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Preface

Principal fiber bundles are a fundamental tool in differential geometry and global
analysis, where they provide the language for understanding curvature and for
studying the interplay between geometry, analysis and topology. In mathemati-
cal physics they set the stage for gauge theories and the standard model of particle
physics. This course provides an introduction to the topic, closely following the
excellent book [1] by Helga Baum, to which we also refer for further study. Occa-
sional input also comes from [3, 4, 6]. The prerequisites for following the course are
a working knowledge of Lie group theory and analysis on manifolds, as provided by
[7, 9]. Some basics of (semi-)Riemannian geometry will be used from time to time,
for which we refer to [10]. I would like to thank Roman Popovych for many helpful
comments and corrections.

Michael Kunzinger, summer term 2020
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Chapter 1

Transformation groups

1.1 Basics

Throughout these notes, we will always assume that smooth manifolds are Hausdorff
and second countable (in particular this applies to Lie groups). Unless otherwise
stated explicitly, neighborhoods will always be assumed to be open.

Recall from [9, Def. 16.1] the definition of a transformation group:

1.1.1 Definition. A transformation of a manifoldM is a diffeomorphismM →M .
A group G acts on M as a transformation group (on the left) if there exists a map
ϕ ∶ G ×M →M , (g, x)↦ g ⋅ x satisfying:

(i) ∀g ∈ G: lg ≡ ϕg ∶= x↦ g ⋅ x is a transformation of M .

(ii) ∀g, h ∈ G: ϕg ○ ϕh = ϕgh, i.e., g ⋅ (h ⋅ x) = (g ⋅ h) ⋅ x for all x ∈M .

In particular, ϕe = idM , so e ⋅x = x for all x ∈M . G acts effectively on M if g ⋅x = x
for all x implies g = e. It acts transitively if for all x, y ∈M there is a g ∈ G with
y = g ⋅x, and simply transitively if in addition this g is unique. It acts freely on M
if g ⋅ x = x for some g and some x implies g = e. The set G ⋅ x ≡ ϕ(G,x) is called
the orbit of x under G. If G is a Lie group then the pair [M,G] is called a Lie
transformation group.

Fixing x ∈M , we write ϕx for the map g → ϕ(g, x). Analogously, one defines right
actions ϕ ∶ M × G → M . In this case we write rg ≡ ϕg for the diffeomorphism
rg ∶ x ∈M ↦ x ⋅ g ∶= ϕ(x, g).

1.1.2 Definition. If a Lie group G acts transitively on a manifold M , then M is
called a homogeneous space.

Let H be a closed subgroup of a Lie group G. Two elements g1, g2 ∈ G are called
equivalent, g1 ∼H g2, if g1 = g2 ⋅h for some h ∈H. Denote by [g] the equivalence class
of g ∈ G and by G/H the set of all such equivalence classes. Also, let π ∶ G → G/H
be the quotient map. Then by [9, Th. 21.5], if H is open, G/H is discrete (in the
quotient topology). Otherwise, we have:

1.1.3 Theorem. Let H be a closed, non-open subgroup of a Lie group G. Then
there exists a manifold structure on G/H such that:

(i) The projection π ∶ G→ G/H is a submersion.
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(ii) With respect to the left action ϕ ∶ G ×G/H → G/H, (g, [a])↦ [ga], G/H is a
homogeneous space.

(iii) There exist local sections in π ∶ G → G/H, i.e., for any equivalence class
[a] ∈ G/H there exists a neighborhood W ([a]) ⊆ G/H of [a] and a smooth
map s[a] ∶W ([a])→ G with π ○ s[a] = idW ([a]).

Proof. By [9, Th. 21.5], G/H can be endowed with a C∞-structure as a quotient
manifold of G, which just means that (i) is satisfied. Moreover, (iii) is a direct
consequence of the general fact that submersions are precisely those maps that
possess local sections ([9, Prop. 15.2]). So it only remains to verify (ii). Note first
that ϕ is well-defined since [a] = [b] implies that for some h ∈H we have a = bh, so
that [ga] = [gbh] = [gb]. Also, with µ the multiplication on G we have

ϕ ○ (id × π) = π ○ µ,

where the right hand side is clearly smooth. Since id×π is a surjective submersion,
it follows that ϕ is smooth as well ([9, Rem. 13.2]). Finally, ϕ acts transitively:
given [a], [b] ∈ G/H we have ϕ(ba−1, [a]) = [b]. ◻
Our next aim is to show that, conversely, if G is a second countable Lie group acting
transitively on a manifold M , then the homogeneous space M is diffeomorphic to
a quotient of G. From [9, Sec. 16] we know that any transformation group ϕ acting
on a manifold M induces an equivalence relation on M : x ∼ x′ iff there exists some
g ∈ G with x′ = gx (resp. x′ = xg). The equivalence class of any x ∈M is precisely
the orbit of x under G, i.e., it is the range of the map ϕx = g ↦ ϕ(g, x), G→M .

1.1.4 Definition. Let ϕ∶G×M →M be a transformation group on a manifold M .
For any x ∈M , the subgroup Gx ∶= ϕ−1x (x) = {g ∈ G ∣ g⋅x = x} (resp. {g ∈ G ∣ x⋅g = x})
is called the isotropy group (or stabilizer) of x.

1.1.5 Remark. (i) Isotropy groups at equivalent points in M are conjugate sub-
groups of G. Indeed, suppose that x′ = gx. Then (gGxg−1)x′ = x′, so gGxg−1 ⊆ Gx′ ,
and analogously g−1Gx′g ⊆ Gx, so gGxg−1 = Gx′ .
(ii) For any x ∈ M , the map ϕx ∶ G → M projects to a map ψx ∶ G/Gx → M
defined by gGx ↦ gx. The range of ψx is the orbit of x. Also, ψx is injective: if
ψx(g1Gx) = ψx(g2Gx) then g1x = g2x, so g−11 g2 ∈ Gx, i.e., g1Gx = g2Gx.

1.1.6 Remark. Let ϕ∶G×M →M be a Lie transformation group on a manifoldM .
Then any Gx is a closed subgroup of G. Hence by [9, Th. 21.7], Gx is either discrete
or it admits a unique structure as a (regular) submanifold of G. In the latter case
it is also a Lie subgroup of G. If x′ = gx then by Remark 1.1.5 (i), Gx is mapped
onto Gx′ by the diffeomorphism Lg ○Rg−1 . Thus the isotropy groups at points of an
orbit are either all discrete or are regular submanifolds and Lie subgroups of G that
are pairwise diffeomorphic (since Gx, Gx′ are regular submanifolds, the restriction
of Lg ○Rg−1 is also a diffeomorphism from Gx onto Gx′).

If Gx is open then it is closed and open, hence is a union of connected components
of G, which, by [9, Prop. 2.4] are precisely the cosets of the normal subgroup Ge.
If, for example, G = g1Ge ∪ ⋅ ⋅ ⋅ ∪ gkGe and Gx = g1Ge ∪ ⋅ ⋅ ⋅ ∪ glGe, then G/Gx =
{g1Gx, . . . , gkGx}, since for g ∈ gjGe we have

π(g) = g ⋅
l

⋃
i=1

giGe =
l

⋃
i=1

gGegi =
l

⋃
i=1

gjGegi = gjGx.

Also, the orbit of x only consists of finitely many points (namely ψx(G/Gx) =
{g1 ⋅ x, . . . , gk ⋅ x}). Otherwise, we have:
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1.1.7 Theorem. Let ϕ∶G ×M →M be a Lie transformation group on a manifold
M and let x ∈ M . If the isotropy group Gx of x is not open in G then the map
ψx from Remark 1.1.5 (ii) is an injective immersion of the quotient manifold G/Gx
into M .

Proof. Since ϕx = ψx ○ π (with π ∶ G → G/Gx), ψx is smooth by [9, Rem. 13.2].
Also, G/Gx is a quotient manifold of G by [9, Th. 21.5]. Moreover, ψx is injective
by Remark 1.1.5 (ii), so it remains to show that its rank in any point equals the
dimension of G/Gx. Since π is a submersion, this is the case if and only if the rank
of ϕx is everywhere equal to dim(G/Gx). We begin by showing that this is true at
e, for ϕ ∶M ×G→M a right action, as this is the case we will need later on.

Let X ∈ TeG such that Teϕx(X) = 0. Let X̃ ∶ M → TM be defined by X̃(x) ∶=
Teϕx(X). Then X̃ is smooth and X̃(x) = Teϕx(X) ∈ Tϕ(x,e)M = TxM , so X̃ ∈
X(M).1 Moreover, we have FlX̃t (x) = ϕ(x, exp(tX)): this is clear for t = 0. Also,

d

dt
exp(tX) = d

dt
FlL

X

t (e) = LX(exp(tX)),

and since for a right action we have ϕ(ϕx(g), h) = ϕx(g)h = xgh = ϕx(gh) we get
ϕϕx(exp(tX)) = ϕ(ϕ(x, exp(tX)), . ) = ϕ(x, exp(tX) . ) = ϕx ○Lexp(tX). Thus

d

dt
ϕ(x, exp(tX)) = Texp(tX)ϕx(LX(exp(tX))) = Texp(tX)ϕx(TeLexp(tX)(X))

= Te(ϕx ○Lexp(tX))(X) = Teϕϕx(exp(tX))(X) = X̃(ϕx(exp(tX))).

Since X̃(x) = 0, it follows that FlX̃t (x) = x ⋅ exp(tX) = x for all t, i.e., exp(tX) ∈ Gx
for all t.

Now if Gx is discrete then the image of t↦ exp(tX), being connected, must consist
solely of e ∈ G, so X = d

dt
∣0 exp(tX) = 0. In this case, then, Teϕx is injective, and so

the rank of Teϕx equals the dimension of G, and thereby the dimension of G/Gx.
If Gx is non-discrete then by Remark 1.1.6 it is a regular submanifold of G. Hence
t↦ exp(tX) is smooth as a map into Gx (see [7, 3.3.14]), and so X = d

dt
∣0 exp(tX) ∈

TeGx. Altogether, we obtain that ker(Teϕx) ⊆ TeGx. Conversely, ϕx is constant on
Gx, so Teϕx∣TeGx ≡ 0, hence in fact ker(Teϕx) = TeGx. Consequently, using [9, Th.
21.7] we obtain

rk(Teϕx) = dimG − dimGx = dimG/Gx.
Finally, if g is an arbitrary point in G then ϕx ○Lg = ϕx′ , where x′ = xg. Then since
Lg is a diffeomorphism we have

rkg(ϕx) = rke(ϕx′) = dimG/Gx′ .

Now by Remark 1.1.6 Gx and Gx′ are either both discrete or they are diffeomorphic,
so we conclude that the rank of Tgϕx equals dimG/Gx for every g ∈ G. ◻

1.1.8 Corollary. Under the assumptions of Theorem 1.1.7, if Gx is not open then
the orbit G ⋅x can be endowed with the structure of an immersive submanifold of M
diffeomorphic to G/Gx.

Proof. For clarity, we write ψ̃x for ψx, viewed as a (bijective) map from G/Gx
to G ⋅ x. Declaring ψ̃x to be a diffeomorphism provides G ⋅ x with a differentiable
structure with respect to which the inclusion map j ∶ G ⋅ x ↪ M is an immersion
since j ○ ψ̃x = ψx ∶ G/Gx →M is an immersion. ◻

1X̃ is precisely the fundamental vector field corresponding to X, see Section 1.2.
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1.1.9 Remark. Suppose that G is connected and let x ∈ M . By Corollary 1.1.8
the orbit G ⋅ x can be discrete only if Gx is open: if Gx is not open then Gx is
non-discrete in its manifold topology hence also in the coarser trace topology. In
this case, Gx is open and closed in G, so Gx = G and therefore G ⋅ x = {x}.

Recall that G is said to act transitively on M if for any x, x′ ∈M there exists some
g ∈ G with gx = x′. Such a group action possesses only a single orbit, namely the
manifold M itself. By Remark 1.1.5 (i) this means that any ψx is a bijection from
G/Gx onto M . To further elaborate on this, we will need the following auxiliary
result:

1.1.10 Lemma. Let Mm and Nn be manifolds and suppose that M is second
countable and that m < n. Then an immersion ψ ∶M → N cannot be onto any open
subset W of N .

Proof. See Appendix A. ◻
Using this, we can prove:

1.1.11 Theorem. Let G be a second countable Lie group that acts transitively
as a Lie transformation group on the manifold M . Then for any x ∈ M the map
ψx ∶ G/Gx →M is a G-equivariant diffeomorphism.

Proof. Fix any x ∈ M . If Gx is open, then so is any gGx, hence any point in
G/Gx (because π−1(π(g)) = gGx), which is therefore discrete (cf. [9, Rem. 20.1]).
Otherwise, by [9, Th. 21.5] G/Gx possesses a differentiable structure as a quotient
manifold of G. In both cases, the quotient map π ∶ G → G/Gx is open and con-
tinuous, so also the topology of G/Gx is second countable. Hence if G/Gx were
discrete it would be countable. But ψx is bijective, so this would imply that M
was countable, which is impossible. Hence G/Gx is not discrete, and so it is a
quotient manifold of G with a countable basis for its topology. Also, by Theorem
1.1.7 ψx is an injective immersion of G/Gx into M . Hence dimG/Gx ≤ dimM .
Since ψx is onto M , Lemma 1.1.10 implies that the dimensions in fact are equal.
As ψx ∶ G/Gx →M is an immersion, it follows that its tangent map is bijective at
any point. Thus by the inverse function theorem it is a local diffeomorphism, hence
a global diffeomorphism since it is bijective. Finally G-equivariance simply means
ψx(a ⋅ (gGx)) = ψx(agGx) = agx = aψx(gGx), which is clear from the definition. ◻

1.1.12 Corollary. Let G be a second countable Lie group that acts transitively and
freely as a Lie transformation group on the manifold M . Then M is diffeomorphic
to G.

Proof. If G acts freely then Gx = {e} for every x ∈M . Hence G/Gx = G and the
result follows from Theorem 1.1.11. ◻

1.1.13 Corollary. Let G be a compact Lie group that acts transitively as a Lie
transformation group on the manifold M . Then M is compact.

Proof. Since G is compact, it is second countable. By Theorem 1.1.11, M is
diffeomorphic to G/Gx, for any x ∈ M . Let π ∶ G → G/Gx be the quotient map.
Then π(G) = G/Gx is compact, hence so is M . ◻

1.2 Fundamental vector fields

In this section we introduce a fundamental tool for studying Lie group actions.
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1.2.1 Definition. Let [M,G] be a left Lie transformation group and let X ∈ g.
Then the vector field X̃ ∈ X(M) defined by

X̃(x) ∶= d

dt
∣
0
(exp(−tX) ⋅ x) = −Teϕx(X)

is called the fundamental vector field corresponding to X. If G acts on the right
then we set

X̃(x) ∶= d

dt
∣
0
(x ⋅ exp(tX)) = Teϕx(X).

Clearly, X̃ is smooth and since the curve t ↦ exp(−tX) ⋅ x has value x at t = 0, X̃
is indeed a section of TM .

1.2.2 Theorem. Let [M,G] be a Lie transformation group.

(i) The map

g→ X(M)
X ↦ X̃

is linear and [X,Y ]∼ = [X̃, Ỹ ], i.e., it is a Lie algebra homomorphism. In
particular, the set of fundamental vector fields forms a Lie subalgebra of the
Lie algebra X(M).

(ii) If Ge (the connected component of e in G) acts effectively on M , then X ↦ X̃,
g→ {X̃ ∈ X(M) ∣X ∈ g} is a Lie algebra isomorphism.

(iii) If G acts on the right, then for all g ∈ G and all X ∈ g, the push-forward
(rg)∗X̃ of X̃ under rg is given by

(rg)∗X̃ = (Ad(g−1)X)∼.

If G acts on the left,
(lg)∗X̃ = (Ad(g)X)∼.

Proof. (i) Linearity of X ↦ X̃ is immediate from that of Teϕx. Suppose first that
G acts on the right. If X ∈ g ≅ XL(G) then

Tgϕx(X(g)) = Tgϕx(TeLg(X(e))) =
d

dt
∣
0
(ϕx(Lg(exp(tX))))

= d

dt
∣
0
(x ⋅ g ⋅ exp(tX)) = X̃(x ⋅ g) = X̃(ϕx(g)).

This shows that X and X̃ are ϕx-related for any x ∈ M , X ∼ϕx X̃. Thus also

[X,Y ] ∼ϕx [X,Y ]∼, and by [9, Lemma 4.4] we get [X,Y ] ∼ϕx [X̃, Ỹ ]. Altogether,

[X̃, Ỹ ](x) = [X̃, Ỹ ](ϕx(e)) = Tϕx([X,Y ](e)) = [X,Y ]∼(ϕx(e)) = [X,Y ]∼(x).

If G acts on the left, let ϕ′x ∶ G→M , ϕ′x(g) ∶= g−1 ⋅ x. Then for X ∈ XL(G),

Tgϕ
′
x(X(g)) = (Tgϕ′x)(TeLg(X(e))) =

d

dt
∣
0
ϕ′x(g ⋅ exp(tX))

= d

dt
∣
0
(exp(−tX)(g−1 ⋅ x)) = X̃(g−1x) = X̃(ϕ′x(g)),

and the rest of the argument is as above.
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For the remainder of the proof it will suffice to consider right actions.

(ii) Let Ge act effectively, then we have to show that X ↦ X̃ is injective. Thus let

X̃ = 0, so that FlX̃t (x) = x for all t and x. As we have seen in the proof of Theorem

1.1.7, FlX̃t (x) = x ⋅ exp(tX), so x ⋅ exp(tX) = x for all x ∈M and all t ∈ R. Now for
t0 sufficiently small, g0 ∶= exp(t0X) lies in a normal neighborhood of e ∈ Ge (i.e., a
neighborhood onto which exp is a diffeomorphism). Since Ge acts effectively on M ,
we have g0 = e and thereby X = 0.
(iii) Let x ∈M , g ∈ G and X ∈ g. Then applying [9, Th. 9.2] (iii) we calculate

(rg)∗X̃(x) = Txg−1rg(X̃(xg−1)) = Txg−1rg(
d

dt
∣
0
(xg−1 ⋅ exp(tX)))

= d

dt
∣
0
(x ⋅ (g−1 ⋅ exp(tX) ⋅ g)) = d

dt
∣
0
(x ⋅ (conjg−1(exp(tX))))

= d

dt
∣
0
(x ⋅ exp(tAd(g−1)X)) = (Ad(g−1)X)∼(x).

◻
To conclude this section we prove a product rule that will be useful several times
later on.

1.2.3 Lemma. Let [M,G] be a right Lie transformation group. Also, let t ↦ x(t)
be a smooth curve in M with x(0) = x, and t ↦ g(t) a smooth curve in G with
g(0) = g. Set z(t) ∶= x(t) ⋅ g(t). Then

ż(0) = Txrg(ẋ(0)) + (TgLg−1 ġ(0))∼(x ⋅ g). (1.2.1)

Proof. As before, we denote the group action by ϕ ∶M ×G →M . Then using the
identification T(x,g)(M ×G) ≅ TxM ⊕ TgG we calculate:

ż(0) = d

dt
∣
0
ϕ(x(t), g(t)) = T(x,g)ϕ(ẋ(0), ġ(0)) = T(x,g)ϕ(ẋ(0),0) + T(x,g)ϕ(0, ġ(0))

= d

dt
∣
0
ϕ(x(t), g) + d

dt
∣
0
ϕ(x, g(t)) = d

dt
∣
0
rg(x(t)) +

d

dt
∣
0
ϕx(g(t))

= Txrg(ẋ(0)) + Tgϕx(ġ(0)).

Let X ∶= TgLg−1 ġ(0) ∈ g. Then viewed as a left-invariant vector field we have

X = h ↦ LTgLg−1 ġ(0)(h) = TeLh(TgLg−1 ġ(0)), and in particular X(g) = ġ(0). By
the calculation in the proof of (i) of Theorem 1.2.2 we know that

X̃(x ⋅ g) = Tgϕx(X(g)) = Tgϕx(ġ(0)),

so the claim follows. ◻

1.2.4 Corollary. Let [M,G] be a right Lie transformation group with group action
ϕ ∶M ×G→M . Then

T(x,g)ϕ ∶ TxM ⊕ TgG ≅ T(x,g)(M ×G)→ TxgM

(X,Y )↦ Txrg(X) + µG(Y )∼xg,

where µG is the Maurer–Cartan form on G.

Proof. This is immediate from the previous result by letting ẋ(0) = X, ġ(0) = Y
and recalling the definition of the Maurer–Cartan form from [9, Sec. 10]. ◻
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Chapter 2

Principal fiber bundles

2.1 Fiber bundles

Our main objects of study throughout this course will be locally trivial fiber bundles
(with certain additional structures).

2.1.1 Definition. Let M,E,F be smooth manifolds and let π ∶ E → M be a
smooth map. The tuple (E,π,M,F ) is called a smooth fiber bundle or locally
trivial fibration of fiber type F if for any point x there exists a neighborhood U ⊆M
and a diffeomorphism ϕU ∶ π−1(U)→ U × F such that pr1 ○ ϕU = π:

π−1(U) U × F

U

ϕU

π
pr1

E is called the total space, M the base space, π the projection, and F the fiber type
of the fibration. We will often abbreviate (E,π,M,F ) by E.

Since π = pr1 ○ ϕU , π is a surjective submersion. In particular, for any x ∈ M ,
Ex ∶= π−1(x) is a regular submanifold of E (see [7, Cor. 3.3.23]), called the fiber
over x. The pair (U,ϕU) is called a bundle chart or local trivialization of E over
U . For any V ⊆M let EV ∶= π−1(V ). If V is open, then also (EV , π, V,F ) is a fiber
bundle in its own right, the subbundle over V .

For any x ∈ U we have ϕU(Ex) = {x} × F and the map

(ϕU)x ∶= pr2 ○ ϕU ∣Ex ∶ Ex → F (2.1.1)

is a diffeomorphism: taking any p ∈ Ex,

dimEx = dimkerTpπ = dimE − dim im(Tpπ) = dimE − dimM = dimF

(because ϕU is a diffeomorphism). Thus rkp((ϕU)x) = rkTp(ϕU ∣Ex) = dimEx =
dimF , showing that (ϕU)x is a local diffeomorphism. Since it is also bijective, it is
indeed a diffeomorphism.

Let {Ui}i∈I be a covering of M and let (Ui, ϕi) be a bundle chart for each i ∈ I.
Then the maps

ϕi ○ ϕ−1k ∶ (Ui ∩Uk) × F → (Ui ∩Uk) × F (2.1.2)

7



are called transition functions between the bundle charts (Uk, ϕk) and (Ui, ϕi).
Denoting by Diff(F ) the diffeomorphism group over F we obtain maps

ϕik ∶ Ui ∩Uk → Diff(F )
x↦ ϕix ○ ϕ−1kx ∶ F → F

that satisfy the so-called cocycle conditions

ϕik(x) ○ ϕkj(x) = ϕij(x) and ϕii(x) = idF . (2.1.3)

The collection of maps {ϕik}i,k∈I is called the cocycle of the bundle atlas {(Ui, ϕi)}i∈I .

2.1.2 Definition. Two fiber bundles (E,π,M,F ) and (Ẽ, π̃,M, F̃ ) over the same
base manifold M are called isomorphic, E ≅ Ẽ, if there exists a diffeomorphism
H ∶ E → Ẽ such that π̃ ○H = π.

2.1.3 Examples. (i) Let M,F be manifolds and let pr1 ∶ M × F → M be the
projection to the first factor. Then F ∶= (M × F,pr1,M,F ) is a fiber bundle with
bundle atlas consisting of the sole chart {(M ×F, id)}. Any fiber bundle isomorphic
to such an F is called trivial.

(ii) For dimM = n, the following are standard examples of fiber bundles over M :
the tangent bundle (TM,π,M,Rn), the cotangent bundle (T ∗M,π,M,Rn), the
k-form bundle (ΛkT ∗M,π,M,Rλk), with λk ∶= (nk), and the (r, s)-tensor bundle

(T rsM,π,M,Rn
r+s).

To construct fiber bundles it is useful to know how to generate the manifold structure
of the total space from knowledge of a bundle atlas. To this end we first introduce
some notation:

2.1.4 Definition. Let M,F be manifolds and let π ∶ E → M be a surjective map
from a set E onto M . If U ⊆ M is open and ϕU ∶ π−1(U) → U × F is a bijective
map with pr1 ○ ϕU = π∣EU

, then (U,ϕU) is called a formal bundle chart for E. A
family {(Ui, ϕUi)}i∈I of formal bundle charts of E with respect to π is called a formal
bundle atlas if {Ui}i∈I covers M .

2.1.5 Theorem.

(i) Let M,F be manifolds and π ∶ E →M be a surjective map from a set E onto
M . Let {(Ui, ϕi)}i∈I be a formal bundle atlas of E with respect to π such that
all transition functions

ϕi ○ ϕ−1j ∶ (Ui ∩Uj) × F → (Ui ∩Uj) × F (i, j ∈ I)

are smooth. Then there exist a uniquely determined topology and manifold
structure on E such that (E,π,M,F ) becomes a fiber bundle with bundle atlas
{(Ui, ϕi)}i∈I .

(ii) Let (E,π,M,F ) and (Ẽ, π̃,M, F̃ ) be fiber bundles over M and let H ∶ E → Ẽ
be a bijective map with π̃ ○H = π. Suppose that for all charts from two given
bundle atlasses {(Ui, ϕi)} of E and {(Ui, ϕ̃i)} of Ẽ the chart representations

ϕ̃i ○H ○ ϕ−1k ∶ (Ui ∩Uk) × F → (Ui ∩Uk) × F̃

are diffeomorphisms. Then H ∶ E → Ẽ is a bundle isomorphism.
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Proof. (i) Define O ⊆ E to be open if for every (Ui, ϕi) the set ϕi(O ∩ π−1(Ui)) is
open in Ui × F . This defines a topology τ on E: clearly ∅ and E are open and so
are arbitrary unions and finite intersections of open sets.

Then each π−1(Ui) = EUi is open because ϕj(EUi ∩ EUj) = (Ui ∩ Uj) × F is open.
Moreover, ϕi ∶ EUi → Ui ×F is a homeomorphism: Let O ⊆ EUi . Then, by definition
of τ , O is open if and only if ϕj(O ∩ EUj) is open for each j ∈ I. Setting j = i it
follows that ϕi(O) is open in Ui×F , so ϕi is open. To see that it is also continuous,
let W ⊆ Ui × F be open. Then ϕ−1i (W ) is open in EUi because

ϕj(ϕ−1i (W ) ∩EUj) = (ϕj ○ ϕ−1i )(W ∩ ϕi(EUi ∩EUj))
= (ϕj ○ ϕ−1i )(W ∩ ((Ui ∩Uj) × F ))

is open in Uj × F for each j ∈ I.
It now follows that τ is second countable: We may assume without loss of generality
that I is countable. Then picking a countable base Bi in each Ui and B in F ,

{ϕ−1i (Bi ×B) ∣ i ∈ I, Bi ∈ Bi, B ∈ B}

is a countable basis for τ . To see that τ is also Hausdorff, let p ≠ q be points in E.
If π(p) ≠ π(q) then there exist disjoint Ui, Uj with π(p) ∈ Ui and π(q) ∈ Uj , hence
EUi and EUj are disjoint neighborhoods of p and q. Otherwise, p, q ∈ Ex for some
x ∈M . Then for x ∈ Ui and we can openly separate ϕi(p) and ϕi(q) in Ui × F and
the claim follows because ϕi is a homeomorphism by the above.

To define the smooth structure on E, we declare the homeomorphisms ϕi ∶ EUi →
Ui×F to be diffeomorphisms. This provides a smooth atlas for E because the chart
transition functions

ϕi ○ ϕ−1j ∶ (Ui ∩Uj) × F → (Ui ∩Uj) × F (i, j ∈ I)

are smooth by assumption. For this C∞-structure π is smooth because π∣EUi
=

pr1 ○ ϕi. (E,π,M,F ) then is a fiber bundle.

Uniqueness of both the topology τ and the smooth structure on E is immediate
because the requirement that {(Ui, ϕi)}i∈I be a bundle atlas uniquely determines
both these structures.

(ii) This is clear because H is bijective and each local representation is a diffeomor-
phism, so H itself is a diffeomorphism as well. ◻
While the previous result gives a bottom-up method to construct fiber bundles,
there are also ways to obtain new bundles from given ones. We next look at the
pullback of fiber bundles. Let f ∶ N →M be smooth and let ξ = (E,π,M,F ) be a
fiber bundle over M . Then we define the pullback bundle f∗ξ ∶= (f∗E, π̄,N,F ) as
follows:

f∗E ∶= {(y, e) ∈ N ×E ∣ f(y) = π(e)} ⊆ N ×E
π̄(y, e) ∶= y.

Then the following diagram commutes:

f∗E E

N M

pr2

π̄ π

f

2.1.6 Theorem. The pullback bundle f∗ξ = (f∗E, π̄,N,F ) is a fiber bundle over
N .
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Proof. Let {(Ui, ϕi)} be a bundle atlas for ξ and set Vi ∶= f−1(Ui) ⊆ N and

ψi ∶ π̄−1(Vi) = (f∗E)Vi → Vi × F
(y, e)↦ (y,pr2 ○ ϕi(e)).

Then ψi is injective: Note that π̄−1(Vi) = {(y, e) ∣ π(e) = f(y) ∈ Ui}. If ψi(y1, e1) =
ψi(y2, e2) then y1 = y2 and pr2 ○ ϕi(e1) = pr2 ○ ϕi(e2), hence also

pr1 ○ ϕi(e1) = π(e1) = f(y1) = f(y2) = π(e2) = pr1 ○ ϕi(e2),

so e1 = e2. Moreover, ψi is also surjective: Let (y, b) ∈ Vi × F = f−1(Ui) × F . Then
there is a unique e ∈ π−1(Ui) with ϕi(e) = (f(y), b). Thus (y, e) ∈ π̄−1(Vi) (since
Ui ∋ f(y) = pr1 ○ ϕi(e) = π(e)) and ψi(y, e) = (y,pr2 ○ ϕi(e)) = (y, b).
For any (y, v) ∈ (Vi ∩ Vk) × F we have ψ−1k (y, v) = (y, ϕ−1k (f(y), v)): Since π ○
ϕ−1k (f(y), v) = pr1(f(y), v) = f(y), the right hand side is in π̄−1(Vk), and

ψk(y, ϕ−1k (f(y), v)) = (y,pr2 ○ ϕk ○ ϕ−1k (f(y), v)) = (y, v).

Consequently,

ψi ○ ψ−1k ∶ (Vi ∩ Vk) × F → (Vi ∩ Vk) × F
(y, v)↦ (y,pr2 ○ ϕi ○ ϕ−1k (f(y), v))

is smooth for any i, k. Therefore Theorem 2.1.5 shows that f∗E has a manifold
structure that turns f∗ξ into a fiber bundle with bundle atlas {(Vi, ψi)}. ◻

2.1.7 Corollary. If N ⊆M is a regular submanifold and ξ = (E,π,M,F ) is a fiber
bundle over M , then the restriction (E∣N , π,N,F ) is a fiber bundle over N .

Proof. Apply Theorem 2.1.6 to the embedding f ∶= N ↪M . ◻

2.1.8 Definition. A (smooth) section of a fiber bundle (E,π,M,F ) is a smooth
map s ∶M → E with π ○ s = idM . If U ⊆M is open then sections of the subbundle
EU are called local sections of E over U . The set of all smooth sections of E is
denoted by Γ(E), and Γ(U,E) ∶= Γ(EU).

For a trivial bundle F = (M × F,pr1,M,F ) we obviously have Γ(F ) = C∞(M,F ).
Sections of TM are smooth vector fields, those of T rsM are smooth tensor fields.

If the fiber type of a fiber bundle is diffeomorphic to a real vector space then there
always exist global sections:

2.1.9 Theorem. Let (E,π,M,F ) be a fiber bundle over M with F diffeomorphic
to Rm and let A ⊆M be closed. Then any smooth section s ∶ A→ E can be extended
to a global smooth section on M . In particular there always exists a global smooth
section of E, so Γ(E) ≠ ∅.

Proof. That s is smooth on the closed set A means that for any x ∈ A there exists
a neighborhood U of x in M and a smooth map S ∶ U → E with S∣U∩A = s∣U∩A.
We first show that given a bundle chart (U,ϕU), the section s∣U∩A can be smoothly
extended to U . Also, whenever we say that two smooth sections coincide on a closed
set we mean that all derivatives (in any chart) coincide on that set. Without loss
of generality, let F = Rm. Then we can write

ϕU ○ s ∶ A ∩U → U ×Rm

x↦ (x, f1(x), . . . , fm(x)),
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where fi ∶ A ∩U → R is smooth for i = 1, . . . ,m. Any real valued function f that is
smooth on A∩U can be smoothly extended to all of U : For each x ∈ A∩U let Ux be
an open neighborhood of x in U to which f can be smoothly extended as above by
a smooth function Fx ∶ U → Rm. Gluing these functions Fx via a partition of unity
subordinate to the open cover (Ux)x∈A∩U provides a smooth extension of f to some
neighborhood W1 of A∩U . Now set W2 ∶= U ∖A. and let {χ1, χ2} be a partition of

unity subordinate to {W1,W2}. Then f̂ ∶= χ1f (extended by 0 outside of W1) does

the job. So let f̂1, . . . , f̂m ∶ U → R be smooth extensions and set sU ∶ U → E,

sU(x) ∶= ϕ−1U (x, f̂1(x), . . . , f̂m(x)).

Now let {(Uα, ϕα)}α∈Λ be a covering of E by bundle charts with Uα ⋐ M and let
{χα}α∈Λ be a partition of unity subordinate to this covering. Let Vα ∶= {x ∈ M ∣
χα(x) > 0}. Then also {Vα}α∈Λ is an open covering of M and Vα = suppχα ⋐ Uα for
each α.

For any J ⊆ Λ we set MJ ∶= ⋃α∈J Vα. Then by the above M =MΛ. Let

T ∶= {(τ, J) ∣ J ⊆ Λ, τ ∶MJ → E smooth section, τ ∣MJ∩A = s∣MJ∩A}.

This set is nonempty because (sUα ,{α}) ∈ T for each α ∈ Λ. We define a partial
order on T by

(τ ′, J ′) ≤ (τ ′′, J ′′).⇔ J ′ ⊆ J ′′, τ ′ = τ ′′∣MJ′
.

Then any chain (totally ordered subset) in T has an upper bound (namely the pair
(τ, J) with J the union of the index sets in the chain and τ such that the restriction
of τ to each index set is the given section). By Zorn’s Lemma there is a maximal
element (ŝ, Ĵ) in T .
To conclude the proof we show that Ĵ = Λ. Suppose, to the contrary, that there
exists some α0 ∈ Λ∖ Ĵ . By definition of T we have ŝ∣MĴ∩A

= s∣MĴ∩A
, so in particular

ŝ∣MĴ∩A∩Vα0
= s∣MĴ∩A∩Vα0

(2.1.4)

Since {Vα}α∈Λ is locally finite, (A ∪MĴ) ∩ Vα0 ⊆ Uα0 is closed and τ̃α0 ∶ (A ∪MĴ) ∩
Vα0 → E,

τ̃α0
∣A∩Vα0

∶= s∣A∩Vα0

τ̃α0 ∣MĴ∩Vα0
∶= ŝ∣MĴ∩Vα0

is well-defined due to (2.1.4) and smooth since all derivatives of s and ŝ coincide on
MĴ ∩A ∩ Vα0 .

1 As above it therefore follows that there exists a smooth extension

τα0 ∶ Uα0 → E of τ̃α0 . Now set Ĵ ′ ∶= Ĵ ∪ {α0} and ŝ′ ∶MĴ ′ → E,

ŝ′ ∶= { ŝ on MĴ

τα0 on Vα0 .

Then (ŝ′, Ĵ ′) ∈ T , contradicting the maximality of (ŝ, Ĵ). Thus M = MĴ and
ŝ ∶M → E is a section with ŝ∣A = s, as claimed. ◻

2.2 Principal fiber bundles

Our main objects of interest for the remainder of these lecture notes are certain
fiber bundles whose typical fiber is a Lie group:

1Strictly speaking the existence of a smooth extension (both here and in the case of the upper
bound of a chain above) as required in our definition of smoothness on closed sets follows from
Whitney’s extension theorem.
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2.2.1 Definition. Let G be a Lie group, M,P manifolds, and π ∶ P →M smooth.
The tuple (P,π,M,G) is called a G-principal fiber bundle over M if

(i) G acts on P from the right as a Lie transformation group. The action is
simply transitive on the fibers.

(ii) There exists a bundle atlas {(Ui, ϕi)} consisting of G-equivariant bundle charts,
i.e.,

(a) ϕi ∶ π−1(Ui)→ Ui ×G is a diffeomorphism.

(b) pr1 ○ ϕi = π.
(c) ϕi(p ⋅ g) = ϕi(p) ⋅ g for all p ∈ π−1(Ui) and g ∈ G, where G acts on Ui ×G

via (x, a) ⋅ g = (x, ag).

2.2.2 Remark. Let (P,π,M,G) be a principal fiber bundle. Then M can be
viewed as the quotient manifold of P by the group action. Indeed, denote by ρ
the map that assigns to any p ∈ P its orbit under the right action by G, i.e., the
canonical quotient map. Now consider the map i ∶ P /G→M , [p]ρ ↦ π(p):

P M

P /G

π

ρ
i

Since π(pg) = π(p), i is well-defined. It is injective, since π(p) = π(q) means that
p = qg for some g, so [p]ρ = [q]ρ. Indeed it is also surjective: for x ∈ M , take
any p ∈ π−1(x). Then i([p]ρ) = π(p) = x. We may now declare the bijection i to
be a diffeomorphism, thereby inducing a manifold structure on P /G. With this
structure, P /G (and thereby M) is a quotient manifold of P because i ○ ρ = π,
implying that ρ is a submersion. This structure is unique by [9, Rem. 15.8]. Some
sources (e.g., [3, 6]) define principal fiber bundles via P /G.

2.2.3 Definition. Let (P,πP ,M,G) and (Q,πQ,M ′,H) be principal fiber bundles.
A bundle morphism Q → P is a pair (f, λ), where f ∶ Q → P is a smooth map and
λ ∶H → G is a Lie group homomorphism such that f is a λ-equivariant bundle map,
i.e.,

f(q ⋅ h) = f(q) ⋅ λ(h) ∀q ∈ Q, h ∈H.

Any bundle morphism f induces a map f ∶ M ′ → M on the base manifolds such
that

Q P

M ′ M

f

πQ πP

f

(2.2.1)

commutes. Indeed, if πQ(q1) = πQ(q2), then q1 = q2h for some h ∈ H, so f(q1) =
f(q2)λ(h), hence πP (f(q1)) = πP (f(q2)). Since πQ is a surjective submersion, f is
smooth.

A bundle morphism (f, λ) is called a bundle embedding if f, f and λ are embeddings
of manifolds. IfM =M ′ and f = idM , then Q, together with f is called a λ-reduction
of P . If, in addition, H is a Lie subgroup of G and λ is the inclusion map then f
is called an H-reduction of P , and the image of f is called a principal G-subbundle
of P . We will study reductions in more detail in Section 2.5. Finally, if G = H,
λ = idG, and f is a diffeomorphism, then f is called a bundle isomorphism.
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In this case, f is itself a diffeomorphism: f is surjective by (2.2.1) since πP and f
are. Now suppose that f(πQ(q1)) = f(πQ(q2)). Then again by (2.2.1) πP (f(q1)) =
πP (f(q2)), so there is some g ∈ G with f(q1) = f(q2)g = f(q2g). Thus q1 = q2g and
πQ(q1) = πQ(g2). In addition, f is a submersion by (2.2.1), so our claim follows
from the following auxiliary result:

2.2.4 Lemma. Let f ∶M → N be a bijective submersion. Then f is a local (hence
global) diffeomorphism.

Proof. For any x ∈M there exist charts φ of M around x and ψ around f(x) of
N such that ψ ○ f ○φ−1 = pr1 ∶ U ×V → U (cf. [7, Th. 3.3.3]). Since f is bijective, so
is ψ ○ f ○ φ−1, but this is only possible if V = ∅ and ψ ○ f ○ φ−1 = id ∶ U → U . ◻
Next we give two equivalent descriptions of principal fiber bundles, starting by
replacing local trivializations by local sections.

2.2.5 Theorem. Let G be a Lie group and π ∶ P → M a smooth map. Then
(P,π,M,G) is a principal fiber bundle if and only if

(i) G acts on P from the right as a Lie transformation group. The action is
simply transitive on the fibers.

(ii) There exists an open covering U = {Ui}i∈I of M and local sections si ∶ Ui → P
for each i ∈ I.

Proof. Given a local section s ∶ U → P , define ψs by

ψs ∶ U ×G→ PU

(x, g)↦ s(x) ⋅ g.
(2.2.2)

Since s is a section ψs takes values in PU . Also, it is smooth and G-equivariant:
ψs(x, a) ⋅ g = (s(x) ⋅ a) ⋅ g = s(x) ⋅ (ag) = ψs(x, ag). Since G acts simply transitively
on the fibers, ψs is bijective: it is clearly surjective and if ψs(x, g) = ψs(y, h) then
applying π we get x = y, and so s(x) = s(x)hg−1, implying that g = h as well.

Since π has local sections it is a submersion (cf. [9, Prop. 15.2]). Thus for any x ∈M ,
Px = π−1(x) is a regular submanifold, and for any p ∈ Px we have TpPx = kerTpπ
([7, 3.3.23, 3.3.25]). According to (i), G acts freely and transitively on Px, so by
Corollary 1.1.12 Px is diffeomorphic to G. Indeed the proof of that result (cf. the
proof of Theorem 1.1.7) shows that, denoting the group action by Φ ∶ P ×G → P ,
for any p ∈ Px the map Φp ∶ G→ Px, Φp(g) = p ⋅ g (x = π(p)) is a diffeomorphism.

To show that ψs is a diffeomorphism, by Lemma 2.2.4 it suffices to check that it is a
submersion. Let (x, g) ∈ U ×G, X ∈ TxM and Z ∈ TgG. Pick smooth curves t↦ x(t)
in U and t ↦ g(t) in G with x(0) = x, ẋ(0) = X, g(0) = g and ġ(0) = Z. Also, let
y(t) ∶= s(x(t)) and w(t) ∶= y(t)g(t) = ψs(x(t), g(t)). Then by Lemma 1.2.3

T(x,g)ψs(X,Z) = ẇ(0) = Ts(x)Rg(ẏ(0)) + (TgLg−1 ġ(0))∼(y(0) ⋅ g)
= Ts(x)Rg(TxsX) + (TgLg−1Z)∼(s(x) ⋅ g).

Now given any Ŵ ∈ Ts(x)gP we need to find (X,Z) as above with T(x,g)ψs(X,Z) =
Ŵ . Set X ∶= Tπ(Ŵ ) ∈ Tπ(s(x)g)M = TxM and X̂ ∶= TRg(Ts(X)). Then since
π ○Rg = π and π ○ s = id,

Tπ(Ŵ − X̂) =X − Tπ(TRg(Ts(X))) =X −X = 0,

meaning that Ŵ − X̂ ∈ kerTs(x)gπ = Ts(x)gPx. By what was shown above, TeΦs(x)g ∶
g→ Ts(x)gPx is bijective, so there exists a unique A ∈ g with (recall Definition 1.2.1)

Ã(s(x)g) = TeΦs(x)g(A) = Ŵ − X̂.
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Now setting Z ∶= TeLg(A) ∈ TgG we finally obtain

T(x,g)ψs(X,Z) = Ts(x)Rg(TxsX) + (TgLg−1Z)∼(s(x) ⋅ g)
= X̂ + Ã(s(x)g) = X̂ + Ŵ − X̂ = Ŵ .

Having established that ψs is a diffeomorphism we now claim that ϕs ∶= ψ−1s ∶ PU →
U ×G is a G-equivariant bundle chart. Note first that π ○ψs(x, g) = x because G is
fiber preserving and s is a section. Thus π ○ ψs = pr1, so pr1 ○ ϕs = π, showing that
ϕs is a bundle chart. It is also G-equivariant because any p ∈ PU can uniquely be
written as p = s(x)g, so for h ∈ G we have

ϕs(p ⋅ h) = ϕs(s(x) ⋅ (gh)) = (x, gh) = (x, g) ⋅ h = ϕs(p) ⋅ h.

Conversely, suppose that (U,ϕU) is a G-equivariant bundle chart for P . Then the
map s ∶ U → P , s(x) ∶= ϕ−1U (x, e) is a smooth section of P ∣U . ◻
For our second characterization of principal fiber bundles we need the following
notion:

2.2.6 Definition. Let M be a manifold and let G be a Lie group. Suppose that
U ∶= {Ui}i∈I is an open covering of M and that {gij}i,j∈I is a family of smooth
functions gij ∶ Ui ∩Uj → G with

gij(x) ⋅ gjk(x) = gik(x) ∀x ∈ Ui ∩Uj ∩Uk
gii(x) = e ∀x ∈ Ui

(2.2.3)

(i, j, k ∈ I). Then the family {gij}i,j∈I is called a G-cocycle on M .

2.2.7 Theorem. LetM be a manifold, G a Lie group, U = {Ui}i∈I an open covering
of M and {gij}i,j∈I a G-cocycle on M . Then there exists a smooth principal fiber
bundle (P,π,M,G) with a bundle atlas {(Ui, ϕi)} whose transition functions are
given by the left translations by gij:

ϕij(x) = Lgij(x) ∶ G→ G ∀x ∈ Ui ∩Uj .

Moreover, (P,π,M,G) is unique up to bundle isomorphism.

Proof. For each i ∈ I, set Xi ∶= Ui ×G and let X ∶= ⊍i∈I Xi be the topological sum
of the Xi. Each element of X can be written in the form (i, x, a) with i ∈ I, x ∈Xi,
and a ∈ G. Since each Xi is a smooth manifold, so is X.

Now call (i, x, a) equivalent to (j, y, b) if x = y ∈ Ui∩Uj and a = gij(x)b. This defines
an equivalence relation ρ on X, and we note that (i, x, a) ∼ρ (i, y, b) if and only if
x = y and a = b. (∗) Denote by P ∶=X/ ∼ρ the quotient of X with respect to ρ. We
claim that G acts freely on P on the right.

Indeed, by definition c ∈ G maps the ρ-equivalence class [(i, x, a)] to [(i, x, ac)].
This is independent of the representative: if (i, x, a) ∼ (j, y, b), then x = y and
b = gji(x)a, hence bc = gji(x)ac, giving (i, x, ac) ∼ (j, y, bc). The action is free
because [(i, x, ac)] = [(i, x, a)] implies ac = gii(x)a = a, hence c = e.
The map π ∶ P = X/ ∼ρ→M , [(i, x, a)]↦ x is well-defined, and for p, q ∈ P we have
π(p) = π(q) if and only if q = pc for some c ∈ G: Let p = [(i, x, a)], q = [(j, y, b)].
Then if q = pc we get y = x, so π(p) = π(q). Conversely, let π(p) = x = y = π(q) ∈
Ui ∩Uj . Then q = pc, where c = a−1gij(x)b ∈ G.
To define a smooth structure on P we first note that the quotient map χ ∶ X →
P = X/ ∼ρ, (i, x, a) ↦ [(i, x, a)] (for x ∈ Ui) maps each Xi = Ui × G bijectively
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onto π−1(Ui): surjectivity is clear and injectivity follows from (∗) above. Call the
inverse of this map ϕi ∶ π−1(Ui)→Xi. Now we define the π−1(Ui) (i ∈ I) to be open
submanifolds of P and the ϕi to be diffeomorphisms. This indeed defines a smooth
structure on P because the π−1(Ui) cover P and the transition functions are the
smooth maps

ϕj ○ ϕ−1i ∶ (x, a)↦ ϕj([(i, x, a)]) = ϕj([j, x, gji(x)a]) = (x, gji(x)a). (2.2.4)

G acts smoothly on P because on π−1(Ui), the right multiplication rc by c ∈ G
satisfies

ϕi ○ rc ○ ϕ−1i (x, a) = ϕi([(i, x, ac)]) = (x, ac). (2.2.5)

Thus G acts as a Lie transformation group on P . Moreover, π○ϕ−1i = pr1 ∶ (x, a)↦ x,
so π is smooth and the action of G clearly is fiber preserving and simply transitive
on the fibers. It follows from (2.2.4) that {(Ui, ϕi)}i∈I is a bundle atlas for P whose
transition functions are given by the left translations by gij . Finally, the ϕi are
G-equivariant due to (2.2.5).

It remains to show uniqueness up to bundle isomorphism. Suppose that (P ′, π′,M,G)
is another principal fiber bundle over M with bundle charts (Ui, ϕ′i) that give rise
to the same cocycle. Then define the map F ∶ P ′ → P on any Ui as follows:

P ′∣Ui P ∣Ui

Ui ×G

Ui

π′

F

ϕ′i

π

ϕi

pr1

Thus F (p′) ∶= ϕi−1 ○ϕ′i(p′). This map is well-defined, i.e., independent of the i with
p′ ∈ P ′∣Ui : we have π ○ F (p′) = π′(p′) =∶ x ∈ Ui, so F (p′) = ϕ−1ix ○ ϕ′ix(p′). Now if also
π′(p′) ∈ Uk, then ϕix ○ ϕ−1kx = Lgik(x), so ϕ−1ix = ϕ−1kx ○L−1gik(x), and analogously for the

ϕ′ix. Therefore,

F (p′) = ϕ−1ix ○ ϕ′ix(p′) = ϕ−1kx ○L−1gik(x) ○Lgik(x) ○ ϕ
′
kx(p′) = ϕ−1kx ○ ϕ′kx(p′).

F is surjective since {(Ui, ϕi)} and {(Ui, ϕ′i)} are bundle atlasses. It is also injective:
Let F (p′1) = F (p′2), then π′(p′1) = π(F (p′1)) = π(F (p′2)) = π′(p′2) ∈ Ui for some
i ∈ I, and F ∶ P ′∣Ui → P ∣Ui is bijective by definition. It also follows from the local
representation that F and F −1 are smooth and G-equivariant, hence F is a bundle
isomorphism. ◻

2.2.8 Theorem. Let M , P be manifolds and let π ∶ P → M be a smooth map.
Then the following are equivalent:

(i) (P,π,M,G) is a principal fiber bundle.

(ii) There exists a bundle atlas {(Ui, ϕi)}i∈I and a G-cocycle {gij}i,j∈I for the open
cover U = {Ui}i∈I of M such that the cocycle {ϕij}i,j∈I of P is given by the
left translations ϕij(x) = Lgij(x) ∶ G→ G.

Moreover, (P,π,M,G) satisfying (ii) is unique up to bundle isomorphism.

Proof. (i)⇒(ii): Let {(Ui, ϕi)}i∈I be a G-equivariant bundle atlas for P . Then

gik ∶ Ui ∩Uk → G

x↦ gik(x) ∶= ϕix(ϕ−1kx(e)) = ϕik(x)(e) = pr2 ○ ϕi ○ ϕ−1k (x, e)

15



is smooth. Also, ϕi(ϕ−1k (x, e)) ⋅ g = ϕi(ϕ−1k (x, e) ⋅ g) = ϕi(ϕ−1k (x, g)), so

gik(x) ⋅ g = pr2 ○ ϕi ○ ϕ−1k (x, e) ⋅ g = pr2(ϕi ○ ϕ−1k (x, e) ⋅ g)
= pr2(ϕi ○ ϕ−1k (x, g)) = ϕik(x)(g).

(ii)⇒(i): Define the right action of G on P as follows: for p ∈ Px and x ∈ Ui set

p ⋅ g ∶= ϕ−1ix (ϕix(p) ⋅ g). (2.2.6)

This definition is independent of the chosen chart: let x ∈ Ui ∩Uj . Then by (ii)

ϕix ○ ϕ−1jx(ϕjx(p) ⋅ g) = ϕij(x)(ϕjx(p) ⋅ g) = gij(x) ⋅ ϕjx(p) ⋅ g = ϕix(p) ⋅ g.

Then G acts as a Lie transformation group on P : (p, g) ↦ p ⋅ g is smooth since
writing ϕi(p) = (x, a) we have p ⋅ g = ϕ−1ix (a ⋅ g) = ϕ−1i (x, a ⋅ g). Also, it is easily seen
that (p ⋅ g) ⋅h = p ⋅ (g ⋅h). By definition, the action of G is fiber preserving. It is also
simply transitive on the fibers because

q = p ⋅ g⇔ q = ϕ−1ix (ϕix(p) ⋅ g)⇔ ϕix(q) = ϕix(p) ⋅ g,

which is uniquely solvable. It only remains to verify (ii) (c) from Definition 2.2.1.
Again let ϕi(p) = (x, a). Then

ϕi(pg) = ϕi(ϕ−1ix (ϕix(p) ⋅ g)) = ϕi(ϕ−1ix (a ⋅ g)) = ϕi(ϕ−1i (x, ag)) = (x, ag)
= (x, a) ⋅ g = ϕi(p) ⋅ g.

Finally, the uniqueness claim follows from Theorem 2.2.7. ◻

2.2.9 Example. The trivial bundle G ∶= (M × G,pr1,M,G) is a principal fiber
bundle with the single bundle chart ϕ = id ∶M ×G→M ×G.

2.2.10 Example. Let ξ = (P,π,M,G) be a principal fiber bundle and let f ∶ N →
M be smooth. Then the pullback bundle f∗ξ (cf. Theorem 2.1.6) is a principal
G-fiber bundle over N . Recall that

f∗ξ = {(n, p) ∈ N × P ∣ f(n) = π(p)} ⊆ N × P

and we already know that it is a fiber bundle with bundle charts derived from those
of P ((Ui, ϕi)) via

ψi ∶ π̄−1(Vi) = (f∗ξ)Vi → Vi ×G
(n, p)↦ (n,pr2ϕi(p)).

(and Vi ∶= f−1(Ui) ⊆ N). The action of G on f∗ξ, (n, p) ⋅g ∶= (n, p ⋅g) is well-defined
since π(p ⋅ g) = π(p) = f(n), so (n, p ⋅ g) ∈ f∗ξ. It is clearly fiber preserving, as well
as smooth since

ψi ○ rg ○ ψ−1i (n, a) = (n, a ⋅ g).

Simple transitivity on the fibers follows since for u, v ∈ f∗ξ with π̄(u) = n = π̄(v) we
get u = (n, p), v = (n, q) and there is a unique g ∈ G with p ⋅ g = q, and thereby with
(n, p) ⋅ g = (n, q). It only remains to verify (ii) (c) from Definition 2.2.1:

ψi((n, p) ⋅ g) = ψi(n, p ⋅ g) = (n,pr2 ○ ϕi(p ⋅ g)) = (n,pr2 ○ ϕi(p) ⋅ g) = ψi(n, p) ⋅ g.
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2.2.11 Example. (Homogeneous bundle) Let H be a closed, non-open subgroup of
the Lie groupG and letG/H be the corresponding homogeneous space. By Theorem
1.1.3 G/H is a quotient manifold of G. Denote by π ∶ G → G/H the canonical
projection. Then (G,π,G/H,H) is a principal fiber bundle with structure group H:
The action of H on G is given by (g, h)↦ g ⋅h, which is clearly smooth. It preserves
fibers since if g1 ∈ π−1(gH) then g1 = gh1 for some h1 ∈H, so g1h = gh1h ∈ gH, and
g1h ∈ π−1(gH). To see transitivity on the fibers, let g1, g2 ∈ π−1(gH). Then gi = ghi
(i = 1,2), so g1 = g2(h−12 h1), and h = g−12 g1 is the unique element of H with g1 = g2h.
Finally, by Theorem 1.1.3 there exist local sections of π, so Theorem 2.2.5 gives the
claim.

2.2.12 Example. (The frame bundle of a manifold) Let M be an n-dimensional
manifold and set

GL(M)x ∶= {νx = (ν1, . . . , νn) ∣ νx is a basis of TxM},

and
GL(M) ∶= ⊍

x∈M

GL(M)x.

Define π ∶ GL(M)→M by π(νx) ∶= x. The group GL(n,R) acts on the set GL(M)
on the right by

(ν1, . . . , νn) ⋅A ∶= (∑
i

νiAi1, . . . ,∑
i

νiAin), (2.2.7)

where A = (Aij). Obviously, this action is fiber preserving and acts transitively on
the fibers.

To introduce a manifold structure on GL(M), let (Ui, φi = (x1, . . . , xn)) be a chart
of M . Then we define ϕi ∶ GL(M)∣Ui ∶= π−1(Ui) → Ui × GL(n,R) as follows: for
νx ∈ GL(M)∣Ui there is a unique A(x) ∈ GL(n,R) such that

νx = (
∂

∂x1
∣
x
, . . . ,

∂

∂xn
∣
x
) ⋅A(x). (2.2.8)

Set ϕi(νx) ∶= (x,A(x)). Then ϕi is bijective and the following diagram commutes:

GL(M)∣Ui
Ui ×GL(n,R)

Ui

ϕi

π
pr1

Hence ϕi is a formal bundle chart. If (Uk, φk = (y1, . . . , yn)) is another chart in M
then in the notation of (2.2.7) we have

( ∂

∂y1
∣
x
, . . . ,

∂

∂yn
∣
x
) = ( ∂

∂x1
∣
x
, . . . ,

∂

∂xn
∣
x
) ⋅ (∂x

i

∂yj
)
i,j
.

Thus

ϕi ○ ϕ−1k ∶ (Ui ∩Uk) ×GL(n,R)→ (Ui ∩Uk) ×GL(n,R)

ϕi ○ ϕ−1k (x,B) = ϕi((
∂

∂y1
∣
x
, . . . ,

∂

∂yn
∣
x
) ⋅B) = (x, (∂x

i

∂yj
) ⋅B)

is smooth, and so by Theorem 2.1.5 we obtain a fiber bundle structure on GL(M).
GL(n,R) acts on the right and it is evident from the definition that this action is
fiber preserving and simply transitive on the fibers. It is also smooth, because if
ϕix(νx) = A(x), i.e., if (2.2.8) holds, then ϕix(νx ⋅B) = A(x)⋅B = ϕix(νx)⋅B, meaning
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that locally the action is given by ((x,A),B)↦ (x,A ⋅B). This also proves the last
point of Definition 2.2.1, concluding the verification that (GL(M), π,M,GL(n,R))
is a principal fiber bundle.

For any chart (Ui, φi = (x1, . . . , xn)), the map

s ∶= ( ∂

∂x1
, . . . ,

∂

∂xn
) ∶ U → GL(M).

defines a local section, which is smooth because ϕi(s(x)) = (x, In). Note that
the bundle charts constructed above are precisely the ones constructed from these
sections according to the proof of Theorem 2.2.5.

2.2.13 Example. Analogously to Example 2.2.12, one can construct subbundles
of the frame bundle if the manifold M is endowed with some additional geometric
structure:

(i) Let (M,OM) be oriented. Then let

GL(M)+x ∶= {νx ∈ GL(M)x ∣ νx positively oriented}.

This leads to the GL(n,R)+-principal fiber bundle of all positively oriented
frames (GL(M)+, π,M,GL(n,R)+).

(ii) Let (Mp,q, g) be a semi-Riemannian manifold of signature (p, q) and set

O(M,g)x = {νx = (ν1, . . . , νn) ∈ GL(M)x ∣ (gx(νi, νj)) = (
−Ip 0
0 Iq

) .}

This gives the O(p, q)-principal fiber bundle (O(M,g), π,M,O(p, q)) of or-
thonormal frames.

2.2.14 Theorem. A principal fiber bundle (P,π,M,G) is trivial if and only if it
possesses a global section.

Proof. Let s ∶M → P be a global section. Then the map

Φ ∶M ×G→ P

(x, g)↦ s(x) ⋅ g

is an isomorphism of principal fiber bundles. This follows exactly as in the proof of
Theorem 2.2.5.

Conversely, if Φ ∶M ×G → P is a bundle isomorphism, then s(x) ∶= Φ(x, e) defines
a global section of P . ◻

2.3 Associated fiber bundles

Given a principal fiber bundle (P,π,M,G) and a manifold F such that [F,G] is a
left Lie transformation group, one can construct a new fiber bundle by ‘replacing
the fiber’. Note first that G acts on the right on the product P × F via

(p, v) ⋅ g ∶= (p ⋅ g, g−1 ⋅ v). (2.3.1)

Denote by E ∶= (P ×F )/G =∶ P ×GF the corresponding quotient space, by [p, v] the
equivalence class of (p, v), and by

π̂ ∶ E →M

[(p, v)]↦ π(p)

the projection (which is well-defined). Then we have:
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2.3.1 Theorem. (E, π̂,M,F ) is a fiber bundle over M . It is called the fiber bundle
associated to P and [F,G].

Proof. Let x ∈M and let (U,ϕU) be a bundle chart of P ,

ϕU ∶ PU → U ×G
p↦ (π(p), φU(p)).

Then φU(p ⋅ g) = φU(p) ⋅ g. Now set EU ∶= π̂−1(U) and define

ψU ∶ EU → U × F
[p, v]↦ (π(p), φU(p) ⋅ v).

(2.3.2)

This map is well-defined: Let [p1, v1] = [p2, v2], so (p1, v1) = (p2g, g−1v2) for some
g ∈ G. Then π(p1) = π(p2) and

φU(p1)v1 = φU(p2g) ⋅ (g−1v2) = (φU(p2g) ⋅ g−1)v2 = φU(p2)v2.

Let ψU([p1, v1]) = ψU([p2, v2]), then π(p1) = π(p2) =∶ x, so there exists some g ∈ G
with p1 = p2g. Also, φU(p2) ⋅ g ⋅ v1 = φU(p1) ⋅ v1 = φU(p2) ⋅ v2, so g ⋅ v1 = v2, implying
[p1, v1] = [p2, v2] and thereby injectivity of ψU . To see surjectivity, let (x, v) ∈ U ×F
and set p ∶= ϕ−1U (x, e). Then

ψU([p, v]) = (π(p), φU(p) ⋅ v) = (x, v).

Thus (U,ψU) is a formal bundle chart of E. The above also shows that ψ−1U ∶ U×F →
EU is given by

ψ−1U (x, v) = [ϕ−1U (x, e), v]. (2.3.3)

We have

EU U × F

U

ψU

π̂
pr1

Now EU∩EV = EU∩V and ψU(EU∩V ) = ψU(π̂−1(U∩V )) = pr−11 (U∩V ) = (U∩V )×F ,
so ψV ○ ψ−1U ∶ (U ∩ V ) × F → (U ∩ V ) × F , and setting p ∶= ϕ−1U (x, e) we calculate

ψV ○ ψ−1U (x, v) = ψV ([p, v]) = (x,φV (p) ⋅ v) = (x,φV (ϕ−1U (x, e)) ⋅ v),

which shows that the chart transition maps are smooth, giving the claim. ◻
Let us also derive alternative representations for some of the above maps. Given
x ∈ U ∩ V , pick any p ∈ π−1(x). Then ψU([p,φU(p)−1 ⋅ v]) = (x, v), showing that

ψ−1U (x, v) = [p,φU(p)−1 ⋅ v], (2.3.4)

and consequently ψV ○ψ−1U (x, v) = (x,φV (p) ⋅φU(p)−1 ⋅ v) for any p ∈ π−1(x). Also,
we note that the map (p, v)↦ [p, v], P × F → E is smooth because

[p, v] = ψ−1U (π(p), φU(p) ⋅ v). (2.3.5)

Next we want to compare the chart transition functions in P and in E. Let gik ∶
Ui∩Uk → G be the G-cocycle induced by a bundle atlas {(Ui, ϕi)}i∈I of P according
to Theorem 2.2.8. In our current setting we have, writing ϕi = ϕUi , ψi = ψUi , cf.
(2.1.1):

ψix ∶ Ex → F

[p, v]↦ pr2 ○ ψi∣Ex([p, v]) = φi(p) ⋅ v,

19



where p is any point in Px = π−1(x). We have

ψik(x)(v) = ψix ○ ψ−1kx(v) = ψix(ψ−1k (x, v)) = pr2 ○ ψi ○ ψ−1k (x, v).

Here, ψ−1k (x, v) = [p,φk(p)−1 ⋅ v], so ψi ○ψ−1k (x, v) = (π(p), φi(p) ⋅φk(p)−1 ⋅ v), hence

ψik(x)(v) = φi(p) ⋅ φk(p)−1 ⋅ v.

Since ϕkx ∶ Px → G is bijective, there is a unique p0 ∈ Px with φk(p0) = ϕkx(p0) = e.
Then

ψik(x)v = φi(p0) ⋅ φk(p0)−1 ⋅ v = φi(p0) ⋅ v = ϕix(ϕ−1kx(e)) ⋅ v = gik(x) ⋅ v

(cf. Theorem 2.2.8). This means that the cocycle ψik of the fiber bundle E is given
by the left action lgik(x) ∈ Diff(F ) of the cocycle gik of P . It motivates the following
general construction principle for fiber bundles:

2.3.2 Theorem. LetM,F be manifolds and [F,G] a left transformation group. Let
{Ui}i∈I be an open covering of M and let gik ∶ Ui ∩ Uk → G (i, k ∈ I) be a cocycle.
Then there exists a unique (up to isomorphism) fiber bundle (E, π̂,M,F ) whose
cocycle is given by the left action lgik(x) ∈ Diff(F ). This fiber bundle is associated to
the unique G-principal bundle whose cocycle is given by the left translations Lgik(x) ∈
Diff(G).

Proof. We construct the fiber bundle similarly to the proof of Theorem 2.2.7. Let

Ê ∶=⊍
i∈I

Ui × F,

and call elements (xi, vi) ∈ Ui × F and (xk, vk) ∈ Uk × F equivalent if xi = xk = x ∈
Ui ∩ Uk and vk = gki(x) ⋅ vi. By the cocycle condition (2.2.3) this indeed gives an
equivalence relation on Ê. Denote the equivalence class of (xi, vi) by [xi, vi] and
set

E ∶= Ê/ ∼ π([x, v]) ∶= x.
To obtain a bundle atlas, define

ψi ∶ EUi → Ui × F
[xi, v]↦ (xi, v).

(2.3.6)

This is well-defined, for if [x, v] = [y,w], x, y ∈ Ui, then x = y and v = gii(x)w = w.
Also it is clearly bijective. Moreover,

ψix(ψ−1kx(v)) = ψix([x, v]) = ψix([x, gik(x) ⋅ v]) = gik(x) ⋅ v = lgik(x)(v),

so

ψi ○ ψ−1k ∶ (Ui ∩Uk) × F → (Ui ∩Uk) × F
(x, v)↦ (x, gik(x) ⋅ v)

is smooth. According to Theorem 2.1.5 we therefore obtain a manifold structure
on E such that (E,π,M,F ) becomes a fiber bundle. Uniqueness up to fiber bundle
isomorphism follows exactly as in the proof of Theorem 2.2.7.

Now carrying out the same construction with [G,G], by Theorem 2.2.8 we obtain
a (unique, up to isomorphism) principal fiber bundle P with the given G-cocycle.
Then the map

A ∶ P ×G F → E

[[x, g], v]↦ [x, g ⋅ v]
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is well-defined: if [[x, g1], v1] = [[y, g2], v2] in P ×G F , x ∈ Ui, y ∈ Uj then there
exists some h ∈ G such that [x, g1] ⋅ h = [y, g2] and h−1v1 = v2. Here, denoting the
analogues of the ψi from (2.3.6) by ϕi and p ∶= [x, g1] we have by (2.2.6):

[x, g1] ⋅ h = ϕ−1ix (ϕix(p) ⋅ h) = ϕ−1ix (g1 ⋅ h) = [x, g1 ⋅ h].

Hence [x, g1 ⋅ h] = [y, g2], so x = y and g1 ⋅ h = gij(x) ⋅ g2. It follows that

g1 ⋅ v1 = g1 ⋅ h ⋅ v2 = gij(x) ⋅ g2 ⋅ v2,

giving [x, g1 ⋅ v1] = [y, g2 ⋅ v2].
A is surjective as [xi, v] = A([[xi, e], v]). It is also injective: Let A([[xi, g1], v1]) =
A([[xj , g2], v2]), i.e., [xi, g1 ⋅ v1] = [xj , g2 ⋅ v2]. Then xi = xj =∶ x and g1 ⋅ v1 =
gij(x) ⋅ g2 ⋅ v2. Thus v1 = h ⋅ v2 with h ∶= g−11 ⋅ gij(x) ⋅ g2, and [x, g1 ⋅ h] = [x, g2].
Altogether,

[[xi, g1], v1] = [[xi, g1] ⋅ h,h−1 ⋅ v1] = [[xj , g2], v2],

as desired.

To show smoothness of A, denote by χi the P ×G F -bundle chart corresponding
to ϕi as in (2.3.2). Then for any [[xi, g], v] ∈ P ×G F we have χi([[xi, g], v]) =
(xi, φi([xi, g]) ⋅v) = (xi, g ⋅v). But also ψi ○A([[xi, g], v]) = ψi([xi, g ⋅v]) = (xi, g ⋅v),
so ψi ○A ○ χ−1i = id. This implies that A is a diffeomorphism.

Finally,

π ○A([[xi, g], v]) = π([xi, g ⋅ v]) = xi = πP ([xi, g]) = π̂([[xi, g], v]).

concluding the proof that A is a fiber bundle isomorphism. ◻

2.3.3 Definition. Let (P,π,M,G) be a principal fiber bundle, F a manifold, and
[F,G] a left transformation group. Let E = P ×G F be the associated fiber bundle.
For any p ∈ Px the map

[p] ∶ F → Px ×G F = Ex
v ↦ [p, v]

(2.3.7)

is called the fiber diffeomorphism defined by p.

Using (2.3.2), note first that [p] is smooth because

ψU ○ [p](v) = ψU([p, v]) = (π(p), φU(p) ⋅ v)

(note that Ex = π̂−1(x) is a regular submanifold of E). It is bijective with smooth
inverse

[p, v] ψUÐ→ (x,φU(p) ⋅ v)
pr2Ð→ φU(p) ⋅ v

⋅φU (p)
−1

Ð→ v,

hence is indeed a diffeomorphism. Also

[p ⋅ g](v) = [p ⋅ g, v] = [p, g ⋅ v] = [p](g ⋅ v) = [p] ○ lg(v). (2.3.8)

To conclude this section, we consider smooth sections in associated fiber bundles.
To this end we introduce the space of G-equivariant maps from P to F :

C∞(P,F )G ∶= {s̄ ∈ C∞(P,F ) ∣ s̄(p ⋅ g) = g−1 ⋅ s̄(p) ∀p ∈ P, g ∈ G}. (2.3.9)

Then we have:
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2.3.4 Theorem. Let (P,π,M,G) be a principal fiber bundle, F a manifold, [F,G]
a left transformation group, and E = P ×G F the associated fiber bundle. Then the
space of smooth sections of E can be identified with C∞(P,F )G:

Γ(E) ≅ C∞(P,F )G.

Proof. Given s̄ ∈ C∞(P,F )G, define s ∶M → E, s(x) ∶= [p, s̄(p)] ∈ Ex, where p ∈ Px
is arbitrary. This is well-defined, for if also q ∈ Px then q = p ⋅ g for some g ∈ G, so
that

[q, s̄(q)] = [pg, s̄(pg)] = [pg, g−1s̄(p)] = [p, s̄(p)].
Also, s is a section because π̂(s(x)) = π̂([p, s̄(p)]) = π(p) = x. To see that s is
smooth, let f ∶ U → P be a smooth local section of P around x0 ∈M . Then locally
we have s(x) = [f(x), s̄(f(x))], so ψU ○ s(x) = (x,φU(f(x)) ⋅ s̄(f(x))).
Conversely, let s ∈ Γ(E) and define s̄ ∶ P → F by s̄(p) ∶= [p]−1 ○ s(π(p)). Let
ψU ○ s(x) = (x, s̃(x)) ∈ U × F be the local representation of s. Then with x = π(p),

s̄(p) = [p]−1 ○ ψ−1U ○ ψU ○ s(π(p)) = [p]−1 ○ ψ−1U (x, s̃(x))
=

(2.3.4)
[p]−1([p,φU(p)−1 ⋅ s̃(x)]) = φU(p)−1 ⋅ s̃(π(p)),

showing smoothness. Also, s̄ ∈ C∞(P,F )G since by (2.3.8),

s̄(pg) = [pg]−1 ○ s(π(p)) = lg−1 ○ [p]−1 ○ s(x) = g−1s̄(p).

Finally, we note that the maps A ∶ s̄↦ s and B ∶ s↦ s̄ are inverses of each other:

B(A(s̄))(p) = [p]−1(A(s̄)(π(p))) = [p]−1([p, s̄(p)]) = s̄(p),
A(B(s))(x) = [p,B(s)(p)] = [p, [p]−1(s(x))] = [p]([p]−1(s(x))) = s(x).

◻

2.4 Vector bundles

Fiber bundles whose typical fiber is a vector space play a prominent role in differ-
ential geometry:

2.4.1 Definition. A fiber bundle (E,π,M,V ) is called a K-vector bundle of rank
m <∞ if

(i) The typical fiber V is an m-dimensional vector space over K.

(ii) Every fiber Ex is a K-vector space.

(iii) There exists a bundle atlas {(Ui, ϕi)}i∈I such that the fiber diffeomorphisms

ϕix ∶ Ex → V

are linear isomorphisms.

If K = R or K = C then E is called real or complex vector bundle, respectively. If
m = 1 then E is called a line bundle.

2.4.2 Definition. Let E and Ẽ be vector bundles over the same base manifold M .
A map L ∶ E → Ẽ is called a vector bundle homomorphism if it is smooth and fiber
preserving and if L∣Ex ∶ Ex → Ẽx is linear for each x ∈ M . If both L and L−1 are
vector bundle homomorphisms, then L is called a vector bundle isomorphism.
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For E a vector bundle, Γ(E) is a module over C∞(M), with multiplication defined
pointwise: (fs)(x) ∶= f(x)s(x). Any vector bundle homomorphism L ∶ E → Ẽ
induces a linear map on the corresponding spaces of sections, denoted by the same
letter:

L ∶ Γ(E)→ Γ(Ẽ)
s↦ Ls, (Ls)(x) ∶= L(s(x)).

Well known notions from (multi-)linear algebra can readily be extended to the vector
bundle setting:

2.4.3 Remark. Constructing new vector bundles from given ones:

(i) Whitney sum
Let E, Ẽ be vector bundles over M with typical fibers V , Ṽ . Then let

E ⊕ Ẽ ∶= ⊍
x∈M

Ex ⊕ Ẽx

with projection π⊕ ∶ Ex ⊕ Ẽx ∋ (ex, ẽx)↦ x ∈M .

To turn E ⊕ Ẽ into a vector bundle we employ Theorem 2.1.5: let (U,ϕU =
(π,φU)), (U, ϕ̃U = (π̃, φ̃U)) be bundle charts in E and Ẽ over the same open
set U ⊆M . Then

ϕ⊕U ∶ (E ⊕ Ẽ)U → U × (V ⊕ Ṽ )
(e, ẽ)↦ (π(e), φU(e)⊕ φ̃U(ẽ))

a formal bundle chart, with smooth transition functions (namely the direct
sums of the individual transition functions of E and Ẽ). The vector bundle
(E ⊕ Ẽ, π⊕,M,V ⊕ Ṽ ) is called the Whitney sum of E and Ẽ.

(ii) Tensor product

With E, Ẽ as in (i), set

E ⊗ Ẽ ∶= ⊍
x∈M

Ex ⊗ Ẽx

with projection π⊗ ∶ Ex ⊗ Ẽx ∋ (ex ⊗ ẽx)↦ x ∈M .

In this case, the formal bundle charts are given by

ϕ⊗U ∶ (E ⊗ Ẽ)U → U × (V ⊗ Ṽ )
(e⊗ ẽ)↦ (π(e), φU(e)⊗ φ̃U(ẽ))

The resulting vector bundle E ⊗ Ẽ is called the tensor product of E and Ẽ.

(iii) Dual vector bundle

Given a vector bundle (E,π,M,V ), and denoting by V ∗,E∗x the dual spaces,
set

E∗ ∶= ⊍
x∈M

E∗x ,

with projection π∗ ∶ E∗x ∋ Lx ↦ x. The formal bundle charts then are

ϕ∗U ∶ E∗U → U × V ∗

E∗x ∋ L↦ (π∗(L), φ∗U(L)), where φ∗U(L)(v) ∶= L(ϕ−1Ux(v)).

(E∗, π∗,M,V ∗) is called the dual bundle of E.
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(iv) Conjugate vector bundle

Let E be a complex vector bundle and denote by V̄ the conjugate vector space
of V , where scalar multiplication is defined by (λ, v) ↦ λ̄ ⋅ v. Given a bundle
chart (U,ϕU) of E, let ϕ̄Ux ∶ Ēx → V̄ be the linear isomorphism induced by
ϕUx. Then set

Ē ∶= ⊍
x∈M

Ēx,

and π̄ ∶ Ēx ∋ ēx ↦ x ∈M . The formal bundle charts are given by

ϕ̄U ∶ ĒU → U × V̄
Ēx ∋ ē↦ (x, ϕ̄Ux(ē)).

The resulting vector bundle (Ē, π̄,M, V̄ ) is called conjugate to E.

(v) Homomorphism bundle

Given two vector bundles E, Ẽ as before, denote by Hom(V, Ṽ ) the space of
linear maps from V to Ṽ and set

Hom(E, Ẽ) ∶= ⊍
x∈M

Hom(Ex, Ẽx)

with projection π̂ ∶ Hom(Ex, Ẽx) ∋ Lx ↦ x. The formal bundle charts now are

ϕ̂U ∶ Hom(E, Ẽ)∣U → U ×Hom(V, Ṽ )
Lx ↦ (x,T ), where T (v) ∶= (ϕ̃Ux ○Lx ○ ϕ−1Ux)(v).

The resulting vector bundle (Hom(E, Ẽ), π̂,M,Hom(V, Ṽ )) is called the ho-
momorphism bundle from E to Ẽ. Any vector bundle homomorphism L ∶
E → Ẽ corresponds to a smooth section sL ∶= x ↦ Lx = L∣Ex ∈ Hom(Ex, Ẽx)
and, vice versa, s ∈ Γ(Hom(E, Ẽ)) corresponds to the vector bundle homo-
morphism Ls ∶= E ∋ v ↦ sπ(v)(v).

2.4.4 Remark. Here we show that any vector bundle is associated to a principal
fiber bundle with linear structure group (i.e., whose structure group is a Lie sub-
group of some GL(n,K)). Let (E,π,M,V ) be a vector bundle. Since the transition
functions ψik(x) ∶= ψix ○ ψ−1kx ∶ V → V are linear, they define a cocycle

gik ∶= ψik ∶ Ui ∩Uk → GL(V ).

Also, [V,GL(V )] is a left Lie transformation group, with the action given by matrix
multiplication. Hence Theorem 2.3.2 applies and shows that E is associated to the
GL(V )-principal fiber bundle over M defined by the cocycle {gik}.

2.4.5 Remark. Let (P,π,M,G) be a G-principal fiber bundle and let ρ ∶ G →
GL(V ) be a representation of G on the vector space V . Then ρ induces a left
action on V ,

G × V ∋ (g, v)↦ g ⋅ v ∶= ρ(g)v ∈ V.

According to Section 2.3 we therefore obtain a fiber bundle E ∶= P ×(G,ρ) V , and in
fact E is a vector bundle with linear structure on the fibers Ex = Px ×(G,ρ) V given
by

[p, v] + λ[p,w] ∶= [p, v + λw] (p ∈ Px, v,w ∈ V, λ ∈ K).
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Thus declaring [p] from Definition 2.3.3 to be a linear isomorphism transfers the
vector space structure from V to Ex. To verify (iii) from Definition 2.4.1 we use
(2.3.2):

ψUx([p, v] + λ[p,w]) = ψUx([p, v + λw]) = (x,φU(p) ⋅ (v + λw))
= (x, ρ(φU(p))(v + λw)) = (x,φU(p) ⋅ v) + (x,λφU(p) ⋅w)
= ψUx([p, v]) + λψUx([p,w]).

All the functorial operations considered in Remark 2.4.3 can be applied to given
representations (cf. [9, Def. 23.3]). E.g., if E = P ×(G,ρ) V and Ẽ = P ×(G,ρ̃) Ṽ , then

E ⊗ Ẽ = P ×(G,ρ⊗ρ̃) (V ⊗ Ṽ ).

2.4.6 Example. Tensor bundles on a manifold

Let M be an m-dimensional manifold, then there are natural isomorphisms be-
tween the standard tensor bundles over M and vector bundles associated to suit-
able representations of GL(n,R). Denote by ρ ∶ GL(n,R) → GL(Rn) the repre-
sentation given by matrix multiplication (ρ ∶ A ↦ (v ↦ A ⋅ v)). Then according
to [9, Def. 23.3], ρ gives rise to the dual representation ρ∗ ∶ GL(n,R) → GL(Rn∗),
ρk ∶ GL(n,R)→ GL(Λk(Rn∗)), and ρ(r,s) ∶ GL(n,R)→ GL(T rs (Rn)). Then

TM ≅ GL(M) ×(GL(n,R),ρ) Rn

T ∗M ≅ GL(M) ×(GL(n,R),ρ∗) Rn∗

ΛkT ∗M ≅ GL(M) ×(GL(n,R),ρk) Λ
kRn∗

T rsM ≅ GL(M) ×(GL(n,R),ρ(r,s)) T
r
sR

n

To check this explicitly in the case of the tangent bundle TM , consider the map

Φ ∶ GL(M) ×ρ Rn → TM

[(s1, . . . , sn), (x1, . . . , xn)t]↦
n

∑
i=1

xisi.

Then Φ is well-defined: let [(s1, . . . , sn), (x1, . . . , xn)t] = [(s̃1, . . . , s̃n), (x̃1, . . . , x̃n)t],
so for some A ∈ GL(n,R) we have (s1, . . . , sn) = (s̃1, . . . , s̃n) ⋅A and (x1, . . . , xn)t =
A−1 ⋅ (x̃1, . . . , x̃n)t. Thus

n

∑
i=1

xisi =
(2.2.7)

∑
i,j,k

(A−1)ij x̃jAkis̃k =∑
j,k

δkj x̃j s̃k =
n

∑
k=1

x̃ks̃k.

Φ is surjective: Let vp ∈ TpM , y a local chart around p, then vp = ∑ vi∂yi ∣p =
Φ([(∂y1 ∣p, . . . , ∂yn ∣p), (v1, . . . , vn)t]).
Φ is injective: Let

[(s1, . . . , sn), (x1, . . . , xn)t], [(s̃1, . . . , s̃n), (x̃1, . . . , x̃n)t] ∈ GL(M) ×ρ Rn

with ∑ni=1 xisi = ∑ni=1 x̃is̃i. Since both s ∶= (s1, . . . , sn) and s̃ ∶= (s̃1, . . . , s̃n) are bases
of Rn there exists a unique A ∈ GL(n,R) such that s = s̃ ⋅A. Then

∑xisi = s ⋅ x = s̃ ⋅A ⋅ x =∑ x̃is̃i = s̃x̃,

so A ⋅ x = x̃, or x = A−1x̃, implying [s, x] = [s̃, x̃].
To show smoothness of Φ, take ψU ∶ (GL(M) ×ρ Rn)U → U ×Rn as in (2.3.2), i.e.,

ψU = [(s1, . . . , sn), (v1, . . . , vn)t]↦ (π((s1, . . . , sn)), φU(s1, . . . , sn) ⋅ (v1, . . . , vn)t).
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Here, ϕU(s1, . . . , sn) = (π(s1, . . . , sn), φU(s1, . . . , sn)) is a bundle chart of GL(M).
According to Example 2.2.12, this map in turn arises from a chart (U,φ = (x1, . . . , xn))
of M as ϕU(s1, . . . , sn) = (x,A(x)), where

(s1, . . . , sn) = (∂x1 ∣x, . . . , ∂xn ∣x) ⋅A(x).

Therefore, ψU([(s1, . . . , sn), (v1, . . . , vn)t]) = (x,A(x) ⋅ (v1, . . . , vn)t). In particular,
for si = ∂xi ∣x we have A(x) = In, giving

ψ−1U ∶ U ×Rn ∋ (x,w)↦ [(∂x1 ∣x, . . . , ∂xn ∣x), (w1, . . . ,wn)t],

so that

Tφ ○Φ ○ ψ−1U (x,w) = Tφ ○Φ([(∂x1 ∣x, . . . , ∂xn ∣x), (w1, . . . ,wn)t])

= Tφ(∑wi∂xi ∣x) = (φ(x),w).

This shows, on the one hand, that Φ is a local, hence (since it is bijective) a
global diffeomorphism, and on the other that Tφ ○Φ ○ ψ−1U is a local vector bundle
isomorphism. Altogether, Φ thereby is a global vector bundle isomorphism.

A similar calculation with the map

Φ∗ ∶ GL(M) ×ρ∗ Rn∗ → T ∗M

[(s1, . . . , sn), (v1, . . . , vn)t]↦
n

∑
i=1

vis
∗
i

(with {s∗i } the basis dual to {si}) implies the result for T ∗M , and analogously for
the remaining cases.

In the remainder of this section we want to show that any real (resp. complex) vector
bundle of rank m is associated to an O(m) (resp. U(m)) principal fiber bundle. To
do this, we need the following notion:

2.4.7 Definition. A bundle metric on a real or complex vector bundle E over M
is a section ⟨ . , . ⟩ ∈ Γ(E∗ ⊗ Ē∗) that assigns a nondegenerate bilinear form (for
K = R) resp. nondegenerate hermitian form (for K = C)

⟨ . , . ⟩Ex ∶= ⟨ . , . ⟩(x) ∶ Ex ×Ex → K

to any x ∈M .

Semi-Riemannian metrics on TM are examples of bundle metrics. In general we
have:

2.4.8 Theorem. Any real or complex vector bundle possesses a positive definite
bundle metric.

Proof. Let (E,π,M,V ) be a vector bundle over M with bundle atlas {(Ui, ϕi)}i∈I
and pick a partition of unity {χi}i∈I subordinate to the covering {Ui}i∈I . Let
(v1, . . . , vn) be a basis in V and define, for α = 1, . . . , n,

siα ∶ Ui → E

x↦ siα(x) ∶= ϕ−1i (x, vα).

This gives a local frame for EUi
, which allows us to define a bundle metric ⟨ . , . ⟩

on EUi by
⟨siα(x), siβ(x)⟩ix ∶= δαβ (x ∈ Ui).
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Then
⟨ . , . ⟩(x) ∶=∑

i∈I

χi(x)⟨ . , . ⟩ix

gives the desired positive definite bundle metric. ◻
Using this we can now prove:

2.4.9 Theorem. Any real (resp. complex) vector bundle of rank m is associated to
an O(m) (resp. U(m)) principal fiber bundle.

Proof. Let (E,π,M,V ) be a vector bundle over M and fix a positive definite
bundle metric ⟨ . , . ⟩ on E according to Theorem 2.4.8. Now consider the set of
bases

Px ∶= {sx = (s1, . . . , sm) ∣ sx is a basis in Ex with ⟨sα, sβ⟩x = δαβ}.

Then

P ∶= ⊍
x∈M

Px
π̂Ð→M

sx ↦ x

defines an O(m) (resp. U(m)) principal fiber bundle over M : To obtain formal
bundle charts, let Ui be trivializing and use the Gram-Schmidt procedure to con-
struct an orthonormal basis (eiα ∣ α = 1, . . . ,m) in (Γ(EU), ⟨ . , . ⟩). Then set

ϕi ∶ PUi → Ui × Rm
2

, sx = (s1, . . . , sm) ↦ (x,A(x)), where A(x) ∈ O(m) (resp.
U(m)) is the uniquely determined matrix with

sx = (ei1∣x, . . . , eim∣x) ⋅A(x).

It then follows exactly as in Example 2.2.12 that (P, π̂,M,O(m)) (respectively,
(P, π̂,M,U(m))) becomes a principal fiber bundle. Moreover, in complete analogy
to Example 2.4.6 it follows that

P ×O(m) Rm ≅ E resp. P ×U(m) Rm ≅ E

via the vector bundle isomorphism [(s1, . . . , sm), (x1, . . . , xm)]↦ ∑mα=1 xαsα. ◻
For vector bundles that are associated to principal fiber bundles there is a canonical
way of obtaining bundle metrics.

2.4.10 Theorem. Let (P,π,M,G) be a principal fiber bundle, ρ ∶ G → GL(V ) a
representation on a finite dimensional vector space, and ⟨ . , . ⟩V a ρ-invariant scalar
product (for K = R or C) on V . Then on the associated vector bundle E = P ×(G,ρ)V
a bundle metric is given by

⟨e, ê⟩Ex ∶= ⟨v, v̂⟩V (e, ê ∈ Ex), (2.4.1)

where e = [p, v] and ê = [p, v̂] for some p ∈ Px. The scalar products ⟨ . , . ⟩V and
⟨ . , . ⟩Ex have the same signature.

Proof. To see that ⟨ . , . ⟩Ex is well-defined, let q ∈ Px and let g ∈ G be the unique
element such that q = p ⋅ g. Then

e = [p, v] = [p ⋅ g, ρ(g−1)v] = [q, ρ(g−1)v], ê = [p, v̂] = [q, ρ(g−1)v̂],

and ⟨ρ(g−1)v, ρ(g−1)v̂⟩V = ⟨v, v̂⟩V by assumption. Hence (2.4.1) is independent of
the chosen p ∈ Px. To see that the resulting bundle metric is smooth, we have to
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show that for any s1, s2 ∈ Γ(E) also x↦ ⟨s1(x), s2(x)⟩ is smooth. To see this, pick
any smooth section γ ∈ Γ(P ∣U), U a trivializing neighborhood. Then on U we have

si(x) = ψ−1U (x, vi(x)) =
(2.3.4)

[γ(x), φU(γ(x))−1 ⋅ vi(x)],

where vi ∈ C∞(U,V ) (i = 1,2). Therefore,

⟨s1(x), s2(x)⟩ = ⟨φU(γ(x))−1 ⋅ v1(x), φU(γ(x))−1 ⋅ v2(x)⟩ = ⟨v1(x), v2(x)⟩,

which is smooth. ◻

2.5 Reduction and extension of principal fiber bun-
dles

Let (P,πP ,M,G) and (Q,πQ,M,H) be principal fiber bundles and suppose that
(Q,f) is a λ-reduction of P , i.e. (cf. Definition 2.2.3) that f ∶ Q → P is smooth,
λ ∶H → G is a Lie group homomorphism, and

(i) πP ○ f = πQ.

(ii) f(q ⋅ h) = f(q) ⋅ λ(h).

Thus we have the following situation:

Q ×H Q

P ×G P M

⋅

f×λ f
πQ

⋅ πP

2.5.1 Definition. Two λ-reductions (Q,f) and (Q̃, f̃) of the principal fiber bundle
P are called isomorphic if there exists an H-fiber bundle isomorphism Φ ∶ Q → Q̃
such that f̃ ○ Φ = f . By Redλ(P ) we denote the set of all isomorphism classes of
λ-reductions of P .

Let M be an n-dimensional manifold with frame bundle GL(M). Any additional
geometric structure on M induces a reduction of the frame bundle to a subgroup of
GL(n,R). For example, if g is a semi-Riemannian metric on M of signature (k, l),
then the bundle O(M,g) of orthonormal bases is a reduction on GL(M) to the
group O(k, l). In this case, λ = O(k, l)↪ GL(n,R), and f = O(M,g)↪ GL(M).
Conversely, any O(k, l)-reduction (Q,πQ,M,O(k, l)) of GL(M) induces a semi-
Riemannian metric g of signature (k, l) on M as follows: Let x ∈ M and pick any
q ∈ Qx. Then f(q) = (v1, . . . , vn) is a basis of TxM and we define gx by setting
gx(vi, vj) ∶= εiδij , with εi = −1 for 1 ≤ i ≤ k and εi = +1 for k + 1 ≤ i ≤ n. This
definition is independent of the chosen q: Let q̃ ∈ Qx, q̃ = q ⋅A, A ∈ O(k, l). Then
(ṽ1, . . . , ṽn) ∶= f(q̃) = f(q) ⋅A, so

gx(ṽi, ṽj) = gx(∑
k

vkAki,∑
l

vlAlj) =∑
k,l

εkδklAkiAlj =∑
k

εk(At)ikAkj = εiδij .

Moreover, x ↦ gx, M → Γ(T ∗M ⊗ T ∗M) is smooth: Let s be a local section of Q
(cf. Theorem 2.2.5). Then x ↦ f ○ s(x) = (v1x, . . . , vnx) is a smooth local frame for
TM . Since g(vix, vjx) = εiδij is smooth, it follows that indeed g(X,Y ) is smooth for
any X,Y ∈ Xloc(M), giving the claim. Thus g is indeed a semi-Riemannian metric
of signature (k, l) on M .
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2.5.2 Theorem. Let (P,πP ,M,G) be a principal fiber bundle and let λ ∶ H → G
be a Lie group homomorphism. The following are equivalent:

(i) There exists a λ-reduction of P .

(ii) There exists a G-cocycle {gik}i,k∈I for P that is induced by an H-cocycle
hik ∶ Ui ∩Uk →H via

gik(x) = λ(hik(x)) ∀x ∈ Ui ∩Uk.

Proof. (i)⇒(ii): Let (Q,πQ,M,H), f ∶ Q → P be a λ-reduction of P and con-
sider a bundle atlas {(Ui, ψi)}i∈I of Q, inducing the H-cocycle hik ∶ Ui ∩ Uk ∋ x ↦
ψix(ψ−1kx(e)) ∈ H (cf. Theorem 2.2.8). To construct a bundle chart for P over Ui,
let x ∈ Ui and p ∈ Px. Let q ∈ Qx, then πP ○f(q) = πQ(q) = x, so f(q) ∈ Px and there
is a unique g ∈ G with p = f(q) ⋅ g. Now let

ϕi ∶ PUi ↦ Ui ×G
p↦ (πP (p), λ(ψix(q)) ⋅ g).

This map is well-defined: Let p = f(q′)g′ = f(q)g. There exists a unique h ∈H with
q′ = q ⋅ h, so ψix(q′) = ψix(q) ⋅ h and

λ(ψix(q′)) ⋅ g′ = λ(ψix(q)) ⋅ λ(h) ⋅ g′.

Since f(q) ⋅λ(h) = f(q ⋅h) = f(q′) = f(q) ⋅g ⋅(g′)−1, we have λ(h) = g ⋅(g′)−1, proving
the claim. Note also that (setting p ∶= f(q) ⋅ e)

ϕi ○ f ∣QUi
= (idUi × λ) ○ ψi. (2.5.1)

Next, ϕi is smooth: Let s ∶ Ui → Q be a smooth section of Q and let αi ∶ π−1P (Ui)→
Ui × G be a bundle chart for P (w.l.o.g. defined on some Ui). Then αi(p) =
(x,αix(p)), and αi(f(sx)) = (x,αix(f(sx))). Now setting gp ∶= αix(f(sx))−1 ⋅
αix(p) ∈ G we have αi(f(sx) ⋅ gp) = αi(p), i.e., f(sx) ⋅ gp = p. Consequently, on P ∣Ui

we can write
ϕi = p↦ (πP (p), λ(ψix(sx)) ⋅ gp),

which is smooth.

To construct an inverse of ϕi, let (x, g̃) ∈ Ui ×G. We are looking for a p ∈ Px with
ϕi(p) = (x,λ(ψix(sx)) ⋅ gp) = (x, g̃). Thus we need

αix(f(sx))−1 ⋅αix(p) = gp = λ(ψix(sx))−1 ⋅ g̃⇒ αix(p) = αix(f(sx)) ⋅λ(ψix(sx))−1 ⋅ g̃.

It follows that

ϕ−1i (x, g̃) = p = α−1i (x,αix(f(sx)) ⋅ λ(ψix(sx))−1 ⋅ g̃),

which is smooth, so that ϕi is a diffeomorphism.

Furthermore, ϕi is G-equivariant: Let g̃ ∈ G, p = f(q) ⋅ g. Then

ϕi(p ⋅ g̃) = (πP (p), λ(ψix(q)) ⋅ g ⋅ g̃) = (πP (p), λ(ψix(q)) ⋅ g) ⋅ g̃ = ϕi(p) ⋅ g̃.

It remains to show that

gik(x) = ϕix(ϕ−1kx(e)) = λ(ψix(ψ−1kx(e))),

or equivalently that ϕ−1k (x, e) = ϕ−1i (x,λ(ψix(ψ−1kx(e))) ⋅ e). Setting q ∶= ψ−1kx(e) and
p ∶= f(q) ⋅ e, we have ϕi(p) = (x,λ(ψix(q)) ⋅ e) and we are left with showing that
ϕk(p) = (x, e). Indeed,

ϕk(p) = (x,λ(ψkx(q)) ⋅ e) = (x,λ(e) ⋅ e) = (x, e).
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(ii)⇒(i): By Theorem 2.2.7, theH-cocycle generates a principal fiber bundle (Q,πQ,
M,H) over M with bundle charts ψi ∶ QUi → Ui×H. To define a suitable f ∶ Q→ P
we note that in the first part of the proof, cf. (2.5.1), we got that f ∣QUi

= ϕ−1i ○(idUi×
λ)○ψi. Conversely we therefore define maps fi ∶ QUi → PUi , fi ∶= ϕ−1i ○(idUi ×λ)○ψi,

QUi PUi

Ui ×H Ui ×G

fi

ψi ϕi

id×λ

We show that fi = fk on QUi∩Uk
: This is the case if and only if for each (x,h) ∈

(Ui ∩Uk) ×H we have

(id × λ)(ψi ○ ψ−1k )(x,h) = (ϕi ○ ϕ−1k ) ○ (id × λ)(x,h)
⇔ (id × λ)(x,hik(x) ⋅ h) = (x, gik(x) ⋅ λ(h)),

which indeed is the case by (ii). Hence we obtain a well-defined smooth map f ∶
Q→ P such that on QUi

πP ○ f = πP ○ ϕ−1i ○ (id × λ) ○ ψi = pr1 ○ ψi = πQ.

Finally,

fi(q ⋅ h) = ϕ−1i ○ (idUi × λ) ○ ψi(q ⋅ h) = ϕ−1i (x,λ(ψix(q ⋅ h)))
= ϕ−1i (x,λ(ψix(q) ⋅ h)) = ϕ−1i (x,λ(ψix(q))) ⋅ λ(h) = fi(q) ⋅ λ(h).

◻

2.5.3 Remark. This result shows that if (Q,f) is a λ-reduction of P then one can
choose trivializations of P and Q over the same set U such that, using QU ≅ U ×H,
PU ≅ U × G, the map f reduces to f ∣QU

≅ idU × λ (see (ii)⇒(i) in the previous
proof). This makes it possible to transfer local properties from λ to f . E.g., if λ
is a covering map, so is f . If λ = H ↪ G for a Lie subgroup H of G, then also
f ∶ Q→ P is an injective immersion, hence f(Q) is an immersive submanifold of P .
If H is closed in G (so that by [9, Cor. 21.9] it is a regular submanifold of G), then
also f ∶ Q→ P is an embedding, hence f(Q) is a regular submanifold of P .

2.5.4 Theorem. Let H be a Lie subgroup of G, (P,π,M,G) a principal fiber
bundle and Q ⊆ P a subset such that

(i) The right action R of H preserves Q: Rh(Q) = Q for all h ∈H.

(ii) If q, q̃ ∈ Qx ∶= Q ∩ Px and q = q̃ ⋅ g, then g ∈H.

(iii) For any x ∈ M there exists an open neighborhood U(x) in M and a smooth
section s ∶ U(x)→ P with s(U(x)) ⊆ Q.

Then Q is an immersive submanifold of P , (Q,π∣Q,M,H) is a principal fiber bundle
and (Q, ι) is an H-reduction (i.e., a subbundle) of P , where ι = Q ↪ P is the
inclusion map.

Proof. Let s ∶ U → P be a local section as in (iii) and consider the corresponding
bundle chart (cf. Theorem 2.2.5)

ϕU ∶ PU → U ×G
p = s(π(p)) ⋅ g ↦ (π(p), g).
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By (i) and (ii) the restriction

ψU ∶= ϕU ∣QU
∶ QU ∶= PU ∩Q→ U ×H

is bijective, hence is a formal bundle chart for Q. By (iii), Q can be covered by a
corresponding formal bundle atlas {(Ui, ψUi)}i∈I . Since H is a Lie subgroup, hence
an integral manifold of an integrable distribution ([9, 19.3]), the same is true for
(Ui ∩Uj) ×H ⊆ (Ui ∩Uj) ×G. Therefore, smoothness of ϕUj ○ ϕ−1Ui

∶ (Ui ∩Uj) ×G→
(Ui ∩Uj) ×G implies smoothness of

ψUj
○ ψ−1Ui

= ϕUj ○ ϕ−1Ui
∣(Ui∩Uj)×H ∶ (Ui ∩Uj) ×H → (Ui ∩Uj) ×H.

([9, 17.27,14.7]). By Theorem 2.1.5 this induces the structure of a fiber bundle on
Q. By assumption, the right action of G on P restricts to a fiber preserving action
on Q that is simply transitive on the fibers (by (i) and (ii)). As above, this action
is smooth as a map R ∶ Q×H → Q. This turns (Q,π∣Q,M,H) into a principal fiber
bundle, and the inclusion ι ∶ Q↪ P is an immersion (ψU ○ ι ○ϕ−1U = U ×H ↪ U ×G).
We conclude that (Q, ι) is an H-reduction of P . ◻

Next we want to derive a criterion for the reducibility of a principal fiber bundle
(P,π,M,G) to a closed (and non-open) subgroup H of G. Consider the action of
G on the homogeneous space G/H (cf. Theorem 1.1.3):

G ×G/H ∋ (g, [a])↦ [ga] ∈ G/H.

By Theorem 2.3.1 we obtain an associated fiber bundle E ∶= P ×G G/H. Now
consider the map

f ∶ E → P /H ∶= {p ⋅H ∣ p ∈ P}
[p, g ⋅H]↦ (p ⋅ g) ⋅H.

It is readily verified that f is well-defined an bijective, so we may use it to transfer
the fiber bundle structure from E to P /H, and we shall henceforth identify these
two spaces.

2.5.5 Theorem. Let (P,π,M,G) be a principal fiber bundle and let H be a closed
(non-open) subgroup of G. Then the following are equivalent:

(i) P is reducible to H.

(ii) The associated fiber bundle (E,πE ,M,G/H) possesses a smooth global section.

Proof. (ii)⇒(i) Let s ∈ Γ(E), then by Theorem 2.3.4 there exists a corresponding
s̄ ∈ C∞(P,G/H)G. Now set

Q ∶= {p ∈ P ∣ s̄(p) = eH}.

We first show that Q is a regular submanifold of P . Let µ ∶ P → E = P /H, µ ∶ p ↦
[p](eH) = [p, eH] = p ⋅H. Then µ is smooth, and πE(µ(p)) = πE([p, eH]) = πP (p),
so µ is a submersion. By Theorem 2.3.4 we have

Q = {p ∈ P ∣ [p]−1 ○ s(π(p)) = eH} = {p ∈ P ∣ s(π(p)) = µ(p)}.

Therefore, Q = µ−1(s(M)): one direction is immediate from the above. For the
other, let µ(p) = s(x). Then πP (p) = πE ○ µ(p) = πE(s(x)) = x, and again by the
above we have p ∈ Q.
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Since s(M) is a regular submanifold of E (it is locally a graph) and µ is a submer-
sion, it follows that Q is a regular submanifold as well (using a local trivialization
of s(M), locally s(M) = ν−1(0) for some submersion ν, so Q = (ν ○µ)−1(0) locally).
Next we claim that Q, together with πQ ∶= πP ∣Q, is a principal H-bundle. First, by
(2.3.9),

s̄(ph) = h−1s̄(p) = h−1eH = eH ∀h ∈H,
showing that ph ∈ Q if p ∈ Q, so H acts on Q on the right. Now let q, q̃ ∈ Q ∩ Px.
Then there is a unique g ∈ G with q = q̃ ⋅ g, and again by (2.3.9)

s̄(q) = eH = s̄(q̃g) = g−1s̄(q̃) = g−1eH = g−1H,

so g ∈H, implying that H acts fiber preserving and simply transitive on Q.

Let {(Ui, si)}i∈I be a covering of P by local sections (corresponding via Theorem
2.2.5 to a bundle atlas of P ). By Theorem 1.1.3 there exist local sections σi ∶Wi → G
in G/H, and by continuity we can arrange that s̄○si(Ui) ⊆Wi. Then gi ∶= σi ○ s̄○si ∶
Ui → G is smooth and we consider the section s̃i ∶ Ui → P defined by

s̃i ∶= si(x) ⋅ gi(x).

Since σi is a section in G/H, gi(x) ⋅H = s̄ ○ si(x), which together with (2.3.9) gives

s̄(s̃i(x)) = gi(x)−1 ⋅ s̄(si(x)) = gi(x)−1 ⋅ gi(x) ⋅H = eH.

We conclude that s̃i ∶ Ui → Q is a smooth local section. It now follows from Theorem
2.2.5 that (Q,πQ,M,H) is a principal fiber bundle. Together with the inclusion
maps Q ↪ P and H ↪ G it is a reduction of P since all operations on Q were
defined by restriction of those on P .

(i)⇒(ii): Let (Q,πQ,M,H) be a principal fiber bundle and f ∶ Q → P an H-
reduction of P . Then by Remark 2.5.3, f ∶ Q → P is an embedding. The closed
subgroup H acts on the left on G, inducing a fiber bundle structure on Q ×H G
by Theorem 2.3.1. G acts on the right on Q ×H G by [q, g] ⋅ g̃ ∶= [q, g ⋅ g̃], which is
readily seen to be well-defined. It is also smooth: Using a bundle chart ψU as in
(2.3.2), ψU([q, g]) = (π(q), φU(q) ⋅ g), so in terms of this chart the action is given
by ((x, g), g̃)↦ (x, g ⋅ g̃).
It is immediate that the action is fiber preserving and simply transitive on the fibers.
Finally, the bundle charts ψU from above satisfy (i)–(iii) from Definition 2.2.1, so
Q ×H G is a G-principal fiber bundle. Now let

F ∶ Q ×H G→ P

[q, g]↦ f(q) ⋅ g.

Again it easily follows that F is well-defined. It is surjective, since given p ∈ P we
may pick any q ∈ Q with π(p) = π(q). Then there is a unique g ∈ G with p = f(q) ⋅g,
so p = F ([q, g]). To see injectivity, suppose that f(q1)g1 = f(q2)g2. Since Q is a
principal fiber bundle, there is a unique h ∈ H with q1 = q2h, so f(q1) = f(q2) ⋅ h,
implying that h = g2g−11 . Since f is injective (by Remark 2.5.3), f(q1) = f(q2)h =
f(q2h) implies q1 = q2h, so altogether [q1, g1] = [q2, g2]. Smoothness of F follows
since, using (2.3.3),

F ○ ψ−1U = (x, g)↦ F ([ϕ−1U (x, e), g]) = f(ϕ−1U (x, e)) ⋅ g.

Indeed F is a diffeomorphism: we already know it is bijective, so it suffices to
show that its Jacobian is invertible everywhere. So let ϕ̃U ∶ PU → U ×G, ϕ̃U(p) =
(π(p), φ̃U(p)) be a bundle chart for P . Then

ϕ̃U ○ F ○ ψ−1U (x, g) = (x, φ̃U(f(ϕ−1U (x, e))) ⋅ g) = (x,La(x)(g)),
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with a(x) ∶= φ̃U(f(ϕ−1U (x, e))). Consequently,

T(x,g)(ϕ̃U ○ F ○ ψ−1U ) = (
I 0
∗ TgLa(x)

) ,

which, as desired, is bijective. Indeed F is even an isomorphism of principal fiber
bundles, since

πP ○ F ([q, g]) = πP (f(q) ⋅ g) = πP (f(q)) = πQ(q) = π̂([q, g]),
F ([q, g] ⋅ g̃) = F ([q, g ⋅ g̃]) = f(q) ⋅ g ⋅ g̃ = F ([q, g]) ⋅ g̃.

Identifying P with Q ×H G via F , the desired section s̄ ∶ P → G/H can now be
defined by

s̄ ∶ P ≅ Q ×H G→ G/H
[q, g]↦ g−1H,

which is clearly well-defined. Then s̄ ○ ψ−1U (x, g) = s̄([ϕ−1U (x, e), g]) = g−1H, so s̄ is
smooth. Finally,

s̄([q, g] ⋅ g̃) = s̄([q, g ⋅ g̃]) = g̃−1g−1H = g̃−1s̄([q, g])

shows that s̄ ∈ C∞(P,G/H)G, concluding the proof via Theorem 2.3.4. ◻
We now want to use this criterion to show that any principal fiber bundle with non-
compact structure group possesses a reduction to a compact group. To achieve this,
we will make use of a result from the structure theory of Lie groups: A compact
subgroup K of a Lie group G is called maximally compact if there does not exist
another compact subgroup strictly containing K. Then the following holds (see e.g.
[5] for a proof):

2.5.6 Theorem.

(i) Any connected Lie group G contains a maximally compact subgroup K. For
any other compact subgroup K̂ of G there exists some g ∈ G with gK̂g−1 ⊆K.

(ii) Let K be a maximally compact subgroup of a connected Lie group G. Then
there exists a submanifold N of G that is diffeomorphic to some Rr such that
the map

N ×K → G

(n, k)↦ n ⋅ k

is a diffeomorphism. Then the map f ∶ N → G/K, n ↦ n ⋅K is a diffeomor-
phism, so G/K ≅ Rr.

Using this result we can now show:

2.5.7 Theorem. Let G be a connected, non-compact Lie group and let (P,π,M,G)
be a principal fiber bundle. Then P can be reduced to any maximally compact
subgroup K of G.

Proof. Let K be a maximally compact subgroup of G. Then by Theorem 2.5.6,
the homogeneous space G/K is diffeomorphic to Rr. By Theorem 2.5.5 it suffices to
show the existence of a global section in the associated fiber bundle E = P ×GG/K.
This follows directly from Theorem 2.1.9. ◻
Next we determine how associated vector bundles react to reduction of the structure
group.
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2.5.8 Theorem. Let λ ∶ H → G be a Lie group homomorphism and let ρ ∶ G →
GL(V ) be a representation of G. Also, let (P,π,M,G) be a principal fiber bundle
and let (Q,f) be a λ-reduction of P . Then the associated vector bundles P ×(G,ρ) V
and Q ×(H,ρλ) V are isomorphic.

Proof. The map

Ψ ∶ Q ×(H,ρλ) V → P ×(G,ρ) V
[q, v]→ [f(q), v]

is well-defined because

Ψ([qh, ρ ○ λ(h−1)v]) = [f(q)λ(h), ρ(λ(h)−1)v] = [f(q), v].

Moreover, it is fiber linear and fiber preserving. Suppose that Ψ([q, v]) = Ψ([q̃, ṽ]),
where q, q̃ ∈ Qx and v, ṽ ∈ V . Then there exists a unique h ∈ H with q̃ = q ⋅ h, so
f(q̃) = f(q)λ(h) and therefore

[f(q), v] = [f(q)λ(h), ρ(λ(h)−1)v] = [f(q̃), ρ(λ(h)−1)v] = [f(q̃), ṽ].

Thus ṽ = ρ(λ(h−1))v, implying [q, v] = [qh, ρ(λ(h−1))v] = [q̃, ṽ], so Ψ is injective.
Now let [p, v] ∈ P ×(G,ρ) V with p ∈ Px and pick any q ∈ Qx. Then there exists a
unique g ∈ G with f(q) = p ⋅ g. Consequently,

Ψ([q, ρ(g−1)v]) = [f(q), ρ(g−1)v] = [p, v],

showing surjectivity of Ψ. Finally, to show that Ψ is a diffeomorphism we proceed
analogously to the proof of Theorem 2.5.5. With ψ̃U and ψU bundle charts for
P ×(G,ρ) V and Q ×(H,ρλ) V as in (2.3.2), we obtain using (2.3.3):

ψ̃U ○Ψ ○ ψ−1U (x, v) = ψ̃U ○Ψ([ϕ−1U (x, e), v]) = ψ̃U([f(ϕ−1U (x, e)), v])
= (x, φ̃U(f(ϕ−1U (x, e))) ⋅ v) =∶ (x, a(x) ⋅ v)

(where a(x) ∈ GL(V )), which shows smoothness of Ψ. Moreover,

T(x,v)(ψ̃U ○Ψ ○ ψ−1U ) = (
I 0
∗ a(x)) ,

which is bijective. This shows that Ψ is a local, hence (being bijective) a global
diffeomorphism and thereby a vector bundle isomorphism. ◻
We now turn to the operation that is inverse to the reduction of principal fiber
bundles, the extension of principal fiber bundles. Let λ ∶ H → G be a Lie group
homomorphism. Then λ defines an action of H on G by

H ×G→ G

(h, g)↦ h ⋅ g ∶= λ(h) ⋅ g.
(2.5.2)

This action allows us to associate to any H-principal fiber bundle (Q,πQ,M,H) a
fiber bundle P = Q ×H G.

2.5.9 Definition. The fiber bundle P = Q ×H G is called the λ-extension of Q.

2.5.10 Theorem. Let λ ∶H → G be a Lie group homomorphism and (Q,πQ,M,H)
a principal fiber bundle.

(i) The λ-extension P = Q ×H G of Q is a G-principal bundle over M .
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(ii) Let f ∶ Q → P = Q ×H G be the map f(q) ∶= [q, e], with e the unit element in
G. Then (Q,f) is a λ-reduction of P .

(iii) Let P be a G-principal fiber bundle over M and let (Q,f) be a λ-reduction of
P . Then P is isomorphic to the λ-extension of Q.

Proof. (i) We define the action of G on P by

µ ∶ (Q ×H G) ×G↦ Q ×H G

([q, a], g)↦ [q, ag].

It is easy to check that µ is well-defined and fiber preserving. It is also simply
transitive on the fibers: if [q, a1], [q, a2] ∈ π̂−1(x) (note that we can always arrange
to have the same first component), then g ∶= a−11 a2 is the unique element of G with
[q, a1] ⋅ g = [q, a2].
Let ϕU ∶ QU → U × H be an H-equivariant bundle chart for Q with ϕU(q) =
(π(q), φU(q)). Then by Theorem 2.3.1 the map

ψU ∶ PU → U ×G
ψU([q, g]) ∶= (π(q), φU(q) ⋅ g)

is a fiber bundle chart for P that satisfies (a) and (b) from Definition 2.2.1 (ii) due
to Theorem 2.3.1. Also (c) holds because

ψU([q, a] ⋅ g) = ψU([q, ag]) = (π(q), φU(q) ⋅ a ⋅ g) = ψU([q, a]) ⋅ g.

To show smoothness of µ we calculate, using (2.3.3):

ψU ○ µ ○ (ψU × idG)−1((x, a), g) = ψU ○ µ([ϕ−1U (x, e), a], g) = ψU([ϕ−1U (x, e), a ⋅ g])
= (x,φU(ϕ−1U (x, e)) ⋅ a ⋅ g) = (x, e ⋅ a ⋅ g) = (x, ag).

Consequently, P is indeed a G-principal bundle over M .

(ii) f is obviously fiber preserving, and we have

f(qh) = [qh, e] = [q, λ(h)e] = [q, e] ⋅ λ(h) = f(q)λ(h).

It is smooth because

ψU ○ f(q) = ψU([q, e]) = (π(q), φU(q) ⋅ e).

(iii) Consider the map

Ψ ∶ Q ×H G→ P

[q, g]↦ f(q)g.

Again it is easy to see that Ψ is well-defined. It is fiber preserving since

πP ○Ψ([q, g]) = πP (f(q) ⋅ g) = πP ○ f(q) = πQ(q) = π̂([q, g]).

Smoothness follows since

Ψ ○ ψ−1U (x, a) = Ψ([ϕ−1U (x, e), a]) = f(ϕ−1U (x, e)) ⋅ a.

Also, it commutes with the action of G:

Ψ([q, g] ⋅ g1) = Ψ([q, gg1]) = f(q)gg1 = Ψ([q, g]) ⋅ g1.
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Let ϕ̃U ∶ π−1P (U) → U ×G be a G-equivariant bundle chart for P , ϕ̃U(p) = (πP (p),
φ̃U(p)) and let s ∶ U → Q be a local section in Q. Then f ○ s ∶ U → P is a local
section in P and we define a map

g ∶ PU → G, p = f(s(π(p))) ⋅ g(p).

In terms of the bundle chart ϕ̃U this means

ϕ̃U(f ○ s ○ π(p) ⋅ g(p)) = (π(p), φ̃U(f ○ s ○ π(p)) ⋅ g(p)) != ϕ̃U(p) = (π(p), φ̃U(p)),

so g(p) = φ̃U(f ○ s ○ π(p))−1φ̃U(p), showing smoothness of g.

Next we note that Ψ is injective: Let f(q1)g1 = f(q2)g2, then

πQ(q1) = πP (f(q1)g1) = πP (f(q2)g2) = πQ(q2),

so q1 ⋅ h = q2 for some h ∈H. Thus

f(q1)g1 = f(q2)g2 = f(q1h)g2 = f(q1)λ(h)g2 ⇒ g1 = λ(h)g2
⇒ [q1, g1] = [q1, λ(h)g2] = [q1h, g2] = [q2, g2].

Then since Ψ([s(π(p)), g(p)]) = f(s(π(p))) ⋅ g(p) = p on P ∣U it follows that Ψ is
also surjective, hence bijective, and locally we have

Ψ−1 = p↦ [s(π(p)), g(p)].

Since
ψU ○Ψ−1(p) = ψU([s(π(p)), g(p)]) = (π(p), φU(s(π(p))) ⋅ g(p))

is smooth, so is Ψ−1, establishing that Ψ is a diffeomorphism and thereby an iso-
morphism of principal fiber bundles. ◻
As an application we prove a criterion for the existence of pseudo-Riemannian met-
rics. While any manifold can be endowed with a Riemannian metric, the same need
no longer be true in the pseudo-Riemannian setting.

2.5.11 Theorem. Let M be a manifold of dimension n and let k, l ∈ N0 such that
k + l = n. Then the following are equivalent:

(i) There exists a pseudo-Riemannian metric of signature (k, l) on M .

(ii) There exist real vector bundles ξ, η of rank k resp. l over M such that TM =
ξ ⊕ η.

Proof. (ii)⇒(i): Choose any Riemannian metric r on M and set

g∣ξ×ξ ∶= −r∣ξ×ξ, g∣η×η ∶= r∣η×η, g∣ξ×η ∶= 0

to obtain a pseudo-Riemannian metric of signature (k, l) on M .

(i)⇒(ii): Let g be a pseudo-Riemannian metric of signature (k, l) onM and consider
the bundle O(M,g) of g-orthonormal frames on M . Then the structure group of
O(M,g) is the pseudo-orthogonal group O(k, l), which is not compact (cf. Example
2.2.13).

We now consider the product O(k) ×O(l) of the corresponding orthogonal groups
as a subgroup of O(k, l):

O(k) ×O(l) ∋ (A,B)↦ (A 0
0 B

) ∈ O(k, l).
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Then O(k)×O(l) is a maximally compact subgroup of O(k, l), so by Theorem 2.5.7
we can reduce the O(k, l)-principal fiber bundle O(M,g) to the compact group
O(k) ×O(l). Let (Q,f) be such a reduction. Then by Example 2.4.6, the Remark
following Definition 2.5.1, and Theorem 2.5.8 we obtain

TM ≅ GL(M) ×GL(n,R) Rn ≅ O(M,g) ×O(k,l) Rn ≅ Q ×O(k)×O(l) (Rk ⊕Rl)
≅ (Q ×O(k) Rk)⊕ (Q ×O(l) Rl) =∶ ξ ⊕ η.

(2.5.3)

◻
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Chapter 3

Connections in principal
fiber bundles

Having set the stage in the previous chapters, we now turn to the topic of geometric
analysis on principal fiber bundles and associated bundles. The central notion on
which everything else (e.g., curvature, parallel transport, holonomy) is grounded is
that of a connection.

3.1 Basic notions

Recall from [9, Sec. 17] that a (geometric) distribution E (Ω in [9]) on a manifold
N is a map

E ∶ N ∋ x↦ Ex ⊆ TxN

that assigns to any x ∈ N an r-dimensional subspace Ex in a smooth way. The
latter means that any x ∈ N has a neighborhood U on which there are smooth
vector fields X1, . . . ,Xr that span E , i.e.,

Ey = span(X1(y), . . . ,Xr(y)) ∀y ∈ U.

Let (P,π,M,G) be a principal fiber bundle. Henceforth we shall always denote the
right action of G on P by Rg:

P ×G→ P

(u, g)↦ Rg(u) ∶= u ⋅ g.

On P there always exists a canonical geometric distribution given by the tangent
spaces of the fibers of P . Indeed, since π is a submersion, any fiber Px = π−1(x) is
a regular submanifold, which thereby is an integral manifold for this distribution.
We denote the tangent space to Px in the point u ∈ Px by

TvuP ∶= Tu(Px) ⊆ TuP.

TvuP is called the vertical tangent space in u.

3.1.1 Theorem. (Properties of the vertical tangent space)

(i) TvuP = kerTuπ.
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(ii) The map

Φu ∶ g ∋X ↦ X̃(u) ∶= d

dt
∣
0
(u ⋅ exp(tX)) ∈ TvuP,

assigning to each element of the Lie algebra the value at u of the fundamental
vector field generated by it, is a linear isomorphism. Therefore,

TvuP = {X̃(u) ∣X ∈ g}.

(iii) For any X ∈ g, the flow of X̃ is given by Rexp(tX):

FlX̃t (u) = u ⋅ exp(tX) = Rexp(tX)(u).

Proof. (i) follows from the fact that π is a submersion, cf. [7, 3.3.23,3.3.25].

(iii) This was shown in the proof of Theorem 1.1.7.

(ii) By Theorem 1.2.2 the map X ↦ X̃(u) is linear. It takes values in TvuP since
π(u ⋅ exp(tX)) ≡ π(u), so Tuπ(X̃(u)) = 0. By (i) we have

dimTvuP = dimP − dim im(Tuπ) = dimP − dimM = dimG = dimg.

It therefore suffices to show that X ↦ X̃(u) is injective. So let X̃(u) = 0. Then
the integral curve of X̃ through u is constant, i.e. (by (iii)), u = u ⋅ exp(tX) for all
t ∈ R. Thus since G acts simply transitively on the fibers, exp(tX) = e for all t.
Choosing t so small that tX lies in a neighborhood where exp is injective it follows
that X = 0. ◻

Point (ii) of Theorem 3.1.1 shows that for any basis (X1, . . . ,Xr) of g, the corre-
sponding fundamental vector fields (X̃1, . . . , X̃r) span the distribution

Tv ∶ P ∋ u↦ TvuP ⊆ TuP,

which is therefore smooth. Moreover, this distribution is right invariant, i.e.,
TuRg(TvuP ) = Tvu⋅gP . Indeed, for w ∈ kerTuπ,

Tu⋅gπ(TuRg(w)) = Tu(π ○Rg)(w) = Tuπ(w) = 0

so the claim follows from Theorem 3.1.1 (i), equality of the dimensions, and the fact
that

TuRg ∶ TvuP → Tvu⋅gP (3.1.1)

is linear and injective (hence a linear isomorphism).

Any subspace of TuP that is complementary to TvuP is called a horizontal tangent
space to P in u. A connection on a principal fiber bundle (P,π,M,G) is a smooth
selection of horizontal tangent spaces that is compatible with the action of G in the
following sense:

3.1.2 Definition. A connection on a principal fiber bundle (P,π,M,G) is a geo-
metric distribution of horizontal tangent spaces

Th ∶ P ∋ u↦ ThuP ⊆ TuP

that is right invariant, i.e.,

TuRg(ThuP ) = Thu⋅gP. (3.1.2)
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Then ThP = ⊍u∈P ThuP ⊆ TP is called the horizontal tangent bundle, and the
projections prv ∶ TP → TvP , prh ∶ TP → ThP are smooth, as maps TP → TP : In
terms of local bases (X1, . . . ,Xn), (Xn+1, . . . ,Xn+m) of the distributions Th, Tv we
have

prh ∶
n+m

∑
i=1

aiXi ↦
n

∑
i=1

aiXi,

which when expressed in local charts is obviously smooth (and analogously for prv).

By Theorem 3.1.1 (i)
Tuπ ∶ ThuP → Tπ(u)M (3.1.3)

is a linear isomorphism. Given Xu ∈ TuP and g ∈ G, we have Xu = prh(Xu) +
prv(Xu), and TuRg(Xu) = prh(TuRg(Xu)) + prv(TuRg(Xu)). On the other hand,

TuRg(Xu) = TuRg(prh(Xu)) + TuRg(prv(Xu)) ∈ ThugP ⊕ TvugP

by (3.1.2) and (3.1.1). We conclude that

prh ○ TRg = TRg ○ prh, prv ○ TRg = TRg ○ prv. (3.1.4)

Note also that for any X, Tπ(X) = Tπ(prh(X))+Tπ(prv(X)) = Tπ(prh(X)), i.e.,

Tπ ○ prv = 0, Tπ ○ prh = Tπ. (3.1.5)

Next we want to examine alternative ways of introducing connections on principal
fiber bundles. In what follows we will make use of vector valued k-forms, referring
to [9, Sec. 10] for definitions and basic properties.

3.1.3 Definition. A connection form (or connection 1-form) on a principal fiber
bundle (P,π,M,G) is a 1-form A ∈ Ω1(P,g) that satisfies

(i) R∗gA = Ad(g−1) ○A for all g ∈ G, and

(ii) A(X̃) =X for all X ∈ g.

The set of all connection forms on P is denoted by C(P ).

3.1.4 Theorem. Connections and connection forms on a principal fiber bundle
(P,π,M,G) are in bijective correspondence:

(i) If Th ∶ P ∋ u↦ ThuP is a connection on P , then

Au(X̃(u)⊕ Yh) ∶=X ∀u ∈ P, X ∈ g, Yh ∈ ThuP

defines a connection form on P .

(ii) If A ∈ Ω1(P,g) is a connection form on P , then

Th ∶ P ∋ u↦ ThuP ∶= kerAu

defines a connection on P .

Proof. (i) To demonstrate that A is smooth we have to show that for any Z ∈ X(P )
we have A(Z) ∈ C∞(P,g). We can write Z = Zv⊕Zh, with Zh = prh○Z, Zv = prv ○Z.
Let Φu ∶ g → TvuP,X ↦ X̃(u) be the linear isomorphism from Theorem 3.1.1 (ii).
Then A(Z)(u) = Φ−1u (Zv(u)). Let (X1, . . . ,Xr) be a basis of g. Then there exist
f1, . . . , fr ∈ C∞(P ) such that Zv = u↦ ∑ri=1 fi(u)X̃i(u). Consequently,

A(Z)(u) = Φ−1u (
r

∑
i=1

fi(u)X̃i(u)) =
r

∑
i=1

fi(u)Xi
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is smooth.

By Theorem 1.2.2 we have

TRg ○ X̃ ○Rg−1 = (Rg)∗X̃ = (Ad(g−1)X)∼,

so TRg(X̃(u)) = (Ad(g−1)X)∼(ug). If Yh ∈ ThuP , then by (3.1.2) we have TRg(Yh) ∈
Thu⋅gP . Consequently,

(R∗gA)u(X̃(u) + Yh) = Aug(TRg(X̃(u)) + TRgYh)
= Aug((Ad(g−1)X)∼(ug) + TRgYh)
= Ad(g−1)X = Ad(g−1) ○Au(X̃(u) + Yh).

Thus R∗gA = Ad(g−1) ○A.
(ii) We have to show that u ↦ kerAu is a smooth horizontal and right invariant
distribution on P .

To see smoothness, let (W, (x1, . . . , xm)) be a chart for P around u ∈ P and let
(X1, . . . ,Xr) be a basis of g. Let Y ∈ TuP , Y = ∑i ξi∂xi ∣u. Since A is smooth,
A(∂xi) = ∑j AijXj , with Aij smooth on W . Now Y ∈ ker(Au) if and only if

∑
i

ξiAij(u) = 0 j = 1, . . . , r.

The solutions of this system of linear equations depend smoothly on u, so we obtain
a smooth local basis for kerA.

Let Y ∈ TuP be an element of kerAu. Then

Aug(TRgY ) = (R∗gA)u(Y ) = Ad(g−1)(Au(Y )) = 0,

which shows that TuRg(kerAu) ⊆ kerAug. Since TuRg is a linear isomorphism
and the above also shows TugRg−1(kerAug) ⊆ kerAu, we have equality, and right
invariance of Th follows.

Finally, we show that kerAu is horizontal. Let Y ∈ kerAu ∩ TvuP . Then Y = X̃(u)
for some X ∈ g. Therefore, 0 = Au(Y ) = X, so Y = X̃ = 0, and kerAu is transversal
to TvuP . Since Au is surjective by Definition 3.1.3 (ii),

dimkerAu = dimTuP − dimg = dimTuP − dimTvuP,

implying that TuP = kerAu ⊕ TvuP . ◻
To give a local characterization of connections we use local 1-forms on the base
manifold.

3.1.5 Definition. Let A ∈ Ω1(P,g) be a connection form on the principal fiber
bundle (P,π,M,G) and let s ∶ U ⊆M → P be a local section in P . Then the 1-form

As ∶= A ○ Ts ∈ Ω1(U,g), TxM ∋X ↦ As(X) ∶= As(x)(Txs(X)) ∈ g (3.1.6)

is called the local connection form induced by s.

If (U,φ = (x1, . . . , xn)) is a local chart of M , then let Aµ ∶= As(∂µ) (µ = 1, . . . , n).
If, in addition, ea (a = 1, . . . , r) is a basis of g, we can expand

Aµ =
r

∑
a=1

Aaµea, As =
r

∑
a=1

(As)aea

Then the real valued fields Aaµ ∈ C∞(U,R), as well as the corresponding (As)a ∈
Ω1(U,R) are called (local) gauge boson fields.
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Now let si ∶ Ui → P and sj ∶ Uj → P be local sections with Ui ∩ Uj ≠ ∅. Then for
each x ∈ Ui ∩Uj there is a unique gij(x) ∈ G such that

si(x) = sj(x) ⋅ gij(x). (3.1.7)

Using the inverse bundle chart ψsj induced by sj from (2.2.2), we have gij(x) =
pr2 ○ ψ−1sj (si(x)), so gij is smooth.

Denote by µG ∈ Ω1(G,g) the Maurer–Cartan form of G (cf. [9, Sec. 10]),

µG(Yg) ∶= TLg−1(Yg), Yg ∈ TgG

and let µij ∶= g∗ijµG ∈ Ω1(Ui ∩Uj ,g) be its pullback under gij to Ui ∩Uj :

µij(X) = TLg−1ij (x)
(Tgij(X)), X ∈ Tx(Ui ∩Uj).

Then we have:

3.1.6 Theorem. (Local characterization of connection forms)

(i) Let A ∈ Ω1(P,g) be a connection form in the principal fiber bundle P and let
(si, Ui), (sj , Uj) be local sections in P with Ui ∩Uj ≠ ∅. Then

Asi = Ad(g−1ij ) ○Asj + µij .

(ii) Conversely, if {(si, Ui)}i∈I is a covering of M by local sections and if {Ai ∈
Ω1(Ui,g)}i∈I is a family of local 1-forms such that, whenever Ui ∩Uj ≠ ∅,

Ai = Ad(g−1ij ) ○Aj + µij on Ui ∩Uj , (3.1.8)

then there is a unique connection form A ∈ Ω1(P,g) on P with Asi = Ai for
each i ∈ I.

Proof. (i) Let x ∈ Ui ∩Uj , X ∈ TxM and γ a smooth curve in M with γ(0) = x and
γ′(0) =X. Then by Lemma 1.2.3 and (3.1.7) we have

Txsi(X) =
d

dt
∣
0
(si(γ(t))) =

d

dt
∣
0
(sj(γ(t)) ⋅ gij(γ(t)))

= TRgij(x)(Tsj(X)) + (µij(X))∼(si(x)).
(3.1.9)

Therefore, using Definition 3.1.3,

Asi(X) = A(Txsi(X)) = A(TRgij(x)(Tsj(X))) + µij(X)
= Asj(x)⋅gij(x)(TRgij(x)(Tsj(X))) + µij(X) = R∗gij(x)A(Tsj(X)) + µij(X)
= Ad(gij(x)−1)(A(Tsj(X))) + µij(X) = Ad(gij(x)−1)Asj(X) + µij(X).

(ii) We begin by showing that Ai is a connection form on the trivial subbundle PUi .
Let x ∈ Ui and set u ∶= si(x) ∈ P . Then

TuP = TvuP ⊕ Txsi(TxUi). (3.1.10)

To see this, note first that since si is a section, Tπ ○ Tsi = id, which implies that
ker(Tsi(x)π) ∩ im(Txsi) = {0}. Also, dimP = dimTvuP + dimM = dimTvuP +
dimTxsi(TxUi), giving the claim.

Now we define a smooth g-valued 1-form A on PUi by prescribing its action on any
Z ∈ X(P ∣Ui). Recall from the proof of Theorem 3.1.4 (i) that u ↦ Φ−1u ○ prv is a
smooth 1-form. Taking into account (2.2.2) it then follows that

A(Z)(si(x) ⋅ g) ∶= Ad(g−1) ○ [Φ−1si(x)○prv(TRg−1(Zsi(x)⋅g))
+Ai(Tπ(prh(TRg−1(Zsi(x)⋅g)))]

(3.1.11)

43



defines an element of Ω1(P ∣Ui ,g). Note that in this equation, we currently are given
prv and prh only on si(Ui), due to the direct sum decomposition (3.1.10). Globally
defined prh, prv would precisely amount to having a connection, which we are in
the process of constructing.

In particular inserting g = e, u = si(x) (and recalling that Tπ is a left inverse of
Tsi) this implies

Au(Ỹ (u)⊕ Txsi(X)) = Y +Ai(X), Y ∈ g, X ∈ TxUi. (3.1.12)

In particular, Asi = Ai. Moreover, directly from (3.1.11) we read off the following
relation between the values of A at u = si(x) and at u ⋅ g = si(x) ⋅ g:

Aug = Ad(g−1) ○Au(TugRg−1( . )). (3.1.13)

Then for any Y ∈ g, by Theorem 1.2.2 (iii) we have:

Aug(Ỹ (ug)) = Ad(g−1)(Au(TugRg−1(Ỹ (Rgu))) = Ad(g−1)Au((Ad(g)Y )∼(u))
=

(3.1.12)
Ad(g−1)Ad(g)Y = Y.

Moreover, for any Z ∈ TugP , we get, using (3.1.13):

(R∗aA)ug(Z) = Auga(TRa(Z)) = Ad(a−1)Ad(g−1)Au(TRa−1g−1(TRa(Z)))
= Ad(a−1)Aug(Z).

This means that both conditions from Definition 3.1.3 are satisfied, showing that A
is a connection form on PUi .

To conclude the proof it remains to show that the connection forms A and Â induced
in this way by (Ai, si), (Aj , sj) coincide on the bundle PUi∩Uj . Again looking at
(3.1.12) and (3.1.13) we see that they coincide on the vertical tangent spaces and
are uniquely determined by Asi(x) resp. Âsj(x). So we are left with showing that
for any x ∈ Ui ∩Uj , in u = si(x) we have

Âu(Txsi(X)) = Au(Txsi(X)) = Ai(X) ∀X ∈ TxM.

As in (3.1.7), let si(x) = sj(x) ⋅ gij(x), X ∈ TxM , and let γ be a smooth curve in M
with γ′(0) =X. Then by (3.1.9) we have

Tsi(X) =
d

dt
∣
0
(sj(γ(t)) ⋅ gij(γ(t))) = TRgij(x)(Tsj(X)) + µij(X)∼(si(x)).

By (3.1.12) and (3.1.13) we conclude that

Â(Tsi(X)) = Â(TRgij(x)(Tsj(X))) + Â(µij(X)∼(si(x)))
= Ad(gij(x)−1)Â(Tsj(X)) + µij(X)
= Ad(gij(x)−1)Aj(X) + µij(X) = Ai(X),

where in the last equality we used (3.1.8). ◻

3.1.7 Remark. (i) An important special case occurs if G ⊆ GL(r,K) is a matrix
group. Then by linearity we have TLgX = gX and Ad(g)X = conjg(X) = gXg−1
for all g ∈ G and X ∈ g. Thus (3.1.8) reduces to

Ai = g−1ij ○Aj( . ) ○ gij + g−1ij Tgij . (3.1.14)

(ii) If P is trivial then it possesses a global section. A connection on P is then given
by a 1-form on M with values in g (namely by As for this global section s).
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Next we look at some important examples of connections on principal fiber bundles.

3.1.8 Example. The canonical flat connection

Consider the trivial principal fiber bundle (P =M ×G,pr1,M,G) over M . Then

Tv(x,g)P = T(x,g)({x} ×G) ≅ TgG.

Using this identification, the fundamental vector fields on P coincide precisely with
the left invariant vector fields on G:

Ỹ (x, g) = d

dt
∣
0
((x, g) ⋅ exp(tY )) = d

dt
∣
0
(x, g ⋅ exp(tY )) = 0⊕ TeLg(Y ) = 0⊕LY (g).

As horizontal tangent spaces we choose the tangent spaces to M :

Th(x,g)P ∶= T(x,g)(M × {g}) ≅ TxM.

The resulting connection on P is called the canonical flat connection. By the above
and Theorem 3.1.4 (i), the corresponding connection form is given by the Maurer–
Cartan form of G:

A ∶ T(x,g)(M ×G) ≅ TxM ⊕ TgG→ g

X + Y ↦ TgLg−1(Y ) = µG(Y )

3.1.9 Example. Left invariant connections on reductive homogeneous spaces

Let H be a closed (non-open) subgroup of the Lie group G, and let h be its Lie
algebra. The homogeneous spaceM ∶= G/H (cf. Theorem 1.1.3) is called reductive if
there exists a vector space decomposition g = h⊕m such that Ad(H)m ⊆ m. Now let
G/H be a reductive homogeneous space and let (G,π,G/H,H) be the homogeneous
H-principal fiber bundle over G/H (see Example 2.2.11). Then for the fundamental
vector field X̃ ∈ X(G) generated by any vector X ∈ h = TeH we have

X̃(g) = d

dt
∣
0
(g ⋅ exp(tX)) = TeLg(X) = LX(g),

so X̃ is precisely the left invariant vector field generated by X. Thus the vertical
tangent space in g ∈ G is TvgG = TeLg(h) ⊆ TgG. Now TgG = TeLg(h) ⊕ TeLg(m),
so the left invariant distribution

Th ∶ G ∋ g ↦ ThgG ∶= TeLg(m) ⊆ TgG

defines a connection on (G,π,G/H,H): Smoothness is clear, so it remains to show
right invariance. For a ∈H we get, recalling that g = h⊕m,

TRa(ThgG) = TRa(TLgm) = TLgTRa(m) = TLgTLaAd(a−1)m
⊆ TLgTLam = TLgam = ThgaG,

and since the dimensions agree we in fact have equality. To calculate the corre-
sponding connection form, by Theorem 3.1.4 we have to secure

Ag(X̃(g)⊕ Yh) =X ∀g ∈ G X ∈ h, Yh ∈ ThgG.

In the current situation, X̃(g) = TLg(X) and µG =Xg ↦ TLg−1(Xg), so

prh(µG(X̃(g)⊕ Yh)) = prh(X ⊕ TLg−1(Yh)) =X

because TLg−1(Yh) ∈ m. Consequently, A = prh ○ µG ∈ Ω1(G,h).
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3.1.10 Example. Connections on the frame bundle

Let M be a smooth manifold of dimension n and let GL(M) be the frame bundle
over M (cf. Example 2.2.12). We are going to show that the set of covariant deriva-
tives on TM is in bijective correspondence to the set of connections on GL(M).
First, let A ∈ Ω1(GL(M),gl(n,R)) be a connection form on GL(M). Denote by
(Bij) the n × n matrix that has a 1 in the i-th row and j-th column and zeros
otherwise. Then in terms of the basis (Bij)i,j=1,...,n of gl(n,R) we can write

A =
n

∑
i,j=1

ωijBij , (3.1.15)

where ωij ∈ Ω1(GL(M),R). Now given a local section s = (s1, . . . , sn) ∶ U → GL(M)
in the frame bundle, we define the covariant derivative corresponding to A by

∇Xsk ∶=
n

∑
i=1

ωik(Ts(X))si, X ∈ X(U), k = 1, . . . , n, (3.1.16)

and by extending it linearly so as to satisfy the product rule

∇X(fsk) ∶=X(f)sk + f∇Xsk ∀f ∈ C∞(U). (3.1.17)

To see that ∇X is well-defined, let s̃ = (s̃1, . . . , s̃n) be another local section, also
defined on U . Then by (3.1.7) there exists some smooth C ∶ U → GL(n,R) with
s̃(x) = s(x) ⋅C(x), which explicitly means (cf. (2.2.7))

s̃i(x) =∑
k

sk(x)Cki(x).

According to (3.1.14) we have

A ○ T s̃(X) = C−1 ⋅ (A(Ts(X))) ⋅C +C−1 ⋅ TC(X),

so

ωik(T s̃(X)) =∑
j,l

(C−1)ijωjl(Ts(X))Clk +∑
j

(C−1)ij(TC)jk(X) (3.1.18)

Let ∇̃X be defined as above, but with s̃ instead of s. Then we have to verify that
∇̃X s̃k = ∇X s̃k. Now

∇̃X s̃k =∑
i

ωik(T s̃(X))s̃i = ∑
i,j,k

(C−1)ijωjl(Ts(X))Clks̃i +∑
i,j

(C−1)ij(TC)jk(X)s̃i

= ∑
i,j,l,r

Cri(C−1)ij
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∑i=δrj

ωjl(Ts(X))Clksr + ∑
i,j,r

Cri(C−1)ij
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∑i=δrj

(TC)jk(X)sr

=∑
j,l

ωjl(Ts(X))Clksj +∑
j

(TC)jk(X)sj ,

and, on the other hand,

∇X(s̃k) = ∇X(∑
l

slClk) =∑
l

X(Clk)sl +∑
l

Clk∇Xsl

=∑
l

(TC)lk(X)sl +∑
l,j

ωjl(Ts(X))Clksj ,

giving the claim.
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Conversely, let ∇ be a covariant derivative on TM and let s = (s1, . . . , sn) ∶ U →
GL(M) be a local section in the frame bundle. Then for certain ωji ∈ Ω1(U) we
can write

∇si =
n

∑
j=1

ωji ⊗ sj .

Now define As ∈ Ω1(U,gl(n,R)) by

As ∶=
n

∑
i,j=1

ωijBij .

To show that this family of local 1-forms (as s runs through the local sections of
GL(M)) defines a connection form on GL(M), by Theorem 3.1.1 we have to verify
the transformation rule (3.1.14). Thus let s̃ be another section, and let

∇s̃i =
n

∑
j=1

ω̃ji ⊗ s̃j , As̃ ∶=
n

∑
i,j=1

ω̃ijBij .

Note that for any covariant derivative we have ∇Y (fX) = Y (f)X + f∇YX, so
∇(fX) = df ⊗X + f∇X. Using this, with C as above we calculate:

∇s̃i = ∇(∑
k

skCki) =∑
k

[dCki ⊗ sk +Cki∇sk] =∑
k

[dCki ⊗ sk +Cki∑
j

ωjk ⊗ sj]

=∑
k

(∑
j

Cjiωkj + dCki)⊗ sk

On the other hand,

∇s̃i =∑
j

ω̃ji ⊗ (∑
k

skCkj) =∑
j,k

Ckjω̃ji ⊗ sk

Combining this, we get

∑
j

Cjiωkj + TCki =∑
j

Ckjω̃ji ⇒ (As ⋅C)ki + (TC)ki = (C ⋅As̃)ki.

In total, As ⋅C + TC = C ⋅As̃, or As̃ = C−1AsC +C−1TC, as claimed.

In the above situation, given a connection form A on GL(M), denote by ∇A the
corresponding covariant derivative and, conversely, given a covariant derivative ∇,
let A∇ be the connection form on GL(M) constructed in the previous example.
Then by construction we have

∇A
∇

= ∇ and A∇
A

= A, (3.1.19)

so we have proved:

3.1.11 Corollary. The map A ↦ ∇A is a bijection between the set of connection
forms on GL(M) and the set of covariant derivatives on M .

3.1.12 Example. The Levi-Civita connection on a semi-Riemannian manifold

Let (Mn, g) be a semi-Riemannian manifold, where g has signature (k, l), with
n = k + l. Then on (M,g) there exists a unique metric and torsion free covariant
derivative

∇LC ∶ Γ(TM)→ Γ(T ∗M ⊗ TM),
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the Levi-Civita connection of (M,g) (cf. [13]). We show that ∇LC corresponds to a
unique connection form ALC on the principal fiber bundle (O(M,g), π,M,O(k, l))
of orthonormal frames on M . Let Bij be as in Example 3.1.10 and let Eij be the
n × n matrix

Eij ∶= εiBji − εjBij , εi ∶= {
−1, i = 1, . . . , k
1, i = k + 1, . . . , k + l.

Then for the Lie algebra o(k, l) of O(k, l) we have

o(k, l) = span{Eij ∣ i < j}.

Let s = (s1, . . . , sn) ∶M ⊇ U → O(M,g) be a local section, so that (s1(x), . . . , sn(x))
is a gx-orthonormal basis in (TxM,gx) for each x ∈ U . Then we define an element
of Ω1(U, o(k, l)) by

As(X) ∶=∑
i<j

εiεjg(∇LCX si, sj)Eij ∈ o(k, l). (3.1.20)

Again we have to verify that for these forms the transformation rule (3.1.14) holds.
Let s̃ be another local section. Then by (3.1.7) we have s̃(x) = s(x)C(x), with C
smooth and C(x) ∈ O(k, l) for each x. Recall that

O(k, l) = {A ∈ GL(n,R) ∣ AtJA = J},

where J = diag(−1, . . . ,−1,1, . . . ,1) (k minuses). Note that J = J−1, and for any
matrix a = (aij) we have (εiaij) = J ⋅ a. In particular we have CtJC = J . Also note
that, since ∇LCX (g(si, sj)) = g(∇Xsi, sj) + g(si,∇Xsj) = 0,

As(X) =∑
i<j

εiεjg(∇LCX si, sj)(εiBji − εjBij)

=∑
j<i

εig(∇LCX sj , si)Bij −∑
i<j

εig(∇LCX si, sj)Bij

= −∑
i≠j

εig(∇LCX si, sj)Bij = −∑
i,j

εig(∇LCX si, sj)Bij ,

(3.1.21)

and analogously As̃(X) = −∑i,j εig(∇LCX s̃i, s̃j)Bij . Thus we have

(−As̃(X))ij = εig(∇LCX (∑
p

spCpi),∑
q

sqCqj)

=∑
p,q

εig(X(Cpi)sp, sqCqj) +∑
p,q

εig(∇LCX spCpi, sqCqj)

=∑
p,q

εi(TC(X))piCqj g(sp, sq)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=εpδpq=Jpq

+∑
p,q

εiCpiCqjg(∇LCX sp, sq)

=∑
p

(JTC(X)t)ip(JC)pj +∑
p

(JCt)ip g(∇LCX sp, sq)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∑r Jpr ⋅εrg(∇
LC
X

sr,sq)

Cqj

= (J(TC(X))tJC)ij + (JCtJ(−As(X))C)ij

Now note that 0 = (TI)(X) = T (C−1C)(X) = TC−1(X)C+C−1TC(X), so T (C−1)(X) =
−C−1TC(X)C−1. Combining this with JCtJ = C−1 we obtain J((TC)(X))tJC =
T (C−1)(X)C = −C−1TC(X)C−1C = −C−1TC(X). Altogether,

As̃(X) = C−1As(X)C +C−1(TC)(X),

as desired. Thus the family As defines a connection form ALC on the bundle of
orthonormal frames.
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Conversely, let A ∈ Ω1(O(M,g), o(k, l)) be a connection form, A = ∑i,j ωijBij (cf.
(3.1.15)), with ωij ∈ Ω1(O(M,g),R) and such that (ωij)i,j ∈ o(k, l), i.e., J ⋅A+At ⋅J =
0. Then by Example 3.1.10 A defines a covariant derivative ∇ onM . We claim that
∇ is metric, i.e.,

∇Z⟨X,Y ⟩ = ⟨∇ZX,Y ⟩ + ⟨X,∇ZY ⟩ (3.1.22)

for all X,Y,Z ∈ X(M). By expanding the involved vector fields in a local orthonor-
mal frame s = (s1, . . . , sn) it readily follows that to prove (3.1.22) it suffices to show
that for all k, l we have ⟨∇Xsk, sl⟩ = −⟨sk,∇Xsl⟩ for any X. Using (3.1.16) we have
∇Xsk = ∑i ωik(Ts(X))si, so indeed

⟨∇Xsk, sl⟩ =∑
i

ωik(Ts(X)) ⟨si, sl⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
=εiδil

= εlωlk(Ts(X)) = (J ⋅As(X))lk = −(Ats(X) ⋅ J)lk

= −∑
r

ωrl(Ts(X))εrδrk = −εkωkl(Ts(X)) = ⋅ ⋅ ⋅ = −⟨sk,∇Xsl⟩.

Note also that this calculation gives

As(X) =∑
i,j

ωij(Ts(X))Bij = −∑
i,j

εi⟨∇Xsi, sj⟩Bij ,

consistent with (3.1.21) and thereby with (3.1.20).

Analogously to Corollary 3.1.11 and with the analogous notation we have thereby
shown (note that we did not use the fact that the Levi-Civita connection is torsion
free in Example 3.1.12, so what we did applies in fact to any metric connection):

3.1.13 Corollary. The map A ↦ ∇A is a bijection between the set of connec-
tion forms on O(M,g) and the set of metric covariant derivatives on M , and the
analogue of (3.1.19) holds:

∇A
∇

= ∇ and A∇
A

= A.

To conclude this section we show that any principal fiber bundle possesses a con-
nection:

3.1.14 Theorem. On any principal fiber bundle there exists a connection.

Proof. Let (P,π,M,G) be any principal fiber bundle and fix an open covering
U = {Uα}α∈Λ of M consisting of trivializing neighborhoods for P , P ∣Uα ≅ Uα ×G.
Let {χα} be a partition of unity subordinate to U . Denoting by Aα ∈ Ω1(PUα

,g)
the canonical flat connection on the trivial subbundle PUα (cf. Example 3.1.8) we
define A ∈ Ω1(P,g) by

A ∶=∑
α

(χα ○ π)Aα.

Then for any X ∈ g and any p ∈ P we have

A(X̃(p)) =∑
α

χα(π(p))Aα(X̃(p)) =∑
α

χα(π(p))X =X.

Moreover,

(R∗gA)p(Y ) = Apg(TRgY ) =∑
α

χα(π(p))Aα(TRg(Y )) = Ad(g−1)Ap(Y ),

concluding the proof that A is a connection form on P ◻
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3.2 The affine space of connections

Our aim here is to prove that the set of all connections on a principal fiber bundle
forms an infinite dimensional affine space. To do this we need some preparations:

Let E be a vector bundle over a manifoldM . A k-form with values in E is a smooth
map

ω ∶M ∋ x↦ ωx ∈ Lkalt(TxM,Ex),
where Lkalt(TxM,Ex) denotes the space of k-linear alternating maps (TxM)k → Ex.
Smoothness means that for any X1, . . . ,Xk ∈ X(U) (U ⊆M open) the local section

s ∶ U ∋ x↦ ωx(X1(x), . . . ,Xk(x)) ∈ Ex ⊆ EU

is smooth. Thus an E-valued k-form is precisely a smooth section of the vector
bundle ΛkT ∗M ⊗E. For the space of these forms we write

Ωk(M,E) ∶= Γ(ΛkT ∗M ⊗E).

As in [7, 4.1.19] it follows that Ωk(M,E) can be identified with the C∞(M)-module
of C∞(M)-multilinear and skew symmetric maps

ω ∶ X(M)k → Γ(E),

where ω(X1, . . . ,Xk)(x) ∶= ωx(X1(x), . . . ,Xk(x)) ∈ Ex.
If V is a finite dimensional vector space then the space of V -valued k-forms is a
special case:

Ωk(M,V ) = Γ(ΛkT ∗M ⊗ V ),
where V ∶=M × V is the trivial vector bundle with fiber V .

The wedge product has the following extension to E-valued forms:

∧ ∶ Ωk(M) ×Ωl(M,E)→ Ωk+l(M,E)
(σ,ω)↦ σ ∧ ω,

where, for t1, . . . , tk+l ∈ TxM ,

(σ ∧ ω)x(t1, . . . , tk+l)

∶= 1

k!l!
∑

τ∈Sk+l

sgn(τ)σx(tτ(1), . . . , tτ(k)) ⋅ ωx(tτ(k+1), . . . , tτ(k+l)).
(3.2.1)

Analogously to Theorem 2.3.4 we now want to derive a characterization of k-forms
that take values in a vector bundle associated to a principal fiber bundle. Thus
let (P,π,M,G) be a principal fiber bundle, ρ ∶ G → GL(V ) a representation and
E = P ×(G,ρ) V the corresponding associated vector bundle. Then from Theorem
2.3.4 we know that

Γ(E) ≅ C∞(P,V )(G,ρ) ∶= {s ∈ C∞(P,V ) ∣ s(p ⋅ g) = ρ(g−1)s(p)}.

3.2.1 Definition. A V -valued k-form ω ∈ Ωk(P,V ) is called

(i) horizontal if ωp(X1, . . . ,Xk) = 0 whenever at least one Xi ∈ TpP is vertical.

(ii) of type ρ if R∗aω = ρ(a−1) ○ ω for all a ∈ G.

The set of all horizontal k-forms of type ρ is denoted by Ωkhor(P,V )(G,ρ).
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3.2.2 Remark. Denote by C(P ) the set of all connection forms on P . Then
if A1,A2 ∈ C(P ), by Definition 3.1.3 their difference A ∶= A1 − A2 satisfies R∗gA =
Ad(g−1)○A, hence is of type Ad. In addition, A is horizontal: By Theorem 3.1.1, any
element of TvuP is of the form X̃(u) for someX ∈ g. Thus A(X̃) = A1(X̃)−A2(X̃) =
X −X = 0. Conversely, if A ∈ C(P ) and ω is a horizontal g-valued 1-form of type
Ad, then also A + ω ∈ C(P ). Thus the set C(P ) of all connection forms on P is an
affine space over the vector space Ω1

hor(P,g)Ad.

3.2.3 Theorem. With E as above, the vector space Ωk(M,E) is canonically iso-
morphic to the space Ωkhor(P,V )(G,ρ).

Proof. Let p ∈ Px and as in (2.3.7) let

[p] ∶ V ∋ v ↦ [p, v] ∈ Ex

be the corresponding fiber diffeomorphism. We define a linear map

Φ ∶ Ωkhor(P,V )(G,ρ) → Ωk(M,E)

as follows: Given ω̄ ∈ Ωkhor(P,V )(G,ρ), let ω ∶= Φ(ω̄) be such that ωx ∈ Λk(T ∗xM)⊗Ex
is given by

ωx(t1, . . . , tk) ∶= [p](ω̄p(X1, . . . ,Xk)) = [p, ω̄p(X1, . . . ,Xk)], (3.2.2)

where π(p) = x, t1, . . . , tk ∈ TxM and X1, . . . ,Xk ∈ TpP with Tπ(Xj) = tj .1

To see that ω is well-defined suppose first that also Yj are vectors with Tπ(Yj) = tj .
Then Tπ(Yj −Xj) = 0, meaning that Yj −Xj is vertical. Since ω̄ is horizontal, this
implies ω̄p(. . . , Yj − Xj , . . . ) = 0. Independence from the choice of p ∈ Px follows
from the fact that ω̄ is of type ρ: Let p̃ = pg and let Y1, . . . , Yk ∈ Tp̃P be vectors
with Tπ(Yj) = tj . Then

[p̃, ω̄p̃(Y1, . . . , Yk)] = [pg, ω̄pg(Y1, . . . , Yk)] = [p, ρ(g)ω̄pg(Y1, . . . , Yk)]
= [p, (R∗g−1 ω̄)pg(Y1, . . . , Yk)] = [p, ω̄p(TRg−1Y1, . . . , TRg−1Yk)]
= [p, ω̄p(X1, . . . ,Xk)],

where the last step follows from what was shown before since Tπ(TRg−1Yj) =
Tπ(Yj) = tj .
To see smoothness of ω, let s ∶M ⊇ U → P be a local section of P and let Z1, . . . , Zk
be local vector fields on U . Then

ω(Z1, . . . , Zk)∣U = [s, ω̄s( . )(Ts(Z1), . . . , T s(Zk))].

is smooth by (2.3.5). Hence ω = Φ(ω̄) ∈ Ωk(M,E).
We claim that the inverse of Φ is given by Φ−1 ∶ Ωk(M,E)→ Ωkhor(P,V )(G,ρ), ω ↦ ω̄,
where

ω̄p(X1, . . . ,Xk) ∶= [p]−1ωπ(p)(Tπ(X1), . . . , Tπ(Xk))
= [p]−1π∗ω(X1, . . . ,Xk) ∈ V.

(3.2.3)

Smoothness of ω̄ is equivalent to smoothness, for any local smooth vector fields Xj

on P , of p↦ (p, ω̄p(X1, . . . ,Xk)), hence by (2.3.5) to that of

p↦ [p, ω̄p(X1, . . . ,Xk)] = ωπ(p)(Tπ(X1), . . . , Tπ(Xk)),
1Note that for Γ(E) = Ω0(M,E) this reduces precisely to the map s̄ ↦ s from the proof of

Theorem 2.3.4.
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which clearly holds. IfXi is vertical, then Tπ(Xi) = 0 and thereby also ω̄p(X1, . . . ,Xk)
= 0, so ω̄ is horizontal. Next, note that generally we have

[pa]−1([p, v]) = [pa]−1([pa, ρ(a−1)v]) = ρ(a−1)v,

so that

R∗aω̄∣p(X1, . . . ,Xk) = ω̄pa(TRa(X1), . . . , TRa(Xk))
= [pa]−1ωπ(pa)(Tπ(TRa(X1)), . . . , Tπ(TRa(Xk)))
= [pa]−1ωπ(p)(Tπ(X1), . . . , Tπ(Xk))
= [pa]−1([p, ω̄p(X1, . . . ,Xk)])
= ρ(a−1)ω̄p(X1, . . . ,Xk),

showing that ω̄ is of type ρ, hence ω̄ ∈ Ωkhor(P,V )(G,ρ). Finally,

Φ(Φ−1(ω))x(t1, . . . , tk) = [p](ω̄p(X1, . . . ,Xk)) =��[p]���[p]−1ωx(t1, . . . , tk)
Φ−1(Φ(ω̄))p(X1, . . . ,Xk) = [p]−1Φ(ω̄)π(p)(Tπ(X1), . . . , Tπ(Xk))

= [p]−1[p, ω̄p(X1, . . . ,Xk)] = ω̄p(X1, . . . ,Xk).

◻

3.2.4 Remark. The above result allows us to give an alternative description of
C(P ). The Lie group G acts on its Lie algebra g via the adjoint representation
Ad ∶ G → GL(g), turning [G,g] into a Lie transformation group. We call the
corresponding associated vector bundle

Ad(P ) ∶= P ×G g.

the adjoint bundle. Then combining Remark 3.2.2 with Theorem 3.2.3 we obtain
that C(P ) is an affine space over the vector space Ω1(M,Ad(P )).

3.3 Parallel transport in principal fiber bundles

The choice of a connection on a principal fiber bundle allows one to define paral-
lel transport of fibers both in the bundle itself and in associated vector bundles.
Throughout this section, we fix a principal fiber bundle (P,π,M,G) and a connec-
tion form A on P .

3.3.1 Definition. Let X ∈ X(M). A vector field X∗ on P is called a horizontal
lift of X if for each p ∈ P we have:

(i) X∗(p) ∈ Thp(P ), and

(ii) Tpπ(X∗(p)) =X(π(p)).

3.3.2 Theorem.

(i) For any X ∈ X(M) there exists a unique horizontal lift X∗ ∈ X(P ). Moreover,
X∗ is right invariant.

(ii) Conversely, if Z ∈ X(P ) is horizontal and right invariant, then there is a
unique vector field X ∈ X(M) with Z =X∗.
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(iii) Let X,Y ∈ X(M), f ∈ C∞(M). Then

X∗ + Y ∗ = (X + Y )∗

(fX)∗ = (f ○ π)X∗

[X,Y ]∗ = prh([X∗, Y ∗]).

(iv) Let Z ∈ X(P ) be horizontal, X ∈ X(M), and let B̃ (B ∈ g) be a fundamental
vector field on P . Then [B̃,Z] is horizontal and [B̃,X∗] = 0.

Proof. (i) By (3.1.3), Tpπ ∶ ThpP → Tπ(p)M is a linear isomorphism. Therefore
our only choice for a horizontal lift is given by

X∗(p) ∶= (Tπ∣ThP )−1(X(π(p))), (3.3.1)

and we are left with proving that the resulting vector field is smooth and right
invariant.

To see smoothness, let ϕ ∶ PU → U ×G be a bundle chart around π(p), and denote by
Y the smooth vector field Y ∶= Tϕ−1(X⊕0) on PU . Then Tπ(prh(Y )) = Tπ(Y ) =X,
i.e., X∗ = prhY . Since also prh is smooth (see the discussion following (3.1.2)), X∗

is as well. By (3.1.2) we have

TRg(X∗(p)) ∈ ThpgP.

Also, Tπ(TRgX∗(p)) = Tπ(X∗(p)) = X(π(pg)). Since we saw above that the
horizontal lift is unique, we conclude that TRg(X∗(p)) = X∗(pg), so X∗ is right
invariant.

(ii) Define X by
X(x) ∶= Tpπ(Z(p)),

where p ∈ Px is arbitrary. This is well-defined because

Tpgπ(Z(pg)) = Tpgπ(TpRg(Z(p))) = Tpπ(Z(p)) =X(p),

and smooth because we may set p = s(x) for a local section s of P . X∗ = Z holds
by definition.

(iii) The first two rules are immediate from (3.3.1). Moreover, since X∗ ∼π X, [9,
4.4] and (3.1.5) imply

Tπ(prh[X∗, Y ∗]p) = Tπ([X∗, Y ∗]p) = [X,Y ]π(p) = Tπ([X,Y ]∗p),

so uniqueness of the horizontal lift implies the third equality.

(iv) Using [9, 17.7] and Theorem 3.1.1 (iii), we calculate

[B̃,Z](p) = (LB̃Z)(p) =
d

dt
∣
0
(TFlB̃−t(Z(FlB̃t (p))))

= d

dt
∣
0
(TRexp(−tB)(Z(p ⋅ exp(tB)))).

Here Z(p ⋅ exp(tB)) ∈ Thp⋅exp(tB)P since Z is horizontal, so by right invariance of
the connection TRexp(−tB)(Z(p ⋅exp(tB))) ∈ ThpP for all t. Consequently, so is the

above limit, i.e., [B̃,Z] is horizontal. If Z =X∗, then Z is right invariant by (i). In
this case, TRexp(−tB)(Z(p ⋅ exp(tB))) ≡ Z(p) for all t, so [B̃,Z](p) = 0. ◻
In what follows, by a path we will always mean a piecewise smooth map from some
interval into a manifold.
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3.3.3 Definition. A path γ∗ ∶ I → P is called horizontal lift of a path γ ∶ I →M if

(i) π(γ∗(t)) = γ(t) for all t ∈ I, and

(ii) γ̇∗(t) is horizontal for each t ∈ I.

For the proof of the next theorem we need the following auxiliary result:

3.3.4 Lemma. Let G be a Lie group and v ∶ [0,1]→ g a continuous (resp. smooth)
curve. Then there exist unique C1 (resp. C∞) curves g, a ∶ [0,1] → G that solve the
following ODEs:

ġ(t) = TLg(t)(v(t)), g(0) = e
ȧ(t) = TRa(t)(v(t)), a(0) = e.

Proof. See the Appendix. ◻

3.3.5 Theorem. Let γ ∶ I →M be a path in M , t0 ∈ I (I compact) and u ∈ Pγ(t0).
Then there exists a unique horizontal lift γ∗u of γ with γ∗u(t0) = u.

Proof. We may without loss of generality assume that I = [0,1] and t0 = 0. Since
P is locally trivial, there exists a path δ ∶ I → P with δ(0) = u and π ○ δ = γ: for

P
ϕ
≅ U ×G, ϕ(u) = (x0, g0) we may simply set δ(t) = ϕ−1(γ(t), g0). Now cover P by

such trivializing sets and patch δ together (which is unproblematic since we are only
seeking a piecewise smooth path). Our task now is to modify δ in such a way as to
make it horizontal. To do so we look for a path g ∶ I → G such that γ∗u(t) ∶= δ(t)⋅g(t)
becomes horizontal, i.e., such that A(γ̇∗u(t)) = 0 for all t. According to Lemma 1.2.3
we therefore require

0 = A(TRg(t)δ̇(t) + (TLg(t)−1 ġ(t))∼(γ∗u(t))) = Ad(g(t)−1)A(δ̇(t)) + TLg(t)−1 ġ(t).

Recalling that Ad(g−1) = TLg−1 ○ TRg, this is equivalent to

0 = TRg(t)A(δ̇(t)) + ġ(t).

Now consider the piecewise smooth curve Y (t) ∶= −A(δ̇(t)) ∶ I → g. By Lemma
3.3.4 there exists a unique path g ∶ I → G with g(0) = e and ġ(t) = TRg(t)(Y (t)) =
−TRg(t)A(δ̇(t)), so we indeed obtain a horizontal lift γ∗ of γ.

To show uniqueness, suppose that γ○u is another horizontal lift of γ with γ○u(0) = u.
Since γ∗u(t) and γ○u(t) lie in the same fiber Pγ(t), there is a unique path t↦ g(t) in
G such that γ∗u(t) = γ○u(t) ⋅ g(t) for all t, and g is piecewise smooth since both γ∗u(t)
and γ○u(t) are. In particular, g(0) = e. Differentiating and using Lemma 1.2.3 we
obtain

γ̇∗u(t) = TRg(t)γ̇○u(t) + (TLg(t)−1 ġ(t))∼(γ∗u(t)).
Since both γ∗u(t) and TRg(t)γ̇

○
u(t) are horizontal, while (TLg(t)−1 ġ(t))∼(γ∗u(t)) is

vertical, the latter must vanish, so in fact ġ(t) = 0 for all t. This implies that
g(t) = g(0) = e for all t and hence that γ∗u = γ○u. ◻
By using horizontal lifts we can now construct maps between the fibers in a bundle:

3.3.6 Definition. Let γ ∶ [a, b]→M be a path in M . The map

PAγ ∶ Pγ(a) → Pγ(b)

u↦ γ∗u(b)

is called parallel transport in P along γ with respect to A.
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Uniqueness of horizontal lifts implies that the lift of a reparametrization of γ is
given by the same reparametrization of the lift. Therefore parallel transport is
independent of the chosen parametrization of γ.

Let us briefly recall the standard operations on paths known from homotopy theory.
Given γ ∶ [a, b] →M a path from x to y and µ ∶ [c, d] →M a path from y to z, the
concatenation µ ∗ γ ∶ [0,1]→M is given by

(µ ∗ γ)(t) ∶= { γ(a + 2t(b − a)), t ∈ [0,1/2]
µ(c + (2t − 1)(d − c)) t ∈ [1/2,1].

By γ− ∶ [0,1]→M we denote the inverse path γ−(t) = γ(b − t(b − a)).

3.3.7 Theorem.

(i) With γ,µ as above, PAµ∗γ = PAµ ○PAγ .

(ii) Parallel transport PAγ is a diffeomorphism from Pγ(a) ≅ G to Pγ(b) ≅ G with

inverse (PAγ )−1 = PAγ− .

(iii) PAγ is G-equivariant: PAγ ○Rg = Rg ○PAγ for all g ∈ G.

Proof. (i) is clear from the uniqueness part of Theorem 3.3.5.

(ii) In any trivializing neighborhood U ⊆ M it follows from standard ODE results
that since δ depends smoothly on u ∈ Pγ(a), so does g, hence PAγ ∶ Pγ(a) → Pγ(t0)
is smooth when γ([0, t0]) is contained in U . Together with (i), smoothness of PAγ
follows by covering γ([0,1]) by finitely many such neighborhoods. The form of the
inverse is again clear by uniqueness of parallel transport, and also gives a smooth
map.

(iii) We have to show that Rgγ
∗
u is the horizontal lift of γ through Rgu. Indeed,

π(Rgγ∗u(t)) = π(γ∗u(t)) = γ(t), Rgγ∗u(0) = Rg(u), and

(Rgγ∗u)̇ (t) = TRg(γ̇∗u(t)) ∈ Thγ∗u(t)⋅g.

◻

3.3.8 Example. Let (P0 =M ×G,pr1,M,G) be the trivial principal fiber bundle
over M with the canonical flat connection Th(x,g)P0 = TxM and corresponding
connection form A0. Then if γ is a path emanating from x ∈M , the horizontal lift
of γ through (x, g) is given by γ∗(t) = (γ(t), g). Hence parallel transport along γ
from x to y is the map

PA0
γ ∶ {x} ×G→ {y} ×G

(x, g)↦ (y, g),

which is in fact independent of the path γ.

In general, however, parallel transport will depend on the path, and in fact the
following result shows that the previous example is the only case in which it doesn’t:

3.3.9 Theorem. Let A be a connection form on (P,π,M,G) and suppose that
parallel transport with respect to A does not depend on the path. Then (P,A) is
isomorphic to the trivial G principal fiber bundle P0 with the canonical flat connec-
tion A0, i.e., there is a principal fiber bundle isomorphism Φ ∶ P0 → P such that
Φ∗A = A0, i.e., TΦ(ThP0) = ThΦ( . )P .
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Proof. Let us first verify that the requirements on Φ are equivalent. We have
X ∈ ker(Φ∗A)⇔ A(TΦ(X)) = 0⇔X ∈ (TΦ)−1(ker(A)), so (cf. Theorem 3.1.4)

TΦ(ThP0) = ThΦ( . )P ⇔ A0 = Φ∗A.

We know from Theorem 2.2.14 that P is trivial if and only if it possesses a global
section. We call a section s ∶ M → P horizontal if Txs(TxM) = Ths(x)P for each
x ∈M . Based on this notion, we carry out the proof in two steps:

1.) (P,A) is isomorphic to (P0,A0)⇔ there exists a global A-horizontal section in
P .

⇒: Let Φ ∶ P0 = M × G → P be an isomorphism with TΦ(T(x,g)(M × {g})) =
ThΦ(x,g)P for all (x, g). Consider the section

s ∶M → P

x↦ s(x) ∶= Φ(x, e).

Then s is horizontal because Ts(TxM) = T(x,e)Φ(T(x,e)(M × {e})) = Ths(x)P .
⇐: Let s ∶M → P be a global A-horizontal section and let Φ be the trivialization
induced by s according to Theorem 2.2.14:

Φ ∶ P0 =M ×G→ P

(x, g)↦ s(x) ⋅ g = Rg(s(x)).

Then Φ is an isomorphism and

T(x,g)Φ(T(x,g)(M × {g})) = TRg ○ Ts(TxM) = TRg(Ths(x)P ) = Ths(x)⋅gP.

2.) Path-Independence of parallel transport implies the existence of a global A-
horizontal section.

Fix a point x0 ∈M as well as some u ∈ Px0 and define

s(x) ∶= PAγ (u) = γ∗u(1),

where γ ∶ [0,1] → M is any path from x0 to x. To see that s is smooth, consider
first the case where x varies in a trivializing neighborhood of x0. Then γ can be
chosen to depend smoothly on x (e.g. by taking a straight line connnecting x0 to x
in a chart). Therefore the proof of Theorem 3.3.5 and ODE theory show that also
γ∗u(1) depends smoothly on x. For general x one can find finitely many trivializing
neighborhoods such that s can be written as the composition of the smooth maps
so constructed. Also, s is horizontal because given X ∈ TxM we may pick a smooth
curve γ ∶ [0,1]→M from x0 to x with γ′(1) =X, and calculate:

Ts(X) = d

dt
∣
t=1
(s(γ(t))) = d

dt
∣
t=1
(γ∗u(t)) ∈ Ths(x)P.

Since Txs is injective (due to π○s = idM ) and dimThs(x)P = dimTxM , Txs(TxM) =
Ths(x)P . ◻
Parallel transport in a principal fiber bundle P induces a notion of parallel transport
also in any fiber bundle associated to P : Let (P,π,M,G) be equipped with a
connection form A, let [F,G] be a Lie transformation group, and denote by E ∶=
P ×G F the corresponding associated fiber bundle. Let γ ∶ [a, b] →M be a path in
M . Then

PE,Aγ ∶ Eγ(a) → Eγ(b)

[p, v]↦ [PAγ (p), v]
(3.3.2)
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is well-defined: By Theorem 3.3.7 (iii), [PAγ (pg), g−1v] = [PAγ (p)g, g−1v] = [PAγ (p), v].
The map PE,Aγ is called the parallel transport on E induced by A.

Using the notation from the proof of Theorem 2.3.1, in terms of bundle charts
(U1, ψU1) around γ(a) and (U2, ψU2) around γ(b), and for an arbitrary p ∈ Pγ(a),
we have

(γ(a), v)
ψ−1U1Ð→ [p,φU1(p)−1 ⋅ v]

P
E,A
γÐ→ [PAγ (p), φU1(p)−1 ⋅ v]

ψU2Ð→ (π(PAγ (p))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=γ(b)

, φU2(PAγ (p)) ⋅ φU1(p)−1 ⋅ v).

So parallel transport is smooth (being expressible in terms of the action of G on F ),
indeed a diffeomorphism since its inverse is of the same type, and is even a linear
isomorphism if E is a vector bundle. Furthermore, if γ∗ is any horizontal lift of γ
then using the fiber diffeomorphisms from (2.3.7) we have

PE,Aγ = [γ∗(b)] ○ [γ∗(a)]−1. (3.3.3)

Indeed, since PAγ (γ∗(a)) = γ∗(b) and any element of Eγ(a) is of the form [γ∗(a), v]
for some v, we have

[γ∗(b)] ○ [γ∗(a)]−1([γ∗(a), v]) = [γ∗(b)](v) = [γ∗(b), v] = [PAγ (γ∗(a)), v]
= PE,Aγ ([γ∗(a), v]).

3.4 The absolute differential of a connection

Throughout this section let (P,π,M,G) be a principal fiber bundle with connection
form A, let ρ ∶ G → GL(V ) be a representation of G and let E = P ×G V be the
corresponding associated vector bundle.

3.4.1 Definition. A linear map

∇ ∶ Γ(E)→ Γ(T ∗M ⊗E)

is called a covariant derivative on E if

∇(fe) = df ⊗ e + f ⋅ ∇e (f ∈ C∞(M), e ∈ Γ(E)).

Our aim is to lay out how to employ connections on principal fiber bundles to define
covariant derivatives on associated vector bundles. Indeed we will use A to define
linear operators

dA ∶ Ωk(M,E)→ Ωk+1(M,E)

for each k ≥ 0 and then show that for k = 0 we obtain a covariant derivative.

According to Theorem 3.2.3, E-valued differential forms on M correspond precisely
to the horizontal differential forms of type ρ on P with values in V . Thus we are
looking for differential operators that preserve these properties. Recall from [9, Sec.
10] the definition of the exterior derivative of V -valued forms:

d ∶ Ωk(P,V )→ Ωk+1(P,V )
ω ↦ dω,
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where

dω(X0, . . . ,Xk) ∶=
k

∑
i=0

(−1)iXi(ω(X0, . . . , X̂i, . . . ,Xk))

+∑
i<j

(−1)i+jω([Xi,Xj],X0, . . . , X̂i, . . . , X̂j , . . .Xk),
(3.4.1)

where X0, . . . ,Xk are vector fields on P . Then d(h∗ω) = h∗(dω) for h ∶ Q → P
smooth, and d2 = d ○ d = 0.

3.4.2 Example. In general, the differential of a horizontal k-form need not be
horizontal: LetM = R, G = (R,+), and P the trivial bundle R×R with the canonical
flat connection. Given f ∈ C∞(P,R), ω(t,s) = f(t, s)dt defines a horizontal 1-form:
if X = h(t, s)∂s is a vertical vector field then ω(X) = f ⋅ hdt(∂s) = 0. However, the
differential dω = ∂f

∂s
ds∧ dt is horizontal only if dω = 0, i.e., if and only if ω is closed.

We therefore use the connection to modify d in the following way:

3.4.3 Definition. The linear map

DA ∶ Ωk(P,V )→ Ωk+1(P,V )
(DAω)p(t0, . . . , tk) ∶= dωp(prht0, . . . ,prhtk) (ti ∈ TpP )

(3.4.2)

is called the absolute differential defined by A.

This modification indeed does what it should:

3.4.4 Theorem. The absolute differential maps horizontal differential forms of
type ρ into horizontal forms of type ρ again:

DA ∶ Ωkhor(P,V )(G,ρ) → Ωk+1hor (P,V )(G,ρ)

Moreover, for any ω ∈ Ωkhor(P,V )(G,ρ),

DAω = dω + ρ∗(A) ∧ ω, (3.4.3)

where

(ρ∗(A) ∧ ω)(t0, . . . , tk) ∶=
k

∑
i=0

(−1)iρ∗(A(ti))(ω(t0, . . . , t̂i, . . . , tk)) (3.4.4)

(with ρ∗ = Teρ ∶ g→ L(V,V )).2

Note: More generally, for σ ∈ Ωk(P,g), ω ∈ Ωlhor(P,V )(G,ρ) one sets

(ρ∗(σ) ∧ ω)x(t1, . . . , tk+l)

∶= 1

k!l!
∑

τ∈Sk+l

sign(τ)ρ∗(σ(tτ(1), . . . , tτ(k)))(ω(tτ(k+1), . . . , tτ(k+l))).
(3.4.5)

An analogous formula is used to define α ∧ ω for general α ∈ Ωk(P,L(V,V )).

2In [9], Teρ was denoted by ρ′, but here we follow the convention from [1].
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Proof. Let ω ∈ Ωkhor(P,V )(G,ρ). Then DAω is horizontal because prht = 0 when t
is vertical. Concerning G-equivariance, we have

(R∗gDAω)(t0, . . . , tk) = (DAω)(TRgt0, . . . , TRgtk) = dω(prhTRgt0, . . . ,prhTRgtk)
=

(3.1.4)
dω(TRgprht0, . . . , TRgprhtk)

= (R∗gdω)(prht0, . . . ,prhtk) = d(R∗gω)(prht0, . . . ,prhtk)
= d(ρ(g−1) ○ ω)(prht0, . . . ,prhtk)
= ρ(g−1) ○ dω(prht0, . . . ,prhtk)
= ρ(g−1)((DAω)(t0, . . . , tk)).

Thus DAω is of type ρ, and it only remains to prove (3.4.3). By linearity and the
fact that any tangent vector can be decomposed into a horizontal and a vertical
component, it suffices to examine the case where each ti is either horizontal or
vertical. We distinguish the following cases:

1.) All ti are horizontal. In this case, DAω(t0, . . . , tk) = dω(t0, . . . , tk) and A(ti) = 0
for all i.

2.) At least two ti are vertical. Then since both ω and DAω are horizontal,

(DAω)(t0, . . . , tk) = 0, and (ρ∗(A) ∧ ω)(t0, . . . , tk) = 0,

so we have to show that also dω(t0, . . . , tk) = 0. For this, note that by Theorem
3.1.1, any t ∈ TvpP can be written in the form t = X̃(p) for some X ∈ g. Moreover,

by Theorem 1.2.2, the commutator [X̃, Ỹ ] = [X,Y ]∼ of two fundamental vector
fields is again vertical. Thus any summand in (3.4.1) has in the argument of ω at
least one vertical vector and thereby vanishes.

3.) One ti is vertical, all others are horizontal. Since both sides of (3.4.3) are skew
symmetric, we may suppose that t0 is vertical and t1, . . . , tk are horizontal. Pick
X ∈ g with t0 = X̃(p) and V1, . . . , Vk ∈ X(M) with horizontal lifts V ∗i (p) = ti. Then

(DAω)(t0, . . . , tk) = dω(prht0, t1, . . . , tk) = 0,
(ρ∗(A) ∧ ω)(t0, . . . , tk) = ρ∗(A(t0))(ω(t1, . . . , tk)) = ρ∗(X)(ω(t1, . . . , tk)),

and

(dω)(t0, . . . , tk) = X̃(ω(V ∗1 , . . . , V ∗k ))(p)

+
k

∑
i=1

(−1)iω([X̃, V ∗i ], V ∗1 , . . . , V̂ ∗i , . . . , V
∗
k )(p).

Here, [X̃, V ∗i ] = 0 by Theorem 3.3.2, and applying Theorem 3.1.1 (iii) we obtain

dω(t0, . . . , tk) = X̃(ω(V ∗1 , . . . , V ∗k ))(p) =
d

dt
∣
0
(FlX̃t )∗(ω(V ∗1 , . . . , V ∗k ))(p)

= d

dt
∣
0
((R∗exp(tX)ω)∣p((R∗exp(tX)V ∗1 )(p), . . . , (R∗exp(tX)V ∗k )(p)))

= d

dt
∣
0
((R∗exp(tX)ω)∣p(t1, . . . , tk)),

where we used right-invariance of the V ∗i in the last step. Since ω is of type ρ, using
[9, 8.8] we arrive at

dω(t0, . . . , tk) =
d

dt
∣
0
((R∗exp(tX)ω)∣p(t1, . . . , tk)) =

d

dt
∣
0
(ρ(exp(−tX))ω(t1, . . . , tk))

= d

dt
∣
0
(e−tρ∗(X)ω(t1, . . . , tk)) = −ρ∗(X)(ω(t1, . . . , tk)).
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◻
We now want to use the isomorphism Φ ≡ Φk ∶ Ωkhor(P,V )(G,ρ) → Ωk(M,E) from
Theorem 3.2.3 to define a corresponding map on Ωk(M,E), as follows:

Ωk(M,E) Ωk+1(M,E)

Ωkhor(P,V )(G,ρ) Ωk+1hor (P,V )(G,ρ)

dA

ω↦ω̄ σ↦σ̄

DA

Φk Φk+1

Thus

dA ∶ Ωk(M,E)→ Ωk+1(M,E)
ω ↦ dAω, dAω ∶=DAω̄.

(3.4.6)

Now let p ∈ Px, ti ∈ TxM , and t∗i ∈ TpP the horizontal lift of ti. Then according to
(3.2.3) we have

(dAω)x(t0, . . . , tk) = [p, dAωp(t∗0, . . . , t∗k)] = [p, (DAω̄)p(t∗0, . . . , t∗k)]
=

(3.4.2)
[p, dω̄p(t∗0, . . . , t∗k)]. (3.4.7)

Moreover, if s ∶ U → P is a local section around x, then (3.2.2) implies

(dAω)x(t0, . . . , tk) = [s(x), (DAω̄)s(x)(Ts(t0), . . . , T s(tk))]. (3.4.8)

One may reasonably expect that in the case of the trivial representation ρ ∶ G →
GL(V ), dA should reduce simply to d, for any connection form A. To actually prove
this, we first show an auxiliary result:

3.4.5 Lemma. Let f ∈ C∞(P ) be right invariant, f ○Rg = f for all g ∈ G. Then

f = f̃ ○π for a unique f̃ ∈ C∞(M), and if X ∈ X(M) with horizontal lift X∗ we have

X∗(f) =X(f̃) ○ π.

Proof. f̃ is the projection of f under π, cf. Remark 2.2.2 and [9, 15.13]. Moreover,
for x = π(p) we have

X∗(f)∣p = df(X∗p ) = Txf̃ ○ Tpπ(X∗p ) = Txf̃(Xx) =X(f̃)∣x.

◻

3.4.6 Remark. Let ρ ∶ G → GL(V ) be the trivial representation g ↦ idV for all
g ∈ G. Then ρ∗ = Teρ = 0, and being of type ρ means being right-invariant, so

Ωkhor(P,V )(G,ρ) = {ω̄ ∈ Ωk(P,V ) ∣ ω̄ right invariant and horizontal},

and DA = d by (3.4.3). A typical vector bundle chart for E = P ×G V is given by
(2.3.2):

ψU ∶ [p, v]↦ (π(p), ρ(φU(p)) ⋅ v) = (π(p), v),
so in fact [p, v]↦ (π(p), v) is a global vector bundle isomorphism E → V =M × V .
Thus we can identify differential forms with values in E with standard differential
forms valued in V :

Ωk(M,E) ≅ Ωk(M,V ).
Using this identification, (3.2.3) becomes

ωx(t1, . . . , tk) = [p, ω̄p(X1, . . . ,Xk)]
= (x, ω̄p(X1, . . . ,Xk)) ≅ ω̄p(X1, . . . ,Xk),

(3.4.9)
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for x = π(p) and ti ∈ TxM with horizontal lifts Xi. Now extend the ti to local vector
fields on M and let Xi = t∗i (i = 0, . . . , k) be their horizontal lifts. Then the smooth
function p↦ ω̄p(X1, . . . ,Xk) is right invariant:

ω̄(X1, . . . ,Xk)∣pg = ω̄pg(X1(pg), . . . ,Xk(pg)) = ωx(t1, . . . , tk)
= ω̄(X1, . . . ,Xk)∣p,

(3.4.10)

since Tπ(Xi(pg)) = Tπ(TRg(Xi(p))) = ti for all i. Now by (3.4.1) we have

dω̄(X0, . . . ,Xk) =
k

∑
i=0

(−1)iXi(ω̄(X0, . . . , X̂i, . . . ,Xk))

+∑
i<j

(−1)i+jω̄([Xi,Xj],X0, . . . , X̂i, . . . , X̂j , . . .Xk),

In this expression,Xi(ω̄(X0, . . . , X̂i, . . . ,Xk)) = ti(ω(t0, . . . , t̂i, . . . , tk)) due to (3.4.10)
and Lemma 3.4.5. Also, [ti, tj]∗ = prh([Xi,Xj]) by Theorem 3.3.2, so

ω̄([Xi,Xj],X0, . . . ,X̂i, . . . , X̂j , . . .Xk) = ω̄(prh[Xi,Xj],X0, . . . , X̂i, . . . , X̂j , . . .Xk)
= ω̄([ti, tj]∗, t∗0, . . . , t̂∗i , . . . , t

∗
k) =

(3.4.9)
ω([ti, tj], t0, . . . , t̂i, . . . , tk).

Inserting this above and again using (3.4.1) we conclude that

dω(t0, . . . , tk)∣x = dω̄(X0, . . . ,Xk)∣p.

Combining this with (3.4.9) for dω we get

dω(X0, . . . ,Xk)∣p = dω(t0, . . . , tk)∣x = dω̄(X0, . . . ,Xk)∣p,

i.e.,
dω̄ = dω. (3.4.11)

In particular, DAω̄ = dω̄ = dω, so by (3.4.8) for a local section s of P we can calculate

(dAω)x(t0, . . . , tk) = [s(x), (DAω̄)s(x)(Ts(t0), . . . , T s(tk))]
= [s(x), dωs(x)(Ts(t0), . . . , T s(tk))] =

(3.2.2)
dωx(t0, . . . , tk).

We conclude that for the trivial representation ρ we have

dA = d ∶ Ωk(M,V )→ Ωk+1(M,V ) (3.4.12)

for any connection A on P .

Although, as we shall see, dA no longer satisfies dA ○ dA = 0, we still have the usual
product rule:

3.4.7 Theorem. Let dA ∶ Ω∗(M,E) → Ω∗+1(M,E) be the differential induced by
A. Then for σ ∈ Ωk(M) and ω ∈ Ωl(M,E) (k, l ≥ 0) we have

dA(σ ∧ ω) = dσ ∧ ω + (−1)kσ ∧ dAω. (3.4.13)

Proof. We have σ ∈ Ωk(M) ≅ Ωk(M,R), with R =M ×R the trivial bundle. This
corresponds to the situation from Remark 3.4.6 with ρ̃ ∶ G→ GL(R) = R∖{0}, g ↦ 1
the trivial representation. So there is a corresponding right invariant horizontal k-
form σ̄ ∈ Ωk(P,R). By (3.4.11), dσ̄ = dσ and dσ̄ is horizontal and right invariant
since DA = d preserves these properties by Theorem 3.4.4.
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Moreover, by Theorem 3.2.3 ω ∈ Ωl(M,E) corresponds to ω̄ ∈ Ωlhor(P,V )(G,ρ), and
by (3.2.1) and (3.2.2) we have σ ∧ ω = σ̄ ∧ ω̄. Now (3.4.7) implies

dA(σ ∧ ω)x(t0, . . . , tk+l) = [p, d(σ ∧ ω)p(t∗0, . . . , t∗k+l)] = [p, d(σ̄ ∧ ω̄)p(t∗0, . . . , t∗k+l)]
= [p, (dσ̄ ∧ ω̄ + (−1)kσ̄ ∧ dω̄)p(t∗0, . . . , t∗k+l)]
= (dσ ∧ ω + (−1)kσ ∧ dAω)x(t0, . . . , tk+l).

◻
Let us now focus on the properties of dA on 0-forms. Since Γ(E) = Ω0(M,E) and
Ω1(M,E) = Γ(T ∗M ⊗E), dA is a linear operator

dA ∶ Γ(E)→ Γ(T ∗M ⊗E).

By Theorem 3.4.7 it satisfies the product rule

dA(fe) = df ⊗ e + fdAe (f ∈ C∞(M), e ∈ Γ(E)),

hence according to Definition 3.4.1 it is a covariant derivative on E.

3.4.8 Definition. The map

∇A ∶= dA∣Ω0(M,E) ∶ Γ(E)→ Γ(T ∗M ⊗E)

is called the covariant derivative induced by the connection form A.

Another consequence of Theorem 3.4.7 is that for σ ∈ Ωk(M) and e ∈ Γ(E) we have

dA(σ ⊗ e) = dσ ⊗ e + (−1)kσ ∧∇Ae. (3.4.14)

3.4.9 Theorem. Let e ∈ Γ(E), X ∈ X(M), s ∶ U → PU a local section around
x ∈ M , v ∈ C∞(U,V ) such that e∣U = [s, v], and As = A ○ Ts the local connection
form corresponding to s. Then

(∇AXe)(x) = [s(x), Txv(Xx) + ρ∗(As(Xx))v(x)] ∈ Ex. (3.4.15)

Proof. By the proof of Theorem 2.3.4 we have e(x) = [p, ē(p)], where p ∈ Px
is arbitrary and ē ∈ C∞(P,V )G. Setting p ∶= s(x) we get v(x) = ē(s(x)), which is
smooth and clearly unique with e∣U = [s, v]. Note also that by the footnote following
(3.2.2), ē is precisely the map corresponding to e in that equation. Thus

(∇AXe)(x) = (dAe)x(Xx) =
(3.4.8)

[s(x), (DAē)(Txs(Xx))]

=
(3.4.3)

[s(x), dē(Txs(Xx)) + ρ∗(A(Txs(Xx)))ē(s(x))]

= [s(x), T (ē ○ s)x(Xx) + ρ∗(As(Xx))(ē ○ s)(x)]
= [s(x), Txv(Xx) + ρ∗(As(Xx))v(x)].

◻
We saw in Theorem 2.4.10 that any G-invariant scalar product ⟨ . , . ⟩V on V induces
a bundle metric ⟨ . , . ⟩E on E = P ×G V via

⟨e, ẽ⟩E ∶= ⟨v, ṽ⟩V for e = [p, v], ẽ = [p, ṽ].

Then the covariant derivative ∇A is metric with respect to this bundle metric:
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3.4.10 Theorem. Let ⟨ . , . ⟩E be a bundle metric on E = P ×G V induced by a G-
invariant scalar product ⟨ . , . ⟩V on V . Then for any e, ẽ ∈ Γ(E) and any X ∈ X(M)
we have

X(⟨e, ẽ⟩E) = ⟨∇AXe, ẽ⟩E + ⟨e,∇AX ẽ⟩E .

Proof. As in the proof of Theorem 3.4.9 we represent the sections in the form
e = [s, v], ẽ = [s, ṽ]. Then by (3.4.15) (and using [9, 23.9]) we get

⟨∇AXe, ẽ⟩E = ⟨X(v) + ρ∗(As(X))v, ṽ⟩V = ⟨X(v), ṽ⟩V − ⟨v, ρ∗(As(X))ṽ⟩V
=X(⟨v, ṽ⟩V ) − ⟨v,X(ṽ) + ρ∗(As(X))ṽ⟩ =X(⟨e, ẽ⟩E) − ⟨e,∇AX ẽ⟩E .

◻
In the remainder of this section we want to clarify the relation between various
notions of covariant derivatives. We begin by establishing a relationship between
covariant derivatives and parallel transport. Let γ be a path in M starting at
γ(0) = x and let

PE,At,0 ∶ Eγ(t) → Eγ(0)

be the parallel transport induced by A on E along the inverse curve γ− (cf. (3.3.2)).

3.4.11 Theorem. Let e ∈ Γ(E), X ∈ X(M) and γ a path in M with γ(0) = x and
γ̇(0) =Xx. Then

(∇AXe)(x) =
d

dt
∣
0
(PE,At,0 (e(γ(t)))).

Proof. Let γ∗ be a horizontal lift of γ. Then by (3.3.3) we have

PE,At,0 = [γ∗(0)] ○ [γ∗(t)]−1.

By Theorem 2.3.4, e(x) = [p, ē(p)] for any p ∈ Px, so e(γ(t)) = [γ∗(t), ē(γ∗(t))],
implying [γ∗(t)]−1(e(γ(t))) = ē(γ∗(t)). Using this and the fact that [γ∗(0)] is a
linear isomorphism we get

d

dt
∣
0
(PE,At,0 (e(γ(t)))) =

d

dt
∣
0
([γ∗(0)] ○ [γ∗(t)]−1(e(γ(t)))) = [γ∗(0)](T ē(γ̇∗(0)))

= [γ∗(0), T ē(γ̇∗(0))] = [p, T ē(X∗p )] (with p ∶= γ∗(0))
=

(3.4.7)
(dAe)x(Xx) = (∇AXe)(x).

◻
For a general vector bundle E over M with covariant derivative ∇ there is a ‘stan-
dard’ notion of parallel transport induced by ∇ as follows: Let γ ∶ [a, b] →M be a
path in M with x = γ(a) and let e ∈ Ex. Then due to the standard existence and
uniqueness result for linear ODEs there is a unique section φe of E over γ such that

∇φe
dt
= 0, φe(a) = e. (3.4.16)

Then we call the map

P∇γ ∶ Eγ(a) → Eγ(b)

e↦ φe(b)
(3.4.17)

the parallel transport induced by ∇ on E. From the theory of ODEs it follows that
P∇γ is a linear isomorphism between the fibers. Moreover, we have the following
compatibility result:
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3.4.12 Theorem. Let E = P ×G V be associated to P via a representation ρ ∶ G→
GL(V ). Let A be a connection form on P and let ∇A be the covariant derivative
induced on E by A according to Definition 3.4.8. Then the corresponding parallel
transports coincide:

PE,Aγ = P∇
A

γ

for each path γ ∶ [a, b]→M .

Proof. With φe as above, by Theorem 3.4.11 we have for any t ∈ [a, b]:

0 = (∇Aγ̇(t)φe)(t) =
d

ds
∣
0
((PE,A

γ∣[t,t+s]
)−1(φe(t + s))).

Here, (PE,A
γ∣[t,t+s]

)−1 = PE,A
γ(t)
○PE,A

γ−(t+s)
, so

0 = PE,A
γ(t)

d

ds
∣
0
(PE,A

γ−(t+s)
(φe(t + s))).

This means that the curve t ↦ PE,A
γ−(t)
(φe(t)) ∈ Eγ(a) is constant on [a, b]. Conse-

quently,

PE,A
γ−(t)
(φe(t)) = PE,Aγ−(a)

(φe(a)) = idEγ(a)
(φe(a)) = φe(a) = e,

so that φe(t) = PE,Aγ(t)
(e), as claimed. ◻

3.4.13 Example. Let M be an n-dimensional manifold equipped with a covariant
derivative ∇. This means that ∇ is a covariant derivative on the vector bundle TM
over M , hence defines a notion of parallel transport as discussed before Theorem
3.4.12.

We know from Example 2.4.6 that TM is associated to the frame bundle, TM =
GL(M) ×GL(n,R) Rn. Moreover, by Example 3.1.10, the covariant derivative ∇
induces a connection form A∇ on GL(M) and (3.1.19) shows that ∇ = ∇A∇ . Note,
however, that we do not (yet) know that the covariant derivative that was denoted
by ∇A in (3.1.19) is indeed the same as that given by Definition 3.4.8. We will
show this in Remark 3.4.14 in a more general context. Once we know this, it
will in particular follow from Theorem 3.4.12 that the resulting notions of parallel
transport coincide as well:

P∇γ ≡ P∇
A∇

γ = PTM,A∇

γ .

3.4.14 Remark. Generalizing Example 3.4.13, let F be a vector bundle that is
associated to a GL(r,K)-principal fiber bundle P , F = P ×GL(r,K) Kr. Let ∇F be
any covariant derivative on F . Then we show that there exists a connection form
A on P such that ∇A = ∇F .
To find such an A we adapt the procedure used in Example 3.1.10: we define local
matrix valued 1-forms As that have the right transformation behaviour, namely
(3.1.14). Locally we have F ≅ U ×Kr and P ≅ U ×GL(r,K). Let s be a local section
of P , so s(x) is an invertible r × r matrix s = (f1, . . . , fr) with columns fi ∈ Γ(F ).
Since the fi form a basis of Kr we can write

∇F fi =
r

∑
j=1

ωji ⊗ fj ,

with ωji ∈ Ω1(U). Now set

As ∶= (ωij)ri,j=1 =
r

∑
i,j=1

ωijBij ∈ Ω1(U,gl(r,K)).
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It then follows exactly as in Example 3.1.10 that the As indeed obey (3.1.14). So
we are left with proving that ∇F = ∇A for the resulting connection form A on P .

Since this is a local statement we may assume F ≅ U ×Kr and P ≅ U ×GL(r,K).
Thus any p ∈ P is of the form (x, g) and the bundle chart (2.3.2) becomes ψU ∶
[p, v] = [(x, g), v] ↦ (x, gv). Then in Theorem 3.4.9 we have [s, v] = s ⋅ v, and any
element of Γ(F ) is of this form. We are going to use (3.4.14) to show that for each
vector field X we have

∇FX([s, v]) = ∇AX([s, v]).
As above we have s = (f1, . . . , fr) with fi ∈ Γ(F ). Therefore,

∇FX([s, v]) = ∇FX(s ⋅ v) = ∇FX(∑
i

vifi) =∑
i

X(vi)fi +∑
i,j

viωji(X)fj

= s(x) ⋅ Tv(X) +∑
i,j

viωji(X)fj .

Because of (3.4.15) it therefore only remains to show that the second summand here
equals s(x)As(X)v(x). Indeed we have (writing ωij instead of ωij(X) for brevity):

s(x) ⋅As(X) ⋅ v(x) =
⎛
⎜
⎝

f11 . . . fr1
⋮ ⋮
f1r . . . frr

⎞
⎟
⎠
⋅
⎛
⎜
⎝

ω11 . . . ω1r

⋮ ⋮
ωr1 . . . ωrr

⎞
⎟
⎠
⋅
⎛
⎜
⎝

v1
⋮
vr

⎞
⎟
⎠

=
⎛
⎜
⎝

∑j fj1ωj1v1+ . . . +∑j fj1ωjrvr
⋮ ⋮

∑j fjrωj1v1+ . . . +∑j fjrωjrvr

⎞
⎟
⎠
=∑
i,j

fjωjivi,

as claimed. In particular, by Theorem 3.4.12 we have P∇F

γ = P∇A

γ = PF,Aγ .

3.4.15 Example. For metric connections we have seen in Example 3.1.12 and
Corollary 3.1.13 that A ↦ ∇A is a bijection between the set of connection forms
on O(M,g) and the set of metric covariant derivatives on M , and the analogue of
(3.1.19) holds:

∇A
∇

= ∇ and A∇
A

= A.
This applies, in particular, to the Levi-Civita connection ∇LC on a semi-Riemannian
manifold (M,g) of signature (k, l), for which we have TM ≅ O(M,g) ×O(k,l) Rk+l.
It therefore induces a connection form ALC on O(M,g) with ∇LC = ∇ALC

. Finally,
by Theorem 3.4.12 all parallel transports coincide:

P∇
LC

γ = P∇
ALC

γ = PTM,ALC

γ .

3.5 Curvature of a connection

The curvature of a connection on a principal fiber bundle is a 2-form that in a
sense measures the non-flatness of the bundle. As we will see, it underlies all other
notions of curvature that are used in differential geometry. Throughout this section
let (P,π,M,G) be a principal fiber bundle with connection Th and connection form
A. Moreover, let ρ ∶ G → GL(V ) be a representation of G and let E = P ×G V be
the associated vector bundle over M .

3.5.1 Definition. The 2-form

FA ∶=DAA ∈ Ω2(P,g) (3.5.1)

is called the curvature form of A (resp. of Th).
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It follows directly from the definition of DA (cf. (3.4.2)) that FA is horizontal.
Moreover, since A is of type Ad, so is FA (see the proof of Theorem 3.4.4). Given
a local section s ∶ U → P , we call the pullback of FA under s,

F s ∶= s∗FA = FA(Ts( . ), T s( . )) ∈ Ω2(U,g) (3.5.2)

the local curvature form with respect to s. Similar to (3.1.8) for As, we can also
derive the transformation behaviour of F s. Thus let τ ∶ U → P be another section
and let τ = s ⋅ g for a smooth function g ∶ U → G. Now given X ∈ TxM , let c be a
smooth curve in M with ċ(0) = X and apply Lemma 1.2.3 to x = s ○ c, g = g ○ c to
obtain

Tτ(X) = TRg(Ts(X)) + (TLg−1Tg(X))∼.
Since the second summand here is vertical while FA is horizontal and of type Ad,
we conclude from this

F τ(X,Y ) = FA(Tτ(X), T τ(Y )) = FA(TRg(Ts(X)), TRg(Ts(Y )))
= (R∗gFA)(Ts(X), T s(Y )) = Ad(g−1)(FA(Ts(X), T s(Y )))
= Ad(g−1) ○ F s(X,Y ).

Thus we arrive at the transformation forumula

F τ = Ad(g−1) ○ F s. (3.5.3)

In particular, if G ⊆ GL(m,K) this reads

F τ = g−1 ○ F s ○ g. (3.5.4)

To formulate further properties of FA we need some new operations on differential
forms. Let N be a manifold and g a Lie algebra with basis (a1, . . . , ar). Then for
ω ∈ Ωk(N,g), τ ∈ Ωl(N,g) we can write

ω =
r

∑
i=1

ωiai τ =
r

∑
i=1

τ iai,

with ωi, τ i real valued differential forms on N . Then we define the commutator of
ω and τ by

[ω, τ] ∶=∑
i,j

(ωi ∧ τ j)[ai, aj]g ∈ Ωk+l(N,g). (3.5.5)

It is easily seen that this definition does not depend on the choice of basis in g.

3.5.2 Lemma. The map

[ . , . ] ∶ Ωk(N,g) ×Ωl(N,g)→ Ωk+l(N,g)
(ω, τ)↦ [ω, τ]

has the following properties:

(i) [ω, τ] = (−1)kl+1[τ, ω].

(ii) d[ω, τ] = [dω, τ] + (−1)k[ω, dτ].

(iii) If ω ∈ Ω1(N,g) and X,Y ∈ X(N), then [ω,ω](X,Y ) = 2[ω(X), ω(Y )]g.

Proof. (i) and (ii) are seen directly by inserting, so let us prove (iii). We have

[ω,ω](X,Y ) =∑
i,j

(ωi ∧ ωj)(X,Y )[ai, aj] =∑
i,j

(ωi(X)ωj(Y ) − ωi(Y )ωj(X))[ai, aj]

=∑
i,j

ωi(X)ωj(Y )[ai, aj] +∑
i,j

ωi(X)ωj(Y )[ai, aj] = 2[ω(X), ω(Y )],

where in the second sum we interchanged i and j. ◻
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3.5.3 Theorem. Let FA ∈ Ω2(P,g) be the curvature form of A. Then

(i) Structure equation: FA = dA + 1
2
[A,A].

(ii) Bianchi identity: DAF
A = 0.

(iii) If ω ∈ Ωkhor(P,V )(G,ρ), then DADAω = ρ∗(FA) ∧ ω.

Proof. (i) It suffices to check the identity on X,Y ∈ TpP that are either horizontal
or vertical. If both are horizontal, then A(X) = A(Y ) = 0 and by (3.4.2) we have

FA(X,Y ) = (DAA)(X,Y ) = dA(X,Y ),

giving the claim (due to Lemma 3.5.2 (iii)). Next, let X be horizontal and Y
vertical. Then FA(X,Y ) = 0 since FA is horizontal. We may extend X, Y such
that X = V ∗(p) is a horizontal lift for some V ∈ X(M) and Y = T̃ (p) is the value
of a fundamental vector field induced by T ∈ g. Then by Theorem 3.3.2 we have
[V ∗, T̃ ] = 0, so (3.4.1) gives

dA(X,Y ) = dA(V ∗, T̃ )p = V ∗(A(T̃ )
²
≡T

) − T̃ (A(V ∗
²
=0

)) = 0.

By Lemma 3.5.2 (iii) also [A,A](X,Y ) = 0, so the claim follows also in this case.
Finally, let both X and Y be vertical, X = T̃ (p), Y = S̃(p), T,S ∈ g. Then
FA(X,Y ) = 0 and (3.4.1) and Theorem 1.2.2 give

dA(X,Y ) =X(A(S̃)) − Y (A(T̃ )) −A([T̃ , S̃]) = −A([T,S]∼) = −[T,S]g

= −[A(T̃ (p)),A(S̃(p))]g = −[A(X),A(Y )]g =
3.5.2
−1
2
[A,A](X,Y ).

(ii)Differentiating (i) and using Lemma 3.5.2 (i) and (ii) we get

dFA = ddA + 1

2
d[A,A] = 1

2
([dA,A] − [A,dA]) = [dA,A],

so Lemma 3.5.2 (iii) and the definition of DA give

DAF
A = dFA ○ prh = [dA ○ prh,A ○ prh] = 0,

where ○prh is an abbreviation for applying prh to each argument.

(iii) Using that ω and DAω are horizontal and of type ρ and that ρ∗ ∶ g → L(V,V )
is linear, (3.4.3) implies

DA(DAω) = d(dω + ρ∗(A) ∧ ω) + ρ∗(A) ∧ (dω + ρ∗(A) ∧ ω)
= ddω + d(ρ∗(A)) ∧ ω − ρ∗(A) ∧ dω + ρ∗(A) ∧ dω + ρ∗(A) ∧ (ρ∗(A) ∧ ω)
= ρ∗(dA) ∧ ω + ρ∗(A) ∧ (ρ∗(A) ∧ ω).

Here, by applying (3.4.4) twice (and using the remark following (3.4.5)) we see that
ρ∗(A) ∧ (ρ∗(A) ∧ ω) = (ρ∗(A) ∧ ρ∗(A)) ∧ ω, with

(ρ∗(A) ∧ ρ∗(A))(X,Y ) ∶= ρ∗(A(X)) ○ ρ∗(A(Y )) − ρ∗(A(Y )) ○ ρ∗(A(X))

= [ρ∗(A(X)), ρ∗(A(Y ))]gl(V ) = ρ∗([A(X),A(Y )]g) =
1

2
ρ∗([A,A](X,Y )),

where we used that ρ∗ is a Lie algebra homomorphism, as well as Lemma 3.5.2 (iii)
in the last step. Thus, finally,

DADAω = ρ∗(dA +
1

2
[A,A]) ∧ ω = ρ∗(FA) ∧ ω.
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◻

Since FA ∈ Ω2
hor(P,g)(G,Ad), by Theorem 3.2.3 we can consider it as a 2-form in the

adjoint bundle Ad(P ) = P ×G g, and we shall notationally not distinguish between
these versions:

FA ∈ Ω2(M,Ad(P )). (3.5.6)

In order to formulate the identities from Theorem 3.5.3 from this point of view we
introduce a bundle homomorphism

ρ∗ ∶ Ad(P )→ End(E,E)

as follows (recall that E = P ×G V ): Let φ ∈ Ad(P )x, e ∈ Ex, and fix some p ∈ Px.
Then φ = [p,X] and e = [p, v] for some X ∈ g, v ∈ V and we define

ρ∗(φ)e ∶= [p, ρ∗(X)v]. (3.5.7)

To check that this is well-defined, let also q ∈ Px, q = p ⋅ g. Then

φ = [p,X] = [p ⋅ g,Ad(g−1)X] = [q,Ad(g−1)X],
e = [p, v] = [q, ρ(g−1)v],

so we have to show that [q, ρ∗(Ad(g−1)X)(ρ(g−1)v)] = [p, ρ∗(X)v]. We have3

ρ∗ ○Ad(g−1) = Te(ρ ○ conjg−1) = Te(h↦ ρ(g−1)ρ(h)ρ(g)),

implying ρ∗(Ad(g−1)X) = ρ(g−1) ○ ρ∗(X) ○ ρ(g) and

ρ∗(Ad(g−1)X)(ρ(g−1)v) = ρ(g−1) ○ ρ∗(X) ○ ρ(g) ○ ρ(g−1)v = ρ(g−1)ρ∗(X)v.

Thus indeed

[q, ρ∗(Ad(g−1)X)(ρ(g−1)v)] = [pg, ρ(g−1)ρ∗(X)v] = [p, ρ∗(X)v].

3.5.4 Lemma. The map ρ∗ ∶ Ad(P ) → End(E,E) is a vector bundle homomor-
phism.

Proof. See the Appendix. ◻

Using this map we can now define the wedge product of differential forms with
values in Ad(P ) with those that take values in E:

∧ ∶ Ωk(M,Ad(P )) ×Ωl(M,E)→ Ωk+l(M,E)
(σ,ω)↦ σ ∧ ω,

where, for t1, . . . , tk+l ∈ TxM ,

(σ ∧ ω)x(t1, . . . , tk+l)

∶= 1

k!l!
∑

τ∈Sk+l

sign(τ)ρ∗(σx(tτ(1), . . . , tτ(k)))ωx(tτ(k+1), . . . , tτ(k+l)).
(3.5.8)

Using this notation, the identification of Ω2
hor(P,g)(G,Ad) with Ω2(M,Ad(P )) gives:

3Here e appears in two meanings, the one in the lower index is the unit in G.
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3.5.5 Theorem. Let FA ∈ Ω2(M,Ad(P )) be the curvature form of A. Then FA

satisfies the Bianchi identity
dAF

A = 0,
and for the differential dA ∶ Ωk(M,E)→ Ωk+1(M,E) we get

dAdAω = FA ∧ ω.

Proof. Using the notation from Theorem 3.2.3 and de-identifying for the purpose
of the present proof, Theorem 3.5.3 actually refers to FA ∈ Ω2

hor(P,g)(G,Ad), and

(ii) there says DAFA = 0. By (3.4.6), therefore,

dAFA =DAFA = 0,

giving the Bianchi identity in the claimed form. Also, Theorem 3.5.3 (iii) reads, for
ω̄ ∈ Ωkhor(P,V )(G,ρ):

DADAω̄ = ρ∗(FA) ∧ ω̄,
where ρ∗ denotes the post-composition with the derivative of ρ. By (3.4.6),

DADAω̄ =DA(dAω) = dAdAω,

so we are left with proving that ρ∗(FA) ∧ ω̄ = FA ∧ ω. To verify this, let (cf. the
proof of Theorem 3.2.3) ti ∈ TxM and Xi ∈ TpP with Tπ(Xi) = ti. Then

[p,ρ∗(FA) ∧ ω̄)p(X1, . . . ,Xk+2)]

=
(3.4.5)

[p, 1

2!k!
∑

τ∈Sk+2

sign(τ)ρ∗((FA)p(Xτ(1),Xτ(2)))(ω̄p(Xτ(3), . . . ,Xτ(k+2)))]

=
(3.5.7)

1

2!k!
∑

τ∈Sk+2

sign(τ)ρ∗((FA)x(tτ(1), tτ(2)))(ωx(tτ(3), . . . , tτ(k+2)))

=
(3.5.8)

(FA ∧ ω)x(t1, . . . , tk+2) = [p,FA ∧ ωp(X1, . . . ,Xk+2)].

◻
In this sense the curvature form FA measures the failure of dA ○ dA to vanish. The
following result shows that FA determines the vertical component of the commuta-
tor of horizontal vector fields.

3.5.6 Theorem. Let X and Y be horizontal vector fields on P and let FA ∈
Ω2(P,g) be the curvature form of A. Then

(i) FA(X,Y ) = −A([X,Y ]).

(ii) prv([X,Y ]) = −FA(X,Y )∼.

Proof. SinceA(X) = A(Y ) = 0, it follows from Lemma 3.5.2 (iii) that [A,A](X,Y ) =
0. Thus Theorem 3.5.3 (i) shows

FA(X,Y ) = dA(X,Y ) =
(3.4.1)

X(A(Y )) − Y (A(X)) −A([X,Y ]) = −A([X,Y ]).

Set Z ∶= [X,Y ], then by Theorem 3.1.1 for each p ∈ P there is a unique U ∈ g
such that Zp = Ũp + prh(Zp). Thus A(Zp) = A(Ũp) = U , so prv(Zp) = A(Zp)∼p =
−(FA(X,Y ))∼p. ◻
This result allows us to characterize the integrability (i.e., by the Frobenius theorem
[9, 17.33], the involutivity) of the horizontal and vertical distributions:
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3.5.7 Theorem. Let (P,π,M,G) be a principal fiber bundle with connection form
A. Then:

(i) The vertical bundle TvP is integrable.

(ii) The horizontal bundle Th is integrable if and only if the curvature form van-
ishes, FA = 0.

Proof. (i) By Theorem 1.2.2, for any two fundamental vector fields T̃ , S̃ we have
[T̃ , S̃] = [T,S]∼. Since these vector fields span TvP , the claim follows.

(ii) Let X,Y be horizontal vector fields. Then by Theorem 3.5.6 (ii) we have
prv([X,Y ]) = −(FA(X,Y ))∼. Thus [X,Y ] is horizontal for each X,Y horizon-
tal (i.e., ThP is involutive) if and only if FA(X,Y ) = 0 for all such X,Y . By (3.4.2)
and (3.5.1) FA is horizontal, so this condition is equivalent to the vanishing of FA.

◻

By the global version of the Frobenius theorem (cf. [9, 17.25]), FA = 0 if and only if
any point of P lies in a maximal connected submanifold H of P (a leaf) transversal
to the fibers of the bundle, with tangent bundle TH = ThP ∣H .

3.5.8 Example. Let P0 = M × G be the trivial principal fiber bundle over M ,
equipped with the canonical flat connection ThP0, corresponding to the connection
form A0 (cf. Example 3.1.8). Then the maximal integral manifold of ThP0 through
(x, g) is obviously M ×{g} ⊆M ×G. Thus FA0 = 0, as can also be seen directly: By
Theorem 3.5.6, FA0(X,Y ) = −A0([X,Y ]) = 0, because [X,Y ] is horizontal in this
case.

3.5.9 Definition. A connection Th and the corresponding connection form A on
P are called flat if the curvature form of A vanishes: FA = 0.

3.5.10 Theorem. The following are equivalent:

(i) The connection form A is flat, i.e., FA = 0.

(ii) The horizontal distribution Th is integrable.

(iii) There exists an open covering U = {Ui}i∈I of M such that each subbundle
(PUi ,A) is isomorphic to the trivial G-principal bundle over Ui with the canon-
ical flat connection.

(iv) There exists an open covering U = {Ui}i∈I of M such that every subbundle PUi

possesses an A-horizontal section.

(v) There exists an open covering U = {Ui}i∈I of M such that parallel transport
in every PUi

is path-independent.

Proof. (i)⇔(ii) is Theorem 3.5.7 (ii). Point 1.) in the proof of Theorem 3.3.9 shows
that (iii)⇔(iv). It also follows from Theorem 3.3.9 that (v)⇒(iii), while (iii)⇒(v)
is Example 3.3.8, so altogether (iii)⇔(iv)⇔(v).

(iii)⇒(i): Any x ∈ M has a neighborhood U and an isomorphism ϕ ∶ PU → P0U =
U × G of principal fiber bundles with ϕ∗A0 = A∣U . Then FA∣U = ϕ∗FA0 = 0, so
FA = 0.
(ii)⇒(iv): Let p ∈ P and let H(p) ⊆ P be a maximal connected integral manifold of
Th, so Tq(H(p)) = ThqP for each q ∈ H(p). Now choose any Riemannian metric
on M , let p ∈ P and let U be a normal neighborhood of x ∶= π(p). For any y ∈ U let
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γy ∶ [0,1] → U be the radial geodesic from x to y. Then we define a section over U
by

s ∶ U → P

y ↦ γ∗p(1),

where γ∗p is the horizontal lift of γy with starting point p. Since γy depends smoothly
on y it follows as in the proof of Theorem 3.3.9 that s is smooth. However, contrary
to the situation there we do not (yet) know that s is independent of the chosen path
(rather, each point in its domain is reached by a unique radial geodesic, whose lift
is used to define s), so we need a different argument to show that it is horizontal,
i.e., that Txs(TxM) = Ths(x)P = Ts(x)H(p). As π ○ s = id we have rk(s) = dimM =
dimH(p), so we only need to prove inclusion. Since H(p) is a leaf of Th, γ∗p
lies in H(p)4, so s(U) ⊆ H(p). As H(p) is an integral manifold of an integrable
distribution and s ∶ U → P is smooth, it is also smooth when viewed as a map
s ∶ U → H(p) (see [9, 17.27]). But then Txs(TxU) ⊆ Ts(x)H(p) for each x ∈ U , and
we are done. ◻

3.5.11 Theorem. Let (P,π,M,G) be a principal fiber bundle with connection
form A and suppose that M is simply connected. Then FA = 0 if and only (P,A)
is isomorphic to the trivial bundle M ×G with the canonical flat connection.

Proof. One direction is immediate from Theorem 3.5.10 (iii)⇒(i). Conversely, by
Theorem 3.3.9 it will suffice to show that FA = 0 implies path independence of
parallel transport. So let x, y ∈ M and let γ, δ ∶ I = [0,1] → M be two paths from
x to y. Since M is simply connected there exists a (piecewise smooth)5 homotopy
H ∶ I × I → M between γ and δ that leaves x and y fixed. For s ∈ I, denote by
H∗s the horizontal lift of Hs ∶=H( . , s). We show that the corresponding endpoints
H∗s (1) all coincide. To this end we subdivide I × I into sufficiently small rectangles
Ki such that each H(Ki) lies in a neighborhood as in Theorem 3.5.10 (v), so that
parallel transport there does not depend on the path. It follows that s ↦ H∗s (1) is
locally constant and continuous on I, hence constant. ◻

Similar to the definition of the Riemann tensor one can introduce a curvature op-
erator on any vector bundle equipped with a covariant derivative:

3.5.12 Definition. Let ∇ ∶ Γ(E) → Γ(T ∗M ⊗E) be a covariant derivative on the
vector bundle E. Then the 2-form on the endomorphism bundle

R∇ ∈ Γ(Λ2(T ∗M)⊗End(E,E)) = Ω2(M,End(E,E))

defined by

R∇(X,Y ) ∶= ∇X∇Y −∇Y∇X −∇[X,Y ] (X,Y ∈ X(M))

is called the curvature endomorphism of ∇.

In particular, this applies to the situation from Definition 3.4.8, where we saw how
to assign a covariant derivative ∇A on the vector bundle E = P ×G V associated to
a principal fiber bundle P with connection form A (and due to Theorem 2.4.9 and
Remark 3.4.14 any covariant derivative comes about in this way). In this case the
curvature endomorphism on E is completely determined by the curvature form on
P :

4This follows by using flat charts for ThP , cf. the the proof of [9, Th. 21.12]
5See, e.g., [12, Lem. 6.6].
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3.5.13 Theorem. Let p ∈ Px and [p] ∶ V → Ex the corresponding fiber diffeomor-
phism (see (2.3.7)). Then

R∇
A

x (X,Y ) = [p] ○ ρ∗(FAp (X∗, Y ∗)) ○ [p]−1,

where X,Y ∈ TxM and X∗, Y ∗ ∈ TpP are their horizontal lifts.

Proof. Given φ ∈ Γ(E), let φ̄ ∈ C∞(P,V )(G,ρ), φ̄(p) = [p]−1 ○ φ(π(p)) be the
G-equivariant function corresponding to φ by Theorem 2.3.4. Then for X ∈ X(M)
with horizontal lift X∗, by (3.4.7) and Definition 3.4.8 we have

(∇AXφ)(x) = [p, dφ̄p(X∗)] = [p,X∗(φ̄)(p)] (p ∈ Px). (3.5.9)

Therefore,

R∇
A

x (Xx, Yx)φ(x) =
2.3.4

R∇
A

x (Xx, Yx)[p, φ̄(p)]

=
(3.5.9)

[p, (X∗Y ∗(φ̄) − Y ∗X∗(φ̄) − [X,Y ]∗(φ̄))(p)]

= [p, ([X∗, Y ∗](φ̄) − [X,Y ]∗(φ̄))(p)]
=

3.3.2
[p, (prv[X∗, Y ∗](φ̄))(p)]

=
3.5.6
[p,−(FAp (X∗p , Y ∗p ))∼(φ̄)(p)].

Here,

(FAp (X∗p , Y ∗p ))∼(φ̄)(p) =
3.1.1

d

dt
∣
0
φ̄(p ⋅ exp(tFAp (X∗p , Y ∗p )))

=
(2.3.9)

d

dt
∣
0
(ρ(exp(−tFAp (X∗p , Y ∗p )))φ̄(p))

= −ρ∗(FAp (X∗p , Y ∗p ))φ̄(p).

Altogether, since [p] = v ↦ [p, v] we have shown that

R∇
A

x (Xx, Yx)[p](φ̄(p)) = [p](−(FAp (X∗p , Y ∗p ))∼p(φ̄)) = [p](ρ∗(FAp (X∗p , Y ∗p ))φ̄(p)),

as claimed. ◻

3.5.14 Remark. As was shown in Example 3.4.15, for the case of the Levi-Civita
connection ∇LC on a semi-Riemannian manifold (M,g) of signature (k, l), we have
TM ≅ O(M,g) ×O(k,l) Rk+l, and ∇LC induces a connection form ALC on O(M,g)
with ∇LC = ∇ALC

. The previous result then shows how the Riemann curvature ten-

sor on M , which in this case is the curvature endomorphism R∇
LC ∈ Γ(Λ2(T ∗M)⊗

End(TM,TM)) relates to the curvature form FA
LC ∈ Ω2(O(M,g), o(k, l)). In this

sense semi-Riemannian geometry can ultimately be traced back to the study of the
principal fiber bundle O(M,g) with connection form ALC.

For H ∈ Ωk(M,End(E,E)) and ω ∈ Ωl(M,E) we define a wedge product in accor-
dance with (3.4.5):

(H ∧ ω)(X1, . . . ,Xk+l)

∶= 1

k!l!
∑

τ∈Sk+l

sign(τ)H(Xτ(1), . . . ,Xτ(k))(ω(Xτ(k+1), . . . ,Xτ(k+l))).
(3.5.10)

Using this notation we have:

72



3.5.15 Theorem. Let (P,π,M,G) be a principal fiber bundle with connection form
A and let E = P ×G V . Then for any ω ∈ Ωk(M,E),

dAdAω = R∇
A

∧ ω. (3.5.11)

Proof. Using the de-identification from the proof of Theorem 3.5.5, we have shown
there that

dAdAω = ρ∗(FA) ∧ ω̄.
Let X1, . . . ,Xk+2 ∈ X(M) with horizontal lifts X∗1 , . . . ,X

∗
k+2 ∈ X(P ). Then (sup-

pressing the arguments, x for Xi, p for X∗i )

(R∇
A

∧ ω)x(X1, . . . ,Xk+2)

=
(3.5.10)

1

2!k!
∑

τ∈Sk+2

sign(τ)R∇
A

x (Xτ(1),Xτ(2))(ωx(Xτ(3), . . . ,Xτ(k+2)))

=
3.5.13

1

2!k!
∑

τ∈Sk+2

sign(τ)[p] ○ ρ∗(FAp(X∗τ(1),X∗τ(2))) ○ [p]−1(ωx(Xτ(3), . . . ,Xτ(k+2)))

=
(3.2.3)

[p]( 1

2!k!
∑

τ∈Sk+2

sign(τ)ρ∗(FAp(X∗τ(1),X∗τ(2)))ω̄p(X∗τ(3), . . . ,X∗τ(k+2)))

=
(3.4.5)

[p]((ρ∗(FA) ∧ ω̄)p(X∗1 , . . . ,X∗k+2)) = [p](dAdAωp(X∗1 , . . . ,X∗k+2))

=
(3.2.3)

(dAdAω)x(X1, . . . ,Xk+2).

◻

3.5.16 Definition. Let (P,π,M,G) be a principal fiber bundle. A diffeomorphism
f ∶ P → P is called a gauge transformation if (f, idG) is a bundle morphism in the
sense of Definition 2.2.3, i.e.,

(i) π ○ f = π, and

(ii) f(p ⋅ g) = f(p) ⋅ g for all p ∈ P , g ∈ G.

By G(P ) we denote the group of gauge transformations on P .

By C∞(P,G)G we denote the set of G-equivariant smooth maps from P to G:

C∞(P,G)G ∶= {σ ∈ C∞(P,G) ∣ σ(pg) = g−1σ(p)g}. (3.5.12)

3.5.17 Lemma. The group of gauge transformations G(P ) can be identified with
C∞(P,G)G via the bijection

S ∶ G(P ) ∋ f ↦ σf ∈ C∞(P,G)G

f(p) =∶ p ⋅ σf(p).
(3.5.13)

Proof. Given f ∈ G(P ) and p ∈ P , π(f(p)) = π(p), so there is a unique σf(p) ∈ G
with f(p) = p ⋅ σf(p). The resulting map σf is smooth, since for a bundle chart ϕ
as in Definition 2.2.1 with ϕ(p) = (x, g) we have

ϕ(f(p)) = (x, f2(p)) = (x, g) ⋅ (g−1f2(p)) = ϕ(p) ⋅ (g−1f2(p)) = ϕ(p ⋅ (g−1f2(p))),

so that σf(p) = g−1f2(p) = (pr2 ○ ϕ(p))−1 ⋅ f2(p), which is obviously smooth.
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σf ∈ C∞(P,G)G: pgσf(pg) = f(pg) = f(p)g = pσf(p)g, so pgσf(pg) = pσf(p)g, and
thereby σf(pg) = g−1σf(p)g.
S is bijective: Its inverse is obviously given by σ ↦ fσ ∶= p ↦ p ⋅ σ(p), so it only
remains to show that fσ ∈ G(P ). It is a diffeomorphism with inverse fσ−1 (with σ−1

the pointwise inverse in G) and one readily verifies Definition 3.5.16 for fσ. ◻

3.5.18 Theorem. Let (P,π,M,G) be a principal fiber bundle with connection form
A and let f ∈ G(P ). Then also f∗A is a connection form on P and we have

(i) f∗A = Ad(σ−1f ) ○A + σ∗fµG.

(ii) f ○Pf∗Aγ = PAγ ○ f .

(iii) Df∗A = f∗ ○DA ○ f∗−1.

(iv) F f
∗A = f∗FA = Ad(σ−1f ) ○ FA.

Proof. We begin by verifying the conditions from Definition 3.1.3 to show that
f∗A is a connection form. First, since f ○Rg = Rg ○ f we have

R∗g(f∗A) = f∗(R∗gA) = f∗(Ad(g−1) ○A) = Ad(g−1) ○ f∗A.

Moreover, using Theorem 3.1.1, for X ∈ g we have

Tpf(X̃(p)) =
d

dt
∣
0
(f(p ⋅ exp(tX))) = d

dt
∣
0
(f(p) ⋅ exp(tX)) = X̃(f(p)),

so that (f∗A)p(X̃(p)) = Af(p)(X̃(f(p))) =X.

(i) Let X ∈ TpP and pick a smooth curve γ in P with γ(0) = p and γ′(0) =X. Then
setting σ ∶= σf , by Lemma 1.2.3 we get

Tpf(X) =
d

dt
∣
0
f(γ(t)) =

(3.5.13)

d

dt
∣
0
(γ(t) ⋅ σ(γ(t)))

= TRσ(p)(X) + (TLσ(p)−1Tpσ(X))∼(f(p))
(3.5.14)

Therefore,

(f∗A)p(X) = Af(p)(TRσ(p)(X)) +Af(p)((TLσ(p)−1Tpσ(X))∼(f(p)))
= Ad(σ(p)−1) ○Ap(X) + TLσ(p)−1Tpσ(X)
= Ad(σ(p)−1) ○Ap(X) + (σ∗µG)p(X).

(3.5.15)

(ii) We have

Thf
∗AP = kerf∗A = ker(A ○ Tf) = Tf−1(kerA) = Tf−1(ThAP ). (3.5.16)

Denote by γAf(p) the A-horizontal lift of a path γ with initial point f(p), and by

γf
∗A
p the f∗A-horizontal lift of γ with initial point p. Then by (3.5.16)

γf
∗A
p = f−1 ○ γAf(p), hence Pf

∗A
γ = f−1 ○PAγ ○ f.

(iii) We note first that Tf ○ prf
∗A
h = prAh ○ Tf : To see this, let X = XA

h + XA
v ∈

ThAP ⊕ TvAP = TP . Then

(Tpf)−1(X) = (Tpf)−1(XA
h )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈

(3.5.16)
Thf∗A

p P

+ (Tpf)−1(XA
v )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈

3.5.16
TvpP

,
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so prf
∗A
h ((Tpf)−1(X)) = (Tpf)−1(XA

h ) = (Tpf)−1 ○prAh (X). Using this, we calculate

(Df∗Af
∗ω)(X1, . . . ,Xk) =

(3.4.2)
d(f∗ω)(prf

∗A
h X1, . . . ,pr

f∗A
h Xk)

= dω(Tf ○ prf
∗A
h X1, . . . , T f ○ prf

∗A
h Xk) = dω(prAh TfX1, . . . ,pr

A
h TfXk)

= (DAω)(TfX1, . . . , T fXk) = (f∗DAω)(X1, . . . ,Xk).

(iv) From (iii) we get for the curvature form

F f
∗A =Df∗Af

∗A = f∗DA(f∗)−1f∗A = f∗DAA = f∗FA.

Finally, since FA is horizontal, (3.5.14) gives

(f∗FA)p(X,Y ) = FAf(p)(TRσ(p)X,TRσ(p)Y ) = (R∗σ(p)FA)p(X,Y )
= Ad(σ(p)−1) ○ FAp (X,Y ),

where the last equality holds since FA is of type Ad. ◻

3.6 S1-connections

In applications, in particular in mathematical physics, connections in principal fiber
bundles with S1 = U(1) as structure group play an important role. Since S1 is
abelian, many of the constructions from previous sections simplify, which warrants
a separate treatment. Throughout this section, let (P,π,M,S1) be a principal fiber
bundle over S1.

Recall from Remark 3.4.6 that with ρ ∶ G → GL(V ) the trivial representation
(g ↦ idV for all g ∈ G), ρ∗ = Teρ = 0, and being of type ρ means being right-
invariant, so

Ωkhor(P,V )(G,ρ) = {ω̄ ∈ Ωk(P,V ) ∣ ω̄ right invariant and horizontal}.

Moreover, DA = d by (3.4.3) and

E = P ×G V ≅M × V
[p, v]↦ (π(p), v),

so that Ωk(M,E) ≅ Ωk(M,V ). Composing this with the isomorphism from Theo-
rem 3.2.3 we obtain

Ωkhor(P,V )(G,ρ)
Φ→ Ωk(M,E) ≅ Ωk(M,V ).

Explicitly (see (3.2.2)) to ω̄ ∈ Ωkhor(P,V )(G,ρ) one assigns ω ∈ Λk(T ∗xM)⊗ V by

ωx(v1, . . . , vk) ∶= ω̄p(v∗1 , . . . , v∗k), (3.6.1)

where π(p) = x, v1, . . . , vk ∈ TxM and v∗1 , . . . , v
∗
k ∈ TpP with Tπ(v∗j ) = vj . Thus

ω is the unique differential form with π∗ω = ω̄. So this map is the inverse of the
map ω ↦ ω̄ (cf. (3.2.3)), Ωk(M,V ) → Ωkhor(P,V )(G,ρ) and we denote it by α ↦ α̂,
Ωkhor(P,V )(G,ρ) → Ωk(M,V ). In particular for k = 0 we get that f̄ ∈ C∞(P,V ) if
and only if f(x) ∶= f̄(p) (p ∈ Px arbitrary) is in C∞(M,V ).
We are interested in the case where V is the Lie algebra of S1. Since S1 = {z ∈ C ∣
∣z∣ = 1}, any smooth curve through 1 ∈ S1 is of the form γ(t) = eiδ(t) with δ(0) = 0.
Then γ̇(0) = iδ̇(0) ∈ iR, so V = iR and the above isomorphisms take the form

Ωk(M, iR)→ Ωkhor(P, iR)(S
1,id)

ω ↦ ω̄
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with inverse

Ωkhor(P, iR)(S
1,id) → Ωk(M, iR)
α ↦ α̂.

Recall also that by (3.4.11) we have

dω̄ = dω, dα̂ = (dα)∧. (3.6.2)

Denote by µ = µS1 the Maurer–Cartan form of S1. Then

µz = z−1dz. (3.6.3)

Indeed, for X ∈ TzS1 and γ a curve in S1 with γ(0) = z and γ̇(0) =X we have

µz(X) = TLz−1X =
d

dt
∣
0
(Lz−1(γ(t))) =

d

dt
∣
0
(z−1 ⋅ γ(t)) = z−1X = z−1dz(X).

Next we want to determine the group of gauge transformations of P . By (3.5.13)
the map f ↦ σf , f(p) = p ⋅ σf(p) is an isomorphism from G(P ) onto

C∞(P,S1)S
1

= {σ ∈ C∞(P,S1) ∣ σ(pz) = z−1σ(p)z = σ(p)},

where we exploited the commutativity of S1. So G(P ) is identified with the set of
right invariant smooth functions P → S1. But by [9, 15.13] (analogously to Lemma
3.4.5) these in turn can be identified with the smooth functions M → S1, so

G(P ) ≅ C∞(M,S1).

3.6.1 Lemma. The set C(P ) of all connection forms on P is an affine space over
the vector space Ω1(M, iR).

Proof. By Remark 3.2.4, C(P ) is an affine space over Ω1
hor(P, iR)(S

1,Ad), where
Ad(P ) ∶= P ×G g. In the current situation Ad(z) = idiR for all z because S1 is
abelian. Thus Ad is the trivial representation and we are in the setting discussed
at the beginning of this section, giving

Ω1
hor(P, iR)(S

1,Ad) ≅ Ω1(M, iR).

◻
Explicitly, if A1,A2 ∈ C(P ), then A1 −A2 ∈ Ω1

hor(P, iR) and

η ∶= (A1 −A2)∧ ∈ Ω1(M, iR). (3.6.4)

Note however that, strictly speaking, one cannot write Â1 = Â2 + η because the Ai
themselves are not horizontal, so the hat-map isn’t available on them.

If f ∈ G(P ) with σf ∈ C∞(P,S1) and A ∈ C(P ) then due to Theorem 3.5.18 and the
fact that Ad(z) = idiR we have

f∗A = A + σ∗fµS1 =
(3.6.3)

A + σ−1f dσf . (3.6.5)

By Theorem 3.5.18 (iv),

f∗FA = FA ∀f ∈ G(P ), A ∈ C(P ).
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Next we show that FA can be viewed as an element of Ω2(M, iR). Since the Lie
bracket on iR vanishes, Theorem 3.5.3 shows that

FA ≡DAA = dA. (3.6.6)

Here, FA ∈ Ω2
hor(P, iR), so (FA)∧ ∈ Ω2(M, iR). However A /∈ Ω1

hor(P, iR), so there

is no Â. Nevertheless,

d((FA)∧) =
(3.6.2)

(dFA)∧ = (d2A)∧ = 0.

Consequently, (FA)∧ ∈ Ω2(M, iR) is a closed form, and therefore defines a de
Rham cohomology class [i(FA)∧] ∈ H2

dR(M,R). Now given A, Ã ∈ C(P ), A − Ã ∈
Ω1

hor(M, iR), η ∶= (Ã −A)∧ ∈ Ω1(M, iR), and

(F Ã − FA)∧ =
(3.6.6)

(d(Ã −A))∧ =
(3.6.2)

d((Ã −A)∧) = dη. (3.6.7)

In particular,

c1(P ) ∶= [ −
1

2πi
(FA)∧] ∈H2

dR(M,R)

is independent of A! c1(P ) is called the first real Chern class of P .

3.6.2 Theorem. Let ω ∈ c1(P ). Then there exists some Aω ∈ C(P ) such that
ω = − 1

2πi
(FAω)∧. Any two such connection forms A1ω,A2ω differ from each other

by a closed 1-form on M , i.e., A1ω = A2ω +2πiν for some ν ∈ Ω1(M,R) with dν = 0.
If M is simply connected then Aω is unique up to gauge transformations.

Proof. Fix some A0 ∈ C(P ). Then FA0 ∈ Ω2
hor(P, iR), so (FA0)∧ ∈ Ω2(M, iR), and

ω̃ ∶= − 1

2πi
(FA0)∧ ∈ c1(P ).

Thus there exists some η ∈ Ω1(M,R) with ω − ω̃ = dη. Then η̄ ∈ Ω1
hor(P,R) and

A ∶= A0 −2πiη̄ ∈ C(P ) by Lemma 3.6.1. Also, (3.6.7) implies (FA −FA0)∧ = −2πidη,
so that

(FA)∧ = (FA0)∧ − 2πidη = (FA0)∧ − 2πi(ω − ω̃) = (FA0)∧ − 2πiω − (FA0)∧ = −2πiω.

Now suppose that A1,A2 ∈ C(P ) are such that ω = − 1
2πi
(FAj)∧ for j = 1,2. Then

in particular FA1 = FA2 and (A1 −A2)∧ = 2πiν for some ν ∈ Ω1(M,R). Moreover,
by (3.6.7) (2πi)dν = (FA1 − FA2)∧ = 0, i.e., ν is closed.

Finally, ifM is simply connected then ν is exact, so there exists some h ∈ C∞(M,R)
with (A1 − A2)∧ = 2πidh. Set σ ∶= e2πih ∈ C∞(M,S1). Then dσ = 2πiσdh, so
(A1 −A2)∧ = σ−1dσ. We arrive at

A1 −A2 = σ−1dσ = σ−1dσ = σ−1dσ̄ ≡ σ−1dσ,

because S1 is abelian and we can identify σ with σ̄ (cf. the remark preceding Lemma
3.6.1). By (3.6.5) then A1 = f∗A2 for some f ∈ G(P ), i.e., A1 and A2 are gauge
equivalent. ◻
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Chapter 4

Holonomy theory

4.1 Reduction and extension of connections

In this section we study the effect of reducing or extending principal fiber bundles
on connections on these bundles.

4.1.1 Theorem. Let (P,πP ,M,G) be a principal fiber bundle, λ ∶ H → G a Lie
group homomorphism and ((Q,πQ,M,H), f) a λ-reduction of P . Also, let A be a

connection form on Q. Then there is a unique connection form Ã on P such that,
for each q ∈ Q,

Tqf(ThAq Q) = ThÃf(q)P. (4.1.1)

For the corresponding connection and curvature forms we have

f∗Ã = λ∗ ○A, (4.1.2)

f∗F Ã = λ∗ ○ FA. (4.1.3)

Proof. Recall from Section 2.5 that we have

Q ×H Q

P ×G P M

⋅

f×λ f
πQ

⋅ πP

Now let p ∈ Px, pick any q ∈ Qx and let g be the unique element of G with f(q)g = p.
Then set

ThpP ∶= TRgTf(ThAq Q) ⊆ TpP. (4.1.4)

We want to show that
Th ∶ P ∋ p↦ ThpP ⊆ TpP

defines a connection on P . To begin with, ThpP is well-defined, i.e., independent
of q: If p = f(q1)g1, then q1 = qh for some h ∈H. Then

f(q)g = p = f(qh)g1 = f(q)λ(h)g1,

and since G acts simply transitively on Px we have g = λ(h)g1. This, together with
the fact that f ○Rh = Rλ(h) ○ f (see Definition 2.2.3), implies

TRg1Tf(ThAq1Q) = TRg1Tf(TRh(Th
A
q Q)) = TRg1TRλ(h)Tf(ThAq Q)

= TRgTf(ThAq Q).
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Th is right invariant: f(q)ga = pa, so

TRa(ThpP ) = TRaTRgTf(ThAq Q) = TRgaTf(ThAq Q) = ThpaP.

Next, ThpP is complementary to TvpP : By Definition 2.2.3, πP ○f = πQ, so Tf(q)πP ○
Tqf = TqπQ ∶ ThqQ→ TxM , which is an isomorphism. Thus Tf(q)πP ∶ Tqf(ThqQ)→
TxM is an isomorphism, and in particular dimThpP = dimTqf(ThqQ) = dimM , so
dimThpP +dimTvpP = dimP and it remains to show that ThpP ∩ker(TpπP ) = {0}.
So let v = TRg ○ Tqf(w) for some w ∈ ThqQ, and

0 = TπP (v) = TπP ○ TRg ○ Tqf(w) = TπP ○ Tqf(w) = TπQ(w).

Then w = 0, so v = 0.
Finally, to see that the distribution ThP is smooth, we have to show that q and g
in (4.1.4) can be chosen to depend smoothly on p. Let ϕP and ϕQ be bundle charts
and set q ∶= ϕ−1Q (π(p), e) and g ∶= φP (f(q))−1 ⋅ φP (p), both clearly smooth. Then

ϕP (f(q)⋅g) = (πP (f(q)⋅g), φP (f(q)⋅g)) = (x,φP (f(q))φP (f(q))−1φP (p)) = ϕP (p).

So we have proved that ThP is a connection on P . Uniqueness follows since (4.1.1)
completely fixes the horizontal tangent spaces (due to right invariance, which forces
(4.1.4) to hold), and ThP satisfies that equation (set g = e in (4.1.4)).

Denote by Ã the connection form corresponding to ThP via Theorem 3.1.4. To
verify (4.1.2), let X ∈ ThAq Q. Then

λ∗(A(X)) = 0 and (f∗Ã)(X) = Ã(Tf(X)) = 0

because Tf(X) is horizontal by (4.1.1). If, on the other hand, Ỹ (q) ∈ TvqQ (Y ∈ h)
is an arbitrary vertical vector, then first note that due to expG ○λ∗ = λ ○ expH ([9,
8.8]),

(λ∗Y )∼(f(q)) =
3.1.1

d

dt
∣
0
(f(q) ⋅ expG(tλ∗Y )) =

d

dt
∣
0
(f(q)λ(expH(tY )))

= d

dt
∣
0
(f(q ⋅ expH(tY ))) = Tf( d

dt
∣
0
(q ⋅ expH(tY ))) =

3.1.1
Tf(Ỹ (q)).

Therefore,

(f∗Ã)(Ỹ (q)) = Ã(Tf(Ỹ (q))) = Ã((λ∗(Y ))∼(f(q))) = λ∗(Y ) = λ∗(A(Ỹ (q))).

To prove the remaining claim, we use the structure equation from Theorem 3.5.3:

f∗F Ã = f∗dÃ + 1

2
f∗[Ã, Ã] =

(3.5.5)
d(f∗Ã) + 1

2
[f∗Ã, f∗Ã]

=
(4.1.2)

d(λ∗ ○A) +
1

2
[λ∗ ○A,λ∗ ○A] = λ∗ ○ dA +

1

2
λ∗ ○ [A,A] = λ∗ ○ FA,

where we used the fact that λ∗ is a Lie algebra homomorphism. ◻

4.1.2 Remark. The Theorem shows that (4.1.2) follows from (4.1.1). Conversely,
if there exists a connection form Ã on P such that (4.1.2) holds, then also (4.1.1)
is satisfied, so these conditions on A and Ã are indeed equivalent. To see this, let

X ∈ ThAq Q, then Ã(Tqf(X)) = (f∗Ã)(X) = λ∗(A(X)) = 0, so Tqf(X) ∈ ThÃf(q)P .
On the other hand, given Y ∈ ThÃf(q)P , there is a unique A-horizontal lift X ∈
ThAq Q of Tf(q)πP (Y ) ∈ TxM (with x = πP (f(q)) = πQ(q)). Then by what we

just showed Tqf(X) is Ã-horizontal and satisfies Tf(q)πP (Tqf(X)) = TπQ(X) =
Tf(q)πP (Y ), implying Y = Tqf(X) ∈ Tqf(ThAq Q) by uniqueness of horizontal lifts,
showing (4.1.1).
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4.1.3 Definition. The connection form Ã ∈ C(P ) from Theorem 4.1.1 is called the
λ-extension of A ∈ C(Q). Conversely, given Ã ∈ C(P ), a connection form A ∈ C(Q)
that satisfies (4.1.1) (or, equivalently, (4.1.2)) is called a λ-reduction of Ã. If H ⊆ G
is a Lie subgroup and Q ⊆ P is an H-reduction of P , then A is simply called a
reduction of Ã to Q and Ã is called reducible to Q if such an A ∈ C(Q) exists.

While a λ-extension always exists (due to Theorem 4.1.1), the same is not necessarily
true for λ-reductions. For Lie subgroups, the next Theorem will give a simple
characterization. In its proof we shall make use of:

4.1.4 Lemma. Let j ∶Mm ↪ Nn be an immersion, let X ∈ X(M) and let p ∈M .
Then there exists a neighborhood U of p in M and some X̂ ∈ X(N) such that
X̂ ○ j∣U = Tj ○X ∣U .

Proof. See Appendix. ◻

4.1.5 Theorem. Let H ⊆ G be a Lie subgroup, Q ⊆ P an H-reduction of the prin-
cipal fiber bundle P and Ã a connection form on P . The following are equivalent:

(i) Ã is reducible to Q.

(ii) On TQ, Ã only takes values in h.

(iii) ThÃq P ⊆ TqQ for all q ∈ Q.

Proof. As before (but contrary to what we did in [9]) we will notationally suppress
the tangent map of the inclusion ι ∶ Q ↪ P and view TqQ directly as a subspace
of TqP , and similarly for H ⊆ G, where for λ = H ↪ G we identify Teλ = λ∗ with

h↪ g. Then (4.1.1) takes the form ThAq Q = ThÃq P , and (4.1.2) reads Ã∣TQ = A.
(i)⇒(ii): By Definition 4.1.3 there exists a connection form A on Q with Ã∣TQ = A,
and A takes values in h by definition.

(ii)⇒(i): Recall from Remark 2.5.3 that in terms of suitable bundle charts the
inclusion map Q ↪ P can locally be written as idU × ιH↪G. This shows that Q
is an immersive submanifold of P , and in particular Q ↪ P is smooth. Now set
A ∶= Ã∣TQ. To see that A is smooth, let X be a smooth local vector field on Q

and let X̂ be a smooth local extension to P as in Lemma 4.1.4. Then A(X) = q ↦
Ãq(X̂(q)) = Ã(X̂) ○ inclQ↪P is smooth. By assumption, A ∈ Ω1(Q,h). That it is a
connection form is seen as follows: For h ∈H ⊆ G and X ∈ TqQ,

(R∗hA)q(X) = Ãqh(TRhX) = Ad(h−1) ○ Ã(X) = Ad(h−1) ○A(X).

Moreover, for X ∈ h we can calculate the corresponding vertical vector field X̃Q in
q as

X̃Q(q) = d

dt
∣
0
(q ⋅ expH(tX)) = d

dt
∣
0
(q ⋅ expG(tX)) = X̃(q),

so A(X̃Q)∣q = Ã(X̃)∣q =X.

The connection form A satisfies (4.1.2) by its definition and what we said at the
beginning of the proof.

(i)⇒(iii): Let A be a connection form on Q satisfying (4.1.2), i.e., Ã∣TQ = A,
then by Remark 4.1.2 it also satisfies (4.1.1), which in the current setup reads

ThÃq P = ThAq Q ⊆ TqQ for all q ∈ Q.

(iii)⇒(i): Set ThqQ ∶= ThÃq P for all q ∈ Q. This defines a smooth distribution on Q,

for if X1, . . . ,Xk ∈ Xloc(P ) is a local basis for ThÃP , then the Xi are tangential to
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Q by (iii), hence by [9, 17.15], their restrictions to Q form a smooth local basis in
Xloc(Q) for ThQ. Also, that ThQ is right invariant (under H) and complementary
to TvQ is immediate from the corresponding properties of ThP (and the fact that
q ⋅ h ∈ Q for q ∈ Q, h ∈ H). The connection form A on Q corresponding to ThQ by
Theorem 3.1.4 satisfies (4.1.1) by definition. ◻

4.2 Holonomy group and holonomy bundle of a
connection

Our aim here is to find the smallest possible reduction of a given principal fiber
bundle to a Lie subgroup of G. In general this subgroup will not be closed (hence
will only be an immersive submanifold, cf. [9, 21.9]). In this section, let (P,π,M,G)
be a principal fiber bundle over a connected manifold M and let A be a connection
form on P . For a path γ ∶ [0,1] → M denote by PAγ ∶ Pγ(0) → Pγ(1) the parallel
transport along γ. For x ∈M let

Ω(x) ∶= {γ ∣ γ is a path in M that is closed in x}
Ω0(x) ∶= {γ ∣ γ is a path in M that is closed in x and null-homotopic}.

Let γ ∶ [0,1]→M be closed in x and fix u ∈ Px. Since G acts simply transitively on
the fibers there is a unique element holu(γ) ∈ G with

PAγ (u) = u ⋅ holu(γ). (4.2.1)

holu(γ) is called the holonomy of γ with respect to u.

4.2.1 Lemma. Let γ, δ ∈ Ω(x), u ∈ Px, a ∈ G and µ ∶ [0,1] →M a path in M with
initial point x. Then:

(i) holu(γ ∗ δ) = holu(γ) ⋅ holu(δ).

(ii) holua(γ) = a−1 ⋅ holu(γ) ⋅ a.

(iii) holPA
µ (u)
(µ ∗ γ ∗ µ−) = holu(γ).

Proof. All these properties follow from Theorem 3.3.7 and simple transitivity of
the action on fibers:

u ⋅ holu(γ ∗ δ) = PAγ∗δ(u) = PAγ (PAδ (u)) = PAγ (u ⋅ holu(δ)) = PAγ (u) ⋅ holu(δ)
= u ⋅ holu(γ) ⋅ holu(δ)⇒ (i).

(u ⋅ a) ⋅ holu⋅a(γ) = PAγ (u ⋅ a) = PAγ (u) ⋅ a = u ⋅ holu(γ) ⋅ a⇒ (ii)

PAµ (u)⋅holPA
µ (u)
(µ ∗ γ ∗ µ−) = PAµ∗γ∗µ−(PAµ (u)) = PAµ∗γ(u)

= PAµ (PAγ (u)) = PAµ (u ⋅ holu(γ)) = PAµ (u) ⋅ holu(γ)⇒ (iii).

◻

4.2.2 Definition. For u ∈ Px, the group

Holu(A) ∶= {holu(γ) ∣ γ ∈ Ω(x)} ⊆ G

is called the holonomy group of A with respect to u ∈ P . The group

Hol0u(A) ∶= {holu(γ) ∣ γ ∈ Ω0(x)} ⊆ G

is called the reduced holonomy group of A with respect to u ∈ P .
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Both sets are indeed subgroups of G by Lemma 4.2.1. For γ ∈ Ω(x) and γ0 ∈ Ω0(x)
we have γ− ∗ γ0 ∗ γ ∈ Ω0(x), hence

holu(γ)−1 ⋅ holu(γ0) ⋅ holu(γ) = holu(γ− ∗ γ0 ∗ γ) ∈ Hol0u(A),

implying that Hol0u(A) is a normal subgroup of Holu(A). Moreover, Lemma 4.2.1
(ii) shows that the holonomy groups corresponding to different reference points in
the same fiber are conjugate to one another:

Holua(A) = a−1 ⋅Holu(A) ⋅ a (u ∈ Px, a ∈ G).

Let g ∈ Holu(A), u ⋅ g = PAγ (u) and let α ∶= µ ∗ γ ∗ µ−, µ a path from x to y. Then
α ∈ Ω(y) and Theorem 3.3.7 gives

PAα (PAµ (u)) = PAµ∗γ(u) = PAµ (PAγ (u)) = PAµ (u ⋅ g) = PAµ (u) ⋅ g,

so g ∈ HolPA
µ (u)
(A). Applying the same reasoning to µ− we also get HolPA

µ (u)
(A) ⊆

Holu(A), so altogether
Holu(A) = HolPA

µ (u)
(A). (4.2.2)

The next result shows that Holu(A) is indeed even a Lie subgroup of G:

4.2.3 Theorem. The holonomy group Holu(A) is either discrete or is a Lie sub-
group of G. The reduced holonomy group Hol0u(A) is the connected component of
the unit element of Holu(A). In particular, if M is simply connected then Holu(A)
is connected.

Proof. We begin by showing that if Hol0u(A) ≠ {e} then it is a connected Lie
subgroup of G. To do so, according to [9, 21.12] it suffices to show that any element
g ∈ Hol0u(A) can be connected to e ∈ G by a (piecewise smooth) path that lies
entirely in Hol0u(A). Let γ ∈ Ω0(x) be a null-homotopic path that is closed in
x = π(u) and for which PAγ (u) = ug. Let H ∶ [0,1]× [0,1]→M be a homotopy with
Hs =H( . , s) ∈ Ω0(x) between the constant pathH0 andH1 = γ. Since γ is piecewise
smooth, we can also choose H piecewise smooth.1 Let H∗s be the horizontal lift of
Hs with initial point u. By the proof of Theorem 3.3.5, H∗s is the solution of an
ODE whose right hand side is piecewise smooth, so H∗s is itself piecewise smooth
as well. Let gs be the unique element of G with

PAHs
(u) =H∗s (1) = ugs.

Then [0,1] ∋ s ↦ gs ∈ G is a piecewise smooth curve in G whose image lies entirely
in Hol0u(A) and which connects e to g, proving our claim.

Next, consider the map

ρ ∶ π1(M,x)→ Holu(A)/Hol0u(A)
[γ]↦ holu(γ) mod Hol0u(A),

(4.2.3)

with γ a piecewise smooth representative of the homotopy class.1 To see that ρ is
well-defined, let γ1, γ2 be paths with [γ1] = [γ2]. Then τ ∶= γ−2 ∗γ1 is null homotopic
and holu(γ1) = holu(γ2) ⋅ holu(τ). Thus holu(γ1) and holu(γ2) lie in the same
equivalence class of Holu(A)/Hol0u(A). In addition, ρ is a group homomorphism:

ρ([γ] ⋅ [δ]) = ρ([γ ∗ δ]) = [holu(γ ∗ δ)] = [holu(γ) ⋅ holu(δ)] = ρ([γ]) ⋅ ρ([δ]).

The fundamental group of a smooth manifold is at most countable ([11, Th. 8.11]).
Since ρ is surjective, also Holu(A)/Hol0u(A) is at most countable. In particular,

1See, e.g., [12, Lem. 6.6].
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Holu(A) is the union of at most countably many disjoint orbits of the form gn ⋅
Hol0u(A), with gn ∈ Holu(A). By declaring x ↦ gn ⋅ x to be a diffeomorphism we
may introduce a smooth structure on each such orbit so that Holu(A) becomes
an immersive submanifold of G, and since Hol0u(A) is an integral manifold of an
integrable distribution (by [9, 19.3]), so is Holu(A). The group multiplication µ on
Holu(A) can be decomposed according to

Holu(A) ×Holu(A)→ Hol0u(A) ×Hol0u(A)→ Holu(A)
(gnx, gmy)↦ (x, y)→ gnxgmy

and is therefore smooth as a map into G. But then by [9, 17.26], also µ ∶ Holu(A)×
Holu(A)→ Holu(A) is smooth, hence Holu(A) is a Lie subgroup of G. By construc-
tion, Hol0u(A) is the connected component of e. Finally, if M is simply connected
then any closed path is null homotopic, so Holu(A) = Hol0u(A) and thereby Holu(A)
is connected. ◻
The following fundamental result shows that any connection on a principal fiber
bundle can be reduced to its holonomy group.

4.2.4 Theorem. Let (P,π,M,G) be a principal fiber bundle with connection A
over a connected manifold M and fix u ∈ P . Let Holu(A) be non-discrete and set

PA(u) ∶= {p ∈ P ∣ ∃A-horizontal path from u to p}.

Then:

(i) (PA(u), π∣PA(u),M,Holu(A)) is a principal fiber bundle.

(ii) (P,π,M,G) and A reduce to (PA(u), π∣PA(u),M,Holu(A)).

Proof. We verify the three conditions from Theorem 2.5.4 to show that PA(u) ⊆ P
carries the structure of a Holu(A)-reduction of P . Let x = π(u).
1.) Let p ∈ PA(u) and h ∈ Holu(A). This means that there exists a horizontal path
δ from u to p and a µ ∈ Ω(x) with PAµ (u) = uh (i.e., the horizontal lift µ∗u of µ
through u connects u to u ⋅ h). From Theorem 3.3.7 (iii) we gather that Rh ○ δ is a
horizontal path from uh to ph. Thus (Rh ○ δ) ∗ µ∗u is horizontal and connects u to
ph, implying that Rh(PA(u)) ⊆ PA(u). The same argument with h−1 in place of h
shows that indeed we have Rh(PA(u)) = PA(u).
2.) Let p, p̃ ∈ PA(u)∩Py and p = p̃g. Pick horizontal paths δ from u to p and δ̃ from

u to p̃, and set µ ∶= π(δ̃−)∗π(δ) ∈ Ω(x). Again by Theorem 3.3.7, the horizontal lift
of µ through u is given by µ∗u = (δ̃− ⋅g)∗δ, which has endpoint ug. Thus g ∈ Holu(A).
3.) Let y ∈M . Then since M is connected there exists a path δ in M from x to y.
Then the endpoint v = δ∗u(1) ∈ Py of the horizontal lift of δ through u lies in PA(u).
Fix any Riemannian metric on M and let Uy be a normal neighborhood of y in M .
For z ∈ Uy denote by γyz the radial geodesic from y to z in Uy. We define a section
s ∶ Uy → P by

s(z) ∶= PAγyz
(v) = PAγyz

○PAδ (u).
Then s is smooth since γyz depends smoothly on z and horizontal lifts are solutions
of ODEs (proof of Theorem 3.3.7). The second form of s shows that s(Uy) ⊆ PA(u).
Thus Theorem 2.5.4 implies that PA(u) has the structure of a Holu(A)-principal
fiber bundle that is a reduction of P and it only remains to show that also the
connection form A reduces to PA(u). According to Theorem 4.1.5 it suffices to
show that ThAq P ⊆ TqPA(u) for all q ∈ PA(u). So let q ∈ PA(u) and let X ∈ ThAq P .
Let σ be a smooth curve in P with σ̇(0) = X and set γ ∶= π ○ σ. Then by (3.1.3),
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γ̇∗q (0) = X. Since q can be connected to u by a horizontal path, the image of γ∗q
lies in PA(u). If we we can show that γ∗q is smooth as a map into PA(u) then we

can conclude that X ∈ TqPA(u) and are done. Since PA(u) is only an immersive
submanifold of P this requires an argument: By the proof of Theorem 3.3.5 we have
γ∗q (t) = δ(t) ⋅ g(t) and since the only requirements on δ are that δ(0) = q and that it

projects to γ, we can choose it as a smooth curve into PA(u): In fact, with s as in

3.) around π(q), let δ̂(t) ∶= s(γ(t)) and pick h ∈ H such that δ̂(γ(0)) ⋅ h = q. Then

δ(t) ∶= δ̂(t) ⋅ h is smooth by Theorem 2.5.4 and has the required properties. Also,
g ∶ I → G is smooth. Since δ(t) ∈ PA(u) and γ∗q (t) = δ(t) ⋅ g(t) ∈ PA(u), point 2.)
above implies that g(t) ∈ Holu(A) for all t. Also, as Holu(A) is a Lie subgroup, [9,
19.3,17.27] show that g ∶ I → Holu(A) is smooth, hence so is t ↦ γ∗q (t) = δ(t) ⋅ g(t)
as a map into PA(u).
Altogether, (PA(u), π∣PA(u),M,Holu(A)) is a principal fiber bundle that is a re-
duction of (P,A). ◻

4.2.5 Definition. The principal fiber bundle (PA(u), π∣PA(u),M,Holu(A)) is called
the holonomy bundle of A with respect to u.

4.2.6 Remark. For u, v ∈ P it follows immediately from the definitions that
PA(u) = PA(v) if and only if u and v can be joined by a horizontal path. Since
being joined by such a path gives an equivalence relation, either PA(u) = PA(v)
or PA(u) ∩ PA(v) = ∅, so P is decomposed into the disjoint union of its holonomy
subbundles.

4.2.7 Definition. Let (P,π,M,G) be a principal fiber bundle over a connected
manifold M . A connection form A ∈ C(P ) is called irreducible if (P,A) cannot be
reduced to a proper Lie subgroup of G.

The holonomy bundle PA(u) is the “smallest” possible reduction of P in the fol-
lowing sense:

4.2.8 Theorem. Let (P,A) be a principal fiber bundle with connection and let
(Q, Â) be a reduction of (P,A) to a Lie subgroup H of G, where Q ⊆ P is an
immersive submanifold of P . Then

(i) PA(u) ⊆ Q for each u ∈ Q.

(ii) Â∣TPA(u) = A∣TPA(u), i.e., Â reduces to the connection induced (by Theorem

4.2.4) on PA(u) by A.

Proof. (i) Let p ∈ PA(u) and let γ∗ be an A-horizontal path [0,1] → P with
γ∗(0) = u and γ∗(1) = p, so that γ∗ is the A-horizontal lift of γ ∶= π○γ∗ ∶ [0,1]→M .

By the proof of Theorem 4.1.5 we have ThÂq Q = ThAq P for all q ∈ Q. Let γÂ be

the Â-horizontal lift of γ in Q through u. Then γÂ is also A-horizontal and by the

uniqueness of horizontal lifts it follows that γÂ = γ∗, which thereby lies entirely in
Q. In particular, p = γ∗(1) ∈ Q. Note that we have thereby shown that for each
u ∈ Q, the A-horizontal paths in P emanating from u are precisely the Â-horizontal

paths in Q emanating from u, so PA(u) = QÂ(u). For the latter set we know by
Theorem 4.2.4 (and Theorem 2.5.4) that it is an immersive submanifold of Q.

(ii) Since both f and λ from Theorem 4.1.1 are the inclusion maps, (4.1.2) says
that Â = A∣TQ. As noted in (i), PA(u) is an immersive submanifold of Q, so
TqP

A(u) ⊆ TqQ, i.e., TqP
A(u) ∩ TqQ = TqPA(u) for all q ∈ Q. Since (by Theorem

4.2.4) A∣TPA(u) is the reduced connection on PA(u), we obtain

Â∣TPA(u) = (A∣TQ)∣TPA(u) = A∣TQ∩TPA(u) = A∣TPA(u).
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◻

4.2.9 Remark. By Theorem 4.2.4, therefore, A ∈ C(P ) is irreducible if and only if
P = PA(u) and G = Holu(A) for all u ∈ P .

The following Theorem gives a criterion for irreducibility and also a measure of the
size of the holonomy group. In its proof we will make use of a direct consequence
of the Frobenius theorem:

4.2.10 Lemma. Let E be an integrable distribution on a manifold M and let
x ∈M . Then the leaf of E through x, i.e., the maximal connected integral manifold
of E through x is given by the set of all a ∈ M that can be connected to x by a
(piecewise smooth) path γ ∶ I →M with γ̇(t) ∈ Eγ(t) for all t ∈ I.

Proof. See the Appendix. ◻

4.2.11 Theorem. (Holonomy Theorem of Ambrose and Singer) Let (P,π,M,G)
be a principal fiber bundle over a connected manifold M , with connection form A
and curvature form FA = DAA. Then for the Lie algebra holu(A) of the holonomy
group Holu(A) we have

holu(A) = span{FAp (X,Y ) ∣ p ∈ PA(u), X,Y ∈ ThAp P} ⊆ g. (4.2.4)

If G is connected and M is simply connected then A is irreducible if and only if
P = PA(u) and

g = span{FAp (X,Y ) ∣ p ∈ PA(u), X,Y ∈ ThAp P}.

for all u ∈ P .

Proof. To prove (4.2.4), without loss of generality we may assume that P = PA(u)
and G = Holu(A), since otherwise by Theorem 4.2.4 we may first reduce (P,A) to
PA(u) (without changing the right hand side of (4.2.4), cf. (4.1.1) and (4.1.3)). Let

m ∶= span{FAp (X,Y ) ∣ p ∈ P, X,Y ∈ ThAp P}.

Then we need to prove that g = m. We first show that m is an ideal in g. Let
FAp (X,Y ) ∈ m and W ∈ g. Let g ∶= exp(tW ) and p ∈ P , then TpRg(X) ∈ ThApgP , so
for any t ∈ R,

(R∗exp(tW )FA)p(X,Y ) = FApg(TpRg(X), TpRg(Y )) ∈ m,

and hence the same is true for the derivative. Using that FA is of type Ad, we have

m ∋ d
dt
∣
0
(FAp exp(tW )(TRexp(tW )X,TRexp(tW )Y ))

= d

dt
∣
0
(Ad(exp(−tW ))(FAp (X,Y ))) = −ad(W )(FAp (X,Y )) = [FAp (X,Y ),W ].

Consequently, m is indeed an ideal in g.

Next we claim that the smooth distribution

E ∶ P ∋ p↦ Ep ∶= ThpP ⊕ {W̃ (p) ∣W ∈ m} ⊆ TpP

is involutive. If X is a horizontal vector field and W ∈ m, then by Theorem 3.3.2
[X,W̃ ] is horizontal, hence lies in E. If V,W ∈ m, then [V,W ] ∈ m since it is an
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ideal, and so by Theorem 1.2.2 [Ṽ , W̃ ] = [V,W ]∼ ∈ E. Finally, if X and Y are
horizontal vector fields then by Theorem 3.5.6 the vertical component of [X,Y ] is

[X,Y ]v = −FA(X,Y )∼,

and FA(X,Y ) ∈ m by definition. By the Frobenius theorem there exists a maximal
connected integral manifold Q ⊆ P of E through u ∈ P (the leaf of E through u).
By Lemma 4.2.10, q ∈ P lies in Q if and only if there exists a path γ ∶ [0,1] → P
from u to q with γ̇(t) ∈ Eγ(t) for each t ∈ [0,1]. By definition of E, ThP ⊆ E, and

by that of PA(u) we therefore get P = PA(u) ⊆ Q. Thus indeed P = Q and we
conclude that TP = TQ = E. Consequently,

dimQ = dimEp = dim(ThpP ) + dimm = dimM + dimm,

so
dimg = dimP − dimM = dimQ − dimM = dimm,

implying g = m.

Finally, suppose that G is connected and M is simply connected. By Remark 4.2.9,
A is irreducible if and only if P = PA(u) and G = Holu(A) for all u ∈ P . Holu(A)
is connected by Theorem 4.2.3 and connected subgroups of a Lie group coincide if
and only if their Lie algebras coincide ([9, 19.5]). Thus

G = Holu(A)⇔ g = holu(A) = m.

◻

Given a vector bundle E with a covariant derivative ∇ one can also define a cor-
responding holonomy group, as follows: Let x ∈ M and γ ∈ Ω(x). Then (cf. the
remark preceding Theorem 3.4.12) P∇γ ∈ GL(Ex) is a linear isomorphism of the fiber
Ex.

4.2.12 Definition. The group

Holx(∇) ∶= {P∇γ ∣ γ ∈ Ω(x)} ⊆ GL(Ex)

is called the holonomy group of ∇ with respect to x. The group

Hol0x(∇) ∶= {P∇γ ∣ γ ∈ Ω0(x)} ⊆ GL(Ex)

is called the reduced holonomy group of ∇ with respect to x.

A straightforward modification of the proof of Theorem 4.2.3 shows that Holx(∇)
is either discrete or is a Lie subgroup of GL(Ex).
In Section 3.4 we studied the interrelation between connection forms on principal
fiber bundles and covariant derivatives on associated vector bundles. The relation
of the corresponding holonomy groups is clarified in the next Theorem. In its proof
we shall make use of the following result on Lie group homomorphisms:

4.2.13 Lemma. Let φ ∶ G → H be a surjective Lie group homomorphism. Then
also φ∗ ∶ g→ h is surjective.

Proof. See the Appendix. ◻

4.2.14 Theorem. Let (P,π,M,G) be a principal fiber bundle, ρ ∶ G → GL(V )
a representation of G and E ∶= P ×G V the associated vector bundle. Let A be a
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connection form on P and ∇A the induced covariant derivative on E. Finally, for
u ∈ Px let [u] ∶ V → Ex be the fiber isomorphism induced by u (cf. (2.3.7)). Then

Holx(∇A) = [u] ○ ρ(Holu(A)) ○ [u]−1. (4.2.5)

In particular, Holu(A) and Holx(∇A) are isomorphic if ρ is injective.

Let R∇
A

be the curvature endomorphism of ∇A and Pγ ∶= P∇
A

γ the parallel transport

defined by ∇A in E. Then the Lie algebra of Holx(∇A) is given by

holx(∇A) = span{P−1γ ○R∇
A

y (v,w) ○Pγ ∣ v,w ∈ TyM, γ path from x to y}.

Proof. Let δ be a path in M that is closed in x. Then by Theorem 3.4.12 and
(3.3.2) with e = [u, z] ∈ Ex we have

P∇
A

δ (e) = [P
A
δ (u), z] = [u ⋅ holu(δ), z] = [u, ρ(holu(δ))z] = [u] ○ ρ(holu(δ)) ○ [u]−1(e),

giving the first claim.

Let γ∗ be an A-horizontal path from u to p ∈ Py, so p ∈ PA(u)y and let γ ∶= π ○ γ∗.
Then for any v ∈ V ,

P∇
A

γ ○ [u](v) = P∇
A

γ ([u, v]) = [PAγ (u), v] = [p, v] = [p](v).

Let X,Y ∈ TyM with A-horizontal lifts X∗, Y ∗. Then by Theorem 3.5.13,

ρ∗(FAp (X∗, Y ∗)) = [p]−1 ○R∇
A

y (X,Y ) ○ [p]

= [u]−1 ○ ((P∇
A

γ )−1 ○R∇
A

y (X,Y ) ○P∇
A

γ ) ○ [u].
(4.2.6)

By (4.2.5), Holx(∇A) is the image of Holu(A) under the Lie group homomorphism
Ψ ∶ G→ GL(Ex), g ↦ [u] ○ ρ(g) ○ [u]−1. Hence Lemma 4.2.13 shows that

holx(∇A) = Ψ∗(holu(A)) = [u] ○ ρ∗(holu(A)) ○ [u]−1

=
(4.2.4)

[u] ○ span{ρ∗(FAp (X,Y )) ∣ p ∈ PA(u), X,Y ∈ ThAp P} ○ [u]−1.

Noting that {FAp (X,Y ) ∣ X,Y ∈ ThAp P} = {FAp (X∗, Y ∗) ∣ X,Y ∈ TyM}, the second
claim follows from (4.2.6). ◻

4.3 Holonomy groups and parallel sections

Let (E,π,M) be a real or complex vector bundle over a connected manifoldM with
covariant derivative ∇E and denote by

Par(E,∇E) ∶= {φ ∈ Γ(E) ∣ ∇Eφ = 0}

the set of parallel sections of E.

A subbundle F ⊆ E is called ∇E-invariant if

∇EXΓ(F ) ⊆ Γ(F ) ∀X ∈ X(M).

In this case ∇E induces a covariant derivative ∇F ∶= ∇E ∣Γ(F ) on F .

4.3.1 Theorem. Let M be simply connected, F ⊆ E a ∇E-invariant subbundle of

rank r > 0, ∇F the induced covariant derivative on F and suppose that R∇
F = 0.

Then dimPar(E,∇E) ≥ r.
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Proof. Fix x ∈M and a basis (v1, . . . , vr) of Fx. We generate sections φi in F by
parallel transporting vi (1 ≤ i ≤ r):

φi ∶M ∋ y ↦ P∇
F

γxy
(vi) ∈ Fy,

where γxy is a path in M from x to y. To see that φi is well-defined we have to
show that it does not depend on the choice of path γxy. We know from Remark
2.4.4 that F is associated to a GL(r,K)-frame bundle P , i.e., F = P ×GL(r,K) Kr.
Also, by Remark 3.4.14 there is a connection form A on P such that ∇A = ∇F .
Then Theorem 3.5.13 (with ρ = id the natural representation of GL(r,K) on Kr)
together with our assumption on R give

0 = R∇
F

(X,Y )φ = [p,FAp (X∗, Y ∗)v], for φ = [p, v] = [p](v),

where X∗, Y ∗ are horizontal lifts of X and Y , respectively. Since [p] is bijective,
FA(X∗, Y ∗)(v) = 0 for all v, hence FA(X∗, Y ∗) = 0 for all X∗, Y ∗, i.e., FA = 0 since
it is a horizontal form. As M is assumed to be simply connected, parallel transport
PA in P then is path-independent due to (the proof of) Theorem 3.5.11. Again by
Remark 3.4.14, for any v ∈ F ,

P∇
F

γ ○ [p](v) = PF,Aγ ○ [p](v) = PF,Aγ ([p, v]) =
(3.3.2)

[PAγ (p), v] = [PAγ (p)](v),

implying that P∇F

is path-independent, and so φi is indeed well-defined. It is
smooth by the smooth dependence of solutions of ODEs on the initial conditions.
Since parallel transport is a linear isomorphism (cf. (3.4.17)), the φi are linearly
independent.

To conclude the proof it therefore suffices to show that the sections φi are parallel.
Using Theorem 3.4.11 we calculate:

(∇FXφi)(y) =
d

dt
∣
0
(P∇

F

γ(t),y
(φi(γ(t))))

= d

dt
∣
0
(P∇

F

γ(t),y
P∇

F

x,γ(t)
(vi)) =

d

dt
∣
0
(P∇

F

x,y (vi)) = 0.

◻
This result shows that one strategy for finding parallel sections in E consists in de-
tecting flat subbundles of E. Another possibility makes use of the holonomy group:
Let (P,π,M,G) be a principal fiber bundle with M connected and connection form
A, let ρ ∶ G → GL(V ) be a representation of G, E = P ×G V the associated vector
bundle and ∇E the covariant derivative induced on E via Definition 3.4.8. In this
situation we have:

4.3.2 Theorem. (The holonomy principle) There exists a bijective correspondence
between the space of parallel sections of E and the set of holonomy invariant vectors
in V :

Par(E,∇E) 1∶1←→ {v ∈ V ∣ ρ(Holu(A))v = v}.
If M is simply connected, then in addition we have

{v ∈ V ∣ ρ(Holu(A))v = v} = {v ∈ V ∣ ρ∗(holu(A))v = 0}.

Proof. Let x = π(u) and abbreviate Holu(A) by H. Given v ∈ V such that
ρ(H)v = v, define φv ∈ Γ(E) by

φv ∶M ∋ y ↦ [PAγ (u), v] ∈ Ey,
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where γ is a path in M from x to y. To show that φv is well-defined we have to
establish independence from the choice of γ. So let µ be another path from x to y.
Then µ− ∗ γ ∈ Ω(x) and by Theorem 3.3.7

PAµ−∗γ(u) = PAµ−(PAγ (u)) = u ⋅ h

for some h ∈H. Thus PAγ (u) = PAµ (uh) and thereby

[PAγ (u), v] = [PAµ (u)h, v] = [PAµ (u), ρ(h)v] = [PAµ (u), v].

Now
φv(y) = [PAγ (u), v] =

(3.3.2)
PE,Aγ ([u, v]) =

3.4.12
P∇

A

γ ([u, v]),

so exactly as in the proof of Theorem 4.3.1 it follows that φv is smooth and parallel.

Conversely, let φ ∈ Γ(E) be parallel. By Theorem 4.2.4, (P,A) reduces to the
holonomy bundle Q ∶= PA(u), and Theorem 2.5.8 shows that

E = P ×G V ≅ Q ×H V.

Using Theorem 2.3.4 we may therefore write φ in the form

φ(π(p)) = [p, φ̄(p)]P×GV = [q, ψ̄(q)]Q×HV = φ(πQ(q))

for functions φ̄ ∈ C∞(P,V )G and ψ̄ ∈ C∞(PA(u), V )H . The proof of Theorem 2.3.4
shows that, since for q ∈ Q we have π(q) = πQ(q),

[q, φ̄(q)]P×GV = φ(π(q)) = φ(πQ(q)) = [q, ψ̄(q)]Q×HV =
2.5.8
[q, ψ̄(q)]P×GV ,

and since [q] is bijective this implies that φ̄(q) = ψ̄(q).
By Definition 3.4.8 and (3.4.7),

(∇EXφ)(π(p)) = [p, dφ̄(X∗(p))] =
(3.4.1)

[p,X∗(φ̄)(p)],

with X∗ the horizontal lift of X. From this relation we read off that φ is parallel if
and only if X∗(φ̄) = 0 for each horizontal vector X∗, i.e., if and only if φ̄ is constant
along every horizontal path. Thus there exists a vector v ∈ V with ψ̄ = φ̄∣PA(u) ≡ v.
By the invariance property of ψ̄ ∈ C∞(PA(u), V )H , for each h ∈H we have

v ≡ ψ̄(qh) = ρ(h)−1ψ̄(q) = ρ(h−1)v,

so ρ(H)v = v. Moreover, taking for γ the constant path γ ≡ x,

φv(x) = φv(π(u)) = [PAγ (u), v] = [u, v] = φ(x),

and since both sections are parallel we obtain that φ = φv, concluding the proof of
the first claim.

If ρ(H)v = v, then for any X ∈ holu(A) we get by differentiating ρ(exp(tX))v = v
at t = 0 that ρ∗(X)v = 0. Conversely, if ρ∗(X)v = 0 for each X ∈ holu(A), then by
[9, 8.8]

ρ(exp(X))v = exp(ρ∗(X))v = eρ∗(X)v = v.

IfM is simply connected then Holu(A) is connected by Theorem 4.2.3. It is therefore
generated by exp(holu(A)), and so in this case

{v ∈ V ∣ ρ(Holu(A))v = v} = {v ∈ V ∣ ρ∗(holu(A))v = 0}.

◻
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4.4 Holonomy groups of semi-Riemannian mani-
folds

In this final section we want to briefly look at the important special case of holonomy
theory for semi-Riemannian manifolds with their natural Levi-Civita connection,
referring to [1, Ch. 5] for much more information. Thus let (M,g) be a connected
manifold with semi-Riemannian metric g and denote by ∇g ≡ ∇LC the Levi-Civita
covariant derivative on M induced by g (cf. Example 3.1.12).

For any path γ ∶ [a, b]→M from x to y and v ∈ TxM denote by Xv the vector field
along γ that is generated by parallel transport of v along γ, i.e., (cf. (3.4.16))

∇gXv

dt
= 0, Xv(a) = v.

Since the Levi-Civita connection is metric, the parallel transport defined via Xv (cf.
(3.4.17))

Pgγ ∶ TxM → TyM

v ↦Xv(b)

is a linear isometry between the spaces (TxM,gx) and (TyM,gy). In particular, if
γ is a closed path then Pgγ is an orthogonal map on (TxM,gx).
The holonomy group of (M,g) with respect to x ∈M is the holonomy group of the
Levi-Civita connection ∇g (see Definition 4.2.12):

Holx(M,g) ∶= {Pgγ ∶ TxM → TxM ∣ γ ∈ Ω(x)} ⊆ O(TxM,gx).

The reduced holonomy group of (M,g) with respect to x is

Hol0x(M,g) ∶= {Pgγ ∶ TxM → TxM ∣ γ ∈ Ω0(x)} ⊆ Holx(M,g).

Holonomy groups in different points are conjugated (cf. the discussion following
Definition 4.2.2):

Holy(M,g) = Pgσ ○Holx(M,g) ○Pgσ− , (4.4.1)

with σ any path from x to y.

If two semi-Riemannian manifolds are isometric then obviously their holonomy
groups are isomorphic, but the converse is not true in general. This raises two
fundamental questions:

1. Which groups can occur as holonomy groups of semi-Riemannian manifolds?

2. Which geometric properties of (M,g) are characterized by its holonomy group?

For Riemannian manifolds the answers to these questions are known, whereas in the
general semi-Riemannian setting the situation is not yet completely understood.

If g has signature (p, q) then by (2.5.3) we have

TM ≅ O(M,g) ×O(p,q) Rp+q. (4.4.2)

Also, we know from Example 3.4.15 that ∇g is associated to a connection form Ag

on O(M,g), such that ∇g = ∇Ag . From Theorem 4.2.3 and the remark following
Definition 4.2.12 we therefore immediately obtain:

4.4.1 Theorem. The holonomy group Holx(M,g) is either discrete or is a Lie sub-
group of the orthogonal group O(TxM,gx). The reduced holonomy group Hol0x(M,g)
is the connected component of the unit element of Holx(M,g). If M is simply con-
nected then Holx(M,g) is connected.
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4.4.2 Example. The holonomy group of Rp,q

Let Rp,q be the pseudo-Euclidean space Rn, n = p + q with scalar product

⟨x, y⟩p,q ∶= −x1y1 − ⋅ ⋅ ⋅ − xpyp + xp+1yp+1 + ⋅ ⋅ ⋅ + xp+qyp+q.

The Levi-Civita connection on Rp,q then is given by the directional derivative of
vector fields:

∇gXY =X(Y ) (X,Y ∈ X(Rp,q)).
In particular, if Z ∈ Xγ is a vector field along a path γ in Rn, then

∇gZ
dt
(t) = Z ′(t).

Thus Z is parallel along γ if and only if t↦ Z(t) is constant. Therefore

Holx(Rp,q) = {idTxRn}.

Note that, conversely, if the holonomy groups of a semi-Riemannian manifold are
trivial, then parallel transport is path independent, which implies that the curvature
tensor vanishes, i.e., that M is flat (cf. [10, Rem. 3.1.8]).

Next we want to formulate the holonomy theorem of Ambrose and Singer (Theorems
4.2.11, 4.2.14) in the present context. Denote by Rg the Riemann curvature tensor
of (M,g). Since ∇g = ∇Ag , Rg = R∇g

(cf. Definition 3.5.12). By the symmetry
properties of Rg (cf. [10, 3.1.2]), the endomorphism Rgx(v,w) ∶ TxM → TxM is
skew-symmetric for all x ∈ M and v,w ∈ TxM , i.e., it is an element of the Lie
algebra so(TxM,gx) of O(TxM,gx).2 Let γ be a path in M from x to y and let
v,w ∈ TxM . By (γ∗Rg)x(v,w) we denote the endomorphism

(γ∗Rg)x(v,w) ∶= Pgγ− ○R
g
y(Pgγ(v),Pgγ(w)) ○Pgγ ∈ so(TxM,gx).

Since Pgγ ∶ TxM → TyM is a bijection,

{Pgγ− ○R
g
y(v,w) ○Pgγ ∣ v,w ∈ TyM} = {Pgγ− ○R

g
y(Pgγ(v),Pgγ(w)) ○Pgγ ∣ v,w ∈ TxM}.

Theorem 4.2.14 therefore takes the form:

4.4.3 Theorem. (Holonomy theorem of Ambrose and Singer) The Lie algebra of
the holonomy group of (M,g) is given by

holx(M,g) = span{(γ∗Rg)x(v,w) ∣ v,w ∈ TxM, γ path starting in x}.

Setting γ ≡ x it follows, in particular, that all curvature operators Rx(v,w) lie
in the Lie subalgebra holx(M,g) of so(TxM,gx). Hence if the reduced holonomy
group is smaller than SO(TxM,gx) (the connected component of I in O(TxM,gx))
then Theorem 4.4.3 imposes additional curvature restrictions. On the other hand,
if there exists even one point x0 ∈ M in which the curvature operators Rgx0

(v,w)
generate the entire Lie algebra of skew symmetric endomorphisms, then the reduced
holonomy group (of every point in M , cf. (4.4.1)) is the maximal possible group
SO(TxM,gx).

4.4.4 Example. If (M,g) is a simply connected manifold that is isometric to the
flat space Rn in the neighborhood of a point y, but isometric to the upper half of the
sphere Sn in the neighborhood of another point x, then also Holy(M,g) ≅ SO(n).

2SO(TxM,gx) is the connected component of the identity in O(TxM,gx), so both Lie groups
have the same Lie algebra, namely the space of skew-symmetric linear endomorphisms so(TxM,gx).
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Thus the holonomy group of M is a global object, and in general it does not suffice
to analyze parallel transport only locally.

Finally, we want to examine the form the holonomy principle (Theorem 4.3.2) takes
here. On any tensor bundle T the Levi-Civita covariant derivative induces a covari-
ant derivative (tensor derivative, cf. [10, Sec. 1.3])

∇g ∶ Γ(T )→ Γ(T ∗M ⊗ T )

E.g., for the homomorphism bundle T = Hom(TM,TM) we have

(∇gXF )(Y ) ∶= ∇
g
X(F (Y )) − F (∇

g
XY ),

and for (r, s)-tensors the following product rule holds:

∇gX(T ⊗ S) = ∇
g
XT ⊗ S + T ⊗∇

g
XS.

Any tensor bundle is associated to a principal fiber bundle with linear structure
group (cf. Example 2.4.6), and the above defines a covariant derivative on it. So we
find ourselves precisely in the situation of Theorem 4.3.2, allowing us to conclude:

4.4.5 Theorem. (Holonomy Principle) Let (M,g) be a connected semi-Riemannian
manifold, T a tensor bundle over M and x ∈M . Then:

(i) Let T ∈ Γ(T ) with ∇gT = 0. Then Holx(M,g)T (x) = T (x), where the action
of the holonomy group is canonically extended to the tensors Tx.

(ii) Let Tx ∈ Tx with Holx(M,g)Tx = Tx. Then there exists a unique tensor field
T ∈ Γ(T ) with ∇gT = 0 and T (x) = Tx. This tensor field is obtained by parallel
transport of Tx, i.e., T (y) ∶= Pgγ(Tx), where y ∈M and γ is any path from x
to y.

This result very nicely displays the geometric meaning of the holonomy group: If
the holonomy group Holx(M,g) lies in the invariance group of a tensor Tx at x then
there exists an additional global structure on M , namely the tensor field resulting
from Tx via parallel transport. The following special cases illustrate this principle:

4.4.6 Examples.

(i) For T = TM , the holonomy principle says that (M,g) possesses a non-trivial
global parallel vector field if and only if there exists a vector 0 ≠ v ∈ TxM with
Holx(M,g)v = v.

(ii) Parallel transport along curves in oriented manifolds is orientation preserv-
ing. Thus the holonomy group of an oriented semi-Riemannian manifold lies
in SO(TxM,gx). Another way to express this is to note that the volume
form on an orientable semi-Riemannian manifold is parallel. Conversely, let
T = ΛnT ∗M and let (dVg)x ∈ ΛnT ∗xM be the volume form of (TxM,gx)
(for some fixed orientation in TxM). Then the invariance group of (dVg)x
is SO(TxM,gx) and by the holonomy principle it can be extended by paral-
lel transport to a volume form on M if the holonomy group is contained in
SO(TxM,gx). Altogether, a semi-Riemannian manifold (M,g) is orientable if
and only if its holonomy group is contained in SO(TxM,gx).

(iii) Let T = Hom(TM,TM) and Jx ∶ TxM → TxM be a linear orthogonal map
with J2

x = −idTxM . Then the invariance group of Jx is precisely the unitary
group U(TxM,gx, Jx) ⊆ SO(TxM,gx):

U(TxM,gx, Jx) = {A ∈ SO(TxM,gx) ∣ AJx = JxA}.
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The holonomy principle in this case says that the holonomy group Holx(M,g)
lies in the unitary group U(TxM,gx, Jx) if and only if (M,g) is a Kaehler
manifold , i.e., if and only if there exists a parallel almost complex structure
J on M . By this we mean a homomorphism J ∶ TM → TM with

g(JX,JY ) = g(X,Y ), J2 = −idTM and ∇gJ = 0.

94



Chapter 5

The Yang–Mills equation

5.1 The Maxwell equations as Yang–Mills equa-
tion

The Maxwell equations of electrodynamics provide a complete description of the
generation of electric and magnetic fields as well as their interaction. In particu-
lar, for time-dependent fields they predict the occurence of electromagnetic waves.
Classically, the electric and magnetic field are described by vector fields E and H
on some open region U ⊆ R3:

E ∶ U ×R→ R3, H ∶ U ×R→ R3.

The charge density is described by a time-dependent function ρ, and the current
density by a time-dependent vector J :

ρ ∶ U ×R→ R, J ∶ U ×R→ R3.

Then the Maxwell equations read

rot(E) = −1
c

∂H

∂t
, div(H) = 0, (5.1.1)

rot(H) = 1

c

∂E

∂t
+ 4π

c
J, div(E) = 4πρ, (5.1.2)

with c the speed of light. Equivalently, the electromagentic field (E,H) can be de-
scribed by a 2-form F on the subset U ×R of Minkowski space R1,3, with Lorentzian
metric

g = dx2 + dy2 + dz2 − c2dt2.

Let E = (Ex,Ey,Ez), H = (Hx,Hy,Hz), and J = (Jx, Jy, Jz), then we set

F ∶= (Exdx +Eydy +Ezdz) ∧ cdt +Hxdy ∧ dz +Hydz ∧ dx +Hzdx ∧ dy,

and

Jρ ∶=
1

c
Jxdx +

1

c
Jydy +

1

c
Jzdz − ρcdt.

To continue, we define ad-hoc the Hodge-star operator on Minkowski space, but
postpone the general definition on semi-Riemannian manifolds to the next section.
Let

∗ ∶ Ωk(R1,3)→ Ω4−k(R1,3)
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where, for k = 2:

∗(cdt ∧ dx) ∶= dy ∧ dz, ∗(dx ∧ dy) ∶= −cdt ∧ dz,
∗(cdt ∧ dy) ∶= −dx ∧ dz, ∗(dx ∧ dz) ∶= cdt ∧ dy,
∗(cdt ∧ dz) ∶= dx ∧ dy, ∗(dy ∧ dz) ∶= −cdt ∧ dx,

and for k = 3

∗(cdt ∧ dx ∧ dy) = dz, ∗(cdt ∧ dx ∧ dz) = −dy,
∗(cdt ∧ dy ∧ dz) = dx, ∗(dx ∧ dy ∧ dz) = cdt.

Using this, we define the codifferential

δ ∶ Ωk(R3,1)→ Ωk−1(R3,1)
δ ∶= ∗d ∗ .

With these operations we have:

5.1.1 Theorem. The Maxwell equations are equivalent to

dF = 0 and δF = 4πJρ. (5.1.3)

Proof. This follows by a direct calculation, see the Appendix. ◻

Consider nowM ∶= U ×R ⊆ R3,1 and let P0 be the trivial S1-principal bundleM ×S1

overM . Recall from Section 3.6 that Lie(S1) = iR and that C(P0) is an affine space
over Ω1(M, iR). Furthermore, FA = dA and dA = d (see (3.6.6) and (3.4.12)),
and by (3.6.5), A, Ã ∈ C(P0) are gauge-equivalent if and only if there exists some
σ ∈ C∞(M,S1) such that

Ã = A + σ−1dσ. (5.1.4)

Let us additionally suppose that U is contractible and consider the Maxwell equa-
tions on M , i.e.,

dF = 0 and δF = 4πJρ. (5.1.5)

By the Poincaré Lemma (e.g., [12, Th. 3.15]) there exists some A ∈ Ω1(M, iR)
with dA = iF . We call A the potential of the electromagentic field. Let Ā be the
corresponding element of Ω1

hor(P0, iR) (see (3.6.1)). Then Ā itself is not a connection
form because it is horizontal, hence violates (ii) from Definition 3.1.3. Nevertheless,
since C(P0) is an affine space over Ω1(M, iR), if we pick any A0 ∈ C(P0), then

Ã ∶= A0 + Ā ∈ C(P0).

We choose A0 to be the canonical flat connection form on P0. Then by Theorem

3.5.11 we have FA0 = 0, so F Ã = F Ā. Moreover,

(F Ā)∧ = (dĀ)∧ =
(3.6.2)

d((Ā)∧) = dA = iF. (5.1.6)

The electromagentic potential is not uniquely determined: By the Poincaré Lemma
any two potentials A,A′ differ by some df :

A′ = A + df (f ∈ C∞(M, iR)).

Now set σ ∶= ef , then σ ∈ C∞(M,S1) and dσ = σdf , i.e., df = σ−1dσ. By (5.1.4) it
follows that A and A′ are gauge equivalent.
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We are now going to show that the Maxwell equations (5.1.3) can be viewed as a
differential equation for the curvature form of an S1-connection (namely Ã from
above) in a trivial S1-bundle over M . We have Ã = A0 + Ā, and

0 = idF = d((F Ā)∧) = d((F Ā)∧ + (FA0

±
=0

)∧) = d((F Ã)∧) =
(3.6.2)

(dF Ã)∧

=
(3.4.12)

(dÃF
Ã)∧⇔ dÃF

Ã = 0.

Furthermore,

4πiJρ = δ(iF ) = ∗d ∗ (F Ā)∧ = ∗d ∗ (F Ã)∧ =
(3.6.2)

(∗d ∗ F Ã)∧

=
(3.4.12)

(∗dÃ ∗ F
Ã)∧⇔ ∗dÃ ∗ F

Ã = 4πiJρ.

Altogether, we obtain

dÃF
Ã = 0 (5.1.7)

∗dÃ ∗ F
Ã = 4πiJρ (5.1.8)

Note that (5.1.7) is just the Bianchi identity from Theorem 3.5.5. The entire dynam-
ical content of the Maxwell equations is therefore encoded in the second equation
(5.1.8). In vacuum (i.e., for J = 0 and ρ = 0), (5.1.8) reduces to the so-called
Yang–Mills equation:

δÃF
Ã ∶= ∗dÃ ∗ F

Ã = 0. (5.1.9)

In theoretical physics it has turned out that also interactions other than the electro-
magentic one can be described in a similar way, replacing S1 by other (non-abelian)
Lie groups.

5.2 The Yang–Mills equation as an Euler–Lagrange
equation

To formulate the Yang–Mills equation in the general case we first need to define the
Hodge-star operator for a general n-dimensional oriented semi-Riemannian manifold
(M,g), with g of signature (p,n − p). Let dVg be the volume form of g on M . We
note first that g induces a bundle metric on ΛkT ∗M as follows: for ω, η ∈ ΛkT ∗xM
set

⟨ω, η⟩x ∶= ∑
i1<⋅⋅⋅<ik

εi1⋯εikω(si1 , . . . , sik) ⋅ η(si1 , . . . , sik), (5.2.1)

where (s1, . . . , sn) is a positively oriented orthonormal basis of (TxM,gx) and εi =
gx(si, si) = ±1 is the causal type of si. If (σ1, . . . , σn) is the dual basis of (s1, . . . , sn),
then

σi1 ∧ ⋅ ⋅ ⋅ ∧ σik , 1 ≤ i1 < ⋅ ⋅ ⋅ < ik ≤ n
is an orthonormal basis of ΛkT ∗xM of causal type (see (5.2.1) and [7, 4.3.9])

⟨σi1 ∧ ⋅ ⋅ ⋅ ∧ σik , σi1 ∧ ⋅ ⋅ ⋅ ∧ σik⟩ = εi1 ⋅ ⋅ ⋅ ⋅ ⋅ εik . (5.2.2)

An alternative, manifestly basis-independent way of introducing the scalar product
(5.2.1) on ΛkT ∗xM is to view the scalar product on T ∗xM itself as a linear bijection
g̃ ∶ T ∗xM → TxM : in terms of local coordinates, g̃(dxi) = gij∂j , so ⟨g̃(dxi), ∂j⟩ = δik =
dxi(∂k). Given one-forms α = fidxi, ω = hjdxj , ω(g̃(α)) = fihjgij = ⟨α,ω⟩, where
the scalar product of one-forms is defined via the inverse matrix gij .
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We can then apply the universal property of ΛkT ∗xM to the map

T ∗xM × ⋅ ⋅ ⋅ × T ∗xM → ΛkTxM

(α1, . . . , αk)↦ g̃(α1) ∧ ⋅ ⋅ ⋅ ∧ g̃(αk).

Indeed, from this it follows that for α1, ω1, . . . , αk, ωk one-forms on TxM we have

⟨α1 ∧ ⋅ ⋅ ⋅ ∧ αk, ω1 ∧ ⋅ ⋅ ⋅ ∧ ωk⟩ = (g̃(α1) ∧ ⋅ ⋅ ⋅ ∧ g̃(αk))(ω1 ∧ ⋅ ⋅ ⋅ ∧ ωk)
= det(⟨αi, ωj⟩) = ∑

τ∈Sk

sgnτ⟨α1, ωτ(1)⟩ . . . ⟨αk, ωτ(k)⟩,

which again confirms (5.2.2). An explicit coordinate formulation is derived as fol-
lows: Let α = ∑1≤µ1<⋅⋅⋅<µk≤n αµ1...µk

dxµ1 ∧ ⋅ ⋅ ⋅ ∧ dxµk , ω = ∑1≤ν1<⋅⋅⋅<νk≤n ων1...νkdx
ν1 ∧

⋅ ⋅ ⋅ ∧ dxνk . Then defining αµ1...µk ∶= gµ1ν1 . . . gµkνkαν1...νk we calculate:

⟨α,ω⟩ = ∑
µ1<⋅⋅⋅<µk
ν1<⋅⋅⋅<νk

αµ1...µk
ων1...νk⟨dxµ1 ∧ ⋅ ⋅ ⋅ ∧ dxµk , dxν1 ∧ ⋅ ⋅ ⋅ ∧ dxνk⟩

= 1

k!
αµ1...µk

ων1...νk⟨dxµ1 ∧ ⋅ ⋅ ⋅ ∧ dxµk , dxν1 ∧ ⋅ ⋅ ⋅ ∧ dxνk⟩

= 1

k!
∑
τ∈Sk

sgnταµ1...µk
ων1...νk ⟨dxµ1 , dxντ(1)⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=g

µ1ντ(1)

. . . ⟨dxµk , dxντ(k)⟩

= k! 1
k!
αµ1...µk

ων1...νkg
µ1ν1 . . . gµkνk = αµ1...µk

ωµ1...µk .

For ω, η ∈ Ωk(M) we obtain a smooth function on M ,

⟨ω, η⟩ ∶ x↦ ⟨ω, η⟩(x) ∶= ⟨ω(x), η(x)⟩x ∈ R.

5.2.1 Definition. The Hodge-star operator on (M,g) is the linear operator

∗ ∶ Ωk(M)→ Ωn−k(M)
ω ↦ ∗ω,

where
ω ∧ σ = ⟨∗ω,σ⟩dVg ∀σ ∈ Ωn−k(M). (5.2.3)

5.2.2 Theorem. The Hodge-star operator on (M,g) has the following properties:

(i) Existence: Let (s1, . . . , sn) be a local positively oriented basis in TM and let
(σ1, . . . , σn) be the dual basis in T ∗M . Then ∗ is given by

∗(σi1 ∧ ⋅ ⋅ ⋅ ∧ σik) = εj1⋯εjn−k ⋅ sgn(IJ) ⋅ σj1 ∧ ⋅ ⋅ ⋅ ∧ σjn−k , (5.2.4)

where (IJ) = (i1 . . . ik j1 . . . jn−k) is a permutation of (1 . . . n) and sgn(IJ) is
its sign.

(ii)

∗ ○ ∗∣Ωk(M) = (−1)k(n−k)+p idΩk(M). (5.2.5)

(iii) The ∗-operator is isometric or skew-isometric:

⟨∗ω,∗ω̃⟩ = (−1)p⟨ω, ω̃⟩ (ω, ω̃ ∈ Ωk(M)). (5.2.6)
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(iv) Let ω, ω̃ ∈ Ωk(M) and σ ∈ Ωn−k(M), then

ω ∧ ∗ω̃ = ω̃ ∧ ∗ω = (−1)p⟨ω, ω̃⟩dVg (5.2.7)

ω ∧ σ = (−1)k(n−k)⟨ω,∗σ⟩dVg. (5.2.8)

Proof. (i) Since dVg = σ1 ∧ ⋅ ⋅ ⋅ ∧ σn,

σi1 ∧ ⋅ ⋅ ⋅ ∧ σik ∧ σj1 ∧ ⋅ ⋅ ⋅ ∧ σjn−k = sgn(IJ)dVg. (5.2.9)

Therefore, defining ∗ by (5.2.4), due to (5.2.1) we indeed obtain the required prop-
erty (5.2.3), because

⟨∗(σi1 ∧ ⋅ ⋅ ⋅ ∧ σik), σj1 ∧ ⋅ ⋅ ⋅ ∧ σjn−k⟩ = sgn(IJ)

whenever (IJ) is a permutation of (1 . . . n). Otherwise, both sides of (5.2.3) vanish
since ∗(σi1 ∧ ⋅ ⋅ ⋅ ∧ σik) is perpendicular to the other base vectors of Λn−kT ∗M .

(ii) It suffices to verify the claim on vectors from the given base. We have

∗ ∗ (σi1 ∧ ⋅ ⋅ ⋅ ∧ σik) =
(5.2.4)

εj1⋯εjn−k ⋅ sgn(IJ) ⋅ ∗(σj1 ∧ ⋅ ⋅ ⋅ ∧ σjn−k)

= (−1)psgn(JI)sgn(IJ)σi1 ∧ ⋅ ⋅ ⋅ ∧ σik

= (−1)p(−1)k(n−k)σi1 ∧ ⋅ ⋅ ⋅ ∧ σik .

(iii)

⟨∗ω,∗ω̃⟩dVg =
(5.2.3)

ω ∧ ∗ω̃ = (−1)k(n−k) ∗ω̃ ∧ ω =
(5.2.3)

(−1)k(n−k)⟨∗∗ω̃, ω⟩dVg

=
(5.2.5)

(−1)p⟨ω̃, ω⟩dVg.

(iv) By (5.2.3), ω ∧ ∗ω̃ = ⟨∗ω,∗ω̃⟩dVg, and ω̃ ∧ ∗ω = ⟨∗ω̃,∗ω⟩dVg, which together
with(5.2.6) gives (5.2.7). Finally (5.2.8) follows from

ω ∧ σ = (−1)k(n−k)σ ∧ ω =
(5.2.3)

(−1)k(n−k)⟨∗σ,ω⟩dVg.

◻
Let (P,π,M,G) be a principal fiber bundle over the oriented semi-Riemannian
manifold (M,g), let ρ ∶ G → GL(V ) be a representation of G, and let E = P ×G V
be the corresponding associated vector bundle. Then the Hodge-star operator can
be extended to a linear map

∗ ∶ Ωk(M,E)→ Ωn−k(M,E)

as follows: Fix a basis (e1, . . . , er) in Ex. Then any ω ∈ ΛkT ∗xM ⊗Ex can be written
as ω = ∑rj=1 ωj ⊗ ej , and we set

∗ω ∶=
r

∑
j=1

∗ωj ⊗ ej . (5.2.10)

5.2.3 Definition. Let A be a connection form on P and let dA ∶ Ωk(M,E) →
Ωk+1(M,E) be the differential induced by A (see (3.4.6)). The codifferential δA ∶
Ωk+1(M,E)→ Ωk(M,E) is defined by

δA ∶= (−1)nk+p+1 ∗ dA ∗ .
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On V we fix a G-invariant (not necessarily positive definite) scalar product ⟨ . , . ⟩V
By Theorem 2.4.10, to ⟨ . , . ⟩V there corresponds a bundle metric on E via

⟨e, ê⟩Ex ∶= ⟨v, v̂⟩V (e, ê ∈ Ex),

where e = [p, v] and ê = [p, v̂] for some p ∈ Px. Then the metric g on M and the
bundle metric ⟨ . , . ⟩E induce a bundle metric on Λk(T ∗M)⊗E of E-valued k-forms
on M : For ω, η ∈ Λk(T ∗xM)⊗E we set

⟨ω, η⟩x ∶= ∑
i1<⋅⋅⋅<ik

εi1 ⋅ ⋅ ⋅ ⋅ ⋅ εik⟨ω(si1 , . . . , sik), η(si1 , . . . , sik)⟩Ex , (5.2.11)

where as before (s1, . . . , sn) is a positively oriented orthonormal basis of (TxM,gx)
and εi = gx(si, si) = ±1 is the causal type of si. Then for ω, η ∈ Ωk(M,E) we obtain
a smooth scalar function

⟨ω, η⟩ ∶ x↦ ⟨ω, η⟩(x) ∶= ⟨ω(x), η(x)⟩x ∈ R.

Based on this we introduce an L2-scalar product on the space Ωk0(M,E) of com-
pactly supported E-valued k-forms on M :

⟨ω, η⟩L2 ∶= ∫
M
⟨ω, η⟩dVg (ω, η ∈ Ωk0(M,E)). (5.2.12)

If (M,g) is Riemannian and ⟨ . , . ⟩V is positive definite, then so is ⟨ . , . ⟩L2 .

An essential fact for our further considerations is that δA is adjoint to dA with
respect to ⟨ . , . ⟩L2 :

5.2.4 Theorem. Let ω ∈ Ωk0(M,E), η ∈ Ωk+10 (M,E). Then

⟨dAω, η⟩L2 = ⟨ω, δAη⟩L2 .

Proof. Since both dA and δA are linear and using a partition of unity, it suffices
to work on a trivializing open set U and to verify the claim on forms ω = σ⊗ e with
σ ∈ Ωk0(M), e ∈ Γ(E), and η = µ ⊗ f with µ ∈ Ωk+10 (M) and f ∈ Γ(E). Indeed we
may choose e and f from a local orthonormal basis in E, so that

⟨e, f⟩ = const (5.2.13)

on U . We have

dAω = dA(σ ⊗ e) =
(3.4.14)

dσ ⊗ e + (−1)kσ ∧∇Ae

= dσ ⊗ e + (−1)k
n

∑
i=1

(σ ∧ σi)⊗∇Asie,
(5.2.14)

where (s1, . . . , sn) is a local orthonormal frame on U and (σ1, . . . , σn) is the corre-
sponding dual frame. Then

(−1)nk+p+1δAη = ∗dA∗η =
(3.4.14)

∗((d∗µ)⊗f+(−1)n−k−1∑
i

(∗µ∧σi)⊗∇Asif), (5.2.15)
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and therefore, using (5.2.11) and (5.2.1),

⟨dAω, η⟩dVg =
(5.2.14)

⟨dσ,µ⟩⟨e, f⟩dVg + (−1)k∑
i

⟨σ ∧ σi, µ⟩⟨∇Asie, f⟩dVg

=
(5.2.7)

(−1)p(dσ ∧ ∗µ)⟨e, f⟩ + (−1)p+k∑
i

(σ ∧ σi ∧ ∗µ)⟨∇Asie, f⟩

=
3.4.10

(−1)p(d(σ ∧ ∗µ) − (−1)kσ ∧ d(∗µ))⟨e, f⟩

+ (−1)p+n−1∑
i

σ ∧ ∗µ ∧ σi( si(⟨e, f⟩)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 by (5.2.13)

−⟨e,∇Asif⟩)

=
(5.2.8)

(−1)pd(σ ∧ ∗µ⟨e, f⟩) + (−1)k+p+k(n−k)+1⟨σ,∗d ∗ µ⟩⟨e, f⟩dVg

+ (−1)p+n+k(n−k)∑
i

⟨σ,∗(∗µ ∧ σi)⟩⟨e,∇Asif⟩dVg

=
(5.2.10)

(−1)pd(σ ∧ ∗µ⟨e, f⟩)

+ (−1)p+nk+1⟨ω,∗((d ∗ µ)⊗ f + (−1)n−k−1(∗µ) ∧∇Af)⟩dVg
=

(5.2.15)
(−1)pd(σ ∧ ∗µ⟨e, f⟩) + ⟨ω, δAη⟩dVg.

Finally, since σ has compact support we get by Stokes’ theorem

∫
M
⟨dAω, η⟩dVg = ∫

M
⟨ω, δAη⟩dVg.

◻
Consider now the adjoint bundle Ad(P ) = P ×(G,Ad) g from Remark 3.2.4. By

(3.5.6), the curvature form FA of a connection form A on P can be viewed as a
2-form on M taking values in Ad(P ). Analogous to the case of S1-bundles we
therefore define:

5.2.5 Definition. A connection form A (as well as the corresponding connection)
on P is called a Yang–Mills connection if its curvature form FA ∈ Ω2(M,Ad(P ))
satisfies the Yang–Mills equation

δAF
A = 0.

We want to show that the Yang–Mills equation is the Euler–Lagrange equation
of a Lagrangian functional on the space C(P ) of connection forms on P . To do
so, consider a principal fiber bundle P over a compact oriented semi-Riemannian
manifold (M,g) and fix an Ad-invariant scalar product ⟨ . , . ⟩g on the Lie algebra g
of G:

⟨Ad(g)X,Ad(g)Y ⟩g = ⟨X,Y ⟩g ∀X,Y ∈ g, g ∈ G. (5.2.16)

We equip the space Ω2(M,Ad(P )) with the scalar product induced by g and ⟨ . , . ⟩g,
as described after Definition 5.2.3. A suitable Lagrange functional is then given as
follows:

5.2.6 Definition. The functional L ∶ C(P )→ R,

L(A) ∶= ∫
M
⟨FA, FA⟩dVg

is called the Yang–Mills functional (corresponding to ⟨ . , . ⟩g).

5.2.7 Theorem. The Yang–Mills functional is invariant under the action of the
group of gauge transformations G(P ) on the space C(P ), i.e., L(A) = L(f∗A) for
each A ∈ C(P ) and each f ∈ G(P ).
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Proof. By Theorem 3.5.18 we have

F f
∗A = f∗FA = Ad(σ−1f ) ○ FA, (5.2.17)

where σf ∈ C∞(P,G)G satisfies

f(p) = p ⋅ σf(p) ∀p ∈ P,

see (3.5.13). As was stated before Definition 5.2.5, we consider FA here as an

element of Ω2(M,Ad(P )). By (3.2.2), the relation between FA ∈ Ω2
hor(P,g)(G,Ad)

and FA is
FAx (t1, t2) = [p,FAp (X1,X2)],

where ti ∈ TxM , π(p) = x, and Tπ(Xi) = ti. In particular, if s ∶M ⊇ U → P is a local
section, then Tπ ○ Ts = id, so we may pick Xi = Ts(ti). Using this, since ⟨ . , . ⟩g is
Ad-invariant, by (5.2.11) we get for (s1, . . . , sn) a local orthonormal frame in TM :

⟨F f
∗A,F f

∗A⟩x =∑
i<j

εiεj⟨F f
∗A

s(x)
(Ts(si), T s(sj)), F f

∗A
s(x)
(Ts(si), T s(sj))⟩g

=
(5.2.16),(5.2.17)

∑
i<j

εiεj⟨FAs(x)(Ts(si), T s(sj)), FAs(x)(Ts(si), T s(sj))⟩g

= ⟨FA, FA⟩x.

Thus L(f∗A) = L(A), as claimed. ◻
To determine the first variation of the Yang–Mills functional, recall from Remark
3.2.4 that the space C(P ) of connection forms on P is an affine space over the vector
space Ω1(M,Ad(P )). In this sense we may consider TAC(P ) ∶= Ω1(M,Ad(P )) as
the tangent space of C(P ) at A. Then the differential of L in the point A in direction
ω ∈ TAC(P ) is defined by

dLA(ω) ∶=
d

dt
∣
0
(L(A + tω)).

5.2.8 Definition. A connection form A ∈ C(P ) is called a critical point of L if
dLA = 0.

To characterize critical points of L we need one more auxiliary result:

5.2.9 Lemma. Let (P,π,M,G) be a principal fiber bundle, A a connection form
on P and σ ∈ Ω1(M,Ad(P )). Then A + σ ∈ C(P ) by Remark 3.2.4, and if ρ ∶ G →
GL(V ) is a representation of G with E = P ×ρG the associated vector bundle, then

(i) dA+σω = dAω + ρ∗(σ) ∧ ω for all ω ∈ Ωp(M,E).

(ii) FA+σ = FA + dAσ + 1
2
[σ,σ].

Proof. By Theorem 3.2.3 and (3.4.6) it suffices to prove these claims for the
corresponding horizontal forms on P and the absolute differential DA. Thus let
σ̄ ∈ Ω1

hor(P,g)(Ad,G) be the 1-form corresponding to σ. Then by Theorem 3.4.4, for
any ω̄ ∈ Ωphor(P,g)(Ad,G) we have

DA+σ̄ω̄ = dω̄ + ρ∗(A + σ̄) ∧ ω̄ = dω̄ + ρ∗(A) ∧ ω̄ + ρ∗(σ̄) ∧ ω̄ =DAω̄ + ρ∗(σ̄) ∧ ω̄,

which gives (i).
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For (ii), by (3.4.3) we have

DAσ̄ = dσ̄ +Ad∗(A) ∧ σ̄.

Here, by (3.4.4) and since Ad∗ = ad we have

(Ad∗(A) ∧ σ̄)(t0, t1) = ad(A(t0))(σ̄(t1)) − ad(A(t1))(σ̄(t0))
= [A(t0), σ̄(t1)] − [A(t1), σ̄(t0)].

Using (3.5.5) and writing A = ∑iAivi, σ̄ = ∑i σ̄ivi in terms of a basis (vi) of g, we
calculate

[A(t0), σ̄(t1)] − [A(t1), σ̄(t0)] =∑
i,j

(Ai(t0)σ̄j(t1) −Ai(t1)σ̄j(t0))[vi, vj]

= (∑
i,j

Ai ∧ σ̄j[vi, vj])(t0, t1) = [A, σ̄](t0, t1),

so that
DAσ̄ = dσ̄ + [A, σ̄]. (5.2.18)

By Lemma 3.5.2 (i), [A, σ̄] = [σ̄,A], so

FA+σ̄ =
3.5.3(i)

d(A + σ̄) + 1

2
[A + σ̄,A + σ̄]

= dA + dσ̄ + 1

2
([A,A] + [σ̄, σ̄] + [A, σ̄] + [σ̄,A])

= dA + 1

2
[A,A] + dσ̄ + [A, σ̄] + 1

2
[σ̄, σ̄]

=
(5.2.18)

FA +DAσ̄ +
1

2
[σ̄, σ̄].

◻
Using this, we can finally prove:

5.2.10 Theorem. A connection form A ∈ C(P ) is a critical point of the Yang–Mills
functional L if and only if it satisfies the Yang–Mills equation δAF

A = 0.

Proof. Let A ∈ C(P ) and ω ∈ Ω1(M,Ad(P )). By Lemma 5.2.9,

FA+tω = FA + tdAω +
1

2
t2[ω,ω].

Therefore,

dLA(ω) =
d

dt
∣
0
(L(A + tω)) = d

dt
∣
0
⟨FA+tω, FA+tω⟩L2

= ⟨FA, dAω⟩L2 + ⟨dAω,FA⟩L2

= 2⟨dAω,FA⟩L2 =
5.2.4

2⟨ω, δAFA⟩L2 .

Since ⟨ . , . ⟩L2 is non-degenerate, this implies that dLA = 0 if and only if δAF
A = 0.
◻

We proved this result under the assumption that M is compact. This restriction
can, however, be lifted by considering connection forms for whose curvature form
FA the integral ∫M ⟨FA, FA⟩dVg converges, a property that is gauge invariant by
Theorem 5.2.7. Then in the proof of Theorem 5.2.10 it suffices to consider variations
in the direction of ω, where ω is compactly supported.
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Appendix A

Proofs of auxilliary results

Proof of Lemma 1.1.10 It suffices to take for W the domain of a chart χ in N .
Let p be any point in ψ−1(W ) and choose charts (U,φ = (x1, . . . , xm)) around p in
M and (V, η = (y1, . . . , yn)) around ψ(p) such that ψ(U) ⊆ V ⊆ W and such that
η ○ ψ ○ φ−1 = (x1, . . . , xm) → (x1, . . . , xm,0, . . . ,0). Then η(ψ(U)) ⊆ Rm × {0} ⊆ Rn,
so it has Lebesgue measure 0. It follows that also the image χ(ψ(U)) of this set
under the smooth map χ ○ η−1 has Lebesgue measure 0.

As p varies in ψ−1(W ), the domains U cover the set ψ−1(W ). As M is second
countable we may extract a countable subcover {Uk ∣ k ∈ N} from this collection.
Then the sets ψ(Uk) cover W ∩ ψ(M), entailing

χ(W ∩ ψ(M)) = ⋃
k∈N

χ(ψ(Uk)).

But then χ(W ∩ ψ(M)) has Lebesgue measure 0 and so it cannot be all of χ(W ).
It follows that ψ(M) cannot contain all of W . ◻

Proof of Lemma 3.3.4

We prove the result for g(t), the other case being analogous. Also, it suffices to
treat the case where v is continuous because higher regularity then is immediate
from the equation. Finally, we may assume that v is defined on all of R. Consider
the following vector field on G ×R:

Z(g, s) ∶= (TLg(v(s)),
∂

∂s
(s)) ∈ T(g,s)(G ×R).

Then the flow line of Z through (e,0) is of the form FlZt (e,0) = (g(t), t), where g is
a solution of our ODE with g(0) = e by construction of Z. Thus it only remains to
show that g exists on the entire interval [0,1]. Let (e, s) ∈ G×R, then since {e}×[0,1]
is compact there exists some δ > 0 such that the integral curves FlZt (e, s) exist for
all s ∈ [0,1] and all ∣t∣ < δ (cf. [7, 2.3.3]). Fix a partition 0 = t0 < t1 < ⋅ ⋅ ⋅ < tr = 1
with ∣ti − ti−1∣ < δ for all i. On the first interval [0, t1] we already have a solution g
of our initial value problem. The integral curve FlZt (e, t1) for t ∈ [0, t2 − t1] is of the
form FlZt (e, t1) = (b(t), t + t1), where ḃ(t) = TLb(t)(v(t + t1)) and b(0) = e. We now
extend the curve g continuously to the interval [t1, t2] by setting

g(t) ∶= g(t1) ⋅ b(t − t1), t ∈ [t1, t2].

Then on this interval

ġ(t) = TLg(t1)ḃ(t − t1) = TLg(t1)TLb(t − t1)(v(t)) = TLg(t)(v(t)),
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so we obtain an extension of the solution to [0, t2]. Iterating this procedure we
conclude the proof. Uniqueness follows from general ODE theory. ◻

Proof of Lemma 3.5.4 To prove smoothness we use local bundle charts according
to (2.3.2):

ψU ∶ Ad(P )U → U × g, [p,X]↦ (π(p),Ad(φU(p))(X))
ψ̃U ∶ EU → U × V, [p, v]↦ (π(p), ρ(φU(p))(v))

Then by Remark 2.4.3 a bundle chart of Hom(E,E) is

χU ∶ Hom(E,E)U → U ×Hom(V,V )
Lx ↦ (x, ψ̃U,x ○Lx ○ ψ̃−1U,x),

so we need to show smoothness of

M × g ∋ (x,X)↦ χU ○ ρ∗ ○ ψ−1U (x,X) =
(2.3.3)

χU(ρ∗([ϕ−1U (x, e),X]))

= χU([p, v]E ↦ [p, ρ∗(X)v]) =∶ χU(Lx),

where p ∶= ϕ−1U (x, e). For this it suffices to show that

((x,X), v)↦ (x, ψ̃U,x(Lx(ψ̃−1U,x(v)) ∈ C∞.

Indeed,

ψ̃U,x(Lx(ψ̃−1U,x(v)) = ψ̃U,x(Lx([p, v])) = ψ̃U,x([p, ρ∗(X)v]) = (x, ρ(φU(p))(ρ∗(X)v))
= (x, ρ(φU(ϕ−1U (x, e)))(ρ∗(X)v)),

which, finally, is obviously smooth.

Fiber-linearity of ρ∗ is immediate from that of ρ∗ ∶ g→ L(V,V ). ◻

Proof of Lemma 4.1.4

By the rank theorem ([7, 3.3.3]) we can choose charts ψ = (y1, . . . , yn) around j(p)
and φ = (U,x1, . . . , xm) around p in M such that ψ ○ j ○ φ−1 = x ↦ (x,0). In this
local representation, ∂xi = ∂yi for 1 ≤ i ≤m, so X ∣U is of the form ∑mi=1Xi∂yi , where
Xi ∈ C∞(U). This reduces the problem to extending the coefficient functions locally
to smooth functions on N . So let f ∈ C∞(M). By the above we have pr ○ ψ ○ j = φ
on U . Thus setting f̂ ∶= f ○φ−1 ○ pr ○ψ gives a smooth local function with f̂ ○ j = f .

◻

Proof of Lemma 4.2.10

Call A(p) the set described in the Lemma and Lp the leaf of E through p.

⊆: Let q ∈ A(p) and γ ∶ I →M from p to q with γ̇(t) ∈ Eγ(t) for all t ∈ I. Covering
γ(I) by flat charts for E, for each t0 ∈ I there exists an open interval around t0 such
that γ(J) is contained in such a cubic chart (U,φ = (x1, . . . , xn)). Since

γ̇(t) ∈ Eγ(t) = span{∂xi ∣ 1 ≤ i ≤ k},

it follows that γ̇i(t) = 0 for all t ∈ J and k + 1 ≤ i ≤ n, so γ lies entirely in one
slice Ua = φ−1(Rk × {a}), which is itself a connected integral manifold ([9, 17.33])
and therefore is contained in one leaf. If γ(t0) lies in two such charts then the
corresponding leaves intersect, hence coincide. Thus γ(I) ⊆ Lp.
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⊇: Let q ∈ Lp. Since Lp is a connected manifold, there exists a smooth curve
σ ∶ I → Lp connecting p to q. Let j ∶ Lp ↪M be the inclusion and set γ ∶ j ○ σ̃. Then

γ̇(t) = Tj(σ̇) ∈ Tγ(t)j(Tγ(t)Lp) = Eγ(t)

for each t, so q ∈ A(p). ◻
Proof of Lemma 4.2.13

By [9, Sec. 22], φ factors over G/kerφ as follows:

G H

G/kerφ

φ

π
φ̂

Here π is a surjective submersion, so φ̂ is smooth, and it is bijective. Since φ̂∗
has the same image as φ∗ we may replace φ by φ̂, i.e., we may without loss of
generality assume that φ is bijective. By [9, 8.8], φ ○ expG = expH ○φ∗. Hence if U
is a neighborhood of 0 ∈ g on which expG is injective, then expH ○φ∗ and thereby
φ∗ itself is injective on U as well, so ker(φ∗) ∩ U = {0}. Since ker(φ∗) is a linear
subspace of g it must be trivial, showing that φ∗ is injective. For general g ∈ G,
φ = Lφ(g) ○ φ ○Lg−1 , so also Tgφ is injective, i.e., φ is an immersion. Lemma 1.1.10
then shows that dimH = dimG, so that φ is a local diffeomorphism, and since it is
bijective even a global diffeomorphism. This means it is a Lie group isomorphism,
and the claim follows. ◻

Proof of Theorem 5.1.1

We have

dF =c∂Ex
∂y

dy ∧ dx ∧ dt + c∂Ex
∂z

dz ∧ dx ∧ dt + c∂Ey
∂x

dx ∧ dy ∧ dt

+ c∂Ey
∂z

dz ∧ dy ∧ dt + c∂Ez
∂x

dx ∧ dz ∧ dt + c∂Ez
∂y

dy ∧ dz ∧ dt

+ ∂Hx

∂x
dx ∧ dy ∧ dz + ∂Hx

∂t
dt ∧ dy ∧ dz + ∂Hy

∂y
dy ∧ dz ∧ dx

+ ∂Hy

∂t
dt ∧ dz ∧ dx + ∂Hz

∂z
dz ∧ dx ∧ dy + ∂Hz

∂t
dt ∧ dx ∧ dy.

Consequently,

dF = 0⇐⇒ rot(E) = −1
c

∂H

∂t
and div(H) = 0.

Furthermore,

∗d ∗ F = − ∂Ex
∂x

cdt − 1

c

∂Ex
∂t

dx − ∂Ey
∂y

cdt − 1

c

∂Ey

∂t
dy − ∂Ez

∂z
cdt − 1

c

∂Ez
∂t

dz

− ∂Hx

∂y
dz + ∂Hx

∂z
dy + ∂Hy

∂x
dz − ∂Hy

∂z
dx − ∂Hz

∂x
dy + ∂Hz

∂y
dx,

which implies

δF = 4πJρ ⇐⇒ rot(H) = 1

c

∂E

∂t
+ 4π

c
J and div(E) = 4πρ.

◻
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