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Preface

Principal fiber bundles are a fundamental tool in differential geometry and global
analysis, where they provide the language for understanding curvature and for
studying the interplay between geometry, analysis and topology. In mathemati-
cal physics they set the stage for gauge theories and the standard model of particle
physics. This course provides an introduction to the topic, closely following the
excellent book [1] by Helga Baum, to which we also refer for further study. Occa-
sional input also comes from [3, 4, 6]. The prerequisites for following the course are
a working knowledge of Lie group theory and analysis on manifolds, as provided by
[7, 9]. Some basics of (semi-)Riemannian geometry will be used from time to time,
for which we refer to [10]. T would like to thank Roman Popovych for many helpful
comments and corrections.

Michael Kunzinger, summer term 2020






Contents

Preface

1 Transformation groups

1.1 Basics ............

1.2 Fundamental vector fields

2 Principal fiber bundles

2.1 Fiber bundles . . ... ...
2.2 Principal fiber bundles . .

2.3 Associated fiber bundles

2.4 Vector bundles . . ... ..

2.5  Reduction and extension of principal fiber bundles . . . . . . ... ..

3 Connections in principal fiber bundles

3.1 Basicnotions . .. ... ..

3.2 The affine space of connections . . ... ... .. ... .. .......

3.3 Parallel transport in principal fiber bundles . . . . . .. ... ... ..

3.4 The absolute differential of a connection . . . . . ... ... ... ...

3.5 Curvature of a connection

3.6 S'-connections . ......

4 Holonomy theory

4.1 Reduction and extension of connections . . . ... ... ... .....

4.2 Holonomy group and holonomy bundle of a connection . .. ... ..

4.3 Holonomy groups and parallel sections . . . ... ... ... ......

4.4 Holonomy groups of semi-Riemannian manifolds . . . ... ... ...

5 The Yang—Mills equation

5.1 The Maxwell equations as Yang—Mills equation . . . . ... ... ...

5.2 The Yang—Mills equation as an Euler-Lagrange equation . . . . . . .

Appendices

A Proofs of auxilliary results

iii

11
18
22
28

39
39
50
52
57
65
(0]

79
79
82
88
91

95
95
97

105

107



Bibliography 110

Index 112



Chapter 1

Transformation groups

1.1 Basics

Throughout these notes, we will always assume that smooth manifolds are Hausdorff
and second countable (in particular this applies to Lie groups). Unless otherwise
stated explicitly, neighborhoods will always be assumed to be open.

Recall from [9, Def. 16.1] the definition of a transformation group:

1.1.1 Definition. A transformation of a manifold M is a diffeomorphism M — M.
A group G acts on M as a transformation group (on the left) if there exists a map
d:GxM —> M, (g,z) — g-x satisfying:

(i) VgeG: lg = ¢pg =+ g-x is a transformation of M.
(i) Vg,h e G: ¢g0 dp = dgn, i€, g-(h-x)=(g-h)-x for all x e M.

In particular, ¢, =idpr, so e-x =x for allx € M. G acts effectively on M if g-x =x
for all x implies g = e. It acts transitively if for all x,y € M there is a g € G with
y =gz, and simply transitively if in addition this g is unique. It acts freely on M
if g-x =z for some g and some x implies g = e. The set G-x = ¢(G,x) is called
the orbit of x under G. If G is a Lie group then the pair [M,G] is called a Lie
transformation group.

Fixing x € M, we write ¢, for the map g - ¢(g,z). Analogously, one defines right
actions ¢ : M x G — M. In this case we write ry = ¢, for the diffeomorphism
rgixeMex-g:=¢(x,g).

1.1.2 Definition. If a Lie group G acts transitively on a manifold M, then M is
called a homogeneous space.

Let H be a closed subgroup of a Lie group G. Two elements g1,g2 € G are called
equivalent, g1 ~g ¢, if g1 = go-h for some h € H. Denote by [g] the equivalence class
of g € G and by G/H the set of all such equivalence classes. Also, let 7: G - G/H
be the quotient map. Then by [9, Th. 21.5], if H is open, G/H is discrete (in the
quotient topology). Otherwise, we have:

1.1.3 Theorem. Let H be a closed, non-open subgroup of a Lie group G. Then
there exists a manifold structure on G/H such that:

(i) The projection 7 : G - GJH 1is a submersion.
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(i) With respect to the left action ¢: G x GJ/H - G[H, (g,[a]) ~ [ga], G/H is a
homogeneous space.

(i) There exist local sections in m : G - G/H, i.e., for any equivalence class
[a] € G/H there exists a neighborhood W ([a]) € G/H of [a] and a smooth
map spq) : W([a]) = G with 7o sr4) = idyy ([a])-

Proof. By [9, Th. 21.5], G/H can be endowed with a C*-structure as a quotient
manifold of G, which just means that (i) is satisfied. Moreover, (iii) is a direct
consequence of the general fact that submersions are precisely those maps that
possess local sections ([9, Prop. 15.2]). So it only remains to verify (ii). Note first
that ¢ is well-defined since [a] = [b] implies that for some h € H we have a = bh, so
that [ga] = [gbh] = [¢gb]. Also, with p the multiplication on G we have

go(idxm)=mop,

where the right hand side is clearly smooth. Since id x 7 is a surjective submersion,
it follows that ¢ is smooth as well ([9, Rem. 13.2]). Finally, ¢ acts transitively:
given [a],[b] € G/H we have ¢(ba~t,[a]) = [b]. ]

Our next aim is to show that, conversely, if G is a second countable Lie group acting
transitively on a manifold M, then the homogeneous space M is diffeomorphic to
a quotient of G. From [9, Sec. 16] we know that any transformation group ¢ acting
on a manifold M induces an equivalence relation on M: x ~ ' iff there exists some
g € G with 2’ = gz (resp. 2’ = xzg). The equivalence class of any z € M is precisely
the orbit of x under G, i.e., it is the range of the map ¢, = g~ ¢(g,z), G > M.

1.1.4 Definition. Let ¢:G x M — M be a transformation group on a manifold M.
For any x € M, the subgroup G, := ¢;* () = {g e G | g-x = x} (resp. {ge G | x-g=2})
is called the isotropy group (or stabilizer) of x.

1.1.5 Remark. (i) Isotropy groups at equivalent points in M are conjugate sub-
groups of G. Indeed, suppose that 2’ = gx. Then (¢9G,g )2’ = 2, so gG,g7' € Gy,
and analogously ¢ 1G9 € G, 50 gG.g™' = G,

(ii) For any x € M, the map ¢, : G > M projects to a map ¢, : G/G, > M
defined by gG, — gx. The range of 1, is the orbit of x. Also, 1, is injective: if
Ve(91G2) = Ve (92G2) then g1z = gox, 50 g1 g2 € Gy, L€, 91Gy = 92Ga.

1.1.6 Remark. Let ¢:GxM — M be a Lie transformation group on a manifold M.
Then any G, is a closed subgroup of G. Hence by [9, Th. 21.7], G, is either discrete
or it admits a unique structure as a (regular) submanifold of G. In the latter case
it is also a Lie subgroup of G. If 2’ = gx then by Remark 1.1.5 (i), G is mapped
onto G, by the diffeomorphism Ly o R,-1. Thus the isotropy groups at points of an
orbit are either all discrete or are regular submanifolds and Lie subgroups of G that
are pairwise diffeomorphic (since G, G,+ are regular submanifolds, the restriction
of Ly o Ry is also a diffeomorphism from G, onto G).

If G is open then it is closed and open, hence is a union of connected components
of G, which, by [9, Prop. 2.4] are precisely the cosets of the normal subgroup G..
If, for example, G = ¢g1G. U+ U g1Ge and G, = g1Ge U -+ U q;Ge, then G/G, =
{91G4, ..., gxG4}, since for g € g;G. we have

! l l
m(9) =g9-UgiGe = U 9Gegi = U 9;Gegi = 9;Ga.
i=1 i=1 i=1

Also, the orbit of z only consists of finitely many points (namely ¥, (G/G,) =
{1 -x,..., g1 2}). Otherwise, we have:



1.1.7 Theorem. Let ¢:G x M — M be a Lie transformation group on a manifold
M and let x € M. If the isotropy group G, of x is mot open in G then the map
Yy from Remark 1.1.5 (ii) is an injective immersion of the quotient manifold G |G,
into M.

Proof. Since ¢, = ¢, o (with 7 : G - G/G,), ¥, is smooth by [9, Rem. 13.2].
Also, G/G, is a quotient manifold of G by [9, Th. 21.5]. Moreover, 1, is injective
by Remark 1.1.5 (ii), so it remains to show that its rank in any point equals the
dimension of G/G,. Since 7 is a submersion, this is the case if and only if the rank
of ¢, is everywhere equal to dim(G/G;). We begin by showing that this is true at
e, for ¢ : M x G - M a right action, as this is the case we will need later on.

Let X € T.G such that T.¢.(X) = 0. Let X : M — TM be defined by f((m) =

T.¢.(X). Then X is smooth and X(z) = Tp¢.(X) € Ty(w,eyM = Ty M, so X €
X(M)." Moreover, we have FI,X () = ¢(z,exp(tX)): this is clear for ¢ = 0. Also,

L oxp(tX) = TRIE (¢) = L¥ (exp(1X)),
and since for a right action we have ¢(¢.(9),h) = ¢.(g)h = zgh = ¢, (gh) we get
(b(bm(exp(tX)) = (b(qﬁ(;v,exp(tX)L . ) = gb(x,exp(tX) . ) = ¢x o Lexp(tX)' Thus

0, 5D (1X) = Ty 2L (@5D(65))) = Tenpey b (e Lo (X))
= Te(¢:1: o Lexp(tX))(X) = Te¢¢z(exp(tX)) (X) = X(@C(exp(tX)))

Since X () = 0, it follows that Fltx(aﬁ) =x-exp(tX) =z for all ¢, i.e., exp(tX) € G,
for all ¢.

Now if G, is discrete then the image of ¢ — exp(¢tX), being connected, must consist
solely of e € G, so X = %|o exp(tX) = 0. In this case, then, T.¢, is injective, and so
the rank of T.¢, equals the dimension of G, and thereby the dimension of G/G,.

If G, is non-discrete then by Remark 1.1.6 it is a regular submanifold of G. Hence
t — exp(tX) is smooth as a map into G, (see [7, 3.3.14]), and so X = %\0 exp(tX) e
T.G.. Altogether, we obtain that ker(T.¢,) ¢ T.G.. Conversely, ¢, is constant on
G, 80 Todz|r.c¢, =0, hence in fact ker(T.¢,) = T.G,. Consequently, using [9, Th.
21.7] we obtain

tk(Tep,) = dim G - dim G, = dim G/G,.

Finally, if g is an arbitrary point in G then ¢, oL, = ¢, where 2’ = zg. Then since
L, is a diffeomorphism we have

tky(¢y) = rke (@) = dim G/Gyy.

Now by Remark 1.1.6 G, and G, are either both discrete or they are diffeomorphic,
so we conclude that the rank of T,¢, equals dim G/G,, for every g€ G. O

1.1.8 Corollary. Under the assumptions of Theorem 1.1.7, if G, is not open then
the orbit G-z can be endowed with the structure of an immersive submanifold of M
diffeomorphic to G|Gy.

Proof. For clarity, we write ¥, for v, viewed as a (bijective) map from G/G,
to G- z. Declaring @Z)z to be a diffeomorphism provides G -z with a differentiable
structure with respect to which the inclusion map j: G-x < M is an immersion
since j o by = 1y : G/G, — M is an immersion. O

L X is precisely the fundamental vector field corresponding to X, see Section 1.2.
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1.1.9 Remark. Suppose that G is connected and let x € M. By Corollary 1.1.8
the orbit G - x can be discrete only if G, is open: if G, is not open then G, is
non-discrete in its manifold topology hence also in the coarser trace topology. In
this case, G, is open and closed in G, so G, = G and therefore G-z = {z}.

Recall that G is said to act transitively on M if for any x, 2’ € M there exists some
g € G with gz = 2’. Such a group action possesses only a single orbit, namely the
manifold M itself. By Remark 1.1.5 (i) this means that any 1, is a bijection from
G/G, onto M. To further elaborate on this, we will need the following auxiliary
result:

1.1.10 Lemma. Let M™ and N™ be manifolds and suppose that M is second
countable and that m <n. Then an immersion ¢ : M — N cannot be onto any open
subset W of N.

Proof. See Appendix A. O

Using this, we can prove:

1.1.11 Theorem. Let G be a second countable Lie group that acts transitively
as a Lie transformation group on the manifold M. Then for any x € M the map
Yz : G/Gy = M is a G-equivariant diffeomorphism.

Proof. Fix any x ¢ M. If G, is open, then so is any ¢gG,, hence any point in
G/G, (because 71 (7(g)) = gG.), which is therefore discrete (cf. [9, Rem. 20.1]).
Otherwise, by [9, Th. 21.5] G/G,, possesses a differentiable structure as a quotient
manifold of G. In both cases, the quotient map 7 : G —» G/G, is open and con-
tinuous, so also the topology of G/G, is second countable. Hence if G/G, were
discrete it would be countable. But 1, is bijective, so this would imply that M
was countable, which is impossible. Hence G/G, is not discrete, and so it is a
quotient manifold of G with a countable basis for its topology. Also, by Theorem
1.1.7 1, is an injective immersion of G/G, into M. Hence dim G/G, < dim M.
Since 1, is onto M, Lemma 1.1.10 implies that the dimensions in fact are equal.
As ¢, : G/Gx — M is an immersion, it follows that its tangent map is bijective at
any point. Thus by the inverse function theorem it is a local diffeomorphism, hence
a global diffeomorphism since it is bijective. Finally G-equivariance simply means
Ye(a-(gGe)) = Y. (agGy) = agx = ap,(gGy), which is clear from the definition. O

1.1.12 Corollary. Let G be a second countable Lie group that acts transitively and
freely as a Lie transformation group on the manifold M. Then M is diffeomorphic
to G.

Proof. If G acts freely then G, = {e} for every z € M. Hence G/G, = G and the
result follows from Theorem 1.1.11. O

1.1.13 Corollary. Let G be a compact Lie group that acts transitively as a Lie
transformation group on the manifold M. Then M is compact.

Proof. Since G is compact, it is second countable. By Theorem 1.1.11, M is
diffeomorphic to G/G,, for any © € M. Let 7 : G > G/G, be the quotient map.
Then 7(G) = G/G, is compact, hence so is M. o

1.2 Fundamental vector fields

In this section we introduce a fundamental tool for studying Lie group actions.
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1.2.1 Definition. Let [M,G] be a left Lie transformation group and let X € g.
Then the vector field X € X(M) defined by

X(2) = %‘O(exp(—tX) 2) = ~Todo(X)

is called the fundamental vector field corresponding to X. If G acts on the right
then we set

K@) = b (@ exp(t)) = T, ().

Clearly, X is smooth and since the curve ¢ exp(-tX) -« has value z at ¢t = 0, X
is indeed a section of T'M.

1.2.2 Theorem. Let [M,G] be a Lie transformation group.
(i) The map
g X(M)

XX

is linear and [X,Y]" = [X,Y], i.e., it is a Lie algebra homomorphism. In
particular, the set of fundamental vector fields forms a Lie subalgebra of the
Lie algebra X(M).

(i) If G. (the connected component of e in G) acts effectively on M, then X + X,
g—>{X eX(M)|X eg} is a Lie algebra isomorphism.

(iii) If G acts on the right, then for all g € G and all X € g, the push-forward
(rg)«X of X under vy is given by

(rg)«X = (Ad(g™")X)".

If G acts on the left, ~
(lg)«X = (Ad(g)X)".

Proof. (i) Linearity of X — X is immediate from that of T,¢,. Suppose first that
G acts on the right. If X e g2 X (G) then

T,60(X(9)) = Ty (T Ly (X(e))) = 1] (6a(Ly(exp(X)))
= 2] (g exp(tX)) = X (2-9) = X (u(9)).

This shows that X and X are ¢,-related for any z € M, X ~go X. Thus also
[X,Y] ~p, [X,Y]", and by [9, Lemma 4.4] we get [X,Y ] ~4, [X,Y]. Altogether,

[X,Y](2) = [X.Y](¢2(e)) = T ([X,Y](e)) = [X, Y] (¢u(e)) = [X, Y] (2).
If G acts on the left, let ¢! : G — M, ¢/ (g) =g -z. Then for X € X1(G),
T,00(X(9)) = (Ty6) (T Lo (X () = 4| o (g-exp(1)
= ] exp(-4X) (g™ -2)) = X(g™) = X (o)),

and the rest of the argument is as above.
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For the remainder of the proof it will suffice to consider right actions.
(ii) Let Ge act effectively, then we have to show that X — X is injective. Thus let
X =0, so that FI¥(z) =  for all t and z. As we have seen in the proof of Theorem

1.1.7, FI.X (2) = 2 - exp(tX), so 2 -exp(tX) = z for all € M and all t € R. Now for
to sufficiently small, go := exp(toX) lies in a normal neighborhood of e € G, (i.e., a
neighborhood onto which exp is a diffeomorphism). Since G, acts effectively on M,
we have gg = e and thereby X = 0.

(iii) Let z € M, g € G and X € g. Then applying [9, Th. 9.2] (iii) we calculate

(1) X () = Ty (X(ag™)) = Trgrary (] (w97 - exp()))

= %L)(CC . (971 'exp(tX) g)) = %‘o(z ! (Conjg’l(eXp(tX))))

= 0] ep(tAd(g™)X) = (Ad(g™)X)" (1)
O

To conclude this section we prove a product rule that will be useful several times
later on.

1.2.3 Lemma. Let [M,G] be a right Lie transformation group. Also, let t — z(t)
be a smooth curve in M with x(0) = x, and t = g(t) a smooth curve in G with
g(0) =g. Set z(t) :=x(t) - g(t). Then

2(0) = Torg(2(0)) + (Ty Ly §(0))" (2 - 9)- (1.2.1)

Proof. As before, we denote the group action by ¢ : M x G - M. Then using the
identification T{, (M x G) 2 T, M & T4G we calculate:

- Gilota®.9)+ £l ote00) = Z o) + £ oloe)
= Torg(£(0)) + Ty (9(0)).

Let X = TyL,;1G(0) € g. Then viewed as a left-invariant vector field we have
X = h o~ LToLe19Op) = TeLyn(TyLy-1§(0)), and in particular X (g) = ¢(0). By
the calculation in the proof of (i) of Theorem 1.2.2 we know that

X(z-9) =Ty0.(X(9)) = Tyb.(9(0)),

so the claim follows. m]

1.2.4 Corollary. Let [M,G] be a right Lie transformation group with group action
¢:MxG— M. Then
T(z,g)(b T, M e TqG = T(x,g)(M X G) - TIgM
(X,Y) = Torg(X) + MG(Y);gv
where pg is the Maurer—Cartan form on G.

Proof. This is immediate from the previous result by letting #(0) = X, §(0) =Y
and recalling the definition of the Maurer—Cartan form from [9, Sec. 10]. ]



Chapter 2

Principal fiber bundles

2.1 Fiber bundles

Our main objects of study throughout this course will be locally trivial fiber bundles
(with certain additional structures).

2.1.1 Definition. Let M,E,F be smooth manifolds and let m : E — M be a
smooth map. The tuple (E,m, M,F) is called a smooth fiber bundle or locally
trivial fibration of fiber type F' if for any point x there exists a neighborhood U € M
and a diffeomorphism ¢y : mH(U) - U x F such that pr, o ¢y = :

WU -2 UxF
L
U

E is called the total space, M the base space, m the projection, and F the fiber type
of the fibration. We will often abbreviate (E, 7, M, F) by E.

Since m = pry o ¢y, 7 is a surjective submersion. In particular, for any x € M,
E, = 7 !(z) is a regular submanifold of E (see [7, Cor. 3.3.23]), called the fiber
over z. The pair (U, ¢y) is called a bundle chart or local trivialization of E over
U. For any V ¢ M let Ey := 7~ 1(V). If V is open, then also (Ey,7,V, F) is a fiber
bundle in its own right, the subbundle over V.

For any x € U we have ¢y (F,) = {z} x F and the map
(ov)z =Pryo¢ulp, 1 Bz > F (2.1.1)
is a diffeomorphism: taking any p € E,,
dim F,, = dimker 7,7 = dim E — dimim(7,7) = dim F - dim M = dim F

(because ¢ is a diffeomorphism). Thus rk,((¢v)s) = tkT,(¢v|e,) = dimE, =
dim F, showing that (¢y ), is a local diffeomorphism. Since it is also bijective, it is
indeed a diffeomorphism.

Let {U;}ier be a covering of M and let (U;,¢;) be a bundle chart for each i € I.
Then the maps

$io ¢y (UinUp) x F — (UinUg) x F (2.1.2)
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are called transition functions between the bundle charts (Uy, ) and (U, ¢;).
Denoting by Diff (F) the diffeomorphism group over F' we obtain maps

¢ir : Uy n Uy, — Diff (F)
T oy F—>F

that satisfy the so-called cocycle conditions
Gir(x) 0 drj(x) = ¢ij(x) and ¢ii(x) =idp. (2.1.3)
The collection of maps {@;x }4i ker is called the cocycle of the bundle atlas {(U;, ;) }ier-

2.1.2 Definition. Two fiber bundles (E,n, M, F') and (E,7,M,F) over the same
base manifold M are called isomorphic, £ = FE, if there exists a diffeomorphism
H:FE - E such that to H =.

2.1.3 Examples. (i) Let M, F be manifolds and let pr; : M x F - M be the
projection to the first factor. Then F := (M x F,pr;, M, F') is a fiber bundle with
bundle atlas consisting of the sole chart {(M x F,id)}. Any fiber bundle isomorphic
to such an F' is called trivial.

(ii) For dim M = n, the following are standard examples of fiber bundles over M:
the tangent bundle (TM, 7, M,R™), the cotangent bundle (T*M, 7, M,R"™), the
k-form bundle (A*T*M, 7, M,R*), with A := (Z), and the (r,s)-tensor bundle
(TT M, 7, M,R"").

To construct fiber bundles it is useful to know how to generate the manifold structure
of the total space from knowledge of a bundle atlas. To this end we first introduce
some notation:

2.1.4 Definition. Let M, F be manifolds and let m: E — M be a surjective map
from a set E onto M. If U € M is open and ¢y : n=1(U) - U x F is a bijective
map with pry o ¢y = 7|g,,, then (U,¢y) is called a formal bundle chart for E. A
family {(Ui, ¢u,) }ier of formal bundle charts of E with respect to 7 is called a formal
bundle atlas if {U; }ier covers M.

2.1.5 Theorem.

(i) Let M, F be manifolds and w: E - M be a surjective map from a set E onto
M. Let {(U;, ¢:) }ier be a formal bundle atlas of E with respect to ™ such that
all transition functions

pio¢;' (UinUj) x F > (UinU;)xF (i,jel)

are smooth. Then there exist a uniquely determined topology and manifold
structure on E such that (E, 7, M, F) becomes a fiber bundle with bundle atlas

{(Ui, &) Yier-

(ii) Let (E,7,M,F) and (E,7,M,F) be fiber bundles over M and let H : E - E
be a bijective map with 7o H = m. Suppose that for all charts from two given
bundle atlasses {(U;,¢;)} of E and {(U;,&;)} of E the chart representations

$ioHodg : (UinUy) x F > (UinUy) x F

are diffeomorphisms. Then H : E — F is a bundle isomorphism.

8



Proof. (i) Define O € E to be open if for every (U;, #;) the set ¢;(O na2(U;)) is
open in U; x F. This defines a topology 7 on E: clearly @ and E are open and so
are arbitrary unions and finite intersections of open sets.

Then each 7' (U;) = Ey, is open because ¢;(Ey, n Ey,) = (U; nU;) x F is open.
Moreover, ¢; : By, - U; x F' is a homeomorphism: Let O € Ey;,. Then, by definition
of 7, O is open if and only if ¢;(O n Ey,) is open for each j € I. Setting j =i it
follows that ¢;(O) is open in U; x F', so ¢; is open. To see that it is also continuous,
let W € U; x F be open. Then ¢;!(W) is open in Ey;, because

0 (07 (W) N Ey,) = (¢ 067" ) (W n¢i(Ey, n Ey,))
=(¢j00; )W n ((UinU;) x F))

is open in U; x F' for each j e I.

It now follows that 7 is second countable: We may assume without loss of generality
that I is countable. Then picking a countable base B; in each U; and B in F',

{¢7'(B;xB)|icl, BieB;, BeB}

is a countable basis for 7. To see that 7 is also Hausdorff, let p # ¢ be points in E.
If w(p) + m(q) then there exist disjoint U;, U; with 7(p) € U; and 7(q) € Uj;, hence
Ey, and Ey, are disjoint neighborhoods of p and ¢. Otherwise, p,q € E, for some
2 € M. Then for x € U; and we can openly separate ¢;(p) and ¢;(¢q) in U; x F' and
the claim follows because ¢; is a homeomorphism by the above.

To define the smooth structure on E, we declare the homeomorphisms ¢; : Ey, —
U; x F' to be diffeomorphisms. This provides a smooth atlas for E because the chart
transition functions

gbiogb;lZ(UiﬁUj)XF—)(UiﬂUj)XF (Z,jEI)
are smooth by assumption. For this C®-structure 7 is smooth because 7| By, =
pry o ¢;. (E,m, M, F) then is a fiber bundle.

Uniqueness of both the topology 7 and the smooth structure on E is immediate
because the requirement that {(U;, ®;)}ier be a bundle atlas uniquely determines
both these structures.

(ii) This is clear because H is bijective and each local representation is a diffeomor-
phism, so H itself is a diffeomorphism as well. O

While the previous result gives a bottom-up method to construct fiber bundles,
there are also ways to obtain new bundles from given ones. We next look at the
pullback of fiber bundles. Let f: N — M be smooth and let £ = (E, 7, M, F) be a
fiber bundle over M. Then we define the pullback bundle f*¢ := (f*E, 7, N, F) as
follows:

FE={(y.e) e NxE|f(y)=m(e)} € N x E
T(y,€) = y.
Then the following diagram commutes:
B2 E
N M

5
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Proof. Let {(U;,¢;)} be a bundle atlas for £ and set V; := f71(U;) € N and
bi: 7 (Vi) = (f*E)v, » Vix F
(y,€) = (y,pry 0 di(e)).

Then v; is injective: Note that 7 1(V;) = {(y,e) | 7(e) = f(y) e U;}. If ¥;(y1,e1) =
¥i(y2, e2) then y1 =y and pry o ¢;(e1) = pry o ¢;(e2), hence also

pryo¢i(er) =m(er) = f(y1) = f(y2) = 7(e2) = pry o ¢i(e2),
S0 e1 = e3. Moreover, v; is also surjective: Let (y,b) € V; x F = f~1(U;) x F. Then
there is a unique e € 7 1(U;) with ¢;(e) = (f(y),b). Thus (y,e) € 7 1(V;) (since
Ui > f(y) = pry o ¢i(e) = m(e)) and ¢;(y,e) = (y, pry o di(e)) = (y,b).
For any (y,v) € (V;n Vi) x F we have ¢;'(y,v) = (y,6;'(f(y),v)): Since 7o
¢x (f(y),v) = pri(f(y),v) = f(y), the right hand side is in 77" (V},), and

Yy, 8" (f(1),0)) = (5,015 0 dx 0 B (£(y),0)) = (3, ).
Consequently,

iopt t(Vin Vi) x F — (Vin Vi) x F
(y,v) = (y,pra 0 ¢ 0 ¢ (F(1),v))

is smooth for any i,k. Therefore Theorem 2.1.5 shows that f*FE has a manifold
structure that turns f*¢ into a fiber bundle with bundle atlas {(V;,4;)}. O

2.1.7 Corollary. If N € M is a reqular submanifold and § = (E,m, M, F) is a fiber
bundle over M, then the restriction (E|y,m, N, F) is a fiber bundle over N.

Proof. Apply Theorem 2.1.6 to the embedding f:= N < M. O

2.1.8 Definition. A (smooth) section of a fiber bundle (E,x,M,F) is a smooth
map s: M — E with mos =1idy;. If U € M is open then sections of the subbundle

Ey are called local sections of E over U. The set of all smooth sections of E is
denoted by T'(E), and T(U, E) :=T(Ey).

For a trivial bundle F' = (M x F,pr,, M, F') we obviously have I'(F') = C*(M, F).
Sections of TM are smooth vector fields, those of T M are smooth tensor fields.

If the fiber type of a fiber bundle is diffeomorphic to a real vector space then there
always exist global sections:

2.1.9 Theorem. Let (E,m,M,F) be a fiber bundle over M with F diffeomorphic
to R™ and let A< M be closed. Then any smooth section s: A - E can be extended
to a global smooth section on M. In particular there always exists a global smooth
section of E, so T'(E) + @.

Proof. That s is smooth on the closed set A means that for any x € A there exists
a neighborhood U of z in M and a smooth map S : U » E with S|yna = s|luna.
We first show that given a bundle chart (U, ¢r/), the section s|yna can be smoothly
extended to U. Also, whenever we say that two smooth sections coincide on a closed
set we mean that all derivatives (in any chart) coincide on that set. Without loss
of generality, let F'=R". Then we can write

puos: AnU - UxR™
€T = ((E,fl(l')7...,fm($)),
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where f; : AnU — R is smooth for i =1,...,m. Any real valued function f that is
smooth on AnU can be smoothly extended to all of U: For each x € AnU let U, be
an open neighborhood of x in U to which f can be smoothly extended as above by
a smooth function F, : U - R™. Gluing these functions F, via a partition of unity
subordinate to the open cover (U )zeanu provides a smooth extension of f to some
neighborhood Wy of AnU. Now set Wa := U N A. and let {x1,x2} be a partition of
unity subordinate to {Wy,Ws}. Then f:= x1f (extended by 0 outside of W) does
the job. So let fl, .. .,fm : U — R be smooth extensions and set sy : U - E,

su(x) = ot (z, f1(x), ..., fm(2)).

Now let {(Ua, ¢a)}aca be a covering of E by bundle charts with U, € M and let
{Xa}aea be a partition of unity subordinate to this covering. Let Vi, = {x € M |
Xa(z) > 0}. Then also {V, }aca is an open covering of M and V,, = suppy, € U, for
each a.

For any J € A we set M := Uyes V. Then by the above M = M,. Let
T:={(r,J)|J<€A, 7: My - E smooth section, 7|ps,na = 8|p,na}-

This set is nonempty because (sy,,{a}) € T for each a € A. We define a partial
order on T by
(' J)< (" J") . < T " =7"m,.

Then any chain (totally ordered subset) in 7 has an upper bound (namely the pair
(1,J) with J the union of the index sets in the chain and 7 such that the restriction
of 7 to each index set is the given section). By Zorn’s Lemma there is a maximal
element (8,J) in T.

To conclude the proof we show that J = A. Suppose, to the contrary, that there
exists some g € A\ J. By definition of 7 we have §|MjﬁA = s|MjnA, so in particular

§|MjnAnW0 = 8|MjﬂAﬂﬁo (2.1.4)

Since {Va }aea is locally finite, (AU M ;) nVa, € Uy, is closed and 7o, : (AUM;) N
Voo = E,

7~—o¢0 |AOWO = S|ADWO
T lnr, 7y 3= Slar, vy

is well-defined due to (2.1.4) and smooth since all derivatives of s and § coincide on
M;nAnVy,,.! As above it therefore follows that there exists a smooth extension

Tay : Uy = E of To,. Now set J':= J U {ag} and §':M;j - E,
N {§ onMj

8=
Tap 0N Vg

Then (§',J) € T, contradicting the maximality of (8,.J). Thus M = Mj; and
§: M — E is a section with 8|4 = s, as claimed. O

2.2 Principal fiber bundles

Our main objects of interest for the remainder of these lecture notes are certain
fiber bundles whose typical fiber is a Lie group:

IStrictly speaking the existence of a smooth extension (both here and in the case of the upper
bound of a chain above) as required in our definition of smoothness on closed sets follows from
Whitney’s extension theorem.
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2.2.1 Definition. Let G be a Lie group, M, P manifolds, and 7 : P - M smooth.
The tuple (P,w, M, Q) is called a G-principal fiber bundle over M if

(i) G acts on P from the right as a Lie transformation group. The action is
simply transitive on the fibers.

(it) There exists a bundle atlas {(U;, ¢;)} consisting of G-equivariant bundle charts,
i.e.,

(a) ¢; 7 (U;) - U; x G is a diffeomorphism.
(b) priod; =m.

(c) ¢i(p-g) = ds(p)-g for all pe 7 Y(U;) and g € G, where G acts on U; x G
via (z,0) - g = (z,ag).

2.2.2 Remark. Let (P,m,M,G) be a principal fiber bundle. Then M can be
viewed as the quotient manifold of P by the group action. Indeed, denote by p
the map that assigns to any p € P its orbit under the right action by G, i.e., the
canonical quotient map. Now consider the map i: P/G - M, [p], » m(p):

P—"— s M

L A

P/G

Since 7(pg) = w(p), ¢ is well-defined. It is injective, since w(p) = m(g) means that
p = qg for some g, so [p], = [q],. Indeed it is also surjective: for x € M, take
any p € m~'(z). Then i([p],) = 7(p) = z. We may now declare the bijection i to
be a diffeomorphism, thereby inducing a manifold structure on P/G. With this
structure, P/G (and thereby M) is a quotient manifold of P because iop = T,
implying that p is a submersion. This structure is unique by [9, Rem. 15.8]. Some
sources (e.g., [3, 6]) define principal fiber bundles via P/G.

2.2.3 Definition. Let (P,mp,M,G) and (Q,nq,M', H) be principal fiber bundles.
A bundle morphism Q — P is a pair (f,\), where f:Q — P is a smooth map and
A H - G is a Lie group homomorphism such that f is a A-equivariant bundle map,
i.e.,

f(g-h)=f(q)-A(h)  VqeQ, heH.

Any bundle morphism f induces a map f: M’ - M on the base manifolds such

that

QL>p

chzl lﬂp (2.2.1)
f

M — M

commutes. Indeed, if mg(q1) = 7o(g2), then ¢1 = g2h for some h € H, so f(q1) =
f(g2)A(h), hence mp(f(q1)) = 7p(f(g2)). Since mq is a surjective submersion, f is
smooth.

A bundle morphism (f, \) is called a bundle embedding if f, f and A are embeddings
of manifolds. If M = M’ and f = id,, then Q, together with f is called a A-reduction
of P. If, in addition, H is a Lie subgroup of G and \ is the inclusion map then f
is called an H-reduction of P, and the image of f is called a principal G-subbundle
of P. We will study reductions in more detail in Section 2.5. Finally, if G = H,
A =1idg, and f is a diffeomorphism, then f is called a bundle isomorphism.
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In this case, f is itself a diffeomorphism: f is surjective by (2.2.1) since 7p and f
are. Now suppose that f(mg(q1)) = f(7o(g2)). Then again by (2.2.1) 7p(f(q1)) =
7p(f(g2)), so there is some g € G with f(q1) = f(g2)g = f(g2g9). Thus ¢ = g2g and
mqo(q1) = mg(g2). In addition, f is a submersion by (2.2.1), so our claim follows
from the following auxiliary result:

2.2.4 Lemma. Let f: M — N be a bijective submersion. Then f is a local (hence
global) diffeomorphism.

Proof. For any x € M there exist charts ¢ of M around z and v around f(z) of
N such that 1o fop™ =pr; : UxV — U (cf. [7, Th. 3.3.3]). Since f is bijective, so
is 1o f o™, but this is only possible if V =@ and 1o fop ™t =id: U - U. O
Next we give two equivalent descriptions of principal fiber bundles, starting by
replacing local trivializations by local sections.

2.2.5 Theorem. Let G be a Lie group and m : P - M a smooth map. Then
(P,m,M,Q) is a principal fiber bundle if and only if

(i) G acts on P from the right as a Lie transformation group. The action is
simply transitive on the fibers.

(it) There exists an open covering U = {U; }ier of M and local sections s; : U; - P
for each iel.

Proof. Given a local section s: U — P, define 95 by
Vs :UxG - Py
(z,9) = s(x)-g.

Since s is a section 1, takes values in Py. Also, it is smooth and G-equivariant:
Ys(x,a)-g=(s(x)-a) -g=s(z) (ag) = Ps(x,ag). Since G acts simply transitively
on the fibers, 5 is bijective: it is clearly surjective and if ¥s(x, g) = 1¥s(y, h) then
applying m we get = =y, and so s(z) = s(x)hg™!, implying that g = h as well.

(2.2.2)

Since 7 has local sections it is a submersion (cf. [9, Prop. 15.2]). Thus for any z € M,
P, = m71(z) is a regular submanifold, and for any p € P, we have T,P; = kerT},m
([7, 3.3.23, 3.3.25]). According to (i), G acts freely and transitively on P,, so by
Corollary 1.1.12 P, is diffeomorphic to G. Indeed the proof of that result (cf. the
proof of Theorem 1.1.7) shows that, denoting the group action by ® : P x G - P,
for any p € P, the map ®,:G - P,, ®,(9) =p-g (x =n(p)) is a diffeomorphism.

To show that v, is a diffeomorphism, by Lemma 2.2.4 it suffices to check that it is a
submersion. Let (x,9) e UxG, X e T, M and Z € T,G. Pick smooth curves ¢ — z(t)
in U and t » ¢(¢) in G with z(0) =z, £(0) = X, g(0) = g and §(0) = Z. Also, let
y(t) :=s(x(t)) and w(t) = y(t)g(t) = ¥s(x(t),g(t)). Then by Lemma 1.2.3
T,y %s(X, Z) = (0) = Ti(2) Ry (4(0)) + (T Lyg-19(0))"(5(0) - )
= Ty(o) Ry (T X) + (TyLg Z)"(s(x) - g).
Now given any W ¢ Ts(2)g P we need to find (X, Z) as above with T, 9s(X,Z) =
W. Set X := Tn(W) € Trn(s(myyM = TuM and X := TR,(Ts(X)). Then since

mo Ry =mand mos=id,
Tr(W-X)=X-Tr(TR,(Ts(X)))=X - X =0,

meaning that W - X eker Ty(2)g™ = Ts(a)g Pu- By what was shown above, Te® (4, :
g = Ts(z)q Py is bijective, so there exists a unique A € g with (recall Definition 1.2.1)

A(S(.’E)g) = Te@s(r)g(A) = W - X
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Now setting Z := T, Ly(A) € T,G we finally obtain

T, s (X, Z) = To(ay Ry (T X) + (Ty Ly Z)™(s(x) - g)
=X+ A(s(x)g) =X +W-X=W.

Having established that 1, is a diffeomorphism we now claim that ¢, := ;! : Py —
U x G is a G-equivariant bundle chart. Note first that 7o ¢4(x,g) = « because G is
fiber preserving and s is a section. Thus 7o s = pry, so pr; o ¢s = 7, showing that
¢s is a bundle chart. It is also G-equivariant because any p € Py can uniquely be
written as p = s(z)g, so for h € G we have

¢s(p-h) = ¢s(s(x) - (gh)) = (x,gh) = (,9) - h = ¢5(p) - h-

Conversely, suppose that (U, ¢y ) is a G-equivariant bundle chart for P. Then the
map s:U — P, s(z) = ¢;*(x,€) is a smooth section of P|y. O

For our second characterization of principal fiber bundles we need the following
notion:

2.2.6 Definition. Let M be a manifold and let G be a Lie group. Suppose that
U = {U;}ier is an open covering of M and that {gij}ijer is a family of smooth
functions g;; : Uy nU; - G with

g”(x)gjk(x):glk(m) Vl’EUiﬁUjﬂUk (223)
gil(z)=e  Vzel; -

(i,4,k €I). Then the family {gij}i jer is called a G-cocycle on M.

2.2.7 Theorem. Let M be a manifold, G a Lie group, U = {U; }sc1r an open covering
of M and {gi;}ijer @ G-cocycle on M. Then there exists a smooth principal fiber
bundle (P,m, M,G) with a bundle atlas {(U;,¢;)} whose transition functions are
given by the left translations by g;;:

$ij(z) =Ly, (o) : G > G Ve eU;nUj.
Moreover, (P,m, M,G) is unique up to bundle isomorphism.

Proof. For each i € I, set X; :=U; x G and let X :=J;c; X; be the topological sum
of the X;. Each element of X can be written in the form (i,2,a) with i e I, z € X;,
and a € G. Since each X; is a smooth manifold, so is X.

Now call (4, z,a) equivalent to (j,y,b) if z =y € U;nU; and a = g;;(«)b. This defines
an equivalence relation p on X, and we note that (i,x,a) ~, (4,y,b) if and only if
x =y and a=b. (+) Denote by P:= X/ ~, the quotient of X with respect to p. We
claim that G acts freely on P on the right.

Indeed, by definition ¢ € G maps the p-equivalence class [(i,z,a)] to [(i,z,ac)].
This is independent of the representative: if (i,x,a) ~ (j,9,b), then z = y and
b = gji(x)a, hence be = gj;(x)ac, giving (i,z,ac) ~ (j,y,bc). The action is free
because [(i,z,ac)] = [(i,x,a)] implies ac = g;;(x)a = a, hence ¢ = e.

The map 7: P =X/ ~,»> M, [(i,z,a)] = « is well-defined, and for p,q € P we have
m(p) = w(q) if and only if ¢ = pc for some ¢ € G: Let p = [(i,z,a)], ¢ = [(4,y,b)].
Then if g = pc we get y = z, so w(p) = 7(q). Conversely, let 7(p) =z =y =7(q) €
U;nU;. Then q = pc, where ¢ =a™'g;;(z)b € G.

To define a smooth structure on P we first note that the quotient map y : X —
P =X/ ~, (i,z,a) » [(i,x,a)] (for € U;) maps each X; = U; x G bijectively
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onto 771 (U;): surjectivity is clear and injectivity follows from (*) above. Call the
inverse of this map ¢; : 7 1(U;) - X;. Now we define the 7=1(U;) (i € I) to be open
submanifolds of P and the ¢; to be diffeomorphisms. This indeed defines a smooth
structure on P because the 7~!(U;) cover P and the transition functions are the
smooth maps

¢jo i+ (x,0) = 6;([(1,2,0)]) = 6;([j, z, gji(2)a]) = (2,g5i(x)a).  (2.24)

G acts smoothly on P because on 7~ (U;), the right multiplication . by ¢ € G
satisfies

bioreo ¢; (x,a) = ¢i([(i,2,ac)]) = (z,ac). (2.2.5)
Thus G acts as a Lie transformation group on P. Moreover, woqﬁi_l =pr; : (2,a) » x,
so 7 is smooth and the action of G clearly is fiber preserving and simply transitive
on the fibers. It follows from (2.2.4) that {(U;, ¢;) }ier is a bundle atlas for P whose
transition functions are given by the left translations by g;;. Finally, the ¢; are
G-equivariant due to (2.2.5).

It remains to show uniqueness up to bundle isomorphism. Suppose that (P’, 7', M, G)
is another principal fiber bundle over M with bundle charts (U;, ¢}) that give rise
to the same cocycle. Then define the map F : P’ — P on any U; as follows:

F

Thus F(p') := ¢ o @7(p"). This map is well-defined, i.e., independent of the ¢ with

p' € P'|y,: we have mo F(p') =7'(p') =tz € U;, so F(p') = ¢7,} 0 #.,(p"). Now if also

7' (p') € Uk, then ¢z 0 33k = Ly, (2), SO G = dpa © L;}k(m), and analogously for the
i Therefore, .

F(p') = biz 0 05 (D) = b 0 Ly, (2 © Ligur () © Ghe () = G3z © 010 (0

F is surjective since {(U;, ¢;)} and {(U;, ¢;)} are bundle atlasses. It is also injective:
Let F(p) = F(p}), then 7 (p}) = m(F(p))) = 7(F(ph)) = 7'(p) € Us for some
iel, and F: P'|y, - P|y, is bijective by definition. It also follows from the local
representation that F and F~! are smooth and G-equivariant, hence F is a bundle
isomorphism. m]

2.2.8 Theorem. Let M, P be manifolds and let # : P — M be a smooth map.
Then the following are equivalent:

(i) (P,m,M,QG) is a principal fiber bundle.

(it) There exists a bundle atlas {(U;, ¢;) }ier and a G-cocycle {gij}i jer for the open
cover U = {U;}ier of M such that the cocycle {¢;;}i jer of P is given by the
left translations ¢ij(x) = Ly, (2) : G > G.

Moreover, (P,7, M,G) satisfying (ii) is unique up to bundle isomorphism.
Proof. (i)=(ii): Let {(U;, ¢:)}ier be a G-equivariant bundle atlas for P. Then
gik Ui nUp > G
@ gik(2) = dia (D, (€)) = Gin(w)(€) = pry 0 &y 0 G (. €)
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is smooth. Also, ¢;(¢5'(2,¢€)) - g = ¢i(¢5 (z,¢) - g) = ¢i(¢5 (2, 9)), so
gik(z) - g =pryod;ody (x,€) - g=pry(eio gy (z,€) g)
= pro(di 0 o5 (2, 9)) = dir(2)(g)-

(ii)=(i): Define the right action of G on P as follows: for p € P, and x € U; set

p-g:= 067 (¢ix(p) ) (2.2.6)

This definition is independent of the chosen chart: let « € U; nU;. Then by (ii)
iz © D10 (0j2(P) - 9) = i (2) (D52 (D) - 9) = gij () - D= (D) - g = Dia (D) - g-

Then G acts as a Lie transformation group on P: (p,g) = p- g is smooth since
writing ¢;(p) = (z,a) we have p-g = ¢;l(a-g) = ¢7'(x,a-g). Also, it is easily seen
that (p-g)-h =p-(g-h). By definition, the action of G is fiber preserving. It is also
simply transitive on the fibers because

4=p-9< =5 (6ic(p) - 9) < bic(a) = diz(p) -9,
which is uniquely solvable. It only remains to verify (ii) (c¢) from Definition 2.2.1.
Again let ¢;(p) = (z,a). Then

9i(pg) = di(diy (9iz(P) - 9)) = ¢i (¢ (a- 9)) = di(; " (2,a9)) = (x,ag)
=(z,a)-9=¢i(p)-g.

Finally, the uniqueness claim follows from Theorem 2.2.7. |

2.2.9 Example. The trivial bundle G := (M x G,pry, M,G) is a principal fiber
bundle with the single bundle chart ¢ =id: M x G - M x G.

2.2.10 Example. Let £ = (P, 7, M,G) be a principal fiber bundle and let f: N —
M be smooth. Then the pullback bundle f*¢ (cf. Theorem 2.1.6) is a principal
G-fiber bundle over N. Recall that

f7€={(n,p) e NxP|f(n)=m(p)} <N xP

and we already know that it is a fiber bundle with bundle charts derived from those
of P (Ui, ¢:)) via
i (Vi) = (f*Ov » Vix G
(nap) = (nypr2¢l(p))
(and V; := f71(U;) € N). The action of G on f*¢, (n,p)-g:= (n,p-g) is well-defined

since 7(p-g) = 7(p) = f(n), so (n,p-g) € f*¢. It is clearly fiber preserving, as well
as smooth since

wingo¢;1(naa) = (nva'g)'

Simple transitivity on the fibers follows since for u,v € f*€ with 7(u) =n = 7(v) we
get u=(n,p), v=(n,q) and there is a unique g € G with p- g = ¢, and thereby with
(n,p)-g=(n,q). It only remains to verify (ii) (c¢) from Definition 2.2.1:

Yi((n,p)-g) =i(n,p-g) = (n,pra o di(p-g)) = (n,pry 0 ¢i(p) - 9) = ¥Yi(n,p) - g-
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2.2.11 Example. (Homogeneous bundle) Let H be a closed, non-open subgroup of
the Lie group G and let G/H be the corresponding homogeneous space. By Theorem
1.1.3 G/H is a quotient manifold of G. Denote by 7 : G — G/H the canonical
projection. Then (G,w,G/H, H) is a principal fiber bundle with structure group H:
The action of H on G is given by (g, h) — g-h, which is clearly smooth. It preserves
fibers since if g € 71(gH) then g, = gh; for some hy € H, so g1h = gh1h € gH, and
gih e m7Y(gH). To see transitivity on the fibers, let g1, g2 € 71 (gH). Then g; = gh;
(i=1,2), 50 g1 = g2(h3'h1), and h = g3 gy is the unique element of H with g; = goh.
Finally, by Theorem 1.1.3 there exist local sections of 7, so Theorem 2.2.5 gives the
claim.

2.2.12 Example. (The frame bundle of a manifold) Let M be an n-dimensional
manifold and set

GL(M), :=={vy = (v1,...,vn) | vy is a basis of T, M},

and
GL(M) := |-) GL(M),.
xeM
Define 7 : GL(M) - M by 7(vy) := . The group GL(n,R) acts on the set GL(M)
on the right by

(Vla"'71/n)'A::(ZViAi17'~'7ZViAin)7 (227)

where A = (A;;). Obviously, this action is fiber preserving and acts transitively on
the fibers.

To introduce a manifold structure on GL(M), let (U;,p; = (x',...,2™)) be a chart
of M. Then we define ¢; : GL(M)|y, = 7 1(U;) - U; x GL(n,R) as follows: for
v, € GL(M)|y, there is a unique A(z) € GL(n,R) such that

e (]

ozt VU oxn Iz

)- A(x). (2.2.8)

Set ¢;(vy) := (x, A(x)). Then ¢; is bijective and the following diagram commutes:

%, U, x GL(n,R)
l /

Hence ¢; is a formal bundle chart. If (Uy, px = (y',...,y™)) is another chart in M
then in the notation of (2.2.7) we have

0 0 0
(5,7 )= (g

oy

9
Y oxn

o %
:v) ' (8;] )i7j.

Thus
¢i o d;" : (U; nUk) x GL(n,R) - (U; nUy,) x GL(n, R)
°¢k1($aB):¢z‘((8§1 I 9 )B):(:U,(g;l)B)

oy e
is smooth, and so by Theorem 2.1.5 we obtain a fiber bundle structure on GL(M).
GL(n,R) acts on the right and it is evident from the definition that this action is

fiber preserving and simply transitive on the fibers. It is also smooth, because if
@iz (V) = A(x), i.e., if (2.2.8) holds, then ¢, (v B) = A(z)-B = ¢z (v, )-B, meaning
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that locally the action is given by ((x, A), B) = (z, A- B). This also proves the last
point of Definition 2.2.1, concluding the verification that (GL(M), 7, M, GL(n,R))
is a principal fiber bundle.
For any chart (U;,¢; = (x1,...,2")), the map
0 0
§:= (—, ey
o0x1 oxy,
defines a local section, which is smooth because ¢;(s(z)) = (x,I,). Note that

the bundle charts constructed above are precisely the ones constructed from these
sections according to the proof of Theorem 2.2.5.

):U—>GL(M).

2.2.13 Example. Analogously to Example 2.2.12, one can construct subbundles
of the frame bundle if the manifold M is endowed with some additional geometric
structure:

(i) Let (M,Oys) be oriented. Then let
GL(M)} = {v, € GL(M), | v, positively oriented}.

This leads to the GL(n,R)*-principal fiber bundle of all positively oriented
frames (GL(M)*,m, M,GL(n,R)*).

(ii) Let (MP19,g) be a semi-Riemannian manifold of signature (p,¢) and set

O(M,g). = {Vm = (V15 yvn) € GL(M)z | (92(vi,v5)) = (_ép [(1) }

This gives the O(p, q)-principal fiber bundle (O(M,g),r, M,0(p,q)) of or-
thonormal frames.

2.2.14 Theorem. A principal fiber bundle (P,m,M,G) is trivial if and only if it
possesses a global section.
Proof. Let s: M — P be a global section. Then the map
d:MxG—->P
(z,9) ~s(z)-g

is an isomorphism of principal fiber bundles. This follows exactly as in the proof of
Theorem 2.2.5.

Conversely, if & : M x G — P is a bundle isomorphism, then s(x) := ®(z,e) defines
a global section of P. O

2.3 Associated fiber bundles

Given a principal fiber bundle (P, 7, M,G) and a manifold F such that [F,G] is a
left Lie transformation group, one can construct a new fiber bundle by ‘replacing
the fiber’. Note first that G acts on the right on the product P x F' via

(p,v)-g:=(p 9,9 v). (2.3.1)

Denote by E := (Px F)/G =: Pxg F the corresponding quotient space, by [p, v] the
equivalence class of (p,v), and by

T E—->M
[(p,v)] = 7(p)

the projection (which is well-defined). Then we have:
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2.3.1 Theorem. (E, 7, M, F) is a fiber bundle over M. It is called the fiber bundle
associated to P and [F,G].

Proof. Let x € M and let (U, ¢y) be a bundle chart of P,
ov:Py—->UxG
pr (7(p),pu(p))-
Then ¢y (p-g) = pu(p)-g. Now set Ey := 71 (U) and define

Yy:Ey - UxF
[p,v] = (7(p), pu (p) - v).

This map is well-defined: Let [p1,v1] = [p2,v2], so (p1,v1) = (p2g, 9 tvs) for some
g € G. Then 7(p1) = m(p2) and

(2.3.2)

ou(p1)vr = eu(p29) - (97 v2) = (wu(p2g) - 9~ v = U (p2)va.

Let ¥y ([p1,v1]) = Yvu([p2,v2]), then 7(p1) = m(p2) =: x, so there exists some g € G
with p1 = pag. Also, pu(p2)-g-v1=pu(p1) v1 =pu(p2)- v2, S0 g-v1 = va, implying
[p1,v1] = [p2, 112] and thereby injectivity of . To see surjectivity, let (x,v) e Ux F
and set p := ¢77 (z,e). Then

Yo ([p,v]) = (7(p), v (p) -v) = (x,v).

Thus (U, ¢y ) is a formal bundle chart of E. The above also shows that ¢! : UxF —
Ey is given by
vyt (2,0) = [¢7 (2. €), 0], (2.3.3)
We have
*> UxF

Ey
Now EynEy = Eyny and Yy (Eyay) = ¢U(ﬁ_1(UﬂV)) = pr[l(UﬂV) =(UnV)xF,
sopy ot (UnV)x F - (UnV)xF, and setting p := ¢/ (z,e) we calculate

Yy oy (2,0) = v ([p,v]) = (z,0v(p) ) = (z,0v (67 (2,€)) ),

which shows that the chart transition maps are smooth, giving the claim. O

Let us also derive alternative representations for some of the above maps. Given
reUnV, pick any p e 71 (z). Then ¥y ([p, o (p)~t-v]) = (z,v), showing that

wl}l (l‘, ’U) = [pv @U(p)71 : UL (234)

and consequently ¥y o ¥ (z,v) = (z,0v(p) - u(p)~! - v) for any pe 771 (z). Also,
we note that the map (p,v) — [p,v], P x F - E is smooth because

[p,v] = ¥5 (m(p), pu (p) - v). (2.3.5)

Next we want to compare the chart transition functions in P and in F. Let g :
U;nUy = G be the G-cocycle induced by a bundle atlas {(U;, ¢;) }ier of P according
to Theorem 2.2.8. In our current setting we have, writing ¢; = ¢y,, ¥; = Yy,, cf.
(2.1.1):

[p;v] = pry o ¢ilE, ([P, v]) = i(p) - v,
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where p is any point in P, = 77!(z). We have
Yi(2)(0) = Yiz 0 Yjg(v) = ia (Wi (2,0)) = Pry 09 0 Pyt (w,0).
Here, ¢! (,v) = [p, ¢1(p) ™" 0], s0 i 0! (w,0) = (7(p), 0i(p) - ox(p) ™" -v), hence
bir(2)(v) = @i(p) - pr(p) " - v.

Since @i, : P, — G is bijective, there is a unique pg € P, with ¢ (po) = drz(po) = €.
Then

Yir(2)v = 0i(po) - or(Po) v = 0i(po) v = Piz(Pra(€)) - v = gin(x) v

(cf. Theorem 2.2.8). This means that the cocycle 1, of the fiber bundle E is given
by the left action [g,, (,) € Diff (F') of the cocycle g;;, of P. It motivates the following
general construction principle for fiber bundles:

2.3.2 Theorem. Let M, F be manifolds and [F, G] a left transformation group. Let
{Ui}ier be an open covering of M and let g;, : U;n U - G (i,k € I) be a cocycle.
Then there exists a unique (up to isomorphism) fiber bundle (E,7t,M,F) whose
cocycle is given by the left action ly,, o) € Diff(F'). This fiber bundle is associated to

the unique G-principal bundle whose cocycle is given by the left translations Ly, (. €
Diff(G).

Proof. We construct the fiber bundle similarly to the proof of Theorem 2.2.7. Let
E:=JU;xF,

iel

and call elements (z;,v;) € U; x F' and (ag,vx) € U x F' equivalent if x; =z = x €
Uin Uy and v = gri(2) - v;. By the cocycle condition (2.2.3) this indeed gives an
equivalence relation on F. Denote the equivalence class of (x;,v;) by [z;,v;] and
set A
E:=F/~ w([z,v]) = .
To obtain a bundle atlas, define
By > U; x F
Vit Bu, = Us (2.3.6)
[Z‘i7’l]] = (xi7v)'

This is well-defined, for if [z,v] = [y,w], x,y € U;, then z = y and v = g;;()w = w.
Also it is clearly bijective. Moreover,

Yiz(Vra (0)) = Yiz([2,0]) = Yo ([, gin(2) - v]) = gir(2) - v = lg,, () (V),
wioqﬂ;l:(UiﬂUk)XFﬁ(UiﬂUk)XF
(z,v) = (z,gir(x) - v)

is smooth. According to Theorem 2.1.5 we therefore obtain a manifold structure
on E such that (E,m, M, F') becomes a fiber bundle. Uniqueness up to fiber bundle
isomorphism follows exactly as in the proof of Theorem 2.2.7.

Now carrying out the same construction with [G,G], by Theorem 2.2.8 we obtain
a (unique, up to isomorphism) principal fiber bundle P with the given G-cocycle.
Then the map

A:PxgF—>FE
[[z,9],v] = [z,9-v]
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is well-defined: if [[z,¢1],v1] = [[y,92],v2] in P xg F, x € U;,y € U; then there
exists some h € G such that [z,g1]-h = [y,92] and h~'v; = vo. Here, denoting the
analogues of the v; from (2.3.6) by ¢; and p := [z, ¢g1] we have by (2.2.6):

[2,91]- 1 = 675 (diz(p) - h) = b7y (91 - h) = [, 91 - P].
Hence [x,g1-h] = [y,92], so x =y and g1 - h = g;;(x) - go. It follows that
g1-v1=g1-h-vy=gij(x)-ga-ve,

giving [z, g1 -v1] = [y, g2 - v2].
A is surjective as [z;,v] = A([[x4,¢e],v]). Tt is also injective: Let A([[xs,91],v1]) =
A([[zj,92],v2]), i€, [zis01-v1] = [%5,92 - v2]. Then z; = z; =z and g1 - vy =
gij(x) - g2 - v2. Thus v1 = h- vy with h := art -gij(x) - g2, and [z,91 - k] = [z, g2].
Altogether,

[[2ig1],v1] = [[@i,91] - b 701 = [[25, g2], v2],
as desired.

To show smoothness of A, denote by x; the P xg F-bundle chart corresponding
to ¢; as in (2.3.2). Then for any [[x;,9],v] € P xg F we have x;([[zi,g],v]) =

(zi, i([x5,9])-v) = (w5,9-v). But also ¢y A([[xi, g],v]) = Yi([xi, g-v]) = (w:,9-v),
so 1; 0 Aox;! =id. This implies that A is a diffeomorphism.

Finally,

mo A([[wi, g],v]) = 7([wi, g-v]) = i = wp([%4, 9]) = 7([[2s, 9], v])-
concluding the proof that A is a fiber bundle isomorphism. O

2.3.3 Definition. Let (P,7m, M,G) be a principal fiber bundle, F' a manifold, and
[F,G] a left transformation group. Let E = P xg F be the associated fiber bundle.
For any p € P, the map

[p]: F > P, xgF=E,

oo [poo] (2.3.7)

is called the fiber diffeomorphism defined by p.
Using (2.3.2), note first that [p] is smooth because

Yo o [pl(v) = Yu(lp,v]) = (7(p), pu(p) - v)

(note that E, = #~!(x) is a regular submanifold of E). It is bijective with smooth
inverse

¢ T . ( )—1
[p,v] 2% (2,00 (p) - v) 22 pu(p) v *ZE v,

hence is indeed a diffeomorphism. Also

[p-9]l(v) =[p-g,v] = [p,g-v]=[pl(g-v) = [p] o ly(v). (2.3.8)

To conclude this section, we consider smooth sections in associated fiber bundles.
To this end we introduce the space of G-equivariant maps from P to F"

C=(P,F) = {5€C™(P,F) |5(p-g) =g™ -5(p) Vpe P, geG}.  (23.9)
Then we have:
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2.3.4 Theorem. Let (P,m, M,G) be a principal fiber bundle, F' a manifold, [F,G]
a left transformation group, and E = P xg F the associated fiber bundle. Then the
space of smooth sections of E can be identified with C*°(P,F)%:

[(E)=C>(P,F)°.

Proof. Given 5¢C*(P,F)%, define s: M — E, s(z) := [p,3(p)] € E., where p € P,
is arbitrary. This is well-defined, for if also q € P, then g = p- g for some g € G, so
that

(¢,5(a)] = [pg, 5(pg)] = [pg, 9 "5(p)] = [p.5(p)]-

Also, s is a section because #(s(z)) = 7([p,3(p)]) = 7(p) = x. To see that s is
smooth, let f: U — P be a smooth local section of P around xy € M. Then locally

we have s(z) = [f(2),5(f(2))], so v o s(z) = (z,00(f(2)) - 5(f(x))).
Conversely, let s € I'(E) and define 5 : P — F by 5(p) := [p]™* o s(7(p)). Let
Yy os(x) = (x,8(x)) € U x F be the local representation of s. Then with z = w(p),

5(p) = [p] " o vyt oYy o s(w(p)) = [p] " o v (,5(x))
o [P ([P, pu ()" - 3(2)]) = pu ()~ - 3(n(p)),
2.3.4)
showing smoothness. Also, 5 € C®(P, F)“ since by (2.3.8),
5(pg) = [pg] " o s(m(p)) = lgr o [p] " e s(z) = g7'5(p).

Finally, we note that the maps A:5+— s and B : s+~ 5 are inverses of each other:

B(A(5))(p) = [P (AG) (x(p))) = [p] ' ([p.5(0)]) = 5(p),
A(B(s))(2) = [0, B(s)(9)] = [p, [p] ' (s(2))] = [p)([p] " (5(2))) = 5(2).

2.4 Vector bundles

Fiber bundles whose typical fiber is a vector space play a prominent role in differ-
ential geometry:

2.4.1 Definition. A fiber bundle (E, 7, M,V') is called a K-vector bundle of rank
m < oo if

(i) The typical fiber V is an m-dimensional vector space over K.
(i) Every fiber E, is a K-vector space.
(i1i) There exists a bundle atlas {(U;, ;) }ier such that the fiber diffeomorphisms
iz By >V
are linear isomorphisms.

If K=R or K =C then E is called real or complex vector bundle, respectively. If
m =1 then E is called a line bundle.

2.4.2 Definition. Let E and E be vector bundles over the same base manifold M.
A map L: E - E is called a vector bundle homomorphism if it is smooth and fiber
preserving and if L|g, : E; — E, is linear for each x € M. If both L and L™ are
vector bundle homomorphisms, then L is called a vector bundle isomorphism.
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For E a vector bundle, I'(E) is a module over C*°(M), with multiplication defined
pointwise: (fs)(x) := f(x)s(x). Any vector bundle homomorphism L : £ - F
induces a linear map on the corresponding spaces of sections, denoted by the same
letter:

L:T(E)->T(E)
s+ Ls, (Ls)(x):=L(s(x)).

Well known notions from (multi-)linear algebra can readily be extended to the vector
bundle setting:

2.4.3 Remark. Constructing new vector bundles from given ones:

(i)

(iii)

Whitney sum R
Let E, E be vector bundles over M with typical fibers V', V. Then let

EeE:= ) E,0FE,
zeM
with projection 7g : Ey @ Ey > (ez,€z) > x€M.
To turn E & 1527 into a vector bundle we employ Theorem 2.1.5: let (U, ¢u =
(m,00)), (U,éu = (7, ¢u)) be bundle charts in E and E over the same open
set U € M. Then
¢8:(E€9E)U—>U>< (V@V)

(e,€) = (m(e),pu(e) ® ¢u(€))

a formal bundle chart, with smooth transition functions (namely the direct

sums of the individual transition functions of £ and E). The vector bundle
(E® FE,mg, M,V ®V) is called the Whitney sum of E and E.

Tensor product
With E, E as in (i), set

E®FE:= 1) E,®F,
xeM

with projection mg : Ey ® Ey 3 (exz ®€y) > xeM.
In this case, the formal bundle charts are given by
o5 (E®E)y ~Ux(VeV)
(e®é) ~ (m(e), pu(e) ® Pu(é€))

The resulting vector bundle E ® E is called the tensor product of E and E.

Dual vector bundle

Given a vector bundle (E, 7, M,V'), and denoting by V*, E* the dual spaces,
set
E*:= ) E},
zeM

with projection 7* : E} 5 L; = x. The formal bundle charts then are
oy Ef->UxV*?
Efs Lo (0 (L), 05 (1)), where @} (L)(v) = L(6h(2)).

(E*,7*, M, V*) is called the dual bundle of F.
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(iv) Conjugate vector bundle

Let E be a complex vector bundle and denote by V the conjugate vector space
of V, where scalar multiplication is defined by (A, v) » A-v. Given a bundle

chart (U, ¢y) of E, let ¢y, : E, — V be the linear isomorphism induced by
¢uz. Then set
E?I: L:J Z?wv
zeM

and 7 : Ey 3 €, —» x € M. The formal bundle charts are given by

¢v:Ey >UxV
E,3é~ (z,0u.(€)).

The resulting vector bundle (E, 7, M, V) is called conjugate to E.

(v) Homomorphism bundle

Given two vector bundles £, E as before, denote by Hom(V, V) the space of
linear maps from V to V and set

Hom(E, E) = -) Hom(E,, E,)
xeM

with projection # : Hom(E,, Ew) 5 L, + x. The formal bundle charts now are

éu : Hom(E, E)|y - U x Hom(V, V)
Ly~ (2,T), where T(v):= (gZNJUI oL, o ngUlr)(v)

The resulting vector bundle (Hom(E, E), #, M,Hom(V,V)) is called the ho-
momorphism bundle from E to E. Any vector bundle homomorphism L :
E - E corresponds to a smooth section sy, =z — L, = L|g, € Hom(E,, Ex)
and, vice versa, s € ['(Hom(E, E)) corresponds to the vector bundle homo-
morphism L := E 3 v+ 5.0, (v).

2.4.4 Remark. Here we show that any vector bundle is associated to a principal
fiber bundle with linear structure group (i.e., whose structure group is a Lie sub-
group of some GL(n,K)). Let (E, 7, M,V be a vector bundle. Since the transition
functions ¥ () = 1, 0yt : V - V are linear, they define a cocycle

Gik = Vi : Uy n Uy, = GL(V).

Also, [V, GL(V)] is a left Lie transformation group, with the action given by matrix
multiplication. Hence Theorem 2.3.2 applies and shows that E is associated to the
GL(V)-principal fiber bundle over M defined by the cocycle {g;x}.

2.4.5 Remark. Let (P,7,M,G) be a G-principal fiber bundle and let p : G —
GL(V) be a representation of G on the vector space V. Then p induces a left
action on V,

GxVs(g,v)~g-v:=p(g)veV.

According to Section 2.3 we therefore obtain a fiber bundle E := P x(g ,y V, and in
fact E is a vector bundle with linear structure on the fibers E, = P, x(g,,) V given
by

[p,v] + A[p,w] := [p,v + Aw] (pe Py, vyweV, XAeK).
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Thus declaring [p] from Definition 2.3.3 to be a linear isomorphism transfers the
vector space structure from V to E,. To verify (iii) from Definition 2.4.1 we use
(2.3.2):

wUx([p’v] + )\[p,w]) = T;Z}Um([pvv + )‘w]) = (Z’SOU(p) ) (’U + )‘w))
= (2, p(eu (p)) (v + Aw)) = (z, eu (p) -v) + (z, Aoy (p) - w)
= wUI([pa U]) + )"L/)Uw([pﬂﬂ])

All the functorial operations considered in Remark 2.4.3 can be applied to given
representations (cf. [9, Def. 23.3]). E.g., if £ = Px(g )V and E = P x(g 5 V, then

E®E=Pxepn (VeV).

2.4.6 Example. Tensor bundles on a manifold
Let M be an m-dimensional manifold, then there are natural isomorphisms be-
tween the standard tensor bundles over M and vector bundles associated to suit-
able representations of GL(n,R). Denote by p : GL(n,R) > GL(R"™) the repre-
sentation given by matrix multiplication (p : A » (v » A-v)). Then according
to [9, Def. 23.3], p gives rise to the dual representation p* : GL(n,R) - GL(R™),
pr : GL(n,R) > GL(A*(R™)), and p(,. ) : GL(n,R) - GL(T7(R™)). Then
TM =~ GL(M) X(GL(n,]R),p) R"
TM = GL(M) X(GL(n,R),p*) R™
AFT* M = GL(M) x(GL(n,R),p) AR™
TSTM = GL(M) X(GL(TL,R),P(T,S)) T;Rn

To check this explicitly in the case of the tangent bundle T'M, consider the map
®:GL(M) x,R" - TM

n
(51, r50), (@1 20) ] = 3 i
=1

Then ® is well-defined: let [(s1,.--,84), (Z1,-- -, 2n) ] =[(31,---,8n), (F1,.--,Tn)"]
so for some A € GL(n,R) we have (s1,...,8,) = (31,...,8,) - A and (z1,...,7,)"
A1 (Zy,...,%,)". Thus

n n
21‘751 = Z (Ail)iji‘jAmgk = Zakji’jgk = Z i’kgk.
i=1 (2.2.7) 5% ik k=1

® is surjective: Let v, € T,M, y a local chart around p, then v, = Y v;0,:
O([(Bytlps- - Oynlp), (v1, .- vn) ).

® is injective: Let

[(15--y80) (15 s 20) ], [(B1y -5 80), (B4, oo, 80) '] € GL(M) x, R"

p

with 300, 2;8; = Yy #;8;. Since both s:= (s1,...,s,) and 5:= (51,...,35,) are bases
of R™ there exists a unique A € GL(n,R) such that s =§-A. Then

insi:sw:&A-x:Z@éi:§§c7

so A-x =7, or v = A7'%, implying [s, 2] = [5,7].
To show smoothness of ®, take ¢y : (GL(M) x, R")y - U xR™ as in (2.3.2), i.e.,

Yu = [(51,-580), (V1) ] o (T((51, -0, 80)), 00 (81,5 80) - (V1,2 00)").
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Here, ¢y (s1,---,8n) = (7(81,---,8n),pu(81,...,8,)) is a bundle chart of GL(M).
According to Example 2.2.12, this map in turn arises from a chart (U, ¢ = (z!,...,2"))
of M as ¢y (s1,-.-,8,) = (z,A(x)), where

(815-+80) = (Otley - -+, Opnls) - A(T).

Therefore, ¥y ([(s1,---,8n), (V1,.--,vn)"]) = (z, A(2) - (v1,...,v,)"). In particular,
for s; = Opi|. we have A(x) = I, giving

Wit U xR 3 (z,0) = [Oaalas - Bonle), (wi, - wn) ],
so that
Tpo® oy (z,w) = Tpo ®([(gler -, Ouna), (wr,. .., wy)'])
= To( L widailz) = (o(x).w).

This shows, on the one hand, that ® is a local, hence (since it is bijective) a
global diffeomorphism, and on the other that T'po ® o 1/)&1 is a local vector bundle
isomorphism. Altogether, ® thereby is a global vector bundle isomorphism.

A similar calculation with the map
Q" : GL(M) x,u R™ - T*M

n
(51, y80), (V1,...,0,) ] = Zvisf
i=1

(with {s}} the basis dual to {s;}) implies the result for 7% M, and analogously for
the remaining cases.

In the remainder of this section we want to show that any real (resp. complex) vector
bundle of rank m is associated to an O(m) (resp. U(m)) principal fiber bundle. To
do this, we need the following notion:

2.4.7 Definition. A bundle metric on a real or complex vector bundle E over M
is a section {.,.) € D(E* ® E*) that assigns a nondegenerate bilinear form (for
K =R) resp. nondegenerate hermitian form (for K=C)

(., g, =(., Wx):E;xE; > K
to any x € M.

Semi-Riemannian metrics on T'M are examples of bundle metrics. In general we
have:

2.4.8 Theorem. Any real or complex vector bundle possesses a positive definite
bundle metric.

Proof. Let (E,n, M, V) be a vector bundle over M with bundle atlas {(U;, ¢;) }ier
and pick a partition of unity {x;}ies subordinate to the covering {U,;};s. Let
(v1,...,v,) be a basis in V and define, for a = 1,...,n,

Sia : U; > B
T Sio(x) = (;Sgl(acma).

This gives a local frame for Ey,, which allows us to define a bundle metric (., .)
on Ey, by
(sia(2),5i8(2) )iz = 0ap (zelU;).
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Then
(@) =2 xi(@) (s i

i€l
gives the desired positive definite bundle metric. O
Using this we can now prove:

2.4.9 Theorem. Any real (resp. complex) vector bundle of rank m is associated to
an O(m) (resp. U(m)) principal fiber bundle.

Proof. Let (E,w,M,V) be a vector bundle over M and fix a positive definite
bundle metric (., .) on E according to Theorem 2.4.8. Now consider the set of
bases

P, :={sy =(S1,...,5m) | Sz is a basis in E, with (s4,$3)s = dag}-
Then

P=) P M
xeM

Sp P T

defines an O(m) (resp. U(m)) principal fiber bundle over M: To obtain formal
bundle charts, let U; be trivializing and use the Gram-Schmidt procedure to con-
struct an orthonormal basis (e, | « = 1,...,m) in (I'(Ey),(.,.)). Then set

¢; + Py, - U; x R™ | s, = (81,--+y8m) = (z,A(x)), where A(x) € O(m) (resp.
U(m)) is the uniquely determined matrix with

Sg = (e§|w, .. .,efn|m) - A(x).

It then follows exactly as in Example 2.2.12 that (P,7,M,O(m)) (respectively,
(P,7r,M,U(m))) becomes a principal fiber bundle. Moreover, in complete analogy
to Example 2.4.6 it follows that

PxomyR™ 2 E resp. Pxymy R™ 2 E

via the vector bundle isomorphism [(s1,...,8m), (Z1,...,Zm)] > Yori TaSa- O

For vector bundles that are associated to principal fiber bundles there is a canonical
way of obtaining bundle metrics.

2.4.10 Theorem. Let (P,m,M,G) be a principal fiber bundle, p: G - GL(V) a
representation on a finite dimensional vector space, and (., . )y a p-invariant scalar
product (for K=R or C) on V. Then on the associated vector bundle E = Px (g ,)V
a bundle metric is given by

(6, é)Em = (1}, ’ﬁ)v (6, €€ Ew), (2.4.1)

where e = [p,v] and é = [p, 0] for some p € P,. The scalar products (., .)y and
(.,.)E, have the same signature.

Proof. To see that (., .)g, is well-defined, let g € P, and let g € G be the unique
element such that ¢ =p-g. Then

e=[p,v]=[p-g,p(g "] =[ag.p(g” )], é=[p, 0] =[q,p(g ")0],

and (p(g~ v, p(¢g71)d)y = (v,9)y by assumption. Hence (2.4.1) is independent of
the chosen p € P,. To see that the resulting bundle metric is smooth, we have to
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show that for any s1,s0 € T(F) also x — (s1(x), s2(x)) is smooth. To see this, pick
any smooth section v € '(P|y), U a trivializing neighborhood. Then on U we have

(@) =0 @ (@) = [@).eu (@) u@)]

where v; € C*(U,V) (i =1,2). Therefore,
(s1(@), 52(2)) = (u(v(2)) ™" - v1(2), v (v(2)) ™" - v2(2)) = (v1(2),v2(2)),

which is smooth. ]

2.5 Reduction and extension of principal fiber bun-
dles

Let (P,mp,M,G) and (Q, g, M, H) be principal fiber bundles and suppose that
(Q, f) is a A-reduction of P, i.e. (cf. Definition 2.2.3) that f : Q — P is smooth,
A: H - G is a Lie group homomorphism, and

(i) mpo f=mg.
(i) f(g-h) = f(q)-A(h).
Thus we have the following situation:

QxH — Q

o

PxG ——> P -2y M

2.5.1 Definition. Two \-reductions (Q, f) and (Q, f) of the principal fiber bundle
P are called isomorphic if there ezists an H-fiber bundle isomorphism ® : Q - Q
such that fo® = f. By Red)(P) we denote the set of all isomorphism classes of
A-reductions of P.

Let M be an n-dimensional manifold with frame bundle GL(M). Any additional
geometric structure on M induces a reduction of the frame bundle to a subgroup of
GL(n,R). For example, if g is a semi-Riemannian metric on M of signature (k,1),
then the bundle O(M,g) of orthonormal bases is a reduction on GL(M) to the
group O(k,1). In this case, A = O(k,l) - GL(n,R), and f = O(M,g) - GL(M).
Conversely, any O(k,l)-reduction (Q,mg,M,O(k,l)) of GL(M) induces a semi-
Riemannian metric g of signature (k,1) on M as follows: Let x € M and pick any
q € Q. Then f(q) = (v1,...,v,) is a basis of T, M and we define g, by setting
9z (vi,v5) = €;0;5, with e, = =1 for 1 < i < k and ¢; = +1 for k+1 <4 <n. This
definition is independent of the chosen ¢: Let §€ Q,, ¢ =q-A, A€ O(k,l). Then
(01,..,00) = f(q) = f(q) - A, s0

92(04,05) = g:z:( > vk Api, Z'UlAlj) =Y enbmAriAy = Y en(A") ik Arj = €:0;.
% 7 Kl %

Moreover, & +— g, M - T(T*M ® T*M) is smooth: Let s be a local section of @Q
(cf. Theorem 2.2.5). Then x — f o s(z) = (V1z,-..,VUnz) is a smooth local frame for
TM. Since g(vig, vjz) = €;0;; is smooth, it follows that indeed g(X,Y") is smooth for
any X,Y € Xjoc(M), giving the claim. Thus g is indeed a semi-Riemannian metric
of signature (k,l) on M.
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2.5.2 Theorem. Let (P,wp, M,G) be a principal fiber bundle and let A : H - G
be a Lie group homomorphism. The following are equivalent:

(i) There exists a A-reduction of P.

(i) There exists a G-cocycle {gi}iker for P that is induced by an H-cocycle
hir :U; nUx - H via

gir () = A hip(zx)) Vo eU;nUy.
Proof. (i)=(ii): Let (Q,mq,M,H), f:Q — P be a Areduction of P and con-
sider a bundle atlas {(U;, ;) }ier of @, inducing the H-cocycle hy, : U; N Uy 3 2 —
Vi (Yrk(e)) € H (cf. Theorem 2.2.8). To construct a bundle chart for P over U;,

let zeU; and p e P,. Let g € Q,, then mpo f(q) =mo(q) =z, so f(q) € P, and there
is a unique g € G with p = f(q) - g. Now let

¢i Py, Uy xG
p (mp(p), A(¥iz(q)) - 9)-

This map is well-defined: Let p = f(¢')¢’ = f(q)g. There exists a unique h € H with
q, =q- hv S0 wzm(q,) = wzz(Q) -h and

A(ia(q') 9" = A(Wiz(q)) - A(R) - g

Since f(q)-A(h) = f(g-h) = f(¢') = f(q)-g-(g')"", we have A(h) = g-(¢") ", proving
the claim. Note also that (setting p:= f(q)-e)

i © flou, = (idy, x ) o 1h. (25.1)

Next, ¢; is smooth: Let s: U; - @ be a smooth section of Q and let «; :77131(UZ-) -
U; x G be a bundle chart for P (w.lo.g. defined on some U;). Then «;(p) =
(I7aia:(p))7 and al(f(sz)) = ('T7aiw(f(8w)))' Now Setting 9p = aia:(f(sa:))_l :
oz (p) € G we have a;(f(sz) - gp) = @i (p), i-e., f(sz)-gp = p. Consequently, on P|y,
we can write

bi =p = (mp(p), AN(Yix(52)) - 9p),
which is smooth.

To construct an inverse of ¢;, let (z,g) € U; x G. We are looking for a p € P, with
¢i(p) = (2, M(Yia(52)) - gp) = (#,§). Thus we need

Qg (f(52)) " ia(p) = 9p = A(Wia(52)) 7 = @ia(p) = in (f(52)) - A(hia(s2)) "3
It follows that
¢ (2,9) =p = o7 (2, @in(f(52)) - A(Win(52)) 7 - 9),

which is smooth, so that ¢; is a diffeomorphism.

Furthermore, ¢; is G-equivariant: Let € G, p = f(¢)-g. Then
¢i(p-9) = (mp(p); A(¥iz(9)) - 9-9) = (mp(p), A(¥ia(q)) - 9) - § = ¢i(p) - G-
It remains to show that
9ik () = bic (D2 (€)) = M(Wia (Vi (€))),

or equivalently that ¢ (z,e) = ;' (2, A\(¥iz (V52 (€))) - €). Setting g = 1;1(e) and
p = f(q)-e, we have ¢;(p) = (z,A\(¥ix(q)) - €) and we are left with showing that
ox(p) = (,¢). Indeed,

Pk(p) = (2, A(Vra(q)) - €) = (2, A(e) - €) = (2, €).
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(ii)=(i): By Theorem 2.2.7, the H-cocycle generates a principal fiber bundle (Q, 7q,
M, H) over M with bundle charts ; : Qu, - U; x H. To define a suitable f: Q — P
we note that in the first part of the proof, cf. (2.5.1), we got that f|q, = #7 ' o (idy, x
A)o1p;. Conversely we therefore define maps f; : Qu, = Py,, fi = ¢;7 o (idy, x \) o1y,

o Jo

UZ'XH&)U,L‘XG

We show that f; = fi on Qu,nu,: This is the case if and only if for each (z,h) €
(U; nUg) x H we have
(id x A) (s 0 ¥ ) (w1, h) = (i 0 65 1) o (id x A) (w, h)
< (idx M) (, hig () - h) = (2, gie () - A(h)),
which indeed is the case by (ii). Hence we obtain a well-defined smooth map f :
@ — P such that on Qy;,
mpof=mpod; o (idxA) o =pry ot =mq.
Finally,

filg-h) = ¢7' o (idy, x A) 0 9hi(g - h) = ¢7 " (2, A(Yiz (g - 1))
=67 (2. AW (0) - h)) = 67 (2, M(ia(0))) - A(R) = fig) - A(h).

O

2.5.3 Remark. This result shows that if (@, f) is a A-reduction of P then one can
choose trivializations of P and @) over the same set U such that, using Quy 2 U x H,
Py 2 U x G, the map f reduces to flg, 2 idy x A (see (ii)=(i) in the previous
proof). This makes it possible to transfer local properties from X to f. E.g., if A
is a covering map, so is f. If A = H - G for a Lie subgroup H of G, then also
f:Q — P is an injective immersion, hence f(Q) is an immersive submanifold of P.
If H is closed in G (so that by [9, Cor. 21.9] it is a regular submanifold of G), then
also f:@Q — P is an embedding, hence f(Q) is a regular submanifold of P.

2.5.4 Theorem. Let H be a Lie subgroup of G, (P,m,M,G) a principal fiber
bundle and Q) € P a subset such that

(i) The right action R of H preserves Q: Rp(Q) =Q for all he H.

(ii) If ¢,G€ Qe :=QN Py and q=q-g, then ge H.

(iii) For any x € M there exists an open neighborhood U(xz) in M and a smooth
section s: U(x) - P with s(U(zx)) € Q.

Then Q is an immersive submanifold of P, (Q,w|q, M, H) is a principal fiber bundle
and (Q,t) is an H-reduction (i.e., a subbundle) of P, where t = Q — P is the
inclusion map.

Proof. Let s:U — P be a local section as in (iii) and consider the corresponding
bundle chart (cf. Theorem 2.2.5)

¢v:Py—-UxG
p=s(m(p)) g~ (7(p),9)
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By (i) and (ii) the restriction
¢U ::¢U|QU ZQUiszﬂQ—)UXH

is bijective, hence is a formal bundle chart for Q. By (iii), @ can be covered by a
corresponding formal bundle atlas {(U;, ¥y, ) }ier. Since H is a Lie subgroup, hence
an integral manifold of an integrable distribution ([9, 19.3]), the same is true for
(U;nU;) x H ¢ (U; nUj) x G. Therefore, smoothness of ¢y, o ¢y! = (U;nUj) x G —
(Ui nUj) x G implies smoothness of

-1 -1
’(/JUJ' o in = ¢Uj ° ¢Ui

(9, 17.27,14.7]). By Theorem 2.1.5 this induces the structure of a fiber bundle on
Q. By assumption, the right action of G on P restricts to a fiber preserving action
on Q) that is simply transitive on the fibers (by (i) and (ii)). As above, this action
is smooth as a map R:Q x H — Q. This turns (Q, |g, M, H) into a principal fiber
bundle, and the inclusion ¢ : Q < P is an immersion (Yoo ¢yt =U x H = U x G).
We conclude that (Q,¢) is an H-reduction of P. o

W.invy)<r P (UinUj) x H — (U;nUj) x H.

Next we want to derive a criterion for the reducibility of a principal fiber bundle
(P,m,M,Q) to a closed (and non-open) subgroup H of G. Consider the action of
G on the homogeneous space G/H (cf. Theorem 1.1.3):

G xG/H 3 (g,[a]) = [ga] € G/H.

By Theorem 2.3.1 we obtain an associated fiber bundle F := P xg G/H. Now
consider the map

f:E—>P/H:={p-H|peP}
[p.g-H]~ (p-g)-H.

It is readily verified that f is well-defined an bijective, so we may use it to transfer
the fiber bundle structure from E to P/H, and we shall henceforth identify these
two spaces.

2.5.5 Theorem. Let (P,7,M,G) be a principal fiber bundle and let H be a closed
(non-open) subgroup of G. Then the following are equivalent:

(i) P is reducible to H.

(i) The associated fiber bundle (E,wg, M,G/H) possesses a smooth global section.

Proof. (ii)=(i) Let s e I'(E), then by Theorem 2.3.4 there exists a corresponding
5€C™(P,G/H)C. Now set

Q={peP|5(p)=eH}.

We first show that @ is a regular submanifold of P. Let u: P - FE=P/H, p:p~

[p](eH) = [p,eH] =p- H. Then p is smooth, and g (u(p)) = 7g([p,eH]) = m7p(p),
so u is a submersion. By Theorem 2.3.4 we have

Q={peP|[p]" os(n(p)) =eH} ={peP|s(n(p)) =)}
Therefore, Q = u~*(s(M)): one direction is immediate from the above. For the

other, let u(p) = s(z). Then wp(p) = g o u(p) = 7g(s(x)) = x, and again by the
above we have p € Q.
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Since s(M) is a regular submanifold of E (it is locally a graph) and p is a submer-
sion, it follows that @ is a regular submanifold as well (using a local trivialization
of s(M), locally s(M) = v~1(0) for some submersion v, so Q = (vou)~'(0) locally).
Next we claim that @, together with 7g := 7p|g, is a principal H-bundle. First, by
(2.3.9),

5(ph)=h"'s(p)=h'eH =eH VYheH,

showing that ph € @ if p € Q, so H acts on @ on the right. Now let ¢, € Q n P,.
Then there is a unique g € G with ¢ = ¢ - g, and again by (2.3.9)

5(q)=eH =5(4g) =9 '5(§) =g 'eH =g "'H,

so g € H, implying that H acts fiber preserving and simply transitive on Q.

Let {(U;, $:) }ier be a covering of P by local sections (corresponding via Theorem
2.2.5 to a bundle atlas of P). By Theorem 1.1.3 there exist local sections o; : W; - G
in G/H, and by continuity we can arrange that 50s;(U;) € W;. Then g; := g;050s; :
U; - G is smooth and we consider the section §; : U; - P defined by

5;=s;(x) - gi(x).
Since o; is a section in G/H, g;(z)- H = 50 s;(x), which together with (2.3.9) gives
5(3:(2)) = gi(2) ™ -5(si(2)) = gi(2) ™ - gi(w) - H = eH.

We conclude that §; : U; — @Q is a smooth local section. It now follows from Theorem
2.2.5 that (Q,7g, M, H) is a principal fiber bundle. Together with the inclusion
maps Q = P and H - G it is a reduction of P since all operations on ) were
defined by restriction of those on P.

(1)=(ii): Let (Q,mg,M,H) be a principal fiber bundle and f : @ - P an H-
reduction of P. Then by Remark 2.5.3, f : @ — P is an embedding. The closed
subgroup H acts on the left on G, inducing a fiber bundle structure on @ xgyg G
by Theorem 2.3.1. G acts on the right on Q xy G by [q,9] G = [q,9- §], which is
readily seen to be well-defined. It is also smooth: Using a bundle chart ¢y as in
(2.3.2), vu([g,9]) = (7(q),pu(q) - g), so in terms of this chart the action is given
by ((I,g),g) g (mvg'§)~

It is immediate that the action is fiber preserving and simply transitive on the fibers.
Finally, the bundle charts ¢y from above satisfy (i)—(iii) from Definition 2.2.1, so
Q@ xg G is a G-principal fiber bundle. Now let

F:QxyG->P
[9,9] ~ f(a) -9
Again it easily follows that F' is well-defined. It is surjective, since given p € P we

may pick any g € Q with w(p) = 7(¢). Then there is a unique g € G with p = f(q)-g,

so p = F([q,9]).- To see injectivity, suppose that f(q1)g1 = f(g2)g2. Since @ is a
principal fiber bundle, there is a unique h € H with ¢ = g2h, so f(q1) = f(g2) - h,
implying that h = gog7!. Since f is injective (by Remark 2.5.3), f(q1) = f(q2)h =
f(g2h) implies q; = goh, so altogether [q1,91] = [¢2,92]. Smoothness of F' follows
since, using (2.3.3),

Foyyt = (2,9) = F([65' (,€),9]) = (o5 (2,€)) - g.

Indeed F' is a diffeomorphism: we already know it is bijective, so it suffices to
show that its Jacobian is invertible everywhere. So let ¢y : Py — U x G, ¢y (p) =
(7(p),pu(p)) be a bundle chart for P. Then

v o F oy (w,9) = (2,00 (f(5 (2,€))) - 9) = (&, Laga)(9)):
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with a(z) := pu (f(¢7* (x,€))). Consequently,

~ _ I 0
T(x,g)((onFowUl) = (* TgL ( ))7

which, as desired, is bijective. Indeed F' is even an isomorphism of principal fiber
bundles, since

mpoF([g,9]) =7p(f(a)9) =7p(f(2)) = 7q(q) = 7([a,9]),
F(lg,9]-9) = F(lg,9-9]) = f(¢)-9-9=F([a,9]) - §-
Identifying P with Q xg G via F, the desired section §: P - G/H can now be
defined by
5:P2QxyG—->GJH
[a,9]~ 97" H,

which is clearly well-defined. Then 5 o 97! (,g) = 5([¢7' (z,¢),9]) = g7 H, so 5 is
smooth. Finally,

5(la,9]-9) =5(la,9-91) =9~ H = §7'5([g,9])
shows that 5 € C=(P,G/H)®, concluding the proof via Theorem 2.3.4. O

We now want to use this criterion to show that any principal fiber bundle with non-
compact structure group possesses a reduction to a compact group. To achieve this,
we will make use of a result from the structure theory of Lie groups: A compact
subgroup K of a Lie group G is called mazimally compact if there does not exist
another compact subgroup strictly containing K. Then the following holds (see e.g.
[5] for a proof):

2.5.6 Theorem.

(i) Any connected Lie group G contains a mazimally compact subgroup K. For
any other compact subgroup K of G there exists some g € G with ¢Kg™' c K.

(i) Let K be a mazimally compact subgroup of a connected Lie group G. Then
there exists a submanifold N of G that is diffeomorphic to some R" such that
the map

NxK->G
(n,k)»n-k

is a diffeomorphism. Then the map f: N - G/K, n— n-K is a diffeomor-
phism, so G/K 2 R".

Using this result we can now show:

2.5.7 Theorem. Let G be a connected, non-compact Lie group and let (P, m,M,G)
be a principal fiber bundle. Then P can be reduced to any mazimally compact
subgroup K of G.

Proof. Let K be a maximally compact subgroup of G. Then by Theorem 2.5.6,
the homogeneous space G/K is diffeomorphic to R". By Theorem 2.5.5 it suffices to
show the existence of a global section in the associated fiber bundle F = Pxs G/K.
This follows directly from Theorem 2.1.9. O

Next we determine how associated vector bundles react to reduction of the structure
group.
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2.5.8 Theorem. Let A: H - G be a Lie group homomorphism and let p : G —
GL(V) be a representation of G. Also, let (P,m,M,G) be a principal fiber bundle
and let (Q, f) be a A-reduction of P. Then the associated vector bundles P x g, )V
and Q x(g,p0) V' are isomorphic.

Proof. The map

V:QxapnyV—>PxapnV
[g,v] = [f(q),v]

is well-defined because

U([gh, po A(h™")]) = [£(@)A(R), p(A(h) " )v] = [f(q),v].

Moreover, it is fiber linear and fiber preserving. Suppose that ¥([g,v]) = ¥([g,?]),
where ¢,G € Q, and v, € V. Then there exists a unique h € H with § =g - h, so
F(Q) = f(@)A(h) and therefore

[£(@),v] = [F(@A(h), p(A(R) ™ )w] = [£(@), p(A(R) 0] = [£(d), 7]

Thus @ = p(A(h™1))v, implying [g,v] = [gh, p(A\(R71))v] = [§,7], so ¥ is injective.
Now let [p,v] € P x(g,,) V with p € P, and pick any ¢ € Q.. Then there exists a
unique g € G with f(q) =p-g. Consequently,

(g pg~")]) = [f(0), p(g "] = [p,v],

showing surjectivity of W. Finally, to show that ¥ is a diffeomorphism we proceed
analogously to the proof of Theorem 2.5.5. With ¢y and ¥y bundle charts for
PxGp V and Q x(g,,0) V as in (2.3.2), we obtain using (2.3.3):

du o Woiy! (2,0) =y o U([¢y! (w,€),0]) = du([f (67 (z,€)),v])
= (2,00 (f(¢7 (z,€))) -v) = (2,a(z) -v)
(where a(x) € GL(V)), which shows smoothness of ¥. Moreover,

T(;c,v)("/;U oW Od)l_]l) = (I 0 )7

+  a(x)
which is bijective. This shows that ¥ is a local, hence (being bijective) a global
diffeomorphism and thereby a vector bundle isomorphism. |

We now turn to the operation that is inverse to the reduction of principal fiber
bundles, the extension of principal fiber bundles. Let A : H — G be a Lie group
homomorphism. Then A defines an action of H on G by

HxG -G
(h,g) = h-g=Xh)-g.

This action allows us to associate to any H-principal fiber bundle (Q,7g, M, H) a
fiber bundle P=Q xg G.

(2.5.2)

2.5.9 Definition. The fiber bundle P = Q xg G is called the A-extension of Q.

2.5.10 Theorem. Let A: H - G be a Lie group homomorphism and (Q,mq, M, H)
a principal fiber bundle.

(i) The A-extension P =Q xg G of Q is a G-principal bundle over M.
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(i) Let f:Q — P =Q xg G be the map f(q) :=[q,€e], with e the unit element in
G. Then (Q, f) is a A-reduction of P.

(i4i) Let P be a G-principal fiber bundle over M and let (Q, f) be a A-reduction of
P. Then P is isomorphic to the \-extension of Q.

Proof. (i) We define the action of G on P by
p:(Q@xg G)xGrQxy G
([g:al, 9) = g, ag]-

It is easy to check that p is well-defined and fiber preserving. It is also simply
transitive on the fibers: if [¢,a1],[q,a2] € #}(x) (note that we can always arrange
to have the same first component), then g := aj'as is the unique element of G' with

[q7a1] g = [qaa2:|-
Let ¢y : Qu — U x H be an H-equivariant bundle chart for @ with ¢y(q) =
(7(q),v(q)). Then by Theorem 2.3.1 the map

Yy Py ->UxG
Yu(le,9]) = (7(9),pu(q) - 9)

is a fiber bundle chart for P that satisfies (a) and (b) from Definition 2.2.1 (ii) due
to Theorem 2.3.1. Also (c¢) holds because

Yu(lga]-9) = ¢u(la,ag)) = (7(@), pu(q) -a-9) = Yu([g; a]) - 9.
To show smoothness of p we calculate, using (2.3.3):
Yu o po (Yu x idG)il((xﬂl)vg) =Yyo M([¢Ell(xae)va]vg) = wU([qs&l(mve)»a -9])
= (z,9u(ey (z,¢))-a-g) = (z,e-a-g) = (z,ag).

Consequently, P is indeed a G-principal bundle over M.
(i) f is obviously fiber preserving, and we have

f(qh) = [gh.e] = [q,\(R)e] = [g, e] - A(h) = f(q)A(R).
It is smooth because
Yu o f(q) =vu(lge]) = (m(q), pu(q) -e).
(iii) Consider the map

U:QxgG->P
[9,9] = f(9)g.

Again it is easy to see that ¥ is well-defined. It is fiber preserving since

mpo¥([q,9]) =mp(f(q)-g) =mpo f(q) =7q(q) =7([q,9]).

Smoothness follows since

v 01/)51(907@) = \Il([(ﬁi]l(xae)va]) = f(d)&l(l',e)) " a.

Also, it commutes with the action of G:

U([g,9]-91) =¥([g,991]) = f(@)g91 = ¥([q,9]) - g1-
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Let ¢y : 75 (U) - U x G be a G-equivariant bundle chart for P, ¢y (p) = (7p(p),
pu(p)) and let s : U — @ be a local section in Q. Then fos:U — P is a local
section in P and we define a map

g:Pu—~G, p=[f(s(x(p)))-9(p)

In terms of the bundle chart QNSU this means

du(fosom(p)-g(p)) = (r(p), pu(fosom(p))-g(p)) 2 du(p) = (m(p), gu(p)),

so g(p) = pu(fosom(p)) tgu(p), showing smoothness of g.
Next we note that U is injective: Let f(q1)g1 = f(g2)g2, then

mQ(q1) =7p(f(q1)g91) = mp(f(g2)92) = 7q(q2),

80 q1 - h = g2 for some h € H. Thus

f(a1)g1 = f(g2)92 = f(a1h)g2 = f(q1)A(h)ga = g1 = A(h) g2
= [q1,91] = [q1, A(R)g2] = [q1 P, g2] = [42, 92]-

Then since U ([s(7(p)),g9(p)]) = f(s(w(p))) - g(p) = p on P|y it follows that U is
also surjective, hence bijective, and locally we have

U =pe [s(n(p)), 9(p)].

Since
Yu o U (p) = Yu([s(m(p)), 9(p)]) = (7(p), pu (s(m(p))) - 9(p))

is smooth, so is U™, establishing that ¥ is a diffeomorphism and thereby an iso-
morphism of principal fiber bundles. O

As an application we prove a criterion for the existence of pseudo-Riemannian met-
rics. While any manifold can be endowed with a Riemannian metric, the same need
no longer be true in the pseudo-Riemannian setting.

2.5.11 Theorem. Let M be a manifold of dimension n and let k,l € Ny such that
k+1=n. Then the following are equivalent:

(i) There exists a pseudo-Riemannian metric of signature (k,1) on M.

(i) There exist real vector bundles £,m of rank k resp. | over M such that TM =
Edn.

Proof. (ii)=(i): Choose any Riemannian metric 7 on M and set

9lexe = =Tlexes Glpxn = Tlyxns Glexn =0

to obtain a pseudo-Riemannian metric of signature (k,l) on M.

(i)=(ii): Let g be a pseudo-Riemannian metric of signature (k,1) on M and consider
the bundle O(M, g) of g-orthonormal frames on M. Then the structure group of
O(M, g) is the pseudo-orthogonal group O(k, 1), which is not compact (cf. Example
2.2.13).

We now consider the product O(k) x O(1) of the corresponding orthogonal groups
as a subgroup of O(k,1):

O(k) x O(1) 5 (A, B) = (6‘ g) e O(k,1).
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Then O(k) x O(1) is a maximally compact subgroup of O(k,!), so by Theorem 2.5.7
we can reduce the O(k,!)-principal fiber bundle O(M,g) to the compact group
O(k) xO(l). Let (Q, f) be such a reduction. Then by Example 2.4.6, the Remark
following Definition 2.5.1, and Theorem 2.5.8 we obtain

TM = GL(M) xgrinp) R" 2 O(M, g) %o R" = Q xomyxoq) (R* @ R') (2.5.3)
= (Q xom R¥) @ (Q xoy R') = £ @1,

O
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Chapter 3

Connections in principal
fiber bundles

Having set the stage in the previous chapters, we now turn to the topic of geometric
analysis on principal fiber bundles and associated bundles. The central notion on
which everything else (e.g., curvature, parallel transport, holonomy) is grounded is
that of a connection.

3.1 Basic notions

Recall from [9, Sec. 17] that a (geometric) distribution £ (€ in [9]) on a manifold
N is a map
E:Nszxw—E, cT,N

that assigns to any x € N an r-dimensional subspace E, in a smooth way. The
latter means that any € N has a neighborhood U on which there are smooth
vector fields X1,..., X, that span &, i.e.,

E, =span(X1(y),..., X, (y))  VyeU.

Let (P, 7, M,G) be a principal fiber bundle. Henceforth we shall always denote the
right action of G on P by R,:

PxG-P

(u,9) = Rg(u) =u-g.
On P there always exists a canonical geometric distribution given by the tangent
spaces of the fibers of P. Indeed, since 7 is a submersion, any fiber P, = 771 (z) is
a regular submanifold, which thereby is an integral manifold for this distribution.
We denote the tangent space to P, in the point u € P, by

Tv,P:=T,(P,) cT,P.
Tv, P is called the vertical tangent space in wu.
3.1.1 Theorem. (Properties of the vertical tangent space)

(i) Tv, P =ker Ty,.
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(i) The map
B,:g3X > X(u):= %L)(wexp(tX)) eTv,P,

assigning to each element of the Lie algebra the value at u of the fundamental
vector field generated by it, is a linear isomorphism. Therefore,

Tv,P={X(u)| X ¢g}.
(iii) For any X € g, the flow of X is given by Rexpix):
FltX(u) =Uu- eXp(tX) = Rexp(tX)(u)'

Proof. (i) follows from the fact that 7 is a submersion, cf. [7, 3.3.23,3.3.25].
(iii) This was shown in the proof of Theorem 1.1.7.

(ii) By Theorem 1.2.2 the map X ~ X (u) is linear. It takes values in Tv, P since
7(u-exp(tX)) = mw(u), so T,w(X(u)) =0. By (i) we have

dim Tv, P = dim P — dimim(7,7) = dim P — dim M = dim G = dim g.

It therefore suffices to show that X ~ X (u) is injective. So let X(u) = 0. Then
the integral curve of X through u is constant, i.e. (by (iii)), u = u - exp(tX) for all
t € R. Thus since G acts simply transitively on the fibers, exp(tX) = e for all ¢.
Choosing ¢ so small that ¢tX lies in a neighborhood where exp is injective it follows
that X =0. m|

Point (ii) of Theorem 3.1.1 shows that for any basis (X1,...,X;) of g, the corre-
sponding fundamental vector fields (X1, ..., X,) span the distribution

Tv:P>u~Tv,PcT,P,

which is therefore smooth. Moreover, this distribution is right invariant, i.e.,
TyRy(Tv,P) = Tvy4P. Indeed, for w € ker T,

Tygm(TyRy(w)) = Ty (mo Ry) (w) = Tym(w) =0

so the claim follows from Theorem 3.1.1 (i), equality of the dimensions, and the fact
that

TuRy : Tv, P — T,y P (3.1.1)

is linear and injective (hence a linear isomorphism).

Any subspace of T, P that is complementary to T'v, P is called a horizontal tangent
space to P in u. A connection on a principal fiber bundle (P, 7w, M, G) is a smooth
selection of horizontal tangent spaces that is compatible with the action of G in the
following sense:

3.1.2 Definition. A connection on a principal fiber bundle (P,7, M,G) is a geo-
metric distribution of horizontal tangent spaces

Th:P>uw~-Th,PcT,P
that is Tight invariant, i.e.,
TyRg(ThyP) =Thy.qP. (3.1.2)
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Then ThP = Jyep ThyP € TP is called the horizontal tangent bundle, and the
projections pr, : TP - TvP, pr, : TP - ThP are smooth, as maps TP - TP: In
terms of local bases (X1,...,Xn), (Xn+1,- .-, Xn+m) of the distributions Th, Tv we

have
n+m

pry: Z a; X; iaiXZ—,

i=1 i=1
which when expressed in local charts is obviously smooth (and analogously for pr,,).

By Theorem 3.1.1 (i)
Tym: Thy P~ Ty(yM (3.1.3)

is a linear isomorphism. Given X, € T,,P and g € G, we have X, = prj,(X,) +
pr,(Xy), and T, Ry (X,) = pry(TuRy(Xy)) + pr,(TuRy(Xy)). On the other hand,

TuRy(Xy) =Ty Ry(pr,(Xu)) + TuRy(pr,(Xy)) € ThyyP & Tv,g P
by (3.1.2) and (3.1.1). We conclude that
pry o TRy =TRyopr,,  pryoTR,=TR,opr,. (3.1.4)
Note also that for any X, Tw(X) = Tn(pr, (X)) + Tn(pr, (X)) = Trw(pr, (X)), i.e.,
Tropr,=0, Tmopr,=Tn. (3.1.5)

Next we want to examine alternative ways of introducing connections on principal
fiber bundles. In what follows we will make use of vector valued k-forms, referring
to [9, Sec. 10] for definitions and basic properties.

3.1.3 Definition. A connection form (or connection 1-form) on a principal fiber
bundle (P, 7, M,G) is a 1-form A e Q(P,g) that satisfies

(i) R5A=Ad(g") o A for all g€ G, and
(ii) A(X) =X for all X €g.
The set of all connection forms on P is denoted by C(P).

3.1.4 Theorem. Connections and connection forms on a principal fiber bundle
(P,m,M,Q) are in bijective correspondence:

(i) If Th: P>uw Thy,P is a connection on P, then
A (X () @Yy) =X VueP, Xeg, Y, e Th,P
defines a connection form on P.
(i) If Ae QY(P,g) is a connection form on P, then
Th:P>uw ThyP :=kerA,

defines a connection on P.

Proof. (i) To demonstrate that A is smooth we have to show that for any Z € X(P)
we have A(Z) e C*(P,g). We can write Z = Z,® Z,, with Z, = prj,oZ, Z, = pr, 0 Z.
Let ®, : g - Tv, P, X = X (u) be the linear isomorphism from Theorem 3.1.1 (ii).
Then A(Z)(u) = ®,'(Z,(u)). Let (X1,...,X,) be a basis of g. Then there exist
fi,--., fr €C®(P) such that Z, =uw~ Y7, fi(u)X;(u). Consequently,

A(Z)(u) = 07 Zl fw) X)) = Zl (W)X,
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is smooth.

By Theorem 1.2.2 we have
TRyo0XoR,1=(Ry).X = (Ad(g ") X)",

s0 TRy (X (u)) = (Ad(g7")X)~(ug). If Y}, € Th, P, then by (3.1.2) we have TR, (Y3,) €
Thy.gP. Consequently,
(RyA)u(X (u) +Y3) = Aug(TRy(X (u)) + TR,Y,)

= Aug((Ad(g7)X)" (ug) + TRyYy)

= Ad(g)X = Ad(g1) 0 Ay (X (u) + Y3).
Thus R} A=Ad(g7") 0 A.
(ii) We have to show that u — kerA, is a smooth horizontal and right invariant
distribution on P.
To see smoothness, let (W, (x!,...,2™)) be a chart for P around u € P and let
(X1,...,X,) be abasis of g. Let Y e T, P, Y = ¥,£"0,i|,. Since A is smooth,
A(0yi) = ¥ Aij Xj, with A;; smooth on W. Now Y € ker(A,) if and only if

ZElA”(U):O jzl,...,T’.

The solutions of this system of linear equations depend smoothly on u, so we obtain
a smooth local basis for kerA.

Let Y € T,, P be an element of kerA,. Then
Aug(TRyY) = (R A)u(Y) = Ad(g71)(Au(Y)) =0,

which shows that T, Rg(kerA,) ¢ kerA,,. Since T, R, is a linear isomorphism
and the above also shows TyR,-1(kerA, ) ¢ kerA,, we have equality, and right
invariance of Th follows.

Finally, we show that kerA, is horizontal. Let Y € kerA, nTv, P. Then Y = X (u)
for some X € g. Therefore, 0= A4,(Y) =X, s0Y =X =0, and ker4, is transversal
to Tv, P. Since A, is surjective by Definition 3.1.3 (ii),

dimkerA, =dimT,P -dimg=dimT, P - dimTv, P,

implying that T, P = kerA, & Tv, P. O

To give a local characterization of connections we use local 1-forms on the base
manifold.

3.1.5 Definition. Let A € Q'(P,g) be a connection form on the principal fiber
bundle (P,m,M,G) and let s :U € M — P be a local section in P. Then the 1-form

A%:=AoTseQ (Uyg), ToM>Xwr A%(X):=Ay(Tus(X))eg (3.1.6)

is called the local connection form induced by s.
If (Uyp = (2',...,2™)) is a local chart of M, then let A, = A*(9,) (u=1,...,n).
If, in addition, e, (a=1,...,r) is a basis of g, we can expand

A, = Z;Azea, A® = Zl(AS)aea

Then the real valued fields Aj, € C*(U,R), as well as the corresponding (A*)* €
QY(U,R) are called (local) gauge boson fields.
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Now let s; : Uy —» P and s; : U; = P be local sections with U; nU; # @. Then for
each x € U; nU; there is a unique g;;(x) € G such that

si(2) = () - gij (). (3.1.7)

Using the inverse bundle chart 1, induced by s; from (2.2.2), we have g;;(x) =
pry o w;jl(si(x)), S0 gi; is smooth.

Denote by ug € Q'(G,g) the Maurer—Cartan form of G (cf. [9, Sec. 10]),
pa(Yy) =TLy1(Yy), YyeT,G
and let p;j == gj;pc € QY (U; nU;, g) be its pullback under g;; to U; nU;:
pij (X) = TLyr 0y (T9i5(X)), X € T (UinUj).
Then we have:

3.1.6 Theorem. (Local characterization of connection forms)

(i) Let A e QY (P,g) be a connection form in the principal fiber bundle P and let
(s4,Us), (s5,U;) be local sections in P with U; nU; # @. Then

A% = Ad(g5)) 0 AV + .
(i) Conversely, if {(s;,U;)}ier is a covering of M by local sections and if {A; €
QY (Ui, 9) Yier is a family of local 1-forms such that, whenever U;nU; # @,
Ai:Ad(gi_jl)OAj + ;5 on UiﬂUj7 (318)

then there is a unique connection form A € QY(P,g) on P with A% = A; for
eachiel.

Proof. (i) Let z € U;nU;, X € T, M and « a smooth curve in M with v(0) =z and
~'(0) = X. Then by Lemma 1.2.3 and (3.1.7) we have
d d
Lesi(X) = 0] (i) = 2| (551() - 5 (1 (0))
=TRy, ()(Ts;(X)) + (145 (X))" (si(x)).
Therefore, using Definition 3.1.3,
A*(X) = A(Tesi(X)) = A(TRy,, (o) (T's5(X))) + pa (X)
= As; (2)g1; () (TR, () (T'55(X))) + i (X) = R, () A(T's5(X)) + i (X)
= Ad(gij () ") (A(Ts5(X))) + pig(X) = Ad(gij () ) A% (X) + iy (X).

(3.1.9)

(ii) We begin by showing that A; is a connection form on the trivial subbundle Py,.
Let x € U; and set u := s;(x) € P. Then

T,P = Tv,P & Tys;(T,Uy). (3.1.10)

To see this, note first that since s; is a section, T'7w o T's; = id, which implies that
ker(T,(z)m) nim(T,s;) = {0}. Also, dimP = dimTv, P + dim M = dimTv, P +
dim T, s;(T,U;), giving the claim.

Now we define a smooth g-valued 1-form A on Py, by prescribing its action on any
Z € X(P|y,). Recall from the proof of Theorem 3.1.4 (i) that u = ®,' o pr, is a
smooth 1-form. Taking into account (2.2.2) it then follows that

A(Z)(Sz(x) 'g) = Ad(g_l) o [(I);il(a:)oprv(TRg‘l (Zsz(m)g))

(3.1.11)
+ Ai(Tﬂ-(prh(TRg‘l (Zsl(x)g)))]
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defines an element of Q! (P|y,,g). Note that in this equation, we currently are given
pr, and prj, only on s;(U;), due to the direct sum decomposition (3.1.10). Globally
defined pr,,, pr, would precisely amount to having a connection, which we are in
the process of constructing.

In particular inserting g = e, u = s;(z) (and recalling that T is a left inverse of
T's;) this implies

A (Y () @ Tys:(X)) =Y + A(X), Yeg, XeT,U. (3.1.12)

In particular, A% = A;. Moreover, directly from (3.1.11) we read off the following
relation between the values of A at u =s;(x) and at u-g = s;(x) - g:

Aug=Ad(g7") 0 Ay(TugRy1(.)). (3.1.13)
Then for any Y € g, by Theorem 1.2.2 (iii) we have:

Aug(Y (ug)) = Ad(g™") (Au(Tug Ry (Y (Rgu))) = Ad(g7") Au((Ad(9)Y )" ()

= Ad(¢HAd(g)Y =Y.
i) (g7")Ad(9)

Moreover, for any Z € T,,, P, we get, using (3.1.13):
(REA)ug(Z) = Auga(TRo(Z)) = Ad(a™")Ad(g7" ) Au(TRy-1 1 (TR, (2)))
=Ad(a™ M)A (Z).

This means that both conditions from Definition 3.1.3 are satisfied, showing that A
is a connection form on Py,.

To conclude the proof it remains to show that the connection forms A and A induced
in this way by (A4;,s:), (Aj,s;) coincide on the bundle Py,~y,. Again looking at
(3.1.12) and (3.1.13) we see that they coincide on the vertical tangent spaces and
are uniquely determined by A, () resp. Asj(x). So we are left with showing that
for any x € U; nUj, in u = s;(x) we have

Asin (3.1.7), let s;(x) = s;(z)-gij(x), X € T, M, and let y be a smooth curve in M
with 4/(0) = X. Then by (3.1.9) we have

TsiX) = ] (55(0(0) 015 (1 (1)) = TRy, oy (T3 (X)) sy (X) (s ().
By (3.1.12) and (3.1.13) we conclude that
A(T'5(X)) = A(T Ry, 2y (T'55(X))) + A(p1iy (X) " (s(2)))

= Ad(gij(2) ) A(Ts5(X)) + i (X)
= Ad(gij(2) ™) A5 (X) + i (X) = Ai(X),

where in the last equality we used (3.1.8). ]

3.1.7 Remark. (i) An important special case occurs if G ¢ GL(r,K) is a matrix
group. Then by linearity we have TL,X = gX and Ad(g)X = conj, (X) = gXg?
for all g € G and X € g. Thus (3.1.8) reduces to

Ai=g;j 0 A;(.)ogi;+9:; Tgij- (3.1.14)

(ii) If P is trivial then it possesses a global section. A connection on P is then given
by a 1-form on M with values in g (namely by A® for this global section s).
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Next we look at some important examples of connections on principal fiber bundles.

3.1.8 Example. The canonical flat connection
Consider the trivial principal fiber bundle (P = M x G,pry, M,G) over M. Then

TU(%g)P = T(%g)({x} x Q)= TgG.

Using this identification, the fundamental vector fields on P coincide precisely with
the left invariant vector fields on G:

- d d
V(z,g) = £|0((x,g) cexp(tY)) = £|0(x,g cexp(tY)) =00 T.Ly(Y) = 0@ LY (g).
As horizontal tangent spaces we choose the tangent spaces to M:
Th(Lg)P = T(w’g)(M X {g}) = TIM

The resulting connection on P is called the canonical flat connection. By the above
and Theorem 3.1.4 (i), the corresponding connection form is given by the Maurer—
Cartan form of G:

A Tooy(MxG)=2T,MeT,G—g
X+Y o TyLya (Y) = pa(Y)

3.1.9 Example. Left invariant connections on reductive homogeneous spaces

Let H be a closed (non-open) subgroup of the Lie group G, and let b be its Lie
algebra. The homogeneous space M := G/H (cf. Theorem 1.1.3) is called reductive if
there exists a vector space decomposition g = h@m such that Ad(H)m € m. Now let
G/H be a reductive homogeneous space and let (G, 7, G/H, H) be the homogeneous
H-principal fiber bundle over G/H (see Example 2.2.11). Then for the fundamental
vector field X € X(G) generated by any vector X € b =T, H we have

() = 2| (g 0(tX)) = T.L,(X) = 1% (9),

so X is precisely the left invariant vector field generated by X. Thus the vertical
tangent space in g € G is TvyG = T.Ly(h) € T,G. Now T,G =T.Ly(h) & T Ly(m),
so the left invariant distribution

Th:G>3gw~ ThyG:=T.Ly(m)<cT,G

defines a connection on (G, 7, G/H, H): Smoothness is clear, so it remains to show
right invariance. For a € H we get, recalling that g =h & m,

TR.(ThyG)=TR,(TLym)=TL,TR,(m)=TL,TL,Ad(a"")m
CTL,TLom=TLyom=Th,,G,

and since the dimensions agree we in fact have equality. To calculate the corre-
sponding connection form, by Theorem 3.1.4 we have to secure

A X(g)@Yn)=X VgeG Xebh, V), eTh,G.
In the current situation, X(g) = TLy(X) and pg = Xy = TLy1(X,), s
pry (e (X (9) ®Yn)) = pry (X @ TLy1 (Y3)) = X
because T'Ly-1(Y},) € m. Consequently, A = pry o ug € QYG,h).
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3.1.10 Example. Connections on the frame bundle

Let M be a smooth manifold of dimension n and let GL(M) be the frame bundle
over M (cf. Example 2.2.12). We are going to show that the set of covariant deriva-
tives on T'M is in bijective correspondence to the set of connections on GL(M).

First, let A € Q'(GL(M), gl(n,R)) be a connection form on GL(M). Denote by
(Bij) the n x n matrix that has a 1 in the i-th row and j-th column and zeros
otherwise. Then in terms of the basis (B;;)i j=1,....n of gl(n,R) we can write

A= Z wijBij, (3115)
inj=1
where w;; € Q' (GL(M),R). Now given a local section s = (s1,...,5,) : U -~ GL(M)
in the frame bundle, we define the covariant derivative corresponding to A by
n
Vxsg =y wie(Ts(X))si, XeX(U), k=1,...,n, (3.1.16)
i=1

and by extending it linearly so as to satisfy the product rule
Vx(fsg):=X(f)sk+ fVxsk VfeC™(U). (3.1.17)

To see that Vx is well-defined, let § = (§1,...,8,) be another local section, also
defined on U. Then by (3.1.7) there exists some smooth C : U — GL(n,R) with
5(x) = s(z) - C(x), which explicitly means (cf. (2.2.7))

Si(x) = Zk: Sk () Cri ().

According to (3.1.14) we have
AoT3(X)=C"(A(Ts(X)))-C+C™*-TC(X),
$0

wir(T3(X)) = Y (C™M)ijwii(Ts(X))Cur + D(C™) i (TC) 1 (X) (3.1.18)

gl J

Let Vx be defined as above, but with § instead of s. Then we have to verify that
Vx5S = Vx5, Now

@ng = szk(Tg(X))gz = Z (Cil)ijUle(TS(X))Clkgi + Z(Cil)”(TC)Jk(X)gz
i i,5,k %]
> Coi(C™)ijwi(Ts(X))Cixsr + 3. Cri(C™H)i(TC) ji(X)s,
Wb TS,
2= TJ i=0rj

Zle(TS(X))Clij + Z(TC)jk(X)Sj,
Jil J

and, on the other hand,

Vx (k) = VX( Zslclk) =Y X(Ci)si+ Y. CuVxsi
7 7 7

= Z(Tc)lk(X)Sl + Zle(TS(X))Clij,
7 ;

l,j

giving the claim.
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Conversely, let V be a covariant derivative on TM and let s = (s1,...,8,) : U -
GL(M) be a local section in the frame bundle. Then for certain wj; € Q*(U) we
can write

Vs; = Zwﬁ ®s;.
j=1
Now define A, € Q' (U, gl(n,R)) by
As = Z wijBij.
Q=1

To show that this family of local 1-forms (as s runs through the local sections of
GL(M)) defines a connection form on GL(M), by Theorem 3.1.1 we have to verify
the transformation rule (3.1.14). Thus let § be another section, and let

Vs; =

s

n
(:in ® §j, Az = Z ‘L'ijBij-
1 irj=1

J

Note that for any covariant derivative we have Vy (fX) = Y(f)X + fVy X, so
V(fX)=df ® X + fvX. Using this, with C' as above we calculate:

V5 = V( ZSkai) =Y [dCi ® si, + CiiVsi] = Y [dcki ® s+ Chi Y wijk ® Sj]
k k J

5
Zk: ( ZCjiwkj + dC;“') ® Sk

J

On the other hand,

V§; = Zd;ﬂ ® ( ;ska]) =
J

ij(:)ji ® Si
J.k

Combining this, we get

Y Cjiwpg + TCli =Y, Cjwji = (Ag - Oy + (TC) i = (C - As) i
J J

In total, A;-C+TC =C-A;, or A; =C'A,C +C~'TC, as claimed.

In the above situation, given a connection form A on GL(M), denote by V# the
corresponding covariant derivative and, conversely, given a covariant derivative V,
let AV be the connection form on GL(M) constructed in the previous example.
Then by construction we have

vA" =V and AV =4, (3.1.19)

so we have proved:

3.1.11 Corollary. The map A~ V2 is a bijection between the set of connection
forms on GL(M) and the set of covariant derivatives on M.

3.1.12 Example. The Levi-Civita connection on a semi-Riemannian manifold

Let (M™,g) be a semi-Riemannian manifold, where g has signature (k,l), with
n =k+1. Then on (M,g) there exists a unique metric and torsion free covariant
derivative

vl D(TM) - T(T*M ® TM),
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the Levi-Civita connection of (M, g) (cf. [13]). We show that VX corresponds to a
unique connection form A*C on the principal fiber bundle (O(M, g),w, M,0(k,1))
of orthonormal frames on M. Let B;; be as in Example 3.1.10 and let F;; be the
n x n matrix

-1, i=1,...,k
Eij :=¢€iBj; - €;Bij, Ei::{ P

1, i=k+1,....k+1.
Then for the Lie algebra o(k,l) of O(k,1) we have
o(k,l) = span{E;; | i< j}.

Let s = (s1,...,8,) : M 2U - O(M, g) be alocal section, so that (si(x),...,s,(z))
is a g -orthonormal basis in (T, M, g,) for each x € U. Then we define an element
of QY (U,0(k,1)) by

A;(X) = Zéié‘jg(vg(csi, Sj)Eij € O(k,l) (3120)

1<J

Again we have to verify that for these forms the transformation rule (3.1.14) holds.
Let § be another local section. Then by (3.1.7) we have §(z) = s(x)C(z), with C
smooth and C'(x) € O(k,!) for each x. Recall that

O(k,1) = {A e GL(n,R) | A'JA = J},

where J = diag(-1,...,-1,1,...,1) (k minuses). Note that J = J~!, and for any
matrix a = (a;;) we have (g;a;;) = J-a. In particular we have C*.JC = J. Also note
that, since V5“(g(si,55)) = 9(Vxsi,55) +g(si, Vxs;) =0,

Ay (X) =Y eigj9(VX si,57)(eiBji - €;Bij)

i<j
= Zgig(v,l;(csja si)Bij - ZEig(V§CSi7Sj)B¢j (3.1.21)
J<t i<j
== Z€i9(V§(CSi, 55)Bij =~ ZEiQ(V)L(CSia 55)Bij,
1% %,J

and analogously A;(X) =-3%,; £,9(V%©5;,5;)B;;. Thus we have
(—As5(X))45 = Eig(vg(c( > spcpi)v > schj)
P q

= ZEig(X(Cpi)spv 84Cq5) + Zsig(vﬁcs},cpi, 84C4;)

b,q b,q
= ZEZ(TC(X))IMC(]] g(sp,sq) +ZEiCpiqug(V§(CSp,Sq)
P,q ———— DY

=epdpq=Jpq

= Z(JTC(X)t)ip(JC)pJ’ + Z(Jct)ip g(v)Lfcsmsq) Coj
p p ~—
=3, Jpr-srg(V§CS,«,sq)

= (J(TC(X)) JC)ij + (JC' T (-As(X))C)y;

Now note that 0 = (T1)(X) = T(C7'C)(X) =TCHX)C+C'TC(X),s0 T(C71)(X) =
~C7TC(X)C™t. Combining this with JCO'J = C~! we obtain J((TC)(X))!JC =
T(CY)X)C=-C'TC(X)C™C = -C™'TC(X). Altogether,

As(X)=C ' A(X)C +CHTC)(X),

as desired. Thus the family A, defines a connection form A“® on the bundle of
orthonormal frames.
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Conversely, let A € Q'(O(M,g),0(k,1)) be a connection form, A = ¥, ;w;;Bij (cf.
(3.1.15)), with w;; € Q1 (O(M, g),R) and such that (w;;); ; € o(k,1), i.e., J-A+ A" J =
0. Then by Example 3.1.10 A defines a covariant derivative V on M. We claim that
V is metric, i.e.,

V2(X,Y) = (VzX,Y) +(X,V,Y) (3.1.22)

for all X,Y,Z € X(M). By expanding the involved vector fields in a local orthonor-
mal frame s = (s1,...,s,) it readily follows that to prove (3.1.22) it suffices to show
that for all k,1 we have (Vx sk, s1) = —(si, Vxsi) for any X. Using (3.1.16) we have
Vxsk =2 wik(Ts(X))s;, so indeed

(Vixsi,s1) = 2 win(Ts(X) (85, 80) = crn(Ts(X)) = (- As (X)) = = (A(X) - i
=£;041

== > w(Ts(X))erbri = —erwi(Ts(X)) =+ = ~(sk, Vx 1)

Note also that this calculation gives

Ay(X) =Y wij(Ts(X))Bij = = 3, ei{Vxsi, s5)Bij,

i,J ,J

consistent with (3.1.21) and thereby with (3.1.20).

Analogously to Corollary 3.1.11 and with the analogous notation we have thereby
shown (note that we did not use the fact that the Levi-Civita connection is torsion
free in Example 3.1.12, so what we did applies in fact to any metric connection):

3.1.13 Corollary. The map A — V* is a bijection between the set of connec-
tion forms on O(M,g) and the set of metric covariant derivatives on M, and the
analogue of (3.1.19) holds:

A

\V V:V and AVA:A.

To conclude this section we show that any principal fiber bundle possesses a con-
nection:

3.1.14 Theorem. On any principal fiber bundle there exists a connection.

Proof. Let (P,m,M,G) be any principal fiber bundle and fix an open covering
U = {Uq}aer of M consisting of trivializing neighborhoods for P, Ply, = U, x G.
Let {xo} be a partition of unity subordinate to . Denoting by A, € Q'(Py_,g)

the canonical flat connection on the trivial subbundle Py, (cf. Example 3.1.8) we
define A € Q'(P,g) by

A=Y (Xa o m)Aq.
Then for any X € g and any p € P we have
A(X(p)) = ;xa(ﬂ(p))Aa(X(p)) = X Xa(m(p)X =X,
Moreover,
(RgA)p(Y) = Apg(TR,Y) = %:Xa(ﬁ(p))Aa(TRg(Y)) = Ad(g7)A(Y),
concluding the proof that A is a connection form on P ]
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3.2 The affine space of connections

Our aim here is to prove that the set of all connections on a principal fiber bundle
forms an infinite dimensional affine space. To do this we need some preparations:

Let E be a vector bundle over a manifold M. A k-form with values in E is a smooth
map
w:M>z e w, e L5 (T,M,E,),

where LY (T, M, E,;) denotes the space of k-linear alternating maps (7, M)* - E,.
Smoothness means that for any Xi,..., Xy € X(U) (U € M open) the local section

s:Usx - wy(X1(x),...,Xk(x)) e E, C Ey

is smooth. Thus an FE-valued k-form is precisely a smooth section of the vector
bundle A*T*M ® E. For the space of these forms we write

QF(M,E) =T(A*T*M ® E).

Asin [7, 4.1.19] it follows that Q¥(M, F) can be identified with the C** (M )-module
of C*°(M)-multilinear and skew symmetric maps

w: X(M)F > T(E),

where w(X71,...,X;)(2) = w, (X1(x),..., Xi(2)) € E,.
If V is a finite dimensional vector space then the space of V-valued k-forms is a

special case:
QF (M, V) =T(A*"T*M o V),

where V := M x V is the trivial vector bundle with fiber V.
The wedge product has the following extension to E-valued forms:
AQF (M) x QY(M, E) - QF (M, E)
(o,w) » o Aw,

where, for tq,...,tg € T M,

(a/\w)w(th Ce >tk+l)

1 3.2.1
= > sen(1)ow(tr1ys - trny) - Wa(br(henys - o brhen))- (32.1)
U TeSkq

Analogously to Theorem 2.3.4 we now want to derive a characterization of k-forms
that take values in a vector bundle associated to a principal fiber bundle. Thus
let (P,m,M,G) be a principal fiber bundle, p : G - GL(V') a representation and
E = P x(g,) V the corresponding associated vector bundle. Then from Theorem
2.3.4 we know that

[(E)2C®(P, V)@ = {seC™(P,V)|s(p-g) = plg " )s(p)}.

3.2.1 Definition. A V-valued k-form w e QF(P, V) is called
(1) horizontal if wy(X1,...,Xy) =0 whenever at least one X; € T,P is vertical.
(ii) of type p if Riw=p(a™')ow for allaeG.

The set of all horizontal k-forms of type p is denoted by QF (P, V)(G»).
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3.2.2 Remark. Denote by C(P) the set of all connection forms on P. Then
if Ay, Az € C(P), by Definition 3.1.3 their difference A := A; — Ay satisfies R; A =
Ad(g ')A, hence is of type Ad. In addition, A is horizontal: By Theorem 3.1.1, any
element of Tv, P is of the form X (u) for some X € g. Thus A(X) = A;(X)-As(X) =
X - X =0. Conversely, if A € C(P) and w is a horizontal g-valued 1-form of type
Ad, then also A+ w € C(P). Thus the set C(P) of all connection forms on P is an
affine space over the vector space QL (P, g)"d.

3.2.3 Theorem. With E as above, the vector space Q¥ (M, E) is canonically iso-
morphic to the space QF (P, V)(G»P),

hor
Proof. Let pe P, and as in (2.3.7) let
[p]: V30 [pv] € Ey
be the corresponding fiber diffeomorphism. We define a linear map
o:Qf (P, V)PP » QF(M,E)

as follows: Given @ e QF (P, V)& et w := ®(@) be such that w, € A*(T M)®FE,
is given by

wy(t1, ... tg) = [pl(@p(X1,. .., Xk)) = [P, 0p(X1,. .., Xk)], (3.2.2)

where 7(p) =z, t1,...,t, € T, M and X1,..., Xy € T,P with Tn(X;) =t;.1

To see that w is well-defined suppose first that also Y; are vectors with T (Y;) = ;.
Then T'n(Y; - X;) =0, meaning that Y; — X is vertical. Since @ is horizontal, this
implies @p(...,Y; - Xj,...) = 0. Independence from the choice of p € P, follows
from the fact that w is of type p: Let p = pg and let Y7,...,Y) € T3P be vectors
with Tw(Y;) =t;. Then

(5, @5(Y1, -, Yi)] = [Pg, pg (Y1, Vi) ] = [0, p(9)@0pg (Y1, -, Vi)
= [p, (R;_M:J)pg(yl, . ,Yk)] = [p,@p(TRg—lyl, .. .7TR9—1Yk)]
[p7a]p(X17"'7Xk)]7

where the last step follows from what was shown before since Tn(TR,-1Y;) =
Tr(Y;) = t;.

To see smoothness of w, let s: M 2 U — P be a local section of P and let Z1,..., Z;
be local vector fields on U. Then

(.«J(Zl7 e ,Zk)lU = [S,E)s(.)(TS(Zl), e ,TS(Zk))]

is smooth by (2.3.5). Hence w = ®(w) € QF(M, E).

We claim that the inverse of ® is given by @~ : Q*(M, E) - QF (P, V)G e @,
where
(X1, s Xpp) = [p]  wr(py (T(X1), ..., T(Xk))

= [p] 't w(Xy, ..., X)) e V. (3.2.3)

Smoothness of @ is equivalent to smoothness, for any local smooth vector fields X
on P, of pr (p, (X, ..., X)), hence by (2.3.5) to that of

p= [pv wp(Xla cee 7Xk)] = Wr(p) (TW(Xl)’ o 'aT’/T(Xk))a

INote that for T'(E) = Q°(M, E) this reduces precisely to the map 5 — s from the proof of
Theorem 2.3.4.
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which clearly holds. If X is vertical, then T'7(X;) = 0 and thereby also @, (X1, ..., Xx)
=0, so @ is horizontal. Next, note that generally we have

[pa]™* ([p,v]) = [pa] ™ ([pa, p(a™*)v]) = p(a™ ),
so that
RZ‘D'P(XD cee >Xk) = wpa(TRa(X1)7 s 7TRa(Xk))
= [pa]ilwﬂ'(pa)(T,/T(TRH(Xl))’ CERE T,/T(TRCL(XIC)))
= [pa]flwﬂ(p)(Tﬂ'(Xl), oo T (X))
= [pa] ([ @p(X1, ., Xi)])
= pla ™ ap(X1, ..., Xp),

showing that @ is of type p, hence @ € Q’ﬁor(P, V)(©P) | Finally,

(D((I)il(w))f(tlv s 7tk) = [p](wP(Xlﬂ i ~an)) :er(tla s atk)
N @(@))p(X1,s- .o, Xi) = [p] T ®(@)r(py (T(X1), ..., T(Xk))
= [p] Hpy0p(X1y ooy X)) = 0p( X1, ooy Xi).

]

3.2.4 Remark. The above result allows us to give an alternative description of
C(P). The Lie group G acts on its Lie algebra g via the adjoint representation
Ad : G - GL(g), turning [G,g] into a Lie transformation group. We call the
corresponding associated vector bundle

Ad(P) := P x¢g g.

the adjoint bundle. Then combining Remark 3.2.2 with Theorem 3.2.3 we obtain
that C(P) is an affine space over the vector space Q' (M, Ad(P)).

3.3 Parallel transport in principal fiber bundles

The choice of a connection on a principal fiber bundle allows one to define paral-
lel transport of fibers both in the bundle itself and in associated vector bundles.
Throughout this section, we fix a principal fiber bundle (P, 7, M,G) and a connec-
tion form A on P.

3.3.1 Definition. Let X € X(M). A vector field X* on P is called a horizontal
lift of X if for each p € P we have:

(i) X*(p) e Thy(P), and
(it) Tpm(X*(p)) = X (7(p)).
3.3.2 Theorem.

(i) For any X € X(M) there exists a unique horizontal lift X* € X(P). Moreover,
X* is right invariant.

(i) Conversely, if Z € X(P) is horizontal and right invariant, then there is a
unique vector field X € X(M) with Z = X*.

52



(iii) Let X,Y e X(M), f€C®(M). Then

X*"+Y" =(X+Y)"
(fX)" = (fom)X"
[X, Y] = pr, ([X7,Y7]).

(iv) Let Z € X(P) be horizontal, X € X(M), and let B~(B € g) be a fundamental
vector field on P. Then [B,Z] is horizontal and [B,X*]=0.

Proof. (i) By (3.1.3), Tpm : Thy,P — Ty (,)M is a linear isomorphism. Therefore
our only choice for a horizontal lift is given by

X*(p) = (Trlrar) ™ (X (n(p))). (3.3.1)

and we are left with proving that the resulting vector field is smooth and right
invariant.

To see smoothness, let ¢ : Py — U xG be a bundle chart around 7(p), and denote by
Y the smooth vector field Y := T~} (X @0) on Py. Then T'r(pr,(Y)) =Tn(Y) = X,
ie, X* =pr,Y. Since also pr;, is smooth (see the discussion following (3.1.2)), X*
is as well. By (3.1.2) we have

TRy (X*(p)) € Thy,P.

Also, Tn(TRyX*(p)) = Tw(X*(p)) = X(7w(pg)). Since we saw above that the
horizontal lift is unique, we conclude that TRy (X*(p)) = X*(pg), so X~ is right
invariant.

(ii) Define X by
X(z) =Tym(Z(p));

where p € P, is arbitrary. This is well-defined because
Tygm(Z(pg)) = Tpem (T, Re(Z(p))) = Tpyn(Z(p)) = X (p),

and smooth because we may set p = s(z) for a local section s of P. X* = Z holds
by definition.

(iii) The first two rules are immediate from (3.3.1). Moreover, since X* ~, X, [9,
4.4] and (3.1.5) imply

Tr(pry[ X7, Y7 ]p) = Tr([X7,Y7]p) = [X, Y]xg = Tn([X, Y ],),

so uniqueness of the horizontal lift implies the third equality.
(iv) Using [9, 17.7] and Theorem 3.1.1 (iii), we calculate

[B,2](0) = (L 2)(p) = | (TFIZ(2(FIE ()
= ] (TRespco) (Z(p- exp(tB)))).

Here Z(p-exp(tB)) € Thp.cxp(epy P since Z is horizontal, so by right invariance of
the connection T'Rexp(—t5)(Z(p-exp(tB))) € Thy, P for all t. Consequently, so is the

above limit, i.e., [B, Z] is horizontal. If Z = X*  then Z is right invariant by (i). In
this case, T' Rexp(-t8y(Z(p-exp(tB))) = Z(p) for all t, so [ B, Z](p) = 0. ]

In what follows, by a path we will always mean a piecewise smooth map from some
interval into a manifold.
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3.3.3 Definition. A path v* : I - P is called horizontal lift of a path v:1 - M if

(i) 7(v*(t)) =~v(t) for allt eI, and
(ii) v*(t) is horizontal for each t € 1.

For the proof of the next theorem we need the following auxiliary result:

3.3.4 Lemma. Let G be a Lie group and v:[0,1] > g a continuous (resp. smooth)
curve. Then there exist unique C' (resp. C*) curves g,a: [0,1] - G that solve the
following ODFEs:

§(t) = TLy(v(t)), g(0) =€
a(t) = TRy (v(t)), a(0) =e.

Proof. See the Appendix. O

3.3.5 Theorem. Let y:1— M be a path in M, toel (I compact) and u € P.).
Then there exists a unique horizontal lift vy of v with v (to) = u.

Proof. We may without loss of generality assume that I = [0,1] and ¢, = 0. Since
P is locally trivial, there exists a path § : I > P with 6(0) = v and w0 § = : for
p U xG, ¢(u) = (x9,90) we may simply set 6(t) = ¢~1(v(t),g0). Now cover P by
such trivializing sets and patch ¢ together (which is unproblematic since we are only
seeking a piecewise smooth path). Our task now is to modify J in such a way as to
make it horizontal. To do so we look for a path g : I — G such that ~(t) := §(¢)-g(¢)
becomes horizontal, i.e., such that A(5;(¢)) =0 for all . According to Lemma 1.2.3
we therefore require

0 = A(TRy()d(t) + (TLgey19(£))" (72(1))) = Ad(g(£) ") A(S(£)) + TLg(ry1 9 (2)-
Recalling that Ad(g™') = T'L,-1 o TRy, this is equivalent to
0=TRy() A(S(1)) +4(1).

Now consider the piecewise smooth curve Y (¢) := —A(d(t)) : I — g. By Lemma
3.3.4 there exists a unique path g: I - G with g(0) = e and §(t) = TRy (Y (1)) =
—TRg(t)A(S(t)), so we indeed obtain a horizontal lift v* of ~.

To show uniqueness, suppose that v, is another horizontal lift of v with ~; (0) = u.
Since ;; (t) and 75, (t) lie in the same fiber P, ), there is a unique path t — g(t) in
G such that v (t) =~o(t)-g(t) for all ¢, and g is piecewise smooth since both ~; (¢)
and g (t) are. In particular, g(0) = e. Differentiating and using Lemma 1.2.3 we
obtain

Yu(t) = TRy ¥ (1) + (T'Lg(y-19(£))" (7 (1))
Since both ~;(t) and TRgy)7y (t) are horizontal, while (T'Lgy-19(t)) (v, (t)) is
vertical, the latter must vanish, so in fact ¢(¢) = 0 for all ¢. This implies that
g(t) = g(0) =e for all t and hence that ~; =~2. ]

By using horizontal lifts we can now construct maps between the fibers in a bundle:
3.3.6 Definition. Let v:[a,b] — M be a path in M. The map
A
Py Pyay = Py
u 7, (b)

is called parallel transport in P along v with respect to A.
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Uniqueness of horizontal lifts implies that the lift of a reparametrization of v is
given by the same reparametrization of the lift. Therefore parallel transport is
independent of the chosen parametrization of ~.

Let us briefly recall the standard operations on paths known from homotopy theory.
Given v : [a,b] = M a path from z to y and p: [¢,d] = M a path from y to z, the
concatenation p * v :[0,1] » M is given by

_ (a+2t(b-a)), te[0,1/2]
(hx7)(t) = { Z(ci(?t— D(d-c)) te[l/2,1].

By v~ :[0,1] = M we denote the inverse path v~ (¢) = v(b—t(b-a)).
3.3.7 Theorem.
(i) With v, as above, wa = ’Plf‘ o 7?:;‘,

(ii) Parallel transport P,‘;‘ is a diffeomorphism from P,y = G to Pyyy = G with
inverse (P4)™" = 77;4_.

(iii) P% is G-equivariant: P;' o Ry = Ry o P for all g € G.

Proof. (i) is clear from the uniqueness part of Theorem 3.3.5.
(ii) In any trivializing neighborhood U € M it follows from standard ODE results
that since 6 depends smoothly on u € P,,), so does g, hence 73;4 : Py =~ Py
is smooth when ¥([0,%o]) is contained in U. Together with (i), smoothness of ’P,‘;‘
follows by covering ([0, 1]) by finitely many such neighborhoods. The form of the
inverse is again clear by uniqueness of parallel transport, and also gives a smooth
map.
(iii) We have to show that R,v, is the horizontal lift of v through Rju. Indeed,
T(Rgva(t)) =m(75(1)) = v(t), Rgvy(0) = Ry(u), and
(Rgvu) (1) = TRy(,(8)) € Thayx (t).g-

O
3.3.8 Example. Let (Py =M x G,pr;, M,G) be the trivial principal fiber bundle
over M with the canonical flat connection Th, 4Py = T, M and corresponding
connection form Agy. Then if v is a path emanating from = € M, the horizontal lift

of v through (z,¢) is given by v*(t) = (v(¢),g). Hence parallel transport along v
from z to y is the map

Pl {a} x G- {y} xG
(,9) = (¥,9),

which is in fact independent of the path ~.

In general, however, parallel transport will depend on the path, and in fact the
following result shows that the previous example is the only case in which it doesn’t:

3.3.9 Theorem. Let A be a connection form on (P,7,M,G) and suppose that
parallel transport with respect to A does not depend on the path. Then (P, A) is
isomorphic to the trivial G principal fiber bundle Py with the canonical flat connec-
tion Ay, i.e., there is a principal fiber bundle isomorphism ® : Py — P such that
QA= Ay, i.e., TO(ThFy) = Tha()P.
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Proof. Let us first verify that the requirements on ® are equivalent. We have
X eker(®*A) & A(TP(X)) =0« X € (T®) ! (ker(A)), so (cf. Theorem 3.1.4)

T(I)(Thp()) = Th@()P <~ AO = q)*A

We know from Theorem 2.2.14 that P is trivial if and only if it possesses a global
section. We call a section s : M — P horizontal if T, s(T; M) = Thy(,) P for each
x € M. Based on this notion, we carry out the proof in two steps:

1.) (P, A) is isomorphic to (Py, Ag) <> there exists a global A-horizontal section in
P.

=: Let & : Py = M xG — P be an isomorphism with T®(T(, 4 (M x {g})) =
The(s,q) P for all (z,g). Consider the section

s:M—->P
x— s(x) = D(x,e).

Then s is horizontal because T's(Tp M) = Ty oy ®(T(3,e) (M x {e})) = Thy(y) P

<: Let s: M — P be a global A-horizontal section and let ® be the trivialization
induced by s according to Theorem 2.2.14:

:Ph=MxG->P
(z,9) = s(x) - g = Rg(s(x)).
Then @ is an isomorphism and
T(I’g)q)(T(z’g)(M X {g})) = TRg o TS(TQ;M) = TRg(Ths(w)P) = Ths(x).gp.

2.) Path-Independence of parallel transport implies the existence of a global A-
horizontal section.

Fix a point zp € M as well as some u € P, and define

s(x) =P (u) =7, (1),

where « : [0,1] - M is any path from zy to x. To see that s is smooth, consider
first the case where x varies in a trivializing neighborhood of zy. Then « can be
chosen to depend smoothly on x (e.g. by taking a straight line connnecting x¢ to =
in a chart). Therefore the proof of Theorem 3.3.5 and ODE theory show that also
~i(1) depends smoothly on x. For general x one can find finitely many trivializing
neighborhoods such that s can be written as the composition of the smooth maps
so constructed. Also, s is horizontal because given X € T, M we may pick a smooth
curve 7 : [0,1] = M from xo to = with 4/(1) = X, and calculate:

d d
Ts(X)=— D)) = | (1)) € ThygP.
s(X)= 2| ()= 2| (1)) € Thy)
Since Ts is injective (due to 7os = idps) and dim Thygey P = dim T, M, T,s(T, M) =
Thy(a) P- -

Parallel transport in a principal fiber bundle P induces a notion of parallel transport
also in any fiber bundle associated to P: Let (P,w,M,G) be equipped with a
connection form A, let [F,G] be a Lie transformation group, and denote by F :=
P x¢ F the corresponding associated fiber bundle. Let «: [a,b] = M be a path in
M. Then

EA .
Py Eyga) = Ey)
[p,v] = [P2(p), ]
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is well-defined: By Theorem 3.3.7 (iii), [Pf(pg),g‘lv] = [Pf(p)g,g_lv] = [Pf(p),v].
The map 735"4 is called the parallel transport on E induced by A.

Using the notation from the proof of Theorem 2.3.1, in terms of bundle charts
(U1,%uy,) around ~(a) and (Uz,vy,) around ~(b), and for an arbitrary p € Py ),
we have

E,A

(1(@),0) 23 [ (0) -] 2 [PA). o, (9) - 0]

23 (r(PAD)), 00 (PAD)) - pu, (0) ™ - 0).
=7(b)

So parallel transport is smooth (being expressible in terms of the action of G on F),
indeed a diffeomorphism since its inverse is of the same type, and is even a linear
isomorphism if F is a vector bundle. Furthermore, if v* is any horizontal lift of v
then using the fiber diffeomorphisms from (2.3.7) we have

PP = [y ()] e [v ()] (3.3.3)

Indeed, since Pf(’y*(a)) =77*(b) and any element of E.,) is of the form [v*(a),v]
for some v, we have

[ ®)] o [v* ()] ([ (a),0]) = [V ()] (v) = [v*(b),0] = [P (7" (a)), 0]
=P ([v" (a), ).

3.4 The absolute differential of a connection

Throughout this section let (P, 7, M, G) be a principal fiber bundle with connection
form A, let p: G - GL(V) be a representation of G and let E = P xg V be the
corresponding associated vector bundle.

3.4.1 Definition. A linear map
V:I(E)-T(T"M®F)
is called a covariant derivative on E if

V(fe)=df ®e+ f-Ve (feC?(M), ecT(F)).

Our aim is to lay out how to employ connections on principal fiber bundles to define
covariant derivatives on associated vector bundles. Indeed we will use A to define
linear operators

da:Q8(M,E) - Q"Y(M, E)

for each k >0 and then show that for £ = 0 we obtain a covariant derivative.

According to Theorem 3.2.3, E-valued differential forms on M correspond precisely
to the horizontal differential forms of type p on P with values in V. Thus we are
looking for differential operators that preserve these properties. Recall from [9, Sec.
10] the definition of the exterior derivative of V-valued forms:

d:Q"(P,V) > Q"Y(P,V)

w dw,
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where

k

dUJ(X(), s 7Xk3) = Z(_l)ZXZ(w(XO> .. 'aXh s an))
=0 o A A (3.4.1)
+ Z(—l)”]w([Xi7Xj],X0, .. .,Xi7 Ce ,Xj, .. Xk),
i<j

where Xj,..., X} are vector fields on P. Then d(h*w) = h*(dw) for h: Q - P
smooth, and d? =dod = 0.

3.4.2 Example. In general, the differential of a horizontal k-form need not be
horizontal: Let M =R, G = (R, +), and P the trivial bundle RxR with the canonical
flat connection. Given f € C*°(P,R), w( ) = f(t,s)dt defines a horizontal 1-form:
if X = h(t,5)0s is a vertical vector field then w(X) = f - hdt(9s) = 0. However, the
differential dw = %ds Adt is horizontal only if dw =0, i.e., if and only if w is closed.

We therefore use the connection to modify d in the following way:
3.4.3 Definition. The linear map

D, :QF(P,V) - QP V)

(3.4.2)
(Daw)p(to, - .- tk) = dwp(pryto, ..., prypte)  (ti € T,P)

is called the absolute differential defined by A.
This modification indeed does what it should:

3.4.4 Theorem. The absolute differential maps horizontal differential forms of
type p into horizontal forms of type p again:

D+ Qo (PV) O > it (P V)G

Moreover, for any w e QF (P, V)@,

hor
Daw=dw+ p.(A) Aw, (3.4.3)

where

k _ .
(0o (A) 7). 518) = S (1) (AU @l T i) (344)

(with p, =T.p:g— L(V,V)).2

Note: More generally, for o € Q¥(P,g), we QL _ (P, V){E?) one sets

hor
(ps(0) Aw)a(ts,- .. ther)
1

B (3.4.5)
RN

> sign(7)ps (0 (tr1ys - tr(e)) ) (W(Er(ra1)s - - - Erran)))-

T€Sk+1

An analogous formula is used to define o A w for general a € Q¥(P, L(V,V)).

2In [9], Tep was denoted by p’, but here we follow the convention from [1].

58



Proof. Let we QF (P, V)(©?). Then Dw is horizontal because pr),t = 0 when ¢
is vertical. Concerning G-equivariance, we have
(RyDaw)(to, - - - tr) = (Daw)(T'Ryto, ..., TRyty) = dw(pr, T Ryto, . .., pry T Ryt )

B dw(TRgpryto, ..., TRypr,tE)

= (Rgdw)(pryto, . .., pryty) = d(Ryw)(pryto, . .., praty)
=d(p(g™") ow)(pryto, ..., Pryte)
=p(g™") o dw(pryto,...,pryts)
= (g7 ) ((Daw)(tos - -, k)
Thus Dyw is of type p, and it only remains to prove (3.4.3). By linearity and the
fact that any tangent vector can be decomposed into a horizontal and a vertical

component, it suffices to examine the case where each ¢; is either horizontal or
vertical. We distinguish the following cases:

1.) All ¢; are horizontal. In this case, Daw(%o,...,tx) = dw(to,...,tr) and A(t;) =0
for all 1.

2.) At least two t; are vertical. Then since both w and D qw are horizontal,
(Daw)(to,---,tx) =0, and (p.(A)Aw)(to,...,tx) =0,

so we have to show that also dw(to,...,tx) = 0. For this, note that by Theorem
3.1.1, any t € Tv, P can be written in the form ¢ = X (p) for some X € g. Moreover,

by Theorem 1.2.2, the commutator [X,Y] = [X,Y]" of two fundamental vector
fields is again vertical. Thus any summand in (3.4.1) has in the argument of w at
least one vertical vector and thereby vanishes.

3.) One t; is vertical, all others are horizontal. Since both sides of (3.4.3) are skew
symmetric, we may suppose that ¢y is vertical and ¢1,...,¢; are horizontal. Pick
X eg with to = X(p) and Vi,...,V} € X(M) with horizontal lifts V;*(p) = ¢;. Then

(DAU))(to,. .. atk) = dw(prht07t17 v 7tk) = 07
(P (A) Aw)(to, - tk) = px(Ato)) (w(t1, .- - k) = pu (X)(w(tr, .- tk)),

and
(dw)(to, - t) = X (w(Vi's-. . Vi) (p)
+Z( 1)* VALV, L VE L V().
Here, [X,V;*] = 0 by Theorem 3.3.2, and applying Theorem 3.1.1 (iii) we obtain

dollo, - 116) = K@V VO)) = ] (P (7o Vi) ()

d . . . .
- %‘0((ReXp(tX)w)|p((ReXP(tX)‘/1 )(P),-- (Rexp(tX)Vk )(p)))
d *
- @‘0((Rexp(txw)|p(th ),

where we used right-invariance of the V;* in the last step. Since w is of type p, using
[9, 8.8] we arrive at

dw(to,. .. tx) = d‘((Rexp(tX)wﬂp(tl, ) = d‘ (p(exp(~tX))w(t1,. .., tr))

- %|O(e’t"*<x>w(t1, ctn)) = =pa (X)) (Wt ).
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]

We now want to use the isomorphism ® = @ : QF (P, V)& - QF(M, E) from
Theorem 3.2.3 to define a corresponding map on Q¥ (M, E), as follows:

QF(M,E) — 25 QR (M, E)

w»—n};lT@k a»—»&lT@kH

(P, V)(G p) _EA Qk“(P V)(G,p)

hor
Thus
da:QF(M,E) - QY (M, E
A QF(M, E) (M, B) 10
wrdaw, daw = Dyw.

Now let pe P, t; € T, M, and t; € T, P the horizontal lift of ¢;. Then according to
(3.2.3) we have

(dAw)fﬂ(t()v oo ?tk) = [pam;)(téa cee atlt)] = [pv (DA(D)p(tgv cee ’tlt)]

(3~Z.2) [p7 d@p(taa . at;;)]

(3.4.7)

Moreover, if s: U — P is a local section around z, then (3.2.2) implies

(daw)a(tos - ) = [5(2), (Da@) ooy (Ts(to), - ., Ts(t))]. (3.4.8)

One may reasonably expect that in the case of the trivial representation p : G —
GL(V'), d4 should reduce simply to d, for any connection form A. To actually prove
this, we first show an auxiliary result:

3.4.5 Lemma. Let f ¢ C*(P) be right invariant, f o Ry = f for all g € G. Then
f= f07r for a unique f eC®(M), and if X € X(M) with horizontal lift X* we have

X*(f)=X(f)om.

Proof. f is the projection of f under 7, cf. Remark 2.2.2 and [9, 15.13]. Moreover,
for z = w(p) we have

X (Plp=df (Xp) = Tuf o Tym(X,) = Tu f(Xs) = X (e
O

3.4.6 Remark. Let p: G - GL(V) be the trivial representation g ~ idy for all
g€ G. Then p, =T.p =0, and being of type p means being right-invariant, so

QF (P, V)@ = {5 eQF(P,V) | @ right invariant and horizontal},

and Dy =d by (3.4.3). A typical vector bundle chart for E = P xg V is given by

(2.3.2):
Yo [p,v] = (m(p), p(ou(p)) -v) = (7(p),v),

so in fact [p,v] » (7w (p),v) is a global vector bundle isomorphism £ -V = M x V.
Thus we can identify differential forms with values in F with standard differential
forms valued in V:

QF (M, E) = QF (M, V).

Using this identification, (3.2.3) becomes

wx(tlv' . 'atk) = [pva)p(Xla ce 7Xk)]

= (2, @0p(X1,. ., Xi)) 20 (X1, ..., Xi), (3.4.9)
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for z = w(p) and t; € T, M with horizontal lifts X;. Now extend the ¢; to local vector
fields on M and let X; =t} (i=0,...,k) be their horizontal lifts. Then the smooth

function p — @p(X1,. .., X}y) is right invariant:
S Xl =g (5L p0). o Kelpa)) =altiec ) o
:(D(X17""Xk)|177 o

since Tw(X;(pg)) = Tn(TRy(Xi(p))) =t; for all i. Now by (3.4.1) we have

do(Xo, ..., Xp) = i(-nixi(w(xo, X LX)

i=0
+ S (D)o ([Xi, X1, Xos oy Xy o0 Xy oo Xk,
i<j

In this expression, X;(@(Xo, ..., X;, ..., Xz)) = ti(w(to,- .. ts, ..., tx)) due to (3.4.10)
and Lemma 3.4.5. Also, [t;,t;]* = pr,([X,, X;]) by Theorem 3.3.2, so

Q_J([XZ‘,XJ'],X(), ce 7Xi7 ce ,Xj, .. Xk) = w(pl‘h[Xi,XjLXo,. . .,Xi, cee 7Xj, . Xk)

= (D([ti,tj]*7t8, - ,t;,. . ,t}:) (3.:9) w([ti,thto, R I ,tk).

Inserting this above and again using (3.4.1) we conclude that
dw(to, ... tk)|e = dw(Xo, ..., Xi)lp-
Combining this with (3.4.9) for dw we get
dw(Xo, ..., Xi)lp = dw(to, .. te)|e = do(Xo, - -+, Xi)lp,

ie.,

dw = dw. (3.4.11)

In particular, D@ = d = dw, so by (3.4.8) for a local section s of P we can calculate

(dAw)r(tO» ce atk) = [S({E), (DAw)s(z)(Ts(tO)v cee aTS(tk))]

= [S(x),@g(x) (TS(t()), e ,TS(tk;))] (3;2) dwz(to, e ,tk).
We conclude that for the trivial representation p we have
da=d:Q (M, V) - QY (M, V) (3.4.12)

for any connection A on P.

Although, as we shall see, d4 no longer satisfies d4 o d4 =0, we still have the usual
product rule:

3.4.7 Theorem. Let dy : Q*(M,E) - Q™Y (M, E) be the differential induced by
A. Then for o e Q¥(M) and w e QY(M,E) (k,1>0) we have

da(orw)=dorw+(-1)*o A dyw. (3.4.13)

Proof. We have o € Q¥(M) = QF(M,R), with R = M x R the trivial bundle. This
corresponds to the situation from Remark 3.4.6 with p: G - GL(R) = R\{0}, g~ 1
the trivial representation. So there is a corresponding right invariant horizontal k-
form & € Q*(P,R). By (3.4.11), d& = do and d& is horizontal and right invariant
since D4 = d preserves these properties by Theorem 3.4.4.
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Moreover, by Theorem 3.2.3 w € Q!(M, E) corresponds to @ € Qflor(P, V)(©P) and
by (3.2.1) and (3.2.2) we have 0 Aw =& A®. Now (3.4.7) implies

dA(U/\w)fﬂ(t()v e 7tk+l) = [pv d(o—/\w)P(tév’ .- atl:Jrl)] = [pvd(6Aw)p(t8a cee 7tz'+l)]
= [p7 (da-/\fz’Y + (_1)k5_/\ dw)p(taa s at;::+l):|

= (da/\w + (—l)kO' /\dAw)x(to, c. 7tk+l)~

O

Let us now focus on the properties of d4 on O-forms. Since I'(E) = Q°(M, E) and
QY M,E)=T(T*M ® E), d is a linear operator

dy:T(E)->T(T"M ® E).
By Theorem 3.4.7 it satisfies the product rule
da(fe)=df ® e+ fdae (feC®(M), ec'(E)),
hence according to Definition 3.4.1 it is a covariant derivative on E.
3.4.8 Definition. The map
v = daloo () : T(E) - T(T*M ® E)
is called the covariant derivative induced by the connection form A.
Another consequence of Theorem 3.4.7 is that for o € Q¥(M) and e € T'(E) we have

da(c®e)=do®e+(~1)"o A vV3e. (3.4.14)

3.4.9 Theorem. Lete e I'(E), X € X(M), s: U - Py a local section around
xe M, veC®(UV) such that e|ly = [s,v], and A® = Ao Ts the local connection
form corresponding to s. Then

(Vae)(x) = [s(z), Tov(Xy) + pu (A% (X))v(2)] € E,. (3.4.15)

Proof. By the proof of Theorem 2.3.4 we have e(x) = [p,é(p)], where p € P,
is arbitrary and € € C*°(P,V)%. Setting p := s(z) we get v(z) = é(s(z)), which is
smooth and clearly unique with ey = [s,v]. Note also that by the footnote following
(3.2.2), € is precisely the map corresponding to e in that equation. Thus

(Vo) (@) = (d40)s(Xs) = [(2). (D) (Tos(X.)]
47y (5@ dE(Tea (X)) 4 o (ATs(X0)) ()]

[s(2), T(€08)a(Xa) + px(A”(X2)) (€0 5) ()]
= [s(2), Tov(Xy) + pu (A°(Xo) Jv(2)]-

O

We saw in Theorem 2.4.10 that any G-invariant scalar product (., . )y on V induces
a bundle metric (., .)g on E= P xgV via

(eaé)E = <vvl~})V for e= [pa U]7 €= [p71~)]'

Then the covariant derivative V4 is metric with respect to this bundle metric:
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3.4.10 Theorem. Let (., .)g be a bundle metric on E = P xgV induced by a G-
invariant scalar product (., .)y on'V. Then for anye,é e '(E) and any X € X(M)
we have

X((ev é>E) = (Vf(e, é>E + (6, v?(é)E

Proof. As in the proof of Theorem 3.4.9 we represent the sections in the form
e=[s,v], €=[s,0]. Then by (3.4.15) (and using [9, 23.9]) we get
(Ve &)m = (X(0) + . (A°(X))0,0)v = (X (0),0)v = (v, . (A°(X)) D)y
= X((0,0)v) = (v, X (8) + p.(A°(X))?) = X ({e,8) ) — (¢, V&) 5.

O

In the remainder of this section we want to clarify the relation between various
notions of covariant derivatives. We begin by establishing a relationship between
covariant derivatives and parallel transport. Let + be a path in M starting at
~v(0) = x and let
PLAE E
t,0 L) ™ L4(0)

be the parallel transport induced by A on E along the inverse curve v~ (cf. (3.3.2)).
3.4.11 Theorem. Let e e T'(E), X € X(M) and v a path in M with v(0) =z and
4(0) = X,. Then
d
(Vo) (@) = | (P (c(v())).

Proof. Let v* be a horizontal lift of . Then by (3.3.3) we have
Pt =1 (O]e [y ()]

By Theorem 2.3.4, e(x) = [p,e(p)] for any p € Py, so e(y(t)) = [v*(¢),e(y*(¢))],
implying [v* ()] (e(7(¢))) = é(v*(¢)). Using this and the fact that [y*(0)] is a
linear isomorphism we get

d

R GRRCCION

)= 2] (01O o [ (O () = [1* O))(Tel* (0)))

=[77(0),Te(37(0)] = [p, Te(X,)]  (with p:=~7(0))

5 (@10):(X0) = (T3e) @)

O

For a general vector bundle F over M with covariant derivative V there is a ‘stan-
dard’ notion of parallel transport induced by V as follows: Let v :[a,b] = M be a
path in M with z = v(a) and let e € E,. Then due to the standard existence and
uniqueness result for linear ODEs there is a unique section ¢, of F over  such that

Ve

i 0, we(a) =e. (3.4.16)
Then we call the map
Py By > By (3.4.17)
e p.(b)

the parallel transport induced by V on E. From the theory of ODEs it follows that
’Py is a linear isomorphism between the fibers. Moreover, we have the following
compatibility result:
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3.4.12 Theorem. Let E = P xgV be associated to P via a representation p: G —
GL(V). Let A be a connection form on P and let V2 be the covariant derivative
induced on E by A according to Definition 3.4.8. Then the corresponding parallel
transports coincide:

PE’A PVA
R 2l

Proof. With ¢, as above, by Theorem 3.4.11 we have for any ¢ € [a, b]:

Oz(vﬁ(t)%)(t):df (P2, ) et +5))).

2

)—1 PEA 'PE,A

Here, (P} HORKERGOIE

’Y|[t t+s]

B d B,A
0= P’Y(t)d (,P'y*(t+s)((p5(t+s)))'

This means that the curve ¢ — P2 )(4,06(15)) € B, (q) is constant on [a,b]. Conse-

o (t
quently,
P —(f)(Qpe(t)) P —(@(‘Pe(a)) = idEn,(a)(QOe(a)) = ¢e(a) = ¢,
so that ¢ (t) = ’PA/(’t) (e), as claimed. ]

3.4.13 Example. Let M be an n-dimensional manifold equipped with a covariant
derivative V. This means that V is a covariant derivative on the vector bundle T'M
over M, hence defines a notion of parallel transport as discussed before Theorem
3.4.12.

We know from Example 2.4.6 that T'M is associated to the frame bundle, TM =
GL(M) xgL(n,r) R". Moreover, by Example 3.1.10, the covariant derivative V

induces a connection form AV on GL(M) and (3.1.19) shows that V = v47. Note,
however, that we do not (yet) know that the covariant derivative that was denoted
by v4 in (3.1.19) is indeed the same as that given by Definition 3.4.8. We will
show this in Remark 3.4.14 in a more general context. Once we know this, it
will in particular follow from Theorem 3.4.12 that the resulting notions of parallel
transport coincide as well:

vV _ pv? TM,AY
PY =Py _7)7 .

3.4.14 Remark. Generalizing Example 3.4.13, let F' be a vector bundle that is
associated to a GL(r,K)-principal fiber bundle P, F' = P xgp,,x) K". Let v be
any covariant derivative on F. Then we show that there exists a connection form
A on P such that v4 = v¥.

To find such an A we adapt the procedure used in Example 3.1.10: we define local
matrix valued 1-forms A that have the right transformation behaviour, namely
(3.1.14). Locally we have F' 2 UxK" and P 2 U x GL(r,K). Let s be a local section
of P, so s(x) is an invertible 7 x r matrix s = (f1,..., f,.) with columns f; € T'(F).
Since the f; form a basis of K" we can write

Ffi=>wie fj,
i
with w;; € Q1(U). Now set

= (wij); Pl = lem i eQ! (U, gl(r,K)).

9=
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It then follows exactly as in Example 3.1.10 that the A, indeed obey (3.1.14). So
we are left with proving that v = v for the resulting connection form A on P.

Since this is a local statement we may assume F' = U x K" and P = U x GL(r,K).
Thus any p € P is of the form (x,g) and the bundle chart (2.3.2) becomes ¥y :
[p,v] = [(x,g9),v] = (x,gv). Then in Theorem 3.4.9 we have [s,v] = s-v, and any
element of I'(F') is of this form. We are going to use (3.4.14) to show that for each
vector field X we have

Vi ([s,0]) = v ([s,0]).
As above we have s = (f1,..., fr) with f; e T(F). Therefore,
VA ([s0]) = VR (s5-0) = VE( D vifi) = X X (i) fi + Y viwsi(X)
% 2 %,

8(33) TU(X) + Zvlw],(X)fJ

4,3

Because of (3.4.15) it therefore only remains to show that the second summand here
equals s(z)As(X)v(z). Indeed we have (writing w;; instead of w;;(X) for brevity):

f11 e frl w11 ... Wiy U1
s(x) - Ag(X) -v(x) = : : : :
flr s frr Wrr .. Wy Uy
Y fawpvi+ o+ X fwievr
= : : = ijiji,
Zj fjrwjlvl+ et Zj fjrwjrv'r‘ bJ

as claimed. In particular, by Theorem 3.4.12 we have PXF = P,YVA = ’Pf’A.

3.4.15 Example. For metric connections we have seen in Example 3.1.12 and
Corollary 3.1.13 that A — V4 is a bijection between the set of connection forms
on O(M, g) and the set of metric covariant derivatives on M, and the analogue of

(3.1.19) holds:

A

\Y% v:V and AVA:A.

This applies, in particular, to the Levi-Civita connection V" on a semi-Riemannian

manifold (M, g) of signature (k,[), for which we have TM = O(M, g) xox,1) RE+,
It therefore induces a connection form A*® on O(M, g) with V€ = gA©
by Theorem 3.4.12 all parallel transports coincide:

. Finally,

LC
VLC _ vA _ TM,ALC
Py =Pyt = pIMAT

3.5 Curvature of a connection

The curvature of a connection on a principal fiber bundle is a 2-form that in a
sense measures the non-flatness of the bundle. As we will see, it underlies all other
notions of curvature that are used in differential geometry. Throughout this section
let (P, 7, M,G) be a principal fiber bundle with connection Th and connection form
A. Moreover, let p: G — GL(V) be a representation of G and let E = P xg V be
the associated vector bundle over M.

3.5.1 Definition. The 2-form
FA:=DyAcQ*(P,g) (3.5.1)

is called the curvature form of A (resp. of Th).
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It follows directly from the definition of D4 (cf. (3.4.2)) that F“ is horizontal.
Moreover, since A is of type Ad, so is F (see the proof of Theorem 3.4.4). Given
a local section s: U — P, we call the pullback of F under s,

Fo = s"FA = FA(Ts(.),Ts(.)) e Q*(U, g) (3.5.2)

the local curvature form with respect to s. Similar to (3.1.8) for A°, we can also
derive the transformation behaviour of F°. Thus let 7: U — P be another section
and let 7 = s- ¢ for a smooth function g : U - G. Now given X € T, M, let ¢ be a
smooth curve in M with ¢(0) = X and apply Lemma 1.2.3 to z =so¢, g=goc to
obtain

TT(X)=TRy(Ts(X))+(TLy1Tg(X))".

Since the second summand here is vertical while F4 is horizontal and of type Ad,
we conclude from this

FT(X,Y) = FXT7(X),Tr(Y)) = FA(TR,(Ts(X)), TR,(Ts(Y)))
= (R (Ts(X),Ts(Y)) = Ad(g™ ) (FA(Ts(X), Ts(Y)))
=Ad(g7H) o F*(X,Y).
Thus we arrive at the transformation forumula
F™=Ad(g')o F*. (3.5.3)
In particular, if G € GL(m,K) this reads
FT=¢gloFoy. (3.5.4)

To formulate further properties of F'4 we need some new operations on differential
forms. Let N be a manifold and g a Lie algebra with basis (a1,...,a,). Then for
weQF(N,g), 7€ Q(N,g) we can write

T T
w:Zwiai T:ZTi@i,
i=1 =1

with w?, 7% real valued differential forms on N. Then we define the commutator of
w and T by ' 4
(w,7]:= Y (W AT9)[ai, a;]g € BTN, g). (3.5.5)
,J
It is easily seen that this definition does not depend on the choice of basis in g.
3.5.2 Lemma. The map
[, -]: Q% (N,9) x ' (N,g) > Q*!(N, g)
(w,7) = [w,T]
has the following properties:
(i) [w, ] = (1) [r,w].
(ii) d[w, 7] = [dw, 7] + (-1)*[w, dT].
(iii) If we QY(N,g) and X,Y € X(N), then [w,w](X,Y) = 2[w(X),w(Y)],-
Proof. (i) and (ii) are seen directly by inserting, so let us prove (iii). We have

[w,w](X,Y) = 3 2(w" Aw!) (X, Y)[ai,a5] = D3 (w" (X)w! (V) - w' (V) (X))[as, a5]

,J ,J

= 2w (X! (Vai, a;] + P w' (X)w (V)[ai, ;] = 2[w(X), w(Y)],

1,5 1,]

where in the second sum we interchanged ¢ and j. |
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3.5.3 Theorem. Let F4 € Q%(P,g) be the curvature form of A. Then
(i) Structure equation: F* =dA+ 1[A, A].
(ii) Bianchi identity: D,F* = 0.
(iii) If w e Qf (P, V)(EP) then DaDaw = p.(F4) Aw.

hor

Proof. (i) It suffices to check the identity on X,Y e T,,P that are either horizontal
or vertical. If both are horizontal, then A(X) = A(Y") =0 and by (3.4.2) we have

FAX,Y) = (DAA)(X,Y) = dA(X,Y),

giving the claim (due to Lemma 3.5.2 (iii)). Next, let X be horizontal and Y
vertical. Then FA(X,Y) = 0 since F4 is horizontal. We may extend X, Y such
that X = V*(p) is a horizontal lift for some V € X(M) and Y = T(p) is the value
of a fundamental vector field induced by T € g. Then by Theorem 3.3.2 we have
[V*,T]=0, so (3.4.1) gives
dA(X,Y) =dA(V*,T), = V*(AT)) - T(A(V*)) =0.
N N—

=T =0

By Lemma 3.5.2 (iii) also [A4, A](X,Y’) = 0, so the claim follows also in this case.
Finally, let both X and Y be vertical, X = T(p), Y = S(p), T,S € g. Then
FA(X,Y) =0 and (3.4.1) and Theorem 1.2.2 give

dA(X,Y) = X(A(S)) - Y (A(T)) - A([T,S]) = -A([T. S]")

= ~[A(T (1)), A(S(P))]g = [AC), AV)]g =, -

_[T7 S]Q

NN

[A,A](X,Y).
(ii) Differentiating (i) and using Lemma 3.5.2 (i) and (ii) we get
dF4 = ddA + %d[A, Al = %([dA, A]-[A,dA]) = [dA, A],
so Lemma 3.5.2 (iii) and the definition of D4 give
DaF* = dF* opr, = [dAopr,, Aopr,] =0,

where opr;, is an abbreviation for applying pr;, to each argument.

(iii) Using that w and D aw are horizontal and of type p and that p, : g » L(V, V)
is linear, (3.4.3) implies

Da(Daw) =d(dw + p«(A) Aw) + pe (A) A (dw + p. (A) Aw)
=ddw + d(p«(A)) Aw — pe(A) Adw + p (A) Adw + pe (A) A (po(A) Aw)
= po(d4) A+ pe(A) A (e (4) Aw).

Here, by applying (3.4.4) twice (and using the remark following (3.4.5)) we see that
p+(A) A (ps(A) Aw) = (p(A) A ps(A)) Aw, with

(P (A) A p (A))(X,Y) 1= po(A(X)) 0 p. (A(Y)) = pu (A(Y)) 0 p (A(X))
= [P« (A(X)), p (A(Y)) Jgu(vy = p+ ([A(X), A(Y)]g) = %p*([AA](X,Y)),

where we used that p, is a Lie algebra homomorphism, as well as Lemma 3.5.2 (iii)
in the last step. Thus, finally,

DaDaw=p.(dA+ %[A,A]) Aw = py(FY) Aw.
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]

Since F4 € Q2 (P,g)(@AY by Theorem 3.2.3 we can consider it as a 2-form in the
adjoint bundle Ad(P) = P x¢ g, and we shall notationally not distinguish between
these versions:

FA e Q?(M,Ad(P)). (3.5.6)

In order to formulate the identities from Theorem 3.5.3 from this point of view we
introduce a bundle homomorphism

ps :Ad(P) - End(E, E)

as follows (recall that E = P xg V): Let ¢ € Ad(P),, e € E,, and fix some p € P,.
Then ¢ = [p, X] and e = [p,v] for some X € g, veV and we define

p«(p)e = [p, ps(X)v]. (3.5.7)
To check that this is well-defined, let also g € Py, ¢ =p-g. Then
¢=[p,X]=[p-9,Ad(g7)X] = [¢,Ad(¢7")X],
e=[p,v] =g, p(g7" )],
so we have to show that [g, p.(Ad(g™1)X)(p(g71)v)] = [p, px(X)v]. We have?
peoAd(g™) = Tu(poconj,1) = To(h = p(g~)p(h)p(9)),
implying p.(Ad(g™)X) = p(g™") 0 p(X) o p(g) and
p+(Ad(g™)X)(p(g™)v) = p(97") 0 pu(X) 0 p(g) 0 p(g~ v = plg™ ) pu (X 0.
Thus indeed

(¢, p(Ad(g™ ") X) (p(g7")v)] = [pg. p(g™ ) s (X)] = [p, pu (X))

3.5.4 Lemma. The map p. : Ad(P) - End(E, E) is a vector bundle homomor-
phism.
Proof. See the Appendix. O

Using this map we can now define the wedge product of differential forms with
values in Ad(P) with those that take values in E:

A QF(M,AA(P)) x QY(M, E) - Q"(M, E)

(o,w) P oAw,
where, for tq,...,tg € T M,

(0 Aw)z(trs- s thet)

. 3.5.8
Yo sign(7)pu (00 (tr(rys - - br () ) )wa (br(at)s - - s br (o)) - ( )
Te€Sk+1

1
TRl

Using this notation, the identification of Q2_ (P, g)(®Ad) with Q2(M, Ad(P)) gives:

3Here e appears in two meanings, the one in the lower index is the unit in G.
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3.5.5 Theorem. Let F* ¢ Q?(M,Ad(P)) be the curvature form of A. Then FA
satisfies the Bianchi identity
daF2 =0,

and for the differential da: Q¥(M,E) —» Q¥Y(M,E) we get

dAdAw=FA/\w.

Proof. Using the notation from Theorem 3.2.3 and de-identifying for the purpose
of the present proof, Theorem 3.5.3 actually refers to F'4 € Qﬁor(P,g)(G’Ad), and

(ii) there says DaF4 = 0. By (3.4.6), therefore,

daFA=DyFA=0,

giving the Bianchi identity in the claimed form. Also, Theorem 3.5.3 (iii) reads, for
weQf (P, V)G,
DaDaw = p.(FA) nw,

where p, denotes the post-composition with the derivative of p. By (3.4.6),
DD s = DA(dAw) = dAdAw,

so we are left with proving that p. (ﬂ) NG = FAAw. To verify this, let (cf. the
proof of Theorem 3.2.3) ¢; € T, M and X; € T,P with Tw(X;) =t;. Then

[p,0x (FA) A @) (X1, .., Xira)]

1 P
_ - : A .
515 [p, 171 TE;:” sign (7)o« ((F4) p(Xr (1), Xr(2)) ) (@p (X735 - - - 7X7-(k+2))):|
1 . N
(3.;7) Tk' Teéw Slgn(T)p*((F )w(t7(1)7tT(Q)))(wI(tT(3)7 cee 7t‘r(k+2)))
= (FA /\W)$(t1, s 7tk+2) = [p,FA /\wp(Xla s 7Xk+2)]-

(3.5.8)
O

In this sense the curvature form F4 measures the failure of d4 o d4 to vanish. The
following result shows that F4 determines the vertical component of the commuta-
tor of horizontal vector fields.

3.5.6 Theorem. Let X and Y be horizontal vector fields on P and let F4 €
O%(P,g) be the curvature form of A. Then

(i) FA(X,Y)=-A([X,Y]).
(”) pI‘U([X,Y]) = _FA(XaY)N'

Proof. Since A(X) = A(Y) =0, it follows from Lemma 3.5.2 (iii) that [4, A](X,Y) =
0. Thus Theorem 3.5.3 (i) shows

FAX,Y) = dA(X,Y) o3y XAN) - Y (A0) - A(LX, YD) = -A(IX. VD).
Set Z := [X,Y], then by Theorem 3.1.1 for each p € P there is a unique U € g

such that Z, = U, + pr,(Z,). Thus A(Z,) = A(U,) = U, so pr,(Z,) = A(Z,); =
-(FA(X,Y)); O

This result allows us to characterize the integrability (i.e., by the Frobenius theorem
[9, 17.33], the involutivity) of the horizontal and vertical distributions:
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3.5.7 Theorem. Let (P,m,M,G) be a principal fiber bundle with connection form
A. Then:

(i) The vertical bundle TvP is integrable.

(i) The horizontal bundle Th is integrable if and only if the curvature form van-
ishes, F4 = 0.

Proof. (i) By Theorem 1.2.2, for any two fundamental vector fields T, S we have
[T,S]=[T,S]". Since these vector fields span TvP, the claim follows.

(ii) Let X,Y be horizontal vector fields. Then by Theorem 3.5.6 (ii) we have
pr,([X,Y]) = =(FA(X,Y))". Thus [X,Y] is horizontal for each X,Y horizon-
tal (i.e., ThP is involutive) if and only if F4(X,Y) =0 for all such X, Y. By (3.4.2)
and (3.5.1) F4 is horizontal, so this condition is equivalent to the vanishing of F4.

O

By the global version of the Frobenius theorem (cf. [9, 17.25]), F4 = 0 if and only if
any point of P lies in a maximal connected submanifold H of P (a leaf) transversal
to the fibers of the bundle, with tangent bundle TH = ThP|y.

3.5.8 Example. Let Py = M x G be the trivial principal fiber bundle over M,
equipped with the canonical flat connection Th Py, corresponding to the connection
form Ag (cf. Example 3.1.8). Then the maximal integral manifold of ThP, through
(z,9) is obviously M x {g} € M x G. Thus F4° =0, as can also be seen directly: By
Theorem 3.5.6, F4°(X,Y) = ~A([X,Y]) = 0, because [X,Y] is horizontal in this
case.

3.5.9 Definition. A connection Th and the corresponding connection form A on
P are called flat if the curvature form of A vanishes: F4 =0.

3.5.10 Theorem. The following are equivalent:
(i) The connection form A is flat, i.e., F4 = 0.
(i) The horizontal distribution Th is integrable.

(iii) There exists an open covering U = {U;}ier of M such that each subbundle
(Py,, A) is isomorphic to the trivial G-principal bundle over U; with the canon-
ical flat connection.

(iv) There exists an open covering U = {U; }ier of M such that every subbundle Py,
possesses an A-horizontal section.

(v) There exists an open covering U = {U;}ier of M such that parallel transport
in every Py, is path-independent.

Proof. (i)<>(ii) is Theorem 3.5.7 (ii). Point 1.) in the proof of Theorem 3.3.9 shows
that (ili)<(iv). It also follows from Theorem 3.3.9 that (v)=(iii), while (iii)=(v)
is Example 3.3.8, so altogether (iii)«<(iv)<(v).

(iii)=(i): Any = € M has a neighborhood U and an isomorphism ¢ : Py - Pyy =
U x G of principal fiber bundles with ¢*Ay = Aly. Then FA|y = ¢*FA = 0, so
FA=0.

(ii)=(iv): Let p € P and let H(p) € P be a maximal connected integral manifold of
Th, so Ty(H(p)) = ThyP for each ¢ € H(p). Now choose any Riemannian metric
on M, let p e P and let U be a normal neighborhood of z := w(p). For any y € U let
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vy : [0,1] = U be the radial geodesic from z to y. Then we define a section over U
by

s:U—->P
y =, (1),

where v, is the horizontal lift of , with starting point p. Since v, depends smoothly
on y it follows as in the proof of Theorem 3.3.9 that s is smooth. However, contrary
to the situation there we do not (yet) know that s is independent of the chosen path
(rather, each point in its domain is reached by a unique radial geodesic, whose lift
is used to define s), so we need a different argument to show that it is horizontal,
ie., that T,s(Ty M) = Thy) P = Ty H(p). As 7o s =id we have rk(s) = dim M =
dim H(p), so we only need to prove inclusion. Since H(p) is a leaf of Th, T
lies in H(p)*, so s(U) ¢ H(p). As H(p) is an integral manifold of an integrable
distribution and s : U — P is smooth, it is also smooth when viewed as a map
s:U — H(p) (see [9, 17.27]). But then T;s(T,U) € Tz H (p) for each x € U, and
we are done. O

3.5.11 Theorem. Let (P,m,M,G) be a principal fiber bundle with connection
form A and suppose that M is simply connected. Then FA =0 if and only (P, A)
is isomorphic to the trivial bundle M x G with the canonical flat connection.

Proof. One direction is immediate from Theorem 3.5.10 (iii)=-(i). Conversely, by
Theorem 3.3.9 it will suffice to show that F4 = 0 implies path independence of
parallel transport. So let x,y € M and let v, : I = [0,1] - M be two paths from
r to y. Since M is simply connected there exists a (piecewise smooth)® homotopy
H :IxI — M between v and § that leaves z and y fixed. For s € I, denote by
H? the horizontal lift of H := H(.,s). We show that the corresponding endpoints
H?(1) all coincide. To this end we subdivide I x I into sufficiently small rectangles
K; such that each H(K;) lies in a neighborhood as in Theorem 3.5.10 (v), so that
parallel transport there does not depend on the path. It follows that s — HX(1) is
locally constant and continuous on I, hence constant. O

Similar to the definition of the Riemann tensor one can introduce a curvature op-

erator on any vector bundle equipped with a covariant derivative:

3.5.12 Definition. Let V:T'(E) - T'(T*M ® E) be a covariant derivative on the
vector bundle E. Then the 2-form on the endomorphism bundle

RY e(A*(T*M) ® End(E, E)) = Q*(M,End(E, E))
defined by
RY(X,Y):=VxVy-VyVx -Vixy] (X,YeX(M))
is called the curvature endomorphism of V.

In particular, this applies to the situation from Definition 3.4.8, where we saw how
to assign a covariant derivative V4 on the vector bundle E = P x¢ V associated to
a principal fiber bundle P with connection form A (and due to Theorem 2.4.9 and
Remark 3.4.14 any covariant derivative comes about in this way). In this case the
curvature endomorphism on F is completely determined by the curvature form on
P:

4This follows by using flat charts for ThP, cf. the the proof of [9, Th. 21.12]
5See, e.g., [12, Lem. 6.6].
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3.5.13 Theorem. Letpe P, and [p]:V — E, the corresponding fiber diffeomor-
phism (see (2.3.7)). Then

A * * -
Ry (X,Y) = [p]opu (B (X*, Y 7)) o [p]
where X,Y € T, M and X*,Y* e T,P are their horizontal lifts.
Proof. Given ¢ € T'(E), let @ € C=(P, V)& 3(p) = [p]™! o o(n(p)) be the

G-equivariant function corresponding to ¢ by Theorem 2.3.4. Then for X € X(M)
with horizontal lift X*, by (3.4.7) and Definition 3.4.8 we have

(VA0)(@) = [p.dap(X )] = [0, X (@)P)]  (eP). (359
Therefore,
RY" (Xo,Yo)e(w) = RY (Xe.Ya)[p,8(p)]
[p,<XY<so> VX (9) - [XYT(9)(0)]

(3:5.9)

= [ (X (sa) [X, YT (9)(0)]
J5, [P o XY 12D ()]
el (FA( V) (@) ()]

Here,

FACG Y0 @0) =, 5] ol exp(tF (X7, 7,)
(2.3.9) jt| (p(exp(- tFA( Y, ))e(p))

= —p(FNX5.Y))e(p).

Altogether, since [p] = v ~ [p,v] we have shown that

311dt

RY" (X0, Yo)[P)(2(p)) = [p)(~(EA (X, Y ))5(2)) = [ (ox (B V) 2 ()),
as claimed. a

3.5.14 Remark. As was shown in Example 3.4.15, for the case of the Levi-Civita
connection V"¢ on a semi-Riemannian manifold (M, g) of signature (k,1), we have
TM = O(M, g) xo(ky RF*!, and v™© induces a connection form A on O(M, g)
with V€ = VALC. The previous result then shows how the Riemann curvature ten-
sor on M, which in this case is the curvature endomorphism RV e T(AX(T*M) ®
End(TM,TM)) relates to the curvature form FA™ ¢ O%(0(M, g),0(k,1)). In this
sense semi-Riemannian geometry can ultimately be traced back to the study of the
principal fiber bundle O(M, g) with connection form AYC,

For H € O%(M,End(E, E)) and w € Q! (M, E) we define a wedge product in accor-
dance with (3.4.5):

(HAw)(Xl,...,Xk+l)

1 . 3.5.10
=T Z Slgn(T)H(XT(1)7'"7XT(1<7))(W(XT(1€+1)7'"aXT(k+l)))' ( )

Using this notation we have:
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3.5.15 Theorem. Let (P,m, M,G) be a principal fiber bundle with connection form
A and let E =P xgV. Then for any we Q¥(M, E),

dadaw=R"" Aw. (3.5.11)

Proof. Using the de-identification from the proof of Theorem 3.5.5, we have shown
there that L
dadaw = p*(FA) AW.

Let X1,..., X2 € X(M) with horizontal lifts X7,..., X}, 5 € X(P). Then (sup-
pressing the arguments, x for X;, p for X))

A
(RY" Aw)a(X1,..., Xpa2)

1 , -
(3.5:.10) 2'7]{3' T€§+2 Slgn(T)Rw (XT(1)7XT(2))(ww (XT(3)7 - 7XT(k+2)))
1 . A * * -
3513 Bl Z sign(7)[p] o p*(FAp(XT(1)7 Xf(z))) o [p] 1(“’9&()(7(3)7 R Xf(k'+2)))
o TV TeSK 2
1 I

_ . A * * — * *

L O & sen(mp (X0, X )Xoy, oo X))

(3;.5) [p]((p* (ﬂ) A ‘D);D(va e JXI:+2)) = [p](dAdAwp(va (ERE) XI:+2))

_ (X1 Xisa).
(333 (dadaw)z (X4 K+2)

]

3.5.16 Definition. Let (P,7, M,G) be a principal fiber bundle. A diffeomorphism
f: P — P is called a gauge transformation if (f,idg) is a bundle morphism in the
sense of Definition 2.2.3, i.e.,

(i) wo f=m, and
(ii) f(p-g) = f(p)-g for allpe P, g G.
By G(P) we denote the group of gauge transformations on P.
By C*(P, G)G we denote the set of G-equivariant smooth maps from P to G:

C®(P,G) ={0eC™(P,G) | o0(pg) = g ' o(p)g}- (3.5.12)

3.5.17 Lemma. The group of gauge transformations G(P) can be identified with
C>=(P,G)€ wia the bijection

S:G(P)> f~opeC™(P,G)°

fp)=p-os(p). (3.5.13)

Proof. Given f e G(P) and p € P, w(f(p)) = m(p), so there is a unique o¢(p) € G
with f(p) =p-os(p). The resulting map o is smooth, since for a bundle chart ¢
as in Definition 2.2.1 with ¢(p) = (x,g) we have

¢(f(0) = (2, f2(p)) = (2,9) - (97" fa(p)) = () - (97" F2()) = &(p~ (97" fa(p))),
so that o4(p) = g7 fa(p) = (pry o ¢(p)) " - f2(p), which is obviously smooth.
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a5 €C=(P,G)%: pgos(pg) = f(pg) = f(p)g = pos(p)g, so pgos(pg) = pos(p)g, and
thereby o4 (pg) = g~ o4 (p)g-

S is bijective: Its inverse is obviously given by o — f, :==p +~ p-o(p), so it only
remains to show that f, e G(P). It is a diffeomorphism with inverse f,-1 (with ¢!
the pointwise inverse in G) and one readily verifies Definition 3.5.16 for f,. O

3.5.18 Theorem. Let (P,m, M,G) be a principal fiber bundle with connection form
A and let f € G(P). Then also f*A is a connection form on P and we have

(i) f*A= Ad(o}l) °cA+otug.
(ii) foPI A =Psof.
(iii) Dyes=f*oDyo f* ",
w) FI'A = f*FA = Ad(o7') o FA.
!

Proof. We begin by verifying the conditions from Definition 3.1.3 to show that
f*A is a connection form. First, since fo Ry = R4 o f we have

Ry(f*A) = £ (RyA) = f*(Ad(g ™) 0 A) = Ad(g™") o f* A.

Moreover, using Theorem 3.1.1, for X € g we have
T,F(X (1) = 5| (£ exp(tX))) = 5| (F2)-exp(tX)) = X(7(0)).

so that (f*A),(X(p)) = As) (X (f(p))) = X.
(i) Let X € T, P and pick a smooth curve y in P with 7(0) = p and 4'(0) = X. Then
setting o = oy, by Lemma 1.2.3 we get

1,1(X) = 2 J00) = 2] G0t 55.14)
= TRJ(p)(X) + (T'Lopy1Tpo (X)) (f(p))
Therefore,
(f*A)p(X) = Ap(p) (TRo () (X)) + Ap(p) (T Lo ()1 Tpo (X)) (f(p)))
=Ad(o(p)™") 0 Ap(X) + TL,(py-1 Tpo(X) (3.5.15)
= Ad(a(p)™) 0 Ap(X) + (07" 1) p(X).
(ii) We have
Th! AP =kerf*A=ker(AoTf) =Tf ' (kerA) =T~ (Th*P). (3.5.16)

Denote by 7}4(1)) the A-horizontal lift of a path v with initial point f(p), and by
”yIJf*A the f*A-horizontal lift of v with initial point p. Then by (3.5.16)

7{: A:f_lo'y;‘(p), hence 77,]; Azf_lop,‘?Of.

iii) We note first that T'f Opr = prid o Tf: To see this, let X = X/ + X4 ¢
h h h v
ThAP ® TvAP =TP. Then

(L)) (X)) = (L) (X)) + (L) (X,

*A Tv, P
(3.56.15>Th£ P a.s1s 7
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50 pr{L*A((TPf)_l(X)) = (T;Df)_l(X;?) = (Tpf)_lopr}‘?(X). Using thiS, we Calculatc
(Df*Af*w)(Xl, coy Xi) (322) d(f*w)(pr{L*AXh o ,prfAXk)

= do.)(TfOpr{kAXl7 . ,TfOprﬁ*AXk) = dw(priTfX1,...,praTfXy)
= (Daw)(TfXy,....,TfXg)=(f"Daw)(Xy,...,Xg)-

(iv) From (iii) we get for the curvature form
FIA—Dpaf* A= f*Da(f*)  f*A= f*DaA= f*FA.
Finally, since F4 is horizontal, (3.5.14) gives
(f F)p(X,Y) = Fii) (TRo () X, TRo ()Y ) = (B3 ) F),p (X, Y)
= Ad(a(p)™) o FH(X.Y),

where the last equality holds since F4 is of type Ad. O

3.6 S'l-connections

In applications, in particular in mathematical physics, connections in principal fiber
bundles with S' = U(1) as structure group play an important role. Since S is
abelian, many of the constructions from previous sections simplify, which warrants
a separate treatment. Throughout this section, let (P, 7, M, S') be a principal fiber
bundle over S?.

Recall from Remark 3.4.6 that with p : G - GL(V) the trivial representation
(g = idy for all g € G), p« = Tep = 0, and being of type p means being right-
invariant, so

QF (P, V)P = {5 e QF(P,V) | @ right invariant and horizontal}.
Moreover, D4 = d by (3.4.3) and
E=PxgV2MxV
[p,v] = (7 (p), v),

so that QF(M, E) = Q¥(M, V). Composing this with the isomorphism from Theo-
rem 3.2.3 we obtain

QF (P, V@0 S0k (M, E) = QF(M, V).

Explicitly (see (3.2.2)) to @€ QF__(P,V)(©+) one assigns w e A*(T* M) ®V by

hor
W (V1,0 08) = wp(v],...,05), (3.6.1)

where 7m(p) = x, v1,...,vx € ToM and v7,...,v; € T,P with Tr(v}) = v;. Thus
w is the unique differential form with 7*w = @. So this map is the inverse of the
map w — @ (cf. (3.2.3)), Q¥(M,V) - QF__(P,V)(@*) and we denote it by a  d,
QF (P,V)(©P) » QF(M,V). In particular for k = 0 we get that f e C*®(P,V) if
and only if f(x):= f(p) (p € P, arbitrary) is in C*=(M, V).

We are interested in the case where V is the Lie algebra of S'. Since S' = {z¢eC |
|2| = 1}, any smooth curve through 1€ S* is of the form y(t) = ¢*® with §(0) = 0.
Then 4(0) = i6(0) € iR, so V = 4R and the above isomorphisms take the form

OF(M,iR) » QF, (P,iR)S D

W= w
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with inverse

OF (PiR) S S 0F (M, iR)

a- Q.
Recall also that by (3.4.11) we have
dw =dw, da=(da)". (3.6.2)
Denote by s = pug1 the Maurer-Cartan form of S*. Then
e =2 Mz (3.6.3)

Indeed, for X € TS and v a curve in S with v(0) = z and 4(0) = X we have
pa(X)=TLn X = i| (L (v(1))) = i\ (=7 A1) = 27X = 27 dx(X).
dtlo dtlo

Next we want to determine the group of gauge transformations of P. By (3.5.13)
the map f~ oy, f(p) =p-os(p) is an isomorphism from G(P) onto

C=(P,5Y) = {0 eC™(P,S") | o(pz) = 2 o(p)z = o (p)},

where we exploited the commutativity of S*. So G(P) is identified with the set of
right invariant smooth functions P — S'. But by [9, 15.13] (analogously to Lemma
3.4.5) these in turn can be identified with the smooth functions M — S*, so

G(P)=C>™(M,S").

3.6.1 Lemma. The set C(P) of all connection forms on P is an affine space over
the vector space Q'(M,iR).

Proof. By Remark 3.2.4, C(P) is an affine space over Q (P, iR)(Sl’Ad), where
Ad(P) := P xg g. In the current situation Ad(z) = id;g for all z because S is
abelian. Thus Ad is the trivial representation and we are in the setting discussed
at the beginning of this section, giving

QL (PiR)S AD = (M, iR).

O
EXpliCitly7 if Al, Ag € C(P), then A1 - A2 € Qllmr(P? ZR) and
n= (A - A2)" € Q' (M,iR). (3.6.4)

Note however that, strictly speaking, one cannot write A=Ay + 7 because the A;
themselves are not horizontal, so the hat-map isn’t available on them.

If feG(P) with oy € C®(P,S") and A € C(P) then due to Theorem 3.5.18 and the
fact that Ad(z) = id;g we have

frA=A+oius 65 A+ojldoy. (3.6.5)

By Theorem 3.5.18 (iv),

fFFA=FA  VfeG(P), AeC(P).
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Next we show that F4 can be viewed as an element of Q?(M,iR). Since the Lie
bracket on iR vanishes, Theorem 3.5.3 shows that

FA=DjA=dA. (3.6.6)

Here, F4 € Q2 (P,iR), so (F4)" € Q%(M,iR). However A ¢ QL (P,iR), so there
is no A. Nevertheless,

d((F™")") 552 (dF1)" = (a?A)" = 0.

Consequently, (F4)" ¢ Q*(M,iR) is a closed form, and therefore defines a de
Rham cohomology class [i(F4)"] € H3z(M,R). Now given A,AeC(P), A-Ace
o (M,iR), = (A- A)" € Q' (M,iR), and

(FA - F4Hn 6io (d(A-A)" wia) d((A-A)") = dn. (3.6.7)

In particular,
1
er(P)i= | = 5 ()| e Hin(M.R)

is independent of A! ¢1(P) is called the first real Chern class of P.

3.6.2 Theorem. Let w € ¢1(P). Then there exists some A, € C(P) such that
W= - (FA)N. Any two such connection forms Ay, Ag, differ from each other
by a closed 1-form on M, i.e., Ay, = Aoy, +2miv for some v € QY (M, R) with dv = 0.
If M is simply connected then A, is unique up to gauge transformations.

Proof. Fix some Ay € C(P). Then F40 ¢ O?

hor

(P,iR), so (F4°)" ¢ Q%(M,iR), and
1
@O i= ———(FA)" e ¢y (P).
211

Thus there exists some 7 € Q'(M,R) with w - & = dn. Then 7 € Q}_ (P,R) and
A= Ag—2mif € C(P) by Lemma 3.6.1. Also, (3.6.7) implies (F4 ~ F40)" = —2ridn,
so that

(FMN = (FAY) —2midny = (FA) = 2mi(w - @) = (FA0)" = 27riw — (FA0)" = —2miw.

Now suppose that A;, As € C(P) are such that w = —ﬁ(FAJ')A for j = 1,2. Then
in particular F41 = F42 and (A; - A)" = 27iv for some v € Q' (M, R). Moreover,
by (3.6.7) (2mi)dy = (FA — FA2)" =0, i.e., v is closed.

Finally, if M is simply connected then v is exact, so there exists some h € C*° (M, R)
with (A; — A2)" = 2midh. Set o := e2mih ¢ C>*(M,S'). Then do = 2miodh, so
(A; - A2)" =07 do. We arrive at

Ay - As =0 ldo=0"Ydo =07 do = 0"V do,
because S! is abelian and we can identify o with & (cf. the remark preceding Lemma,

3.6.1). By (3.6.5) then A; = f*Ay for some f € G(P), i.e., A; and Ay are gauge
equivalent. o

7
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Chapter 4

Holonomy theory

4.1 Reduction and extension of connections

In this section we study the effect of reducing or extending principal fiber bundles
on connections on these bundles.

4.1.1 Theorem. Let (P,mp, M,G) be a principal fiber bundle, A\ : H - G a Lie
group homomorphism and ((Q,nq, M,H), f) a A-reduction of P. Also, let A be a
connection form on Q. Then there is a unique connection form A on P such that,

for each q €@,

T,f(ThyQ) = Th}, P. (4.1.1)

For the corresponding connection and curvature forms we have
frA=)\ 0A, (4.1.2)
FEA =N 0 FA. (4.1.3)

Proof. Recall from Section 2.5 that we have

QxH — Q

SN

PxG ——» P -2y M

Now let p € P, pick any g € Q. and let g be the unique element of G with f(q)g = p.
Then set
Th,P:=TR,Tf(Th;Q) < T,P. (4.1.4)

We want to show that
Th:P>pw~ThyP cT,P

defines a connection on P. To begin with, Th,P is well-defined, i.e., independent
of ¢: If p= f(q1)g1, then g1 = ¢gh for some h € H. Then

f(@g=p=f(gh)g = f(O)A(h)g1,

and since G acts simply transitively on P, we have g = A(h)g;. This, together with
the fact that fo Ry, = Ry o f (see Definition 2.2.3), implies

TRy, Tf(Th)Q)=TRyTf(TRy(Th,Q)) = TRy, TR\uTf(ThQ)
= TR,Tf(Th;Q).
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Th is right invariant: f(q)ga = pa, so
TR.(ThyP) = TR, TRyTf(Th{!Q) = TRy T f(Th{ Q) = ThyaP.

Next, T'hy, P is complementary to T'v, P: By Definition 2.2.3, mpof = 7q, so T(g)mpo
T,f =Tynq : The@ — T, M, which is an isomorphism. Thus Ty 7p : T, f(TheQ) —
T, M is an isomorphism, and in particular dim Th, P = dim T, f (Th,Q) = dim M, so
dim Thy, P+dim Tv, P = dim P and it remains to show that Th, Pnker(T,mp) = {0}.
So let v =TR, o T, f(w) for some w € ThyQ, and

0=T7rp(v)=TnpoTRyoT,f(w)=TrpoTyf(w)=Trg(w).

Then w =0, so v =0.

Finally, to see that the distribution ThP is smooth, we have to show that ¢ and ¢
in (4.1.4) can be chosen to depend smoothly on p. Let ¢p and ¢¢g be bundle charts
and set ¢ := qﬁgzl(w(p), e) and g:= p(f(q))™' - pp(p), both clearly smooth. Then

op(f(0)-9) = (mp(f(9)-9),0p(f(2)-9)) = (z.0p(f(0)er(f(9) " or(p) = ¢r(p).

So we have proved that ThP is a connection on P. Uniqueness follows since (4.1.1)
completely fixes the horizontal tangent spaces (due to right invariance, which forces
(4.1.4) to hold), and ThP satisfies that equation (set g =e in (4.1.4)).

Denote by A the connection form corresponding to ThP via Theorem 3.1.4. To
verify (4.1.2), let X € Th:;‘Q. Then

A(A(X))=0 and (fFA)(X)=A(Tf(X))=0

because T'f(X) is horizontal by (4.1.1). If, on the other hand, Y (¢q) € Tv,Q (Y € b)
is an arbitrary vertical vector, then first note that due to exp® o), = X o exp® (]9,
8.8]),

VY (@) =, o] (@) e @rr) = | (7! (1))

- gl (e @) =TH (G e @) < I @),

Therefore,

(S* A (Y (a) = ATF(Y (9))) = AN (V) (f(9))) = A (Y) = M (A(Y (9)))-

To prove the remaining claim, we use the structure equation from Theorem 3.5.3:

* A _ ot g % 1 *T A A _ B 1 * A p* A
PR = prade S fIAA] = d(rA) s LAl

= Ao A)+A[A oA N0 A] = Ay 0dA+ LA, 0[4, A] = A, 0 FA,
(4.1.2) 2 2

where we used the fact that A, is a Lie algebra homomorphism. O

4.1.2 Remark. The Theorem shows that (4.1.2) follows from (4.1.1). Conversely,
if there exists a connection form A on P such that (4.1.2) holds, then also (4.1.1)
is satisfied, so these conditions on A and A are indeed equivalent. To see this, let
X € ThyQ, then A(T,f(X)) = (f*A)(X) = A (A(X)) = 0, s0 T, f(X) € Thy,, P.
On the other hand, given Y € Th?(q)P, there is a unique A-horizontal lift X €
ThiQ of Tygmp(Y) € T,M (with @ = 7p(f(q)) = mq(q))- Then by what we
just showed T, f(X) is A-horizontal and satisfies Ty)mp (T, f(X)) = Trp(X) =
Trqmp(Y), implying Y = T, f(X) € qu(Thj;‘Q) by uniqueness of horizontal lifts,
showing (4.1.1).
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4.1.3 Definition. The connection form A € C(P) from Theorem 4.1.1 is called the
A-extension of A€ C(Q). Conversely, given A eC(P), a connection form A € C(Q)
that satisfies (4.1.1) (or, equivalently, (4.1.2)) is called a A-reduction of A. If H ¢ G
is a Lie subgroup and Q € P is an H-reduction of P, then A is simply called a
reduction of A to Q and A is called reducible to Q if such an A € C(Q) exists.

While a A-extension always exists (due to Theorem 4.1.1), the same is not necessarily
true for A-reductions. For Lie subgroups, the next Theorem will give a simple
characterization. In its proof we shall make use of:

4.1.4 Lemma. Let j: M™ < N" be an immersion, let X € X(M) and let p e M.
Then there exists a neighborhood U of p in M and some X € X(N) such that
Xojly=TjoXlo.

Proof. See Appendix. O

4.1.5 Theorem. Let H € G be a Lie subgroup, Q ¢ P an H-reduction of the prin-
cipal fiber bundle P and A a connection form on P. The following are equivalent:

(i) A is reducible to Q.
(ii) On TQ, A only takes values in b.
(iii) ThAP € T,Q for all q € Q.

Proof. As before (but contrary to what we did in [9]) we will notationally suppress
the tangent map of the inclusion ¢ : Q) = P and view T,Q) directly as a subspace
of T, P, and similarly for H ¢ G, where for A = H - G we identify T\ = A\, with
h = g. Then (4.1.1) takes the form Thg‘Q = Thj;‘P, and (4.1.2) reads /Nl|TQ = A.
(1)=(ii): By Definition 4.1.3 there exists a connection form A on Q with A|rqg = A,
and A takes values in § by definition.

(ii)=(i): Recall from Remark 2.5.3 that in terms of suitable bundle charts the
inclusion map @ < P can locally be written as idy x tgog. This shows that @
is an immersive submanifold of P, and in particular Q — P is smooth. Now set
A= A|TQ To see that A is smooth, let X be a smooth local vector field on @
and let X be a smooth local extension to P as in Lemma 4.1.4. Then A(X) = ¢~
Ay (X(q)) = A(X) oinclg. p is smooth. By assumption, A € Q*(Q,h). That it is a
connection form is seen as follows: For h € H ¢ G and X € T,Q),

(R A)y(X) = Ay (TRy X)) = Ad(h™) 0 A(X) = Ad(h™) 0 A(X).

Moreover, for X ¢ b we can calculate the corresponding vertical vector field X in
q as

X9q) = = |<q exp™ (X)) = |(q exp® (X)) = X (q),

so A(X9)y = A(X), = X

The connection form A satisfies (4.1.2) by its definition and what we said at the
beginning of the proof.

(i)=(iii): Let A be a connection form on @ satisfying (4.1.2), i.e., A|TQ = A,
then by Remark 4.1.2 it also satisfies (4.1.1), which in the current setup reads
Thi'P =Th{}Q c T,Q for all g€ Q.

(iii)=(i): Set TheQ = Th:fP for all ¢ € . This defines a smooth distribution on @,
for if X1,..., Xy € X1oc(P) is a local basis for ThA P, then the X; are tangential to
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Q by (iil), hence by [9, 17.15], their restrictions to @ form a smooth local basis in
X10c(Q) for ThQ. Also, that ThQ is right invariant (under H) and complementary
to Tv@ is immediate from the corresponding properties of ThP (and the fact that
g-heQ for ge Q, h e H). The connection form A on @ corresponding to Th@ by
Theorem 3.1.4 satisfies (4.1.1) by definition. ]

4.2 Holonomy group and holonomy bundle of a
connection

Our aim here is to find the smallest possible reduction of a given principal fiber
bundle to a Lie subgroup of G. In general this subgroup will not be closed (hence
will only be an immersive submanifold, cf. [9, 21.9]). In this section, let (P, 7, M,G)
be a principal fiber bundle over a connected manifold M and let A be a connection
form on P. For a path 7 :[0,1] — M denote by 73;4 : Pyy = Py(1) the parallel
transport along . For x € M let

Q(x) := {7 |~ is a path in M that is closed in x}
Qo(x) :={y]~ is a path in M that is closed in 2 and null-homotopic}.

Let v:[0,1] = M be closed in z and fix u € P,. Since G acts simply transitively on
the fibers there is a unique element hol, () € G with

A
P (u) =u-holy(y). (4.2.1)
hol, (7y) is called the holonomy of v with respect to u.

4.2.1 Lemma. Letv,0€Q(x), ue P, aeG and p:[0,1] > M a path in M with
initial point x. Then:

(i) hol, (v * 8) =hol, () - hol,(d).
(ii) hol,q(y) = a™ -hol,(¥) - a.
(iii) holpa () (p* v * ) = hol, (7).

Proof. All these properties follow from Theorem 3.3.7 and simple transitivity of
the action on fibers:

w-holy (v * 8) = P2 s(u) = P2 (P (u)) = P2 (u-hol,(8)) = P2 (w) - hol, ()
=w-hol, () -hol, (&) = (i).
(u-a)-holy..(v) = Pf(u -a) = Pf(u) ~a =u-hol,(v)-a= (i)
P (u)holpauy (x5 % 117) = Pt - (PR () = Pl (w)
= 'P;?(Pf(u)) = Pf(u -hol, (7)) = ’Plf‘(u) -holy, (v) = (iii).

4.2.2 Definition. For u ¢ P,, the group
Hol, (A) :={hol, () |y e Q(x)} € G

is called the holonomy group of A with respect to u € P. The group
Hol,, (A) := {hol, (v) | y € Qo(x)} € G

is called the reduced holonomy group of A with respect to u € P.
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Both sets are indeed subgroups of G by Lemma 4.2.1. For v € Q(z) and vy € Qo(x)
we have 7~ * g * v € Qo(x), hence

holy, (7)™ +holy (7o) - holy () = hol, (v~ * 70 * 7) € Holy, (A4),

implying that Hol®(A) is a normal subgroup of Hol,(A). Moreover, Lemma, 4.2.1
(ii) shows that the holonomy groups corresponding to different reference points in
the same fiber are conjugate to one another:

Holy(A) =a™'-Hol,(A)-a (ue Py, ac@).

Let g € Hol,(A), u-g = P,f(u) and let oav:= g * v * p~, p a path from x to y. Then
a € Q(y) and Theorem 3.3.7 gives

PP () = Pi, (u) = PP (u) = Pil(u-g) = PiH(u) - g,

S0 g € Holp;‘;(u)(A). Applying the same reasoning to p~ we also get Holp;?(u)(A) c
Hol,, (A), so altogether
Hol, (A) = HOIP;;‘;(U)(A). (4.2.2)

The next result shows that Hol, (A) is indeed even a Lie subgroup of G:

4.2.3 Theorem. The holonomy group Hol,(A) is either discrete or is a Lie sub-
group of G. The reduced holonomy group Holg(A) 1s the comnected component of
the unit element of Hol,(A). In particular, if M is simply connected then Hol, (A)
is connected.

Proof. We begin by showing that if Hol’(A) # {e} then it is a connected Lie
subgroup of G. To do so, according to [9, 21.12] it suffices to show that any element
g € Hol?(A) can be connected to e € G by a (piecewise smooth) path that lies
entirely in Hol’(A). Let v € Qo(x) be a null-homotopic path that is closed in
x = m(u) and for which Pf(u) =ug. Let H:[0,1]x[0,1] - M be a homotopy with
H,=H(.,s)eQ(x) between the constant path Hy and H; = . Since v is piecewise
smooth, we can also choose H piecewise smooth.! Let H} be the horizontal lift of
H with initial point w. By the proof of Theorem 3.3.5, H; is the solution of an
ODE whose right hand side is piecewise smooth, so H is itself piecewise smooth
as well. Let gs be the unique element of G with

Py (u) = Hi (1) = ug,.

Then [0,1] 3 s~ g, € G is a piecewise smooth curve in G whose image lies entirely
in Holg(A) and which connects e to g, proving our claim.

Next, consider the map

p:m (M, x) - Hol,(A)/Hol’ (A)

123
[v] = hol, (v) mod Hol)(A), (4.2.3)

with v a piecewise smooth representative of the homotopy class.! To see that p is
well-defined, let 1, 72 be paths with [y1] = [y2]. Then 7 := 75 *; is null homotopic
and hol,(y1) = hol,(y2) - hol, (7). Thus hol,(y1) and hol,(72) lie in the same
equivalence class of Hol, (A)/Hol’(A). In addition, p is a group homomorphism:

p([v]-161) = p([ry * 6]) = [holu (v * 6)] = [hol, () - hol, (6)] = p([7]) - p([4])-

The fundamental group of a smooth manifold is at most countable ([11, Th. 8.11]).
Since p is surjective, also Hol,(A)/Hol’(A) is at most countable. In particular,

1See, e.g., [12, Lem. 6.6].
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Hol, (A) is the union of at most countably many disjoint orbits of the form g, -
Hol? (A), with g, € Hol,(A). By declaring = g, -z to be a diffeomorphism we
may introduce a smooth structure on each such orbit so that Hol,(A) becomes
an immersive submanifold of G, and since Hol’ (A) is an integral manifold of an
integrable distribution (by [9, 19.3]), so is Hol,(A). The group multiplication x on
Hol, (A) can be decomposed according to

Hol, (A) x Hol, (A) — Hol% (A) x Hol® (A4) — Hol, (A)
(9n, gmy) = (T,Y) > GnTgmy

and is therefore smooth as a map into G. But then by [9, 17.26], also p : Hol, (A4) x
Hol, (A) - Hol, (A) is smooth, hence Hol, (A4) is a Lie subgroup of G. By construc-
tion, Holg(A) is the connected component of e. Finally, if M is simply connected
then any closed path is null homotopic, so Hol, (A) = Hol? (4) and thereby Hol, (A)
is connected. O

The following fundamental result shows that any connection on a principal fiber
bundle can be reduced to its holonomy group.

4.2.4 Theorem. Let (P,7m,M,G) be a principal fiber bundle with connection A
over a connected manifold M and fix uwe P. Let Hol,(A) be non-discrete and set

PA(u) = {p € P| 3A-horizontal path from u to p}.
Then:
(i) (PA(u),W|pA(u),M, Hol, (A)) is a principal fiber bundle.
(i) (P,m,M,G) and A reduce to (PA(u),ﬂ|pA(u),M,Holu(A)).

Proof. We verify the three conditions from Theorem 2.5.4 to show that P4(u) c P
carries the structure of a Hol, (A)-reduction of P. Let x = 7(u).

1.) Let p e P4(u) and h € Hol, (A). This means that there exists a horizontal path
0 from u to p and a p € Q(x) with Pf(u) = uh (i.e., the horizontal lift u) of u
through u connects u to w-h). From Theorem 3.3.7 (iii) we gather that Ry oJ is a
horizontal path from uh to ph. Thus (Rp 0 d) = u, is horizontal and connects u to
ph, implying that Rj,(P“(u)) ¢ P4(u). The same argument with A~! in place of h
shows that indeed we have Ry, (P4 (u)) = PA(u).

2.) Let p,p e PA(u) NP, and p = pg. Pick horizontal paths § from u to p and 6 from
u to p, and set = 7(07) *7(4) € Q(z). Again by Theorem 3.3.7, the horizontal lift
of p through w is given by u), = (67-g) %0, which has endpoint ug. Thus g € Hol,,(A).
3.) Let y € M. Then since M is connected there exists a path § in M from z to y.
Then the endpoint v = §(1) € P, of the horizontal lift of § through u lies in P*(u).
Fix any Riemannian metric on M and let U, be a normal neighborhood of y in M.
For z € U, denote by +,. the radial geodesic from y to z in U,. We define a section
s:Uy - P by
s(z) = ijyz(v) = szz o P (u).

Then s is smooth since ,. depends smoothly on z and horizontal lifts are solutions
of ODEs (proof of Theorem 3.3.7). The second form of s shows that s(U,) ¢ PA(u).
Thus Theorem 2.5.4 implies that P“(u) has the structure of a Hol, (A)-principal
fiber bundle that is a reduction of P and it only remains to show that also the
connection form A reduces to P“(u). According to Theorem 4.1.5 it suffices to

show that Th/'P ¢ T, P*(u) for all ¢ € P4(u). So let g € P*(u) and let X € Th{'P.
Let o be a smooth curve in P with (0) = X and set v := woo. Then by (3.1.3),
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9, (0) = X. Since ¢ can be connected to u by a horizontal path, the image of
lies in P4(u). If we we can show that 7. is smooth as a map into P*(u) then we
can conclude that X € T,P*(u) and are done. Since P“(u) is only an immersive
submanifold of P this requires an argument: By the proof of Theorem 3.3.5 we have
Yy (t) = 0(t)-g(t) and since the only requirements on ¢ are that §(0) = ¢ and that it
projects to v, we can choose it as a smooth curve into P#(u): In fact, with s as in
3.) around (q), let 6(¢) := s(y(t)) and pick h € H such that 6(y(0))-h = ¢. Then
o(t) == 5(15) - h is smooth by Theorem 2.5.4 and has the required properties. Also,
g: I — G is smooth. Since §(t) € P4(u) and Yg(t) = 0(t)-g(t) € PA(u), point 2.)
above implies that g(t) € Hol, (A) for all ¢. Also, as Hol,(A) is a Lie subgroup, |9,
19.3,17.27] show that g : I - Hol, (A) is smooth, hence so is t = v, (t) = 0(t) - g(t)
as a map into P4(u).

Altogether, (P“(u),7|pa.), M,Hol,(A)) is a principal fiber bundle that is a re-
duction of (P, A). O

4.2.5 Definition. The principal fiber bundle (P4 (u), 7| payy, M, Hol, (A)) is called
the holonomy bundle of A with respect to u.

4.2.6 Remark. For u,v € P it follows immediately from the definitions that
PA(u) = PA(v) if and only if u and v can be joined by a horizontal path. Since
being joined by such a path gives an equivalence relation, either P4 (u) = P4 (v)
or PA(u) n PA(v) = @, so P is decomposed into the disjoint union of its holonomy
subbundles.

4.2.7 Definition. Let (P,m,M,G) be a principal fiber bundle over a connected
manifold M. A connection form A e C(P) is called irreducible if (P, A) cannot be
reduced to a proper Lie subgroup of G.

The holonomy bundle P4 (u) is the “smallest” possible reduction of P in the fol-
lowing sense:

4.2.8 Theorem. Let (P, A) be a principal fiber bundle with connection and let
(Q,A) be a reduction of (P,A) to a Lie subgroup H of G, where Q € P is an
immersive submanifold of P. Then

(i) PA(u) € Q for each ue Q.

(ii) AlTPA(u) = Alrpacy), i-e., A reduces to the connection induced (by Theorem
4.2.4) on PA(u) by A.

Proof. (i) Let p € P4(u) and let v* be an A-horizontal path [0,1] — P with
7*(0) = and y*(1) = p, so that 7" is the A-horizontal lift of v := woy*: [0,1] - M.
By the proof of Theorem 4.1.5 we have Thj;‘Q = Thj;‘P for all ¢ € Q. Let v be
the A-horizontal lift of v in Q through u. Then 44 is also A-horizontal and by the
uniqueness of horizontal lifts it follows that v = ~*, which thereby lies entirely in
Q. In particular, p = v*(1) € Q. Note that we have thereby shown that for each
u € Q, the A-horizontal paths in P emanating from u are precisely the A-horizontal
paths in Q emanating from u, so P4(u) = Q4(u). For the latter set we know by
Theorem 4.2.4 (and Theorem 2.5.4) that it is an immersive submanifold of Q.

(ii) Since both f and A from Theorem 4.1.1 are the inclusion maps, (4.1.2) says
that A = Alrg. As noted in (i), P4(u) is an immersive submanifold of @, so
T,PA(u) € T,Q, ie., T,P*(u) nT,Q = T,P*(u) for all g € Q. Since (by Theorem
4.2.4) Alppa(y) is the reduced connection on PA(w), we obtain

Alrpacay = (AlrQ)|rpacw) = Alrgrrpaw) = Alrpace-
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]

4.2.9 Remark. By Theorem 4.2.4, therefore, A € C(P) is irreducible if and only if
P = PA(u) and G = Hol, (A) for all u e P.

The following Theorem gives a criterion for irreducibility and also a measure of the
size of the holonomy group. In its proof we will make use of a direct consequence
of the Frobenius theorem:

4.2.10 Lemma. Let E be an integrable distribution on a manifold M and let
x € M. Then the leaf of E through x, i.e., the maximal connected integral manifold
of E through x is given by the set of all a € M that can be connected to x by a
(piecewise smooth) path ~y: I — M with ¥(t) € E.;y for all t € I.

Proof. See the Appendix. O

4.2.11 Theorem. (Holonomy Theorem of Ambrose and Singer) Let (P,7,M,G)
be a principal fiber bundle over a connected manifold M, with connection form A
and curvature form FA = DsA. Then for the Lie algebra hol,(A) of the holonomy
group Hol, (A) we have

hol, (A) =span{F;'(X,Y) |pe P*(u), X,Y e Th) P} cg. (4.2.4)

If G is connected and M is simply connected then A is irreducible if and only if
P = PA(u) and

g=span{F(X,Y) |pe P*(u), X,Y e Th) P}.
for allu e P.

Proof. To prove (4.2.4), without loss of generality we may assume that P = P4 (u)
and G = Hol, (A), since otherwise by Theorem 4.2.4 we may first reduce (P, A) to
PA(u) (without changing the right hand side of (4.2.4), cf. (4.1.1) and (4.1.3)). Let

m:=span{F;'(X,Y) |pe P, X,Y e Th) P}.

Then we need to prove that g = m. We first show that m is an ideal in g. Let
FAX,Y)emand W eg. Let g:=exp(tW) and p € P, then T,Ry(X) € Thiy, P, so
for any t € R,

(R;xp(tW)FA)p(Xv Y)= F;g(TpRg(X)vaRg(Y)) em,
and hence the same is true for the derivative. Using that F'4 is of type Ad, we have

d
m> $|O(F,ﬁxp<tW)(TRexp<tW)X ;T Rexpew)Y))

- (Ad(exp(—tW))(FH(X,Y))) = —ad(W)(F(X,Y)) = [F,N(X,Y), W].

L

Consequently, m is indeed an ideal in g.

Next we claim that the smooth distribution
E:P3pw E,=Th,P&{W(p)| W em} cT,P

is involutive. If X is a horizontal vector field and W € m, then by Theorem 3.3.2
[X, W] is horizontal, hence lies in E. If VW € m, then [V, W] € m since it is an
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ideal, and so by Theorem 1.2.2 [V, W] = [V,W]" € E. Finally, if X and Y are
horizontal vector fields then by Theorem 3.5.6 the vertical component of [ X, Y] is

[X.Y]'=-FA(X,Y)",

and FA(X,Y) e m by definition. By the Frobenius theorem there exists a maximal
connected integral manifold @ € P of E through u € P (the leaf of E through ).
By Lemma 4.2.10, g € P lies in @ if and only if there exists a path v:[0,1] > P
from w to g with 4(t) € E,(;) for each ¢ € [0,1]. By definition of E, ThP ¢ E, and
by that of P4(u) we therefore get P = PA(u) ¢ Q. Thus indeed P = Q and we
conclude that TP =TQ = E. Consequently,

dim @ = dim B, = dim(Th,P) + dimm = dim M + dimm,
SO
dimg=dim P -dim M =dim @ - dim M = dimm,

implying g = m.

Finally, suppose that G is connected and M is simply connected. By Remark 4.2.9,
A is irreducible if and only if P = P“(u) and G = Hol, (A) for all u € P. Hol,(A)
is connected by Theorem 4.2.3 and connected subgroups of a Lie group coincide if
and only if their Lie algebras coincide (]9, 19.5]). Thus

G =Hol,(A) < g=hol, (4) =m.

O

Given a vector bundle FE with a covariant derivative V one can also define a cor-
responding holonomy group, as follows: Let z € M and v € Q(z). Then (cf. the
remark preceding Theorem 3.4.12) 'PX € GL(E;) is a linear isomorphism of the fiber
E,.

4.2.12 Definition. The group
Hol, (V) = {PY | 7 € ()} € GL(E,)

is called the holonomy group of V with respect to x. The group
Hol)(V) = {PY | v € Qo(x)} € GL(E,)

is called the reduced holonomy group of V with respect to x.

A straightforward modification of the proof of Theorem 4.2.3 shows that Hol, (V)
is either discrete or is a Lie subgroup of GL(E;,).

In Section 3.4 we studied the interrelation between connection forms on principal
fiber bundles and covariant derivatives on associated vector bundles. The relation
of the corresponding holonomy groups is clarified in the next Theorem. In its proof
we shall make use of the following result on Lie group homomorphisms:

4.2.13 Lemma. Let ¢ : G - H be a surjective Lie group homomorphism. Then
also . : g = b is surjective.

Proof. See the Appendix. O

4.2.14 Theorem. Let (P,m,M,G) be a principal fiber bundle, p : G - GL(V)
a representation of G and E := P xg V' the associated vector bundle. Let A be a
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connection form on P and V* the induced covariant derivative on E. Finally, for
ue Py let [u]: V > E, be the fiber isomorphism induced by u (cf. (2.3.7)). Then

Hol, (V*) = [u] o p(Hol, (A)) o [u] . (4.2.5)

In particular, Hol, (A) and Hol,(V?) are isomorphic if p is injective.

Let RV be the curvature endomorphism of V4 and Py = PAYA the parallel transport
defined by VA in E. Then the Lie algebra of Hol,(V?) is given by

bo[x(VA) = span {73;1 ORZA(v,w) o Py |v,weT,M, v path from x to y}.

Proof. Let § be a path in M that is closed in . Then by Theorem 3.4.12 and
(3.3.2) with e = [u, z] € E, we have

Py (€) = [Ps(u), ] = [u- holy(6), 2] = [, p(hol, (8))2] = [u] o p(hol, (8)) o [u] " (e),

giving the first claim.

Let v* be an A-horizontal path from u to pe Py, so p ¢ PA(u)y and let 7y := wov*.
Then for any veV,

PY" o [u](v) = PY" ([u,0]) = [P (u),v] = [p,v] = [p](v).
Let X,Y e T,M with A-horizontal lifts X*,Y*. Then by Theorem 3.5.13,
pe(FAX*,Y*)) = [p] ™ o RY (X, Y) o [p] (126)
-1 vA -1 vA vA =
=[u] o (PY) o RY (X,Y) 0 PY" ) o [u].

By (4.2.5), Hol,(v*) is the image of Hol, (A) under the Lie group homomorphism
U:G - GL(E,), g+ [u]op(g) o [u]™. Hence Lemma 4.2.13 shows that

hol, (V") = W, (bol,(A)) = [u] o p.(hol,(A)) o [u] ™!
Wi [u] o span{p.(F;(X,Y)) | pe P*(u), X,Y e Thi P} o [u]™.

Noting that {F/(X,Y) | X,Y € Th) P} = {F*(X*,Y*) | X,Y e T, M}, the second
claim follows from (4.2.6). ]

4.3 Holonomy groups and parallel sections

Let (E, 7, M) be a real or complex vector bundle over a connected manifold M with
covariant derivative V¥ and denote by

Par(E,V7) = {p e (E) | V¥ = 0}

the set of parallel sections of E.
A subbundle F ¢ E is called VP-invariant if

VED(F)cT(F) VX eX(M).
In this case V¥ induces a covariant derivative V¥ := VE|F(F) on F.

4.3.1 Theorem. Let M be simply connected, F ¢ E a VE-invariant subbundle of

rank r > 0, VI the induced covariant derivative on F and suppose that RV = 0.
Then dim Par(E,v¥) > r.
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Proof. Fix z € M and a basis (v1,...,v,) of F,. We generate sections ¢; in F' by
parallel transporting v; (1< <7r):

%ZM9y’—>Pyv;(Ui)era

where v,, is a path in M from x to y. To see that y; is well-defined we have to
show that it does not depend on the choice of path v,,. We know from Remark
2.4.4 that F is associated to a GL(r,K)-frame bundle P, i.e., F' = P xqp( k) K.
Also, by Remark 3.4.14 there is a connection form A on P such that v4 = v¥.
Then Theorem 3.5.13 (with p = id the natural representation of GL(r,K) on K")
together with our assumption on R give

0=RY(X,Y)p=[p, F(X*,Y* )], for o =[p,v] = [p](v),

where X*,Y* are horizontal lifts of X and Y, respectively. Since [p] is bijective,
FA(X™*,Y*)(v) =0 for all v, hence FA(X*,Y*) =0 for all X*,Y*, i.e., F4 =0 since
it is a horizontal form. As M is assumed to be simply connected, parallel transport
P4 in P then is path-independent due to (the proof of) Theorem 3.5.11. Again by
Remark 3.4.14, for any v € F,

Py o [)(0) = PY o [p)(0) = PYA([p0]) =) [P 0).0] = [P ()](v),

implying that PV s path-independent, and so ¢; is indeed well-defined. It is
smooth by the smooth dependence of solutions of ODEs on the initial conditions.
Since parallel transport is a linear isomorphism (cf. (3.4.17)), the p; are linearly
independent.

To conclude the proof it therefore suffices to show that the sections ¢; are parallel.
Using Theorem 3.4.11 we calculate:

(VEe) W) = 5] (PToy (22 ()
d

d P F F
- %‘O(Py(t)yyprvﬁ(t)(vi)) = %‘O(PZy (Ui)) =0.
]

This result shows that one strategy for finding parallel sections in E consists in de-
tecting flat subbundles of E. Another possibility makes use of the holonomy group:
Let (P, 7, M,G) be a principal fiber bundle with M connected and connection form
A, let p: G - GL(V) be a representation of G, E = P xg V the associated vector
bundle and V¥ the covariant derivative induced on E via Definition 3.4.8. In this
situation we have:

4.3.2 Theorem. (The holonomy principle) There exists a bijective correspondence
between the space of parallel sections of E and the set of holonomy invariant vectors

mV: ”
Par(E,v¥) <> {veV | p(Hol,(A))v = v}.

If M is simply connected, then in addition we have
{veV |pHol,(A)v=v}={veV|p.(hol,(A))v =0}

Proof. Let z = w(u) and abbreviate Hol,(A) by H. Given v € V such that
p(H)v = v, define ¢, € T'(F) by

Oy M3y [P'l;‘(u)vv] eEyy
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where ~ is a path in M from x to y. To show that ¢, is well-defined we have to
establish independence from the choice of v. So let u be another path from x to y.
Then p~ * v € Q(z) and by Theorem 3.3.7

Pt ar () = Pir (P (w)) = u-h
for some h € H. Thus ’P;‘(u) = ’P;:‘(uh) and thereby
[P} (u), 0] = [Py (u)h, 0] = [P} (u), p(h)v] = [Py (u), 0].
Now

po(y) = [PA(uw)0] = PPA(uw]) = PY ([uv]),

(3.3.2) 3.4.12

so exactly as in the proof of Theorem 4.3.1 it follows that ¢, is smooth and parallel.

Conversely, let ¢ € TI'(E) be parallel. By Theorem 4.2.4, (P, A) reduces to the
holonomy bundle @ := P4 (u), and Theorem 2.5.8 shows that

E=PxgVzQ@QxygV.
Using Theorem 2.3.4 we may therefore write ¢ in the form

o(m(p)) = [p, 8(0)1Pxav = [0 V() ]oxnv = ©(mq(q))

for functions @ € C=°(P, V)¢ and ¢ € C*°(P*(u),V)H. The proof of Theorem 2.3.4
shows that, since for g € Q we have 7(q) = 7g(q),

[0, 2(D)]pxev = #(7(0) = #(70(0) = [0 ¥(D]axuv , = [0 V(D]Pxav,

and since [q] is bijective this implies that @(q) =1 (q).
By Definition 3.4.8 and (3.4.7),

(VR@) (7 (p)) = [p,do(X " (p))] , X @),

(3.1

with X* the horizontal lift of X. From this relation we read off that ¢ is parallel if
and only if X*(p) = 0 for each horizontal vector X*, i.e., if and only if @ is constant
along every horizontal path. Thus there exists a vector v € V with 1 = @lpauy =v.
By the invariance property of ¢ € C=°(P4(u), V), for each h € H we have

v=9(gh) = p(h)P(q) = p(h~ v,
so p(H)v = v. Moreover, taking for v the constant path v = x,

u(@) = po(m(w)) = [P (u), 0] = [u,0] = p(2),

and since both sections are parallel we obtain that ¢ = ¢,, concluding the proof of
the first claim.

If p(H)v = v, then for any X € hol,(A) we get by differentiating p(exp(tX))v = v
at t = 0 that p.(X)v = 0. Conversely, if p,.(X)v =0 for each X € hol,(A), then by
(9, 8.8]

p(exp(X))v = exp(pe (X))o = v =,

If M is simply connected then Hol,, (A4) is connected by Theorem 4.2.3. It is therefore
generated by exp(hol,(A4)), and so in this case

{veV | p(Hol,(A))v=v} = {ve V| pu(hol,(4))v = 0}.
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4.4 Holonomy groups of semi-Riemannian mani-
folds

In this final section we want to briefly look at the important special case of holonomy
theory for semi-Riemannian manifolds with their natural Levi-Civita connection,
referring to [1, Ch. 5] for much more information. Thus let (M, g) be a connected
manifold with semi-Riemannian metric g and denote by V9 = v*C the Levi-Civita
covariant derivative on M induced by g (cf. Example 3.1.12).

For any path «: [a,b] > M from z to y and v € T, M denote by X, the vector field
along « that is generated by parallel transport of v along 7, i.e., (cf. (3.4.16))

9x
th Y_0, X,(a)=v.

Since the Levi-Civita connection is metric, the parallel transport defined via X, (cf.
(3.4.17))

PY T, M ~ T, M
v X, (b)

is a linear isometry between the spaces (T,;M, g,) and (T, M, g,). In particular, if
7 is a closed path then P is an orthogonal map on (7 M, g.).
The holonomy group of (M, g) with respect to x € M is the holonomy group of the
Levi-Civita connection V9 (see Definition 4.2.12):

Hol,(M,g) = {PJ: TuM - T M [y € Q(z)} € O(T: M, g..).
The reduced holonomy group of (M, g) with respect to z is

Hol) (M, g) = {PY: TuM —» T, M | v € Qo(z)} € Hol, (M, g).

Holonomy groups in different points are conjugated (cf. the discussion following
Definition 4.2.2):

Hol, (M, g) = P2 o Hol, (M, g) o PY_, (4.4.1)
with ¢ any path from z to y.

If two semi-Riemannian manifolds are isometric then obviously their holonomy
groups are isomorphic, but the converse is not true in general. This raises two
fundamental questions:

1. Which groups can occur as holonomy groups of semi-Riemannian manifolds?

2. Which geometric properties of (M, g) are characterized by its holonomy group?

For Riemannian manifolds the answers to these questions are known, whereas in the
general semi-Riemannian setting the situation is not yet completely understood.

If ¢ has signature (p, q) then by (2.5.3) we have
TM = O(M, g) xo(p.q) R (44.2)

Also, we know from Example 3.4.15 that VY is associated to a connection form A9
on O(M,g), such that V9 = V4. From Theorem 4.2.3 and the remark following
Definition 4.2.12 we therefore immediately obtain:

4.4.1 Theorem. The holonomy group Hol,. (M, g) is either discrete or is a Lie sub-
group of the orthogonal group O(Ty M, g.). The reduced holonomy group Holg(M, 9)
is the connected component of the unit element of Hol, (M, g). If M is simply con-
nected then Hol, (M, g) is connected.

91



4.4.2 Example. The holonomy group of RP-4
Let RP? be the pseudo-Euclidean space R™, n = p + ¢ with scalar product

(l‘, y>p,q =YL T~ TpYp t Tpr1Yp+l T TprgYprg-

The Levi-Civita connection on RP'? then is given by the directional derivative of
vector fields:
viY = X(Y) (X,Y e X(R™Y)).

In particular, if Z € X, is a vector field along a path 7 in R™, then

\
dt

(t)=Z'(t).
Thus Z is parallel along v if and only if ¢t = Z(t) is constant. Therefore

HOII (Rp’q) = {idTmR"}-

Note that, conversely, if the holonomy groups of a semi-Riemannian manifold are
trivial, then parallel transport is path independent, which implies that the curvature
tensor vanishes, i.e., that M is flat (cf. [10, Rem. 3.1.8]).

Next we want to formulate the holonomy theorem of Ambrose and Singer (Theorems
4.2.11, 4.2.14) in the present context. Denote by RY the Riemann curvature tensor
of (M,g). Since V9 = VA, R9 = RV’ (cf. Definition 3.5.12). By the symmetry
properties of RY (cf. [10, 3.1.2]), the endomorphism R (v,w) : T,M — T,M is
skew-symmetric for all x € M and v,w € T, M, i.e., it is an element of the Lie
algebra so(T, M, g,) of O(T,M,g,).? Let v be a path in M from x to y and let
v,weT,M. By (v*RY).(v,w) we denote the endomorphism

(V' R)a(v,w) ="P5- o RY(PY(v), P§(w)) o Py € s0(TuM, gz ).
Since Py : T, M — T,M is a bijection,
{PI o RY(v,w) o P4 | v,w e T, M} = {PJ_ o R§(PY(v), P§(w)) o P | v,w e T M}.
Theorem 4.2.14 therefore takes the form:

4.4.3 Theorem. (Holonomy theorem of Ambrose and Singer) The Lie algebra of
the holonomy group of (M, g) is given by

hol, (M, g) = span{(v*R?),(v,w) | v,w € T, M, v path starting in x}.

Setting v = x it follows, in particular, that all curvature operators R,(v,w) lie
in the Lie subalgebra hol, (M, g) of so(T.M,g,). Hence if the reduced holonomy
group is smaller than SO(T, M, g,.) (the connected component of I in O(T, M, g.))
then Theorem 4.4.3 imposes additional curvature restrictions. On the other hand,
if there exists even one point xg € M in which the curvature operators RY (v,w)
generate the entire Lie algebra of skew symmetric endomorphisms, then the reduced
holonomy group (of every point in M, cf. (4.4.1)) is the maximal possible group
SO(T, M, gz).

4.4.4 Example. If (M, g) is a simply connected manifold that is isometric to the
flat space R™ in the neighborhood of a point y, but isometric to the upper half of the
sphere S™ in the neighborhood of another point z, then also Hol, (M, g) = SO(n).

2S0(Tx M, g;;) is the connected component of the identity in O(TyM, gz), so both Lie groups
have the same Lie algebra, namely the space of skew-symmetric linear endomorphisms s0(7y M, gz ).
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Thus the holonomy group of M is a global object, and in general it does not suffice
to analyze parallel transport only locally.

Finally, we want to examine the form the holonomy principle (Theorem 4.3.2) takes
here. On any tensor bundle 7 the Levi-Civita covariant derivative induces a covari-
ant derivative (tensor derivative, cf. [10, Sec. 1.3])

vIT(T)-T(T"MeT)
E.g., for the homomorphism bundle 7 = Hom(TM,TM) we have
(VL F)(Y) = V% (F(Y)) - F(V%Y),
and for (r, s)-tensors the following product rule holds:
V(T ®8)=viTeS+TeVv%s.

Any tensor bundle is associated to a principal fiber bundle with linear structure
group (cf. Example 2.4.6), and the above defines a covariant derivative on it. So we
find ourselves precisely in the situation of Theorem 4.3.2, allowing us to conclude:

4.4.5 Theorem. (Holonomy Principle) Let (M, g) be a connected semi-Riemannian
manifold, T a tensor bundle over M and x € M. Then:

(i) Let T e T'(T) with V9T =0. Then Hol,(M,g)T(z) = T(x), where the action
of the holonomy group is canonically extended to the tensors T,.

(ii) Let T, € T, with Hol,(M,g)T, = T,. Then there exists a unique tensor field
T el(T) withvIT =0 and T'(x) = T,. This tensor field is obtained by parallel
transport of Ty, i.e., T(y) := PI(Ty), where y € M and v is any path from x
to y.

This result very nicely displays the geometric meaning of the holonomy group: If
the holonomy group Hol, (M, g) lies in the invariance group of a tensor T, at x then
there exists an additional global structure on M, namely the tensor field resulting
from T, via parallel transport. The following special cases illustrate this principle:

4.4.6 Examples.

(i) For T =TM, the holonomy principle says that (M, g) possesses a non-trivial
global parallel vector field if and only if there exists a vector 0 # v € T,, M with
Hol, (M, g)v =v.

(ii) Parallel transport along curves in oriented manifolds is orientation preserv-
ing. Thus the holonomy group of an oriented semi-Riemannian manifold lies
in SO(T,M,g,). Another way to express this is to note that the volume
form on an orientable semi-Riemannian manifold is parallel. Conversely, let
T = A"T*M and let (dVy), € A"T; M be the volume form of (T, M,g,)
(for some fixed orientation in T,M). Then the invariance group of (dVy),
is SO(T, M, g..) and by the holonomy principle it can be extended by paral-
lel transport to a volume form on M if the holonomy group is contained in
SO(T,M,g.). Altogether, a semi-Riemannian manifold (M, g) is orientable if
and only if its holonomy group is contained in SO(T, M, g.).

(iii) Let 7 = Hom(TM,TM) and J, : T, M — T, M be a linear orthogonal map
with J2 = —idz, 5. Then the invariance group of J, is precisely the unitary
group U(T; M, gz, J;) € SO(T: M, g..):
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The holonomy principle in this case says that the holonomy group Hol, (M, g)
lies in the unitary group U(T,M,g,,J,) if and only if (M,g) is a Kaehler
manifold, i.e., if and only if there exists a parallel almost complex structure
J on M. By this we mean a homomorphism J:TM — T'M with

g(JX,JY)=g(X,Y), J*=-idpy and V9.J = 0.
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Chapter 5

The Yang—Mills equation

5.1 The Maxwell equations as Yang—Mills equa-
tion

The Maxwell equations of electrodynamics provide a complete description of the

generation of electric and magnetic fields as well as their interaction. In particu-

lar, for time-dependent fields they predict the occurence of electromagnetic waves.

Classically, the electric and magnetic field are described by vector fields E and H
on some open region U ¢ R?:

E:UxR—>R3 H:UxR - R

The charge density is described by a time-dependent function p, and the current
density by a time-dependent vector J:

p:UxR—>R, J:UxR - R3.

Then the Maxwell equations read

10H
rot(E) = —Eaa—t, div(H) =0, (5.1.1)
rot(H) = éaa—f + 4§J, div(E) = 4mp, (5.1.2)

with ¢ the speed of light. Equivalently, the electromagentic field (E, H) can be de-
scribed by a 2-form F on the subset U xR of Minkowski space R3, with Lorentzian
metric

g =dz® +dy® + dz? - Pdt>.

Let E=(E,,Ey,E.), H=(H,,Hy,H.), and J = (J;, Jy, J.), then we set
F:=(E,dx + Eydy + E.dz) A cdt + Hydy Adz + Hydz A da + H dx A dy,

and 1 1 1
Jp = =Jpdr + = Jydy + —J.dz - pcdt.
c c c

To continue, we define ad-hoc the Hodge-star operator on Minkowski space, but
postpone the general definition on semi-Riemannian manifolds to the next section.
Let

« QF(RY?) > QR (RD?)
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where, for k = 2:

*(cdt ndx) = dyndz, s(de Ady) =-cdt ndz,
*(cdt A dy) —dx Andz, *(de Adz) = cdt Ady,
*(cdt ndz) = dxndy, *(dy ndz) = —-cdt Adx,

and for k=3

*(cdt ndx Andy) =dz, *(cdt Adx Adz)  =-dy,
s(cdt ndy ndz) =dzx, *(dex Adyndz) = cdt.

Using this, we define the codifferential

5 Qk(RB,l N Qk’_l(RB’l)

= %d * .

[e TR

With these operations we have:

5.1.1 Theorem. The Maxwell equations are equivalent to

dF =0 and OF =4mJ,. (5.1.3)

Proof. This follows by a direct calculation, see the Appendix. O

Consider now M := U xR ¢ R*! and let P, be the trivial S*-principal bundle M x S*
over M. Recall from Section 3.6 that Lie(S') = iR and that C(P) is an affine space
over QY(M,iR). Furthermore, F* = dA and ds = d (see (3.6.6) and (3.4.12)),
and by (3.6.5), A, A € C(P,) are gauge-equivalent if and only if there exists some
o €C>(M,S') such that

A=A+o ldo. (5.1.4)

Let us additionally suppose that U is contractible and consider the Maxwell equa-
tions on M, i.e.,
dF =0 and OF =4mJ,. (5.1.5)

By the Poincaré Lemma (e.g., [12, Th. 3.15]) there exists some A € Qli(M, iR)
with dA = iF. We call A the potential of the electromagentic field. Let A be the

corresponding element of Q| (P, iR) (see (3.6.1)). Then A itself is not a connection

form because it is horizontal, hence violates (ii) from Definition 3.1.3. Nevertheless,
since C(Pp) is an affine space over Q! (M, iR), if we pick any Ag € C(Fy), then

A= Ag+AeC(Py).

We choose Ag to be the canonical flat connection form on Py. Then by Theorem
3.5.11 we have F40 =0, so F4 = FA. Moreover,

(F4) = (dA)" 42y MA) = dA =i (5.1.6)

The electromagentic potential is not uniquely determined: By the Poincaré Lemma
any two potentials A, A" differ by some df:

A =A+df  (feC™(M,iR)).

Now set o := e/, then ¢ € C*(M,S') and do = odf, i.e., df = o0~ 'do. By (5.1.4) it
follows that A and A’ are gauge equivalent.
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We are now going to show that the Maxwell equations (5.1.3) can be viewed as a
differential equation for the curvature form of an S 1—conﬁnection (namely A from
above) in a trivial S'-bundle over M. We have A = Ag + A, and

0= idF = d((F*)") = d((F)" + (F2)") = d((F)) = (dF7)"
=0
6o (dzFM < d;F4=0.

Furthermore,

Arid, = §(iF) = #d + (FA)" = xd » (FA)" G FAY

_ ~ ANA - A _ T
(3.4_.12)(*dA>eF ) < *d g+ 7 =4mid,.

Altogether, we obtain

d;FA=0 (5.1.7)
xd;+ FA = 47iJ, (5.1.8)

Note that (5.1.7) is just the Bianchi identity from Theorem 3.5.5. The entire dynam-
ical content of the Maxwell equations is therefore encoded in the second equation
(5.1.8). In vacuum (i.e., for J = 0 and p = 0), (5.1.8) reduces to the so-called
Yang—Mills equation: ) )

§iF4 = xdg* FA=0. (5.1.9)

In theoretical physics it has turned out that also interactions other than the electro-
magentic one can be described in a similar way, replacing S by other (non-abelian)
Lie groups.

5.2 The Yang—Mills equation as an Euler—Lagrange
equation

To formulate the Yang—Mills equation in the general case we first need to define the
Hodge-star operator for a general n-dimensional oriented semi-Riemannian manifold
(M, g), with g of signature (p,n —p). Let dV, be the volume form of g on M. We
note first that g induces a bundle metric on A*T*M as follows: for w,n € AKT M
set

(w,n)y = Z €ir i W(Siyy vy Siy ) N(Siyy- vy Si), (5.2.1)
’i1<"'<ik
where (s1,...,8,) is a positively oriented orthonormal basis of (7, M,g,) and ¢; =

g2(8;,5;) = 1 is the causal type of s;. If (¢1,...,0™) is the dual basis of (s1,...,5,),
then 4 '
VA AT, 1< < <ip<n

is an orthonormal basis of A*T* M of causal type (see (5.2.1) and [7, 4.3.9])

(0 A A G A NGy m ey ey (5.2.2)
An alternative, manifestly basis-independent way of introducing the scalar product
(5.2.1) on A*T¥ M is to view the scalar product on T M itself as a linear bijection
G:T;M — T, M: in terms of local coordinates, §(dz") = g/ 9;, so (§(dz"),d;) = 6} =
dz'(0x). Given one-forms o = fida',w = hjdz?, w(G(a)) = fih;jg¥ = (a,w), where
the scalar product of one-forms is defined via the inverse matrix g% .
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We can then apply the universal property of A*T* M to the map

TiM x - xTiM - AT, M

(a1, ap) = glat) A A gla®),
Indeed, from this it follows that for aq,wsq,...,ag,w, one-forms on T, M we have

(A Aag,wr A Awg) = (G(a) A A Ga®)) (wy A Awy)
=det({ay,w;)) = Y sgnr{ar, we1)) - - (e wraey)s
T€SE
which again confirms (5.2.2). An explicit coordinate formulation is derived as fol-

" - 1AL Bk ) = v
lows: Let a = 215M1<"‘<Hk5” Ol;“...ukdx LA Adx yWw = Zl§y1<--~<uk§n le--Adex A
-~ Adz¥*. Then defining a#1#k = gh¥1 | ghvVeqy, . we calculate:

v 1%
<a’w> = Z aM1~~-kaV1-~~Vk<dxM1 /\"'/\dxuk7d33 LA Ad k)

B <<

U1<---<Uk
_l (d Hl/\,”/\d #kdvl/\,,,/\d Vk)
- k'aﬂl<~~ﬂkw’/l---yk T X", ar X
—l Z <d K1 g V7(1)> <d Bk d l/,r(k)>
= Kl SENT Oy .. Wy ..., AT, AT LoAdxt dx

* T€SK —_———

=g"1r(D)

1
= pHivy WV _ B
—k!k|@;t1-..ukwvl...uk9 .. g =0y W .

For w,n € Q¥ (M) we obtain a smooth function on M,

{w,m) 22 = {w,n)(2) = (w(@),1(2))e € R.

5.2.1 Definition. The Hodge-star operator on (M, g) is the linear operator

«: QF (M) - Q" (M)

W *W,

where
wAo = (xw,o)dV, Vo e Q"R (M). (5.2.3)

5.2.2 Theorem. The Hodge-star operator on (M, g) has the following properties:

(i) Existence: Let (s1,...,5,) be a local positively oriented basis in TM and let
(o1,...,0™) be the dual basis in T*M. Then * is given by

x(a" A na*) =g gy sgn(TT) o7t A A oI (5.2.4)

where (IJ) = (i1...5kJ1--.Jn-k) is a permutation of (1...n) and sgn(I1J) is
its sign.

(ii)
%0 %|gr(ary = (PO adon . (5.2.5)

(i) The x-operator is isometric or skew-isometric:
(3w, *@) = (-1)P(w, @)  (w,@ e QF(M)). (5.2.6)
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(iv) Let w,& e Q¥(M) and o € Q" (M), then

WA*D =0 A *w = (-1)P(w,@)dV, 5.2.7

wAo = (-1 wa)dV,. (5.2.8)

Proof. (i) Since dV, =o' A---A 0",
TN A AT NG A A gInR = sgn (1) dV,. (5.2.9)

Therefore, defining * by (5.2.4), due to (5.2.1) we indeed obtain the required prop-
erty (5.2.3), because

(x(c™ A AT™) 0T A A IR = sgn (1)

whenever (1.J) is a permutation of (1...n). Otherwise, both sides of (5.2.3) vanish
since #(o™ A--- A @) is perpendicular to the other base vectors of A" *T™* M.

(ii) It suffices to verify the claim on vectors from the given base. We have

% (0" Ao A O™ i€y sgn(IT) - # (a7 A A gTnok)

= ¢
(5.2.4)
= (-1)Psgn(JI)sgn(IJ)o" A--- A o™

= (~1)P(-1)F R g A A g,
(iii)

(*w, *w)dV, (5;'3) WA *@ = (—1)k("_k) *W AW (5;3) (—1)k(n_k)(>e *@, w)dVy

- (—1DP(S
o3, (U @0,

(iv) By (5.2.3), w A *@ = (*w, *@)dVy, and & A *w = (*@, *w)dV,, which together
with(5.2.6) gives (5.2.7). Finally (5.2.8) follows from

— _1 k:(n—k) - _1 k(n—k) dV.
wao=(-1) a/\w(5.2.3)( ) (*o,w)dV,

]

Let (P,m,M,G) be a principal fiber bundle over the oriented semi-Riemannian
manifold (M, g), let p: G - GL(V) be a representation of G, and let E = P xg V
be the corresponding associated vector bundle. Then the Hodge-star operator can
be extended to a linear map

+: QF(M,E) - Q"%(M,E)

as follows: Fix a basis (e, ...,e,) in E,. Then any w e A¥T* M ® E, can be written
as w =7 wj ®ej, and we set

T
W= Y kW ® €. (5.2.10)
j=1

5.2.3 Definition. Let A be a connection form on P and let dy : Q*(M,E) -
QFY(M, E) be the differential induced by A (see (3.4.6)). The codifferential &4 :
QMY (M, E) - QF(M, E) is defined by

54 = (_1)nk+p+1 wdg*.

99



On V we fix a G-invariant (not necessarily positive definite) scalar product (., . )y
By Theorem 2.4.10, to (., . )y there corresponds a bundle metric on E via

(6, é)Ear = (Uv U)V (6, ee E1)7
where e = [p,v] and é = [p,?] for some p € P,. Then the metric ¢ on M and the

bundle metric (., . )z induce a bundle metric on A*(T* M) ® E of E-valued k-forms
on M: For w,ne A*(T: M) ® E we set

(Wmai= >, i (w(Siyy 80 )y N(Siys - - Sin )V Ews (5.2.11)

11 <-+<ip
where as before (s1,...,$,) is a positively oriented orthonormal basis of (T, M, g..)

and ; = g, (s;,5;) = 1 is the causal type of s;. Then for w,n € Q¥(M, E) we obtain
a smooth scalar function

(w,m) 2 (w,m) () = w(@), ) € R,

Based on this we introduce an L2-scalar product on the space Qf (M, E) of com-
pactly supported E-valued k-forms on M:

(w0, 12 = /M(w,n)dvg (w,n € QL (M, E)). (5.2.12)

If (M, g) is Riemannian and (., .)y is positive definite, then so is (., .)pz.

An essential fact for our further considerations is that §4 is adjoint to ds with
respect to (., .)re2:

5.2.4 Theorem. Let we Q§(M,E), ne Q1 (M, E). Then
(dAw,n>L2 = <0J,5A77>L2.

Proof. Since both d4 and §4 are linear and using a partition of unity, it suffices
to work on a trivializing open set U and to verify the claim on forms w = o ® e with
o eQF(M), eeT(E), and n = p® f with u e Q§*' (M) and f e I'(E). Indeed we
may choose e and f from a local orthonormal basis in F, so that

(e, f) = const (5.2.13)
on U. We have
daw=dpa(oc®e) = dooe+(-1)*onvie
(3.4.14)
n , (5.2.14)
=do®e+(-1)F Y(oac')® Via
i=1
where (s1,...,5,) is a local orthonormal frame on U and (o!,...,0™) is the corre-

sponding dual frame. Then

(=15 4n = wda%n (dxp)® f+(-1)" " Z(*uwi)®v;‘§f), (5.2.15)

o
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and therefore, using (5.2.11) and (5.2.1),
(dUa /J)(@, f)dvg + (_1)k Z(U A o’ivl’t)(Vi& f)dVg

5n CDP (T nsme, f)+ ((1)P Elo o’ asp)(Viie, /)

3 10 CD7(A( A x) = (1) o nd () e, f)
+(—1)P+n—1 ZU/\*,u/\gi( si({e, f)) —<e,V;4if))
' =0 by (5.2.13)

3y (Do A sle f)) 5 ()FPHOR o, e, fav

d dV, =
(dac, m)dVy (5.2.14)

+ (PO S o (e a o) e, VI f )V
= (=1)?d(o n=ple, f))

(5.2.10)
+ (1P w0, ((d ) ® f + (1) () AVAS))dV

(5.2.15) (-D)Pd(o A *pfe, f)) +(w,6an)dVy.

Finally, since ¢ has compact support we get by Stokes’ theorem

[ fdawmydvy = [ (w.am)av,.
O

Consider now the adjoint bundle Ad(P) = P x(g aq) ¢ from Remark 3.2.4. By
(3.5.6), the curvature form F4 of a connection form A on P can be viewed as a
2-form on M taking values in Ad(P). Analogous to the case of S'-bundles we
therefore define:

5.2.5 Definition. A connection form A (as well as the corresponding connection)
on P is called a Yang-Mills connection if its curvature form F4 € Q?(M,Ad(P))
satisfies the Yang—Mills equation

S4FA =0.

We want to show that the Yang-Mills equation is the Euler-Lagrange equation
of a Lagrangian functional on the space C(P) of connection forms on P. To do
so, consider a principal fiber bundle P over a compact oriented semi-Riemannian
manifold (M, g) and fix an Ad-invariant scalar product (., .)q on the Lie algebra g
of G:

(Ad(9)X,Ad(9)Y )y =(X,Y),4 VX,Yeg, geG. (5.2.16)

We equip the space Q%(M, Ad(P)) with the scalar product induced by g and (., . ),
as described after Definition 5.2.3. A suitable Lagrange functional is then given as
follows:

5.2.6 Definition. The functional L:C(P) - R,
L(A) = [ (PAFYav,
M
is called the Yang-Mills functional (corresponding to (., .)q).
5.2.7 Theorem. The Yang—Mills functional is invariant under the action of the

group of gauge transformations G(P) on the space C(P), i.e., L(A) = L(f*A) for
each A €C(P) and each f € G(P).
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Proof. By Theorem 3.5.18 we have
FIA = prpA = Ad(o}') 0 FA, (5.2.17)
where o € C®(P,G)¢ satisfies

f(p)=p-os(p) VpeP,

see (3.5.13). As was stated before Definition 5.2.5, we consider F# here as an
element of Q?(M,Ad(P)). By (3.2.2), the relation between FA e Q2 (P, g)(@AD
and FA4 is L
F(t1,t2) = [p, FA(X1, Xo)],
where t; € T, M, 7(p) =z, and Tw(X;) = t;. In particular, if s: M 2 U — P is a local
section, then T'm o T's = id, so we may pick X; = T's(¢;). Using this, since (., .)q is
Ad-invariant, by (5.2.11) we get for (s1,...,5,) a local orthonormal frame in T'M:
. . A A
(FIAFI Ay, = S oo (FT A (Ts(s:), Ts(s)), Flo (Ts(s:), Ts(57))

i<j

= e (FA ; ). FA _ _
(5.2.16)?(542.17) ;61€J<Fs(m)(Ts(Sl)vTs(sj))vFS(I)(TS(Sz)vTS(sJ)))g

= (FA FYY,.

Thus L(f*A) = L(A), as claimed. ]

To determine the first variation of the Yang—Mills functional, recall from Remark
3.2.4 that the space C(P) of connection forms on P is an affine space over the vector
space Q'(M,Ad(P)). In this sense we may consider ToC(P) := Q' (M, Ad(P)) as
the tangent space of C(P) at A. Then the differential of L in the point A in direction
w € TAC(P) is defined by

AL (w) =L

| (A ).

5.2.8 Definition. A connection form A € C(P) is called a critical point of L if
dL 4 =0.

To characterize critical points of L we need one more auxiliary result:

5.2.9 Lemma. Let (P,m,M,G) be a principal fiber bundle, A a connection form

on P and o € Q*(M,Ad(P)). Then A+ o eC(P) by Remark 8.2.4, and if p: G —

GL(V') is a representation of G with E = P x, G the associated vector bundle, then
(i) darow =daw + p.(0) Aw for allw e QP (M, E).

(ii) FA* = FA +dao + 5[0, 0].

Proof. By Theorem 3.2.3 and (3.4.6) it suffices to prove these claims for the
corresponding horizontal forms on P and the absolute differential D 4. Thus let
g€ Qior(P, g)(Ad’G) be the 1-form corresponding to o. Then by Theorem 3.4.4, for
any @€ QP (P,g) A% we have

Dpso=do+ps(A+c) A =dwo+p.(A)A@+ p(T) Ao = Daw + p«(5) A,
which gives (i).
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For (ii), by (3.4.3) we have
Dag=do+Ad(A)ra.
Here, by (3.4.4) and since Ad, = ad we have

(Ad.(A) A7) (t0,11) = ad(A(t))(5(t1)) - ad(A(t1))(a(t0))
=[A(t0),5(t1)] - [A(t1),5(t0) ]

Using (3.5.5) and writing 4 = ¥, A'v;, & = ¥, 6'v; in terms of a basis (v;) of g, we
calculate

[A(to),o(t1)] - [A(t1),5(t0)] = 2. (A" (to)d” (t1) — A'(t1)a” (to))[vi, v;]

]

= (T A A5 [vi,0;]) (to, 1) = [A,5) (to, 1),

so that
Dag =ds+[A,7]. (5.2.18)

By Lemma 3.5.2 (i), [4,5] =[5, 4], so
FAYT = d(A+5)+1[A+5,A+5]
3.5.3(i) 2

1
:dA+d5+§([A,A] +[o,0]+[A

:dA+%[A,A]+dc‘r+[A,&]+

a
+
1
=
SN—

1
- FAy Do+ -[5,5).
a1 + A0+2[0,0]

Using this, we can finally prove:

5.2.10 Theorem. A connection form A € C(P) is a critical point of the Yang—Mills
functional L if and only if it satisfies the Yang-Mills equation 6 4F4 = 0.

Proof. Let AeC(P) and w € Q'(M,Ad(P)). By Lemma 5.2.9,
1
FAY - PA 4 td qw + §t2[w,w].
Therefore,

d d
dLa(w) = %‘O(L(A +tw)) = %‘O(FA+M7FA+W)L2

= <FA,dAw>L2 + (dAw,FA>L2

= Q(dAoJ,FA>L2 5;42(00,5AFA>L2.

Since (., .)z2 is non-degenerate, this implies that dL 4 = 0 if and only if §4 F4 = 0.
O

We proved this result under the assumption that M is compact. This restriction
can, however, be lifted by considering connection forms for whose curvature form
FA the integral /, i F AF A)dVg converges, a property that is gauge invariant by
Theorem 5.2.7. Then in the proof of Theorem 5.2.10 it suffices to consider variations
in the direction of w, where w is compactly supported.

103



104



Appendices

105






Appendix A

Proofs of auxilliary results

Proof of Lemma 1.1.10 It suffices to take for W the domain of a chart x in N.
Let p be any point in ¥»~}(W) and choose charts (U, = (z*,...,2™)) around p in
M and (V,n = (y%,...,y")) around % (p) such that ¢»(U) € V ¢ W and such that
notoyp = (2. . a™) > (2',...,2™,0,...,0). Then n(¢)(U)) cR™ x {0} c R",
so it has Lebesgue measure 0. It follows that also the image x(¢¥(U)) of this set
under the smooth map y on~! has Lebesgue measure 0.

As p varies in ¢~} (W), the domains U cover the set ¢! (W). As M is second
countable we may extract a countable subcover {Uy | k € N} from this collection.
Then the sets ¥(Uy) cover W n (M), entailing

X(W (M) = U x(&(Ur))-

keN

But then x(W n(M)) has Lebesgue measure 0 and so it cannot be all of x(W).
It follows that ¢ (M) cannot contain all of W. |

Proof of Lemma 3.3.4

We prove the result for g(t), the other case being analogous. Also, it suffices to
treat the case where v is continuous because higher regularity then is immediate
from the equation. Finally, we may assume that v is defined on all of R. Consider
the following vector field on G x R:

Z(g,s) = (TLQ(U(S)), %(s)) €T(y,5)(GxR).

Then the flow line of Z through (e, 0) is of the form F1Z(e,0) = (g(t),t), where g is
a solution of our ODE with ¢g(0) = e by construction of Z. Thus it only remains to
show that g exists on the entire interval [0,1]. Let (e, s) € GxR, then since {e}x[0,1]
is compact there exists some § > 0 such that the integral curves FltZ (e, s) exist for
all s €[0,1] and all |t| < § (cf. [7, 2.3.3]). Fix a partition 0=t <t3 <---<t, =1
with [t; — ¢;-1| < § for all i. On the first interval [0,¢;] we already have a solution g
of our initial value problem. The integral curve F17 (e, t1) for t € [0,t5 —t1] is of the
form F1Z (e, t1) = (b(t),t +t1), where b(t) = T Ly (v(t+t1)) and b(0) = e. We now
extend the curve g continuously to the interval [¢1,t2] by setting

g(t) Izg(tl)'b(t—tl), tE[tth].
Then on this interval
§(t) = TLy(1)b(t = t1) = TLy(yTLb(t = t1) (v(t)) = T Ly (v(t)),
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so we obtain an extension of the solution to [0,t3]. Iterating this procedure we
conclude the proof. Uniqueness follows from general ODE theory. O

Proof of Lemma 3.5.4 To prove smoothness we use local bundle charts according
to (2.3.2):

Yu Ad(P)y > Uxg, [p,X]+ (7(p),Ad(pr(p))(X))
Yy By > UxV, [p,v]= (x(p), p(ev(p))(v))

Then by Remark 2.4.3 a bundle chart of Hom(FE, E) is

xv : Hom(E, F)y - U x Hom(V, V)
L+~ (zﬂZ)U,r oLyo Z/;l},lz)a

so we need to show smoothness of
Mg (2, X) = xvopeoty (@.X) = xu(p([97 (2.€), X]))

= XU([p’ U]E g [p,p*(X)UD = xv(Lz),

where p := ¢ (z,€). For this it suffices to show that

((2,X),0) = (,v.0(La (P51, (0)) € C.

Indeed,

Vu,o(Le (Ve (0) = Yu,0 (Lo ([, v])) = Yu,a([p, pe (X)0]) = (2, p(00 () (p+ (X )0))
= (z, p(pu (87 (2, €))) (p(X)v)),

which, finally, is obviously smooth.

Fiber-linearity of p, is immediate from that of p, : g — L(V, V). O

Proof of Lemma 4.1.4

By the rank theorem ([7, 3.3.3]) we can choose charts ¢ = (y',...,y™) around j(p)
and ¢ = (U,2',...,2™) around p in M such that 1o jo @™ =2+ (z,0). In this
local representation, ,: = 8, for 1 <i <m, so X|y is of the form ¥.;*; X'9,,, where
X" eC>(U). This reduces the problem to extending the coefficient functions locally
to smooth functions on N. So let f e C*(M). By the above we have progoj=¢
on U. Thus setting f = fop topro gives a smooth local function with ij =f.

O

Proof of Lemma 4.2.10

Call A(p) the set described in the Lemma and L,, the leaf of E through p.

c: Let ge A(p) and v : I — M from p to q with §(t) € E, for all t € I. Covering
~(I) by flat charts for E, for each tg € I there exists an open interval around ¢y such
that y(J) is contained in such a cubic chart (U, = (z',...,2™)). Since

Y(t) € Eyy = span{0,: | 1 <i <k},

it follows that 4%(¢t) = 0 for all t € J and k+ 1 < i < n, so v lies entirely in one
slice U, = ¢ 1 (R* x {a}), which is itself a connected integral manifold ([9, 17.33])
and therefore is contained in one leaf. If y(tg) lies in two such charts then the
corresponding leaves intersect, hence coincide. Thus y(I) € L,.
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2: Let ¢ € L,. Since L, is a connected manifold, there exists a smooth curve
o:1 — L, connecting p to q. Let j: L, = M be the inclusion and set y: jog. Then

V(t) = TJ(U) € T’y(t)j(T’y(t)LP) = E’y(t)

for each t, so g € A(p). |

Proof of Lemma 4.2.13
By [9, Sec. 22], ¢ factors over G/kerp as follows:

G——H

| A

Glkeryp

Here 7 is a surjective submersion, so ¢ is smooth, and it is bijective. Since @,
has the same image as ¢, we may replace ¢ by ¢, i.e., we may without loss of
generality assume that ¢ is bijective. By [9, 8.8], ¢ o exp® = exp op,. Hence if U
is a neighborhood of 0 € g on which exp® is injective, then exp’ op, and thereby
@, itself is injective on U as well, so ker(p,) nU = {0}. Since ker(y.) is a linear
subspace of g it must be trivial, showing that ¢, is injective. For general g € G,
@=Ly opoLg,soalso Typ is injective, i.e., ¢ is an immersion. Lemma 1.1.10
then shows that dim H = dim G, so that ¢ is a local diffeomorphism, and since it is
bijective even a global diffeomorphism. This means it is a Lie group isomorphism,
and the claim follows. O

Proof of Theorem 5.1.1
We have

oF, OF
dz Adx Adt+c—Ldx Ady Adt
0 ox

O0F,
dF =c dyndx ndt+c
Jy z

OF . E,
+c—yalealy/\dt+ca dx/\dz/\dt+ca—dy/\d2/\dt
0z Jr dy

0H,
x

+

H, 0H,
dx/\dy/\dera—dt/\dy/\dz-r—ydy/\dz/\dx
ot oy

H,
a@t dt A dx A dy.

H
+&dt/\dz/\d:c+%d2/\dx/\dy+
ot 0z

Consequently,

dF =0 <= rot(F) = —laa—lj and div(H) = 0.
c

Furthermore,

10F,

0E,  10E,, 0B, . 10E, OE.
ox Cdt_c ot de - y Cdt_c ot dy - 0z Cdt_c ot
OH OH. OH OH OH O0H

- rd Ld Ydz - Y da — 2d 2d
oy T o YT or T e T Tr YT gy 4T

sd* F=— dz

which implies

O0F =4nJ, <= rot(H) = 1%—? + 4—7TJ and div(FE) = 4mp.
c c
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