we define its r-weight wr((Si)) by

wr((Si)) :=
∑
i

(diamSi)
r,

where we set 00 := 1. Then for any ε > 0 set

µr,ε(X) := inf{wr((Si)) : diam(Si) < ε ∀i ∈ I},

where the infimum is taken over all countable coverings of X by sets of diameter smaller than ε.
If no such covering exists then the infimum is set to be +∞. Finally, the r-dimensional Hausdorff
measure of X is defined as

µr(X) := C(r) lim
ε→0

µr,ε(X). (1.5.1)

Here, the normalization constant C(r) is chosen in such a way that for integer r the r-dimensional
Hausdorff measure of the unit cube in Rr equals 1. Moreover, we set µr(∅) = 0 for each r ≥ 0.

Note that µr,ε1(X) ≥ µr,ε2(X) for ε1 < ε2, so the limit in Definition 1.5.1 always exist (in [0,∞]).
Also, for integer r, µr is precisely the Lebesgue measure on Rr.

1.5.2 Lemma. For any connected metric space X, µ1(X) ≥ diam(X).
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Proof. We first note that, in the definition of µ1(X), it suffices to only consider open coverings
(Si) of X. In fact, let (Si) be any covering and consider the open covering (S′i), where

S′i := Uδ/2i := {x ∈ X : dist(x, Si) < δ/2i}

for some δ > 0. Then diam(S′i) ≤ diam(Si) + 2δ/2i and therefore w1((S′i)) ≤ w1((Si)) + 2δ. Since
δ > 0 can be chosen arbitrarily small, the claim follows.
Thus let (Si) be an open covering of X. Since X is connected, for any x, y ∈ X there exists a finite
sequence Si1 , . . . , Sin such that x ∈ Si1 , y ∈ Sin , and Sik ∩Sik+1

6= ∅ for all 1 ≤ k ≤ n− 1: In fact,
fix any x ∈ X and denote by Y the set of all y ∈ X for which such a chain of sets in (Si) exists.
Then for any Si, either Si ⊆ Y or Si ⊆ X \ Y , so both Y and X \ Y are open. Consequently,
X = Y .
Now let (Si) be an open covering of X, x, y ∈ X and Si1 , . . . , Sin a connecting chain as above.
For k = 1, . . . , n− 1, let xk ∈ Sik ∩Sik+1

, and set x0 := x, xn := y. Then d(xk−1, xk) ≤ diam(Sik)
for all k = 1, . . . , n− 1. Therefore,∑

diam(Si) ≥
n∑
k=1

diam(Sik) ≥
n∑
k=1

d(xk−1, xk) ≥ d(x0, xn) = d(x, y).

It follows that, first, w1((Si)) ≥ d(x, y), and a fortiori µ1(X) ≥ d(x, y). Since x, y were arbitrary,
this gives the claim. 2

The desired result now is as follows:

1.5.3 Theorem. Let X be a metric space and let γ : [a, b] → X be a rectifiable simple curve.
Then L(γ) = µ1(γ([a, b])).

Proof. Let S := γ([a, b]) and L := L(γ). We may assume that γ is parametrized by arclength, so
γ : [0, L]→ X. For any N ∈ N, S is covered by the sets γ([i LN , (i+ 1) LN ]), i = 0, . . . , N − 1. Each
of these sets has diameter bounded above by the length of γ|[i LN ,(i+1) LN ], which is L/N . Thus the

sum of these diameters is ≤ L. Since the diameter of each covering set goes to 0 as N → ∞, it
follows from (1.5.1) that µ1(S) ≤ L(γ).
Conversely, let a = t0 ≤ t1 ≤ · · · ≤ tn = b be any partition of [a, b] and let Si := γ([ti, ti+1])
(0 ≤ i ≤ n − 1). Since γ was supposed to be simple, the sets Si are disjoint up to the finitely

many points γ(ti). Also the Hausdorff measure of a single point is 0, so µ1(S) =
∑n−1
i=0 µ1(Si).

Now Lemma 1.5.2 implies µ1(Si) ≥ diam(Si) ≥ d(γ(ti), γ(ti+1)). As the partition was chosen
arbitrarily, this gives µ1(S) ≥ L(γ). 2

1.5.4 Remark. If γ is not supposed to be simple, the above proof still implies L(γ) ≥ µ1(γ([a, b])).

1.6 Length and Lipschitz speed

It is a well-known fact from analysis that the variational length of a Lipschitz curve γ : [a, b]→ Rn
can be calculated as the integral of its speed:

L(γ) =

∫ b

a

‖γ̇(t)‖ dt

and we will in fact establish this in more generality on Riemannian manifolds in Chapter 4 below.
The aim of the present section is to show that a similar description is true even in general metric
spaces. The velocity of a curve in this context is measured as follows:

1.6.1 Definition. Let (X, d) be a metric space and let γ : I → X be a curve. The speed of γ at
t ∈ I is defined by its metric derivative

vγ(t) := lim
ε→0

d(γ(t+ ε), γ(t))

|ε|
,

if the limit exists.
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Below we shall prove that for a Lipschitz curve the metric derivative in fact exists almost every-
where. To do this we will require the following result from measure theory:

1.6.2 Theorem. (Vitali’s covering theorem) Let X be a bounded subset of Rn and let B be
a family of closed balls in Rn such that, for every ε > 0 and every x ∈ X, there exists a ball
B ∈ B with x ∈ B and diam(B) < ε. Then B contains an at most countable sub-family {Bi} of
disjoint balls that covers X up to a set of (Lebesgue) measure zero: Bi ∩Bj = ∅ for all i 6= j and
µn(X \

⋃
iBi) = 0.

Proof. Without loss of generality we may assume that each B ∈ B is non-empty and of radius
≤ 1. All such balls are contained in the 2-ball U2(X) around X, which has finite measure. Picking
any B1 ∈ B, we proceed by induction. So suppose that (pairwise disjoint) B1, . . . , Bm have already
been constructed and let Bm denote the set of all B ∈ B that do not intersect B1, . . . , Bm. If
Bm is empty then X ⊆

⋃m
k=1Bk and we are done: in fact, suppose that there existed some

x ∈ X \
⋃m
k=1Bk. As the right hand side is relatively open in X, there would then exist some ball

Br(x) that does not intersect
⋃m
k=1Bk. But by assumption, x is contained in some B′ ∈ B with

diam(B) < r, so that

B′ ⊆ Br(x) ⊆ X \
m⋃
k=1

Bk,

contradicting the assumption that Bm is empty.

So let us suppose that Bm 6= ∅. Then we can choose some Bm+1 ∈ Bm such that

diam(Bm+1) >
1

2
sup{diam(B) : B ∈ Bm}, (1.6.1)

in this way arriving at a countable collection of disjoint sets Bi (i ∈ N). It remains to show that
they cover X up to a set of zero measure. Note first that

∑∞
i=1 µn(Bi) ≤ µn(U2(X)) <∞. Fixing

any ε > 0, we may therefore pick some m ∈ N such that
∑∞
i=m+1 µn(Bi) < ε. If

⋃
iBi = X we

are done. Otherwise, let x ∈ X \
⋃
iBi ⊆ X \

⋃m
i=1Bi and, as above (and noting that only the

last set here is relatively open in X), pick a ball B ∈ B that contains x and does not intersect
B1, . . . , Bm. Then B must intersect

⋃∞
i=m+1Bi: otherwise it would follow that B ∈ Bm for all m,

contradicting (via (1.6.1)) the fact that µn(Bi)→ 0 for i→∞. Let k be the minimal index with
B ∩Bk 6= ∅ (so necessarily k > m).

Then B ∈ Bk−1, so diam(Bk) > 1
2diam(B) by (1.6.1). Hence the distance from x to the center of

Bk is less or equal than 5 times the radius of Bk (note that B and Bk might only intersect at their
boundaries). It follows that x ∈ 5Bk, the ball with the same center and 5 times the radius of Bk.
Summing up, any x ∈ X \

⋃
iBi belongs to 5Bk for some k > m, i.e., X \

⋃
iBi ⊆

⋃∞
i=m+1(5Bi),

so

µn

(
X \

⋃
i

Bi

)
≤

∞∑
i=m+1

µn(5Bi) = 5n
∞∑

i=m+1

µn(Bi) < 5nε.

As ε was arbitrary, the claim follows. 2

Now we can prove:

1.6.3 Theorem. Let (X, d) be a metric space, and let γ : [a, b]→ X be a rectifiable curve. Then
for almost every t ∈ [a, b] either

lim inf
ε,ε′→0+

L(γ|[t−ε,t+ε′])
ε+ ε′

= 0, (1.6.2)

or

lim
ε,ε′→0+

d(γ(t− ε), γ(t+ ε′))

L(γ|[t−ε,t+ε′])
= 1. (1.6.3)
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Note that each individual term in (1.6.3) is ≤ 1, so (1.6.3) holds if and only if it holds with lim
replaced by lim inf.
Proof. Suppose that the theorem is false and let, for any α > 0, Zα be the set of all t ∈ [a, b]
such that

lim inf
ε,ε′→0+

L(γ|[t−ε,t+ε′])
ε+ ε′

> α,

and

lim inf
ε,ε′→0+

d(γ(t− ε), γ(t+ ε′))

L(γ|[t−ε,t+ε′])
< 1− α.

Also, let Z0 be the set of all t ∈ [a, b] such that either (1.6.2) or (1.6.3) hold true. Then Z0 =
[a, b] \

⋃
α>0 Zα = [a, b] \

⋃
n∈N Z1/n, so our assumption requires that some Zα (and thereby also

any Zα′ with α′ < α) must have nonzero Lebesgue measure: µ1(Zα) > 0. Fix any such α > 0 and
abbreviate Zα by Z and µ1(Z) by µ. By Lemma 1.2.5, we may choose ε0 > 0 such that for any
partition a = y0 < · · · < yN = b of [a, b] of modulus less than ε0 we have

L(γ)−
N∑
i=1

d(γ(yi−1), γ(yi)) <
µα2

2
. (1.6.4)

Next, denote by B the family of all intervals of the form [t− ε, t+ ε′] such that t ∈ Z, ε+ ε′ < ε0,

L(γ|[t−ε,t+ε′]) > α(ε+ ε′), (1.6.5)

and
d(γ(t− ε), γ(t+ ε′)) < (1− α)L(γ|[t−ε,t+ε′]). (1.6.6)

Then by definition of Zα, any point t ∈ Z is contained in arbitrarily short elements of B. Hence
Vitali’s covering theorem 1.6.2 shows that we can extract a countable sub-family {[ti−εi, ti+ε′i]}∞i=1

of disjoint intervals that cover Z up to a set of zero measure. Thus

∞∑
i=1

(εi + ε′i) = µ1

(⋃
i

[ti − εi, ti + ε′i]
)
≥ µ1(Z) = µ.

We may therefore pick M so large that

M∑
i=1

(εi + ε′i) >
µ

2
.

Since the intervals {[ti − εi, ti + ε′i]}Mi=1 are disjoint, we can include their endpoints in a partition
{yj}Nj=1 of modulus less than ε0, by possibly adding extra points that do not lie in any of the
[ti − εi, ti + ε′i]. Then setting Lj := L(γ|[yj−1,yj ]) and dj := d(γ(yj−1), γ(yj)), (1.6.4) gives

N∑
j=1

(Lj − dj) = L(γ)−
N∑
j=1

dj <
µα2

2
. (1.6.7)

All summands on the left hand side are non-negative, and whenever [yj−1, yj ] ∈ B (i.e., yj−1 =
ti − εi and yj = ti + ε′i for some i) we have, using (1.6.5) and (1.6.6):

Lj − dj > αLj > α2(yj − yj−1) = α2(εi + ε′i).

Consequently,
N∑
j=1

(Lj − dj) ≥ α2
M∑
i=1

(εi + ε′i) >
µα2

2
,

contradicting (1.6.7). 2

Inspection of the above proof shows that it works just as well if either ε or ε′ is fixed to 0
throughout, so we obtain:
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1.6.4 Corollary. Let (X, d) be a metric space, and let γ : [a, b]→ X be a rectifiable curve. Then
for almost every t ∈ [a, b] either

lim inf
ε→0

L(γ|[t,t+ε])
|ε|

= 0,

or

lim
ε→0

d(γ(t), γ(t+ ε))

L(γ|[t,t+ε])
= 1.

(where the interval [t, t+ ε] should mean [t+ ε, t] for ε < 0).

1.6.5 Theorem. Let (X, d) be a metric space and let γ : [a, b] → X be a Lipschitz curve. Then
the speed vγ(t) of γ exists for almost every t ∈ [a, b], is integrable, and

L(γ) =

∫ b

a

vγ(t) dt.

Proof. By [Coh13, Cor. 6.3.8], any Lipschitz function f : [a, b] → R is differentiable almost
everywhere and satisfies the fundamental theorem of calculus, see Proposition 1.6.7 (i) and (iv)
below. We wish to apply this result to the function f : [a, b]→ R, f(t) := L(γ|[a,t]). Since∑

d(γ(ti), γ(ti+1)) ≤ Lip(γ)
∑

(ti+1 − ti) = Lip(γ)(s− r)

on any sub-interval [r, s] of [a, b], the very definition of curve length implies that |f(r) − f(s)| ≤
Lip(γ)|r − s|, i.e., f is indeed Lipschitz, hence in particular differentiable almost everywhere. It
also follows that γ is rectifiable. We have

f ′(t) = lim
ε→0

L(γ|[t,t+ε])
|ε|

= lim
ε→0

L(γ|[t,t+ε])
d(γ(t), γ(t+ ε))

· d(γ(t), γ(t+ ε)

|ε|
. (1.6.8)

By Corollary 1.6.4, for almost all t ∈ [a, b] either f ′(t) = 0 or the first factor in the last product
goes to 1 as ε→ 0. In the first case,

vγ(t) = lim
ε→0

d(γ(t), γ(t+ ε))

|ε|
≤ lim
ε→0

L(γ|[t,t+ε])
|ε|

= f ′(t) = 0,

so vγ(t) = 0. In the second case,

vγ(t) = lim
ε→0

d(γ(t), γ(t+ ε))

|ε|
= f ′(t).

Consequently, for almost every t ∈ [a, b], vγ(t) exists and equals f ′(t). The fundamental theorem
of calculus cited above therefore implies

L(γ) = f(b)− f(a) =

∫ b

a

f ′(t) dt =

∫ b

a

vγ(t) dt.

2

Finally, we are going to extend the validity of Theorem 1.6.5 to an even bigger class of curves. We
first recall:

1.6.6 Definition. A curve γ : [a, b]→ X into a metric space (X, d) is called absolutely continuous
if for any ε > 0 there exists some δ > 0 such that, for any finite sequence of pairwise disjoint
subintervals {(ai, bi) : 1 ≤ i ≤ m} of [a, b] with

∑m
i=1(bi−ai) < δ we have

∑m
i=1 d(γ(ai), γ(bi)) < ε.

Some useful properties of absolutely continuous maps are collected in the following result:

1.6.7 Proposition. Let γ : [a, b]→ (X, d).
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(i) If γ is Lipschitz, then it is absolutely continuous.

(ii) If γ is absolutely continuous, then it is uniformly continuous.

(iii) If γ is absolutely continuous and F : (X, d) → (Y, dY ) is Lipschitz, then F ◦ γ is absolutely
continuous.

(iv) A function f : [a, b]→ R is absolutely continuous if and only if it is differentiable Lebesgue-
almost everywhere, f ′ is integrable, and f satisfies the fundamental theorem of calculus:

f(x) = f(a) +

∫ x

a

f ′(x) dx (x ∈ [a, b]).

(v) If γ is absolutely continuous, it is rectifiable.

Proof. (i)–(iii) are easy consequences of the definition of absolute continuity.
(iv) is [Coh13, Cor. 6.3.8].
(v) Pick δ > 0 such that, for any finite sequence of pairwise disjoint subintervals {(ai, bi) : 1 ≤
i ≤ m} of [a, b] with

∑m
i=1(bi − ai) < δ we have

∑m
i=1 d(γ(ai), γ(bi)) < 1. Let M ∈ N such that

b−a
M < δ and set an := a + n b−aM for n = 0, 1, . . . ,M . Then a = a0 < a1 < · · · < am = b is a

partition of [a, b], and

L(γ) =

M∑
i=1

L(γ|[ai−1,ai]).

Now let ai−1 = y0 < y1 < · · · < yk = ai be any partition of [ai−1, ai]. Then

k−1∑
j=0

(yj+1 − yj) = ai − ai−1 =
b− a
M

< δ,

so
∑k−1
j=0 d(γ(yj), γ(yj+1)) < 1. Taking the supremum over all such partitions it follows that

L(γ|[ai−1,ai]) ≤ 1, so

L(γ) =

M∑
i=1

L(γ|[ai−1,ai]) ≤M.

2

Now we are ready to extend the validity of Theorem 1.6.5:

1.6.8 Theorem. Let (X, d) be a metric space and let γ : [a, b] → X be an absolutely continuous
curve. Then the speed vγ(t) of γ exists for almost every t ∈ [a, b], is integrable, and

L(γ) =

∫ b

a

vγ(t) dt.

Proof. If we can show that f : [a, b] → R, f(t) := L(γ|[a,t]) is absolutely continuous, then
using Proposition 1.6.7 (iv), the same proof as in Theorem 1.6.5 will give the result (the proof
uses Theorem 1.6.3, which requires γ to be rectifiable – this holds by Proposition 1.6.7 (v)).
So let ε > 0 and pick δ > 0 such that for any finite sequence of pairwise disjoint subintervals
{(ai, bi) : 1 ≤ i ≤ m} of [a, b] with

∑m
j=1(bj − aj) < δ we have

∑m
j=1 d(γ(aj), γ(bj)) < ε.

Now for each j ∈ {1, . . . ,m} pick any partition {t(j)i : 0 ≤ i ≤ nj} of the interval [aj , bj ]. Then∑
i,j |t

(j)
i+1 − t

(j)
i | =

∑
j(bj − aj) < δ, so∑

j

∑
i

d(γ(t
(j)
i ), γ(t

(j)
i+1)) < ε.
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Taking the supremum over all partitions, it follows that∑
j

|f(bj)− f(aj)| =
∑
j

L(γ|[aj ,bj ]) ≤ ε,

yielding the claim. 2

In the remainder of this section we follow [Sch18].

1.6.9 Proposition. Let γ : [a, b]→ X be a curve into a metric space (X, d). Then the following
are equivalent:

(i) γ is absolutely continuous.

(ii) There exists some l ∈ L1([a, b]) such that for all s1 ≤ s2 ∈ [a, b]

d(γ(s1), γ(s2)) ≤
∫ s2

s1

l(t) dt. (1.6.9)

Proof. (i)⇒(ii): If γ is absolutely continuous then by Theorem 1.6.8 we may use l := vγ ∈
L1([a, b]) to verify (1.6.9).

(ii)⇒(i): With l as in (ii), the function F : [a, b] → R, F (t) :=
∫ t
a
l(s) ds is absolutely continuous

(cf. [Coh13, Prop. 4.4.6]). Moreover, for any collection of pairwise disjoint subintervals (ai, bi),
i = 1, . . . ,m we have

m∑
i=1

d(γ(ai), γ(bi)) ≤
m∑
i=1

∫
[ai,bi]

l(t) dt ≤
m∑
i=1

|F (bi)− F (ai)|,

so the claim follows. 2

In fact, the metric derivative of an absolutely continuous curve γ is the minimal L1-function
satisfying (ii) in Proposition 1.6.9:

1.6.10 Theorem. Let (X, d) be a metric space and let γ : [a, b]→ X be an absolutely continuous
path. Then the metric derivative vγ is the minimal L1([a, b])-function such that

d(γ(s), γ(t)) ≤
∫ t

s

vγ(t) dt, for all s, t ∈ [a, b], s ≤ t, (1.6.10)

i.e., vγ(t) ≤ l(t) almost everywhere, for any l ∈ L1([a, b]) such that (1.6.9) holds.

Proof. γ([a, b]) is compact and metrizable, hence separable (cf. [Kun16, Prop. 11.2.10]). Let
{xn : n ∈ N} be a countable dense subset of γ([a, b]). The map p 7→ d(p, q) is 1-Lipschitz for any
fixed q ∈M , hence by Proposition 1.6.7 (iii) the functions

φn : [a, b]→ R, t 7→ d(γ(t), xn)

are absolutely continuous. By Proposition 1.6.7 (iv) each φn is differentiable almost everywhere.
Since countable unions of null-sets are null, at almost every point all φn are simultaneously differ-
entiable, so we can define

φ(t) := sup
n∈N
|φ′n(t)| for almost every t ∈ [a, b]. (1.6.11)

We will now show that φ is integrable and that φ(t) = vγ(t) almost everywhere. Note first that

|φn(t+ ε)− φn(t)| = |d(γ(t+ ε), xn)− d(γ(t), xn)| ≤ d(γ(t+ ε), γ(t)), (1.6.12)

so

lim inf
ε→0

d
(
γ(t+ ε), γ(t)

)
|ε|

≥ lim inf
ε→0

|φn(t+ ε)− φn(t)|
|ε|

= |φ′n(t)|
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for almost every t ∈ I and all n ∈ N. This implies

lim inf
ε→0

d
(
γ(t+ ε), γ(t)

)
|ε|

≥ φ(t) for a.e. t ∈ [a, b]. (1.6.13)

Next we show that, for any t ∈ [a, b] as above, d(γ(t+ε), γ(t)) = supn∈N |φn(t+ε)−φn(t)|. Indeed,
by (1.6.12), for all n ∈ N we have d(γ(t + ε), γ(t)) ≥ supn∈N |φn(t + ε) − φn(t)| . Since (xn)n is
dense in [a, b], there is a subsequence (xnk)k such that limk→∞ xnk = γ(t). Therefore,

sup
n∈N
|φn(t+ ε)− φn(t)| ≥ lim

k→∞
|φnk(t+ ε)− φnk(t)|

= lim
k→∞

|d(γ(t+ ε), xnk)− d(γ(t), xnk)| = d(γ(t+ ε), γ(t)).

By Proposition 1.6.9 there exists l ∈ L1([a, b]) such that (1.6.9) holds. Now for every Lebesgue
point t ∈ [a, b] of l that satisfies (1.6.13) we get

0 ≤ φ(t) ≤ lim inf
ε→0

1

|ε|
d(γ(t+ ε), γ(t)) ≤ lim inf

ε→0

1

|ε|

∫
[t,t+ε]

l(r) dr = l(t), (1.6.14)

where [t, t+ε] is to be read as [t+ε, t] in case ε < 0. Since almost every point in [a, b] is a Lebesgue
point of l (cf. [Coh13, Prop. 6.3.10]), we conclude that φ ∈ L1([a, b]). Hence we obtain

d(γ(t+ ε), γ(t)) = sup
n∈N
|φn(t+ ε)− φn(t)|

= sup
n∈N

∣∣∣∣∣
∫

[t,t+ε]

φ′n(r) dr

∣∣∣∣∣ ≤
∫

[t,t+ε]

sup
n∈N
|φ′n(r)| dr =

∫
[t,t+ε]

φ(r) dr,
(1.6.15)

Furthermore, (1.6.15) implies

lim sup
ε→0

1

|ε|
d(γ(t+ ε), γ(t)) ≤ φ(t),

and together with (1.6.14) we get

lim sup
ε→0

1

|ε|
d(γ(t+ ε), γ(t)) ≤ φ(t) ≤ lim inf

ε→0

1

|ε|
d(γ(t+ ε), γ(t)),

for almost every t ∈ [a, b]. Hence vγ = φ in L1([a, b]). Finally, (1.6.10) holds by (1.6.15), and the
minimality of vγ follows from (1.6.14). 2



Chapter 2

Constructions

In this chapter we introduce a number of basic techniques for producing new length spaces from
given ones, as well as for generating interesting examples for the concepts to be studied later on.

2.1 Locality, gluing and maximal metrics

2.1.1 Locality

2.1.1 Lemma. Let (Xα)α∈A be an open covering of a topological space X such that each Xα

carries a length structure Lα. Suppose that the Lα are compatible, in the sense that a curve
γ whose image lies in Xα ∩ Xβ is admissible for Lα if and only if it is admissible for Lβ and
Lα(γ) = Lβ(γ). Then there exists a unique length structure L on X whose restriction to Xα

equals Lα for each α ∈ A. If X is connected and all the intrinsic metrics induced by Lα on Xα

are finite, then so is L.

Proof. Given any curve γ : [a, b] → X, compactness of γ([a, b]) implies that there are finitely
many Xα which cover this set. Thus we may form a partition a = t0 < t1 < · · · < tn = b such that
each γ([ti, ti+1]) is contained in some Xαi . Consequently, the length of γ|[ti,ti+1] is unequivocally
given by Lαi(γ) and we define L(γ) as the sum over the Lαi-lengths of γ|[ti,ti+1]. If γ([a, b]) is also
covered by some other finite collection of certain Xβj , then using a partition such that each piece
of γ is contained in an intersection of some Xαi and some Xβj shows that L(γ) is well-defined.
Moreover, the requirement of additivity on L shows uniqueness. All the properties of a length
structure for L now follow readily from those of the Lα.
Finally, suppose that X is connected and all the intrinsic metrics induced by Lα on Xα are finite.
Fixing any x ∈ X, let

Y := {y ∈ X : dL(x, y) <∞}.

Then any Xα is either contained in Y or in X \ Y , showing that both sets are open, and so
connectedness of X implies X = Y . 2

2.1.2 Corollary. Let d1, d2 be two intrinsic metrics on a set X that induce the same topology on
X. Suppose that for each x ∈ X there exists a neighborhood Ux of x such that d1|Ux×Ux = d2|Ux×Ux .
Then d1 = d2.

Proof. Let x, y ∈ X and fix any ε > 0. Then either d1(x, y) = ∞ ≥ d2(x, y) or there exists a
curve γ : [a, b] → X connecting x to y such that d1(x, y) ≥ Ld1(x, y) − ε. Covering γ([a, b]) by
neighborhoods as in the assumption we may pick a partition a = t0 < t1 < · · · < tn = b with
γ([ti, ti+1]) ⊆ Uxi for suitable xi ∈ X. Then by definition of Ld1 ,

d1(x, y) ≥ Ld1(x, y)− ε ≥
n−1∑
i=0

d1(γ(ti), γ(ti+1))− ε =

n−1∑
i=0

d2(γ(ti), γ(ti+1))− ε ≥ d2(x, y)− ε.

40
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As ε was arbitrary, d1(x, y) ≥ d2(x, y). If d1(x, y) = ∞, then so is d2(x, y), otherwise the above
calculation with the roles of d1 and d2 reversed would yield d2(x, y) ≥ d1(x, y) =∞.
In case, both are finite d2(x, y) ≥ d1(x, y) follows as above by symmetry.

2

That the conclusion of Corollary 2.1.2 fails if the metrics are not required to be intrinsic follows
from the following result, which shows that for a non-intrinsic, complete metric there exists another
metric, coinciding locally with it, but not globally.

2.1.3 Proposition. Let d be a complete metric on a set X and suppose that d is not intrinsic.
Then there exists another metric d1 6= d such that every point in X has a neighborhood on which
d and d1 coincide.

Proof. For any ε > 0, define a metric dε on X by

dε(x, y) := inf

k∑
i=0

d(pi, pi+1),

with the infimum being taken over all sequences of points x = p0, p1, . . . , pk+1 = y such that
d(pi, pi+1) ≤ ε for all i. Then clearly dε(x, y) = d(x, y) whenever d(x, y) ≤ ε, so d and dε coincide
on any ball of radius ≤ ε/2. On the other hand, there must be some ε > 0 such that d 6= dε
because otherwise we could appeal to Corollary 1.3.13 to conclude that d is intrinsic. 2

2.1.2 Gluing

In this section we want to clarify how to glue two or more length spaces in such a way that
the intrinsic distances in the original spaces remain the same. To begin with, we look at some
examples.

2.1.4 Example. Consider the strip R × [0, 1] in R2, and for every x ∈ R identify (x, 1) with
(x+ 100, 0) (which topologically is a cylinder). What then should the distance between the points
(0, 1/2) and (1000, 1/2) be? To find this out, let us measure the length of the following connecting
path:

|(0, 1/2)→ (0, 1)| = 1/2, |(0, 1)→ (100, 0)| = 0

|(100, 0)→ (100, 1)| = 1, |(100, 1)→ (200, 0)| = 0

...
...

|(900, 0)→ (900, 1)| = 1, |(900, 1)→ (1000, 0)| = 0

|(1000, 0)→ (1000, 1/2)| = 1/2

In fact, this path is of minimal length, so the distance (0, 1/2) and (1000, 1/2) should be defined
to be 10, see figure 2.1.

. . .

. . .

(0, 1/2)

(1000, 1/2)

identify

identify

(100, 0)

(900, 0)

identify

identify

Figure 2.1: The figure depicts the shortest path (vertical lines) between the points (0, 1/2) and
(1000, 1/2)
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2.1.5 Example. This time, start out with R2 and identify any (x, y) with (−y, 2x). Then the
distance of any point to the origin should be set to zero, because there is an arbitrarily short path
from (x, y) to (0, 0), namely

(x, y)→ (y/2,−x)→ (−x/2,−y/2)→ (−y/4, x/2)→ (x/4,−y/4)→ . . .

Consequently, the distance between any two points should be set to zero.

These examples suggest a strategy for defining a metric on a space that results from identifying
certain points: consider finite sequences of paths by gluing the endpoint of one path to the starting
point of the next (in case they do not already agree anyways). Define the distance of two points as
the infimum of the total length of such finite sequences of paths connecting them. More precisely:

2.1.6 Definition. Let (X, d) be a metric space and let R be an equivalence relation on X. Then
the quotient semi-metric dR on X is defined as

dR(x, y) := inf

{
k∑
i=1

d(pi, qi) : p1 = x, qk = y, k ∈ N

}
, (2.1.1)

where the infimum is taken over all choices of {pi} and {qi} such that qi ∼R pi+1 for all i =
1, . . . , k − 1.
Identifying points of vanishing dR-distance we obtain a metric space, the so-called quotient metric
space (X/dR, dR), resulting from gluing (X, d) along the relation R.

2.1.7 Remark. Let us briefly verify that dR is indeed a semi-metric: non-negativity and sym-
metry are obvious from the definition, so it only remains to establish the triangle inequality. Let
x, y, z ∈ X (all different) and let {pi}, {qi} (1 ≤ i ≤ k) be as in Definition 2.1.6 for dR(x, z).
Adding y if necessary we may assume that for some 1 < l < k we have pl = ql = y. For any such
choice we have

dR(x, z) ≤
l∑
i=1

d(pi, qi) +

k∑
i=l+1

d(pi, qi).

Given any ε > 0, by a suitable choices of {pi}, {qi} the right hand side can be made smaller than
dR(x, y) + dR(y, z) + ε, giving the claim.

Henceforth we will only consider quotients of length spaces. For these we have:

2.1.8 Lemma. If (X, d) is a length space, then so is (X/dR, dR).

Proof. Setting k = 1 in (2.1.1) it follows that dR ≤ d. Consequently, any d-continuous curve is
also dR-continuous and its dR-length is less or equal to its d-length. Now let ε > 0 and pick {pi}
and {qi} as in 2.1.6 such that

∑k
i=1 d(pi, qi) < dR(x, y) + ε. Since (X, d) is a length space, for

each 1 ≤ i ≤ k there exists a path in X from pi to qi whose length is smaller than d(pi, qi) + ε
k .

Concatenating these paths we obtain a curve γ in X/dR that is continuous with respect to dR
because pi+1 is identified with qi for each i. Moreover,

LdR(γ) ≤ Ld(γ) ≤
k∑
i=1

d(pi, qi) + ε < dR(x, y) + 2ε,

which shows that indeed (X/dR, dR) is a length space. 2

2.1.9 Remark. It may happen that the equivalence relation induced on X by first identifying via
R and then factoring out the points of vanishing dR-distance is strictly stronger than R. Therefore,
(X/dR, dR) need not be homeomorphic to the topological quotient X/R. As an example, consider
on [0, 1] the equivalence relation that identifies all rational points. This space is not even T1 (cf.
[Kun16, 3.2.4]), whereas (X/dR, dR) is a metric space.



2.1. LOCALITY, GLUING AND MAXIMAL METRICS 43

2.1.10 Definition. Let (Xα, dα)α∈A be a family of length spaces. On the disjoint union X :=∐
α∈AXα we introduce a length metric d by setting

d(x, y) :=

{
dα(x, y) if x, y ∈ Xα for some α
∞ otherwise

This metric is called the length metric of the disjoint union.

As a general procedure, if (Xα, dα)α∈A is a family of length spaces and R is an equivalence relation
on their disjoint union, then in order to glue the Xα along R one first endows the disjoint union
with the length metric from definition 2.1.10 and then forms the metric quotient according to
Definition 2.1.6.

2.1.11 Example. On I = [0, 2π] with the standard metric, consider the equivalence relation
identifying 0 with 2π (and leaving the other points untouched). Then (I/dR, dR) can be identified
with the unit circle.

2.1.12 Example. Consider a countable family of disjoint compact intervals Ii (i ∈ N) and identify
all their left ends. We want to find out whether the resulting metric quotient X is compact. It
turns out that this depends on the lengths of the Ii: If each Ii has length 1 then any two right
end points have distance 2. This gives a sequence of points that does not possess a convergent
subsequence, so the answer is negative. However, if the length of Ii is 1/i then any sequence in
X either has a subsequence that eventually remains in one fixed Ij , or that moves to ever higher
Ii. In both cases we can extract a further subsequence that converges. Hence in this case X is
compact.

2.1.13 Example. Let G be some group of isometries (rigid motions) of R2. We define an
equivalence relation R on R2 by letting xRy if there exists some g ∈ G with x = gy. The
equivalence classes then are precisely the group orbits. Our aim is to show that the corresponding
quotient metric is given by

dR(x, y) = inf
g∈G

d(gx, y),

with d(x, y) = |x − y| the Euclidean norm. In fact, let {pi} and {qi} be as in Definition 2.1.6.
Then there exist gi ∈ G such that pi+1 = giqi for 1 ≤ i ≤ k − 1. Now

d(x, q1) + d(g1q1, q2) = d(x, q1) + d(q1, g
−1
1 q2) ≥ d(x, g−1

1 q2).

Iterating this process, we obtain

dR(x, y) = inf(d(x, q1) + d(g1q1, q2) + · · ·+ d(gk−1qk−1, y))

≥ inf(d(x, g−1
1 q2) + d(g2q2, q3) + · · ·+ d(gk−1qk−1, y))

= inf(d(g1x, q2) + d(q2, g
−1
2 q3) + · · ·+ d(gk−1qk−1, y))

≥ inf(d(g2g1x, q3) + d(g3q3, q4) + · · ·+ d(gk−1qk−1, y))

· · · ≥ inf d(gk−1 . . . g1x, y) = inf d(gx, y).

The converse inequality is obvious, so the claim follows.
Specifically, if we take for G all translations by vectors with integer coordinates then the resulting
metric quotient is precisely the two-dimensional flat torus. If we let G be the group of all rotations
around the origin, the resulting space is isometric to the half-ray [0,∞). Many other examples
can be created along these lines.

Next we are going to develop an alternative perspective on gluing length spaces. When identifying
points via gluing, we set their distances equal to zero, while we want other distances to remain the
same. Simply doing this, however, might lead to a violation of the triangle inequality. Hence, in
general, also the distances of points that are not identified will have to be changed. Nevertheless,
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we expect that gluing will at least not increase any distances. Thus we are led to searching for a
metric that, while smaller than the original one, should give zero on points that are identified. In
fact, we will see that choosing the maximal metric satisfying these constraints will precisely give
the quotient metric introduced above.
By a semi-metric we mean a function d : X×X → R+∪{∞}, such that d(x, x) = 0, d is symmetric
and the triangle inequality holds.
We first show that a reasonable notion of ‘maximal metric’ does indeed exist:

2.1.14 Lemma. Let X be a set, let b : X ×X → R+ ∪ {∞} be any map and denote by D the
set of all semi-metrics d on X with d ≤ b (i.e., d(x, y) ≤ b(x, y) for all x, y ∈ X). Then there is
a unique dm ∈ D such that dm ≥ d for all d ∈ D.

Proof. Given x, y ∈ X, simply set dm(x, y) := sup{d(x, y) : d ∈ D}. Then it only remains to
show that dm satisfies the triangle inequality. Thus let x, y, z ∈ X. Then

dm(x, y) = sup
d∈D

d(x, y) ≤ sup
d∈D

(d(x, z) + d(z, y)) ≤ sup
d∈D

d(x, z) + sup
d∈D

d(z, y) = dm(x, z) + dm(z, y).

Further since still supd∈D d(x, y) ≤ b(x, y), we have dm ∈ D and clearly dm ≥ d for all d ∈ D. 2

2.1.15 Corollary. Let X be a set and suppose that X =
⋃
α∈AXα, where each Xα carries a

semi-metric dα. Let D be the set of all semi-metrics (possibly taking infinite values) d on X such
that d|Xα×Xα ≤ dα for all α ∈ A. Then there is a unique maximal semi-metric dm in D (i.e.,
dm ≥ d for each d ∈ D). If all dα are intrinsic then so is dm.

Proof. By setting dα(x, y) :=∞ whenever x 6∈ Xα or y 6∈ Xα, we may without loss of generality
assume that each dα is in fact defined on all of X × X. Then existence and uniqueness of dm
follows from 2.1.14 upon setting b(x, y) := infα∈A dα(x, y).

Assume now that each dα is intrinsic and let d̂m be the intrinsic metric induced by dm (proceed

as in the case dm were a metric). Then for each α, dm ≤ dα implies d̂m ≤ d̂α = dα, implying

d̂m ∈ D. By construction, then, d̂m ≤ dm. But the converse inequality always holds (cf. Lemma

1.2.3), so d̂m = dm, which means that dm is intrinsic. 2

2.1.16 Theorem. Let (X, d) be a metric space and let R be an equivalence relation on X. Let
bR : X ×X → R,

bR(x, y) :=

{
0 if x is R-equivalent to y
d(x, y) otherwise.

Then the maximal semi-metric not exceeding bR is precisely the quotient semi-metric dR from
Definition 2.1.1.

Proof. Let D := {d′ semi-metric on X : d′ ≤ bR}. By definition, dR ∈ D, so it remains to show
that dR ≥ d′ for every d′ ∈ D. To see this, let {pi} and {qi} be as in Definition 2.1.1, and set
pk+1 := y. Then for any d′ ∈ D we have

d′(x, y) ≤
k∑
i=1

d′(pi, pi+1) ≤
k∑
i=1

d′(pi, qi) +

k∑
i=1

d′(qi, pi+1) ≤
k∑
i=1

bR(pi, qi) +

k∑
i=1

bR(qi, pi+1)

≤
k∑
i=1

bR(pi, qi) + 0 ≤
k∑
i=1

d(pi, qi).

Consequently, d′ ≤ dR. 2

2.1.17 Remark. If d is intrinsic we can use Corollary 2.1.15 to provide an alternative proof that
dR is intrinsic in this case (cf. Lemma 2.1.8). Indeed we have for any semi-metric d̃ exceeded by
bR, that d̃ ≤ bR ≤ d and so Corollary 2.1.15 shows that the dR is intrinsic.
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2.2 Polyhedral Spaces

A large class of examples for length spaces obtained via gluing is constituted by polyhedral spaces.
Basically they are constructed by gluing convex polyhedra along certain faces. Inductively, a 0-
dimensional polyhedral space P0 is a metric space consisting of finitely many points (the vertices
of P0) whose pairwise distances are all infinite. Given such a P0 and a finite collection of length
spaces E = {Ei}, where each Ei is isometric to some compact interval, we may construct a 1-
dimensional polyhedral space by fixing injective maps ei that send the endpoints of Ei to P0.
Then P1 results from metrically gluing P0 along {ei}. We can regard the segments of E as lying
in P1. One-dimensional polyhedral spaces are also called metric graphs.

Next, given a 1-dimensional polyhedral space P1 and a finite collection of polygons F = {Fi}, we
may construct a 2-dimensional polyhedral space by fixing, for each Fi, an injective map from the
boundary of Fi to P1 such that fi maps each side of Fi isometrically onto an edge from E. Now
gluing F to P1 along {fi} produces a 2-dimensional polyhedral space P2. The copies of Fi lying
in P2 are called the faces of P2.

2.2.1 Example. The surface of a convex polyhedron in R3 is a 2-dimensional polyhedral space.

More generally, one has:

2.2.2 Definition. Let (P, d) be a metric space covered by a family of length spaces (Pα, dα), each
isometric to a convex polyhedron. Suppose that for any α 6= β, Pα∩Pβ is a face of both Pα and Pβ
and that the metrics induced by dα and dβ coincide on it. Let d be the maximal metric majorized
by all dα according to Corollary 2.1.15. Then (P, d) is called a (Euclidean) polyhedral space. The
polyhedra Pα are called the faces of P . 0- resp. 1-dimensional faces are called vertices and edges,
respectively.

Let us now return to the important special case of metric graphs: Given a disjoint family of
segments {Ei} and points {vj}, consider first the disjoint union of these length spaces according
to Definition 2.1.10. By definition, we want to metrically glue the edges {Ei} along an equivalence
relation R defined on the union of {vj} and the endpoints of the Ej .

To obtain the corresponding metric graph, consider the family of all metrics on the individual
segments, supplemented by the semi-metric dR(x, y) that is zero if xRy and infinite otherwise.
Then form the maximal semi-metric bounded by this family of (semi-)metrics and factor out the
points of dR-distance zero. The Ei, viewed as subsets of the metric graph, are called edges, and
the vj the vertices. The cardinality of the equivalence class representing a vertex is called its
degree.

An equivalent and very natural way of constructing a metric graph consists in starting out from
a set V of vertices, then specifying which pairs of vertices should be connected by edges and,
finally, specifying lengths for these edges. Re-translating this construction into the above picture,
one takes a collection of segments {Ei} with the desired lengths and if Ei is supposed to connect
vertices v and w, identify one endpoint of Ei with v and the other with w. In this way one
determines the equivalence relation R, and the process described previously gives precisely the
desired graph. In particular this implies that any topological graph can be turned into a metric
graph by assigning lengths to its edges. Note, however, that this procedure may change the
topology of the graph. Also note that, as a general effect of gluing, it may happen that points in a
metric graph can get identified despite the fact that they are not R-equivalent, cf. Example 2.1.5.

2.2.3 Example. Any metric space can be realized as the set of vertices of a (sufficiently mon-
strous) metric graph: Let (X, d) be a metric space, and form the disjoint union of the segments
Ix,y := [0, d(x, y)] for any pair (x, y) ∈ X2. Now identify the left ends of two segments Ix,y and
Ix′,y′ if x = x′, and their right ends if y = y′. Then X can be naturally identified with the set of
vertices of the resulting metric graph, and the intrinsic metric of the graph is precisely the original
metric d on X.
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2.3 Products and cones

Given two length spaces (X, dX), (Y, dY ), we may define a metric on the cartesian product Z =
X × Y of X and Y by

d((x1, y1), (x2, y2)) :=
√
dX(x1, x2)2 + dY (y1, y2)2.

This metric is called the product metric and (Z, d) is called the metric product of X and Y .

2.3.1 Theorem. Let (X, dX) and (Y, dY ) be metric spaces and let (Z, d) be their metric product.

(i) The projections prX : Z → X and prY : Z → Y are distance- and length-decreasing. They
are isometries on each fiber X × {y} resp. {x} × Y .

(ii) For any path γ : [a, b]→ Z, γ(t) = (γX(t), γY (t)) we have L(γX)2 + L(γY )2 ≤ L(γ)2.

(iii) If γ : [a, b] → Z, γ(t) = (γX(t), γY (t)) is a distance realizing path, then so are γX and γY .
The converse is true if both γX and γY are constant speed distance realizing paths.

(iv) d is intrinsic if and only if both dX and dY are. In other words, (Z, d) is a length space if
and only if both (X, dX) and (Y, dY ) are.

(v) d is strictly intrinsic if and only if both dX and dY are.

Proof. (i) It suffices to consider the case prX . By definition of d, prX is distance-decreasing and
an isometry when restricted to any fiber X ×{y}. It is then immediate from Definition 1.2.2 that
prX is also length-decreasing.
(ii) Generally, as is easily verified, if ai, bi ≥ 0, then(∑

i

ai

)2

+
(∑

i

bi

)2

≤
(∑

i

√
a2
i + b2i

)2

.

Consequently, if a = t0 < · · · < tN = b is any partition, then(∑
i

dX(γX(ti), γX(ti+1))
)2

+
(∑

i

dY (γY (ti), γY (ti+1))
)2

≤
(∑

i

d(γ(ti), γ(ti+1))
)2

.

Letting the modulus of the partition go to zero, the claim follows from Lemma 1.2.5.
(iii) Let γ be distance realizing from z1 = (x1, y1) to z2 = (x2, y2) and suppose, to the contrary,
that γX is not distance realizing from x1 to x2. Then (ii) implies

d(z1, z2) =
√
dX(x1, x2)2 + dY (y1, y2)2 <

√
L(γX)2 + L(γY )2 ≤ L(γ),

a contradiction. Conversely, suppose that both γX and γY are distance realizing paths and are
parametrized proportional to arclength, say a = 0 and Lt0(γX) = cX · t, Lt0(γY ) = cY · t. Then
dX(γX(t), γX(t′)) = cX |t− t′|, dY (γY (t), γY (t′)) = cY |t− t′|, and so d(γ(t), γ(t′)) =

√
c2X + c2Y |t−

t′|. This implies

L(γ) = sup

{∑
i

d(γ(ti), γ(ti+1))

}
=
√
c2X + c2Y · b = d(γ(0), γ(b)).

(iv) Suppose first that (Z, d) is a length space, and let x1, x2 ∈ X and ε > 0. For any fixed y ∈ Y ,
there exists a path γ = (γX , γY ) in Z from z1 = (x1, y) to z2 = (x2, y) such that

L(γX) ≤ L(γ) < d((x1, y), (x2, y)) + ε = dX(x1, x2) + ε,

so (X, dX) is a length space as well. Now suppose that both dX and dY are intrinsic and let
z1 = (x1, y1), z2 = (x2, y2) and ε > 0. Then there exist paths γX : [0, 1] → X from x1 to
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x2 and γY : [0, 1] → Y from y1 to y2, both parametrized proportional to arclength such that
L(γX)2 < dX(x1, x2)2 + ε2/2 and L(γY )2 < dY (y1, y2)2 + ε2/2. Then γ = (γX , γY ) joins z1

to z2 and, by Lemma 1.2.5 has length supn
∑n−1
i=0 d(γ(i/n), γ((i + 1)/n)). Since γX and γY are

parametrized proportional to arclength, their total length is n times the length of any of their
restrictions to an interval [i/n, (i+ 1)/n]. Thus for any i ∈ {0, . . . , n− 1} we have:

n2d(γ(i/n), γ((i+ 1)/n))2 = n2dX(γX(i/n), γX((i+ 1)/n))2 + n2dY (γY (i/n), γY ((i+ 1)/n))2

≤ L(γX)2 + L(γY )2 < dX(x1, x2)2 + ε2/2 + dY (y1, y2)2 + ε2/2

= d(z1, z2)2 + ε2.

Consequently, d(γ(i/n), γ((i+ 1)/n)) < 1
n (d(z1, z2) + ε) for any such i, and so

n−1∑
i=0

d(γ(i/n), γ((i+ 1)/n)) < d(z1, z2) + ε

Letting n→∞ gives L(γ) ≤ d(z1, z2) + ε. This shows that (X, d) is a length space.
Finally, (v) is immediate from (iii). 2

2.3.2 Remark. (i) Note that the assumption of constant speed in the converse direction of (iii)
is essential: Indeed, in R2 = R×R, any path (γ1, γ2) with increasing coordinates γ1 and γ2 is the
product of two distance realizing paths.
(ii) The isometry group of (Z, d) is at least as rich as the product of the isometry groups of X and
Y . To see this, note that if IX is an isometry of X and IY is one of Y , then IX × IY : (x, y) 7→
(IX(x), IY (y)) is an isometry of Z, so the isometry group of Z contains isomorphic copies of the
isometry groups of X and Y . Already the case of R × R shows that in general there are many
more isometries of the product space than in the product of the individual groups.

2.3.3 Definition. A subset A in a metric space (X, d) is called convex if the restriction of d to
A is strictly intrinsic.

The reason for calling such subsets convex becomes apparent via the following result:

2.3.4 Lemma. Let (X, d) be a strictly intrinsic metric space and let A ⊆ X. Then the following
are equivalent:

(i) A is convex.

(ii) For any points x, y ∈ A there is a shortest (in X) path from x to y which is contained in A.

Proof. (i)⇒(ii): Since d|A×A is strictly intrinsic, for any x, y ∈ A there exists a path in A from
x to y of length d(x, y).
(ii)⇒(i): Let x, y ∈ A and take a shortest path as provided by (ii). This path of course automati-
cally realizes the distance d|A×A, so (A, d|A×A) is strictly intrinsic. 2

2.3.5 Definition. Let (X, d) be a strictly intrinsic metric space and let A ⊆ X. Then A is called
locally convex if every point in A has a neighborhood U in A such that for any two points y, z ∈ U
there exists a shortest path from y to z that is contained in A.

2.3.6 Remark. Any totally geodesic submanifold A of a Riemannian manifold M is locally
convex in this sense. Indeed, let U be a convex neighborhood in A that is contained in a convex
neighborhood V in M . Then any two points of U are connected by a minimizing geodesic in A
that is also a minimizing geodesic in M .

2.3.7 Lemma. Let (X, d) be a strictly intrinsic metric space and let F : X → Y (Y a metric
space) be a distance-preserving map. Then F (X) is convex in Y .
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Proof. It suffices to observe that X is convex in itself and that F : X → (F (X), dY |F (X)×F (X))
is an isometry. 2

2.3.8 Proposition. Let X and Y be length spaces and let α : [a, b] → X, β : [c, d] → Y be
shortest paths. Then R := α([a, b]) × β([c, d]) is convex in X × Y and isometric to a Euclidean
rectangle.

Proof. Let both α and β be parametrized by arclength. Then F : [a, b] × [c, d] → Z, F (t, s) :=
(α(t), β(s)) is an isometry, because

d2(F (t, s), F (t′, s′)) = d2
X(α(t), α(t′)) + d2

Y (β(t), β(t′)) = (t− t′)2 + (s− s′)2.

The claim now follows from Lemma 2.3.7. 2

Next we turn to an important class of examples, namely cones over metric spaces. To begin
with, the cone Con(X) over a topological space X is defined to be the quotient of the product
X × [0,∞) that results from gluing all the points in the fiber X × {0}. The point resulting from
this identification is called the origin or apex of the cone.

To get an idea of how to endow a cone over a metric space (X, d) with a suitable metric, consider
first the model case of X being a subset of the unit sphere S2 = {(x, y, z) : x2 +y2 +z2 = 1} ⊆ R3.
The cone over X then has its apex in the origin O and consists of the half-rays emanating from
O and containing a point of X. This suggests to use spherical coordinates, assigning to any point
a in the cone the pair (x, t), with x ∈ X and t = |aO|, so a = tx. To calculate the Euclidean
distance between two points a = (x, t) and b = (y, s) in the cone, consider the triangle ∆Oab.
Then |Oa| = t, |Ob| = s and the angle ]aOb is the angular distance d(x, y) in X. The law of
cosines therefore gives:

|ab| =
√
t2 + s2 − 2ts cos(d(x, y)).

We take this as a clue for our definition also in the general case:

2.3.9 Definition. Let X be a metric space with diam(X) ≤ π. The cone metric dc on Con(X)
is defined by

dc(p, q) :=
√
t2 + s2 − 2ts cos(d(x, y)), (2.3.1)

for p, q ∈ Con(X), p = (x, t), q = (y, s).

2.3.10 Proposition. Let (X, d) be a metric space with diam(X) ≤ π. Then dc is a metric on
Con(X).

Proof. Clearly dc is non-negative and symmetric, so it remains to verify the triangle inequality.
Let y1 = (x1, r1), y2 = (x2, r2), y3 = (x3, r3) ∈ Con(X), and set α := d(x1, x2), β := d(x2, x3).
Now let ȳ1, ȳ2, ȳ3 be points in R2 whose distances to the origin are r1, r2, r3 and such that ]ȳ1Oȳ2 =
α, ]ȳ2Oȳ3 = β, and the rays Oȳ1 and Oȳ2 lie in different half-planes with respect to Oȳ2.
Then (again by the law of cosines), for the Euclidean distances we have |ȳ1ȳ2| = dc(y1, y2) and
|ȳ2ȳ3| = dc(y2, y3). We distinguish two cases:

α + β ≤ π: Then ]ȳ1Oȳ3 = α + β = d(x1, x2) + d(x2, x3) ≥ d(x1, x3), and so the law of cosines
implies

|ȳ1ȳ3| =
√
r2
1 + r2

3 − 2r1r3 cos(d(x1, x2) + d(x2, x3))

≥
√
r2
1 + r2

3 − 2r1r3 cos(d(x1, x3)) = dc(y1, y3).
(2.3.2)

Hence

dc(y1, y2) + dc(y2, y3) = |ȳ1ȳ2|+ |ȳ2ȳ3| ≥ |ȳ1ȳ3| ≥ dc(y1, y3). (2.3.3)
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The other case is α+β ≥ π: In this case, since the
broken line ȳ1ȳ2ȳ3 lies outside the sector ȳ1Oȳ3,
it follows that |ȳ1ȳ2| + |ȳ2ȳ3| ≥ |ȳ1O| + |Oȳ3|.
Therefore,

O

ȳ1
ȳ2

ȳ3

|ȳ1ȳ2|

|ȳ2ȳ3|

|ȳ1O|

|Oȳ3|

dc(y1, y2) + dc(y2, y3) = |ȳ1ȳ2|+ |ȳ2ȳ3| ≥ |ȳ1O|+ |Ōȳ3| = r1 + r3. (2.3.4)

Finally, note that

dc(y1, y3) =
√
r2
1 + r2

3 − 2r1r3 cos(d(x1, x3)) ≤
√
r2
1 + r2

3 + 2r1r3 = r1 + r3.

2

2.3.11 Proposition. Let γ̃ : [a, b] → Con(X) be a curve into the metric cone over (X, d),
γ̃(t) = (γ(t), r(t)).

(i) If L(γ) ≤ π, then L(γ̃) ≥
√
r(a)2 + r(b)2 − 2r(a)r(b) cos(L(γ)).

(ii) If L(γ) ≥ π, then L(γ̃) ≥ r(a) + r(b).

Proof. (i) Let a = t0 < · · · < tn = b be any partition, then L(γ̃) ≥
∑n−1
i=0 dc(γ̃(ti), γ̃(ti+1)).

As in the discussion preceding (2.3.3) we now pick points ȳi ∈ R2 such that their distance from
the origin is r(ti) and ]ȳiOȳi+1 = d(γ(ti), γ(ti+1)) (always proceeding, say, clockwise on S1 with

these angles). Then the angle between ȳ0 and ȳn is
∑n−1
i=0 d(γ(ti), γ(ti+1)). Because this sum is

≤ L(γ) ≤ π, by the law of cosines we can calculate |ȳ0ȳn| via this angle, to obtain

L(γ̃) ≥
n−1∑
i=0

dc(γ̃(ti), γ̃(ti+1)) =

n−1∑
i=0

|ȳiȳi+1|

≥ |ȳ0ȳn| =
(
r(a)2 + r(b)2 − 2r(a)r(b) cos

(∑
i

d(γ(ti), γ(ti+1))
)) 1

2

.

Taking the supremum over all partitions we arrive at our claim:

L(γ̃) ≥
√
r(a)2 + r(b)2 − 2r(a)r(b) cos(L(γ)).

(ii) Due to (i) we only need to consider the case where L(γ) > π, Then we may pick a partition

a = t0 < · · · < tn = b such that
∑n−1
i=0 d(γ(ti), γ(ti+1)) > π. In the geometric representation

employed in the proof of Proposition 2.3.10, the d(γ(ti), γ(ti+1)) correspond to the angles between

consecutive points ȳi. Thus letting yi := γ̃(ti) (0 ≤ i ≤ n), we have
∑n−1
i=0 ]ȳiOȳi+1 > π, so by

the analogue of (2.3.4) for finitely many points we obtain

L(γ̃) ≥
n−1∑
i=0

dc(yi, yi+1) =

n−1∑
i=0

|ȳiȳi+1| ≥ r0 + rn = r(a) + r(b).

2

Our next aim is to show that d is (strictly) intrinsic if and only if dc is. This will require some
preparations. We first look at an instructive example:
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2.3.12 Example. Let X = S2, so Con(X) = R3. A shortest path γ : [0, a]→ S2 in X then is an
arc contained in a great circle of X, and so the cone over γ is a planar sector. Any point in this
sector has cone coordinates (γ(τ), t). Now if γ is parametrized by arc length, τ and t are precisely
the polar coordinates in this planar sector, where the angle coordinate is measured with respect
to the ray [O, γ(0)].

More generally, we have:

2.3.13 Lemma. Let (X, d) be a length space with diam(X) ≤ π, and let γ : [0, L] → X be a
shortest path in X, parametrized by arclength. Then the cone over the image of γ is (isometric
to) a convex flat surface in Con(X).

Proof. Denote by (r, ϕ) polar coordinates in the plane and let Q be the set of points in the plane
with ϕ-coordinate between 0 and L. Let F : Q → Con(X), F (r, ϕ) := (γ(ϕ), r). Then the cone
over γ is precisely the image of F . Moreover, F is distance-preserving since

d2
c(F (r, ϕ), F (r′, ϕ′)) = r2 + r′2 − 2rr′ cos d(γ(ϕ), γ(ϕ′)) = r2 + r′2 − 2rr′ cos(ϕ− ϕ′)

= dR2((r, ϕ), (r, ϕ′)).

Thus Lemma 2.3.7 shows that F (Q) is convex. Also, F is an isometry and Q is flat, so the claim
follows. 2

2.3.14 Remark. Based on the above results, we obtain a complete description of distance real-
izing paths in Con(X) for any length space with diam(X) ≤ π: On the one hand, if γ : [0, L]→ X
is a shortest path in X and r, r′ ≥ 0, then let α : [0, L] → Q be a shortest path (i.e., a straight
line) from (r, 0) to (r′, L). Then F ◦ α : [0, L] → (Con(X), dc) is a distance realizing path from
(γ(0), r) to (γ(L), r′): In fact, by the proof of Lemma 2.3.13 we have

dc(F ◦ α(0), F ◦ α(L)) = dR2(α(0), α(L)) = L(α) = L(F ◦ α),

where the last equality holds since F is distance-preserving.
Conversely, let γ̄ : [a, b] → Con(X) be a distance realizing path that doesn’t pass through the
origin. γ̄ can be written in the form γ̄(t) = (γ(t), r(t)), and we claim that the projection γ :
[a, b] → X is a shortest path. Using the same notation as in Proposition 2.3.10, let yi := γ̄(ti),
i = 1, 2, 3, t1 < t2 < t3. Since γ̄ is distance realizing,

dc(y1, y3) = dc(y1, y2) + dc(y2, y3) = |ȳ1ȳ2|+ |ȳ2ȳ3|, (2.3.5)

and it suffices to show that, with yi = (xi, ri), we have d(x1, x3) = d(x1, x2) + d(x2, x3). Again we
distinguish two cases:
α+ β < π: Here, (2.3.3) and (2.3.5) imply |ȳ1ȳ2|+ |ȳ2ȳ3| = |ȳ1ȳ3|. Thus ȳ1, ȳ2 and ȳ3 lie on one
straight line. Further by definition (see proof of 2.3.10) the triangle ∆ȳ1Oȳ3 has angle α+ β at O
and has sidelengths r1, r3 and |ȳ1ȳ2|+ |ȳ2ȳ3| = dc(y1, y3). By the very definition of dc, the angle
of this triangle at O must be d(x1, x3). Consequently, d(x1, x3) = α+ β = d(x1, x2) + d(x2, x3).
α + β = π: this case cannot occur: Confer with the sketch in the proof of 2.3.10. Indeed, (2.3.5)
implies that in (2.3.4) we must have equalities everywhere. But this is only possible if r1 = |ȳ1ȳ2|
and r3 = |ȳ2ȳ3|, meaning that r2 = 0. This, however, contradicts the assumption that γ̄ does not
pass through the origin.
Finally, we turn to the case of paths that do pass through the origin. Clearly, every point (x, r) ∈
Con(X) is connected to O by the unique shortest path {(x, t) : t ∈ [0, r]}. The concatenation of two
such segments with endpoints (x1, r1) and (x2, r2) is a shortest path if and only if d(x1, x2) = π.

As a next step we drop the assumption that diam(X) ≤ π. In this case we can no longer use
(2.3.1) to define a metric on Con(X) because the triangle inequality will no longer hold in general.
We do, however, still want (2.3.1) to hold for small distances and we still want Con(X) to be a
length space. As we shall see below, the following definition satisfies these criteria (and is unique
by Corollary 2.1.2):
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2.3.15 Definition. Let (X, d) be a metric space. Then the cone distance dc(a, b) between two
points a = (x, t) and b = (y, s) in Con(X) is defined by

dc(a, b) :=

{ √
t2 + s2 − 2ts cos(d(x, y)), d(x, y) ≤ π

t+ s, d(x, y) ≥ π.

Defining a new metric on X by d̄(x, y) := min(d(x, y), π), dc is the cone metric corresponding to
(X, d̄), so Proposition 2.3.10 implies that dc is a metric.

To gain some intuition we consider cones over a circle.

2.3.16 Example (Cones over a circle). Let C be a circle in R2 of circumference L and hence
of radius r = L/2π. As a set the cone K over C consists of pairs (x, t) with x ∈ C and t ∈ [0,∞)
with all points (x, 0) identified. The idea is now that angles of sectors with vertex at 0 get scaled
by the factor L/2π, that is they get shrunk if L < 2π, and the get enlarged if L > 2π.

More precisely let a ∈ R2 have polar coordinates (r, ϕ). Then by definition of dc we have dc(0, a) =
r, i.e., radial distances are preserved. However, for points on different rays the distance is given
by the cosine-formula, where the angle is replaced by the length of the corresponding section on
C between the two rays. Now if the circumference of the circle is 2π then that length is exactly
the angle (in R2) between the rays, but if the circumference differs the lengths in the cone over C
are scaled. For an easy example take a = (1, 0) and b = (0, 1), see figures 2.2 and 2.3. Then we
have

dc(a, b) =
√

1 + 1− 2 cos(L/4)

{
<
√

2 if L < 2π

>
√

2 if L > 2π.
(2.3.6)

More generally we have dc(a, b) < deucl.(a, b) for L < 2π and dc(a, b) > deucl.(a, b) for L > 2π.

Figure 2.2: The distance between corre-
sponding points on the cone over a larger cir-
cle (blue) is bigger than the one in a smaller
circle (red).

a

b

Figure 2.3: The blue line depicts the dis-
tance dc of the points in a cone over a cricle
of circumference > 2π compared to their dis-
tance (red) in one of circumference 2π.

The scaling of the angles can be made even more explicit: Let L > 2π and consider (with a,
and b as above) the triangle 4a0b and a corresponding triangle 4ā0b̄ with side lengths 1, 1 and
dc(a, b) >

√
2, see figures 2.4 and 2.5. Now its angle 4ā0b̄ at the origin 0 satisfies

]ā0b̄ >
π

2
= ]a0b. (2.3.7)

With other words the angles in K are fractional parts of L while Euclidean angles are fractional
parts of 2π and they are related by the scaling, i.e.,

]ā0b̄ =
2π

L
]a0b. (2.3.8)
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ā

b̄

α

dc(a, b) =
√

2

Figure 2.4: The angle of the triangle ∆ā0b̄
for the cone with circumference 2π.

ā

b̄

α′

dc(a, b) >
√

2

Figure 2.5: The angle of the triangle ∆ā0b̄
for the cone with circumference > 2π.

Next we consider (strictly) intrinsic metrics on cones. The fundamental result is:

2.3.17 Theorem. The metric dc is intrinsic (resp. strictly intrinsic) if and only if d is intrinsic
(resp. strictly intrinsic) at distances less than π (by which we mean that, whenever d(x, y) < π
there is a curve in X from x to y whose length is arbitrarily close (resp. equal to) d(x, y)).

Proof. Suppose first that dc is strictly intrinsic and let x, y ∈ X with d(x, y) < π. Let γ̃ be a
shortest path in Con(X) from a := (x, 1) to b := (y, 1). Then

L(γ̃) = dc(a, b) =
√

12 + 12 − 2 cos(d(x, y)) < 2, (2.3.9)

so γ̃ does not pass through O. It therefore has a well-defined and continuous projection γ. Propo-
sition 2.3.11 (ii) with r(a) = r(b) = 1, together with (2.3.9) implies that L(γ) ≤ π. Hence
Proposition 2.3.11 (i) gives ♣ check estimates ♣√

12 + 12 − 2 cos(d(x, y)) = dc(a, b) = L(γ̃) ≥
√

2− 2 cos(L(γ)).

Thus (d(x, y) ≤)L(γ) ≤ d(x, y), i.e., γ is minimizing.
Now suppose that (Con(X), dc) is (merely) intrinsic, let x, y ∈ X with d(x, y) < π and let ε > 0.
By assumption, there exists a curve γ̃ in Con(X) connecting a = (x, 1) to b = (y, 1) such that
L(γ̃) < dc(a, b) + ε. Hence ♣ check estimates ♣

dc(a, b) =
√

2− 2 cos(d(x, y)) ≥ L(γ̃)− ε ≥
√

2− 2 cos(L(γ))− ε,

where in the last step we used Proposition 2.3.11 (i). Since we always have L(γ) ≥ d(x, y),
setting f(η) :=

√
2− 2 cos(η), we have shown that for any ε > 0 there exists some γ with

f(d(x, y)) ≤ f(L(γ)) ≤ f(d(x, y)) +ε. Since f is continuous and strictly monotonically increasing,
this implies that for any ε > 0 there exists some γ with L(γ) ∈ [d(x, y), d(x, y) + ε], i.e., d is
intrinsic at distances less than π.
Conversely, let d be strictly intrinsic at distances less than π, let a = (x, t), b = (y, s) ∈ Con(X).
If d(x, y) < π, then by Remark 2.3.14, from a distance realizing path connecting x and y in X we
obtain a distance realizing path from a to b in Con(X). If d(x, y) ≥ π, then dc(a, b) = t + s and
the concatenation of the straight segments from a to O and from O to b has precisely this length.
Finally, let d be intrinsic at distances less than π, let ε > 0 and let p = (xp, rp), q = (xq, rq) ∈
Con(X). As shown in the previous case we may suppose that d(xp, xq) < π, since otherwise we
already know there is a distance-realizing curve. By assumption there exists a continuous curve
γ : [0, 1]→ X with L(γ) < d(xp, xq) + ε. Thus there exists some η > 0 such that for any partition
0 = t0 < · · · < tn = 1 of modulus smaller than η, we have (with x0 = xp, x1 = γ(t1), . . . ,
xn = γ(1) = xq):

n−1∑
i=0

d(xi, xi+1) < d(xp, xq) + ε. (2.3.10)

Now draw a triangle in the plane with lower vertex in the origin, left sidelength rp, right sidelength

rq, and angle
∑n−1
i=0 d(xi, xi+1) at O. Let r : [0, 1]→ R2 be a parametrization of the upper side of
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the triangle, and let γ̃ : [0, 1] → Con(X), t 7→ (γ(t), ‖r(t)‖). Let x̃i := γ̃(ti), ri := ‖r(ti)‖. Then

the length of the upper side is
∑n−1
i=0 dc(x̃i, x̃i+1), and if we insert rays from zero of angle d(x0, x1)

to rp, then of angle d(x1, x2) to the first ray, etc., we obtain a subdivision of the triangle with
radial sidelengths ri and such that the corresponding segments on the upper line have lengths
dc(x̃0, x̃1), dc(x̃1, x̃2), etc. Now compare this to the triangle with lower vertex in the origin, left
sidelength rp, right sidelength rq, and angle d(xp, xq) at O (which, thereby, has upper sidelength
dc(p, q)), see figures 2.6 and 2.7. Then (2.3.10) implies that, given any ε̃ > 0, for modulus η
sufficiently small,

n∑
i=0

dc(x̃i, x̃i+1) < dc(p, q) + ε̃.

Therefore, L(γ̃) ≤ dc(p, q) + ε̃, so dc is intrinsic.

dc(p, q)

α

rp

rq

Figure 2.6: Here α = d(xp, xq)

α

rp

rq

r1

r2
dc(x̃0, x̃1)

dc(x̃1, x̃2)

Figure 2.7: Here α =
∑
d(xi, xi+1) and the

summands are the angles between the ri

2

2.4 Angles in metric spaces

Our goal in this section is to define a notion of angle between paths in a metric space. To see how to
go about this, let us first re-visit the familiar setting of Euclidean geometry. Let α, β : [0,∞)→ R2

be two rays in R2 with the same initial point a = α(0) = β(0). Given t, s > 0, by the law of
cosines the angle ]α(t)aβ(s) is given by

arccos
|aα(t)|2 + |aβ(s)|2 − |α(t)β(s)|2

2|aα(t)||aβ(s)|

(where |pq| = ‖p − q‖ is the Euclidean distance). If we replace the rays by more general paths,
the above expression will cease to be independent of s and t. However, we may still reasonably
expect that the limit s, t→ 0 will exist and will equal the angle between the paths (i.e., between
their tangent vectors at a).

2.4.1 Definition. Let x, y, z be distinct points in a metric space (X, d). The comparison angle

]̃xyz (or ]̃(x, y, z)) at y is

]̃xyz := arccos
d(x, y)2 + d(y, z)2 − d(x, z)2

2d(x, y)d(y, z)

Geometrically, ]̃xyz is the angle at ȳ of a triangle x̄ȳz̄ in R2 whose sidelengths satisfy |x̄ȳ| =

d(x, y), |ȳz̄| = d(y, z), and |x̄z̄| = d(x, z): ]̃xyz = ]x̄ȳz̄. The comparison triangle x̄ȳz̄ is unique
up to rigid motion.

2.4.2 Definition. Let α, β : [0, ε) → X be two paths in a length space X with the same initial
point p = α(0) = β(0). The angle between α and β is defined as

](α, β) := lim
s,t→0

]̃(α(s), p, β(t))

if this limit exists.
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Fixing α and β as above, let

θ(s, t) := ]̃(α(s), p, β(t)), (2.4.1)

so ](α, β) = lims,t→0 θ(s, t). Now suppose in addition that α and β are distance realizing paths
parametrized by arclength. Then d(p, α(s)) = s, d(p, β(t)) = t, and θ(s, t) is determined solely by
d(α(s), β(t)):

θ(s, t) = arccos
s2 + t2 − d(α(s), β(t))2

2st
. (2.4.2)

Thus the angle ](α, β) exists and equals θ0 ∈ [0, π] if and only if

d(α(s), β(t))2 = s2 + t2 − 2st cos θ0 + o(st),

as s, t→ 0, where o is the Landau symbol.

2.4.3 Remark. It can be shown (cf. [BH99, 1A.7 Cor.]) that for intersecting geodesics in
Riemannian manifolds the angle always exists and equals the angle between the tangent vectors
at the intersection point. For the special case of R2 this follows directly from the above definitions
since geodesics then are just straight lines: α(s) = p+ sv, β(t) = p+ tw, and we may assume that
v and w are unit vectors. Then ‖α(s)− β(t)‖2 = 〈sv − tw, sv − tw〉 = s2 + t2 − 2st〈v, w〉, so that
θ(s, t) = arccos〈v, w〉 for all s, t.

2.4.4 Example. Even between shortest paths α, β in a metric space, the angle ](α, β) need not
exist in general. As an Example, consider two rays α, β in R2 emanating from the origin O at an
angle ϕ > 0, equipped with the induced metric from R2. Now for each n ∈ N, identify the two
points on the rays that have distance 2−n from O. Then by (2.4.2), θ(2−n, 2−n) = arccos(1) = 0,
whereas if sn, tn → 0 in such a way that neither sn nor tn equal 2−k for any k, n, then θ(sn, tn)→ ϕ.
Consequently, lims,t→0 θ(s, t) does not exist.

2.4.5 Proposition. Let (X, d) be a length space.

(i) Every shortest path in X has zero angle with itself at every point.

(ii) If the concatenation [abc] of two shortest segments [a, b] and [b, c] in X is itself a shortest
path, then the angle between [b, a] and [b, c] is π.

Proof. (i) Setting α = β in (2.4.2), and noting that d(α(s), β(t)) = |s − t| because α is
parametrized by arclength, we obtain

θ(s, t) = arccos
s2 + t2 − (s− t)2

2st
= arccos(1) = 0.

(ii) This time, α(s) = β(−s), and d(α(s), β(t)) = s+ t, so θ(s, t) = arccos(−1) = π. 2

While the angle between paths may not exist (cf. Example 2.4.4), the upper angle always does:

2.4.6 Definition. Let α, β : [0, ε) → X be two paths in a length space X with the same initial
point p = α(0) = β(0). The upper angle between α and β is defined as

]U (α, β) := lim sup
s,t→0

]̃(α(s), p, β(t)).

2.4.7 Theorem (Triangle inequality for angles). Let γ1, γ2, γ3 be curves in a length space X
emanating from the same point p. Assume that the angles α1 := ](γ2, γ3), α2 := ](γ1, γ3), and
α3 := ](γ1, γ2) exist. Then

α3 ≤ α1 + α2.
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Proof. We may assume that α1 +α2 < π since otherwise there is nothing to prove. According to
the definition of angle, each αi is a limit of an appropriate function θ as in (2.4.1). Hence given
any ε > 0, for sufficiently small s, t, r we have

|α1 − θ(b, c)| ≤ ε, |α2 − θ(a, c)| ≤ ε, |α3 − θ(a, b)| ≤ ε, (2.4.3)

where a = a(s) = γ1(s), b = b(t) = γ2(t), and c = c(r) = γ3(r) (where we use an ad-hoc notation
to label the functions to the appropriate paths).

The proof rests on comparison with certain model triangles ∆p̄āc̄ and ∆p̄b̄c̄ in the Euclidean plane.
Thus we pick four points p̄, ā, b̄, c̄ ∈ R2 such that their Euclidean distances satisfy

|p̄ā| = d(p, a), |p̄b̄| = d(p, b), |p̄c̄| = d(p, c), |c̄b̄| = d(c, b), |āc̄| = d(a, c)

and such that ā and b̄ lie on opposite sides of the line (p̄c̄).

p

a

b

c

γ1

γ2

γ3

Figure 2.8

p̄

ā

c̄

b̄

Figure 2.9

p̄

ā

c̄

b̄

Figure 2.10

Fixing a and b and moving c towards p (i.e., fixing s and t and decreasing r), for c close to p the
points p̄ and c̄ lie on the same side of the line (āb̄). On the other hand, if we fix r and make s and
t sufficiently small, then p̄ and c̄ lie on opposite sides of (āb̄). By continuity, therefore, we can pick
values for s, t, r such that c̄ lies exactly on the segment [ā, b̄]. More precisely, picking p̄ = (0, 0),
and c̄ = (d(p, c), 0), the choices of ā and b̄ are uniquely determined and depend continuously on
the distances d(p, a), d(p, b), d(c, a), d(c, b), and d(p, c). Hence the points move continuously as we
vary s, t, r, see figures 2.8 2.9 2.10.

Having reached this configuration c̄ ∈ [ā, b̄], we obtain

|āb̄| = |āc̄|+ |c̄b̄| = d(a, c) + d(c, b) ≥ d(a, b).

We now add a point b̃ to the plane such that

|p̄b̃| = |b̄p̄| = d(p, b), |āb̃| = d(a, b),

and such that b̃ lies on the same side of the line (p̄ā) as b̄, see 2.11.

By definition, θ(a, b) is the angle ]āp̄b̃ in the planar triangle ∆b̃p̄ā at p̄. Also, θ(a, c) = ]āp̄c̄, and
θ(b, c) = ]b̄p̄c̄. It follows that

θ(a, c) + θ(b, c) = ]āp̄b̄.

Now comparing the triangles ∆b̄p̄ā and ∆b̃p̄ā, we see that they have two sides of equal lengths,
while for the third sides we have |āb̄| ≥ |āb̃|. Therefore their angles must satisfy ]āp̄b̄ ≥ ]āp̄b̃. In
terms of the θ-functions, this means

θ(a, c) + θ(b, c) ≥ θ(a, b).

Combining this with (2.4.3), it follows that α3 ≤ α1 + α2 + 3ε. Since ε > 0 was arbitrary, this
concludes the proof of the triangle inequality.

Finally, we note that the above configuration (with γ3 ‘running between γ1 and γ2’) is the only
non-trivial one to consider: if, e.g., γ2 were ‘between’ γ1 and γ3, then the above would immediately
give α3 ≤ α2 ≤ α1 + α2.
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p̄

ā

c̄

b̄

b̃

Θ(b, c)

Θ(a, c)

Θ(a, b)

Figure 2.11: The possible situation of the angles after adding b̃
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Chapter 3

Spaces of Bounded Curvature

As we have seen in earlier chapters, general length spaces can be rather nasty objects and most
results require additional properties. In this chapter we will introduce the most important such
property, which is essentially geometric in nature: curvature bounds. Loosely speaking, curvature
bounds from above and below correspond to a certain degree of convexity and concavity of the
distance function, respectively.
We will first concentrate on the two most important curvature bounds, namely spaces of non-
negative and spaces of non-positive curvature. While these two classes of spaces enjoy very distinct
and different properties the metric space machinery to deal with them can be developed mainly in
parallel. Later on we will also be concerned with the general case of spaces of curvature bounded
below or above by non-vanishing constants. Such length spaces which obey a curvature bound
either from below of above are called Alexandrov spaces.

3.1 Basic definitions

In this section we will introduce the main definitions for spaces of non-negative and non-positive
curvature respectively. These definitions will be built upon comparison with Euclidean space and
will result in spaces which neither topologically or metrically ‘look like’ Euclidean space but will
share certain features with them. E.g. it is possible to define angles in Alexandrov spaces which
is not possible in general normed vector spaces, see Section 2.4.
We will give several equivalent definitions of non-positively (resp. non-negatively) curved spaces
formalizing the following ideas

• Distance functions are not less convex (resp. concave) than for the Euclidean plane.

• Geodesics emanating from a point diverge at least as fast as (resp. not faster than) in the
Euclidean plane.

• Triangles are not ‘thicker’ (resp. not ‘thinner’) than Euclidean triangles with the same side
lengths.

The sphere is the key example of a space of non-negative curvature; all the above properties
can easily be seen to hold: spherical geodesic triangles look ‘fat’ as compared to their Euclidean
counterparts, spherical geodesics emanating from a point are focused rather than diverge linearly
as their Euclidean counterparts do.
More generally every convex surface in R3 (i.e., any boundary of a convex body) is a non-negatively
curved space. On the other hand every smooth saddle surface in R3 (i.e., any surface looking locally
like a hyperbolic paraboloid) is a non-positively curved space. Moreover there is the following clear
connection to Riemannian geometry: Every Riemannian manifold is a non-positively (resp. non-
negatively) curved space iff its sectional curvatures are non-positive (resp. non-negative), see e.g.
[BBI01, chapter 6.5] for the two dimensional case.
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3.1.1 Convention. In this chapter we will assume all length spaces to be connected (equivalently
equipped with a finite metric) and to be strictly intrinsic, i.e., such that all pairs of points can be
connected by a shortest path.

3.1.1 Comparison via distance functions

Here we introduce our first definition of a curvature bound. Let X be a length space (as specified
in the above convention) and let p ∈ X. Then the distance to p is the real valued function dp on
X given by

dp(x) = d(p, x). (3.1.1)

Now let [ab] = γ : [0, T ]→ X be a shortest path parametrized by arc length. Then we introduce
the so-called one-dimensional distance function by

g(t) = d(p, γ(t)) = dp ◦ γ(t), (3.1.2)

i.e., the restriction of the distance function to p to the segment γ.
Next we want to compare g to an appropriate one-dimensional distance function in the Euclidean
plane. To do so we transfer the above construction into the Euclidean plane in the following way:
Choose a comparison segment [āb̄] in the Euclidean plane of the same length as [ab] and choose a
reference point p̄ such that its Euclidean distance to ā and to b̄ equals the distance between p and
a respectively b., i.e.,

‖ā− p̄‖ = dp(a) = d(p, a) and ‖b̄− p̄‖ = dp(b) = d(p, b). (3.1.3)

Of course this comparison configuration is unique up to rigid motions. Now we regard the segment
[āb̄] as a path γ0 parametrized by arc length, i.e., γ0(0) = ā and γ0(T ) = b̄, and finally we define
as follows.

3.1.2 Definition (Comparison function). With the above notations we call g0(t) := ‖p̄ −
γ0(t)‖, i.e., the Euclidean distance from p̄ restricted to the comparison segment [ā, b̄] the compar-
ison function for g.

Following the lay out specified above, the distance function of a non-positively (resp. non-negatively)
curved space should be more convex (resp. more concave) than that of the Euclidean plane and
we are going to define the respective spaces by the condition g0(t) ≥ g(t) (resp. g0(t) ≤ g(t)).
However, we also want our definition to be local and hence formulate it as follows.

3.1.3 Definition (Distance condition). We say that a length space1 (X, d) is non-positively
curved (resp. non-negatively curved) if every point in X has a neighbourhood U such that the
following holds: For all points p ∈ U and all segments γ ∈ U the comparison function g0 for the
one-dimensional distance function g(t) = dp(γ(t)) satisfies

g0(t) ≥ g(t) (resp. g0(t) ≤ g(t)) for all t ∈ [0, T ]. (3.1.4)

To gain some working knowledge with the notions introduced above we next discuss some examples
in detail.

3.1.4 Example (Three rays glued). We consider the space R(3) obtained from gluing three
copies of the ray [0,∞) at the point 0, see 3.1. Then R(3) has non-positive curvature.
To see this denote by O the common point of the three rays. Now every shortest path in R(3)

is either a segment in one ray or a concatenation of two segments in two different rays. Now let
γ : [0, T ] → R(3) be such a shortest path and let p ∈ R(3). If two of the three points a := γ(0),
b := γ(T ), and p belong two the same ray then the statement is trivial. Indeed γ and p are then
contained in the union of two rays which is isometric to R.

1Recall Convention 3.1.1!
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So we only need to consider the case when the three points a, b, and p belong to different rays.
For every x ∈ [O, a] we have |px| = |pa| − |ax| , see Figure 3.1. For the one-dimensional distance
function this gives

g(t) = g(0)− t for γ(t) ∈ [O, a]. (3.1.5)

On the other hand for the comparison function g0 we have by the triangle inequality (see Figure
3.1, right) for such t

g0(t) ≥ g0(0)− t, (3.1.6)

and hence since g0(0) = g(0) the desired inequality g0(t) ≥ g(t) follows for all t with γ(t) ∈ [O, a].
The remaining case γ(t) ∈ [O, b] is completely analogous. Hence R(3) is non-positively curved as
claimed.

b

O

a

p

Figure 3.1: a possible picture of R(3)

3.1.5 Example (Cones over a circle). Let K be a cone over a circle of length L, see Section
2.3. Then K is

• non-negatively curved iff L ≤ 2π, and

• non-positively curved iff L ≥ 2π.

By Lemma 2.3.13 the cone over a circle if flat outside the vertex: Every subcone over a segment
of length α ≤ max{L/2, π} is convex and isometric to a planar sector of angular measure α.
For a shortest path γ : [0, T ] → K and a point p ∈ K consider the triangle 4 composed of the
three shortest paths between the points a := γ(0), b := γ(T ), and p. There are two possibilities:

(1) 4 bounds a region not containing O or one of the points a, b, p coincides with O, and

(2) 4 bounds a region containing O, or some of its sides pass through O.

In the first case the triangle is isometric to a triangle in the plane and so the one-dimensional
distance function g coincides with its comparison function g0.
We now consider the second case separately for L < 2π and L > 2π. Observe that the case L = 2π
is again trivial since then the cone is isometric to R2.

(i) L < 2π: We cut R2 along the segments [0a], [0b], and [0p], see figure 3.2. Then each of the
ensuing sectors is isometric to a planar sector since L < 2π, again by Lemma 2.3.13. Now
again since the sum of the angles of the sectors is bounded above by 2π we may put together
these sectors in R3 to form a wedge with vertices ā, b̄ , p̄, and 0, see figure 3.3. The surface
of this wedge with the gluing metric is isometric to K.

Now 4āb̄p̄ which lies in the plane spanned by ā, b̄ and p̄ in R3 is a comparison triangle for
4abp. We then have

g0(t) = deucl.(p̄, γ(t)) ≤ g(t), (3.1.7)

where the latter is the intrinsic distance in K (measured along the boundary of the wedge).
So g0(t) ≤ g(t) and K is non-negatively curved.
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O

a

b

p

Figure 3.2

O

ā p̄

b̄

γ(t)

g(t)

g0(t)

Figure 3.3

(ii) L > 2π: Again 4ab0, 4ap0, and 4bp0 are flat, i.e., isometric to planar triangles. Now
consider comparison triangles 4āb̄0̄ and 4b̄p̄0̄ placed on different sides of the segment [0̄b̄],
see figure 3.4. We have for the angles α := ]a0b, β := ]p0b and γ := ]a0p that α+β+γ = L.
Moreover we have (cf. Example 2.3.16) for ᾱ := 2π/Lα, β̄ := 2π/Lβ, and ϕ := ]ā0̄p̄ that
ᾱ+ β̄ + γ̄ = 2π. This implies

ϕ = 2π − (ᾱ+ β̄) = 2π − 2π

L
(α+ β) =

2π

L
(L− (L− γ)) =

2π

L
γ ≤ γ, (3.1.8)

and so

deucl.(ā, p̄) =
√

1 + 1− 2 cos(ϕ) ≤
√

1 + 1− 2 cos(γ) = dc(a, p). (3.1.9)

Now we turn 4b̄0̄p̄ around b̄ until |āb̄| equals dc(a, p), see figure 3.5. Next we proceed along
the same lines with the other triangles to obtain the configuration shown in figure 3.6 . There
we can see that we obviously have

g0(t) ≥ g(t), (3.1.10)

and K has non-positive curvature.

ā

b̄

p̄

ᾱ β̄

ϕ

Figure 3.4

ā

b̄

p̄
ᾱ β̄

dc(a, p)

Figure 3.5

ā

b̄

p̄

dc(a, b)

dc(b, p)

dc(a, p)

γ(t) g(t)

g0(t)

Figure 3.6

3.1.6 Example (Cone over a segment). Let X be a cone over a segment of length L, then

• X is non-positively curved for any L, and

• X is non-negatively curved iff L ≤ π.
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Indeed by Lemma 2.3.13 X is flat hence non-positively
and non-negatively curved if L ≤ π and we are left with
arguing that X is non-positively curved for L > π.
If L > π we can choose a segment [ab] in X such that
d(a, b) > π, see figure 3.7 and hence [ab] passes through
the vertex O of X since by definition 2.3.15 in this case
dc(a, b) is the sum of the radii r1, r2 (see figure). But
then clearly the comparison function g0 is larger than g
(the comparison triangle is ‘fatter’).

a

b

O

π

r1

r2p
g(t)

g0(t)

Figure 3.7

3.1.7 Example (The 1-norm). We next consider R2 with the norm ‖(x1, x2)‖1 = |x1|+ |x2|.
This space is neither non-positively nor non-negatively curved.
First observe that a straight line is always a shortest path in any normed vector space. Indeed,
the length of a straight line segment is always the distance between its endpoints. However, there
might be other shortest paths as well.
To begin with recall that the unit sphere in (R2, ‖ ‖1) is the diamond-shaped square with the
vertices (0, 1), (1, 0), (0,−1), and (−1, 0). Moreover let p = 0.
We first consider the straight line segment γ from (−1, 0) to (0, 1), which has length 2, see figure 3.8,
left. We parametrize γ by arc length as follows: γ : [−1, 1]→ R2, γ(t) = 1/2(−1 + t, 1 + t). Then
obviously the one-dimensional distance function satisfies g(t) = 1. As comparison configuration in
(R2, ‖ ‖2) we choose γ̄ the straight line segment from (−1, 0) to (1, 0) parametrized as γ̄ : [−1, 1]→
R2, γ(t) = (t, 0), see figure 3.8, right. Then p̄ which has to be at Euclidean distance 1 both from
(−1, 0) and (1, 0) has to be p̄ = 0. But then g0(t) = |t| and so

g0(t) < g(t) for all −1 < t < 1. (3.1.11)

Hence g0 6≥ g and so (R2, ‖ ‖1) is not non-positively curved.

(1, 0)(−1, 0)

(0,−1)

(0, 1)

p

γ

g(t) = 1

(1, 0)(−1, 0) p̄ = 0

γ̄

g0(t)

Figure 3.8

To see that the space is also not non-negatively curved we consider the straight line segment
γ : [0, 1] → R2, γ(t) = (1/2, 1/2 − t) connecting (1/2, 1/2) with (1/2,−1/2), see figure 3.9,
left. Then g(t) = 1/2 + |1/2 − t| and hence g(0) = 1 = g(1), and g(1/2) = 1/2. Now we
choose γ̄ : [−1/2, 1/2] → R2, γ̄(t) = (t, 0) and p̄ = (0,−

√
3/2), see figure 3.9, right. Then

g0(0) = 1 = g0(1) but

g0

(1

2

)
=

√
3

2
>

1

2
= g
(1

2

)
, (3.1.12)

and so g0 6≤ g and we are done.
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Figure 3.9

3.1.2 Distance comparison via triangles

In this section we reformulate the distance condition of Definition 3.1.3 to gain some additional
insight into the geometry of non-positively and non-negatively curved spaces.

Let X be a (connected and strictly intrinsic) length space. By a triangle in X we mean any
collection of three points a, b, c ∈ X (called the vertices) connected by three shortest paths (called
sides) denoted by [ab], [bc], and [ca]. We write 4abc for the triangle and |ab|, |bc|, and |ca| for the
length of its sides. Observe that the vertices alone do not determine a triangle since there might
be different shortest paths between the same pair of vertices.

Now for each triangle 4abc in X we construct a triangle 4āb̄c̄ in the Euclidean plane with the
same side lengths, i.e.,

|ab| = |āb̄|, |bc| = |b̄c̄|, and |ca| = |c̄ā|. (3.1.13)

We call such a triangle 4āb̄c̄ a comparison triangle for 4abc. Clearly comparison triangles are
determined up to rigid motion of the Euclidean plane.

Now we can formulate our new condition.

3.1.8 Definition (Triangle condition). We say that a length space2 (X, d) is non-positively
curved (resp. non-negatively curved) if every point in X has a neighbourhood G such that the
following holds: For every triangle 4abc ∈ G and every point d ∈ [ac] we have

|db| ≤ |d̄ b̄| (resp. |db| ≥ |d̄ b̄|), (3.1.14)

where d̄ is the point on the side [āc̄] of the comparison triangle 4āb̄c̄ such that |ād̄| = |ad|.

Observe that Definition 3.1.8 is a word by word translation of the distance condition of Definition
3.1.3: Indeed as can easily be seen from figure 3.10 the distance |bd| with d = γ(t) and γ an arc
length parametrization of the side [ac] corresponds to the one-dimensional distance function via
g(t) = d(b, γ(t)).

To obtain a vivid picture of the triangle condition take a look at figure 3.10: In the non-positively
curved situation the distance between any point d ∈ [ac] and the vertex b in the triangle 4abc is
smaller than the corresponding distance in the Euclidean comparison triangle 4āb̄c̄. Hence the
triangles in a non-positively curved space are ‘thinner‘ or ‘skinnier‘ than in the plane. Conversely
the triangle in a non-negatively curved space are ‘fatter’ than their flat comparison triangles.

2Recall Convention 3.1.1!
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a

b

c

d
|db|

ā

b̄

c̄

d̄
|d̄b̄|

a

b

c

d
|db|

Figure 3.10: On the left a triangle in a non-positivly curved space, on the right one in a non-
negatively curved space and in the center is the comparison triangle, the distance from a to d
(resp. ā, d̄) is the same in all three

Traditionally non-positively curved spaces in the sense of Definition 3.1.8 are called CAT(0)-
spaces. Here CAT stand for comparison of Cartan-Alexandrov-Toponogov and (0) indicated that
we compare with flat space, i.e., that we impose a zero upper curvature bound. Comparing with
other spaces than the Euclidean plane (such as spheres or hyperbolas) one defines CAT(k)-spaces,
k ∈ R which have curvature bounded above by k. In the case of lower curvature bounds one
usually speaks of Alexandrov spaces with curvature bounded below by k. Note, however, that we
can speak of non-positively (non-negatively) curved spaces or of spaces with curvature bounded
above (below) without having a notion of curvature for length spaces at all.

A neighbourhood G as in Definition 3.1.8 is called a normal
region. Observe that one can always choose a normal region U
in such a way that all shortest paths starting and ending in U
are still contained in a possibly larger normal domain. Indeed,
in any normal domain around a point p choose a ball of radius
Br(p) such that it has distance 2r from U c, see figure 3.11. Then
any shortest path [xy] with endpoints in Br(p) has length less
than 2r since otherwise the path from x to y via p would be
shorter than [xy]. Therefore [xy] is entirely contained in U .

x y
p

Br
2r

U

Figure 3.11

Finally we remark that contrary to the statement of [BBI01, Ex. 4.1.11] the triangle condition
of Definition 3.1.8 is not implied by the simpler condition just imposing the inequalities for the
midpoint d of [ac]. A counterexample can be found in [BH99, Ex. 1.18, p. 168].

3.1.3 Angle comparison for triangles

By taking a look at the ‘fat’ and the ’skinny’ triangles of figure 3.10 one is lead to the following
observation: ‘fat’ triangles should have larger angles than their Euclidean counterparts and ’thin’
triangles should correspondingly have smaller angles. Indeed this observation leads to yet another
definition of Alexandrov spaces: A space is of non-positive curvature if the angles of all sufficiently
small triangles exist and if they are not larger than the corresponding angles of a comparison
triangle in the Euclidean plane. In the case of non-negative curvature in addition to the usual
replacement of ‘not larger’ by ’not less’ one assumes3 that the sum of adjacent angles equals π.
The formal definition is as follows.

3.1.9 Definition (Angle condition). A length space4 X is a space of

(i) non-positive curvature if every point of X has a neighbourhood such that for every triangle
4abc in that neighbourhood the angles ]bac, ]cba, and ]acb are defined and satisfy

]bac ≤ ]̃bac, ]cba ≤ ]̃cba, ]acb ≤ ]̃acb, (3.1.15)

where ]̃bac denotes the comparison angle (cf. Definition 2.4.1), i.e., ]̃bac = ]b̄āc̄ where
4b̄āc̄ is the comparison triangle.

3It is not clear whether this condition is really necessary, cf. the footnote on p. 108 of [BBI01].
4Recall Convention 3.1.1!
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(ii) non-negative curvature if every point of X has a neighbourhood such that for every triangle
4abc in that neighbourhood the angles ]bac, ]cba, and ]acb are defined and satisfy

]bac ≥ ]̃bac, ]cba ≥ ]̃cba, ]acb ≥ ]̃acb, (3.1.16)

and, in addition, the following holds: for any two shortest paths [pq], [rs] where r is an inner
point of [pq] we have that (see figure 3.12)

]prs+ ]srq = π. (3.1.17)

While the triangle condition of Definition 3.1.8 was just a re-
formulation of the distance condition in Definition 3.1.3, the
equivalence of these definitions with the angle condition of Def-
inition 3.1.9 is not so obvious. In fact we will prove it only in
the section 3.3 and meanwhile gain some more experience by
looking at a number of examples in the next section. p

r

q

s

]prs
]srq

Figure 3.12

3.2 Examples

With the three definitions of non-positive and non-negative curvature introduced in Section 3.1 at
hand we are going to discuss some examples. We will focus on examples which do not need any
advanced techniques to be identified as Alexandrov spaces. That implies that we will not deal
with those spaces that historically motivated the study of Alexandrov spaces which are convex
and saddle surfaces in R3.

3.2.1 Example (Euclidean space). Euclidean space Rn is obviously an Alexandrov spaces
with both non-positive and non-negative curvature.

3.2.2 Example (Convex sets). A convex set in an Alexandrov space (with the induced metric)
is again an Alexandrov space with the same sign of curvature. Indeed all the shortest curves by
definition remain in the convex subset, cf. Definition 2.3.3.

3.2.3 Example (Open sets). Open subsets of Alexandrov spaces are again Alexandrov spaces
with the induced length metric. They also possess the same sign of curvature since the induced
metric locally coincides with the restriction of the metric from the ambient space and all definitions
of Section 3.1 are local.

3.2.4 Example (The fan).
The fan consisting of several segments glued together at one end is a space of non-positive cur-
vature. One can prove this statement using the argument analogous to the one used in Example
3.1.4. However, with the angle condition 3.1.9 at our hands we can give a much shorter argument.
Every triangle in the space has either all angles vanishing or is degenerate,
i.e., it is entirely contained in at most two its sides, a space that is isometric
to R. In both cases the angle condition obviously holds, also see the figures
on the right displaying these two possibilities.

a b

c

a b

c

3.2.5 Example (A plane plus a line). The union of the xy-plane and the z-axis in R3 (with
the induced metric) is a space of non-positive curvature. We will discuss its generalization, i.e., a
plane glued to a line at one point as a special case of a metric bouquet below. To show that this
space is non-positively curved we use the angle condition 3.1.9. First note that any shortest path
with its endpoints contained in the plane is entirely contained in the plane. Moreover a shortest
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path starting in the z-axis can leave it only through the origin 0. By this we see that the angle
condition is trivially satisfied for all triangles which have all their vertices in the plane or all their
vertices in the line. This also holds true if two vertices are contained in the line and one is in the
plane. So the only remaining case is if two of vertices a, b lie in the plane the vertex c is contained
in the line, see figure 3.13.

Indeed the sides emanating from c have to pass
through 0 so that the triangle 4abc consist of
the triangle 4ab0 and the ‘tail’ [0c]. One now
sees that the angles of 4abc are smaller that
those of a corresponding comparison triangle,
see figure 3.14.

a b

c

Figure 3.13

ā b̄

c̄

Figure 3.14

3.2.6 Example (Planes glued at a point). Consider several copies of R2 and identify their
origins 0. This is again a special case of the forthcoming definition of a metric bouquet and again
is a space of non-positive curvature. This can be argued essentially as in Example 3.2.5.

Now generalizing the latter three examples we introduce the following notion.

3.2.7 Definition (Metric bouquet). Let Xi be a family of length spaces and for all i let
xi ∈ Xi. The metric bouquet of the spaces Xi (with marked points xi) is the length space obtained

by gluing together all xi in the disjoint union
⋃̇
Xi.

3.2.8 Remark (Metric bouquet). It is easy to see that gluing metric spaces into a bouquet
does not change their metrics. More precisely, the spaces Xi are isometrically contained in the
bouquet since every shortest path between points in Xi never leaves it.

The latter three examples above are special cases of the following statement.

3.2.9 Proposition (Metric bouquet and curvature). A metric bouquet X of non-positively
curved spaces is again a non-positively curved space.

Proof. We use the angle condition and again the fact that every shortest path between points in
some Xi never leaves Xi.
There are three possible configurations for a triangle 4abc in X. If all vertices lie in one of the
Xi then, since Xi is non-positively curved by assumption the angle condition holds.
If all three vertices belong to different Xi then all sides of 4abc have to pass through the common
point 0 and the triangle condition holds since all angles are zero. (Indeed having a nonzero angle
at a point a ∈ Xi say would contradict non-positive curvature of Xi: Suppose there were sides
starting at a and proceeding to 0 along distinct shortest paths (since the latter need not be
unique) then one obtains a trivial triangle 4a0b by choosing b arbitrarily on one of the sides. The
Euclidean comparison triangle will then collapse to a line and hence have a vanishing angle at ā.)
Finally if a, b belong to X1, say, and c ∈ X2. Then again the angle at c vanishes. Moreover the
sides emanating from c have to pass through the common point, making the angles at a and b
smaller than the angles of a comparison triangle. Hence again the angle condition holds, cf. the
argument in Example 3.2.5. 2

3.2.10 Example (Notebook). The notebook from Example 1.1.20 is a non-positively curved
space.
Again we consider the angle condition and similar to the above the only nontrivial configuration
is if all three vertices of the triangle 4abc lie in different half-planes, say A, B and C respectively.
Indeed, if at most two half-planes are involved the condition becomes trivial since their union
A ∪B, say, is isometric to the plane (distances are measured by ‘opening the notebook’).
Now denote by L the common edge of the half-planes and denote by p, q, r the intersection of [ab],
[ac], [bc] with L, see figure 3.15. Now we see that the angles α = ]bac, β = ]abc, γ = ]acb are
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given by α = ]paq, β = ]rbp, γ = ]rcq. Hence we construct the comparison configuration in the
plane as follows, using the isometries fB of C to B which keeps L fixed (and which amounts to
turning C around L until it coincides with B) and fA of C to A which again keeps L fixed, figure
3.16. Setting ā = a and b̄ = b we construct c̄ as the intersection point of the circles around ā with
radius [ac] = [a, fB(c)] and around b̄ with radius [bc] = [d, fA(c)]. It is then obvious that we have
for the angles

α = ]paq ≤ ᾱ = ]b̄āc̄ and β = ]rbp ≤ β̄ = ]āb̄c̄. (3.2.1)

To derive the estimate on γ we finally use the isometry gB of A to B keeping L fixed, to construct
a new comparison point ã for a as the intersection of the circles centered at fA(c) and b with radii
[ac] and [ab], respectively. Then again obviously

γ = ]rfA(c)q ≤ γ̄ = ]ãfA(c)q. (3.2.2)
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ã

ρB(a)

ᾱ
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3.2.11 Remark (Reshetnyak’s theorem). In [BBI01, Thm. 9.1.21] Reshetnyak’s theorem is
proved, which covers the above spaces of non-positive curvature as well as many other examples
obtained by gluing.
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We now turn to spaces of non-negative curvature. As a matter of fact it turns out that there are
fewer distinct classes of such examples. E.g. all 2-dimensional spaces of non-negative curvature
are topological manifolds, possibly with boundary. Also, all convex surfaces are non-negatively
curved. Here we will prove this for polyhedral surfaces. To begin with we extract the following
result from Examples 3.1.5 and 3.1.6.

3.2.12 Lemma (Curvature of cones). A cone K over a circle of length L is non-negatively
curved iff L ≤ 2π, and non-positively curved iff L ≥ 2π. A cone K over a segment of length L is
non-positively curved for all L and non-negatively curved iff L ≤ π.

Recall from Section 2.2 that a key-example of a 2-dimensional polyhedral space is the surface of
a convex polyhedron in R3. We will soon see that these are in an essential way not all examples,
as they are all non-negatively curved.
Observe that every point of a 2-dimensional polyhedral space has a neighbourhood which is iso-
metric to a neighbourhood of the vertex of a cone over a graph. We call this graph the link of
that point.

3.2.13 Theorem (Curvature of 2-dimensional polyhedral spaces). A two-dimensional
polyhedral space is

(i) non-negatively curved iff it is a topological manifold possibly with boundary such that the sum
of angles around any vertex is not bigger than 2π and not bigger than π around any vertex
belonging to the boundary.

In other words this means that the link of every vertex is a circle of length at most 2π or a
segment of length at most π.

(ii) non-positively curved iff the link of each vertex does not contain a subspace isometric to a
circle of length less than 2π.

Proof. To begin with note that all curvature conditions are local in nature hence it suffices to
consider small neighbourhoods of each point in the polyhedral space X. By the remark above
the theorem we can hence restrict our attention to cones over the corresponding links. But that
means that a polyhedral space X is non-positively (non-negatively) curved iff for every x ∈ X the
cone over the link is non-positively (non-negatively) curved.

(i) Suppose that the link of every point is either a circle of length L ≤ 2π or a segment of length
L ≤ π. Then the corresponding cones are non-negatively curved by Lemma 3.2.12 and Lemma
2.3.13, respectively.

Conversely assume that X is non-negatively curved. We rule out all other possible links than
those mentioned above.

(a) Suppose the link of some point x is not connected. Then removing x makes the cone
disconnected and hence X locally disconnected. Now consider a triangle 4abc with vertices
a, b in one component and c in another one. Then the sides emanating from c have to pass
through x and hence the angles α, β are smaller than the corresponding comparison angles
and hence X cannot be non-negatively curved, cf. the argument from 3.2.5 again.

(b) Suppose that more than two faces are adjacent to an edge. Then a small neighbourhood of
a point on that edge looks like a notebook and hence X cannot be non-negatively curved,
cf. Example 3.2.10.

(c) By the above we know that any link is connected and every point in it has degree at most 2
(i.e., there are at most two faces joining there). So the link is either a circle or a segment. If
it is a circle, then by Lemma 3.2.12 its length satisfies L ≤ 2π. Moreover, if it is a segment
then by Example 3.1.6 we have L ≤ π.
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(ii) We now pass to the case of non-positive curvature and we prove the slight reformulation of
the statement:

A cone K over a graph Γ is non-positively curved iff
the length L of each nontrivial loop in Γ satisfies L ≥ 2π.

First we assume that K is non-positively curved and show that there is no nontrivial loop in Γ of
length L < 2π. Let γ be a shortest nontrivial loop in Γ. Then for any pair of points x, y ∈ γ, at
least one of the parts of γ between x and y will be a shortest path in Γ. So γ is a convex set in
Γ. Hence by Theorem 2.3.17 the subcone over γ is convex in K. So the subcone is non-positively
curved as long as the cone over γ is and so L(γ) ≥ 2π, again by Lemma 3.2.12. Since γ was
assumed to be a shortest loop, all loops have length at least 2π.

Conversely we now assume that all nontrivial loops in Γ have length L ≥ 2π. We show that K is
non-positively curved. We consider a triangle 4abc ∈ K and first consider the case where none of
the sides pass through the vertex 0 of K. Denote the projection of 4abc to Γ by 4a′b′c′. Then
by Remark 2.3.14 the sides of 4a′b′c′ are shortest paths in Γ. We now consider two cases:

(a) Suppose that 4a′b′c′ does not contain a simple loop (i.e., a loop homeomorphic to a circle).
Then the three sides of 4a′b′c′ must have a common point d ∈ Γ. Then the triangle 4a′b′c′
as a subset of Γ coincides with the fan (cf. Example 3.2.4) [a′d]∪ [b′d]∪ [c′d], where each one
of the segments [a′d], [b′d], [c′d] is a shortest path in Γ. So each pair of points in the fan
belongs to a shortest path and hence the fan is a convex subset of Γ.

Therefore the original triangle 4abc is contained in the cone over the fan which is a convex
subset of K by 2.3.17. Also this cone consists of three sectors glued together along a ray.
But now the same argument as for the notebook (Example 3.2.10) shows that the curvature
is non-positive.

(b) Now suppose that 4a′b′c′ contains a simple loop which then by assumption has perimeter
L = |a′b′|+ |b′c′|+ |c′a′| ≥ 2π.

Consider now the cone KL over a circle S of length L and fix a length preserving map
g : S →4a′b′c′. This can simply be done by splitting S into three arcs of length |a′b′|, |b′c′|,
and |c′a′|, respectively and map them to the respective sides of the triangle 4a′b′c′. Now g
induces a map

ḡ : KL → K, (x, t) 7→ (g(x), t). (3.2.3)

Then ḡ is an arcwise isometry, hence non-expanding. Moreover, the triangle 4abc is the
image of a triangle 4a′′b′′c′′ ∈ KL (cf. Remark 2.3.14).

Since L ≥ 2π, KL is non-positively curved and since the triangles 4abc in K and 4a′′b′′c′′ ∈
KL have equal side lengths they have a common comparison triangle4āb̄c̄ in R2. Let d ∈ [bc]
with corresponding points d′′ ∈ [b′′c′′] and d̄ ∈ [b̄c̄] then we have

|ad| ≤ |a′′d′′| ≤ |ād̄|. (3.2.4)

Here the first inequality holds since ḡ is non-expanding and the second one since KL is
non-positively curved. But equation (3.2.4) shows that K is non-positively curved as well.

Finally we have to deal with the case when at least one side of the triangle 4abc passes through
the vertex O. Suppose this is the case for [ab].
If one or both of the other sides of 4abc pass through O as well, then the proof can be continued
just as in Example 3.2.4. So we assume that only [ab] passes through O and continue the proof
similar to case (b) above: The projections [a′c′] and [b′c′] of [ac] and [bc] to Γ are shortest paths
in Γ and the triangle 4abc is contained in the sub-cone KL over [a′c′]∪ [b′c′], which is a cone over
a segment of length L = |a′c′| + |b′c′| and hence non-positively curved, see Example 3.1.6. As in
case (b) (cf. equation (3.2.4)) the distance condition in 4abc reduces to one in a triangle in KL

and hence K again is non-positively curved. 2
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3.3 Angles in Alexandrov spaces
and equivalence of definitions

The main aim of this section is to prove the equivalence of the definitions of Alexandrov spaces
put forward in section 3.1. Before doing so we introduce yet another definition based on the
monotonicity of angles.

3.3.1 Monotonicity of angles

Consider the following situation in a length space X which we will generally call a hinge5. We
consider two naturally parametrized shortest paths α, β emanating from a common point p in X.
As in section 2.4 we write θ(x, y) = ]̃α(x)pβ(y), that is θ(x, y) is the angle at p̄ in a comparison
triangle for 4α(x)pβ(y). The ‘new’ definition now is as follows.

3.3.1 Definition (Monotonicity condition). A length space is called non-negatively (resp.
non-positively) curved if it can be covered by neighborhoods U such that for any hinge α, β in U
we have

θ(x, y) is nonincreasing (resp. nondecreasing) (3.3.1)

in each variable x and y with the other one fixed.

Now since in a hinge θ is given by an arccos-function (cf. equation (2.4.2)) and hence bounded the
monotonicity condition immediately implies the following fact.

3.3.2 Proposition (Angles in Alexandrov spaces exist). If X is an Alexandrov space in the
sense of Definition 3.3.1, then the angle between any pair of shortest paths in X exists.

3.3.2 Equivalence of definitions

To begin with we need to discuss an elementary fact from Euclidean geometry which generally
goes under the name Alexandrov’s Lemma. It has a vivid description, which we give prior to the
formal statement.
Consider a plane quadrangle in the plane. Denote two opposite diagonal points by b and d and
assume all angles except at d be less than π, see figure 3.17. Regarding the two sides emanating
from b as a hinge. Now we open up this hinge by straightening the hinge formed by the sides
emanating from d (if possible) resulting in new points a′ and c′, at the same distances from d as
a and c respectively. If the angle at d was less than π in the beginning (i.e, the quadrangle was
convex, left), then this procedure causes b to move nearer to d. Otherwise (right) b moves farther
away from d. Formally we have.
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d = d′

b′

a′ c′

Figure 3.17

5Scharnier in German.



70 Chapter 3. Spaces of Bounded Curvature

3.3.3 Lemma (Alexandrov). Let a, b, c, d be points in the plane R2 such that a and c lie in
different half-planes with respect to the line [bd]. Consider the triangle 4a′b′c′ ∈ R2 such that

|ab| = |a′b′|, |bc| = |b′c′|, |ad|+ |dc| = |a′c′| (3.3.2)

and let d′ be the point in [a′c′] with |ad| = |a′d′|.
Then

]adb+ ]bdc < π iff |b′d′| < |bd| (3.3.3)

and in this case one also has ]b′a′d′ < ]bad and ]b′c′d′ < ]bcd, see figure 3.17, left.
Also

]adb+ ]bdc > π iff |b′d′| > |bd| (3.3.4)

and in this case one also has ]b′a′d′ > ]bad and ]b′c′d′ > ]bcd, see figure 3.17, right.

In the proof we shall use the following elementary fact of planar geometry: If the length of two
sides of a planar triangle are kept fixed, then the angle between them is a monotonously increasing
function of the length of the third side. More explicitly, if |xy| = |x′y′| and |yz| = |y′z′| for two
triangles 4ayz and 4x′y′z′ in the plane then

]xyz > ]x′y′z′ iff |xz| > |x′z′|. (3.3.5)

Proof. We choose a point c1 on the ray ad in such a way that d lies between a and c1 and such
that |dc| = |dc1|, see figure 3.18.

Suppose now that ]adb+ ]bdc > π, but this implies ]bdc1 <
]bdc and hence by (3.3.5) |bc1| < |bc| = |b′c′|. Now observing
for the triangles 4abc1 and 4a′b′c′ (notice that |ab| = |a′b′|
and |ac1| = |a′c′|) we obtain ]bac1 < ]b′a′c′. This implies
again applying (3.3.5) now to the triangles 4bad and 4b′a′d′
that |bd| < |b′d′|.
The rest of the lemma follows along the same lines.
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Figure 3.18
2

3.3.4 Remark (Alexadrov’s lemma in model geometries). Alexandrov’s lemma retains its
validity if the triangles are placed on a sphere or a hyperbolic plane. In fact it holds true on
any Riemannian manifold if the triangles are small enough. One then just works in a normal
neighbourhood and the proof has to be repeated in a vector space with a (positive definite) scalar
product.

Now we come to the long announced statement on the equivalence of all definitions of Alexandrov
spaces.

3.3.5 Theorem (Equivalence of definitions of Alexandrov spaces). All the definitions
of Alexandrov spaces, that is the distance condition 3.1.3, the triangle condition 3.1.8, the angle
condition 3.1.9, and the monotonicity condition 3.3.1 are equivalent.

Observe the following technical subtlety: All definitions are local but the size of the neighbourhoods
might depend on the condition at hand. E.g. the validity of one condition on a neighbourhood U
might imply some of the other conditions to hold only on some smaller neighbourhood V . We will
nevertheless refer to all such neighbourhoods as normal regions.

Proof. The proofs in the cases of non-negative and non-positive curvature are very similar; so
we only proof the non-positive case in detail and comment on the necessary modifications in the
non-negative case.

(1) The distance condition 3.1.3 and the triangle condition 3.1.8 are a word by word translation
of each other, hence equivalent as discussed below definition 3.1.8.
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(2) We show that the triangle condition 3.1.8 implies the monotonicity condition 3.3.1: Consider a
hinge of the shortest paths α = [pa] and β = [pb] and a point a1 in α beyond a. Now consider the
comparison triangles 4p̄āb̄ and 4p̄ā1b̄ for the triangles 4apb and 4pa1b, see figure 3.19. Let ã
be a point on [p̄ā1] as far away from p̄ as a is from p, i.e., |p̄ã| = |pa|. Then the triangle condition
implies that |ãb̄| ≥ |ab| = |āb̄| and so by (3.3.5) ]ā1p̄b̄ ≥ ]āp̄b̄, which is the monotonicity condition.
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b̄
ā1
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Figure 3.19

(3) The monotonicity condition 3.3.1 implies the angle condition 3.1.9: Consider a triangle 4abc
and call its sides α = [ba] and β = [bc], i.e., α, β is a hinge at α(0) = β(0) = b. By monotonicity
of angles we have

]abc = ]α, β = lim
s,t→0

θ(s, t) ≤ θ(|ba|, |bc|). (3.3.6)

But θ(|ba|, |bc|) = ]āb̄c̄, hence the angle condition holds.

(4) We finally show that the angle condition 3.1.9 implies the triangle condition 3.1.8: Consider
a triangle 4abc and a point d ∈ [ac]. By the triangle inequality for angles, Theorem 2.4.7 and by
Proposition 2.4.5(ii) we have (see figure 3.20, left)

]adb+ ]bdc ≥ ]adc = π. (3.3.7)

Now place comparison triangles 4ād̄b̄ and 4b̄d̄c̄ on opposite sides of the line [b̄d̄] in the plane.
Then the angle condition together with (3.3.7) implies (cf. figure 3.20, right)

]ād̄b̄+ ]b̄d̄c̄ ≥ ]adb+ ]bdc ≥ π. (3.3.8)

Note that we have chosen the points ā, b̄, c̄ and d̄ such that |ac| = |cd|+ |da| = |c̄d̄|+ |d̄ā|
Setting b′ = b̄ we choose points a′, c′ such that |a′c′| = |ac| and d′ on the segment |a′c′| such that
|a′d′| = |ad|. Note that 4a′b′c′ is a comparison triangle for 4abc and that by Alexandrov’s lemma
3.3.3 we have

|bd| = |b̄d̄| ≤ |b̄d̄′|, (3.3.9)

but this is the triangle condition for 4abc and d ∈ [ac].
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This proves the equivalence of all definitions in the case non-positive curvature.
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For the case of non-negatively curved spaces again (1) is without problems. In the other parts of
the proof one has to reverse all inequalities. This is without problem in all inequalities that directly
come from the definitions and so item (2) translates accordingly. On the other hand, one sees that
item (4) does not work so easily. Indeed in (3.3.7) we have used the triangle inequality for angles
to show that the sum of adjacent angles is bounded below by π. Although this argument holds
true in any length space it obviously does not work to establish the reversed bound now needed
and this is why we have included it (i.e., the condition that the sum of adjacent angles is bounded
above by π) in the definition (cf. 3.1.9). Hence we can indeed infer the triangle condition from
the angle condition in analogy to item (4). But now the burden is shifted to (3) where one infers
the angle condition from the monotonicity condition, which now includes showing the statement
about the sum of adjacent angles. This step is, however, established by the following lemma. 2

Besides being used in the above proof the next lemma has also numerous further applications.

3.3.6 Lemma (Adjacent angles in non-negative curvature). If X is non-negatively curved
in the sense of the monotonicity condition 3.3.1, then for each shortest path the sum of adjacent
angles equals π. More precisely, if r is an inner point of the shortest path [pq] and [rs] is also a
shortest path then (see figure 3.21, left)

]prs+ ]srq = π. (3.3.10)

Proof. As already noted in the last paragraph of the proof of 3.3.5 we have by 2.4.7 and 2.4.5(ii)
that ]prs + ]srq ≥ ]prq = π and it only remains to infer the reverse inequality from the
monotonicity condition in case of non-negative curvature. To this end consider points p0, q0, and
s0 in the shortest paths [pr], [rq], and [rs]. Place comparison triangles 4p̄0r̄s̄0 and 4s̄0r̄q̄0 for
the triangles 4p0rs0 and 4s0rq0 on different sides of the line r̄s̄0 in the plane, see figure 3.21.
Moreover, let 4s̄1p̄1q̄1 be a comparison triangle for 4s0p0q0 and choose p̄1 = p̄0 and q̄1 on the
straight line from p̄1 = p̄0 through r̄, see figure 3.21, right. Since q0 is farther away from p0

than r is, the monotonicity condition yields ]s̄0p̄0r̄ ≥ ]s̄1p̄1q̄1 and so |r̄s̄1| ≤ |r̄s̄0|, by (3.3.5).
Consequently the first part of Alexandrov’s lemma 3.3.3 implies that ]p̄0r̄s̄0+]s̄0r̄q̄0 ≤ π. Finally
passing to the limit as p0, q0, s0 approach r we obtain ]prs+ ]srq ≤ π. 2
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3.3.3 Semi-continuity of angles

We start this final subsection on angles in Alexandrov space with an observation: In the plane the
angles of a triangle depend continuously on its vertices. This is, however, no longer true in length
spaces. But in Alexandrov spaces semi-continuity is retained, more precisely in non-positively
(non-negatively) curved spaces the angle is upper (lower) semi-continuous. We begin with some
examples but first fix our notations.
Suppose the sequences of shortest paths [aibi] and [aici] converge uniformly to shortest paths [ab]
and [ac], respectively (and assume all shortest paths are naturally parametrized). Consequently
ai → a, bi → b, and ci → c. Although uniform convergence is quite strong, nevertheless in general
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length spaces there is no relation between the angle ]bac and the limit lim]biaici, even if the
latter exists.

3.3.7 Example (Collapsing angle). Consider the surface of a cube in R3 with the induced
length metric. Let [ab] and [bc] be edges of the cube and consider segments [aibi] and [bici] parallel
to [ab] and [bc] respectively at distances 1/i, see figure 3.22, left. Then the hinges ([aibi], [bici])
converge to the hinge ([ab], [bc]) but ]abc = π/2 while ]aibici = π for all i by 2.4.5 since bi lies
on a shortest path, cf. 1.4.21.

3.3.8 Example (Exploding angle). Consider R2 with the open first quadrant {(x, y) : x >
0, y > 0} removed and the length structure induced by the one of R2. Let a = (0, 1), ai = (−1/i, 1),
b = (0, 0), bi = (−1/i,−1/i), and ci = (0, 1), ci = (−1/i, 1), see figure 3.22, right. Then the hinges
([aibi], [bici]) converge to the hinge ([a, b], [bc]). But now ]abc = π since b is on a shortest path
while ]aibici = π/2 for all i.

ai
bi

ci
a

b

c

π
2

π

a

b
c

ai

ci

Figure 3.22

Observe that the spaces in Examples 3.3.7 and 3.3.8 are non-negatively and non-positively curved,
respectively. This tells us that the following statement is optimal.

3.3.9 Theorem (Semi-continuity of angles). Let X be a space of non-positive (non-negative)
curvature and suppose that the sequences of shortest paths ([aibi])i and ([bici])i converge uniformly
to the shortest paths [ab] and [bc] respectively. Then

]abc ≥ lim sup
i→∞

]aibici (resp. ]abc ≤ lim inf
i→∞

]aibici). (3.3.11)

Proof.
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Write αi and α for the angles ]aibici and ]abc,
respectively. Let s > 0 be small and denote by
a′i and a′ points on [aibi] and [ab] at a distance
s from bi and b respectively. Similarly denote by
c′i and ci points on [bici] and [bc] at a distance
t from bi and b respective, see figure 3.23. Now
write θi(s, t) and θ(s, t) for the respective com-
parison angles ]̃a′ibic

′
i and ]̃a′bc′. Observe that

|a′ibi| = |a′b|, |c′ibi| = |c′b| and that for fixed s, t
also |a′ic′i| → |a′c′|.

a

b

c

bi

ai

ci

a′
c′

a′i
c′i

α

s t

Figure 3.23
Hence we have that

θi(s, t)→ θ(s, t). (3.3.12)

By definition of the angle (cf. 2.4.2) we have that αi = lims,t→0 θi(s, t)and α = lims,t→0 θ(s, t).
Now if X is non-positively curved then by the monotonicity condition 3.3.1 θi and θ are non-
decreasing and so θi(s, t) ≥ αi for all s, t. So by (3.3.12)

θ(s, t) = lim
i
θi(s, t) ≥ lim sup

i
αi and hence α = lim

s,t→0
θ(s, t) ≥ lim sup

i
αi. (3.3.13)

The case of non-negatively curved spaces is completely analogous. 2

3.4 The first variation formula

In this section we want to find formulae for the first variation of the distance between a fixed point
and a point moving along a shortest path in an Alexandrov space. The term ‘first variation’ here
refers to the derivative of this distance. To begin with, we look at a simple special case:

3.4.1 Example. Let γ : [0, a] → R2 be a smooth curve of unit speed and let p be a point that
does not belong to γ. Denote the distance from p to γ(t) by

l(t) := |pγ(t)| =
√
〈p− γ(t), p− γ(t)〉.

Then l′(t) = − 1
|p−γ(t)| 〈p− γ(t), γ′(t)〉, i.e.,

dl

dt
= − cos](p− γ(t), γ′(t)). (3.4.1)

We will show that an analogous formula holds in any space of non-positive or non-negative curva-
ture. Let us first fix some notation. By X we will denote a length space, and by γ : [0, T ]→ X a
unit-speed shortest path. We set a = γ(0), q = γ(T ), and we let p ∈ X \ {a}. For t ∈ [0, T ], set
l(t) := |pγ(t)|, and we let σt be a shortest path from γ(t) to p (assuming such a path exists).
Our first goal is to establish ‘one half’ of the desired result, namely an inequality that holds in
any length space, regardless of curvature bounds.
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3.4.2 Proposition. Let (X, d) be a length space. If the angle α = ]paq between the shortest
paths γ and [ap] = σ0 exists, then

lim sup
t→0+

l(t)− l(0)

t
≤ − cosα. (3.4.2)

Equivalently, l(t) ≤ l(0)− t cosα+ o(t) as t→ 0+.

For the proof of Proposition 3.4.2 we need some preparations.

3.4.3 Remark. The left hand side of (3.4.2) depends only on the length of σ0 and not on the
actual choice of a shortest path σ0 from a to p itself, the claim we make in Proposition 3.4.1 can
be rewritten as

lim sup
t→0+

l(t)− l(0)

t
≤ inf

σ0

(− cosα),

where the infimum is over all such shortest paths σ0, or also as

lim sup
t→0+

l(t)− l(0)

t
≤ − cosαmin,

with αmin the infimum over all angles between γ and such curves σ0.

3.4.4 Lemma. Let ∆abc be a triangle in R2, α = ]bac, and t = |ac|. Then∣∣∣∣cosα− |ab| − |bc|
t

∣∣∣∣ ≤ t

|ab|
.

Proof. Set y := |ab| and z := |bc|. The law of cosines can be written as

cosα =
t2 + y2 − z2

2ty
=
y − z
t

y + z

2y
+

t

2y
. a α

b

c

y

t

z

By the triangle inequality,
∣∣∣y−zt ∣∣∣ ≤ 1 and

∣∣∣y+z
2y − 1

∣∣∣ ≤ t
2y , so

∣∣∣∣cosα− y − z
t

∣∣∣∣ =

∣∣∣∣y − zt y + z

2y
+

t

2y
− y − z

t

∣∣∣∣ ≤ ∣∣∣∣y − zt
∣∣∣∣ · ∣∣∣∣y + z

2y
− 1

∣∣∣∣+
t

2y
≤ t

2y
+

t

2y
=
t

y
.

2

Proof of Proposition 3.4.2. We consider two variable points: a point b on the shortest path
σ0 = [ap] and a point c = γ(t). (see figure 3.24). Then by the triangle inequality

|ab| − |bc| ≤ |ap| − (|bp|+ |bc|) ≤ l(0)− l(t).

Now we apply Lemma 3.4.4 to the comparison triangle for ∆abc to obtain

cos ]̃bac ≤ |ab| − |bc|
t

+
t

|ab|
≤ − l(t)− l(0)

t
+

t

|ab|
.
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Here, t = |ac| because γ has unit speed. Since
the angle ]paq exists by assumption, we can in
particular let b and c converge to a in this in-
equality in such a way that t/|ab| → 0 to have
the left hand side converge to cosα. This gives
the claim. a

b

γ(t) = c

p

q
σt

σ0

Figure 3.24
2

3.4.5 Theorem (First variation theorem). Let X be a length space of non-positive or
non-negative curvature and let γ, σt and l(t) as above. Suppose that some sequence σti converges
uniformly to σ0, where ti → 0 as i→∞. Then6 we have

lim
i→∞

l(ti)− l(0)

ti
= − cosα. (3.4.3)

Proof. Due to Proposition 3.4.2 it only remains to prove that

lim inf
i→∞

l(ti)− l(0)

ti
≥ − cosα.

Pick r > 0 so small that |ap| > 5r and such that B5r(a) is a normal region for non-positive resp.
non-negative curvature — this ball will contain all the triangles used in the constructions below.
Also, we may assume that γ(ti) ∈ Br(a) for all i ∈ N. Let ci = γ(ti) and let bi be the point on
the shortest path σti = [cip] such that |bici| = r (see figure 3.25, left). We will show that

lim sup
i→∞

]̃acibi ≤ π − α. (3.4.4)

In fact, suppose for the moment that (3.4.4) has already been shown. Then applying Lemma 3.4.4
to a comparison triangle for ∆bicia (setting b = bi, a = ci and c = a in that Lemma) gives

l(0) = |pa| ≤ |pbi|+ |bia| ≤ |pbi|+ |bici| − ti cos ]̃bicia+
t2i
|bici|

.

Now |pbi|+ |bici| = l(ti), so

l(ti)− l(0)

ti
≥ cos ]̃bicia−

ti
|bici|

= cos ]̃bicia−
ti
r
.

Combining this with (3.4.4) we arrive at

lim inf
i→∞

l(ti)− l(0)

ti
≥ lim inf

i→∞
(cos ]̃bicia) ≥ cos(π − α) = − cosα,

from which the Theorem follows.
It remains to show (3.4.4), which we do separately for each curvature assumption.
Suppose first that X has non-negative curvature. Then by the angle condition from Definition
3.1.9 and Lemma 3.3.6 we get

]̃bicia ≤ ]bicia = π − ]biciq.

From this, (3.4.4) follows because lim infi→∞]biciq ≥ α by semicontinuity of angles, see Theorem
3.3.9 (it is here that we need the uniform convergence of (σti)).

6since X is a non-positively resp. non-negatively curved space, the angle α between σ0 and γ exists
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Finally, let X be a space of non-positive curvature. Let b be the point on σ0 = [ap] such that
|ab| = r (see figure 3.25, right). Then by Definition 3.1.9, ]babi ≤ ]̃babi, and ]̃babi → 0 as i→∞
because |bib| → 0 and both |ab| and |abi| stay bounded away from 0. Consequently, ]babi → 0 as
i→∞. Combining this with the triangle inequality for angles (Theorem 2.4.7) we obtain

]ciabi ≤ α ≤ ]ciabi + ]babi ⇒ 0 ≤ α− ]ciabi ≤ ]babi → 0 (i→∞).

From this, the angle condition entails

lim inf
i→∞

]̃ciabi ≥ lim inf
i→∞

]ciabi = α. (3.4.5)

Furthermore, since ]̃ciabi+]̃acibi+]̃abici = π and ]̃abici → 0, it follows that ]̃ciabi+]̃acibi → π
as i→∞. Therefore, using (3.4.5) we finally arrive at

lim sup
i→∞

]̃acibi = π − lim inf
i→∞

]̃ciabi ≤ π − α.

a

bi

r

γ
ci

p

q

σti

σ0

a

bi

γ

ci

p

q

σti

σ0

b

Figure 3.25
2

It immediately follows that if {σt : t ∈ [0, T ]} is a continuous family of shortest paths from p to
γ(t), then the right derivative of l at t = 0 exists and equals − cosα. In fact, one does not even
need to assume uniqueness of shortest paths. More precisely, we have:

3.4.6 Corollary. Let X be a non-positively or non-negatively curved complete, locally compact
length space. Let γ : [0, T ] → X be a geodesic parametrized by arclength, p ∈ X, p 6= γ(0). Then
the function t 7→ l(t) = |pγ(t)| possesses the right derivative

lim
t→0+

l(t)− l(0)

t
= − cosαmin,

where αmin is the infimum (and in fact minimum) of angles between γ and shortest paths connecting
γ(0) to p.

Proof. From Proposition 3.4.2 and Remark 3.4.3 we know

lim sup
t→0+

l(t)− l(0)

t
≤ − cosαmin. (3.4.6)

Now pick ti → 0+ with

l(ti)− l(0)

ti
→ lim inf

t→0+

l(t)− l(0)

t
(i→∞)

and pick shortest paths σti from p to γ(ti). By Theorem 1.4.10(Arzela-Ascoli) (together with
Proposition 1.4.16 and the proof of Corollary 1.4.11), (σti) contains a subsequence that uniformly
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converges to a path σ0. Moreover, σ0 is a shortest path by Proposition 1.4.13. Noting that the
angle between shortest paths always exists in Alexandrov spaces (cf. 3.3.2), we can apply Theorem
3.4.5 to conclude

lim
i→∞

l(ti)− l(0)

ti
= − cosα,

where α is the angle between γ and σ0. Thus

lim inf
t→0+

l(t)− l(0)

t
= − cosα ≥ − cosαmin.

Finally, combining this with (3.4.6) we get − cosαmin ≤ − cosα ≤ − cosαmin, implying that
αmin = α, so the infimum is indeed a minimum. 2

3.5 Non-zero curvature bounds and globalization

So far we have have only looked at spaces of non-negative or non-positive curvature, via comparison
with R2. In the present section we also introduce non-zero curvature bounds. The idea is again to
use comparison with spaces of constant, but this time non-zero, curvature. In fact, it will suffice
to consider spaces of constant curvature +1 or −1, since any other positive or negative curvature
can be reduced to these cases via scaling.
The comparison spaces of constant curvature are the so-called Riemannian model spaces that will
be studied in detail in Section 4.2. For the moment, we will take some basic properties of these
spaces for granted and only refer to Chapter 4 for proofs of these properties. In order to have a
common notation for all occurring cases, we introduce the following (cf. also Definition 4.2.16):

3.5.1 Definition. Let k ∈ R. The k-plane is one of the following spaces:

• R2 if k = 0.

• The Euclidean sphere of radius 1/
√
k if k > 0.

• The hyperbolic space of radius 1/
√
−k if k < 0.

The k-plane is bounded (i.e., has finite diameter) for k > 0 and unbounded for k ≤ 0. We denote
the diameter of the k-plane by Dk, so

Dk =

{ π√
k
, k > 0

∞ k ≤ 0.
(3.5.1)

As we shall prove in Proposition 4.2.20, if a, b, c > 0 satisfy a + b + c < 2Dk then there exists
a triangle in the k-plane with sides of lengths a, b, c, which moreover is unique up to isometry.
Consequently, for every sufficiently small (if k > 0) triangle in a length space there exists a unique
(up to rigid motion) comparison triangle in the k-plane.
Now that we have fixed suitable comparison spaces, we can introduce general curvature bounds in
complete analogy to the definition of non-positive and non-negative curvature, i.e., either via dis-
tance functions, triangles, angles, or monotonicity. We explicitly write out the triangle definition:

3.5.2 Definition. Let k ∈ R. A strictly intrinsic connected length space X is a space of curvature
≥ k (resp. ≤ k) if every point x ∈ X has a neighborhood U such that for any triangle ∆abc
contained in U and any point d ∈ [ac] the inequality |bd| ≥ |b̄d̄| (respectively |bd| ≤ |b̄d̄|) holds,
where ∆āb̄c̄ is a comparison triangle in the k-plane and d̄ ∈ [āc̄] is the point with |ād̄| = |ad|.

The other definitions can be transferred analogously.

3.5.3 Remark (Equivalence of definitions for curvature bounds). It is important to note
that theorem 3.3.5, stating the equivalence of all three definitions of curvature bounds, also holds
for k 6= 0. Indeed, the proof of that result relied only on the Alexandrov Lemma 3.3.3. As we
shall see in Remark 4.2.21, this Lemma remains valid for general k, so the claim follows.
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There are also Alexandrov spaces with variable curvature bounds (i.e., where k may depend on
the point):

3.5.4 Definition. A strictly intrinsic length space X is a space of curvature bounded above (resp.
below) if every point x ∈ X has a neighborhood that is a space of curvature ≤ k (resp. ≥ k) for
some k ∈ R.

Another far-reaching concept is that of Alexandrov spaces in which triangle comparison works ‘in
the large’, i.e., for all triangles regardless of size:

3.5.5 Definition (arg1). A strictly intrinsic connected length space X is said to satisfy a
curvature bound (≥ k or ≤ k) globally, if for some k ∈ R the triangle condition from definition
3.5.2 is satisfied for all triangles ∆abc in X for which there exists a comparison triangle in the
k-plane and is unique up to rigid motion.

In the case k > 0 this definition requires a bit of care. In fact, in this case the k-plane is a
sphere of radius π/

√
k, so there do not exist any comparison triangles whose perimeter exceeds

2Dk = 2π/
√
k. If the perimeter equals 2π/

√
k, then there are two cases:

(i) All sides are shorter than π/
√
k. In this case, the comparison triangle is unique, namely it

equals a great circle with three points marked as vertices.

(ii) One of the sides, say |ab|, equals π/
√
k. In this case the comparison triangle is no longer

unique: e.g., one can take two antipodal points on the sphere for ā and b̄ and connect them
by any two great half-circles. Then one places c̄ on one of these half-circles and considers
the other one as the side [āb̄].

It follows from these considerations in order to have unique comparison triangles one needs to
impose the following conditions on ∆abc: max(|ab|, |ac|, |bc|) < π/

√
k and |ab|+|ac|+|bc| ≤ 2π/

√
k.

Finally, we mention without proof the following globalization theorems ([BBI01, Th. 9.2.9, Th.
10.3.1]):

3.5.6 Remark (Globalization Theorems).

(i) Globalization theorem for non-positive curvature: Every complete simply connected space
of curvature ≤ k, where k ≤ 0, is a space of curvature ≤ k in the large.

(ii) Toponogov’s globalization theorem: For any k ∈ R, every complete space of curvature ≥ k
is a space of curvature ≥ k in the large.



Chapter 4

Riemannian Manifolds and Length
Structures

In this chapter we build a bridge between metric and Riemannian geometry. First, in Section 4.1
we demonstrate that any Riemannian manifold can be viewed as a length space, where the length
of curves is measured via the Riemannian metric. In fact, we also show that differentiability of
the Riemannian metric is not required. Finally, in Section 4.2 we study the Riemannian model
spaces of constant curvature that we already used in the previous chapter for defining non-zero
curvature bounds.
Throughout this chapter we assume a certain familiarity with Riemannian geometry. Our standard
reference will be the lecture notes [KS20]

4.1 Riemannian manifolds as length spaces

In this section we mainly follow the recent article [Bur15] in analyzing the natural length structure
of Riemannian manifolds. Let (M, g) be a connected smooth Riemannian manifold. If γ : [a, b]→
M is a piecewise smooth curve then its length is defined by (cf. [KS20, Def. 2.3.1])

L(γ) :=

∫ b

a

‖γ′(t)‖g dt. (4.1.1)

Here, for any v ∈ TpM , ‖v‖g = gp(v, v)1/2 ≡ 〈v, v〉1/2 denotes the norm on the tangent space
induced by g. Let us denote by A∞ the space of all piecewise smooth curves into M . Then A∞
satisfies all the requirements of a length structure, imposed by Definition 1.1.2: the only non-
obvious point is (L4), which follows from the fact that distance-balls form a neighborhood basis
of any point (cf. [KS20, Prop. 2.3.6]).
The Riemannian distance function is given by

d(p, q) ≡ dL(p, q) := inf{L(γ) | γ ∈ A∞, γ(a) = p, γ(b) = q}, p, q ∈M. (4.1.2)

Comparison with Definition 1.1.6 reveals that d is precisely the length metric with respect to the
length structure (M,A∞, L). In this way, (M,d) becomes a length space. Furthermore, [KS20,
Th. 2.3.9] shows that d induces the natural manifold topology on M .
According to Definition 1.2.7, the metric d, in turn, induces a variational length Ld on the class
C of all continuous paths (with monotonous surjective reparametrizations), giving rise to a length

structure (M,C,Ld). The corresponding intrinsic metric d̂ = dLd induced by Ld then coincides
with d by Proposition 1.3.1.
Before we proceed we need the following auxiliary result.

4.1.1 Lemma. Let (M, g), (N,h) be smooth Riemannian manifolds and let f : M → N be C1.
Then f is locally Lipschitz as a map (M,dg)→ (N, dh).

80
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Proof. Let U be a relatively compact, convex set in M (cf. [KS20, Th. 2.2.7]) and let p, q ∈ U .
There exists a geodesic γ : [a, b]→ U from p to q realizing the distance between p and q: Lg(γ) =
dg(p, q). Also, since U is compact, the operator norm of Tf on U is bounded:

C := sup{‖Txf(v)‖h : x ∈ U, v ∈ TxM, ‖v‖g = 1} <∞.

Since f ◦ γ connects f(p) to f(q),

d(f(p), f(q)) ≤ Lh(f ◦ γ) =

∫ b

a

‖Tγ(t)f(γ′(t))‖h dt ≤ C
∫ b

a

‖γ′(t)‖g dt = Cd(p, q),

so C is a Lipschitz constant for f on U . 2

Returning to our main topic, we note that the Riemannian length (4.1.1) is in fact well-defined
for a much larger class of curves than just the piecewise smooth ones. Indeed, let γ : [a, b] → M
be absolutely continuous (cf. Definition 1.6.6), then the image γ([a, b]) of γ can be covered by
finitely, many relatively compact coordinate domains. For any such chart (U,ϕ) and any open set
V ⊆ V b U , ϕ is a Lipschitz map from (V, d) to Rn by Lemma 4.1.1. We may therefore apply
1.6.7 (iii) to infer that ϕ ◦ γ = (γ1, . . . , γn) is absolutely continuous. Its derivative therefore exists
almost everywhere and is integrable (by Proposition 1.6.7 (iv)). Consequently, so is

‖γ′(t)‖g =
√
g(γ′, γ′) =

∣∣∣∑
i,j

gij(γ(t))
dγi

dt

dγj

dt

∣∣∣1/2 ≤ C∑
i

∣∣∣dγi
dt

∣∣∣.
Thus

L(γ) =

∫ b

a

‖γ′(t)‖ dt (4.1.3)

exists and is finite. Let us denote by Aac the class of all absolutely continuous curves into M . By
Proposition 1.6.7 (v), any γ ∈ Aac is rectifiable.
For any curve γ ∈ Aac it appears that we now have two notions of length at hand, namely the
Riemannian length L(γ) from (4.1.1) and the variational length Ld(γ). The following result shows,
however, that these notions actually coincide:

4.1.2 Theorem. Let M be a connected manifold with smooth Riemannian metric g and let
γ : [a, b]→M be absolutely continuous. Then

(i) For almost every t ∈ [a, b], the metric derivative vγ(t) of γ exists and

vγ(t) ≡ lim
ε→0

d(γ(t+ ε), γ(t))

|ε|
= ‖γ′(t)‖g.

Moreover, vγ ∈ L1([a, b]).

(ii) γ is rectifiable and L(γ) = Ld(γ).

Proof. (i): By what was said above, combined with Theorem 1.6.8, the set of all t ∈ [a, b] such
that both vγ(t) and γ′(t) exist is of full measure. Let t ∈ (a, b) be any such point.
The exponential map expγ(t) defines a diffeomorphism on a neighborhood U of γ(t). Let ε > 0
such that γ([t− ε, t+ ε]) ⊆ U . Then

1

ε
d(γ(t), γ(t+ ε)) =

1

ε

∥∥∥exp−1
γ(t)(γ(t+ ε))

∥∥∥
gγ(t)

=

∥∥∥∥1

ε
exp−1

γ(t)(γ(t+ ε))

∥∥∥∥
gγ(t)

,

Consequently,

vγ(t) = lim
ε→0+

d(γ(t), γ(t+ ε))

ε
=

∥∥∥∥ d

dε

∣∣∣∣
0

exp−1
γ(t)(γ(t+ ε))

∥∥∥∥
gγ(t)

=
∥∥∥(T0 expγ(t)︸ ︷︷ ︸

=id

)−1(γ′(t))
∥∥∥
gγ(t)

= ‖γ′(t)‖gγ(t) .
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Integrability of vγ follows from Theorem 1.6.8 (or, alternatively, from that of ‖γ′‖g noted above).
(ii): Using (i) and the rectifiability of γ noted above, this is immediate from Theorem 1.6.8. 2

Analogously to (4.1.2), we may introduce

dac(p, q) := inf{Ld(γ) | γ ∈ Aac, γ(a) = p, γ(b) = q}, p, q ∈M. (4.1.4)

As it turns out, this notion of distance is precisely the one we started with:

4.1.3 Proposition. For any p, q ∈M ,

dac(p, q) = inf{L(γ) | γ ∈ Aac, γ(a) = p, γ(b) = q} = d(p, q).

Proof. The first equality is immediate from Theorem 4.1.2 (ii). Concerning the second one, we
have to show that, for any p, q ∈M ,

inf{L(γ) | γ ∈ Aac, γ(a) = p, γ(b) = q} = inf{L(γ) | γ ∈ A∞, γ(a) = p, γ(b) = q}.

Here, ≤ is immediate from A∞ ⊆ Aac. Now assume that there exist p, q ∈M such that dac(p, q) <
d(p, q) and let ε > 0 be such that dac(p, q) + ε < d(p, q). Then there would exist an absolutely
continuous curve γ : [a, b]→M from p to q with L(γ) < d(p, q)−ε, hence strictly shorter than any
piecewise smooth curve connecting p and q. Now cover γ([a, b]) by finitely many convex sets (cf.
[KS20, Th. 2.2.7]) (Ui)

m
i=1 and pick points γ(ti) (t1 = a < · · · < tm = b) such that γ([ti, ti+1]) ⊆ Ui

for i = 1, . . . ,m−1. Let σ be the concatenation of the radial geodesics connecting γ(ti) to γ(ti+1).
As L(γ) < L(σ), there must exist some i such that γ|[ti,ti+1] is strictly shorter than the radial
geodesic σ|[ti,ti+1]. But radial geodesics have minimal length in any normal neighborhood even
among all curves that are merely absolutely continuous: the arguments in the proof of this result for
piecewise smooth curves (see [KS20, Prop. 2.3.4]) continue to hold almost everywhere and still give
the desired conclusion. So we arrive at a contradiction, implying that indeed dac(p, q) = d(p, q).

2

4.1.4 Remark. The class Aac is admissible (with the length of curves measured by L, the
Riemannian length from (4.1.3)): again the only non-obvious property is (L4), which however
follows from Proposition 4.1.3, together with the fact that d induces the natural manifold topology.
Now if we start out from the length space (M,Aac, L), then by Proposition 4.1.3 the induced length
metric dac is precisely the usual Riemannian distance function d from (4.1.2). Thus (M,A∞, L)
and (M,Aac, L) give rise to the same metric space (M,d).

Our next goal is to generalize the previous results to manifolds with continuous Riemannian
metrics. By this we mean a continuous (0, 2)-tensor field on M whose restriction to any TpM×TpM
is a positive definite scalar product. Such a Riemannian metric also induces a distance function
via (4.1.2). However, since we do not have the standard tools of Riemannian geometry available
for metrics that are merely continuous (like the exponential map or convex neighborhoods, as
employed in the proof of [KS20, Th. 2.3.9]), we first need an independent proof of the fact that
the corresponding distance function is indeed a metric and that it induces the natural manifold
topology. This will be done in Lemma 4.1.7. To prove it (and also for some considerations later
on) we need:

4.1.5 Lemma. Let g, h be continuous Riemannian metrics on M , and let K b M . Then there
exist constants C1, C2 > 0 such that for all v ∈ TM |K we have

C1‖v‖h ≤ ‖v‖g ≤ C2‖v‖h.

Proof. Since K can be covered by finitely many coordinate domains, we may without loss of
generality suppose that it is in fact contained in a single chart (ϕ = (x1, . . . , xn), U). For x ∈ ϕ(K)
and ξ ∈ Rn \ {0} set

f(x, ξ) :=
‖Txϕ−1(ξ)‖g
‖Txϕ−1(ξ)‖h
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Then with ‖ ‖e the Euclidean norm on Rn we have f(x, ξ) = f(x, ξ/‖ξ‖e). Since f is continuous
it therefore suffices to set

C1 := min{f(x, ξ) : x ∈ ϕ(K), ξ ∈ Sn−1} C2 := max{f(x, ξ) : x ∈ ϕ(K), ξ ∈ Sn−1}.

2

4.1.6 Corollary. Under the assumptions of Lemma 4.1.5, if γ ∈ A∞ has its image contained in
K, then

C1Lh(γ) ≤ Lg(γ) ≤ C2Lh(γ).

Proof. Immediate from (4.1.1) and Lemma 4.1.5. 2

4.1.7 Lemma. Let g be a continuous Riemannian metric on a connected smooth manifold M .
The corresponding distance function d from (4.1.2) is a metric that induces the natural manifold
topology on M .

Proof. Clearly, d is non-negative, finite and symmetric. Also the triangle inequality follows as
in the proof of Lemma 1.1.7. Note, however, that we cannot simply apply that Lemma here to
conclude that d is a metric because we do not (yet) have (L4). In fact, we will infer (L4) from the
fact that d is a metric that induces the manifold topology.
Let (ϕ = (x1, . . . , xn), U) be a chart around p ∈ M with ϕ(p) = 0. Choose r > 0 so small that
B := Br(0) = {x ∈ Rn : ‖x‖e ≤ r} ⊆ ϕ(U) and let g̃ := ϕ∗g be the push-forward Riemannian
metric on ϕ(U). Then for any curve α in ϕ(U), Lg̃(α) = Lg(ϕ

−1 ◦α). Since B is compact, Lemma
4.1.5 implies the existence of C1, C2 > 0 such that

C1‖v‖e ≤ g̃x(v, v)1/2 ≤ C2‖v‖e ∀x ∈ B ∀v ∈ Rn.

Given x ∈ B, let α : [0, 1]→ B, α(t) := tx. Then

Lg̃(α) =

∫ 1

0

g̃α(t)(α
′(t), α′(t))1/2 dt ≤ C2

∫ 1

0

‖α′(t)‖e dt = C2‖x‖e.

Consequently, d(p, ϕ−1(x)) ≤ C2‖x‖e for all x ∈ B, and we conclude that

ϕ−1(Bρ(0)) ⊆ {q : d(p, q) ≤ C2ρ} ∀ρ ∈ (0, r]. (4.1.5)

Conversely, let β : [a, b]→ B be any piecewise smooth curve in B from 0 to x. Then

C1‖x‖e = C1

∥∥∥ ∫ b

a

β′(t) dt
∥∥∥
e
≤ C1

∫ b

a

‖β′(t)‖e dt ≤ Lg̃(β).

Consequently, C1‖x‖e ≤ Lg(γ) for any piecewise smooth curve γ from p to ϕ−1(x) that runs
entirely in ϕ−1(B). On the other hand, if such a connecting curve leaves ϕ−1(B), then we can
repeat the argument with β the initial part of ϕ ◦ γ until the parameter value where γ leaves
ϕ−1(B) for the first time. It then follows that C1‖x‖e ≤ C1r ≤ Lg̃(β) ≤ Lg(γ) also in this case.
Thus we conclude that C1‖x‖e ≤ d(p, ϕ−1(x)) for all x ∈ B, hence

{q : d(p, q) ≤ C1ρ} ⊆ ϕ−1(Bρ(0)) ∀ρ ∈ (0, r]. (4.1.6)

Now if q ∈ ϕ−1(B) and q 6= p, then 0 6= x := ϕ(q) and the above shows that d(p, q) > 0. On the
other hand, if q 6∈ ϕ−1(B) then by (4.1.6) we get d(p, q) > C1r > 0. Summing up, d(p, q) > 0 if
and only if p 6= q.
Finally, that d induces the manifold topology also follows from (4.1.5) and (4.1.6). 2

Corollary 4.1.6 implies an analogous result for the Riemannian distance functions induced by
continuous metrics:
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4.1.8 Proposition. Let g, h be continuous Riemannian metrics on M with corresponding Rie-
mannian distances dg, dh, and let K b M . Then there exist constants C1, C2 > 0 such that for
all p, q ∈ K we have

C1dh(p, q) ≤ dg(p, q) ≤ C2dh(p, q).

Proof. By symmetry it suffices to prove the second inequality. We do this indirectly: suppose
that, for any m ∈ N there exist pm, qm ∈ K such that

dg(pm, qm) > mdh(pm, qm). (4.1.7)

Extracting subsequences if necessary, by compactness of K we may assume that pm → p and
qm → q as m → ∞. Since dg and dh are continuous with respect to the manifold topology by
Lemma 4.1.7, dg(pm, qm) → dg(p, q) and dh(pm, qm) → dh(p, q). But then (4.1.7) implies that in
fact p = q.
Since M is locally compact we may choose a compact neighborhood V of p. Again by Lemma
4.1.7, we may choose some r > 0 such that the 4r-ball Bdh4r (p) with respect to dh is contained in
V . For any x, y ∈ Bdhr (p) and for any ε ∈ (0, r), by definition of dh there exists a piecewise smooth
path γ : [a, b] → M from x to y with Lh(γ) < dh(x, y) + ε. Any such γ cannot leave Bdh4r (p)
because for any t ∈ [a, b] we have

dh(p, γ(t)) ≤ dh(p, x) + dh(x, γ(t)) ≤ dh(p, x) + Lh(γ|[a,t])
≤ dh(p, x) + Lh(γ) ≤ dh(p, x) + dh(x, y) + ε < 4r.

By Corollary 4.1.6 there exists a constant C > 0 such that for any piecewise smooth curve σ in V
we have Lg(σ) ≤ CLh(σ). Therefore, for all x, y ∈ Bdhr (p) we obtain

dg(x, y) ≤ Lg(γ) ≤ CLh(γ) ≤ Cdh(x, y) + Cε.

Letting ε → 0 it follows that dg(x, y) ≤ Cdh(x, y) for all x, y ∈ Bdhr (p). But for m so large that
pm and qm are contained in Bdhr (p) and m > C, this contradicts (4.1.7). 2

4.1.9 Corollary. The conclusion of Lemma 4.1.1 remains valid for continuous Riemannian
metrics g, h.

We now want to also extend the validity of Theorem 4.1.2 and Corollary 4.1.3 to continuous
Riemannian metrics. The difficulty we face is that the proof of Theorem 4.1.2 made essential use of
the exponential map, which we no longer have at our disposal for continuous Riemannian metrics.
A remedy for this problem lies in approximating continuous by smooth Riemannian metrics. To
not overburden the proof of the next result let us briefly recall how to uniformly approximate
continuous functions on Rn by convolution with a mollifier: Let f : Rn → R be continuous and
compactly supported and let ρ be a standard mollifier, i.e., ρ is smooth, supp(ρ) ⊆ B1(0), and∫
ρ(x) dx = 1. For m ∈ N, set ρm(x) := mnρ(mx). Then

f ∗ ρm(x) =

∫
f(x− y)ρm(y) dy

is smooth and

|f(x)− f ∗ ρm(x)| =
∣∣∣ ∫ (f(x)− f(x− y))mnρ(my) dy

∣∣∣ ≤ ∫ |f(x)− f(x− z/m)||ρ(z)| dz → 0,

(m→∞), uniformly on Rn.

4.1.10 Theorem. Let M be a connected smooth manifold with a continuous Riemannian metric
g. Then there exists a sequence of smooth Riemannian metrics (gm)m∈N such that

(i) The gm converge locally uniformly to g on M .
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(ii)

m− 1

m
‖v‖g ≤ ‖v‖gm ≤

m+ 1

m
‖v‖g, v ∈ TpM,p ∈M. (4.1.8)

(iii) For any γ ∈ Aac,
m− 1

m
Lg(γ) ≤ Lgm(γ) ≤ m+ 1

m
Lg(γ).

(iv) The induced distance functions dm ≡ dgm converge uniformly to d ≡ dg on M . In fact, for
all m ∈ N and all p, q ∈M :

m

m+ 1
dm(p, q) ≤ d(p, q) ≤ m

m− 1
dm(p, q).

Proof. (i) and (ii): Let p ∈M and let Kp be a compact neighborhood of p contained in a single
chart (ϕ = (x1, . . . , xn), U). By component-wise convolution with mollifiers as above, we can
approximate ϕ∗g by a sequence of smooth Riemannian metrics h̃pm on ϕ(U) (positive definiteness
is an open condition because eigenvalues of a matrix depend continuously on the coefficients).
Setting hpm := ϕ∗h̃pm we obtain a sequence of smooth local Riemannian metrics that converge to g
uniformly on Kp. As in the proof of Lemma 4.1.5, for x ∈ ϕ(Kp) and ξ ∈ Rn \ {0} set

fm(x, ξ) :=
‖Txϕ−1(ξ)‖hpm
‖Txϕ−1(ξ)‖g

.

Then fm → 1 uniformly on ϕ(Kp) × Sn−1, and so by extracting a subsequence if necessary we
may assume that

m− 1

m
‖v‖g ≤ ‖v‖hpm ≤

m+ 1

m
‖v‖g, v ∈ TqM, q ∈ Kp.

Now pick a partition of unity {χp}p∈M subordinate to the cover {int(Kp)}p∈M to patch these local
approximations hpm of g together and obtain a sequence of approximating smooth Riemannian
metrics gm :=

∑
p∈M χph

p
m on M (cf. [KS20, Th. 2.4.4]) satisfying the above estimate globally,

i.e. that satisfy (4.1.8).
(iii) This follows exactly as in Corollary 4.1.6.
(iv)Let p, q ∈ M . By definition of d, for every ε > 0 there exists a curve γε ∈ A∞ connecting p
and q such that Lg(γ

ε) < d(p, q) + ε, and thus by (iii),

d(p, q) + ε > Lg(γ
ε) ≥ m

m+ 1
Lgm(γε) ≥ m

m+ 1
dm(p, q),

Therefore,
m+ 1

m
d(p, q) ≥ dm(p, q), p, q ∈M.

Similarly, for every dm there exists a curve γεm from p to q in A∞ satisfying Lgm(γεm) < dm(p, q)+ε,
so by (iii) we get

d(p, q) ≤ Lg(γεm) ≤ m

m− 1
Lgm(γεm) <

m

m− 1
dm(p, q) +

m

m− 1
ε.

Letting ε→ 0 then implies

m− 1

m
d(p, q) ≤ dm(p, q), p, q ∈M.

2

Based on this we can now generalize both Theorem 4.1.2 and Proposition 4.1.3 to continuous
Riemannian metrics:
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4.1.11 Theorem. Let M be a connected manifold with a continuous Riemannian metric g with
induced distance function d = dg given by (4.1.2), and let γ : [a, b]→M be absolutely continuous.
Then

(i) For almost every t ∈ [a, b], the metric derivative vγ(t) of γ exists and

vγ(t) ≡ lim
ε→0

d(γ(t+ ε), γ(t))

|ε|
= ‖γ′(t)‖g.

Moreover, vγ ∈ L1([a, b]).

(ii) γ is rectifiable and L(γ) = Ld(γ).

(iii) For any p, q ∈M ,

dac(p, q) = inf{L(γ) | γ ∈ Aac, γ(a) = p, γ(b) = q} = d(p, q).

Proof. (i) Let gm be a sequence of smooth Riemannian metrics as in Theorem 4.1.10. Let t ∈ [a, b]

be such that γ′(t) exists, as well as v
(m)
γ (t) (the metric derivative of γ with respect to dm) for each

m ∈ N. The set of all such points is of full measure in [a, b]. For each m ∈ N and each ε 6= 0 we
have

m

m+ 1

dm(γ(t+ ε), γ(t))

|ε|
≤ dg(γ(t+ ε), γ(t))

|ε|
≤ m

m− 1

dm(γ(t+ ε), γ(t))

|ε|
.

If, for fixed m, we let ε→ 0, then by Theorem 4.1.2 we obtain

m

m+ 1
‖γ′(t)‖gm ≤ lim inf

ε→0

dg(γ(t+ ε), γ(t))

|ε|
≤ lim sup

ε→0

dg(γ(t+ ε), γ(t))

|ε|
≤ m

m− 1
‖γ′(t)‖gm .

Letting m → ∞ (and recalling (4.1.8)) gives the claim. Integrability of vγ follows from Theorem
1.6.8 (or, alternatively from that of ‖γ′‖g — the arguments from (4.1.3) remain valid for continuous
Riemannian metrics).
(ii) This is immediate by combining Theorem 1.6.8 with (i).
(iii) The first equality is clear by (ii). To prove the second one, again ≤ is immediate from
A∞ ⊆ Aac. Suppose now that this inequality were strict for some p, q ∈ M . Then there would
exist some ε > 0 such that dac(p, q) + ε < d(p, q). Hence there would be an absolutely continuous
curve γ : [a, b] → M from p to q with L(γ) < d(p, q)− ε. By Theorem 4.1.10 (iii) and (iv), then,
for m sufficiently large we would obtain

Lgm(γ) < dm(p, q)− ε,

contradicting Proposition 4.1.3. 2

4.1.12 Corollary. For any continuous Riemannian metric g on a connected smooth manifold M ,
the triple (M,Aac, L) (with L the Riemannian length induced by g) is a length structure. Moreover,
(M,A∞, L) and (M,Aac, L) give rise to the same metric length space (M,d).

Proof. Using Lemma 4.1.7 and Theorem 4.1.11 (iii), this follows exactly as in Remark 4.1.4. 2

4.1.13 Remark. Denoting by A1, ALip, AH1 the spaces of piecewise C1, Lipschitz, and H1-
Sobolev curves (absolutely continuous curves whose derivative is in L2), respectively, we have

A∞ ⊆ A1 ⊆ ALip ⊆ AH1 ⊆ Aac.

Therefore, Corollary 4.1.12 remains valid upon replacing Aac by any of these classes.
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4.2 The Riemannian model spaces

As we have seen in section 3.5, curvature bounds in length spaces rely on triangle comparison with
respect to certain Riemannian manifolds of constant sectional curvature: Euclidean space Rn, the
n-sphere Sn, or the hyperbolic n-space Hn. To unify notation, we shall set

Mn
k :=

 Sn k = 1
Rn k = 0
Hn k = −1

Mn
k is a Riemannian manifold of constant curvature k. The important information in k is its sign

only since spaces of arbitrary curvature of the same sign can be constructed simply by scaling. In
this section we derive some fundamental facts about the model spaces Mn

k , following [BH99, Ch.
I.2].

4.2.1 Euclidean space Rn

This is the simplest of the model spaces: Rn is a Riemannian manifold with metric g =
∑n
i=1(dxi)2,

i.e., 〈x, y〉 =
∑n
i=1 x

iyi. The Riemann tensor of Mn
0 = Rn vanishes identically, hence so does the

sectional curvature k. Geodesics are straight lines.
If H is a hyperplane in Rn (i.e., a subspace of codimension 1) and x ∈ H, then using a unit normal
vector u to H we may write

H = {y ∈ Rn : 〈y − x, u〉 = 0}.
Every hyperplane can be written as the set of points equidistant from appropriate points A,B ∈
Rn, the so-called hyperplane-bisector of A andB. Also, any hyperplaneH comes with an associated
isometry rH , the reflection through H: If P ∈ H and u is a unit normal vector to H, then for
A ∈ Rn we have

rH(A) = A− 2〈A− P, u〉u.
Then H is the set of fixed points of rH . If A 6∈ H, then H is the hyperplane bisector of A and
rH(A). Conversely, if H is the hyperplane bisector of A and B, then rH(A) = B.

4.2.2 The sphere Sn

In Rn+1 with the standard scalar product, we consider the n-dimensional sphere

Sn := {x ∈ Rn+1 : 〈x, x〉 = 1}.

With the metric induced by the standard metric on Rn, Sn is a Riemannian manifold. It can
be shown (cf. [O’N83, Cor. 4.11]) that the geodesics in Sn are precisely the (constant speed
reparametrizations of parts of) great circles. They are segments within the intersection of Sn with
planes through the origin in Rn+1. As we do not assume familiarity with the theory of Riemannian
submanifolds, we will equip Sn with a metric directly:
Given A,B ∈ Sn, let d(A,B) be the unique element of [0, π] such that cos d(A,B) = 〈A,B〉.

4.2.1 Lemma. The map d : Sn × Sn → R is a metric.

Proof. Non-negativity and symmetry are obvious, as is the implication d(A,B) = 0 ⇐ A = B.
Next, note that d(A,B) is precisely the angle between the (Rn+1-)geodesic segments [O,A] and
[O,B]. The triangle inequality for d therefore follows from Theorem 2.4.7. 2

In order to be consistent with our approach to the metric geometry of the hyperbolic space Hn in
the next section, we now give an alternative proof of the triangle inequality in Sn, this time based
on the spherical law of cosines. To this end we first observe that there is a natural parametrization
for any great circle on Sn. In fact, let A ∈ Sn and let u ∈ Rn+1 be a unit vector with 〈u,A〉 = 0.
Then for any a ∈ [0, π], consider the path c : [0, a]→ Sn,

c(t) = (cos t)A+ (sin t)u. (4.2.1)
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Then
cos(d(c(t), c(t′))) = 〈c(t), c(t′)〉 = cos t cos t′ + sin t sin t′ = cos(t− t′),

so d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, a]. We will call c the great arc with initial position A
and initial velocity u. For a = π we have c(π) = −A irrespective of the choice of u. If, on the
other hand, d(A,B) < π then there is a unique minimal great arc from A to B. If A 6= B then
the initial velocity vector u is the unit vector in the direction of B − 〈A,B〉A.
We define the spherical angle between two minimal arcs emanating from the same point of Sn
with initial velocities u and v to be the unique α ∈ [0, π] such that cosα = 〈u, v〉. A spherical
triangle ∆ = (ABC) is a choice of three distinct points A,B,C ∈ Sn and three minimal great
arcs, its sides, joining the vertices. The vertex angle at, say, C, is defined to be the spherical angle
between the sides CA and CB.

4.2.2 Proposition (The spherical law of cosines). Let ∆ = (ABC) be a spherical triangle
with sidelengths a = d(B,C), b = d(C,A), and c = d(A,B). Then for the vertex angle γ at C we
have:

cos c = cos a cos b+ sin a sin b cos γ.

Proof. Denoting by u and v the initial vectors of the sides CA and CB, respectively, by definition
we have cos γ = 〈u, v〉. Moreover,

cos c = 〈A,B〉 = 〈(cos b)C + (sin b)u, (cos a)C + (sin a)v〉
= cos a cos b〈C,C〉+ sin a sin b〈u, v〉
= cos a cos b+ sin a sin b cos γ.

2

Using this result, we can now re-prove the triangle inequality for d, plus several other fundamental
property of Sn as a metric space:

4.2.3 Theorem.

(i) For all A,B,C ∈ Sn, d(A,B) ≤ d(A,C) + d(C,B). Equality holds if and only if C lies on a
minimal great arc connecting A and B.

(ii) (Sn, d) is a geodesic (i.e., strictly intrinsic) length space.

(iii) The geodesic segments in Sn are the minimal great arcs.

(iv) If d(A,B) < π then there is a unique geodesic joining A and B.

(v) Any open (resp. closed) ball of radius r ≤ π/2 (resp. r < π/2) in Sn is convex.

Proof. (i) Let a = d(C,B), b = d(A,C), c = d(A,B), with A, B, C distinct and let ∆ = (ABC)
with vertex angle γ at C. Since cos is strictly decreasing on [0, π], for fixed a and b, as γ increases
from 0 to π, the function γ 7→ cos a cos b+ sin a sin b cos γ decreases from cos(b− a) to cos(b+ a).
Hence the spherical law of cosines implies that cos c ≥ cos(b + a), and thereby c ≤ a + b, with
equality if and only if γ = π and b+ a ≤ π. In particular, equality holds if and only if C lies on a
minimal great arc from A to B.
(ii), (iii) and (iv) are clear from (i).
(v) If d(A,B) < π then there is a unique minimal great arc from A to B, which is the intersection
of Sn with the positive cone in Rn+1 spanned by A and B. Any element of this intersection can
be written in the form λA+µB, where λ+µ ≥ 1. Now by definition of d, any point C ∈ Sn lies in
the closed r-ball around P if and only if 〈C,P 〉 ≥ cos r. Hence if A,B ∈ B̄r(P ) for some r < π/2,
then for any element of the minimal great arc connecting them we obtain

〈λA+ µB,P 〉 = λ〈A,P 〉+ µ〈B,P 〉 ≥ (λ+ µ) cos r ≥ r.

This means that the entire geodesic arc from A to B is contained in B̄r(P ). The other claim
follows in the same way. 2
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4.2.4 Remark. Theorem 4.2.3 allows us to conclude that the distance function d introduced
above coincides with the distance function induced by the Riemannian metric on Sn. Indeed, we
already know that for both these metrics the geodesics are precisely the great arcs. Denote by
dg the distance function generated by the Riemannian metric g induced on Sn by the Euclidean
metric on Rn+1. Then using the representation of a great arc given in (4.2.1), we have c′(t) =
−(sin t)A+ (cos t)u, and so ‖c′(t)‖g = 1, giving

dg(c(t), c(t
′)) =

∫ t′

t

1 dt = t′ − t = d(c(t), c(t′)) (t ≤ t′).

4.2.5 Remark (Hyperplanes in Sn). We define a hyperplane H in Sn to be the intersection
of Sn with an n-dimensional subspace of Rn+1. Then H, equipped with the induced metric from
Sn is isometric to Sn−1. The reflection rH through H is defined to be the isometry of Sn obtained
by restricting to Sn the Euclidean reflection through the Rn+1-hyperplane generating H. For any
two distinct points A,B ∈ Sn, the set of points equidistant to A and B is a hyperplane, the
so-called hyperplane-bisector for A and B. It is the intersection of Sn with the subspace of Rn+1

orthogonal to the connecting vector A− B. If A ∈ Sn does not belong to H, then H is precisely
the hyperplane bisector of A and rH(A). Conversely, for H the hyperplane bisector of A and B
we have rH(A) = B and rH(B) = A.

4.2.3 Hyperbolic space Hn

There are several equivalent ways of representing hyperbolic space. We will focus on realizing it
in a manner similar to the one we followed for describing Sn as a subspace of Rn+1. However,
this time we will need to equip Rn+1 with a metric of Lorentzian signature: By Rn+1

1 we denote
the (n + 1)-dimensional Minkowski space. We write x = (x0, . . . , xn) ≡ (x0, x

′) ∈ Rn+1
1 for the

coordinates and use the Lorentzian metric

〈x, y〉 := −x0y0 +

n∑
i=1

xiyi.

Vectors v ∈ Rn+1
1 are called timelike, spacelike, or null, if 〈v, v〉 < 0, 〈v, v〉 > 0, or 〈v, v〉 = 0,

respectively. The orthogonal complement of a timelike vector is a spacelike hypersurface, whereas
the orthogonal complement of a null vector is tangent to the light cone {x : 〈x, x〉 = 0} (cf. [O’N83,
Ch. 5]).

4.2.6 Definition (Hyperbolic space). Hyperbolic n-space Hn is defined as

Hn := {x ∈ Rn+1
1 : 〈x, x〉 = −1, x0 > 0}.

Thus Hn is the upper sheet of the hyperboloid {x ∈ Rn+1
1 : 〈x, x〉 = −1}. If x ∈ Hn, then x0 ≥ 1,

and equality holds if and only if xi = 0 for all i = 1, . . . , n.

4.2.7 Remark. Hn, with the induced metric from Rn+1
1 is a Riemannian manifold: in fact, let

p ∈ Hn and let v ∈ TpHn. Let c be a smooth curve in Hn with c(0) = p and c′(0) = v. Then
differentiating the constant function t 7→ 〈c(t), c(t)〉 ≡ −1 at t = 0 it follows that p ⊥ v. Thus the
timelike vector p is orthogonal to the tangent plane at p, implying that the latter is spacelike. In
other words, the restriction of the Minkowski metric to Hn is Riemannian.

4.2.8 Lemma. For any x, y ∈ Hn we have 〈x, y〉 ≤ −1, with equality if and only if x = y.

Proof.

〈x, y〉 = −x0y0 +

n∑
i=1

xiyi ≤ −x0y0 +
( n∑
i=1

x2
i

) 1
2
( n∑
i=1

y2
i

) 1
2

= −x0y0 + (x2
0 − 1)

1
2 (y2

0 − 1)
1
2 =: f(x0, y0).

(4.2.2)
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By what was said above, f : [1,∞) × [1,∞) → R and one easily checks that on this domain
f ≤ −1, with f(x0, y0) = −1 if and only if x0 = y0. Inserting this in (4.2.2), we conclude that
〈x, y〉 ≤ −1, with equality if and only if x0 = y0 and thereby, since x, y ∈ Hn,

∑n
i=1 x

2
i =

∑n
i=1 y

2
i .

It follows that 〈x, y〉 = −1 if and only if there is equality everywhere in (4.2.2). Applying the
Cauchy-Schwarz-inequality on Rn implies that x′ must be proportional to y′. Combining all these
constraints, the only remaining possibility is x = y, as claimed. 2

It follows that, for all x, y ∈ Hn, we have 〈x− y, x− y〉 = −2(1 + 〈x, y〉) ≥ 0, with equality if and
only if x = y. Also, we may now introduce a metric on Hn:

4.2.9 Proposition (Metric on Hn). Let d : Hn × Hn → R be the map that assigns to each
pair (A,B) ∈ Hn ×Hn the unique non-negative number d(A,B) ≥ 0 such that

cosh d(A,B) = −〈A,B〉.

Then d is a metric on Hn.

Proof. By Lemma 4.2.8, −〈A,B〉 ≥ 1 for every A, B, so there is indeed a unique non-negative
number satisfying the above requirement, i.e., d is well-defined. The lemma also implies that d is
positive definite, and symmetry is obvious. It remains to show that the triangle inequality holds.
As in the case of Sn we will derive this from a suitable version of the law of cosines, see theorem
4.2.12 (i) below. 2

It will turn out that, as for Sn, also for Hn geodesics are precisely the sub-arcs of intersections of
Hn with two-dimensional subspaces of Minkowski space Rn+1

1 . We therefore define a hyperbolic
segment to be such a curve: Given A ∈ Hn and a unit vector u ∈ A⊥ ⊆ Rn+1

1 (i.e., u spacelike,
〈u, u〉 = 1 and 〈A, u〉 = 0), define c : R→ Hn by

c(t) := (cosh t)A+ (sinh t)u. (4.2.3)

Then 〈c(t), c(t)〉 = − cosh2(t) + sinh2(t) = −1, so c is indeed a curve in Hn. Moreover,

cosh(d(c(t), c(t′))) = −〈c(t), c(t′)〉 = cosh(t) cosh(t′)− sinh(t) sinh(t′) = cosh(t− t′),

so

d(c(t), c(t′)) = |t− t′| (4.2.4)

for all t, t′ ∈ R. For any a > 0, we call c([0, a]) the hyperbolic segment from A to c(a), also denoted
by [A, c(a)].
Now let A 6= B be two points in Hn and let u be the unit vector in the direction of B + 〈A,B〉A.
Then 〈u,A〉 = 0, so u ∈ A⊥. We claim that u is the unique unit vector perpendicular to A such
that

B = (cosh a)A+ (sinh a)u, (4.2.5)

where a := d(A,B). In fact, cosh a = −〈A,B〉, and

〈B + 〈A,B〉A,B + 〈A,B〉A〉 = −1 + 〈A,B〉2 = −1 + cosh2(a) = sinh2(a).

We call u the initial vector of the hyperbolic segment [AB].

4.2.10 Definition. The hyperbolic angle between two segments [AB] and [AC], with initial
vectors u and v, respectively, is the unique α ∈ [0, π] such that cosα = 〈u, v〉.

Note that u, v, being elements of A⊥, are spacelike, and 〈 , 〉 is positive definite on A⊥, so there
indeed is a unique α ∈ [0, π] satisfying these requirements.
A hyperbolic triangle ∆ = (ABC) is a choice of three distinct vertices A,B,C ∈ Hn, together with
three hyperbolic segments joining the vertices, its sides. The vertex angle at C is the hyperbolic
angle between the segments [CA] and [CB].
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4.2.11 Proposition (The hyperbolic law of cosines). Let ∆ = (ABC) be a hyperbolic
triangle and set a = d(B,C), b = d(C,A), and c = d(A,B). Then for the vertex angle γ at C we
have:

cosh c = cosh a cosh b− sinh a sinh b cos γ.

Proof. With u and v the initial vectors of the hyperbolic segments from C to A and C to B,
respectively, we have cos γ = 〈u, v〉. Since 〈u,C〉 = 〈v, C〉 = 0 and 〈C,C〉 = −1, using (4.2.5) we
calculate:

cosh c = −〈A,B〉 = −〈(cosh b)C + (sinh b)u, (cosh a)C + (sinh a)v〉
= − cosh a cosh b〈C,C〉 − sinh a sinh b〈u, v〉
= cosh a cosh b− sinh a sinh b cos γ.

2

Using this we obtain the following analogue of Theorem 4.2.3:

4.2.12 Theorem.

(i) For all A,B,C ∈ Hn, d(A,B) ≤ d(A,C) + d(C,B). Equality holds if and only if C lies on
the hyperbolic segment connecting A and B.

(ii) (Hn, d) is a geodesic length space.

(iii) The geodesic segments in Hn are precisely the hyperbolic segments [AB].

(iv) If the intersection of a two-dimensional subspace of Rn+1
1 with Hn is non-empty, then it is

a geodesic, and all geodesics in Hn arise in this way.

(v) Any open (resp. closed) ball in Hn is convex.

Proof. Again let a = d(C,B), b = d(A,C), c = d(A,B), with A, B, C distinct and let ∆ = (ABC)
be the corresponding hyperbolic triangle with vertex angle γ at C. Then for fixed a and b, as γ
increases from 0 to π, the function γ 7→ cosh a cosh b − sinh a sinh b cos γ strictly increases from
cosh(b− a) to cosh(b+ a). Thus Proposition 4.2.11 implies that cosh c ≤ cosh(b+ a) and thereby
c ≤ a + b, with equality if and only if γ = π. On the other hand, γ = π if and only if C ∈ [AB].
This gives (i).
Moreover, since along any geodesic the triangle inequality becomes an equality, the above implies
that it must lie in a hyperbolic segment, i.e., it must be a parametrization of such a segment.
Then (4.2.4) shows that it must in fact be such a segment (when parametrized by arclength).
Conversely, the intersection of a two-dimensional subspace of Rn+1

1 with Hn, if non-empty, is a
hyperbolic segment, giving (ii) and (iii).
The proof of (v) is analogous to that of (v) in Theorem 4.2.3, only this time, elements of [AB] are
of the form λA+µB, with λ+µ ≤ 1 and λ, µ ≥ 0. Now d(P,C) ≤ r if and only if −〈P,C〉 ≤ cosh r.
Thus for A,B ∈ B̄r(P ),

−〈P, λA+ µB〉 = −λ〈P,A〉 − µ〈P,B〉 ≤ (λ+ µ) cosh r ≤ cosh r,

showing that λA+ µB ∈ B̄r(P ) as well. 2

Again as in the case of Sn we have:

4.2.13 Remark. Theorem 4.2.12 implies that the metric from Proposition 4.2.9 coincides with
the distance function dg induced by the Lorentzian metric g on Rn+1

1 . In fact, by the above
and [O’N83, Prop. 4.28], the geodesics in both cases are intersections of 2-planes with Hn, i.e.,
hyperbolic segments. For such a segment we have by (4.2.3) c′(t) = (sinh t)A + (cosh t)u, and so
‖c′(t)‖g = 1, giving

dg(c(t), c(t
′)) =

∫ t′

t

1 dt = t′ − t = d(c(t), c(t′)) (t ≤ t′).
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4.2.14 Remark (Hyperplanes in Hn). We define a hyperplane H in Hn to be the intersection
of Hn with an n-dimensional subspace of Rn+1

1 . Then H equipped with the induced metric from
Hn is isometric to Hn−1. The reflection rH through H is given by X 7→ X−2〈X,u〉u, and is easily
checked to be an isometry. For any two distinct points A,B ∈ Hn, the set of points equidistant to
A and B is a hyperplane, the hyperplane-bisector for A and B. It is the intersection of Hn with
the subspace of Rn+1

1 orthogonal to the connecting vector A − B. If A ∈ Hn does not belong to
H, then H is precisely the hyperplane bisector of A and rH(A). Conversely, for H the hyperplane
bisector of A and B we have rH(A) = B and rH(B) = A. Finally, H is the set of fixed points of
rH .

Both Sn and Hn are length spaces, so at the moment we seemingly have two concepts of angle
between geodesics: spherical and hyperbolic angles on the one hand, and Alexandrov angles (i.e.,
those given in Definition 2.4.2) on the other. In fact, these notions coincide:

4.2.15 Proposition. The spherical (resp. hyperbolic) angle between two geodesic segments [CA]
and [CB] in Sn (resp. Hn) is equal to the Alexandrov angle between them (in particular, the latter
exists).

Proof. We only give the proof in the hyperbolic case, the one for Sn proceeds analogously. Let γ be
the hyperbolic angle between [CA] and [CB]. Then letting α and β be arclength-parametrizations
of [CA] and [CB], by (2.4.2) we have to show that lims,t→0 θ(s, t) = γ.
Set cs,t := d(α(s), β(t)), then

c2s,t = s2 + t2 − 2st cos θ(s, t).

By Proposition 4.2.11,
cosh cs,t = cosh s cosh t− sinh s sinh t cos γ. (4.2.6)

The problem is that the inverse of cosh |[0,∞] is not differentiable at 0, so simply applying it to
(4.2.6) will not suffice. Instead, we introduce the auxiliary function h : R→ R,

h(x) :=

∞∑
i=1

1

(2i)!
xi.

This is an analytic function on R and coshx− 1 = h(x2). Also, h(0) = 0 and h′(0) = 1/2, so h is
invertible in a neighborhood of 0, with inverse given by a power series of the form

h−1(x) = 2x+

∞∑
i=2

aix
i. (4.2.7)

Using (4.2.6) we have

h(c2s,t) = cosh cs,t − 1 = cosh s cosh t− 1− sinh s sinh t cos γ

= (cosh s− 1) cosh t+ (cosh t− 1)− sinh s sinh t cos γ

= h(s2) cosh t+ h(t2)− sinh s sinh t cos γ =: r(s, t).

Here, r : R2 → R satisfies

r(0, 0) = 0, r(s, 0) = h(s2), r(0, t) = h(t2). (4.2.8)

In addition, the coefficient of st in the power series expansion of r is − cos γ. Thus the function
f := h−1 ◦ r, which equals c2s,t for small positive s and t, is defined on some disc around the origin
and has there a power series expansion that (due to f(0, 0) = h−1(r(0, 0)) = 0) is of the form

f(s, t) =

∞∑
j=1

fj,0s
j +

∞∑
k=1

f0,kt
k − st

( ∞∑
j=1

∞∑
k=1

fj,ks
j−1tk−1

)
. (4.2.9)
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By (4.2.8), h(f(s, 0)) = r(s, 0) = h(s2), and h(f(0, t)) = r(0, t) = h(t2), so the first and second
sum in (4.2.9) equal s2 and t2, respectively. Consequently, for s, t small and positive, the term in
brackets is (s2 + t2 − c2s,t)/(st). Also, (4.2.7), together with the remark about the st-coefficient of
r show that f1,1 = 2 cos γ. Thus, finally,

cos θ(s, t) =
s2 + t2 − c2s,t

2st
= cos γ +

1

2

∑
k>1 or j>1

fj,ks
j−1tk−1 → cos γ (s, t→ 0+).

2

So far we have only considered spheres and hyperbolic spaces of radius 1. More generally we
define:

4.2.16 Definition (The model spaces Mn
k). For any k ∈ R, we denote by Mn

k the following
metric spaces:

(i) Mn
0 is the Euclidean space Rn.

(ii) If k > 0 then Mn
k is obtained from Sn by multiplying the distance function by 1/

√
k.

(iii) If k < 0 then Mn
k is obtained from Hn by multiplying the distance function by 1/

√
−k.

For n = 2, the space M2
k is called k-plane.

4.2.17 Remark. As Riemannian manifolds, the spaces Mn
k can be realized as spheres resp.

hyperbolic spaces of appropriately scaled radius, i.e.,

Mn
k =


{x ∈ Rn+1 : 〈x, x〉 = 1/k} k > 0
Rn k = 0
{x ∈ Rn+1

1 : 〈x, x〉 = 1/k, x0 > 0} k < 0

We extend the diameter-convention (3.5.1) to general n:

4.2.18 Definition (Diameter-convention). By Dk we denote the diameter of Mn
k . Thus,

Dk = π/
√
k for k > 0, and Dk :=∞ for k ≤ 0.

4.2.19 Proposition (Law of cosines in Mn
k ). Let ∆ = (ABC) be a geodesic triangle in Mn

k

and set a = d(B,C), b = d(C,A), and c = d(A,B). Then for the vertex angle γ at C we have:

c2 = a2 + b2 − 2ab cos(γ) for k = 0

cosh(
√
−kc) = cosh(

√
−ka) cosh(

√
−kb)− sinh(

√
−ka) sinh(

√
−kb) cos γ for k < 0

cos(
√
kc) = cos(

√
ka) cos(

√
kb) + sin(

√
ka) sin(

√
kb) cos γ for k > 0.

It follows that, for a, b and k fixed, c is a strictly increasing function of γ, varying from |b− a| to
a+ b as γ varies from 0 to π.

Proof. The formulae follow from those of Sn resp. Hn by rescaling. 2

We also note that a unified notation can be obtained from
√
−k = i

√
k for k > 0, as well as

cos(it) = cosh(t) and sin(it) = i sinh(t).
Our next aim is to supply the foundations for triangle comparison in the model spaces M2

k . As
observed in Section 3.5, this makes it possible to define non-zero curvature bounds. Contrary to
the flat case, if k 6= 0 then it is a priori not clear that suitable comparison triangles exist. The
following result shows that this is indeed the case.

4.2.20 Proposition (Existence of comparison triangles in M2
k). Let k ∈ R and let p, q, r

be points in a metric space X. If k > 0 then assume that d(p, q) + d(q, r) + d(r, p) < 2Dk. Then
there exist points p̄, q̄, r̄ ∈M2

k such that (denoting the metrics in X and M2
k with the same letter)

d(p, q) = d(p̄, q̄), d(q, r) = d(q̄, r̄), d(r, p) = d(r̄, p̄).
A triangle ∆(p̄, q̄, r̄) ⊆M2

k with vertices p̄, q̄, r̄ is called a comparison triangle for the triple (p, q, r).
It is unique up to an isometry of M2

k . If ∆ ⊆ X is a geodesic triangle in X with vertices p, q, r,
then ∆(p̄, q̄, r̄) is also called a comparison triangle for ∆.
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Proof. Let a = d(p, q), b = d(p, r), and c = d(q, r). Without loss of generality, suppose that
a ≤ b ≤ c. Then by the triangle inequality in X, c ≤ a + b, so that c < π/

√
k in case k > 0.

Thus using the corresponding law of cosines (proposition 4.2.19) we obtain a unique γ ∈ [0, π].
Now fix any point p̄ ∈M2

k and construct two geodesic segments [p̄, q̄] and [p̄, r̄] of lengths a and b,
respectively, forming an angle of γ. Then the law of cosines implies that d(q̄, r̄) = c.
Uniqueness up to isometry will follow from Theorem 4.2.22 below. 2

A main tool for comparison geometry is the Alexandrov Lemma 3.3.3. As noted in Remark 3.3.4,
it remains true also for model spaces other than the Euclidean plane. We now have the tools at
hand to verify this:

4.2.21 Remark (Alexandrov Lemma for arbitrary model spaces). The conclusions of
Lemma 3.3.3 remain valid for points A,A′, B,B′, C, C ′, D,D′ ∈M2

k for arbitrary k ∈ R. The only
additional assumption required in the case k > 0 is that d(A,B) + d(B,C) + d(C,D) + d(D,A) <
2Dk. In fact, as already noted in the proof of Lemma 3.3.3, the only fact used in the proof is that
the angle between two sides of a triangle is a monotonically increasing function of the third side.
That this remains valid in any model space was established in Proposition 4.2.19.

It remains to prove that comparison triangles in model spaces are unique up to isometries. We
will in fact show more, in particular that any isometry is a composition of reflections and that the
isometry groups acts transitively on the model spaces.

4.2.22 Theorem (Transitivity of the isometry group of Mn
k ). Let k ∈ N and let A1, . . . , Am

and B1, . . . , Bm be points in Mn
k such that d(Ai, Aj) = d(Bi, Bj) for all 1 ≤ i, j ≤ m. Then there

exists an isometry Φ of Mn
k mapping Ai to Bi for each i = 1, . . . ,m. In fact, Φ can be written as

a composition of at most m reflections through hyperplanes.

Proof. By rescaling it suffices to consider the cases Rn, Sn and Hn. For k = 1 and A1 6= B1

we may set Φ equal to the reflection rH , where H is the hyperplane bisector of A1 and B1. Now
suppose that the result has already been established for m−1 points and let Φ be an isometry such
that Φ(Ai) = Bi for i = 1, . . . ,m−1. If Φ(Am) = Φ(Bm) there is nothing to prove. Otherwise, let
H be the hyperplane bisector of Φ(Am) and Bm. Then Bi ∈ H for each i = 1, . . . ,m− 1 because
d(Bi,Φ(Am)) = d(Φ(Ai),Φ(Am)) = d(Ai, Am) = d(Bi, Bm). Therefore, rH ◦ Φ (a product of at
most m hyperplane reflections) is the desired isometry. 2

4.2.23 Proposition (Isometries of model spaces). Let Φ be an isometry of Mn
k .

(i) If Φ is not the identity, then the set of points it fixes lies in some hyperplane.

(ii) If Φ acts as the identity on some hyperplane H, then either Φ = id or Φ = rH .

(iii) Φ can be written as a composition of at most n+ 1 reflections through hyperplanes.

Proof. (i) Suppose there exists some A such that Φ(A) 6= A. Then all points fixed by Φ lie in
the hyperplane bisector H of A and Φ(A): In fact, if B = Φ(B) then d(A,B) = d(Φ(A),Φ(B)) =
d(Φ(A), B), so B ∈ H.
(ii) Let Φ|H = idH . By what was shown in (i), if A 6= Φ(A) then H must be contained in, and
hence be equal to, the hyperplane bisector of A and Φ(A). Consequently, rH(A) = Φ(A). Since
A was arbitrary, Φ = rH .
(iii) Fix a set of n+1 point A0, . . . , An that is not contained in any hyperplane, and set Bi := Φ(Ai)
for i = 0, . . . , n. By Theorem 4.2.22, there exists an isometry Ψ sending Ai to Bi for each i, and
which can be written as a composition of at most n+ 1 reflections through hyperplanes, then the
isometry Ψ−1 ◦ Φ fixes each Ai. It is therefore the identity by (i). 2
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