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Preface

These are lecture notes for an introductory course on analysis on manifolds. The
underlying intention is to provide the fundamental notions and results of modern
global analysis in a concise and rigorous way. The topics included here were chosen
with a view to their applicability in the many fields of mathematics and mathe-
matical physics where the theory of manifolds forms the underpinning and common
language on which everything else depends. For one such field, symplectic geometry,
the final chapter provides a first introduction, mainly to demonstrate the usefulness
of the tools developed throughout the course.

The requirements for successfully participating in this course are a solid working
knowledge of analysis on R™, some linear algebra, some set-theoretic topology, and
a basic understanding of the theory of ordinary differential equations. Given this, I
have tried to give complete and readable proofs of all results.

Michael Kunzinger, summer term 2022
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Chapter 1

Differentiable Manifolds

The notion of a differentiable manifold is one of the central concepts of modern
mathematics. Among others it finds applications in analysis, differential geometry,
topology, the theory of Lie groups, ordinary and partial differential equations, as
well as in numerous branches of physics, e.g. in mechanics or general relativity.

We start out by studying the special case of submanifolds of R™, a direct gen-
eralization of the notion of surface in R?® which already displays all the essential
characteristics of the concept of abstract manifolds.

1.1 Submanifolds of R"

To begin with we recall some notions and results from analysis. For simplicity, from
now on we will assume all maps to be C°.

1.1.1 Theorem. (Inverse Function Theorem) Let U C R™ open, f : U — R”
C™, xg € U, yo := f(xg) and Df(xg) invertible (det Df(xg) # 0). Then locally
around xo, f is a diffeomorphism, i.e., there exist Uy C U an open neighborhood
of g, and Vi an open neighborhood of yo, such that f : Uy — Vi is bijective and
fil V1= Uy is C°.

1.1.2 Theorem. (Implicit Function Theorem) Let U C R™, V C R™ open,
f:UXV =5 R™ C® (x9,y0) € UXV, f(xo,y0) =0 and let %(xo,yo) :R™ — R™
be invertible (detg—i(xo,yo) £ 0). Then there exist open neighborhoods Uy C U of
xo, Vi CV of yo, such that: Yo € Uy 3y = y(z) € Vi with f(z,y(x)) = 0. The
map x — y(x) is C*.

1.1.3 Definition. Let U C R¥ be open and ¢ : U — R™ C®. ¢ is called regular if
for all x € U the rank of the Jacobian Dp(z) is mazimal, hence equal to min(k,n).
Then for the rank tk(Dy) of Dy (also called the rank of p) we have

tk(Dy(x)) = dimim(Dp(z)) = dim(R*) — dim(ker Dip(z)).

Thus if k < n then ker Dp(x) = {0} and Dy(x) is injective for all x. In this case
@ 1is called an immersion. For k > n, Dy(x) is surjective for all x and ¢ is called
a submersion.

Hence 1.1.1 says that a regular map f : U — V with U, V' C R™ open is a local
diffeomorphism.



1.1.4 Remark. (Properties of immersions). Let U C R* open and ¢ : U — R" an
immersion.

(i) {é{TSD@(fo)) = k means that {g—i(xo), ce %(mo)} is linearly independent in

(ii) Equivalently, there exist indices 1 <147 < iy < --+ < i < n such that

a((piU"'a(pik)

det
8(1‘1, ce ,.’I,‘k)

(o) #0
Since det is continuous it follows that rk(D¢(z)) = k in a neighborhood of
Zo-

(iii) In particular for k =1, ¢ : U C R — R" is an immersion if ¢/(t) # 0 V¢, i.e.,

if ¢ is a regular curve.

1.1.5 Definition. A subset M of R"™ is called a k-dimensional submanifold of R™
(k <n)if

For each p € M there exists an open neighborhood W of p in R™,
(P) { an open subset U of Rk and an immersion ¢ : U — R™ such that
v :U = p(U) is a homeomorphism and o(U) =M NW.

Such a ¢ is called a local parametrization of M.

R* R"

Thus ¢ is regular and identifies U and ¢(U) = M NW topologically (p(U) = MNW
carries the trace topology of R™). The following result gives an alternative criterion
which is sometimes used in the definition of submanifolds of R™.

1.1.6 Proposition. For each M C R™, property (P) is equivalent to

For each p € M there exists a smooth map ¢ : U — R™, where U
is an open neighborhood of 0 in R*, ©(0) = p and ¢ is regular at 0

(P') ] (i.e., Dp(0) is injective) and such that for any open neighborhood
Uy C U of 0 there exists an open neighborhood W1 of p in R™ with
QO(Ul) = W1 NnM.

Proof. Obviously (P) implies (P’). Conversely, we first note that if ¢ is regular at
0 then in fact it is regular in a neighborhood of 0 (the rank of Dy cannot decrease
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locally by continuity: the determinant of a suitable sub-matrix of the Jacobian of
 is non-zero in 0, hence in a neighborhood of 0). By assumption, ¢ is continuous
and (P’) secures that it is an open map (maps open sets in U to open sets in the
trace topology of R™ on M). To establish (P) we will show that there exists an
open neighborhood Uy of 0 in U such that ¢|y, is a homeomorphism onto its image.
To do this, by the above it suffices to show that ¢ is injective if we restrict it to a
suitable open subset U; of U.

Since Dp(0) is injective there exists a left inverse linear map A : R® — R* i.e.,
idge = A - Dp(0) = D(A-¢)(0). [Let B := Dy(0), then B : RF — im(B) is

bijective. Call A the inverse of this map. Then we may take A := A o prim(B).] By

1.1.1 the map = + A - ¢(x) is a local diffeomorphism on R*, so there exist open
neighborhoods U; C U of 0 and Uy of A(p) such that h := (Ao )™t : Uy — Uy is
smooth.

Now set ¢ := ho A: A=Y(Uy) — Uj. Then 1 is smooth and
z/Jogp(x):(Aogp)_lvogo(x):m Ve e Uy,

so 1 is a left-inverse of ¢|y,. In particular, |y, is injective. a

1.1.7 Examples.

(i) The unit circle S*.
Let ¢ : 6 — (cosf,sinf). Then for all (zg,y0) = (cosfy,sinby), ¢ : (6 —
7,00 + m) — R? is a parametrization of S! around (x¢,y). Here W can be
taken, e.g., as R?\{(—x¢, —yo)}. Hence S is a 1-dimensional submanifold of
R2. Note that no single parametrization can be used for all of S!! (There is
no homeomorphism from some open subset of R onto S* since S* is compact).

Sl
(z0,y0) = (cos bo, sin by)

0o

(_:1:07 _y())

(ii) The 2-sphere S? in R3.
Let ¢(¢,8) = (cos ¢ cos b, sin ¢ cos 0, sin ). Then

—sin¢gcosf —cos@sinb
Dy = cospcosf —singsinf
0 cos 6
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¢ is a parametrization of S? e.g. on (0, 27) x (=%, %). In fact, on this domain
¢ is injective and rk(D¢y) = 2, since cosf # 0 on (—

n
s
2
one parametrization is needed to cover S2.

5, %). Again, more than

(iii) Figure eight manifold.
Let M := {(sin2s,sins)|s € (0,2m)}. The map ¢ : s — (sin2s,sins) is an

injective immersion: indeed, Dg(s) = ¢'(s) = (2cos2s,coss) # (0,0) on
(0,2m).

However, M is not a submanifold of R?! In fact, suppose that there exists
a parametrization ¢ : (—¢,e) — B1(0,0) of M around p = (0,0) such that
¥ : (—€,€) = B1(0,0) N M is a homeomorphism. Then (—¢,¢) \ {0} has two
connected components, while (M N B1(0,0))\ (0,0) has four, a contradiction.

M is what is usually called an immersive submanifold of R2. In what follows,
we will restrict our attention to submanifolds in the sense of 1.1.5.

P
—



1.1.8 Theorem. Let M C R™. The following are equivalent:

(P) (Local Parametrization) M is a k-dimensional submanifold of R™.

R R"

(Z) (Local Zero Set) For every p € M there exist an open neighborhood W of p in
R™ and a C>®-map f: W — R"™F which is regular (i.e., tkDf(q) =n —k for
all ¢ € W) satisfying

MOW = f~10) = {x € W | f(x) = 0}.

0 Rn—k

R



(G) (Local Graph) For each p € M there exist (after re-numbering the coordinates
if necessary) open neighborhoods U’ C R of p’ := (p1,...,pr) and U" C Rk
of p := (Pk+1,---yPn) and a C®-map g : U' — U" such that

M (U'xU") = {(',2”) € U'xU”|a" = g(a')} = graph(g)

(T) (Local Trivialization) For each p € M there exist an open neighborhood W of p
inR™, an open set W' in R® =2 R* xR** and a diffeomorphism ¥ : W — W'
such that

(M NW) =W nN(RFx {0}) CR* x {0} = R".

Ru—k
ot

7800,

RF

Proof. (P) = (G):
Without loss of generality we may suppose that ¢(0) = p and det H(O) #0.
By 1.1.1 there exists some open neighborhood U; C U of 0 and some open V; C R*
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such that ¢" := (¢1,...,¢k) is a diffeomorphism. Let ¢ : V; — U be the inverse of
¢ and G :=po: Vi — R™ Then with ¢ := (pgt1,---,¢n) we have

G(mla oo vxk) = (50/ 01/1(5517 S vxk)750// 01/)(%,' . 'axk)) = (xlvg(x/))

(@1 ay)
—_———

/

x

with g : V; — R"™* smooth. Since ¢ is a homeomorphism, ¢(U;) is open in M,
i.e., there exists some W; open in R™ such that o(U;) = M N W;. Hence

MWy = p@@(V1)) = G(V1) = {(2',g(z"))]z" € V1}.
——
U
We now choose open sets U’ C V; and U” C R % such that p € U’ x U” C W;.
Then
MNU xU"Y = MW inWU xU")={(,g(")|z" e i} n U xU")
= (@) €U U"lgla) ="}

(@) = (2):
Set W:=U'xU" and f: W — R*k,

filze, .. xn) == xpyy —gj(x1, ..., 2x) (1<ji<n-—k)

Then f € C* and % = I,_k, so f is regular. Moreover

RO = {2, 2") e U xU"|g(z") =2"}y =M N (U xU")=MnW.

(Z2) = (T):
Without loss of generality we may suppose that det O f1seesfnk) (p) #0. Let ¥(z) :=

8(wk+17~';$n)

(.’El,f(l')) = (xla e 7xk7f1(w)7 . 7fn7k(x)) Then

I 0
D¥(p) = |\ Orednms) ()

NThg1,1Tn)

is invertible.

By 1.1.1, there exists an open neighborhood W7 € W of p in R™, and some W’
open in R” = R* x R* %, such that ¥ : W; — W’ is a diffeomorphism. We show
that U(M N W) = (R* x {0}) nW":

C: \If(Mﬂwl) Q\I’(Wl):W/ andeMﬂWléf(x):O
= U(z) = (2, f(x)) = (2/,0) € R x {0}.

Y

yeW =y=9()= (2, f(z)) withz € W1
fa)=0=zc f7LO)=WnNM
=y="U(z) € (M NWh).

}:>$€W1ﬂM

(Moreover, ¥ := U|y,qar : Wi N M — W' N (RF x {0}) is a homeomorphism: it is
clearly continuous and bijective, and 1)~! = U™y ge« (0})) is continuous.)

(T) = (P):

Let ® : W/ — W be the inverse of ¥ and denote by ¢ : (RF x {0}) N W' =: U C
R* x {0} 2 R¥ — R™ the map (z1,...,zx) = ®(z1,...,24,0,...,0), i.e, o =Poi
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with 7 : R¥ < R™. Then ¢ is an immersion since Dy = D® o Di is injective.
Moreover,

o(U) = ®(RF x {0}) NW') =T H((R* x {0}))NnW') = M NW.

Finally, ¢ : (R*¥ x {0}) N W’ — M N'W is a homeomorphism, since it is bijective,

continuous, and: ¢~ = U|praw is continuous. O

1.1.9 Examples. (cf. 1.1.7!)

(i) Circle

e Local Zero Set: W = R?\ {(0,0)}, f: W —= R, f(z,y) = 2* + 9> —
R, S'nW = f~1(0).
e Local Graph: S* N (U’ x U") = graph(g), ¢ : © — VR2 — 22.

U xu”

=) [ ‘\<

e Local Trivialization: ¥ : (z,y) = (rcosp,rsing) — (p,r — R). Then
locally ¢ := U|yns1 = (Rcos g, Rsinp) — (p,0) (with suitable W).

(ii) Sphere in R3

e Local Zero Set: x? +1y? + 22 = R

e Local Graph: (z,y) — /R? — 22 — y?

e Local Trivialization: Inverse spherical coordinates (with fixed radius).

(iii) Let U C R™ be open. Then U is a submanifold of R” with local parametriza-
tionid : U — U.

For example, GL(n,R) = {4 € R"’|det A # 0} is open in R™" since det :
R™ — R is continuous (even C*) = GL(n,R) is an n2-dimensional subman-
ifold of R™".

(iv) An example of a matrix group as a submanifold.
Let SL(n,R) := {A € R"|det A = 1} € GL(n,R). Hence SL(n,R) is given
as the zero set of the smooth map f(A) =det A—1. By 1.1.8 (Z) it therefore
remains to show that f is regular in any A € SL(n,R) (note that if a map is
regular in one point then it is regular in a whole neighborhood of that point
since a sub-determinant of the Jacobian is nonzero in the point, hence in a
neighborhood by continuity). Thus let A € SL(n,R). Then

Df(A)-A = jtof((1+t)A): e (et ( DA -1

n(1+ )" det A|t:0 =ndet A # 0,
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so for all r € R we have Df(A)(;q574) = 7, i.e., f is regular near A.

By 1.1.8, SL(n,R) is a submanifold of R™* of dimension n? — 1 (in fact
GL(n,R), SL(n;R) are examples of Lie groups).

Our next aim is to do analysis on submanifolds of R™. We begin by introducing the
notion of smooth map on submanifolds:

1.1.10 Definition. Let M C R™ and N C R"™ be submanifolds. A map f: M — N
is called smooth (or C*), if for all pe M there exists some open neighborhood U,
of p in R™ and some smooth map f Up — R™ with f\MmU = f\MmUp

If f is bijective and both f and f~! are smooth, then f is called diffeomorphism.
1.1.11 Remark.

(i) The case where M is an open subset of R™ and N = R" is included as a
special case of the above definition.

(ii) The composition of smooth maps is smooth: Let fi : My — My, fo : My —
Ms be smooth, p € My, and f1 U, = R™, fy: U.fl(p) — R™s smooth

extensions. Then (since f; is smooth, hence continuous): f; (U fip) MU is

an open neighborhood of p and fy o fi : fi YUy, () NUp — R™3 is a smooth
extension of fs o fi.

1.1.12 Definition. Let M be a k-dimensional submanifold of R™. A chart (¢, V)
of M is a diffeomorphism of an open set V.C M onto an open subset of RF.

Charts are the inverses of local parametrizations in the following sense:
1.1.13 Proposition. Let M be a k-dimensional submanifold of R™.

(i) Let ¢ : U C R¥ — R™ (U open) be a local parametrization of M, p(U) =
WNM (W CR"™ open ). Then ¢ =@ t:WNM — U is a chart of M.

(ii) Conversely, if ¥ : V. — U C R¥ is a chart of M, then ¢ = idpesgn 0 ™1 :
U — R™ is a local parametrization of M.

Proof.

(i) By 1.1.10, ¢ is a smooth map from U to W N M. Also, ¢ is bijective. It
remains to prove that 1 = o~ ! : WNM — U is smooth in the sense of 1.1.10,
i.e., possesses a smooth extension to some neighborhood of any given point of

WnM.

Let p € W N M and set xf, := ¢(p) € U. Here we employ the notations of
1.1.8: 2 = (x1,...,2x), 27 = (Xgg1,-- - 2n), © = (01, 0k), ¢ =
(Pkt1y---,%n). @ is an immersion, so without loss of generality we may
suppose that M(mo) is invertible.

Let @ : U x R*™% 5 R ®(a/,2") := (¢'(2'),¢" (2) + 2") = p(z) + (0,2").
In particular: ®(z’,0) = @(z). Then

R A
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is invertible. By 1.1.1, ® is a local diffeomorphism of U; x Us onto some W7,
where Uy, U, are open neighborhoods of zf, in U respectively of 0 in R"~¥,
Since p = ®(x(,0) € W7 we may w.l.o.g. suppose that W; C W.

We have p(Uy) = ®(U; x {0}) C W7 C W. Since ¢ is a homeomorphism
there exists some open subset Wy of R™ with ¢(U;) = Won M. W.lo.g.
we may suppose that Wo C W; (otherwise replace Wo by Wo N W7). Let
U : Wy — U; x Uy be the inverse of ®.

Then for ¢ € Wy N M we have ¢ = p(z') = ®(a’,0) for some 2’ € U;. Since
(2/,0) € Uy x Uy we get (q) = ¢ 1(q) = 2’ = pry o ¥(q). Hence pr; o ¥ is a
smooth extension of 1 to the neighborhood W5 of p, so ¢ is smooth at p, as
claimed.

(i) Let ¢ : V — U C R* be a chart, and set ¢ := idy;e gn 01~ ! : U — R™. Then
¢ is smooth and ¢ : U — V' is a homeomorphism (since ¢ : V' — U is).
Finally, ¢ is an immersion: let 1[) be a smooth extension of 1 (to some open
neighborhood), then oy = 1oy = idy, so Dy (p(x)) - De(x) =idy Vz € U,
implying that De(z) is injective.

a

1.1.14 Remark. If U is a trivialization as in 1.1.8 (T), U : W — W', ¥(WNM) =
W' N (R* x {0}), then v := ¥|yw is a chart of M (cf. the proof of 1.1.8, (T)=(P)
and 1.1.13 (i)).

If M is a k-dimensional submanifold of R™ and (¢, V') is a chart of M, then forp € V
we may write ¥(p) = (¥1(p),...,vYr(p)) = (z1,...,2r). The smooth functions
1; = pr,; o are called local coordinate functions, the x; are called local coordinates
of p.

Let M™, N™ be submanifolds', f : M — N, p € M, ¢ a chart of M around p and
¥ a chart of N around f(p). Then ¢ o f o ¢~! is called local representation of f.
We have

pofoe i (w,. . am) = (Yi(f (e (@) Ya(f (T (2)))-
=:f1 =ifn

The f; are called coordinate functions of f with respect to ¢, 9.

By means of charts, smoothness of maps can be characterized without resorting to
the surrounding Fuclidean space, hence intrinsically:

1.1.15 Proposition. Let M™ C R*, N™ C R? be submanifolds and f : M — N.
TFAE:

(i) [ is smooth.

(i) For all p € M there exist charts (p,U) of M at p, (¢¥,V) of N at f(p) such
that the domain (U N f=1(V)) of the local representation 1o f o~ is open
and Yo fop t:ipUnN f~YV)) = (V) is smooth.

(iii) [ is continuous and for allp € M there exist charts (o, U) of M at p, (¥, V) of
N at f(p) such that the local representation o fop=1 : (UNF~1(V)) — (V)
is smooth.

IThe superscripts m, n here signify the dimension of M resp. N
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(iv) f is continuous and for all p € M, all charts (¢,U) of M at p and all charts
(1, V) of N at f(p), the local representation o fop=t:UN f~YV)) —
(V) is smooth.

M . N

©
&
€

eUN (V)

Proof. (i)=(iv): f is continuous since around any point it is the restriction of
a continuous map. Hence f~!(V) and therefore also p(U N f~1(V)) is open. By
1.1.11 (ii), the map ¢ o f o p~! (whose domain of definition is (U N f~1(V))) is
smooth.

(iv)=-(iii), and (iii)=(ii) are clear.

(i))=-(i): On the open neighborhood U N f~1(V) of p we have f = ¢~ Lo (po fo
@ 1) o, so fis smooth by 1.1.11 (ii). O

1.2 Abstract Manifolds

In what follows we want to extend the concept of differentiable manifolds to sets
which a priori are not realized as subsets of some R™. The key to this generalization
of the notion of submanifold of R™ is the formulation of the properties we derived
in the previous section in terms of charts. These will allow us to dispense with the
surrounding Euclidean space.

1.2.1 Definition. Let M be a set. A chart (¢, V) of M is a bijective map ¢ of
V C M onto an open subset U of R™, ¢ : V — U. Two charts (1, V1), (Y2, V2) are
called (C*°-) compatible if 11 (ViNVa) and 1po(ViNVa) are open in R™ and the chart
transition function )5 o wfl s (Vi N Va) = (Vi N Va) ds a C°-diffeomorphism
(note that this condition is symmetric in 11, 1s ).

U,

A C>®-atlas of M is a family A = {(Va, Va) | @« € A} of pairwise compatible charts
such that M = J,ca Va. Two atlasses A1, Ay are called equivalent if Ay U Ay

11



itself is an atlas of M, i.e., if all charts of Ay U Ay are compatible. An (abstract)
differentiable manifold is a set M together with an equivalence class of atlasses.
Such an equivalence structure is called a differentiable (or C*-)structure on M.
The n from above is called the dimension of M.

1.2.2 Examples.

(i) Let S' = {(z,y) | 22 + y*> = 1} C R? and set V; := {(cos ¢,sing) | 0 < ¢ <
2r} and ¢y : Vi — (0,27), (cos g, sing) — ¢. Let Vo := {(cos p,sinp) | -7 <
o <7}, o Vo = (—m,m), (cosp,sinp) — . Then (11, V1) and (12, V2)
are charts for S' and S' = Vi U V4. Moreover, ¢; and 1, are compatible.
In fact, Y1 (V1 N V2) = (0,m) U (m,27) and ww;l\wm) = — p. We
have 15 o wl_l |(z,27) = @+ @ — 2, so the chart transition function 1, o 1/J1_1 :
Y1 (ViNVa) = b (ViNVs) is a diffeomorphism. Hence A := {(¢1, V1), (¢b2, Va)}

is an atlas of S1.
K Vi \/2
(ii) Let M be the subset of R™ depicted below. Let V; := {(5,0)] =1 < s <

1}, ¥ - Vi — (—1,1), ¢¥1(s,0) = s. Further, let V5 := {(s,0)] - 1 < s <
0} U {(535)‘0 <s< 1}3 1/)2 Vo — (713 1)> 1/12(&0) =S, 7/)2(875) =S.

(1.1)

-
L

Then 11,12 are bijective, hence charts, and 15 o wl_l =S+ S.

However, ¥1(V1 N V) = (—1,0] is not open, so 11, ¥y are not compatible. In
fact M also can’t be a submanifold of R” (same argument as in 1.1.7(iii)).

(iii) As in 1.1.7 (iii) let M := {(sin2s,sins)|s € R} be the figure eight manifold.
Let Vi = M, 11 : Vi — (0,27), 9(sin2s,sins) = s. Then ¢ is a chart and
Ay :={(¢1,V1)} is an atlas defining a C*°-structure on M.
On the other hand, let Vo = M, )2 : Vo — (=7, m), 12(sin2s,sin s) = s. Then
also Ay := {(2,V2)} is an atlas. However, A; and Ay are not equivalent:
Yo otpy 1 (0,21) — (—m,7),
s 0 <s<m upper loop
Yo 0 hy(s) = s—m s=m origin
s—21 w<s<2m lower loop

12



—1
WPy

4

e

27

Hence 9 0 97 ! is not even continuous.

Thus M can be endowed with different C*°-structures. With any such struc-
ture, M is an example of a C>°-manifold that is not a submanifold of R? (cf.
1.1.7 (iii)!).

(iv) Ome can show that for n # 4, up to diffeomorphism there is precisely one C°-
structure on R®. On R* however, there are uncountably many inequivalent
(so-called ezotic) smooth structures!

An atlas for a manifold is called maximal if it is not contained in any strictly larger
atlas.

1.2.3 Proposition. Let M be a C*°-manifold with atlas A. Then there is a unique
maximal atlas on M that contains A.

Proof. Let A = {glpisa chart of M and ¢ is compatible with every ¢ € A}.
Then A O A and we show that A itself is an atlas.

Let (1, W), (p2, W) € A with Wy N Wy # 0. Then since @1, @o are bijective, so
is g 0 <p1_1 s p1(W1 NWa) = po(Wy N Wa). It remains to show that g o gpl_l is
a diffeomorphism whose domain @1 (W7 N W) is open. Let = € o1 (W7 N W) and
(1, V) a chart in A with o7 (z) € V. By definition of A, @s 09~ : p(Wo N V) —
©o(Wo N V) and v o o7t : o1 (W1 NV) = (W, NV) are diffeomorphisms between
open subsets of R™. Therefore, (o3 09~ 1) o (¢ o <p1_1) is a diffeomorphism with
domain (d) o @;1)71(1/)(W2 n V)) = gOl(Wl NWsyN V)

Note that
Pr(WiNWon V) = 1oy (VAW NWa)) = prog™ (Y(V N W) N(V NIW2))

is open. Summing up, for all z € p; (W1 N Wa) there exists an open neighborhood
1 (W1NWanNV) C o1 (W3 NWs), on which ¢y0 901—1 is a diffeomorphism. Moreover,
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o0 ! is bijective on the open set o1 (W1 NW3). Thus p0¢; ' is a diffeomorphism,
so 1 and o are compatible.

Maximality and uniqueness of A are clear. O

From now on, whenever a smooth manifold M is given, by a chart of M we mean
an element of the maximal atlas of M.

Next we want to equip any smooth manifold with a natural topology induced by
its charts. We will make use of the following auxilliary result:

1.2.4 Lemma. Let M be a smooth manifold, (¥, V) a chart of M and W C V
such that (W) is open in R™. Then also (¢|w, W) is a chart of M.

Proof. ¢|w : W — (W) is bijective. Let (¢, U) be another chart of M. We have
to show that |y and ¢ are compatible. Now ¥|w o ™1 : p(UNW) — (U NW)
is bijective and is the restriction of the diffeomorphism o o~1 to (U NW). Also,

pUNW)=po w_l(z/)(U NW))=¢po w_l(w(Uﬁ V)ny(W))

is open. Thus 9|y o =1 itself is a diffeomorphism, so ¥ |y € A. O

1.2.5 Proposition. Let M be a manifold with mazimal atlas A = {(Ya, Va)|la €
A}. Then B := {V,|a € A} is the basis of a topology, the so-called natural or
manifold topology of M.

Proof. Clearly |J,c4 Vo = M. For a, 3 € A, ¥o(Vo NVj) is open in R™ (since 94
and 1pg are compatible), hence by 1.2.4, (Ya|v,nv;, Va N Vp) itself is an element of
A. Therefore, V, NV € B and so B is the basis of a uniquely defined topology. O

1.2.6 Proposition. With respect to the manifold topology of M, any chart (¢, V)
is a homeomorphisms of the open subset V' of M onto the open subset (V) of R™.

Proof. Let v : V — U be a chart M. Then by 1.2.5, V is open in M. We first
show that v is continuous. Let U; C U be open and Wy := ¢~ 1(U;). By 1.2.4,
(¥|w,, W1) is a chart of M, so Wi € B, hence open in M. It remains to show that
1 is open (so that ¢~! is continuous). To this end it suffices to show that 1) maps
any W € B with W C V to an open subset of R".

By 1.2.5 there exists a chart ¢ with domain W. Hence pop=! : (W NV) —
(W NV) is a diffeomorphism. In particular, (W NV) = (W) is open. O

1.2.7 Lemma. Let M be a set, A a C*°-atlas of M, T the manifold topology induced
by A and T’ another topology on M. TFAE:

(i) T=1'

(i) If (¥, V) € A, then V € 7/ and ¢ : V. — (V) is a homeomorphism with
respect to 7.

14



Proof. (i) = (i) is immediate from 1.2.6.

(i) = (i): Let pe M, (¢, V) € A with p € V. Let U be a basis of neighborhoods
of ¥(p) in (V) C R™. Then (¢} (U))yey is a neighborhood basis of p with re-
spect to 7 and also with respect to 7. It follows that every p € M has the same
neighborhoods with respect to 7 and 7/, so 7 = 7/. O

After these preparations we are now in a position to completely clarify the relation-
ship between submanifolds of R™ and abstract manifolds.

1.2.8 Theorem. Let M be an m-dimensional submanifold of R™. Then M is an
m-dimensional C*-manifold in the sense of 1.2.1. The manifold topology of M
coincides with the trace topology of R™ on M.

Proof. As an atlas of M we pick the family of all ¥ = ¢!, where ¢ is a local

parametrization. By 1.1.13 these are precisely the charts in the sense of 1.1.12.
By 1.1.15 (iii) (with f = idps, which is smooth) all chart transition functions are
diffeomorphisms, so M is a smooth manifold in the sense of 1.2.1. According to
1.1.5, every ¢ is a homeomorphism with respect to the trace topology of R™ on M.
Hence by 1.2.7 the trace topology of R™ is precisely the manifold topology. O

From 1.1.15 we may distill an appropriate definition of smoothness for mappings
between abstract manifolds:

1.2.9 Definition. Let M, N be C*°-manifolds and f: M — N a map. f is called
smooth (C*®) if it is continuous and for all p € M there exists a chart ¢ of M
around p and a chart ¢ of N around f(p) such that 1o f o o= is smooth. f is
called a diffeomorphism if it is bijective and f and f~! are smooth.

1.2.10 Remark.

M N
S
%
© P
(V)

P(UNfH (V)

(i) Let (p,U), (¥,V) be charts as above. Then the domain of definition of ¢ o
fop lis U N f~1(V)). This set is open since f is continuous and ¢ is a
homeomorphism.

Conversely, if f: M — N is some map such that for all p € M there exists a
chart ¢ of M around p and a chart 1) of N around f(p) such that p(UNf~1(V))
is open and 9 o f o ¢! is smooth, then f is smooth. In fact, f is continuous
since f =1~ to(ypofop~t)oyp on the open set UN f~1(V) (cf. also 1.1.15(ii)).

(i) If (p,0), (¢, V) are further charts around p resp. f(p), then also ¢o fo @~
is smooth: near p we have

bofop ™t =(oy Ho(ofop o(pog ).

1

Since p was arbitrary, Yo fo@ " is smooth on its entire domain of definition.

(iii) Obviously the composition of smooth maps is smooth.
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1.3 Topological Properties of Manifolds
1.3.1 Proposition. Every manifold M satisfies the separation aziom T;.

Proof. Let p; # py € M. If there exists a chart (¢, V) with p;, pa € V then there
exist Uy, Us open in (V) such that ¥ (p1) € Uy, ¥(p2) € Uz, Uy NUs = (). Hence
= 1(U;) and ¢~ 1(Uy) are disjoint neighborhoods of p; resp. ps. Otherwise there
exists a chart (1, V1) with p; € V] and ps & V1 and vice versa. O

1.3.2 Example. The natural topology of a manifold is not automatically To (Haus-
dorff): Let M be the following set:

e (0,1)

Let Vi = {(5,0)|s € R}, V5 := {(s,0)]s 0} U{(0, 1)}, ¢1 : Vi = R, ¢1(s,0) =
5, 1y 1 Vo = R, 1hy(5,0) = s (s #0), 12(0,1) = 0. Then ¢popy ' : R\ {0} —
R\ {0}, s+ s. Therefore A := {31,192} is a C*-atlas for M. However, M is not
T5 since (0,0) and (0,1) cannot be separated by open sets in M. In fact, let V, W
be open in M, (0,0) € V, (0,1) € W. Then 91 (V1 N V), 2(VoaN W) are open in
R and contain 0. Hence they contain some a # 0, so ¢; ' (a) = (a,0) = ¢y '(a) €
ViNnVNVanW CVNW. Thus VNW # 0, so M is not Hausdorff.

1.3.3 Proposition. FEvery manifold satisfies the first axiom of countability, i.e.,
each of its points possesses a countable basis of neighborhoods.

Proof. Letp € M, and (¢, V) a chart around p. Then there exists a countable basis
of neighborhoods (U, )men of ¥(p) in ¢(V). Hence (=1 (U,,))men is a countable
basis of neighborhoods of p in M. O

1.3.4 Proposition. Every manifold is locally pathwise connected.
Proof. Let p € M and (¢,V) a chart around p such that (V) is pathwise
connected (e.g., (V) a ball in R™, cf. 1.2.4). For ¢ € V there exists a continuous

map c : [0,1] = (V) with ¢(0) = ¥(p), ¢(1) = 1(q), hence ¢ := =L oc:[0,1] —
M, é0) =p, é(1) =q. O

1.3.5 Corollary. Every connected manifold is pathwise connected.

1.3.6 Proposition. Every Hausdorff manifold is locally compact.?

Proof. Let p € M and let (¢, V) be a chart around p. Let B be a closed ball with
center ¢(p) in R™ and B C ¢(V). Then since 1 is a homeomorphism, ~1(B) is a
compact neighborhood of p in M. O

2With the understanding that locally compact means Hausdorff and that every point has a
compact neighborhood. In non-Hausdorff spaces, compact sets need not be closed.
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1.3.7 Proposition. Let M be a manifold. TFAE:

(i) M satisfies the second axiom of countability (i.e., M possesses a countable
basis of its topology, or: M is second countable).

(ii) M possesses a countable atlas.

Proof. (i)=-(ii): Let B be a countable basis of the topology of M and let A =
{(%a, V)| € A} be an atlas of M. Then by 1.2.4, A := {(¢a|p, B)|B € B, B C
Va for some a € A} is a countable atlas of M.

(ii)=(i): Let A = {(¥a, Va)|ae € N} be a countable atlas of M. Every U, = ¥4 (V4,)
is open in R™. Since R is second countable there are open sets Uy, (i € N) in R”
such that {U,,|i € N} is a basis of U,. Hence every open subset V of V, is the
union of certain ¢ 1(U,,). Since any open W C M is the union of certain W NV,

{Va,|la € N, i € N} is a countable basis of the manifold topology of M. O

1.3.8 Corollary. Every compact manifold is second countable.

Proof. We may even select a finite atlas from any given atlas. a

In differential geometry and analysis on manifolds one frequently encounters prob-
lems that can easily be solved locally (in a chart domain). To obtain global state-
ments, one has to ‘patch together’ these local constructions. The most important
tool in this context are the so-called partitions of unity:

1.3.9 Definition. Let M be a manifold. The support of any f : M — R is defined
as the set supp(f) := {p € M|f(p) # 0}. A family V of subsets of M is called locally
finite if every p € M possesses a neighborhood which intersects only finitely many
V e V. Let U be an open cover of M. A partition of unity subordinate to U is a
family {x.|a € A} of smooth maps xo : M — R such that:

(i) {suppxa|a € A} is locally finite.
(i1) For all o € A there exists some U € U such that supp(xa) C U.
(iii) For allp € M, Y caXa(p) =1

Note that by (i) the sum in (iii) is finite for any p € M.

Our next goal is to prove the following result:

1.3.10 Theorem. Let M be a second countable Hausdorff manifold. Then for any
open cover U of M there exists a partition of unity {x;|j € N} subordinate to U
such that, for all j, suppx; is compact and contained in a chart domain.

To prepare the proof we need several auxilliary results. To begin with, we show
that there exist smooth functions on R of arbitrarily small support:

1.3.11 Lemma. Let f: R — R,

e P

= x>0
Then f is smooth.
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Proof. By induction we obtain that

0 r <0
(n) = -
o {e‘iPn(i) 7> 0

where P, is a polynomial. Hence lim, ~o f) () = limg~ o f(z) =0 for all n. O

1.3.12 Lemma. Let M be a Hausdorff manifold, U an open subset of M andp € U.
Then there exists a chart neighborhood V' of p and a C*-function x : M — R* such
that V' is compact, V.CU, x >0 onV and x =0 on M\V.

Proof. Choose a chart (¢, W) around p such that W C U and 9(p) = 0. Let
r > 0 such that for the open ball B,.(0) around 0 we have B,(0) C ¢(W). Then
V = ¢~1(B,(0)) is a neighborhood of p, and V = ¢~1(B,.(0)) is a compact subset
of W. Choose f as in 1.3.11 and let g : R® — RT, g(z) := f(r? — |z|?). Then g is
smooth, g > 0 on B,(0), and g =0 on R™ \ B,.(0). Now let

(@) ::{ golq) qeW

0 qgeEM\V

Now W and M \ V are open, cover M and Y is smooth on both sets, hence on M.
It follows that x has the desired properties. O

1.3.13 Lemma. Let M be a second countable Hausdorff manifold. Then M pos-
sesses an evhaustion by compact sets: I(Kj)jen, K; € M, K; C K3, Vj and
M = UjeN K;.

Proof. Since M is locally compact, there exists a cover V of M consisting of open
sets whose closure is compact. By second countability, we may extract from this
a countable cover (V}),en of M. (Let B be a countable basis of the topology and
B’ :={B € B|3Vg € V with B C Vg}. Then {Vp|B € B’} fulfills this purpose.)

Let K, := Vi3 € M. Choose 79 > 1 such that K, QLJ:; V; (possible since K; is
compact). Let Wy :=J;2, V; and Ky = Wy = |J;2, Vi € M. Then K is compact
and K; C K3. For j > 2, suppose that K; = W} has already been defined. Denote
by 7j41 the first index with K; C (J27'V; and set W1, = U;‘:lx(rnujﬂ) v,
Kjs1 = Wipt = UmSCIV, Then Ky € M, K; C K5,y and U2, K; 2
Uiozl Vi =M. O
Proof of 1.3.10 Let (K;);en be as in 1.3.13.

Set K_1 = Ko =0 and Bj := K; \ K3_,,s0 Bj € M. For each p € B; there exists
a U € U with p € U and (by 1.3.12) a chart neighborhood V' of p with V compact,
VCUNMN\K,;_o=U\K;_3. Moreover, there exists x € C>(M) with y > 0 on
Vand x=0on M\ V.

Since B; is compact it is contained in a finite union of such V. Carrying out
this construction for each j € N we obtain a countable cover (Vi)reny of M with
corresponding C*-functions (x;)jen. The family (Vj)ren is locally finite. In fact,
those V, coming from the cover of B; are disjoint from K;_, hence disjoint from
K for [ < j — 2. Hence every p € M possesses an open neighborhood K} which
intersects only finitely many Vj. Now let x; : M — R,
o Xj
X ZieN Xi
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Then y; is well-defined since ) ;. Xi > 0 (the (V});en form a cover of M, and

- . SN %
Xjlv; > 0). Summing up, x; € C*(M,RT), and 37,y x; = ﬁg;y

(Xx;j)jen is the desired partition of unity subordinate to U. O

=1, so

1.3.14 Corollary. Let M be a second countable Hausdorff manifold and U =
{Uala € A} an open cover of M. Then there exists a partition of unity {x.|a € A}
with suppxa C Uy Ya € A. (The xo will not have compact support in general).

Proof. Choose {x;|j € N} as in 1.3.10, subordinate to Y. Then Vj € N 3 a; with
suppx; C Ua,. Let xo = Z{j‘%:a} X;j- Then by 1.3.9 (i),

suppxa = {p [ xa(p) # 0} € |J suppx; = |J swpx; = |J suppx; € Ul

Q= =« Q=

1.3.15 Remark. More generally, one can show (cf., e.g., [4, Ch. 8]): for any
manifold M, the following are equivalent:

For each open cover U, M possesses a partition of unity subordinate to U.

(a
(

b) M is Hausdorff and every connected component of M is second countable.

(¢) M is metrizable.

)
)
)
(d) M is Hausdorff and paracompact.

Convention: From now on, by a smooth manifold we will always mean a manifold
(in the above sense) whose natural topology is Hausdorff and second countable.

Note that, in particular, every submanifold of R™ is a smooth manifold in this
sense (by 1.2.8 it carries the trace topology of R™, hence is Hausdorff and second
countable).
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Chapter 2

Differentiation

2.1 Tangent space and tangent map

After the topological interlude of the previous section we now turn to a study of
analysis on manifolds. From 1.2.9 and 1.2.10 we know what smooth maps between
manifolds are. However, so far we have not given a definition of the derivative of a
smooth map. In R™, the derivative of a map is the optimal linear approximation to
the map. This terminology only makes sense in the vector space setting. Manifolds,
on the other hand, in general do not carry a vector space structure. Differentiation
on manifolds therefore can be viewed (heuristically) as a two-step approximation
process: first, in any given point the manifold is approximated by a vector space
(the tangent space, corresponding to the tangent plane of a surface). The derivative
itself is then defined as a linear map on this tangent space. To motivate this general
procedure we first have a look at the special case of submanifolds of R".

2.1.1 Theorem. Let M be a submanifold of R™ and p € M. Then the following
subsets of R™ coincide:

(i) imDp(0) where ¢ is a local parametrization of M with ¢(0) = p.
(i) {d(0) | c: I — M C>®,ICR an interval, ¢(0) = p}

(iii) ker Df(p), where, locally around p, M is the zero set of the regular map f :
R™ — R F (with k = dim M ).

(iv) graph(Dg(p')), where, locally around p, M is the graph of the smooth map g

and p = (p',g9(p")).

Proof. (i) C (i1): Given Dy(0) - v € imDp(0), let c(t) := ¢(t - v). Then for a
suitable interval I, ¢ : I — M is smooth, ¢(0) = »(0) = p and ¢/(0) = %|0 p(t-v) =
De(0)v € (it).

(#4) C (ii): Let ¢/(0) € (i4), ¢: I — M and f as in (4i7). Then locally around 0 we
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have f o ¢(t) = 0. Hence

0= —| flet) = Df(c(0))c'(0) = ¢/(0) € ker Df(p)
0 —~—

=p
(#91) C (4): Since (¢) C (¢4¢) it suffices to prove that dim(imDy(0)) = dimker D f(p).
Since ¢ is an immersion, dim(imDp(0)) = k& = dim M. Moreover, dim(imD f(p)) =
n—k,sodimker Df(p) =n— (n—k) = k.

(t9¢) = (iv): Let g as in (iv) (cf. 1.1.8, (Gr)=(Z)), and f;(z1,...,2n) = Tp4; —
gi(z") (J 1,...,n — k). Then locally around p, M is the zero set of f and

ker(D f (p))_= ker(q — ¢" — Dg(p')q') = {(¢', Dg(p')q')lq' € R*} = graph(Dg(p')).
O

2.1.2 Definition. Let M be a submanifold of R™ and p € M. The linear subspace
of R™ characterized in 2.1.1 is called the tangent space of M at p and is denoted by
T,M (dimT,M =k = dim M ). The elements of T,M are called tangent vectors of
M at p.

If N is a submanifold of R" and f : M — N is smooth, then let Tof : To,M —
TrN, c'(0) = (foc)(0). Tpf is called the tangent map of f at p.

T,f is well-defined: let ¢1,¢2 : I — M, ¢1(0) = p = c2(0) be smooth with ¢;(0) =
c5(0). Since f is smooth, locally around p there exists some f: U — R"™ (U open
in R™) with flynam = flunam- Then foc; = foe; (i=1,2), so

(f 0c1)'(0) = (foc1)'(0) = Df(p)cy (0) = Df (p)cy(0) = - - = (f 0 2)'(0).
Moreover, we conclude that T}, f(c/(0)) = Df(p)¢(0), so T, f is linear.

2.1.3 Lemma. (Chain Rule) Let M, N, P be submanifolds, f : M — N, g: N —
PC>® pe M. Then

Tp(go f)=TrpmgoTpf

Proof. Let g and f be smooth extensions of g and f. Then g o f is a smooth
extension of g o f and

Tp(go [)((0) = (3o foc)(0)=Dg(foc0)((foc)(0)=

Next we want to extend the concept of tangent space also to abstract manifolds.
However, for M an abstract manifold and ¢ : I — M smooth, the derivative ¢/(0) at
the moment does not make sense due to the lack of a surrounding Euclidean space.
Instead, we will resort to charts:

2.1.4 Definition. Let M be a manifold, p € M and (1, V') a chart around p. Two

C*>-curves ¢y, cg : I — M with ¢1(0) = p = c2(0) are called tangential at p with

respect to 1 if (1 0 c1)'(0) = (¢ 0 c2)'(0).
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(V)

P o

2.1.5 Lemma. The notion of being tangent at a point is independent of the chart
used in 2.1.4

Proof. Let ¢;, co be smooth curves at p with ¢; tangent to ¢ with respect to
the chart ;. Let ¥y be another chart around p. Then locally around 0 we have

Yooc; = (Yoothy ) o (Proe) (i =1,2), s0
(12 0¢1)'(0) = D(thg 0 by ") (1 (p)) (¥1 0 €1)'(0) = (2 0 c2)'(0).
—_—
=(¢p10c2)’(0)
O

On the space of smooth curves at p we define an equivalence relation by ¢; ~ ¢ &
¢1 tangential to co at p with respect to one (hence any) chart. Forc: I — M, ¢(0) =
p we denote by [c], the equivalence class of ¢ with respect to ~. Then [¢], is called
a tangent vector at p.

2.1.6 Definition. The tangent space of a manifold M at p € M is T,M = {[c], |
c: I — M C*>, I interval in R, ¢(0) = p}.

We first note that for submanifolds of R™ this definition reduces to 2.1.2 since in
this case the map ¢/(0) — [c], gives a bijection between ‘old’ and ‘new’ tangent
space. In fact, picking a chart ¥ around p as in 1.1.14, we have

[e1]p = [ealp & (Y 01)'(0) = (0 e2)(0) & € (0) = c5(0)

D¥(p)cy (0) D¥(p)ey(0)

since DU (p) is bijective. Hence the map ¢/(0) — [c], is well-defined and injective.
Also, it obviously is surjective.

2.1.7 Definition. Let M, N be manifolds and f : M — N a smooth map. Then
we call

Tpf - TyM — Ty N
[y = [fodiw
the tangent map of f at p.

2.1.8 Remark.

(i) Tpf is well-defined:
Let ¢ be a chart of M at p, ¢ a chart of N at f(p), ¢1, co : I — M curves
through p with ¢; ~ ¢3. Then
(Wofoe)(0) = ((Wofop Ho(poe))(0)
Do fop ")) (poc1)(0)
—_———
=(poc2)'(0)

= (o foe)(0),
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SO fOCl ~f(p) f O Co, i.e., [focl}f(p) = [fOCQ]f(p).

(ii) In the particular case where M, N are submanifolds, T}, f is precisely the map
from 2.1.2 in the sense of the above identification (¢/(0) <> [c]p).

(0) = (f00)(0)

~ —

1 T
lelp [focls(p)

2.1.9 Proposition. (Chain Rule) Let M, N, P be manifolds, f : M — N and
g: N — P smooth, and p € M. Then

Tp(go f) = TrpygoTpf
Moreover, since T,(idar) = idr,ar, for any diffeomorphism f : M — N, T,f is
bijective and (T, f)~' = Ty [~

Proof. Let ¢ be a curve through p. Then

Tp(go f)dp) = go f) odlgrw) = Trma(lf o clrw) = Trwyg o Tpf([clp)-
O

So far we did not endow T, M with a vector space structure. In order to do this we
first analyze the local situation in more detail.

2.1.10 Lemma. Let U C R" be open and p € U. Theni: T,U — R", i([c],) :=
c'(0) is bijective, so T,U can be identified with R"™. In terms of this identification,
for any smooth map f:U — V with V C R™ open we have T,f = Df(p).

Proof. The map i is well-defined (choose the chart ) = idyy) and injective (¢} (0) =
c5(0) = (Y oc1)'(0) = (¢ o ce)(0) for any chart ). Also, ¢ is surjetive: Let v € R™
and ¢:t+— p+t-v. Then ¢/(0) = v. Now let f: U — V be smooth and consider

TpU Lf} Tf(p)V

Df(p
The diagram commutes since

io Ty f([clp) = i([f o clyp)) = (f 2 ¢)'(0) = Df(p) - €(0) = Df(p) o i([c],)-

2.1.11 Proposition. Let M be a manifold, p € M, and (»,V) a chart around
p. The vector space structure induced on T,M by the bijection Tpp : T,M —
Ty (V) = R™ is independent of the chosen chart (¢, V).

Proof. By definition, T,V = T, M, so Tt : T,M — Ty (V) = R™ (by 2.1.10).
Also, T, is bijective by 2.1.9. Let [c1]p, [c2]p € TpyM, @, 8 € R and ¢ another chart

24



at p, w.l.o.g. with the same domain V. Then

aleily + Blealy == (L) aTy([eily) + BTp([ealp)
2L (L) Haly o cn (O +5we c2)'(0))
= (L) Ma@op T opoc)(0)+ Bt oyp opoc)(0)
= (T¥) {(D@Wop ) (p®)(alpoa ()+B(¢002)’(0)))
= (T) T T ( ™)) (alpoer)(0) + By o c2)'(0))
20 (o) aLe(lely) + BTpe(ealy)),

which establishes our claim. O

In this way, T, M is endowed with an intrinsic (chart independent) vector space
structure. Moreover, if f : M — N is smooth, then T},f : T,M — Ty N is
linear with respect to the corresponding vector space structures on T, M, Ty, NV:
it suffices to show that T,y o T}, f o Tw(p)ap_l is linear for any charts ¢ of M at p
and ¢ of N at f(p). This map is given by

Tom (o fop™) *Z Do fop™)(p(p),

hence is indeed linear.

Any chart of M allows one to pick a particular basis of T,M: Let (1, V) be a chart
of M at p, and let ¥(p) = (z*(p),...,2"(p)) (the z* are called coordinate functions
of ¢). For 1 <i < nlet e; denote the i-th standard unit vector of R™. Let ¢ (p) = 0.
Then we set

0
ot »

= (Ty¥) ™' (ei) € T,M.

More precisely, in the sense of 2.1.10 we have

0
ozt »

= (Tpy) " ([t = teilo) = [t = 7 (tes)],-

Hence results from transporting the tangent vector of the coordinate line

d
927 lp
t > te; to M via the chart . Since Tp1 is a linear isomorphism, { % |p ey (%n | }
indeed forms a basis of T}, M.

If, in particular, M is a submanifold of R", and ¢ is a local parametrization of p
(with ¢(0) = p), then ¢ = ¢~ ! is a chart at p (cf. 1.1.13(i)) and we have

0
oz’ »

=Top(e)) = (po (t-e;)) (0) = Dp(0)e;

Thus % » is precisely the i-th column of the Jacobian of ¢ at ¢ (p) = 0.
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The notation 8213 » already suggests another interpretation of tangent vectors,

namely as directional derivatives. In fact, any tangent vector can be viewed as
a directional derivative in the following sense:

Let v = [¢], € T,M. Let f € C*°(M,R) (or C>(M), for short), the space of smooth
maps from M to R. Then define 9, : C>*°(M,R) — R by 0, f := T, f(v). Since we
use the identification 2.1.10 we have:

Ou(f) =Tpf(v) = Tpf(lclp) = [f o el = (f 2 0)(0), (2.1.1)

which corresponds to differentiation in the direction v.

In particular, for v = 52 , we have (writing v instead of 9,):

0

i
axp

(f) = (fov™ (t > te)))'(0) = Di(f o~ ")(4h(p)), (2.1.2)

SO % » corresponds to partial differentiation in the chart .

2.1.12 Definition. A map 9 : C*(M) — R is called a derivation at p € M if O is
linear and satisfies the Leibniz-rule:

(i) O(f +ag) = 0f + adg

(i) O(f-g) =0f-g(p) + f(p) - 99

for all f,g € C*(M) and all « € R. The vector space of all derivations at p is
denoted by Der,(C>(M),R).

The following theorem shows that in fact, the tangent space T), M can be identified
with the space Der,(C*(M),R) of derivations at p.

2.1.13 Theorem. The map

A:T,M — Der,(C*(M),R)
v o= Oy

is a linear isomorphism.

Proof. To begin with we show that any 0, is a derivation at p: Linearity is obvious
from (2.1.1) (Ou(f + ag) = Tp(f + ag)(v) = (T, f + aT,g)(v)) and letting v =[],
we have

d(f-9) = (f-9)0c)(0)=((foc)-(g0¢))(0)
f(c(0)) - (g o) (0) + g(c(0)) - (f o) (0)
= f(p)9u(g9) + 0u(f)g(p)
A is linear:
(A(v1 + av2))(f) = Tp f(v1 + ave) = T, f(v1) + Ty f(v2) = (A(v1) + aA(va))(f)-

A is injective:

We first show that any derivation 0 at p only ‘feels’ values of f near p. More
precisely, if U is an open neighborhood of p and f1, fo € C*°(M) are such that
fily = f2ly, then O(f1) = O(f2). In fact, let f := fi — fo. Then f|, = 0 and we
want to show that d(f)[, = 0.
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Choose a neighborhood V of p such that V € U, i.e., V is compact and V C U
(cf. 1.3.6). Then by 1.3.14 there is a partition of unity {x1, X2} subordinate to
{U, M\ V}. Then

0=0(0) =00 f) = w'a(f) +0(x1) f(p) = 0(f).

=1 =0

X2

X2 X1
X 2
V

P U

Since in this way any C°°-function defined locally at p can be extended to M it
follows that in fact any derivation at p is a map from all local C*°-functions at p
(the so called germs of smooth functions at p) into R.

Suppose that A(v) = 0, where v = [¢],, i.e., 0,f = 0 for all smooth functions
f locally defined at p. Let 1 be a chart at p with ¥ (p) = 0 and set f := 2°
(where ¢ = (z',...,2™)). Then 0 = 9, f = T,f(v) = T, f([c]p) = (2" 0 ¢)'(0), so
(¢ 0 ¢)'(0) = 0. By 2.1.10, then, (T, (v)) = (¥ 0 ¢)’'(0) = 0 and therefore v = 0
since Tp is a linear isomorphism by 2.1.11.

A is surjective:
Let 0 € Der,(C>*(M),R). We first note that 0 vanishes on any constant function

f=k:
Ok)y=0(1-k)=1-0(k)+k-0(1)=20(k) = 9(k) =0.

Let ¢ : V — U be a chart of M at p, ¥(p) =0, v = (z',...,2") and B;(0) C U.
Let f € C>°(M) and g := f o1~t. Then for z € B1(0) we have:

1y 1 1 n ,
—g(tx)dt :/ Dg(tx)xdtz/ D;g(tx) - x*dt
/0 dt ( 0 0 ; (

n 1

Z z! / D;g(tx)dt.

i=1 0
—_—

=:h;(x)

g9(x) —g(0)

Hence, on 9! (B1(0)),

Now
. 1 0
hulp) = 1a(0) = | Digl0)dt = Dig(0) = Di(F 04 )w(o) = 5| (1)
0 P
Summing up, we get
Af)=0u(f) VfeC™(M)
where v = 31" | (') 52 ,» establishing that A is surjective. O
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Due to this result we will henceforth identify T, M and Der,(C*(M),R). In fact,
in the literature it is quite common to define T, M as Der,(C*>°(M),R). One of the
reasons for this approach is that formal manipulations become particularly simple:
let O € Der,(C*(M),R), f € C*°(M). Then 9 = 9, for some v € T,M. Therefore,
(2.1.1)
Tpf(0) = T f(9y) "= 0u(f) = O(f),

and we obtain:

Tpf(0) = 9(f) (2.1.3)

Now let f € C>°(M,N). Then the tangent map of f in the derivation picture is
computed as follows:

Tpf : Derp(C*(M),R) — Ders,)(C*(N),R)

(2.1.4)
0 = (g—09(gof))

In fact, by (2.1.3) we have

(T, £(0))(9) 2" Ty 9T, £(9)) *2° T (g 0 £)(0) P2 a(g 0 £)

2.1.14 Proposition. Let M™, N" be C*-manifolds, f € C*(M,N), p € M,
o= (a',...,2™) a chart of M around p, ) = (y',...,y") a chart of N around f(p).
Then the matriz representation of the linear map T, f : TyM — Ty, N with respect

(2.1.3)

_r. ) _ .0
to the bases Br,nr = {WL},..., 87“|p} and Br, N = {BTP PRSI ay P )} 18
precisely the Jacobian of the local representation fy, =1 o fo ™t of f. Thus,
9 - 9 “0fy, 0
T,f(=—| )= Diy* -1 —| = Yo (215
Fam] )= oDt esor et | =3G9

Proof. The i-th column of [Tpf]BTPI\/I;BTf(p)N is [T (5=

)]BT“ e Hence we want

to write T), f( 2 o } We have

in the basis i’ sy
2 Loy, o

Dfpo(p0) *= Tppy (o foe™) 22 Ty o Ty f o (Tpp) .
Let Jii := Di(f,)(0(p)) = Di(¥* o f o ™" )(¢(p)). Then

01 5

) = (L) M) = (Ty) " (Dfup((p)e’) =

= ZJ]C’L Tf(p)w ZJ]CZ a5

oyk

f(p)

2.1.15 Corollary. Let M™ be a manifold, p € M and let ¢ = (x',...,2™) and
= (yl,... ,y”) be charts around p. Then

" 0 " oyk 0
- ZDz Y (e(p)) 55wl = Tk (2.1.6)
(“)x = oy » = dz* dy
Proof. Set f =idys in 2.1.14. O
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2.2 Tangent bundle, vector fields, vector bundles

A vector field on an open subset U of R™ is an assignment p — X, of a vector
Xp € R* 2 T,U to each p € U. To analyze, e.g., differential equations with right
hand side X (i.e., ¢/(t) = X(c(¢))) one will typically assume X to be smooth (at
least C'). We want to extend such notions to the manifold setting. Thus we are
looking for maps X mapping points in a manifold M to vectors in T, M. At the
moment, however, we do not have a concept of smoothness for such maps: the
individual tangent spaces are not yet bundled together into one manifold. Our first
aim therefore is to remedy this deficiency.

2.2.1 Definition. Let M be a smooth manifold. The tangent bundle (or tangent
space) of M is defined as the disjoint union of the vector spaces T,M (p € M):

T™ = | | T,M = | {p} x T,
peEM peEM

The map wpr : TM — M, (p,v) — p is called the canonical projection. If f : M —
N is smooth, then the tangent map T'f of f is defined as T f(p,v) = (f(p), Tpf(v)).

2.2.2 Remark. Depending on whether one wants to make the representation of
T'M as disjoint union | |, ,, T, M explicit (as above, i.e., TM = [, {p} xT, M) or
not one obtains slightly different notations for the relation between T'f and 7T}, f. In
the first case, one simply considers T,M C T'M and writes T}, f = T f|r,anr : TyM —
TN € TN. In the second, one writes more explicitly T, f = pry o T f|r,r. We
will usually prefer the first type of notation.

2.2.3 Lemma. (Chain Rule) Let f : M — N, g : N — P be smooth. Then
T(go f) = TgoTf. Moreover, T(idpr) = idrar, so for any diffeomorphism f :
M — N we have (Tf)~t =T(f1).

Proof. By 2.1.9,

T(go f)p,v) = (9(f(p),Tp(go () = (9(f(P): Ttpyg o Tpf(v)))
= Ty(f(p), Tpf(v)) = (TgoTf)(p,v)
and
T(ida)(p,v) = (p, Tpida (v)) = (p,v) = idrnm(p, v)
O
In order to turn T'M into a smooth manifold we have to endow it with a C°°-atlas.

Natural candidates for the charts of TM are the tangent maps T of charts (¢, V)
of M:

Ty TV = [ J{p} x L,V = (J {0} x T,M =: TM|, = T((V)) = (V) x R
peEV peEV
Here, T(¥(V)) = U, eponfzt x Tu(¥(V)) = ¢(V) x R". Any such T is bijective.
——
=Rn
2.2.4 Proposition. Let M™ be a smooth manifold with atlas A = {(¢a, Va) | a €
A}, Then A == {(T¢a, TM|y, ) | « € A} is a C*-atlas for TM. The natural

mamnifold topology of T M is Hausdorff and second countable, hence T M is a smooth
manifold of dimension 2n.
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Proof. The TV, cover TM and any Tty : TV, — 10 (Va) x R™ is bijective. Let
TMly, 0 TM|Vﬁ # 0, ie., VoN Vg # 0. Then:

Tygo(Ta)t = TWpov'): T(Wa(VaNVs)) = T(¥s(Va NVp))
=1ho (VanVs) xR =15(Vu NV B)xXR"
T(gpoy')(w,w) = (Ygoipy (), Tu(Pgovy!) w)
PEY (g0 dg (@), Dg 0wy ) (@) - w), (2.2.1)

Since any such map is smooth, TM is a C*°-manifold of dimension 2n if we addi-
tionally verify that it is Hausdorff and second countable.

TM is Hausdorff: Let (p1,v1) # (p2,v2) € TM. Then there are two possibilities.

1.) p1 # p2. Then since M is Hausdorff there exist chart neighborhoods Vi, V5 of
p1, p2 with Vi NV, = (. Then T'V;, TV, are neighborhoods of (p1,v1), (p2, v2)
in the natural manifold topology of TM with TV; N TV, = ().

2.) p1 = pa: Choose a chart (1, V') around p and separate T (p1, v1), T¥(p2, v2)
in TY(TV) = (V) xR™. Since T4 is a homeomorphism this gives the desired
separation in T'M.

T M is second countable: By 1.3.7 there exists a countable atlas {(¢,,, V;,) | m € N}
of M. Then {(T%m,TVy) | m € N} is a countable atlas of T M, so, again by 1.3.7,
the claim follows. O

2.2.5 Remark.

(i) If f: M™ — N™ is smooth, then sois Tf : TM — TN. In fact, for (¢, V) a
chart of N, and (¢,U) a chart of M we have

TpoTfoTy™ (z,w) = T(pofop™)(z,w)
= (Yofop™(z),D(ofop ")(z) w)
which is smooth on its open domain p(UNf~1(V))xR™ = T(p(UNf~1(V))).
This gives the result by 1.2.10 (ii).

(ii) mpr : TM — M is smooth. In fact, locally 7y, is a projection: let (¢, V') be a
chart of M™. Then

TM|y ML VM

| I

T(W(V)) = (V) x R* — (V)

’(/)Oﬂ'MOT’l/)_l({E,’u)) = wowM('l/J_l(x7wa_l(w))
= P~ (z) =z = pry(z,w).

On closer examination it turns out that T'M in fact has more structure than a ‘pure’
manifold: the images of the charts Ty, (TV,) = ¥4 (V,) X R™ are cartesian products
of open subsets of R"™ with vector spaces. The chart transitions (2.2.1) respect this
structure, as they are of the form (z,w) — (p1(x),a(z) - w) with ¢o(z) a linear
map for each . Thus TM furnishes our first example of a vector bundle in the
sense of the following definition.
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2.2.6 Definition.

(i)

(ii)

Local vector bundles: Let E, F be (finite dimensional, real) vector spaces,
and U C E open. Then U x F is called a local vector bundle with base
U. We identify U with U x {0}. For u € U we call {u} x F the fiber
over u. The fiber is equipped with the vector space structure of F. The map
m:UxF = U, (u,f)— uis called the projection of U x F. Then the fiber
over u is precisely 71 (u).

Amap p: UxF — U xF' of local vector bundles is called a local vector bundle
homomorphism (resp. a local vector bundle isomorphism) if ¢ is smooth (resp.
a diffeomorphism) and has the form

o(u, f) = (p1(u), p2(u) - f),

where po(u) is linear (resp. a linear isomorphism) from F to (resp. onto) F’
for each u € U.

Fopo(uy F

©1

Vector bundles: Let E be a set. A local vector bundle chart (or vb-chart) of
E is a pair (U, W), where W C E and ¥ : W — W' x F’ is a bijection onto a
local vector bundle W' x F' (with W', F' depending on V). A vector bundle
atlas is o family A = {(Vo, Wa) | o € A} of local vector bundle charts such
that the W, cover E and any two vector bundle charts (¥o, Wy), (¥, W3)
in A with Wo, N W3 # 0 are compatible in the sense that

Wgo \I’;l U, (WoNW3a) = Ug(W, N Wp)

is a local vector bundle isomorphism (in particular, Uo,(Wo N Wg), Wa(Wy N
Wpg) are supposed to be local vector bundles).

Two vector bundle atlasses Ay, As are called equivalent if A1 U As is again
a vector bundle atlas. A wvector bundle structure V is an equivalence class
of vector bundle atlasses. A wvector bundle is a set E together with a vector
bundle structure. Since any vector bundle atlas is, in particular, a C*-atlas,
E is automatically a C*°-manifold. Again we require that the natural manifold
topology of E is Hausdorff and second countable.
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2.2.7 Remark.

(i)

In any vector bundle F there exists a distinguished subset B, the basis of E,
defined by:

B:={e € E |3 vbchart (¥,W) s.t. e =¥ ! (w,0) for some w’ € W'}.

B is independent of the vector bundle charts used in the definition since any
transition of vector bundle charts is linear in the second component (so 0 is
mapped to 0). If A = {(V,,W,) | @ € A} is a vector bundle atlas for E,
then A" = {(Valy. >, Wa N B) | @ € A} is a C*™-atlas for B. Thus B is a

smooth manifold. In fact, if U0 W 1(w', f') = (z/J/gB (w’)zﬁlg (w’) - f'), then
Yslyy,np © (Calw,qp) Hw',0) = (wég(w’),O), which is smooth. Thus the
chart transitions in B are exactly the wgg, if we identify W' x {0} with W"’.
There is a well-defined projection 7 : £ — B: let e € E, ¥, a vector bundle
chart around e and U, (e) = (W', f) (Ty : W — W’ x F’). Then let w(e) :=

U (w',0). This definition is independent of ¥,: Let (U3, Ws) be another
vector bundle chart around e, ¥g(e) = (w”, f”). Then

Wgo Wt (w', f1) = (5 (w'), w5 (w') - 1) = (w”, f),

so w” = wgloz(w’) and therefore W o U1 (w',0) = (w”,0). Hence 7(e) =
U t(w',0) = \I/gl(w”, 0). Obviously, 7 is surjective. Moreover, 7 is smooth:

T

E —_— B

| Jec

W x B 2Oy oy

Since pr; is smooth, so is 7.

For b € B we call 771(b) the fiber over b. It carries a vector space struc-
ture induced by the vector bundle charts: Let ej,es € m~1(b), ¥, a vector
bundle chart around b, ¥,(e;) = (w', f/) (i = 1,2). Then let e + Xes =

3

W l(w', f{ + Af}). This is independent of the chosen vector bundle chart:
Let Uz be another vector bundle chart, ¥g(e;) = (v, ¢;) (i = 1,2). Then

WeoU Tt (w, ff) = (i (w), v (w) f1) = (v, g]), so WaoU T (w!, f{+ASS) =
(W5 () G W) - ff + M) - ) = (0,91 + Ags). Thus e1 + Aes =
W (wh, f1+ Af3) = W5t (w, g1 + Agh).-

For U C B open let E; := Jycy{b} X Ep.

In the literature the following alternative definition of vector bundles is very
common:

A vector bundle is a triple (E, B, 7) consisting of two C*°-manifolds F, B and
a smooth surjection 7 : E — B such that for some fixed vector space F’ and
all b € B we have:

e The fiber 7~1(b) =: E} is a vector space.

e There exists an open neighborhood V' of b in B and a diffeomorphism

U:W:=71V)—= V x F', which is fiberwise linear (i.e., \il\ﬂfl(b) is
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linear Vb € V) and such that the following diagram commutes:

V) — Y VxR

x r (2.2.2)

Vv

To see that this definition is equivalent to 2.2.6, suppose first that F is
a vector bundle as in 2.2.6, and let 7 and B be as in (i) above. Then
for any vb-chart (¥, W,) we have, setting ¢, := ¥,|p : W, N B —
W! x {0} =W/

Wy = 7= (Wa 1 B) =Yoo W x 7 "% (A B) x F”

\ /

Wo.NB

Thus we may set U, := ((U,]z)~" x idgs) 0 ¥, to obtain (2.2.2).
Conversely, having a vector bundle in the above sense, choose a covering
of B by charts (¢4, Va) such that for each a we have (2.2.2) with dif-
feomorphism U, 77 (V) = Vo X F'. Now set U, := (¢, x id) o U,
71 (Vo) = ¢a(Us) x F'. Then

UsoW,! = (pg xid) o Tg oWt o (o1 x id). (2.2.3)

By (2.2.2) we have pr; o Wg0 W ! = pr, on (V,NVs) x F’, s0 pryo¥go0
Ul (v, f) = pg oyt (v) for any (v, f') € (Vo NV3) x F'. Moreover, all
maps in (2.2.3) are fiber-linear, so we can write

Tg 00, (v, f') = (pp 0 pat(v), 05 (v) - f),

where wgoz is linear and depends smoothly on v, i.e., ¥50 W1 is a local
vector bundle isomorphism.

2.2.8 Example. (T'M, M, my) is a vector bundle:

Let A = {(¥a,Va) | @« € A} be an atlas of M. By 2.2.4, with ¥, = Tt,,
W, := TV, the family A" := {(¥,, W,) | @ € A} is a vector bundle atlas of TM.
By 2.1.11, the fibers W];[l (p) = {p} x T,M = T,M carry the vector space structure
induced by ¥,. Hence, locally TM has a product structure: T, : TM |Va =
TVy — o (V, ) x R™ and we obtain the following commutative diagram:

TVo =7 (Vi) —2 o (Vo) x R 2220y e
| EE
P vt
Va —  Ya(Va) —— Vi

After this clarification of the underlying structures we return to our original task of
defining vector fields on manifolds. Thus we are looking for maps which smoothly
assign to each p € M an element X,, = X (p) of T, M.

2.2.9 Definition. Let (E, B, ) be a vector bundle. A map X : B — E is called a

section of E (more precisely: of m: E — B), if mo X =idg. The set of all smooth
sections of E is denoted by I'(B, E) (or I'(E)).
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Thus a vector field is a section of TM (7(X,) = p Vp). If (¢, V),¢ = (z!,...,2") is
a chart of M then for any p € V the 2; , form a basis of T;, M. Since X, € T}, M, for

each p there exist uniquely determined X*(p) € R such that X, = 31" | X*(p) 5%

This is called the local representation of X on V.

P

2.2.10 Proposition. Let X be a vector field on a manifold M. TFAE:

(1) X : M — TM is smooth, i.e., X € [(TM).
(i1) For every f € C*(M), p— Xp(f) : M — R is smooth.

(iii) For every chart (1, V) of M, ¢ = (2,...,2™) we have: in the local represen-
tation

X = X' .

(p) =Y _X'(p) e

i=1

)
p

Xt e C®(V,R) foralli=1,...,n.

Proof. (i)=(ii): X : M — TM is smooth by assumption. Also, if f € C>®(M),
then Tf : TM — TR = R x R is smooth by 2.2.5(1). Hence p — Tf(X,) =
(f(p), Trf(X,)) = (f(p), Xp(f)), and therefore also p — X, (f) is smooth by 2.1.3.

(ii)=(iii): Let po € V and let U be an open neighborhood of py such that U
is compact and U C V. By 1.3.14 we may choose a partition of unity {x1,x2}
subordinate to {V, M \ U}.

>

I
v T T

>,

1
T 7

U Vv

Let 1 < j <n and set f:= x12/ (extended by 0 outside of V). Then f € C*°(M)
and f|,; = xj‘U. For p € U we obtain:

(a7) =

p

%0 = LX) o

———
=pr; otporp—1

= Y Xip)Di( 2709 )(w(p) =
=1

= Y Xi(p)di; = X' (p)
=1

Therefore, each X7 |U is smooth. Since py was an arbitrary point in V, each X7 is
smooth on V' (1 < j < n).

(iii)= (i): Let (¢,V) be a chart at p € M. By 1.2.10 (i), it suffices to show that
Tv o X o9~ ! is smooth (on its open domain (V). Now

n

TooX(p) = Te(YX'0) o] ) =Tu(Y X ) (Ty) ™ (e0)
i=1 p i=1
= @) T X ) T0) ) = W), Y X e,
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so, finally,

n

TyoX oy (x) = (x,» X' " (z))es) (2.2.4)

i=1

is smooth, as claimed. O

2.2.11 Definition. The space of smooth vector fields on M is denoted by X(M).

2.2.12 Examples.

(i)

(i)

Vector fields on R":

Let U C R"™ be open. From our analysis course we know: a vector field is
a C®-map X : U = R", X(p) = (X'(p),...,X"(p)) = 37—, X'(p)e;. How
does this fit into the above framework?

U is a manifold with the single chart 1) = idy and the corresponding atlas A =
{(idy,U)}. By 2.1.10 we have T,¢) = Dt)(p) = id, so , = (L) Hei) =
e;. As a derivation, according to (2.1.2), % , acts as follows:

of

0

i
(%cp

(f) = Ds(f oid™")(id(p)) = D; f(p)

Hence X, = >""" | X*(p)e; resp. X, = > i, X'(p) %
ing X as a vector or as a differential operator (directional derivative in the
direction (X(p),..., X"™(p))), respectively.

» correspond to view-

As in 1.2.2, let M = S' = {(z,y) € R? | 22 + y*> = 1}, and set V; =
{(cos,sinp) | ¢ € (0,2m)}, 1 : Vi = (0,27), 1(cos¢,sing) = ¢, and
‘/2 = {(COSQZaSinQB) ‘ 95 € <_7T77T)}7 ¢2 : Vv2 — (—7'('77'('), ¢2(COS @7Sin¢) = 95

—singp
cos ¢

p

\% Vo

With respect to the chart ¢, at p = (cos ¢, sin ¢) the vector field % is given
by

0 _ _ _ —sin

s| = G e = T () = Du )1 = ()

cos
» 14

Analogously, with respect to ¥9 we have:

9| [—sing
pi cos @

0P
at p = (cos @,sinp). By (2.1.6), on V4 N V2 we have
o 0¢ 0

dol,  0p 03

p
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and

o _
95 D(z 09y ) (¥ (p)) =1
since ( )
-1 %) pe 0,m
Y209 SD'_){ =21 @€ (m2r)
Therefore, ai = % on Vi3 NV, and we conclude that
© 7
. % on Vi
8%5 on Vs
is a well-defined vector field on S!. Often one simply writes X = %.

Let f:S* — R be a smooth function. By (2.1.1) we have:

0 _ 0 .
(XAH) = o] () =D(f ot )(¥i(p) = 5-Flcosp,sing) =
Plp ~—— 1%
=¢
= ——(cosy,sinep) - (—sin )+g(cos sin) - cosp =
= oz ¥, sme P By P, Sl ¥ =
. 0 0
= (—sing- Fy + cosp - a—y)f
It follows that % = —singp- a% +cosp - % in the basis {%, %} >~ {eg,ea}
of R2.

2.2.13 Remark. In the local representation (2.2.4) of a vector field in terms of
a chart 1 we pushed forward X|y via . More generally, if FF : M — N is a
diffeomorphism and X € X(N), we define the pullback of X under F' by F*X :=
TF~'oXoF:

™™ 5 TN

F*XT TX
M—— N

Then F*X € X(M). Also, if X € X(M) we write F,.X for the vector field
(F71)*X € X(N) and call it the push-forward of X under F. Due to the chain
rule we have the useful composition properties (for ¥ : M — N,G : N — P
diffeomorphisms, X € X(P), Y € X(M)):

(GoF)y'X = F*(G*X) (GoF).Y = G.(FY).
In 2.1.13 we identified T,,M with the space of derivations Der,(C*(M),R) at p.

Thus for any X € X(M) and any p € M, X, is a derivation at p. The map
C>®(M)> f— X(f), where X(f) :=p+> X,(f) is linear and satisfies

X(f-9)=X(f)- g+ X(9) (2.25)
In fact, for p € M we have:

(X(f-9)) = Xp(f-9)
= f(p)Xp(g) +9(p)X,(f)
= (f-X(9)+g-X(f)D):

Consequently, X is a derivation in the following sense:
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2.2.14 Definition. An R-linear map D : C*°(M) — C>(M) is called a derivation
of the algebra C*(M) if it satisfies the following product rule:

D(f-g)=[-D(g) +g-D(f).
The space of derivations on C>°(M) is denoted by Der(C>*(M)).

2.2.15 Theorem. The derivations on C>°(M) are precisely the smooth vector
fields on M: Der(C>®(M)) = X(M). More precisely, every smooth vector field
is a derivation on C*° (M), and, conversely, every derivation on C*°(M) is given by
the action of a smooth vector field.

Proof. X(M) C Der(C>°(M)) by 2.2.10 (ii) and the above considerations. Con-
versely, let D € Der(C*(M)). Then for any p € M the map C*(M) > f —
(D(f))(p) is a derivation at p:
(D -9)p) = (D(f)-g+f-D(9)(p) =
= (D())®)-9(p) + f(p) - D(g)(p)-

By 2.1.13 it follows that there exists a unique X, € T, M with X,(f) = (D(f))(p).
Hence p — X, is a vector field on M with X (f) = D(f) Vf € C>°(M). X is smooth
by 2.2.10 (ii). O

2.2.16 Definition. Let X, Y € X(M). The Lie bracket of X and Y is defined as
(X, Y](f) = X(V) =Y(Xf)  (feC™(M))

It follows that [X,Y] : C*°(M) — C*™(M) is linear and satisfies the product rule, so

by 2.2.15, [X,Y] € X(M).

2.2.17 Proposition. (Properties of the Lie bracket) Let X, Y, Z € X(M), f, g €
C>®(M). Then:

(1) (X,Y) = [X,Y] is R-bilinear.
(i) (X, Y]=-[Y,X] ([, ] is skew-symmetric).
(tid) [X,[Y.Z]]+ Y, [Z, X]| + [Z,[X,Y]] =0 (Jacobi-identity).
(iv) [fX,gY] = fg[X.Y] + FX(g)Y — g¥ (H)X.
(v) [, ] is local: If Viis open in M, then [X,Y]|, = [X|,, Y]]
(vi) Local representation: If (1, V) is a chart, ¢ = (z',...,2"), X[, = Si; X' 52,

Yy, =>r, Yi%, then:

U oY’ axt . 0
_ 2 § : k _ vk

i=1 k=1

Proof. (i), (ii) are immediate from the definition.

(iil) We calculate:

(X, v, Z2]lf = XY (2f)-X(2(Y[) =Y, Z)(X[) =

= X(Y(2))-X(“Z{Y[)-Y(Z(X[)+2(Y(X]))
Y12, X]If = Y(Z(X[) =Y (X(Z)) - Z(X(Y[)) + X(Z(Y [))
(2, X YNf = Z2(X(Y]) -2V (X[)) - X(Y(Z])) + Y (X(Z])),



which sums to 0.

(iv) Let h € C*°(M). Then

[fX,gY]h = (fX)(gY(h) — (gY)(fX(h)) =
= [X(9)-Y(h)+f-g-X(Y(h) = f-g-Y(X(h))=gY(f)X(R).
=fg[X,Y](h)

(v) Let f € C®°(V). Then X,(f) is well-defined for all p € V (cf. the proof of
2.1.13). Thus the map p — X,(f) is defined on V" and coincides with X|,, (f). An
analogous statement holds for Y. For p € V' we therefore have:

[X7Y]p(f) = Xp<Yf)_Yp(Xf):Xp(Y|V( )) p(X‘V( ))_
= (X[y)p(Yly () = (Y[y)p( Xy () =
= [X|V’ Y|V]P(f)

(vi) Let f € C*°(V,R). Then:

0 0 0 0 0
32 3 = oo !~ | (o)
Now
af (2.1.2) 1o} _
gl o) g 00 DU @) =
=:9;(q)
(2.1.2) B
=" Di(gjov N (¢(p) =
S
Dj(fop=1)
= D;Di(fo " (W(p) =
0 0
= 35 p(%f),
0 [aii’%] =0 Vi,j. Hence
(@) o
(X, Y], = [X|V7Y| ] =
- [; = c’)x’“
00 ey 0 OGOV 0 oxt 0
B , Xy [8 i Pz 2ot Ozt Oz ozk 8xi) -
i,k=1 N—_———
-0
= oY’ oXt 0
_ O ok
N ;(;(X oxk Y ozk ))ami

a

2.2.18 Remark. A vector space that is equipped with a bracket operation satis-
fying (i)—(iii) from the previous result is called a Lie algebra. Thus (X(M),]., .])
forms a Lie algebra (of infinite dimension).
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2.3 Ordinary differential equations, flows of vector
fields

In the theory of dynamical systems one analyzes solutions of autonomous ODEs
d(t) = X(c(t)), where X is a vector field. In applications, X is often not defined
on an open subset of R™. For example, ¢ might be subject to certain ‘constraints’,
i.e., be constrained by some regular equation. By 1.1.8 this means that X is in fact
defined on some differentiable manifold M. Thus we are interested in the ODE

() = X(c(t)) (2.3.1)
with X € X(M).

To begin with we have to clarify what we mean by ¢/(¢). For ¢ € C*(I,R"), ¢/(¢) is
given by the vector De(t) -1 (where 1 = e; € R). For ¢ € C*°(I, M) we analogously

set
J)

2.3.1 Remark. This definition of ¢’ provides a convenient interpretation of tangent
vectors as derivatives of curves analogous to the setting of submanifolds of R™ from
2.1.1 (ii). Since R, as a manifold, is equipped with the trivial atlas {id}, we may
identify % ’ , with [id]; (from 2.1.6). Therefore, using 2.1.7 we obtain for any smooth
curve ¢ : I — M with ¢(0) =p

, 0
(0) = Toc( pn

d(t) = Tyc(l) "= Tie

2.2.12 ( gt

0) = Tye(lid)o) = [c 0 id]e(o) = [dlp- (2.3.2)

Since differentiation is a local operation we may write (2.3.1) in local coordinates:
let (1, V) be a chart in M. The local representation of X with respect to ¢ =
(x,...,2") is the push-forward 1, X := T o X o)~! of X under ¥:

™ I (V) x R®

] Tox

MoV s (V)
By (2.2.4), ¢, X is the map

n

2 2,y X (7 (@))es)
i=1
(for X|, = Y0, Xi%). One often drops the first component in this formula.
Hence locally X is a vector field with components (Xt oy~ ..., X" oe~1). We
also localize ¢/, i.e., we write ¢/(¢) in the chart ¢: ¢’ is the second component of Tc,

applied to 1 (& %). An application of T gives

(T oTe)(t,1) =T(Poc)(t,1) = (Yoct), D(oc)(t) - 1).
Now D(¢oc)(t) -1 = (¢ oc)(t). Thus with respect to the chart ¥, (2.3.1) reads:

(Woc)(t) = (1. X) (Y oc(t)), (2.3.3)
so locally we obtain the autonomous ODE
(o) (t) = (X" op™ ) (hoc(t)) (1<i<n) (2.3.4)
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or, with ¢ = 2 o¢, X' = Xioq~!
(@) (t) = X' (&(t)).

To study the global behavior of the solutions of (2.3.1) (the so-called integral curves
of X)) we will need the following fundamental existence and uniqueness result for
ODEs:

2.3.2 Theorem. Let F : R x R™ — R™ be smooth. Then there exists an open
interval I around 0 € R and an open ball U around 0 € R™ such that for each x € U
there is a unique solution ¢, : I — R™ of the initial value problem

A (t) = F(t co(t))
@0) = =

The map (t,x) — c,(t), I x U — R™ is smooth.

Proof. See your favorite ODE-course or Dieudonne, Vol. 1, 10.8.1, 10.8.2. a

Based on this result we establish the following fundamental theorem on ODEs on
manifolds.

2.3.3 Theorem. Let M be a smooth manifold and X € X(M). Then

(i) Any p € M is contained in a unique mazximal integral curve of X, i.e., there
is a unique smooth solution c, of (2.3.1) with ¢,(0) = p and mazimal domain
of definition (t” ,t%.).

(id) If t7. < oo, then limtﬁtzjr cp(t) = oo. That is to say, for t — &, the curve
¢p(t) leaves every compact subset of M (and analogously for t* > —occ).

(iii) The set U = {(t,p) | p € M, t* <t <t} is an open neighborhood of {0} x M
in R x M. The flow of X, defined by FI* : U — M, (t,p) + c,(t) is smooth

and U is the mazimal domain of definition of F1*X. For every p € M the map
t— FIX(t,p) = Flf( (p) satisfies the following semi-group property:

FI7 . (p) = FIX (FIZ (p))

whenever the right hand side of this equation exists.

Proof. (i) As we have seen in (2.3.3), in every chart domain (2.3.1) can be trans-
formed into a local autonomous ODE. Thus 2.3.2 implies the existence of smooth
solutions of (2.3.1), i.e., of integral curves of X. Moreover, again by 2.3.2 these
solutions are locally unique, i.e., if two solutions coincide in a t-value ty then they
in fact coincide on a neighborhood of tg.

Let pe M, and ¢; : Iy — M, ¢o : I — M two integral curves of X with ¢;(0) =
p = c2(0). Then J :={t € 1 NIz | c1(t) = c2(t)} is nonempty (since 0 € J) and
closed in I; N I5. By the above J is also open in Iy N1, so J = I1 N I5. Thus ¢; and
co can be combined into a single integral curve on I; U Is. The maximal integral
curve ¢, through p therefore is defined on (¢ ,¢%) = [J{I | 3 integral curve ¢ : I —
M with ¢(0) = p}.

(iii) Since 0 € (t,t}) for all p € M it follows that {0} x M C U. Moreover,
FI%(0,p) = ¢,(0) = p. Suppose that FLX (FI1Y (p))) exists, i.e., t — FL*(FIX(p)) is
the maximal integral curve of X through FIX (p). Since also ¢ — Flﬁ_t(p) is an inte-
gral curve of X with initial value F1* (p), it follows that F1,,(p) = FI,¥ (FIX (p)). By
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2.3.2, FI¥ is defined and smooth on a neighborhood of {0} x M. For p € M let I, :=
(t”,#}) and I, := {t € R | FI¥ is defined and smooth on a neighborhood of [0, ] x
{p} (for ¢ > 0) resp. of [t,0] x {p} (for t < 0)}

Then I, C I, 0 € I, and I, is an open interval. We will show that I, = I,,. Suppose
to the contrary that I, C I,,.

to

A
7

0 I]; 1,

I~
a

Without loss of generality we may suppose that to := inf{t > 0|t € I, \ I} > 0.
Note that to ¢ I, since I,, is open.

We know that FI¥ is defined and smooth on a neighborhood W of (O,Flt)g (p)) €
R x M. We choose some § with 0 < § < tg, and a neighborhood V of p in M such
that

(—6,20) x FIX _s(V) C W

(which is possible since (s, q) — F1X (¢) is continuous) and such that ¢ — Flfgf(;(q)
is smooth on V. Then the map

(5,q) — Flf(Flggfé(Q)) = Fl?“rtgf(s(q)

is smooth on the neighborhood (—4,28) x V of [0, 8] x {p}, so FI* is smooth on the
neighborhood (tg — 28, ¢y +6) X V of [tg — d,t9] x {p}. Moreover (by definition of ¢y)
to—d € I, so FI¥ is smooth on a neighborhood of [0,y — 6] x {p}. Summing up,
F1¥ is smooth on a neighborhood of ([0, %y — 8] U [to — 6, t0]) x {p} = [0, 0] x {p}.
But according to the definition of IZ’, this means that t, € I;/m contradicting the
definition of ty, which establishes I, = I,.

Hence U = {(t,p) | t € I,} = {(t,p) | t € I,,} is open and F1¥ is smooth on U (both
according to the definition of I)).

(ii) Let p € M, t! < oo and K a compact subset of M. We want to show that
cp(t) ¢ K for t sufficiently close to . Suppose to the contrary that there exists
a sequence (t,) with ¢, / t7 and ¢,(t,) € K for all n. Since K is compact, a
subsequence of (c,(ty)), hence w.l.o.g. (¢p(t,)) itself converges to some p’ € K.

There exists some € > 0 and some neighborhood V' of p’ such that F1* is smooth
on (—¢,e) x V. Choose ng such that c,(t,) € V Vn > ng. Since

F1¥ (cp(t,)) = FLX (F1IY (p)) = 1Y, (p) = cp(t + tn),

cp(t + tp) exists for all [t| < ¢ and all n > ng. Thus ¢,(s) is defined for s €
(tn —&,tn +¢€) Yn > ng. Choose n > ng such that ¢, > t7 — 5. Then ¢,(s) is exists
up to ¢, — 5§ +e =14 + 5 >t contradicting the definition of ¢/ . O

From this main theorem we will be able to conclude the existence of flow bozxes in
the following sense:

2.3.4 Definition. Let X be a smooth vector field on a manifold M and let p € M.
A flow box of X at p is a triple (V, a,FlX) with the following properties:

(i) V is an open neighborhood of p in M and a € (0, o0].

(ii) Setting I, == (—a,a), FI* : I, x V.= M is smooth.
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(iii) For each m € V, t — FLX(m), I, — M is an integral curve of X through m.

() For each t € I, FI¥ : V. — FIX (V) is a diffeomorphism between open sets of
M.

2.3.5 Corollary. Let X be a smooth vector field on a manifold M. Then at any
p € M there exists a flow box of X

Proof. With U as in 2.3.3, pick an open neighborhood V of p in M and a € (0, o]
such that Iy, x V' C U. Then (i)—(iii) are immediate from 2.3.3. Concerning (iv), by
our choice of a, for any m € V we have that I, x FI* (m) € U for every t € I,, i.e.,
I, x FIX(V) C U. Then 2.3.3 (iii) shows that, for any ¢ € I,, FI;* : V — FLX(V

is a diffeomorphism with inverse Fl)_(t. Finally, any diffeomorphism is an open map
by the inverse function theorem. O

2.3.6 Definition. Let M be a manifold and let X € X(M). X is called complete,
if F1* is defined on all of R x M (i.e., U =R x M).

Completeness of X therefore means that each integral curve of X exists for all times.
From 2.3.3 (ii) we conclude:

2.3.7 Corollary. FEwvery vector field on a compact manifold is complete.

2.3.8 Examples.

(i) Let M = R? and X = xla%l + xQ%. To determine the integral curves of
X we have to solve the ODE ¢/(t) = X(c(t)). Applying (2.3.4) with ¢ = idg>
gives: ¢ = ¢, X = X. Hence we consider

(€)t) = z'(ct) =c'()
(@)@ = =
c(0) = (a,b) € R?

F1X (F1¥ (a,b)).

Thus ¢(t) = (ae',be’) = FIX(a,b). Obviously, F13X+t(a,b) = FIX
= (0,0). (0,0) is called

For (a,b) = (0,0) it follows that ¢(¢) = 0 since X (0, 0)
a critical point of X (i.e., zero of X).

(a,b)

Every integral curve of X is defined on all of R, so X is complete.

(i) Let M =R? and X = e~ %. Using the chart ¢ = idg2 we obtain

()(@t) = e
()(t) =
«(0) = (a.d)



Thus ¢(t) = (log(t + expa),b) = FI* (a,b) (it is easily verified that the flow
property Flﬁ_s(a,b) = FIX(F1¥ (a,b)) holds). ¢ is defined on (—e®, 00) C R,
so X is not complete.
(iii) (cf. 1.1.7 (ii)).
Let M = S2, 4 : (2,y,2) = (cospcos,singcosf,sinf) — (4,0) = (P, 4?),
open

and M :=¢~1((0,27) x (=%, %)) pg M. Let X on M be given, with respect
to 1, by

In (2.3.4) we have X'(¢,0) = ¢, X2(¢,0) =1, &(t) = (¢(t),6(t)). (Note that
X cannot be extended smoothly to S? since ¢ has a jump.) Hence (2.3.4)
reads:

()
=1

(6(0),0(0) = (d0,00)
Thus é(t) = (¢(t),0(t)) = (¢oet, t + 6p), so
c(t) = " 0 &(t) = (cos(doe) cos(t + o). sin(oe’) cos(t + o), sint + ).
X € X(M) is not complete.

2.3.9 Remark. Let M* be a k-dimensional submanifold of R”. Then X(M) =
{(X:M —>R"| X C®and X, € T,M Vp € M}.

Proof. Let X € X(M). Then X, € T,M Vp. Locally (with respect to a
parametrization (¢,U)), X is given by

k ‘ 9
S X (o) 5
i=1

X(p(z))

e(z)

k
> X'(p(2)) Digp(x)
i=1

(cf. the remark preceding 2.1.12). Hence X o ¢ is smooth since X¢ and ¢ are. But
then X is smooth by 1.1.13 (i) and 1.1.15.

Conversely, let X : M — R"™ be smooth and suppose that X, € T, M for all p € M.
Then X is a section of TM and it remains to show that X is smooth. To this end
we employ 2.2.10 (ii): let f € C°°(M) with local smooth extension f. Then X(f)
is locally given by p — X,(f) = T, f(X,) = Df(p)X,p, which clearly is smooth on
M. O

Caution: Note that the X, ..., X* should not be confused with the n components
of X as a vector in R"!

Next, we want to study a further interpretation of vector fields, namely as differential
operators on functions and vector fields, in the shape of Lie derivatives.

2.3.10 Definition. Let X € X(M) and f € C>°(M). The Lie derivative of f in
direction X is
d

Lxf®) = | SO0 = 5| 1090 7))
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2.3.11 Lemma. Lx(f) =X(f).

Proof.

d
P (p) = Tof (%

i, LX) = I (X ) = X (o)

a

2.3.12 Definition. Let X,Y € X(M). The Lie derivative of Y along X is the
vector field

d
LxY(p) := 7

((FI¥)*Y)(p) (FL)*Y = TFIX, o Y o FIX).
0

2.3.13 Proposition. Let X,Y € X(M). Then

(i) LxY = [X,Y].
(ii) L(FIX)*Y = (FIX)*LxY.
Proof. (i) Let f € C™(M), p € M, and set a(t,s) := Y (FIX(p))(f o FI). Then

o : I x I — R for some interval I around 0. We have a(t,0) = Y(FL* (p))(f) and
a(0,5) = Y (p)(f o FI). Now

Oa 0

20,00 = T yEFe) = 5| CHEFE) , = L D), = X D)
00,00 = 2| YOI o P = 2| 1,7 o XYY () = Ty (o] FoFY) (¥ ()
L= ToLx DY (1)) = Y (Lx [)(p) = Y (X () (p).
Moreover, using (7,9Y,)(h) = Y,(h o g) (see (2.1.4)),
| ot~y = S VIS 0 FE,) = 2| (T P, (7 (1 () (1)
Eg\TmXoYomﬂmqnzgﬂémﬁWWMﬁ
L=, LXY0)() = LY (£)().

On the other hand, by what we calculated above,

Oa Oa

| =) = 570,00 = Z20,0) = (X(¥V£) = Y(XF)(p) = [X.Y(F)p):

d

FIX)*Y =
dt( )"

)
‘ (FIX )Y = %‘ (TFIXy 1y 0 YV 0 FIY,,)

a
ds
- g‘ (TFI, o TFIX, 0 ¥ o FI¥ o FI¥)

— TFI, (a‘ (FIY) Y)oFltX”:m (FIX)*(LxY).
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2.3.14 Definition. Let f : M — N be a smooth map between two manifolds. Then
vector fields X € X(M) and Y € X(N) are called f-related, denoted by X ~; Y if
T, f(Xp) = Yy(p) for each p € M.

M ———N

2.3.15 Lemma. Smooth vector fields X € X(M) and Y € X(N) are f-related if
and only if for each g € C*(N) we have

X(go f)=Y(g)o f.
Proof.

X(go f)=Y(g9)o f Vg Xy(gof)=Ysp)(9) Vg Vp

o (Xp)(9) = Y (9) Vg ¥p & X~y V.

2.3.16 Lemma. Let X1,Xs € X(M), Y1,Y2 € X(N), f € C®°(M,N) and suppose
that X1 ~; Y1 and Xo ~5 Yo. Then also [ X1, Xo] ~y [Y1,Y5).

Proof. Using 2.3.15 we calculate:

f) = Xa(Yi(g) o f)

[X1, X2](go f) = X1(Xa(go f)) — X2(Xi(g o f)) = X1 (Ya(g) o
o f.

=Y1(Ya(g)) o f — Ya(Yi(9)) o f = [Y1,Y2](9)
O

In particular, if f: M — N is a diffeomorphism, X € X(M) and Y € X(N), then
X ~; Y if and only if X = f*Y. From 2.3.16 it then follows that f*[Y1,Y3] =
[f*Yh f*}/Q]

2.3.17 Lemma. Let M, N be manifolds, X € X(M), Y € X(N), f € C*(M,N)
and X ~¢ Y. Then fo Flf( = Flz/ o f for all t such that the left-hand side of this
equality is defined.

Proof. Let ¢: I — M be an integral curve of X, so ¢/(t) = X(c(t)) for all ¢t € I.
Then

(foo)(t)=Tew f(<(t) = Tey [(X(c(t)) = Yi(ew),

showing that f o ¢ is an integral curve of Y. Thus, for all t € I, f o FI.X = Flf of.
O

From these preparations we can conclude that the Lie bracket of two vector fields
can be seen as an obstruction to the commuting of the corresponding flows. To be
precise, we say that the flows of two vector fields X, Y € X (M) commute if for any
p € M we have: whenever I and J are open intervals containing 0 such that one of
the expressions FI;* o F1! or F1! o FI;* is defined for all (s,t) € I x J, then both
are defined and are equal. With this understanding, we have:
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2.3.18 Theorem. Let X,Y € X(M). TFAE:

(i) LyY = [X,Y] = 0.
(ii) (FL)*Y =Y, wherever the left hand side exists.
(iii) The flows of X and Y commute.

Proof. (i)=(ii): By 2.3.13 (ii), LxY = 0 implies % (F1;*)*Y =0, so t — (F1,X)*Y
is constant, namely equal to (FI{)*Y =Y.

(il)=(i): immediate from 2.3.12.

(ii)=-(iii): Fix p € M and let I and J be intervals as described above. In the proof
of 2.3.17, replace X by X := (FI)*Y and f by FI;'. By (i), X =Y, so the
assumption on I and J secures that for any s € I, the curve ¢(s) := FI* (p) lies in
the domain of f, and the proof works although f is not globally defined. Without
this assumption it could happen that the integral curve ¢ of X leaves and re-enters

the domain of f, leading to undefined intermediate expressions f o ¢(s).! Now (the
proof of) 2.3.17 yields that for (s,t) € I x J we have

FIY o FIX (p) = FIX o FIF)™Y (p) = FIX o F1Y (p), (2.3.5)

giving (iii).
(iii)=-(i): Given p € M and I, J as above, fix any ¢ € J. We first note that for s

near 0, the integral curve ¢ of X := (FltX )*Y through p remains inside the domain
of Flf( . Thus as in the previous step of the proof we have

FIY o FI (p) = FI o FI™)™ (p)

By (iii) we can now switch the order of the flows on the left hand side of this
equality, which results in

X\ *
FIY (p) = FIIF 7Y (p)

for all s € I sufficiently small. But then differentiating at s = 0 gives Y (p) =
(FIX)*Y (p) for all ¢ € J. Finally, differentiating with respect to ¢ at t = 0 gives (i).
O

To conclude this chapter, we note that the Lie bracket of two vector fields can be
calculated by differentiating along an infinitesimal prallelepiped traced out by the
flows of the vector fields:

2.3.19 Theorem. Let X, Y be smooth local vector fields on M. Then for any p
in the intersection of the domains of X, Y we have:

YY) = | P A )

Proof. For any local smooth function f we have

d N _
SR £(p) =

a
ds

d

(FI%) F(p) = o= (FIF)"(FI)"f(p) = (FIT)* (L f).

0
(2.3.6)

0

1This can lead to actual problems: It can happen that although X, Y commute there are specific
values of p, s, and ¢ where both Flf( o Flz (p) and FIZ o Flf( (p) exist but are not equal, cf. the
discussion preceding Th. 9.44 in [5].
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Since

d
dt |,

(FIY L (FIX L (FIY (FIX () = T (jt| FIY s P () )

and Tf([X,Y])(p) = ([X,Y](f))(p), the claim will follow if we can show that for
any such f we have

Oy (0 (0% (1Y ) ) ) = (X, Y1) ).
0

Using (2.3.6) we obtain

(%) @) (@1 ) (F1Y ) f
dt

=((F13;)" Lx (F1};)" (FIX )" (F1Y ;)" f)
+ (FI3) " (FL)* Ly (FIX )" (F1Y 2)* f)
— (FLI3)*(F1)" (F1X )" Lx (F1Y )" f)

— (ES) () (B ) (P )" (B ) - e = oD

Wt 2Vt

We need to calculate the limit as ¢ N\, 0 of this expression. Now since ¢g(0) =

Lxf+Lyf—Lxf—Lyf=0, it follows that lims; 2(§) = 2g’(O). Again using
(2.3.6) we calculate:

g (0)=(LxLx +Lx(Ly —Lx —Ly)+ (Lx + Ly)Ly + Ly(—Lx — Ly)
— (LX + Ly — Lx)LX +LxLy —LxLy —LyLy +LxLy + LyLy)f
=2(LxLy — LyLx)f = 2[X,Y]f,

giving the claim. O
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Chapter 3

Products and Submanifolds

3.1 Products of manifolds

Let My, ..., M} be smooth manifolds of dimensions nq,...,nx, respectively. Then
for any choice of charts (U;, ¢;), (Vi, 1) in M; (1 <i < k), the transition function

(% - X ) © (91 X o) TH = (0 @7 !) X x (Yr 0 )

is a smooth diffeomorphism between open sets of R™, where n :=nj +---+ng. We
thereby obtain an atlas that turns My X ... M}, into a smooth manifold, the product
of the manifolds My, ..., M. The natural manifold topology on M7 X ... M}, is the
product topology of the individual manifold topologies. In particular, it is Hausdorff
or second countable if this is true for each M;.

3.1.1 Lemma. Let pr; : My X ... M — M, be the projection map and let N be a
smooth manifold. Then
(i) pr; is smooth.
(ii) A map f: N — My X ... My is smooth if and only if pr,o f : N — M; is
smooth for each 1 < i < k.
Proof. Both properties are immediate by the definition of the atlas of M7 x ... M}
and 1.2.9. O

It should not come as a surprise that for product manifolds also the corresponding
tangent spaces exhibit a natural product structure. To ease notation we formu-
late the following results for products of two manifolds, but of course they hold
analogously for arbitrarily many factors.

3.1.2 Proposition. Let p; € M; (i =1,2). The map

D : T(p17p2)(M1 X My) — Ty, My x Ty, My
v (T(Phpz)prl(v), T(pl,pz)prQ(v))

is a linear isomorphism that canonically identifies its domain and target space.

Proof. Since @ is a linear map between vector spaces of equal dimension it suffices
to show that it is surjective. Thus let (vi,v2) € Tp, My x Tp,Ms. Then by 2.1.6
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there exist smooth curves ¢; : I — M, from some interval I in R into M; with
v; = [¢i]p, (i=1,2). The curve ¢ := t + (c1(t), ca(t)) is smooth into M; x My by
3.1.1, 50 v := [€](p, .ps) € T(py,po) (M1 X Ma). Finally, 2.1.7 shows that

(b([c](;m,pz)) = (T(pl,pz)prl (U>7T(p1,p2)pr2(v)) = ([Cl]p17 [02]1)2) = (Ulvv2)7
giving the claim. O
Finally, we note the following Leibnitz rule:
3.1.3 Proposition. Let f : My x My — N be smooth, p; € M;, and denote by

fpor : Ma — N, p— f(p1,p), and fp, : M1 — N, p— f(p,p2) the corresponding
partial maps. Then for (vi,vs) € T(p, p,) (M1 x My) = T, My x T, My we have

Tipy o) f(v1,02) = T, fp, (V1) + T, fp, (v2)-
Proof. We have

T(p17p2)f(v1’ UQ) = T(phpz)f(vl’o) + T(Pl»pz)f(()’vQ)'

By 2.1.6 there is a smooth curve ¢; : I — My with v1 = [¢1]p,, and we set ¢: [ —
My x My, c(t) := (c1(t), p2). Then c is smooth and [c](,, p,) = ([c1]p,,0) = (v1,0),
so again by 2.1.7 we obtain

Tip1.p2) f(v1,0) = Tipy po) f ([ (pr.p2) = [F © lprpa) = [ 0 1l g 00
= (Tplfp2)([cl]m) = Tplfp2<vl)a

and analogously for the second summand. O

3.2 Application: Time-dependent vector fields

In Section 2.3 we considered global versions of autonomous ODEs, of the form
d(t) = X(e(t)), where X € X(M). In ODE theory and many applications, one is
also interested in understanding non-autonomous ODEs of the form

c(t) = X(t,c(t))
c(0) = p.

Here we want to derive the basic properties of such systems in the manifold setting,
basically by reducing the problem to an autonomous ODE on a higher dimensional
manifold, namely on the product R x M.

Let M be a smooth manifold and let I C R be an open interval. A time-dependent
vector field is a smooth map X : I x M — T'M such that X (¢,p) € T, M for each
(t,p) € I x M. Thus for each t € I the map X; : M — TM, X;(p) := X(¢,p) is
a smooth vector field on M, i.e., belongs to X(M). Given a time-dependent vector
field X on M, an integral curve of X is a smooth curve c: Iy — M, where I is an
open interval contained in I such that

d(t) = X(tc(t)  (telp).

Any X € X(M) induces a time-dependent vector field on M by simply setting
X(t,p) = X,.

We want to develop an appropriate notion of flow for time-dependent vector fields.
This requires some care because in the current situation two integral curves that
meet in one point but do so at different times need not coincide. Nonetheless we
can employ 2.3.3 to obtain a satisfactory solution to our problem:
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3.2.1 Theorem. Let X : I x M — TM be a time-dependent vector field on M.
Then there exists an open subset W C I x I x M and a smooth map ¥V : W — M,
called the time-dependent flow of X satisfying:

(i) For each to € I and each p € M the set W(toP) .= {t € T | (t,ty,p) € W}
is an open interval around to and the smooth curve W(to:P) . W tor) 5 Af
W (to,p) (t) := W(t,t0,p) is the unique mazimal integral curve of X with initial
condition WP (tg) = p.

(i) If t1 € WoP) and ¢ = WtoP)(ty), then Wt = Wtor) gnd ta) =
\Ij(toyp).

(i1i) For each (t1,t0) € I x I the set My, 4, == {p € M | (t1,t0,p) € W} is open in
M, and the map

\Ijthto : Mtlﬂfo - M
D= \Il<t17t07p)

is a diffeomorphism from My, +, onto My, +, with inverse Wy . .
() If p e My, 4, and Uy, 4, (p) € My, 4, then p € My, 1, and

‘IItZatl © qjtl,to (p) = \Ijtg,t() (p)' (32.1)

Proof. Consider the smooth vector field X on I x M defined by

X(s.p))

S

X(svp) = ( %

where s is the standard (identity) coordinate function on I C R and we use 3.1.2 to
identify T(s ) (I x M) with T, x T,M. Since X € X(I x M), by 2.3.3 it possesses

a smooth flow FI¥ : Iz — I X M, where the open subset Uof I xIx M is the
maximal domain of FI¥ from 2.3.3. Let us write FI¥ in components:

FIX (1, (s,p)) =: (a(t, (s,p)), B(t, (s,p))) € T x M.

Then a: U — I and 8 : U — M satisfy the initial value problem

D=1 a0, (s.p) =5
O (1,(5,0) = X (01, (5,)) 801, (5,0, B0, (59) = .

Here, we simply write 1 € R = T, (s,p))R instead of % |a(t (5:0))"

Unique solvability of this system dictates that «a(t, (s,p)) = t + s, which in turn
implies that
op

3¢ (b (8:0)) = X (t + 5, B(¢, (5,p))). (3.2.2)

Now we set ~
W= {(tvt()vp) | (t - th (thp)) € U}a

which is open in I x I x M as the inverse image of the open set U under a continuous

map. Since «(U) C I, if (t,to,p) € W then t = a(t — to, (to,p)) € I, hence
W C I x1Ix M. Also, openness of My, ;, follows from that of W. We now set

v:W-—-M
U(t, to,p) := B(t — to, (to,p)).
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Then ¥ is smooth and (3.2.2) precisely says that W(toP) = ¢t s W(t, tg,p) is an
integral curve of X with initial value W(*o?)(¢y) = p. To see uniqueness, suppose
that v : Iy — M is another integral curve of X defined on an open interval Iy C I
with t9 € Ip such that v(tp) = p. Then let 4 : Iy — I x M be the smooth
curve 4(t) := (t,~(t)). This curve is an integral curve of X with initial value
A(to) = (to, p), hence by uniqueness and maximality of the integral curves of X (see
2.3.3) we conclude that

(t77(t)) = ﬁ(t) = Flito((t07p)) = (Oé(t—to, (t()vp))?B(t_th (t()vp))) = (t, \Il(tmp)(t))v

on its entire domain. Consequently, Iy is contained in the domain of W(*o-?) and
v = U(tor) on ;. This shows that ¥(*?) is indeed the unique maximal integral
curve of X passing through p at t = tg, finishing the proof of (i).

(ii) Let t; € W) and set g := ¥(oP)(¢;). Then by (i), both ¥(1:9) and Wlto-r)
are integral curves of X that pass through ¢ at ¢ = ¢;. Uniqueness and maximality
then imply that they are defined on the same domain and are equal there.

(iv) Let p € M, 4+, and suppose that Wy, 4 (p) € My, . Set q := Uy, 4,(p) =
(toP)(¢)). By assumption, ¢ = ¥y, 4 (p) € My, 4, 50 (t2,t1,q) € W and hence
ty € W9, By (ii) we have W0 = Wtor) and Wt (y) = Wlor)(t,).
Consequently, to € Wt0:P) e, (t2,t9,p) € W, ie., p € My, ,. Hence we can insert
(t2,t0,p) into ¥ and calculate as follows:

U, 00 (p) = U(ta, to,p) = U0P) (ty) = W9 (ty) = W(ty, 1, q)
=W, (0) = Vi1, (Wt 00 (D))

(iii) Let (t1,t0) € I x I, p € My, 4, and set ¢ := ¥, 4, (p). By (ii) we know that
to € Wlor) = Wwtna e (ty,t1,q) € W, ie, ¢ € My, ,. This shows that
Uy, 1o (M, 4y) € My, ¢,. But this argument is symmetric in ¢g, 1, so we also get
Uyt (Mg t,) € My, 1,- Hence by (iv) we conclude that

\Ijthto o let(Jvtl (p) = \Ijthh (p) =Pp

for all p € My, +,. Again by symmetry we also obtain W, s, o Wy, 1, =idag, ... O

3.3 Submanifolds

In Section 1.1 we studied submanifolds of R™: M C R" is called a submanifold of
dimension k if for every p € M there exists an open neighborhood W of p in R",
an open subset U of RF and an immersion ¢ : U — R™ such that ¢ : U — o(U) is
a homeomorphism and ¢(U) = W N M. Then ¢ is called a local parametrization of
M. By 1.1.8, any such M is an abstract manifold whose natural manifold topology
is precisely the trace topology of R™ on M. We now want to introduce appropriate
notions of submanifolds for abstract manifolds in general. To this end we first need
a few results on smooth maps between manifolds.

3.3.1 Definition. Let M, N be manifolds and let f : M — N be smooth. The

rank vk, (f) of f at p € M is the rank of the linear map T, f : T,M — T,y N. If

o= (at,...,2™) is a chart of M at p and ¢ := (y',...,y") a chart of N at f(p),
d

then the matrixz of Ty, f + Ty M — Ty(,) N with respect to the bases (%L7 yeees Bom p)
of T,M and (% e % ) of Ty N is the Jacobi matriz of o fo ™!
Yl ) Yo f )

at o(p) (see (2.1.5)). Thus rky(f) =tk o fop™t.
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3.3.2 Definition. Let f: M — N be smooth. f is called immersion (submersion)
if T, f is injective (surjective) for every p € M.

If dim(M) = m and dim(N) = n (which, as before, we will indicate by writing
M™ and N™, respectively) then f is an immersion (resp. submersion) if and only
if rk,(f) = m (vesp. = n) for all p € M. The following result shows that maps of
constant rank locally always are of a particularly simple form.

3.3.3 Theorem. (Rank Theorem) Let M™, N™ be manifolds and let f : M — N
be smooth. Let p € M and suppose that tky(f) = k for q in a neighborhood of
p. Then there exist charts (p,U) of M at p and (¢,V) of N at f(p) such that
¢(p) =0 €R™, ¢(f(p)) =0 €R" and

pofop . .. 2™) = (z',...,2%,0,...,0).

Proof. By the above, the rank of f is independent of the chosen charts, so without
loss of generality we may assume that f : W — W’ where W is open in R™ and
W' is open in R, p = 0, f(p) = 0 and rk(f) = k on W. Since rk(Df(0)) = k
there exists an invertible k X k submatrix of D f(0) and without loss of generality

we may assume that this matrix is given by (%)f j=1- Now consider the smooth
map ¢ : W — R™,
ot ™) = (Yt w™), L R, ™) 2R ™).
Then ¢(0) = 0 and
), -
Dp(0) = |\ /i j=1
0 Ik

is invertible. By the inverse function theorem ¢ thereby is a diffeomorphism from
some open neighborhood W7 C W of 0 onto some open neighborhood U; of 0 in
R™. Then on U; we have

fowil(x) = fO(pil('xl?"'7xk"rk+17"'7xm) = (xl""’xk7fk+1(x)7' "7fn(x))

for suitable smooth functions f**1, ..., f". Consequently,
Iy, 0
D(foe™)(@)= | , (87)
ox® ) r=k+1,..., n

Since D(f o p™') = Df o De~! and Dp~' is bijective it follows that rk(D(f o
¢~ 1)) = 1k(Df) = k on U;. Then necessarily 9 =0forr=k+1,...,n and
s=k+1,...,m, ie, fF1 .. f* depend only on z',...,zF. Now set
T(y17"'7yk)yk+17""yn) =

'y T ) )

or = ,°).

* Infk

Then T'(0) =0 and

so T'is a diffeomorphism from some open neighborhood V of 0 in R™ onto some open
0 €V C W' Choose U C U open such that fop 1 (U) CV and let U := ¢~ }(U).
Let ¢ := T~!, then

vtsu-Lv Sy



3.3.4 Lemma. Let f : M™ — N™ be smooth, let p € M and suppose that rk,(f) =
k. Then there exists a neighborhood U of p in M such that tky(f) > k for allqg € U.
In particular, if k = min(m,n) then rkq(f) =k for allg e U.

Proof. Picking charts ¢ around p and ¢ around f(p), rk,(f) = k if and only if
there exists a k x k-submatrix of D(z) o f o ¢~ 1)((p)) with nonzero determinant.
By continuity, the same is then true on an entire neighborhood of p. This means
that the rank cannot drop locally. If k¥ = min(m, n) then it also cannot increase. O

3.3.5 Theorem. (Inverse function theorem) Let f : M™ — N™ be smooth, let
p € M and suppose that T,f : T,M — Tyu,)N is bijective. Then there exist
open neighborhoods U of p in M and V of f(p) in N such that f : U — V is a
diffeomorphism.

Proof. For charts ¢ of M at p, and 1 at f(p) in N the map D(wo fop=1)(p(p)) =
TrpypoTpfo Tw(p)cp_l is invertible. Hence by the classical inverse function theory,
o fop~!isa diffetomorphism around ¢(p) and the claim follows. O

3.3.6 Proposition. (Local characterization of immersions) Let f : M™ — N™ be
smooth and let p € M. TFAE:

(1) Tpf is injective.

(i1) 1k (f) = m.

(iii) If v = (Y1, ..., ¥") is a chart at f(p) in N then there exist 1 < ip < -+ <
im < n such that (Y™ o f,... 4" o f) is a chart at p in M.

Proof. Clearly, (i)< (ii).

(ii)=(iii): Let o be a chart at p in M. Then rk(D (1) o f o p~1)(¢(p))) = m, hence
there exist 1 < iy < -+ < 4y, < n with det D((¥,... %" ) o fop 1) (p(p)) # 0.
By 3.3.5, then, (¢t o f,... 9% o f) is a diffeomorphism locally around p, hence a
chart.

(iii)=>(ii): The linear map D((¢*, ..., ¥ )o fop~1)(p(p)) is bijective, so tk(D(¢po
foe™(e))) =m. y

3.3.7 Proposition. (Local characterization of submersions) Let f : M™ — N™ be

smooth and let p € M. TFAE:

(1) Tpf is surjective.
(i1) 1o (f) = .

54



(iii) If o = (Y1,..., ") is any chart at f(p) in N then there exists a chart ¢ of
M at p such that (Yo f,... 9" o f, "L ... ™) is a chart at p in M.

Proof. Again, (i)<(ii) is obvious.

(ii)=-(iii): Let ¢ and 1 be charts at p and f(p), respectively. Since rk(D(¢) o
Fod 1) (@(p)) = n, the Jacobi matrix D(p o f o p~1)(@(p)) possesses n linearly
independent columns. By permuting the coordinates of ¢ we obtain a chart ¢ such
that the first n columns of D(1) o f o = 1)(p(p)) are linearly independent. Now set

X': (’lplof""?wnOf’SDnJrl?""SDm)' Then

Oylofopt

——a *
Dix o9 ) (g(p) = <( o)), ) (3:3.1)
0 Im—n
Hence, by 3.3.5, x 0 ¢! is a diffeomorphism around ¢(p), and so y is a chart at p.
(iii)=>(ii): Since tk(D(x o ¢ H(p(p))) = m, (3.3.1) implies that rk(D(¢) o f o
¢ (@) =n. y

3.3.8 Proposition. Let M™, N™, R" be manifolds, f : M — N continuous and
g: N — R an immersion. If go f is smooth then so is f.

Proof. Given p € M, by 3.3.3 we may choose charts (p,U) around f(p) in N, and
(1, V) around g(f(p)) in R such that

b = pogop N, .., x") = (2, ..., 2",0,...,0). (3.3.2)

Let and (x, W) be a chart in M around p and set f,, :=@o fox L

Mt N 25 R

d A

R™ Feox R™ Gy R
Then o (go f)ox ™! is defined on x((go f) L (V)NW), f,y is defined on x(f~1(U)N
W), and gy, is defined on (g1 (V) N U). It follows that gy, o f,y is defined on

XUTHO) N W) N [ (elg™ (V)N D)) = x(F~HO) W) nx(fHg~ (V) n D))
=x(fTH g (V)N fTHU) W)
Since f is continuous, this shows that gy, o fuy is a restriction of ¢ o (go f)ox™

to an open set, hence is smooth. By (3.3.2), (gyp 0 fox)' = féx for 1 < i < n, hence
fox is smooth. Thus, finally, f is smooth. O

1

3.3.9 Proposition. Let M™, N™, R" be manifolds, f : M — N a surjective
submersion and g : N — R arbitrary. If g o f is smooth then so is g.

Proof. Using the same notations as in the proof of 3.3.8, by 3.3.3 we may choose the

charts (x, W) around p and (¢, U) around f(p) in such a way that f,, = pofox™! =

(..., 2™) — (z',...,2™). As in the proof of 3.3.8, gy, © fpy is a restriction of
Yo(gof)ox ! to an open set, hence is smooth. Thus (x!,...,2™) — gy, (2!, ... 2")
and thereby gy, itself is smooth, which implies smoothness of g. O

After these preparations we are now ready to introduce the notion of submanifold
of an abstract manifold.
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3.3.10 Definition. Let M™ and N" be manifolds with N C M and denote by
7+ N < M the inclusion map. N is called an immersive submanifold of M if
j is an immersion. N is called a submanifold (or a regular submanifold, or an
embedded submanifold), if it is an immersive submanifold and in addition N is a
topological subspace of M, i.e., if the natural manifold topology of N is the trace
topology of the natural manifold topology on M.

This definition is a natural generalization of the notion of submanifold of R™, cf.
1.1.5. The figure-eight manifold from 1.1.5 (with atlas {IV,57'}) is an example of
an immersive submanifold that is not a regular submanifold.

3.3.11 Remark. If N is a submanifold of M then for each p € N, the map
T,j : T,N — T,M is injective. Hence T,j(T,N) is a subspace of T,M that is
isomorphic to T, N. We will therefore henceforth identify T,5(7,N) with T, N and
notationally suppress the map 7,7, i.e., we will consider T}, IV directly as a subspace
of T, M.

3.3.12 Theorem. Let N™ be an immersive submanifold of M™. TFAE:

(i) N is a submanifold of M (i.e., N carries the trace topology of M ).

(i) Around any p € N there exists an adapted coordinate system, i.e., for every
p € N there exists a chart (p,U) around p in M such that o(p) =0, (U N
N)=pU)N(R™ x {0}) (with 0 € R™~™) and such that p|unn is a chart of
N around p.

(iii) Every p € N possesses a neighborhood basis U in M such that U N N s
connected in N for every U € U.

Proof. (i)=(ii): Let p € N. By assumption, j : N < M is an immersion. Thus

by 3.3.3 there exist charts (¢, V') around p in N and (p,U) around j(p) = p in M,
with ¢(p) = 0, such that

pojoyp t=(z ..., 2" — (2',...,2™,0,...,0).

The domain of @ o j ot~ is ¥(V N j~1(U)). Since j is continuous, j~*(U) is
open in N. Shrinking V to V N j~1(U) if necessary, we can assume w.l.o.g. that
V C j~YU)(= U N N). The domain of definition of ¢ o j o ¢p~! then is ¢(V). By
(i) there exists some open subset W of M such that V =W N N and without loss
of generality we may assume that W = U (otherwise replace both U and W by
UNW). Then V=0UNN.

Denote by pr; : R™ — R”™ the projection map. We have
p(V) = 0(j(V)) = pojov™ (¥(V)) = (V) x {0},
so pri(p(V)) = ¥(V), which is open in R™. Hence the set
U= ((pri(p(V)) x R™ ™) Np(U))

is open in M and contains p. It follows that (¢, U) is a chart of M around p and
we claim that (U N N) = o(U) N (R™ x {0}).

To see ‘C’, note that obviously (U N N) C ¢(U) and UNN C UNN =V, so
©(UNN) C (V) CR™ x {0}. Conversely,

p(U) N (R™ x {0}) = (pry(¢(V) x {0}) N p(0) = (%(V) x {0}) N o(T)
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Now let p(u) € (U) N (R™ x {0}). Then for some v € V' we have

p(u) = (¥(v),0) = pojov (¥(v)) = ¢(j(v) = ¢(v),
sou=wv €V CN and thereby p(u) € (U N N).

Finally, ¢|ynn is a chart of N around p since U N N = j~1(U) is an open neigh-
borhood of p in N and

Plonv o™ = plunnvojor ™t =pojo (Yluan) !
= (z', ... 2") — (z',...,2",0,...,0).

Identifying R™ x {0} with R™, this latter map is the identity on R™, so ¢|ynny =
¥|unn, hence it is a chart.

(ii)=(iii): Let (p,U) be a chart as in (ii). Pick €9 > 0 such that B.,(0) C ¢(U)
and let U, := ¢~ 1(B.(0)) for € < g9. Then U := {U. | € < g¢} is a neighborhood
basis of p in M and

@(U.NN) = o(U.NUNN) = B-(0) N (U N N) = B.(0) N (R" x {0})

is connected in R™. Thus U serves the desired purpose.

(iii)=-(i): Denote by Tps and Ty the topologies on M and N, respectively. Since
j i N < M is continuous, for every W € Tas we get ;- 1(W) =W NN € Ty, so
Tu|n < Tn. Conversely we will show that any Ty-neighborhood of any p € N is
also a Tys|y-neighborhood of p. To this end let p € N and let U be a neighborhood
of pin N that is homeomorphic to a closed ball in R™ (e.g. the inverse image of such
a ball under a chart). Then OU is compact in N, so also j(0U) = U is compact in
M (since j is continuous). Since p € U°, p ¢ OU and so by (iii) there exists some
V e U with VN oU = (. If we can show that V N N C U then we are done since
V' N N is a neighborhood of p in Tjs|n. Assume, therefore, that VNN ¢ U. This
means that (VNAN)N(N\U) # . Thus VNN is connected and (p €)(VNAN)NU # ()
as well as (VN N)N(N\U) # 0. But this implies (V N N) N AU # P and thereby
V NoU # (), a contradiction. O

3.3.13 Remark. (i) For M = R™, condition (ii) from 3.3.12 is precisely (T) from
1.1.8 (local trivialization). Therefore, submanifolds of R™ in the sense of Section
1.1 are exactly submanifolds of R™ in the sense of 3.3.10.

(ii) Consider the subset N of R? that consists of the interval (—1,1) on the y-axis,
plus the graph of sin(1/x) between z = 0 and x = 1. Then N is an immersive
submanifold of R? that is not a submanifold due to 3.3.12 (iii): in fact, any ball
around (0,0) of radius less than 1 intersects /N in a non-connected set.

3.3.14 Proposition. Let N be a submanifold of M and let f: P — M be smooth
and such that f(P) C N. Then also f: P — N is smooth.

Proof. Since N carries the trace topology of M and f : P — M is continuous, also
f P — N is continuous. Also, j : N < M is an immersion and by assumption
j o f is smooth. The claim therefore follows from 3.3.8. |

3.3.15 Corollary. Let M be a manifold and let N be a subset of M. Then N can
be endowed with the structure of a submanifold of M in at most one way.
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Proof. By definition, N has to carry the trace topology of M. Suppose that there
are two differentiable structures that make N a submanifold of M and denote NV
with these structures by Ny, No. Since j : N; — M is smooth for ¢ = 1,2, 3.3.14
shows that both id : Ny — N5 and id : No — N; are smooth. Hence id : Ny — Ny
is a diffeomorphism and so the differentiable structures on N coincide. O

3.3.16 Definition. Let M, N be manifolds. A smooth map i : N — M s called
an embedding if ¢ is an injective immersion and if i is a homeomorphism from N
onto (i(N), Tmliny)-

3.3.17 Remark. If i : N — M is an embedding then ¢(/N) can be turned into a
submanifold of M by declaring ¢ to be a diffeomorphism. The charts of i(N) then
are the 1 o0i~!, where 1 is any chart of N. This manifold i(N) then is a submanifold
of M: Let j : i(N) < M be the inclusion map. Then ¢ = jo4 is an immersion and 4
is a diffeomorphism by definition, so j is an immersion. Also, i(N) carries the trace
topology by assumption. By 3.3.15 this manifold structure on ¢(IN) is the only one
possible.

Next we want to check how to tell whether a given subset N of M can be made
into a submanifold of M. We first generalized the condition from 3.3.12 (ii):

3.3.18 Definition. Let M™ be a manifold and let N be a subset of M. We say that
N possesses the submanifold-property of dimension n if for every p € N there exists
a chart (p,U) of p in M such that ¢(p) =0 and p(UNN) = o(U) N (R™ x {0}).
(¢,U) then is called an adapted coordinate system.

3.3.19 Theorem. Let M™ be a manifold and let N be a subset of M possessing
the submanifold-property of dimension n. Then N can be equipped in a unique way
with o differentiable structure such that it becomes an n-dimensional submanifold
of M. If pr; : R™ — R"™ denotes the projection then A := {(p :=pr; oo, UNN) |
@ 1s an adapted coordinate system} is a C*-atlas for N. In addition, j : N — M
is an embedding.

Proof. Uniqueness is clear from 3.3.15. Let (¢1,U1), (¢2,Uz) be adapted coordi-
nate systems with (U3 N N) N (U2 N N) # 0. We have to show that ¢; and @s are
C°-compatible. We first note that since the ¢; are homeomorphisms, so are the ;
as maps from U; N N with the trace topology onto pry (p;(U;) N (R™ x {0})).

Let 0 : R® — R™, f(x',... 2") = (z*,...,2™,0,...,0). Then @;1 = gz);l of. It
follows that 1 0, ! is defined on @o(U; NUsNN) (= pry(w2(U NU2)N(R™ x {0})),
hence open in R™), and

¢1°¢51:(PT1°@1)°(PT1°§02)_1:PT1O<P10<P51°9

is smooth. Consequently, A is an atlas for NV and by 1.2.7 the natural manifold
topology of N is precisely the trace topology of M on N. If (p,U) is an adapted
chart then pojo@~! =0, so j is an immersion. Since N carries the trace topology,
J:N = (§j(N), Twmljay) is a homeomorphism, so j is an embedding. O

3.3.20 Proposition. Let M™, N" be manifolds, N compact and i : N — M an
injective immersion. Then i is even an embedding and i(N) is a submanifold of M
that is diffeomorphic to N.
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Proof. We have to show that i : (N, Tn) — (i(N), Tar|i(n)) is a homeomorphism.
We already know that this map is continuous and bijective. But also i~! is contin-
uous: Let A C N be closed, hence compact. Then (i71)71(A) = i(A) is compact

and therefore closed. The final claim follows from 3.3.17. O

3.3.21 Corollary. Let f: N®™ — M™ be an immersion. Then every p € N has an
open neighborhood U such that fly : U — M is an embedding. Thus the difference
between an immersion and an embedding is of a global nature.

Proof. By 3.3.3 there exist charts ¢ at p and 9 at f(p) such that o fo o™t =
(xt, ..., 2") — (z1,...,2™,0,...,0). Thus there exists a compact neighborhood V
of p such that f|y is injective. As in the proof of 3.3.20 it follows that f|y : V —
(f(V), Talg(vy) is a homeomorphism. Let U € V be an open neighborhood of p.
Then f|y is an injective immersion and f : U — (f(U), Tarlfw)) is a homeomor-
phism, so f: U — M is an embedding. O

3.3.22 Theorem. Let M™, N™ be manifolds and f : N — M smooth with tk(f) =
kon N (k <n) Letq¢€ f(N). Then f~1(q) is a closed submanifold of N of
dimension n — k.

Proof. Since f is continuous, f~1(q) is closed in N. We show that f~!(g) possesses
the submanifold property of dimension n — k. The claim then follows from 3.3.19.
Let p € f~1(q). Then by 3.3.3 there exist charts (¢, U) at p and (1, V) at f(p) = ¢
such that ¢(p) =0, ¥(¢) = 0 and

Joe(x) = Yo fop Yzt ... 2" = (2,...,2%,0,...,0).
Here, fy, is defined on (U N f~1(V)) =: o(W). Then (p, W) is a chart of N at p
and
P(fTH @) W) = o(f~H (@) Ne(W) = o(f T (7 (#(a)))) N (W)
= [0 (0) N (W) = ({0} x R" ™) N p(W).
O

3.3.23 Corollary. Let f : N — M™ be smooth with m < n and let ¢ € N.
If k,(f) = m for all p € f~'(q) then f=1(q) is a closed submanifold of N of
dimension n —m.

Proof. Let p € f~1(q). Then f has maximal rank (= m) at p, hence by 3.3.4 even
in an open neighborhood U of p in N. Therefore the rank of f equals m on an
open neighborhood N of f~'(¢) in N. The claim now follows by applying 3.3.22 to
f:N—> M. O

3.3.24 Remark. For N = R™ and M = R™ this result reduces to the description
of submanifolds as zero-sets of regular maps, cf. 1.1.8.

3.3.25 Proposition. Under the assumptions of 3.8.22, let L := f~1(q) and let
p € L. Then T,L = ker(T,f).
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Proof. For any smooth curve ¢ in L with ¢(0) =p, foc=g¢, 80 0= %’0 (foc)=
T, f(c'(0)). Hence (cf. 2.3.1) T,L C ker(T,M). Since dim(ker T, f) + dim(imT), f) =
dim T, N = n, dim(ker T}, f) = n — k = dimT,,L, and equality follows. O

3.3.26 Example. Let 7 : TM — M™ Dbe the canonical projection and let p € M.
Then 7 is smooth and rk(7) = m since with respect to a chart ¢ of M we have
pormoTp~! =pr: R* — R™ (cf. 2.2.7). By 3.3.23 it follows that 7= (p) = T, M
is an m-dimensional submanifold of TM. Moreover, by 3.3.25, for v, € T,M we
have T, T, M = ker(T,,m). By the proof of 3.3.22, the submanifold charts of T}, M
are given by T%|r,nr = Tpyp. As these are linear isomorphisms, the trace topology
of TM on T, M is precisely the usual topology of T, M as a finite-dimensional vector
space. Also, 1,9 is a diffeomorphism, so the manifold structure of T, M as well is
its usual differentiable structure as a finite-dimensional vector space.
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Chapter 4

Multilinearity and
integration

4.1 Tensors

Heuristically, if we want to determine the area of a curved surface, or, more gen-
erally, the volume of some submanifold, we first have to approximate the surface
‘infinitesimally’ by its tangent space, then determine the area of these approximat-
ing spaces and then sum (resp. integrate) up the results.

Thus we first need a way of assigning volumes to parallelepipeds in vector spaces. A
map w that assigns a volume to a parallelepiped with edges u, v, w should possess
the following properties:

(1) wlau,v,w,...) =w(u,av,w,...) =+ =a- -w(u,v,w,...)

(i) w(uy + ug,v,w,...) = w(uy,v,w...) + w(uz,v,w,...), and analogously for
v,w,. ..

(iil) w(u,u,w,...)=w(u,v,v,...)=---=0
Since 0 = w(u+v,u+v,w,...) =w(u,v,w,...)+w(v,u,w,...), (iii) is equivalent
to w being antisymmetric (or skew-symmetric).

Due to (i),(ii) we have to consider multilinear mappings on vector spaces (in partic-
ular, on T, M). The skew-symmetry (iii) will be taken into account in the following
section. We therefore begin this section with a crash-course in multilinear algebra.

In what follows let Eq,..., E, E, F' be finite-dimensional vector spaces. Then by
Lk(El, ..., Ei; F) we denote the space of multilinear maps from E; X --- X Ej, to
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F. An important special case is (k = 1): L(E,R) = E*, the dual space of E, i.e.,
the vector space of linear functionals on E. If Bg = {e1,...,e,} is a basis of E,
then the functionals defined by

: 1 i=j

,...,n) form a basis of E*, the dual basis of Bg. For each e € E we have
e=>" ai(e)e; and for each o € E* we get a = Y., a(e;)a’. The bidual space
E** = (E*)* is canonically isomorphic to E: the map

i:E — E™
ile) = _a —ale)
€E*

is a linear isomorphism.

4.1.1 Definition. Let E be a vector space. Then
T (E):=L""(E*,...,E*E,..., E;R)
—_———— ——

is called the space of r-times contra- and s-times covariant tensors, or, for short,
(0)-tensors. The elements of T1 (E) are called tensors of type (7).

Forty € TI*(E), ty € T2(E), the tensor product t, ®ty € T2 (E) is defined by:

s1+82

tl ®t2(ﬁ13"'357‘17717"‘,’yrzvflv"‘7f817gla"'ags2)
= tl(ﬂla-~'a/8r17f13"'af81) 'tQ(’Yla"'7'77“27917"'7932)

(87,77 € E*, fj,9; € E).
Clearly, ® is associative and bilinear.
4.1.2 Example.

(i) By definition, T?(E) = L(E,R) = E* and T3 (E) = L(E*,R) = E** = E.
Elements of E (vectors) therefore are (é)—tensors, elements of E* (often called
co-vectors) are (?)—tensors.

(7i) Let E be a vector space with scalar product g(e, f) = (e, f). Then g is a
bilinear map g : F X E — R, i.e.; a (g)—tensor.

4.1.3 Proposition. Let dim(F) =n. Then dim(T7(E)) =n""5. If{e1,...,en} is
a basis of E and {a,... ,a™} is the corresponding dual basis, then

Bli={e;, ® - ®e, @ @ @al

1 <ip,jr <n}

is a basis of TT (E).
Proof. Bj is linearly independent: let

S e @ e, 00 9 @k =0
7%11'*~7i'rw_/

Jiyeds  ER
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Inserting (a*1,..., a* e;,... €,), then since a'(e;) = ej(a’) = &;; it follows that
all ¢%1% vanish.

B. generates T, (E): each t € T7 (E) can be written as follows:

t= Y ta",... a7 e, e )6 @ e, @A @ ®alt.
To see this, it suffices to show that both sides of this equation define the same mul-
tilinear map. Let 8! = Z)\}la“, BT =0 o € Ef and 2y = Y pttey, ..,
xs =y plre;, € E. Then

1 1 j o g i i
LB, ..., 8", ) = Z Ny AL plrt(att At ey, eg,)

1‘417---11:7“
J1se-sds
_ % % j j 1
= E t(a1,...,04T,6j1,...7€j5)€i1®-"®6i7,®aj1®"'®04]8(/67--~7xs>
7{17“-71"7'
J1seesds

d

Every linear map ¢ : F — F possesses an adjoint map ¢* € L(F*, E*): for 5 €
F*, e € FE one sets p*(8)(e) := B(p(e)). If A is the matrix of ¢ with respect to
bases of E resp. F, then A! is the matrix of ¢* with respect to the corresponding
dual bases of F* resp. E*.

More generally, we now want to assign to any ¢ € L(E,F) a linear map ¢} €
L(TI(E), Tr(F)). If ¢ is a linear isomorphism we may combine such a map from ¢
and ¢*:

4.1.4 Definition. Let ¢ € L(E, F) be bijective. Then T! (p) =5 € L(TTE, TIF)
is defined as

(@:(t))(ﬁla s aﬁr, f17 SERE) fs) = t(<)0*(ﬂ1)a ceey QP*(ﬂr)a ‘pil(fl)a sy wil(fs))
fOT‘tGTST(E), 51,...,BT 6F*7 fla"'vfs eF.
4.1.5 Example. ¢} : E =T¢(E) = Tg(F) = F, ¢}(e)(B) = e(p*(B)) = ¢(e)(B).
Thus we may identify o} with .

@Y BF = TY(E) - TY(F) = F*, @(a)(f) = ale™(f)) = (¢7)*(@)(f), so we
may identify ¢ with (p=1)*.

It follows that T7p = " is a simultaneous extension of ¢ and (p~!)* to general

tensor spaces.

4.1.6 Proposition. Let ¢ : E— F, ¢ : F — G be linear isomorphisms. Then:

(1) (Vo) =150

(i) (idp); = idrr(m)

(iii) @ : T'E — TT'F is a linear isomorphism, and (¢7)~t = (p=1)7.
)

(w) Ift1 € T{H(E), ta € T2(E), then ¢ {2 (t @ t2) = o[t (t1) © 922 (t2).
Proof. (i) We first note that for v € G*, e € E we have
(") (7)(e) = (™ (" (M))(e) = ¥"(N(w(e)) = 1(¥(p(e))) = (¥ 0 )" (7)(e)-
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Now let v1,....,v" € G*,g1,...,9s € Gand t € TT(E). Then

(w:(cp:g(t)))(fyla"'7’77"917 'ags)

= (5t ))( Y Y T 1), T (gs)
= t(yp* ) W) e W T (1), T (W N (gs)
—_———
(op)*~t (Yop)=1(g1)

= (o)), 7" 91, 0s).

(ii) Since idE1 =idg and idy = idg~ this is immediate from the definitions.
(iii) follows from (i) and (ii).
(iv)

iRt @) (B B fiy e forbes)
=t @t2)(@* B @B 07 f1), 0 (fertsa)
=t ("B, @ BT (1) e ()
tQ(SD*ﬂTIJrla cees So*ﬂTlJr”a‘Pil(fm-&-l), ) @71(f51+52))
= (@t1) ® (©52ta)(BY, .., 872 f1, o, foitsn)-

a

To simplify notations, in what follows we will employ Einstein’s summation con-
vention: for every index which appears both as an upper and as a lower index,
summation is carried out over its entire set of values. Thus, instead of

Z t ,,,,, ire“ '®€ir®04jl®"‘®0tjs

we simply write t“’ Tseil ®- - -®e;, ®al®- - ®@ads. Deviations from this convention
will be mentloned explicitly.

Our next aim is to extend the above constructions of multilinear algebra to tangent
vectors, i.e., to elements of certain vector bundles. To carry out this transfer we
first consider the case of local vector bundles.

4.1.7 Definition. Let ¢ : U x F = U’ x F', o(u, ) = (p1(u), p2(u) f) be a local
vector bundle isomorphism (cf. 2.2.6 (i)). Then define ¢ : U x TTF — U’ x TI'F’
by

ps(u,t) = (p1(u), (p2(w)s(®)  (t€TF)

Note that @2 (u) is an isomorphism for each u, so (2 (u))% is well-defined.

S
4.1.8 Lemma. Under the assumptions of 4.1.7, - : U X TrF — U’ x TrF' is a
local vector bundle isomorphism.

Proof. By 4.1.6 (iii), every (w2(u))5 is a linear isomorphism. Hence ¢ is bijective
and it remains to show that (u,t) — ¢%(u,t) is smooth (it then follows that also

(¢")1 = (p71)r is smooth). Clearly, o1 is smooth.

Concerning o we first note that on the space L(F, F’) of linear maps (i.e., matrices)
the map ¢ — ¢* (= A — A?) is linear, hence smooth. Moreover, the space of
invertible matrices GL(F, F') is open in L(F, F") (since GL(F, F') = {A € L(F, F") |
det(A) # 0}) and ¢ — ¢~ ! (corresponding to A — A~1)) is smooth on GL(F, F")
by the inversion formula for matrices. Thus the maps u + @2(u)* and u +— @o(u)~!
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are smooth. Moreover, the maps iy, i, : (8%,... 8", fi,..., fs) = B¥ resp. — fj are
linear, hence smooth as well. Summing up,

(u,t) = (p2(w)s(t) =
(u,t) (t7<:02(u)*a-~-,4,02(U)*,<p2(u)71,,,,’4p2(u)*1)
o to(pa(u) oty ..., pa(u)  oir, pa(u) Tt 0dl,. . pa(u) Tt 0d))

is smooth since also the last of the above maps is multilinear, hence C*°. a

After these preparations we may now assign to any vector bundle E the correspond-
ing (7) tensor bundle, which has precisely the (E})7 as fibers:

S

4.1.9 Definition. Let (E, B, ) be a vector bundle, with E, = 7~1(b) the fiber over

b. Then let
TI(E) = || TI(By) = [J {0} x (By);
beB beB
be the (7)-tensor bundle over E. Let 77 : TT(E) — B, 7l(e) = b for e € T (Ey)
denote the canonical projection. For A C B let T](E)|, = | lyc 4 17 (Eb).

We wish to turn T7 (E) itself into a vector bundle with basis B. To this end we will
produce vector bundle charts for T7 (E) from those of E, according to the following
pattern:

4.1.10 Definition. Let E, E’ be vector bundles and f : E — E'. f is called
a vector bundle homomorphism, if for each e € E there exists a vector bundle
chart (U, W) around e and a vector bundle chart (¥',W') around f(e), such that
fW) C W' and fyrg := W' o f oW~ is a local vector bundle homomorphism (cf.
2.2.6 (i)). If f in addition is a diffeomorphism and f|g, : Ep — E} p is a linear
isomorphism for all b € B then f is called a vector bundle isomorphism. In this
case we define I : TTE — TTE' by

filrr g,y = (flg,)s Vb€ B

It is straightforward to check that a smooth map f : E — E’ is a vector bundle
homomorphism if and only if f is fiber-linear, i.e., if and only if f|Eb By — E}(b)
is linear for each b € B.

4.1.11 Examples.

(i) Let M, N be manifolds and f: M — N smooth. Then T'f : TM — TN is a
vector bundle homomorphism. In fact, by 2.2.5 we have:

ToTfoTe Haz,w) = T(pofop ') (z,w)
= (@Wofoyp (z),DWo fop M)(z)w).

If f is a diffeomorphism then T'f : TM — TN is a vector bundle isomorphism.

(ii) Let E be a vector bundle, and (¥, W) a vector bundle chart of E. Then
U : W — U x R" is a vector bundle isomorphism. This holds, in particular,
for E =TM and ¥ = T, where 9 is any chart of M.

4.1.12 Theorem. Let (E,B,m) be a vector bundle with vector bundle atlas A =
{(Po, W) | @€ A}. Then (TTE, B, n%) is a vector bundle with vector bundle atlas
AL = {((Ya)s, (T3 E)yw. ) | a € A}, (TYE, B, my) is called the tensor bundle of
type (1) over E.
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Proof. Clearly the (TjE)|y, ~p form a covering of Ty E. Let ¥,, Vg be vector
bundle charts from A with Wog := WaNWj # 0. Since Ely, 5 = Upew, ,np{b}x
Ey, it follows that ¥, is of the form U, (b,e) = (¥a1(b),a2(b) - €), with b € B,
e € Ey, and t42(b) linear for each b. Therefore, (¥,)" is defined as (b,t) —

(a1 (D), (a2 (b))7t) (t € T7(Ey)). )
Then

VgoU  (z,w) = Wb (2),Paz(b) w)
=:b
(Y1 (ot (2)), V2 (b)haz(b) " w)
= (Ypar(z ),w/m( ) - w).

Hence by 4.1.6 (i) and 4.1.7,

(Tp)so((Ta)y) Hant) = (Pp)i(vai (@) (Ya2(b)H)5(t)
= (s (¥ar (2)), (Wa2(0)vaz(b)~1)i(t))
= (Ypa1(2), (Ypaz(2))5(t) = (P50 W) (x,t),
which, by 4.1.8, is a local vector bundle isomorphism. Thus T7(E) is a vector

bundle. As in the proof of 2.2.4 (for TM) it follows that 77 (F) is Hausdorff and
second countable. O

For us the most important special case of this construction is £ = TM:

4.1.13 Definition. Let M be a manifold. Then TT (M) := TF(TM) is called the
bundle of r-times contra- and s-times covariant tensors on M (resp. of tensors of
type (7). T*M := TP (M) is called the cotangent bundle of M.

By 4.1.5 we have Tg (M) = TM: in fact, 7~ !(p) = T,M Vp and T} (T,M) = T,M.
For each chart v of M, ()} = T.
If A= {(¥a,Va) | a € A} is an atlas of M, then by 4.1.12,

A = {((TPa)s, (TEM)]y, ) | a € A}

is a vector bundle atlas of T M

4.1.14 Definition. Smooth sections of T'M (i.e., smooth mapst : M — TrM
with 7% ot = idps) are called (;) -tensors (resp. (’;) -tensor fields) on M. The space
(M, TrM) of (%)-tensor fields is denoted by T (M). In particular, Tg-(M) =
X(M). We also write QY (M) instead of TL(M). The elements of QY(M) are called
differential forms of order 1 (1-forms, covector fields).

Ift € T)(M) and f € C°(M), then ft: p— f(p)t(p) € (T, M)% is a tensor field on
M. Then T] (M) with the pointwise operations +, f- is a C>°(M)-module.

As in the case of X(M) = T3 (M) we also want to derive local representations of
general tensor fields in charts. We first consider the special case Q' (M) = TP (M) =
(M, TYM). As a set,

M = | | (T,M)" = | {p} * (

pEM peM

The vector bundle charts of TP M = T* M are of the form (T%)? : TloM}v — (V) x
(R™)Y = (V) x (R")* for any chart (1),V) of M. As in the case of TM = T} M
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we want to use the vector bundle charts to define a basis of (T,M)*. Recall that
for T,M in this way we derived the basis {52 , | 1 < < n}, where 2
(pr)il(ei% Le., % =pr (Tlﬁ)il(’(/)(p),ei).

In the case of TP M let {a? | 1 < j < n} be the dual basis of {e; | 1 <i < n} in
(R™)*. Then for any p € V the family

p

dz’ |p= [(TY)}) ' (W(p),0')  (1<i<n)
is a basis of (T, M)*. We have
da'| = (T (6 (p).a’) =

= (0, [(Ty0)?] (") *£° (p, (Tp) 1)) () (4.1.1)
= (p, (Tpy¥)*(a")).

Since dxj‘p € (T,M)* and —~}p € T,M, we can apply dxj|p to

12} a | .
ozt ozt Ip*

0

i
8xp

da’|, ( ) = (L) (@) (Tw) " (en) =

= J(T(Ty) Ye))) =

= o(ei) =0y

It follows that {dz? |p | 1 < j <n}is precisely the dual basis of { 52
in (T, M)*.

p|1§i§n}

Another way of looking at dz’ results from the following definition:

4.1.15 Definition. Let f € C*°(M). Thendf : M — T*M, p — T, f is called the
exterior derivative of f.

4.1.16 Remark. (i) df € T°(M). In fact, for any p € M, T,,f € L(T,M,R) =
(T,M)*. Moreover, df is smooth since for any chart ¢ around p we have (setting
P(p) = z):
(qu)? odf o d}_l(x) = (z, ((Tp¢)_1)* oTpf) = (z,Tpf o (sz/))_l)
= (¢, Tu(fov™) = (z,D(f o™ )(2))

Ton T () x me):
dfT Tide(fm/rl)
MOV —2 s (V)
(ii) If f € C*°(M) and X € X(M), then for allp € M, X, € T,M and df|, € T,M~,
so df(X) :=p > df|, (Xp) : M — R is well-defined. We have:
df‘p (Xp) =Tpf(Xp) = X(f)‘p :

Thus df (X) = X(f). In particular, df (X) € C(M).

(iii) Let (v, V) be a chart, ¢ = (z%,...,2"). Then d(x?) in the sense of 4.1.15 is
precisely the above dx®. Indeed, by (ii) we have

d("”j)(aii) - aii

(27) = by,
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i.e., {d(27) [,| 1 < j < n} is precisely the dual basis of { 5
p € V. Since df, € T,M* it follows that

af = zn:df(
=1

(iv) For f,g € C°°(M) we have d(fg) = (df)g + f(dg). Indeed, for any X € X(M)

we have

p|1§i§n}f0rall

i_N~Of
)dm =2 axidx (4.1.2)

0
ox?

d(f9)(X) = X(fg) = X(f)g + fX(9) = ((df)g + f(dg))(X).

If (,V) is a chart of M, ¢ = (x!,...,2™), then for all p € M the tuple {% , |
1 <i<mn}isa basis of T,M and {da:j‘p | 1 < j < n} is the corresponding dual
basis of T, M*. Thus, by 4.1.3, for any p € M the tuple:

0
{ oz »

Drir v | 1 <iig,jx <n}

®d$jl|p®"'®dl‘js
p

is a basis of (T, M);. Hence if ¢ is a section of Ty M then there are uniquely
determined functions ¢} on V' such that

'jS
¢ _tz‘l...i,,. 0 9 d J1 d Js 4.1.3
|V— jlmjsaxh@"'@iax“@ Tt R R dr ( 1. )

(cf. the special case of vector fields in 2.2.9: X|,, = Xi%.) As for vector fields
we also have a characterization of smoothness for tensor fields in terms of local
coordinates:

4.1.17 Proposition. Let t be a section of the bundle TT(M). TFAE:

(1) t is smooth, i.e., t € T (M).

Q1

A are smooth.

(ii) In every chart representation (4.1.3) all coefficient functions t

Proof. Let (¢, V) be a chart of M. Then (T4)" is a vector bundle chart of T7 M.
By definition, ¢ is smooth if and only if the push-forward .t := (T%). ot o=t :
Y(V) = (V) x (R™)% is smooth for every chart .

v 2 ) x o)

A I

MOV —Y (V)
For z € (V) we have (setting p := 1 ~!(x)):

r 1 (4.1.3) r( gi1. i 9 B
@g)iotov(@) =T (@£ e) 5o e )
T (4010 9 J
= ($7(pr)s(tj1...js(p) Dt p®"'® dz’® p))
4.1.6(iv) P 0 ,
= (=t (p) (pr)é(a T )@ e (L)) (da?]))
—— 0T P ——
=Tpy (Tpyp)*)~t
= (:E,t;llzji (’L/Jfl(x)) e, R - ®e;, ® TR ® ajs)
€(R™)T
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1.l

This map is smooth if and only if all tijo y~! are smooth, i.e., if and only if all
t;llz’" are smooth on V. O

Ifte T/ (M)and o, ...,a" € QY (M), X1,...,Xs € X(M), then

pt(p)(a'(p),....a"(p), X1(p),. ... Xs(p))

is a well-defined function M — R which we denote by t(al,...,a", X1,..., X,).
For f € C*°(M) we have

t(fat,a?,...) =t(a!, fa?,...) = =ta',..., fX,) = ft(a*, ..., X,).
Thus (al,...,a", X1,..., X,) = t(al, ..., X,) is C°°(M)-multilinear.
4.1.18 Proposition. Let t be a section of the bundle TT(M). TFAE:

(1) t is smooth (i.e., t € T (M)).

(ii) Yal,...,a" € QY(M),VX1,..., X, € X(M), the map t(at,...,a", X1,..., X;)
is in > (M).

Proof. Let (1, V) be a chart in M, ¢ = (x!,... 2").
(i)=(ii): Let X = X* 9 (1<k<s),a™= agfnd:cbm (1 <m <) be the local

k Oz
representations with respect to ¥. By 4.1.17, all coefficient functions XJ% G,
tgll""'.lffs are smooth on V. Hence so is
t(al X)) = o ...op X0 X% t(da™ dar 9 9 )
geeey s bl... bT 1 - s gee ey ’axal".'7axas
4.1.3
(419 agl cooop XT L .Xg'*tzll"""%‘s.

(ii)= (i): By 4.1.17 we have to show that t;llzz is smooth on V for all iy,...,1,,

J1s---,Js- As in the proof of 2.2.10, (ii)=(iii), we extend dz,..., 8:1:% to elements
of Q1(M) resp. X(M). Then t;llzr =t(dx™, ..., a%) is smooth by (ii). O

The above observations lead to the following algebraic characterization of smooth
tensor fields. Let

LEESy (QU(M) x -+ x QL(M) x X(M) x - x X(M),C(M))

T S

be the space of C°° (M )-multilinear maps from Q(M) x -+ x QY (M) x X(M) x - - - x
X(M) to C>®(M). Then we have:

4.1.19 Theorem. The map
ASTIOM) = L5 (@UM) x -+ x X(M),C=(M))
t o= (o). 0" X, X)) = el X))
is a C™(M)-linear isomorphism.
Proof. By 4.1.18, for all t € T (M), A(t) € LZLS(M)(Ql(M) XX X(M),C>®(M))
and clearly A is C°°(M)-linear.

A is injective: If A(t) = 0 then for all p € M and all o, ..., X, we have t(p)(a*(p),
.., Xs(p)) = 0. All elements of T, M resp. of (T, M)* can be written in this way
(i.e., are of the form X;(p) resp. o/ (p) for certain smooth fields X;, af: this is seen
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by extending any given constant (co-)vector to a smooth field using a partition of
unity, cf. the proof of 2.2.10, (ii)=-(iii)). Hence it follows that t(p) = 0 Vp, i.e.,
t=0.

A is surjective: Let ® € LEJ;S(M)(Ql(M) X -+ X X(M),C>*(M)). We have to show
that there exists some t € T (M) with A(t) = ®. To this end we first demonstrate
that ®(al,... ,Xs)|p depends only on a!(p),..., Xs(p). It suffices to show that
al(p) = 0 implies ®(al,... 7X5)|p = 0 (and analogously for o?, ..., X,). This we
do in two steps

1) If V is an open neighborhood of p and 041’V =0, then ®(al,.. .,XS)‘p =0
(i.e., ® depends only on the local behavior of a'). Choose an open neigh-

borhood U of p such that U C V. By 1.3.14 there exists a partition of unity
(X1, x2) subordinate to {V, M \ U}. Then a! = x5 - a!, and therefore

<I>(041,...7Xs)|p = <I>(X2a1,a2,...,Xs)’p = x2(p) <I>(a1,a2,...,XS)|p =0
=0

2) Now let al(p) = 0, let V be a chart neighborhood of p, and write a1|v =
ozjl-dxj. Then by 1),

@(al,...,Xs)’ = (I)(Oé;d.’lij,CYQ,...,Xs)’p
= al(p)q)(dmj,az,...,Xs)| =0

J p

Therefore, for each p € M we may define some ¢(p) € (T,M)? by

tp) (e (p), .-, Xu(p) = (... X[ .
(Recall that all elements of T,M* x --- x T, M can be written in this way, as
was demonstrated above). Thus ¢ is a section of TP M. By construction, for
all o € QY(M) and all X; € X(M) we have t(a,..., X;) = ®(al,..., X;) €
C>®(M),soteTS(M) by 4.1.18. Obviously, A(t) = @, so A is onto.

a

4.1.20 Example. (Kronecker delta) Let § : QY (M) x X(M) — C>®(M), §(a, X) :=
a(X). This clearly defines a C°°(M)-bilinear operation, hence by 4.1.19 is an ele-
ment of T11(M), called the Kronecker delta. It has the interesing property that its
coordinate expression is the same in any local chart, namely

a,®dmi.

0= ox*

Indeed, given X = Xj% and a = aydz”,

§(a, X) = o X' = ( 0

py ® dx )(a,X).

All standard operations of multilinear algebra can be transferred fiber-wise to tensor
fields. We have already encountered the following:

o feC(M), teT](M)= f-t:=p~ f(p)-tp) € TS (M)
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et e Tr(M), a',...,a" € QY (M), X1,...,Xs € X(M) = ta!,...,X;) €
C>(M)

Moreover, for t; € T (M), to € T72(M) the tensor product t; ® ty € T, 2 (M)
is defined as
t1 Qto:pr—t1(p) @ ta(p)

t1 ® to is smooth by 4.1.17 or also by 4.1.18.

4.2 Tensor calculus

In this section we are going to extend the Lie derivative to arbitrary tensor fields,
thereby laying the ground for a powerful calculus with many applications. We
already encountered the Lie derivative of functions and vector fields and the exterior
derivative on smooth functions. Recall from 2.3.11 and 2.3.13 that, for any f €
C>®(M) and any X,Y € X(M) we have

Moreover, by 2.2.15 the space of all derivations on C*° (M) coincides with X(M).
Thus any derivation on C*°(M) is of the form Lx for a unique X € X(M).
4.2.1 Proposition. Let M, N be manifolds and let X € X(M).

(i) Lx : C®°(M) — C*(M) and Lx : X(M) — X(M) are natural with respect
to push-forward under any diffeomorphism ¢ : M — N, d.e.: Ly x(psf) =
o (Lx f) for all f € C®(M), and L,, x(¢+Y) = @ (LxY).

C®(M) —=— C*®(N) X(M) -2 %(N)
J{LX J{Lw*X J/LX J{wa
C®(M) -2 C*®(N) X(M) -2 %(N)

(i) Both operations are natural with respect to restrictions: Let U C M be open,
then (Lx f)lv = Lx, (flv) and (LxY)|luv = Lx |, (Y|v).

c (M) -y () (M) 2 x(NV)
[ R P
e (M) Vs = (U) x(M) 2 x(N)

Proof. (i) For p € M and ¢ := ¢(p) we have
L. x(pxf)(@) = d(f o o™ ) (0 X(0) = Ty(f o ¢ ™) 0 Tyma (g0 0 X 09~ (q)
=Tyf o X op™Hq) = (Tf o X) (0™ (@) = (¢:«(Lx ) (@)-
Furthermore, using the remark following 2.3.16, we have
Lo x(0:Y) = [0 X, 0.Y] = 0u[ X, Y] = u(LxY).
(ii) This is immediate from the local representations (see 2.2.10 and 2.2.17) O

We next want to extend the Lie derivative Lx to an operation on the full tensor
algebra T (M) := @, , 7. (M). The type of operation we aim for is specified in the
following definition:
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4.2.2 Definition. A differential operator on T (M) is a collection of maps D% (U) :
TrU) = TH(U) (rys >0, TO(U) := C>=(U)) for each open set U C M, such that
(writing D for short)

(DO1) D is a tensor derivation: it is R-linear and D(t; ® t2) = Dt ® to +t1 ® Dty
for any tensors tq,ts.

(DO2) D is local (natural with respect to restrictions): For U CV C M open and
te T (V):
(DY)|y = D(tlv) € TS (U).

(DO3) D§ =0, where § is the Kronecker delta from 4.1.20.
The key to extending Lx to T (M) is the following theorem:

4.2.3 Theorem. (Willmore) Suppose that for any U C M open we are given maps
Ey :C®(U) - C>®U) and Fy : X(U) — X(U) that are R-linear tensor derivations
and natural with respect to restrictions, i.e.:
(i) Eu(f®g)=(Evuf)®g+[® Eyg for dll f,g € C>(U).
(it) For all f € C*(M): Eu(flv) = (Emf)lu.
(iii) Fu(f@ X)=(Evf)@ X+ f® FyX.
(Z"U) For X € %(M), FU(X|U) = (FJWX)‘U.

Then there exists a unique differential operator D on T (M) such that D¢y = Ey
and Dl|xy = Fy for each U C M open.

Proof. Uniqueness: Supposing that such a D exists, by (DO2) and (ii), (iv)
it suffices to show uniqueness of each D(U), where U is the domain of a chart

¢ with coordinates z',...,z". Then any ¢ € T(U) can be written in the form
t=tlr 831 ®-® afl‘r ®dr? @ -+ @ da’s, where t7) " € C*°(U). Applying D

to t and using (DO1) we obtain a sum of terms that can be expressed via Ey and
Fy, except for terms of the form D(dz?). But for these we get, using (DO3) and
4.1.20:

0

0=D5= D(dxi ® %) = D(dz') ® % +doi ® D(@). (4.2.1)

Here, D(%) = FU(%), so inserting (%,dmk) shows that D(dz?) is also com-

pletely determined.

Exzistence: Conversely, we define D on any t as above by the expressions we derived
in the uniqueness proof using Ey and Fy. Then due to (i) and (iii), this D is
well-defined and satisfies (DO1). Also, (ii) and (iv) imply (DO2). Finally, (DO3)
holds since we defined D(dz?) via (4.2.1). O

Using this we can now extend Lx to all of 7(M):

4.2.4 Corollary. For any X € X(M) there exists a unique differential operator
Lx on T(M) that coincided with Lx on each C*(U) and X(U).

Proof. We have to verify the conditions from 4.2.3 for Eyy = Lx : C*°(U) — C>=(U)
and Fy = Lx : X(U) — X(U): (i) is (2.2.5), (ii) and (iv) follow from 4.2.1, and (iii)

is a consequence of 2.2.17 (iv). O
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4.2.5 Remark. Condition (DO3) is equivalent to the requirement that D commute
with contractions, i.e., with

(DO4) For all t € T7 (M), au, ..., ap € QH(M), X1, ..., X, € X(M):

D(t(at,...,a", X1,..., X)) = (Dt)(a*,...,a", X1,..., Xs)

+Zt(o¢1,...,Daj,...aT,Xl,...,Xs)
j=1

+) tla!,...a" X1, DX, ., X).
k=1

Assuming (DO1), (DO2), the equivalence of (DO3) with (DO4) can be seen as
follows: Write t(al,...,a", X1,...,X,) in local coordinates. Then noting that by
(4.2.1) we have D(a(X)) = Da(X) + a(DX), a straightforward calculation using
(DO1)-(DO3) gives (DO4). Conversely, applying (DO4) to the identity d(a, X) =
a(X) gives

(D8)(a, X) + 8(Dav, X) + 8(ar, DX) = D(5(av, X)) = D(a(X)) = Da(X) + a(DX),

which implies (Dd)(a, X) = 0 for all o, X and thereby (DO3).

4.3 Differential Forms

In this section we wish to study alternating multilinear forms, first in the vector
space setting and later on vector bundles.

4.3.1 Definition. Let E be a finite dimensional vector space and A*E* := L,’“lt(E, R)

a.
the space of all multilinear alternating maps from E¥ = E x --- x E to R.

4.3.2 Remark.
(i) t € L*(E,R) is called alternating if

t(fl?'"7fi7"'3fj7"'3fk):7t(f1"'7fj7"'7fi)"'?fk) (1§Z<]§k)

Let Si := {p : {1,....k} = {1,...,k} | ¢ bijective } be the permutation
group of order k. Then for o € Sy and t € A¥E* we have

t(fo) s fory) = sgn(o)t(f1,. .., fx)

For 0,7 € Sk, sgn(oo7) = sgn(o) -sgn(r). Since Sy is a group, for all 79 € Sk
the map 7 — 7 o7y : Sy — Sk is a bijection.

(ii) We set A°E* = R. Moreover, A'E* = L. (E,R) = L(E,R) = E*.

(iii) A*E* is a subspace of T} (E), the space of all multilinear maps Ex---x E — R.

4.3.3 Definition. The map Alt : T)(E) — TY(E),

Alt(t)(fl?afk) = % Z Sgn(a)t(fa(l)a-- -7fa(k))

’ g€Sk

1s called alternator.
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4.3.4 Lemma. Alt is a linear projection of T (E) onto A*E*, i.e.,
(i) Alt is linear, Alt(TQ(E)) C A*E*.
(ii) Alt|pn e = idprpe.
(iii) Alto Alf = Alt.
(iv) AR(TP(E)) = A*E*.

Proof. (i) Clearly, Alt is linear. Let t € TP (E), 7 € Sg. Then

AlL(t)(fray, .- fr) = %ZSgn(U)t(fmu),-~-,fm(k:))

€Sk

1
= o > sgn(r)sgn(r 0 0)t(fro(r)s - s Fror)

" oeSy
= sgn(r)Al()(f1,-.., fr)
(ii) If t € A¥E*, then
Alt(t)(f1,.. ., fx) = % Z sgn(o)t(fo(1)s s foiry) = t(f1, -5 fr)-
T oeSy

(iii) and (iv) follow from (i) and (ii). 0

4.3.5 Definition. Let a € T)(E), B € TY)(E). The eaterior product (or wedge
product) of « and B is defined as

(k+1)!
P
Fora e T)E=A’E* =R we setaANB=BAa=a-j.

aAf:=

Alt(a ® B)

4.3.6 Example. Let a,8 € A'E* = TY(E) = E*. Then

|
@B f2) = i O ()@@ B)(fotnys for)
T 5eSy

(@@ B)(f1, f2) — (@@ B)(f2, f1) = (@@ B — B® a)(f1, f2)-

4.3.7 Proposition. Let a € T)(E), B € TP (E), and v € To,(E). Then:

(1) anB=Alt(a) AB=aAAlt(B).
(ii) A is bilinear.
(iii) aAB = (~1)F B Aa.
(iv) A is associative: a A (BA7y) = (aAB)Ar.

Proof. (i) For 7 € Sy and o € T (E) let (7o) (f1,---,fx) == a(fr(1)s---» [rn))-
Then

Alt(ra)(f1,.. . fx) = %Z sgn(o)a(for(rys-- s for(r))

o€Sk

= Sgn(T)% Z sgn(oT)a(for1), - s for(k))

ogESy
= sen(r)Alt(a)(f1,. .., fr)-
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Therefore,

Alt(ra) = sgn(r) - Alt(a). (4.3.1)
Using this, we obtain
AW(AI(@) ® )(fi-- -+ fest) = Gy X o)) © D)ot o)
= Jlr il UGZSEH sgn (o) Alt(a)(fo1)s -« s for)) Bfors1)s - - s fotran))
- 5T z sno) 3, 3 sl 2oty o) ey o)

=) (fo1)s-sfo (i)
_ % S sgn(r)Alt((ra) @ B) (s firt) = (%)

TESK
We define 7/ € Sk, by
7, k+ D) = (), ..., 7(k),k+1,... k+1).

Then sgn(7') = sgn(7) and (7o) ® 8 = 7/(a ® B). Therefore,

0 = % 3 sgn(r)AL(r (@ ® B)) (f1.-- -+ i)
CreSy

3.1 Alt(a® B)(f1,-- -, frti)s

so Alt(Alt(a) ® ) = Alt(a ® B8), and thereby Alt(a) A S = a A 5. The second
equation in (i) follows in the same way.
(ii) is clear since ® is bilinear and Alt is linear.

(iii) Let o¢ € Sk4; be given by oo(1,...,k+1):=(k+1,...,k+1,1,...,k). Then

sgn(og) = (—1)* and o @ B(f1, ..., fas1) = BR A fog(1)s---» footksr))- By (4.3.1)
this entails

anp= (kk—;!l)!Alt(a ® B) = (k;!_”l)!Alt(ao(ﬁ 2a) = (~DMB Aa.
(iv)
an@ny = S n ey 2 5y

I+m) (k+1+m)!
= (l!m! Wi+ MHeeBeq)

(a®B)®
(k+14+m)! (K+1)Im!
Ellm!  (k+1+m)!
(k+1)!
k!

(a®B) Ay

—~
.
Nass

Alt(a @ B) Ay = (a A B) A 7.

=anp

4.3.8 Definition. AE* := @, , A*E* with the operations +, A\ and A is called
the exterior algebra (or Grassmann algebra) of E.
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As we shall demonstrate in a moment, A* E* = {0} for k > n, so in fact

E* = é AFE™,
k=0

To prove this we need the following auxilliary result:
4.3.9 Lemma. Leta',...,a* e A'E* = E* and f1,...,fr € E. Then

(@' A AN (fry o fr) = Z sgn(o)ot (fo) o & (for))

o€Sk

Proof. We have to show that
alAnadf =K Alt(el @ - @ oF)
This we do by induction, the case k = 1 being obvious. For k —1 — k we calculate:

4.3.7(i
ol A AR () al A (a? ~/\0¢k):

E-Dla' AAlt(a? @ --- @ aF) =

ind.hyp.

(
4310 (k—1la! A (« ®~'®ak):
(

(k=14 1)
WAI‘L( - ®ak)

k—1)!

4.3.10 Proposition. Let n = dim(E). Then dim(A*E*) = (}) for 0 < k < n.
For k > n, A*E* = {0}. Therefore, dim(AE*) = > () = 2" If {e1,...,en}
is a basis of E and {al,...,a"} is the corresponding dual basis, then B := {a’t A
cAQ 1<) < --- < <n}ois a basis of AFE*.

Proof. B spans AYE*: Let t € AKE* C TY(E). By 4.1.3, t is of the form
t:t(eil,...,eik)a“ ®- - ®a*
By 4.3.4 (ii) and 4.3.9,

1 . )
—'t(eil,...,eik)a“ A ANa'k,

t = Alt(t) = t(ei,, ..., e ) Al (a" @ --- @ ') = p

Since t is antisymmetric, all terms in this sum where two indices coincide vanish.
In particular, ¢t = 0 for k > n (so A*E* = {0} Vk > n). If all i; are distinct, then
for any o € Sy we have

t<ei1 Yo eik)ail TARERNA aik = Sgn(U)Qt(eia(l) oo aeiw(k))aig(1> ARSRNA aia(k)

There are k! such terms, so:

t= Z t(eiyy .y eq ot Ao Aol

1<ii<-<ir<n

B is linearly independent: let

1<i1 < <ipg<n
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We have to show that all ¢;, ;, vanish. Let 1 <3¢} < --- < i} <n be some fixed k-
tuple and choose j;. | < --- < j;, such that {i},..., 4 }U{j} 1, 00} ={1,...,n}.
Then by 4.3.7,

) . " v
0 = g Liin P A AN AT A Nl =
1<ip < <ipg<n
= :l:tzl iIOél/\"'/\Oén.
D,

Since al A -+ Aa™ # 0 (by 4.3.9, o' A--- Aa"(eq,...,e,) = 1), it follows that
t,L-/ i = 0 O
1

4.3.11 Definition. Let dim(F) =n, w € A"E*, w # 0. Then w is called a volume
element on E. Two volume elements wy, wo are called equivalent if wy = ¢ - ws for
some ¢ > 0 (recall that Aim(A"E*) = 1). An equivalence class of volume elements
on E is called an orientation of E.

4.3.12 Proposition. Let dim(E) = n, and ¢ € L(E,E). Then there is a unique
number det ¢ € R, the determinant of p, such that for the pullback-map

" A"E* — A"E*
(Qa*w)(flw"afn) = w(@(fl),;@(fn))
we have p*w = det p - w, for allw € A"E*.

Proof. Obviously, the map ¢* is linear: A"E* — A"E*. By 4.3.10, dim(A"E*) =
1. Thus with respect to any basis {wp} of A"E*, ¢* is given by a 1 x l-matrix
¢ € R. Hence for any w = a - wy we have p*w = c-a - wp, and we can set det ¢ := c.

O

4.3.13 Remark. The determinant in the sense of 4.3.12 is precisely the homony-
mous number from linear algebra: let B := {e1,...,e,} be abasis of E, {a!,...,a"}
the corresponding dual basis, and set w := a' A --- A a”. Then

detyo = detpw(er,...,en) = wler,...,en) =w(pler),...,plen))
4.3.9 1 n
=7 ) sen(o)a! (pleo)) - - " (@leo(n)))
ceSy
= Z Sgn(o)wla(l) - Pno(n)
oES,
where (;;)i,; is the matrix representation of ¢ with respect to B. m

4.3.14 Definition. Let p € L(E,F), a € TY(F). The pullback of o under ¢ is
defined as p* : T)(F) — T (E),

" (a)(er, ... ex) :=al(pler),...,oer)) (e1,...,ex € E).

If ¢ is bijective, then the push-forward ¢, : T)(E) — TQ(F) is defined as ¢, :=
(o™Y)*. Thus, for a € T)(E),

@*(O‘)(flw"?fk') = O‘(@il(fl)v"'?(pil(fk)) (flﬁ"'vfk € F)
Then @. = @Y in the sense of 4.1.4.
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4.3.15 Proposition. Let ¢ € L(E, F), ¢ € L(F,G). Then:
(i) ¢* 1 TY(F) = TY(E) is linear and ¢*(AFF*) C AFE*.
(i) o) =¢* oy,
(i) If ¢ =idg, then ¢* =idro ().
(iv) If @ is bijective, then so is ©* and (p*)~!1 = (p=1)*.
)

(v) If ¢ is bijective, then so is @, and (p.)~' = @*. If 1 is bijective, then
(Y o) = 1hi 0 0.

(vi) If a € AFF*, B € ALF*, then ¢*(a A B) = p*a A p* .

Proof. (i) and (iii) are clear.
(ii) (Yo @) aler,... ex) = a(d(p(er)), ..., v(pler))) = (W a)(pler),. .., pler)) =
*(Y*a)(ery. .., ex).

iv) follows from (ii) and (iii).

(
) ()™ = (™)) () ) = g,
Em P (@ A B)(ers- -y enis) = (A B)((er),- .-, plenss)) =33439= ((p*a) A

B)) (e1,. - exy1)- !

We are now going to transfer the above constructions to the vector bundle setting,
starting with the case of local vector bundles.

4.3.16 Definition. Let o : U X F — U’ x F' be a local vector bundle isomorphism,
o(u, f) = (p1(u), p2(u) - f). Then let p, : U x AFF* — U’ x AFF'*,

(1, w) = (p1(w), p2(u).(w))-

4.3.17 Remark. Since ¢, = ¢, by 4.1.8 (and 4.3.15) ¢, is a local vector bundle
isomorphism.

4.3.18 Definition. Let (E,B,7) be a vector bundle, E, = m1(b) the fiber over
be B. Then set
AE* = | | AEp = | {b} x A*E;
beB beB
and 7 : A¥E* — B, 7l(e) = b for e € A¥E;. For A C B set A*E* N
Lbea A" B

4.3.19 Theorem. Let (E, B, ) be a vector bundle with atlas A = {(Vy, W,,) | a €
A}. Then (A*E*, B,70) is a vector bundle with atlas A := {((V4)., A¥E*

a € A}, where (W) = (Vo)) (cf. 4.1.10), i.e., (¥ a)*‘AkE; = (\Ila|Eb)*

wans) |

Proof. Clearly the A*E* w.np Cover AFE*. By 4.3.15 (v), the (\I/a)*|AkE; are

linear isomorphisms with image {¢41(b)} x A¥(R")*. The vector bundle chart tran-
sitions are local vector bundle isomorphisms according to 4.1.12 and 4.3.15. In fact,
(Uo)s = (V,)%. That A*E* is Hausdorff and second countable follows again as in
2.24. O

Again our main interest is in the case £ = TM:
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4.3.20 Definition. Let M be a manifold. Then A¥T*M := A*(TM)* is called
the vector bundle of exterior k-forms on TM. The space of smooth sections of
AFT*M is denoted by QF(M). Its elements are called differential forms of order k
or (exterior) k-forms on M.

Note that Q(M) = C>®(M) and Q' (M) is the space of 1-forms (cf. 4.1.14).
4.3.21 Remark.

(i) Due to 4.3.2 (iii), every fiber of A¥T*M, i.e., every AkT;M is precisely the
subspace of (T,M)} consisting of the alternating ({)-tensors. Thus, sections
of A*T*M are certain (2)—tensor fields, namely those which in every p € M
are alternating multilinear maps.

(ii) Let (¢, V) be a chart of M, ¢ = (x!,...,2"). By 4.3.10, for every p € V the
tuples { dxt |p/\~~/\ da:"’“|p |1 <4y <--- <ip <n}form a basis of A*T,M*.

Hence every section w of A¥T*M can locally be written as

wly, = Z wil,,_ikda:“ A Adote (4.3.2)
1<i1 < <ip<n
with w;, 4, = w(ag‘?i1 e (%%). Since the vector bundle charts of A*T*M

are of the form (7%)%, w is smooth if and only if for every chart (i, V) the
map ,w = (TY){ cworp™! = (Ty). owop~! is smooth. As in the proof of
4.1.17 (only using 4.3.15 (vi) instead of 4.1.6 (iv)) it follows that

/IZ)*W = Z wil...ik [¢] ¢_1ai1 VANEERWAN aik,

1<ip <-+-<ip<n

Hence w is smooth if and only if for every chart all local components w;, s,
are smooth.

(iii) By (i) and 4.1.18, a section w of A¥T* M is smooth if and only if for all vector
fields X1,..., Xk € X(M), w(Xq,...,X) € C*(M).

(iv) By (i) and 4.1.19, Q¥(M) is precisely the space of all C°°(M)-multilinear and
alternating maps (X(M))* — C>(M).

(v) Apart from the operations 4, f- and ® studied so far, for differential forms
also the exterior product is available: let o € Q¥(M), 8 € Q!(M). Then set

aABi=pr alp) AB(p) € AT, M*. Tt follows that a A 3 € QFH(M)
(smoothness follows from (ii) or (iii)).

QM) := Pj_, (M) with these operations is called the algebra of differen-
tial forms on M.

In 4.1.15, 4.1.16 we introduced the exterior derivative df of a smooth function f.
We now wish to extend this operation from Q°(M) to general QF(M).

4.3.22 Theorem. Let M be a manifold. For every open U C M there exists a
uniquely determined family of maps d*(U) : QF(U) — QFL(U), denoted simply by
d, such that:
(i) d is R-linear and for a € QF(U), B € QY(U) we have:
d(aAB) =daA B+ (—1)kandp.
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(ii) For f € Q°(U) =C>(U), df is the exterior derivative from 4.1.15.
(iii) dod = 0.
(iv) If U,V are open, U CV C M and o € Q*(V), then d(al,) = (da)ly, i.e.,

OHV) U k)

1] |
Qk+1(v> |_U> Qk-l—l(U)

d 1s called exterior derivative.

Proof. Uniqueness: By (iv) it suffices to show that d is uniquely determined on
any chart (¢, U). Thus let w € QF(U). By 4.3.21 (ii),

w= Z Wiy da’ A A dat
1<ig < <ig<n
Hence due to (i), (ii), (iii) we necessarily have:
dov = Z d(wil_”ikdxil Ao A dxi’“)
1<i <-<ig<n
= S dwiyg Adat A Ada (%)
1<i1 < <ipg<n
+ Z Wiy in d(dm“) Az A - A dat
1<ii<--<ip<n —

+0+ -+ 40,

=0

and uniqueness follows.
Ezistence: For any chart domain we define d by (x) above. We first show that this
d has the claimed properties (i)—(iv):

(i): Linearity being obvious, it suffices to calculate d(a A B) for a = fodfi A- - - Adfy,
B = godgr A --- Adg;. We first note that By 4.1.16 (iv), d(fogo) = godfo + fodgo.
Thus

d(a A B) d(fogodfi A+ Ndf Ndgi A -+ Ndgr)

= d(fogo) NdfL A - Adfi Adgy A Adg
= godfo Ndfy N--- Ndg; + fodgo Ndft A--- A+ Adg,
= daAB+(-1)Fands

—~
*
N>

(ii) and(iv) are obvious.

(iii): Tt suffices to show that d(df) = 0 for all f € C>*(U). By (4.1.2), df =
S 2L dgt. Hence,

i=1 Ox?
—~ 0 ; a0 S
i=1 1,7 antisymm

symm. in %,j

It remains to show that the above gives a well-defined global object on M. To this
end, let ¢ = (y,...,9y™) be another chart, w.l.o.g. with the same domain U. Define
d by (%) (with = <> y). By the proof of uniqueness, it follows that

dw = Z dwuzk ANdx* N A dx'* = dw.
1<iy<--<ix<n i :dvz’il :\/dzik
= dwil...ik
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Thus d looks the same in any chart, hence is globally well-defined. a

4.3.23 Example.

i) Let w = P(z,y)dz + Q(z,y)dy be a 1-form on R2. Then
(i) Y y)dy

dv = dPANdx+dQNdy=
_ (P, 0P 0, , 09 _
= (8mdx+8ydy)/\dac—|—(axdx+aydy)/\dy—
_,0Q 0P
= (8x ~ o Ydz A dy.

(ii) Let w = P(x,y,2)dy Adz + Q(z,y, 2)dz A dz + R(x,y, z)dx A dy. Then

orP 0Q OR
dw = (%—l—afy—l—%)dx/\dy/\dz.

4.3.24 Definition. Let M, N be manifolds, and F : M — N smooth. For w €
TO(N), the pullback of w under F is defined as F*w(p) = (T,F)*(w(F(p))) (cf.
4.3.14). For X1,..., Xy € T,M we therefore have

Fro(p)(Xy, ... Xi) = w(F )T F(X1), - .., T F (X))

4.3.3
EE) @) e

In particular, F*f = f o F for f € C*°(N) = Q°(N).
4.3.25 Lemma. Let F: M — N, G: N — P be smooth. Then
(i) F*: TP(N) = TP(M), F*: QFN) — Q~(M).
(ii) (G o F)* = F* o G*.
(iti) idy; = idgr(ary (resp. = idgo(ary)-
(iv) If F is a diffeomorphism, then F* is a linear isomorphism and (F*)~! =

(F1)".

Proof. (i) By 4.3.15 (i), (T, F)*(w(F(p))) € T2 (T,M) resp. € A¥(T,M)*. Thus we
only have to show that F*w is smooth. To this end, let (¢,U), (¢, V) be charts of
M resp. N with F(U) C V. Then both Fy, = ¢oFop™! and ,w = (T¢),oworp™*
are smooth (see 4.1.17, 4.3.21 (ii)).

By 4.3.15 (ii) we get (setting p = ¢~ 1(z)):

(DFyp(z)* = (TuFypy)"

(Trpyw o TyF o (Typ) ™ 1)*

(Top) ™) o(TpF)* o (Tem¥)*  (¥)
—_———

4.3.15(v)

(Tpp) =
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Hence, by 4.1.17, 4.3.21 (ii), the local representation ¢.(F*w)(z) of F*w with re-
spect to ¢ is given by
(Tp)s 0 Frwo ™ (2)
(Tpp)s o (TpF)*(wo F oy~ (x))
(TPW)* © (TpF)* © (TF(p)w)* ((TF(pW)* cwo 1/)_1 otpokFo 30_1(33))
(DFyp(2))" ((¢2w) 0 Fyp(2))
oo T <
COO oo e o}

—
*
N

which is smooth by the chain rule.

(if)
(GoF)(w)(p) =  (Tp(GoF)) (w(GoF(p))) =
(TF(p)G o TpF)*(w Go F(p )) =
L (T F) o (T G) (W(G(F (D)) =
= (LF)(G'w(F(p)) = F (G"w)(p
(iii) Obvious.
(iv) Follows from (ii) and (iii). O

4.3.26 Theorem. Let F': M — N be smooth. Then:
(i) F*: Q(N) — Q(M) is an algebra homomorphism, i.e., it is linear and F*(aA
) = (Fra) A (F7B).
(i) For allw € Q(N), F*(dw) = d(F*w).
Proof. (i) To begin with, let o = f € Q°(N) = C>(N). Then

F(fAB)p) = F°(f-B)p) =
= (LE)(f(F(P)BFP) =
(T,

(p
= JFEQ) (1) (B(F(p)))
—_——— —
F*f(p) F=B(p)

= (F"fAFB)(p).

In the general case we have

F*(a A B)(p)

4.3.1

ot

T,F)"(a(F(p)) N B(F(p))) =
)

(

(vi)

(T F)* (a(F(p))) AT E)" (B(F(p)) =
(F*a) A (F73))(p)-

(ii) By definition of F* and 4.3.22 (iv) it suffices to show that every p € M has

a neighborhood U with d( F*w|;) = (F*dw)|,, for all w € Q(N). Let (¢,V) be a

chart around F(p), and U a neighborhood of p with F(U) C V. Then for w € Q¥(V)
we have

YT Z Wi, iy dz A - A dat
1<ig<--<ip<n
dw = Z dwi, iy Ndz™ A - Ada'*

1< < <ipg<n
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By (i),
Fruly =Y Frwi, i F*(d2") A+ A F*(da'™) (+)

In general, for f € C>(N), F*(df) = d(F*f). In fact, if X € T,M, then

FH(df)(p)(X) = df(F0))(TpF (X)) = Tre) f(TpF (X))
= Tp(foF)(X)=d(foF)(p)(X).
ot

Thus, from () we conclude that

d(Fwly) = d Frwi i d(F*z") A« Ad(Fa'))
= Y d(Frwi, i) NdF* ) A Ad(Fra™)
= Y F*(dwi,..i,) AF*(dz) Ao A F*(da'™)
= F*(O_dwi, i, Adx™ A Adat)
= (Fldw)ly -

4.3.27 Proposition. Let M be a manifold, p € M, (p,V), (¢, V) charts around
p, o= (xt,....2"), Y= (y',...,y"). Then:

(i) da'| = ;Dkw oy 1)(¥(p)) dy*| = ,; o af,

(i) dz* A--- A dx”\p =det D(potp N (W(p)) dy* A--- A dy"\p

i) If w € QM(M), @ow = woa* A=~ Aa™, Yow = wypal A---Aa™ (al,...,a" the
1 w ¥
standard basis of (R™)*), then:

wy(y) = we(pop™(y)) -det D(poyy™ ) (y)  Vye (V)

Proof. (i) Since {da:i|p | 1 <i < n}is the dual basis of {%L} |1<j<n}it
suffices to show that

"L o2t 0
x| dv"] >(- ) = 0ij.
(1; oyt|, " v) 0al|,
In fact,

" Ox A 0 = i1 ko -1

D g | Wy (g | )= 2 Drlet o W) - Di(Wh e ¢ (0 (p)) = b
k=1 p—’k_p/ k=1 [D(pop=1)]ir [D(op™1)]k;

T
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(ii) By (i) we obtain (recall the summation convention!):

Oxt ozx™
N n — o1 On _
dx* AN+ Ndx ’p = (8y"1 ) dy”|,) A A(ay"" ) dy’|,) =
1
= Ox oz" dy®t A Ady°n
8y‘71 » ayo'n, » p
_J sen(o)dylA--Ady™|,  o€Sn
0 else
Ozt oz™
- (3 o] ] i)t
ocEeSy, Yy p Y P

=det(D(poyy=1)(¢(p)))

(i) Let w = fda' A--- Ada™ = gdy' A--- Ady™. Then by 4.3.21 (ii), w, =
foe ™ wy =goy~t Thus (ii) gives

fp)dz' A---Nda"| = f(p)det D(po ™" )(W(p)) dy' A~ Ady"| =
= gp)dy' Ao Andy"|

Hence,

wy(y) = g () = " (y)det D(p oy~ ")(y)
wy(p o™ (y)) det D(w o™ )(y)

4.3.28 Remark. A direct proof of 4.3.27 (iii) can be based on 4.3.12: Let th.w =
wypat A A Q™ puw = weal A Aa™. Then

wp()al A Aat = (T o gt (weal A Aa™)(y)
(T, (p o™ 1)) (Welp oy~ (y)al A= Aa™)
P2 det(D(p o)) (y)wp(p o (y))al A Aan,

50 Wy (y) = wyu(p o™ (y)) - det D(w o~ 1)(y).

In 4.3.24 we defined the pullback of any element of 7;0(N ) under any smooth map
F: M — N. If we additionally suppose that F' is a diffeomorphism, then we can
similarly define the pullback of an arbitrary tensor field ¢ € 7] (N) under F, by
setting (for X; € T,M, a; € Ty M)

(F*t)(p)(at,...,a", X1,..., X,) ==

0/ 1 o r (4.3.4)
HEE)(TpF)(a), - (T F)i ("), T F (X1), -, T F (X))

Here, according to 4.1.5, (T,F){ = ((T,F)~1)* is the inverse transpose of T,F
(which exists since F is a diffeomorphism). Explicitly, (T,F)}(a) = a o T,F~ 1.
Also, for a € Q' (N), (F*a), = ap@p) o TpF. As usual, we define push-forward via
the inverse map: F, := (F~1)*. Note that, using the notation from 4.1.4, we have

(F*t)p = (T F )5 (H(F (p)))- (4.3.5)

The following result collects some basic properties of the pullback operation.
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4.3.29 Proposition. Let F: M — N be a diffeomorphism.

(i) Forty,ta € T(N) we have F*(t1 ® t2) = (F*t1) @ (F*ta).
(ii) Lett € TT(N), X; € X(N), o € QY(N), then

F*(t(at,...,a", X1,..., X,)) = (F*t)(F*a',...,F*a", F*X1,..., F*X,).

(iii) F*(6N) = oM (with 6M 6N the Kronecker delta tensors on M, N ).
(iv) For o € QY(N) and X € X(N), F*(a(X)) = (F*a)(F*X).
(v) If also G : N — P is a diffeomorphism and t € T(P), then (G o F)*t =
F*(G*t).
Proof. (i) follows directly from the definitions.

(ii) To keep notations in reasonable bounds, we show this for ¢ € 7' (the general
case being completely analogous):

(F*)|,(F*a),,(F*X),) 2V

(4.3.4) _
= e (TP (arp) o TpF), T,F(TF™ 0 X 0 F),)

= tlp(p) (p(p), Xr@p) = (t(a, X)) p(p).-

(F*t)|p(app) o TpF, (TF ' 0o X o F),)

(iii) Let « € TyM, X € T,M. Then

(F*6V),(a, X) = 6y (@ 0 T,F " T,F(X)) = a(T,F o T,F ' X)
=a(X) = M(a, X).

(iv)
F (X)) = F* (6% (, X)), & (F*6N)(F*a, F*X)
(WD M (o, F*X) = F*a(F*X).
(v) is immediate from (4.3.5) and 4.1.6 (i). O

As an application, we prove the naturality of the Lie derivative on the full tensor
algebra with respect to push-forward under diffeomorphisms:

4.3.30 Corollary. Let M, N be manifolds, F : M — N a diffeomorphism, and X €
X(M). Then Lx is natural with respect to push-forward under F, i.e.: Lp x(Fit) =
F.(Lxt) for allt € TT(M) (r,s >0).

TI(M) — T (N)

i

TI(M)) —2 T7(N)

Lp.x

»

Proof. Writing ¢ locally as t = t;llz’; 831 ®-® % ®dzit @ - - @ da’s | we have

Fit = Rtﬁ;;;@;ﬂ(%) ® - ® F(a%) ® F,(d2) ® - - ® F,(dz’*). Using the
product rule (DO1) from 4.2.2, together with 4.3.29 (i), we can therefore reduce

the claim to the special cases t = t;i;: € C*U), t = a?ci € X(U), both of

which follow from 4.2.1, and ¢t = dx? a one-form. It therefore remains to settle
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the case of a one-form «, for which we use (DO4) from 4.2.5: We have Lxa(Y) =
Lx(a(Y)) — a(LxY). Applying F to both sides of this equation and using 4.3.29
(ii) and the result for smooth functions and vector fields, we obtain:

F(Lxa)(F.Y) = Lp.x(F.a)(F.Y)) — (Foa)(Lp.x F.Y) "2 (Lp. x Foa) (B.Y).

Since F.Y can be any vector field here, the claim follows for a as well. O

Recall from 2.3.10 and 2.3.12 the definition of Lx on smooth functions and vector
fields via differentiation of the pullback under the flow of X. We next want to show
that such a description remains valid also for the extension of the Lie derivative to
the full tensor algebra. Thus let p € M and let (V,a, FI¥) be a flow box at p (cf.
2.3.5). Then for each A € I, = (—a,a) the flow map FI : V — Vj := FIX (V) is a
diffeomorphism. For ¢t € T (M) we now set t := (FI3 )*(t|v,) € TZ (V). Now set

ts(p) : Lo = T, (T, M)
A= t)\(p).

Using this definition we have:

4.3.31 Theorem. ty(p) is a smooth curve in (the vector space) T (T, M) and

d

==l ),

A=0

Lxt(p) = ts(p)'(0)

Proof. We first show smoothness of the curve t;(p): Writing ¢ locally as ¢t =

il 0 @ ® 52 @da’ @ - @ dade, by 4.3.29 (i) and (v) we have

(FIX)*t = (FIY) "t (Fli‘)*( 0 )@

Ji---Js axil

® - ® (Flf)*(%) ® (FI)"(de™) ® - - @ (FI)* (da?*)

Here, (Flf)*t;i; = t;llzf o Flf\( depends smoothly on (A, p), and so does each

(FIX)*(dz?) (by 4.3.26 (i) and (4.1.2)). For (Flf)*( aii) we have, writing X =
> X g

(FIE)"X =) X' oFIT - (FI)" (aii)'

Furthermore, (Flf)*( 8?& p) = T(Flf\()*l( % FIX (p) )

(A, p) by (2.1.5) (with ¢ = ). Altogehter, (\,p) — ((FIX)*t), is smooth as a map
into T7 M by 4.1.17. For fixed p it takes values in T (T,,M), hence by the analogue
of 3.3.26 for T] M, it is smooth also as a map into the vector space T} (T, M). Since
FIf = idu, t4(p)(0) = t,.

We now define an operator Ex : T(M) — T(M) by Ext(p) := t4(p)’|x=0. Then
Ex is R-linear, and it is a tensor derivation, as can immediately be read off from
the local representation given above: inserting basis vectors we see that the A-
derivative distributes over the tensor product by the usual Leibnitz rule. Moreover,
Ex is natural with respect to restrictions because it is defined locally. Furthermore,
using 4.3.29 (iii) we have

which again is smooth in

d X
0= — FI$)* () = — 6 =0.
Ex d/\A:O( 1) (9) 0
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By Willmore’s theorem 4.2.3 we conclude that Ex is a differential operator on
T (M). Moreover, by 2.3.10 and 2.3.12, Ex coincides with Lx on both C*°(M) and
X(M). Applying 4.2.3 once more we conclude that Fx = Lx. O

4.3.32 Corollary. Lett € T(M) and X € X(M). Then

d
a(Flf)*t = (FI)*Lxt = Lx((FIX)*t).

Proof. We have

d *
E(Flf) t=

d

d
— | (FIX, Yt = —| (FIN)(FIX)*t = Ly (FI)*).
duo( Nrp) duo( 2 ) (FIY) x ((F1y)*t)

On the other hand, by 4.3.30, Lx ((FI{)*t) = (FIX)*(L(gix, ) x1), and since [X, X] =
0, 2.3.18 shows that (F1*,)*X = X, which implies the second equality. O

4.3.33 Theorem. Let X € X(M) and w € QF(M). Then Lxw € QF(M) and
dLXoJ = Lxdw.'
QR (M) —5 s QF(M)
J# J#

Qk+1(M) L Qk+1(M>

Proof. By 4.3.6 we have a A 8 = a® 8 — 8 ® « for any one-forms «, 5. Using this
and the fact that Lx is a tensor derivation, induction therefore gives

Lx(@*A---Na¥)=Lxa'An---AaF+-- 4ol A--- ALxa (4.3.6)
for any ot,...,aF € QY(M). Locally, any w € Q¥(M) is a linear combination of
such terms, hence Lxw € QF(M).

Moreover, using 4.3.31 and the linearity of d, we have

dLXw:d( %

d 326 d *
((Flf\()*w)) = | @EFER)w) " E ] (P dw = Lxdo.
0 0

0
O

The final operation of tensor calculus we are going to study is the inner product
operator:

4.3.34 Definition. Let X € X(M) and w € Q¥ (M) and define ixw € T2 (M)
by
in(Xl, . 7Xk) = w(X,Xl, . ,Xk)

If w e QM) = C>®(M) we set ixw = 0. ixw is called the inner product of X
and w.

4.3.35 Theorem. For k = 1,...,n, ix : QF(M) — QFY(M). Moreover, let
a€Q*(m), B € QM) and f € C>°(M), then:

(i) ix is a A-antiderivation, i.e., it is R-linear and
ix(@AB) = (ixa) AB+ (=) a A (ix ).
(ZZ) iX OiX =0.
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(’LZZ) ioné = fiXa.

(iv) ’Lxdf = fo
(v) Lxa =ixda+ dixa (Cartan’s magic formula).
(vi) Lyxa = fLxa+df Nixa.

Proof. That ixa € Q¥~1(m) is clear by 4.1.19.

(i) R-linearity of ix is clear. Since what we claim is a tensor identity, we may argue
with individual tangent vectors v = vy, va, ..., V541 € T, M. We note that it suffices
to take a and 3 of the form o = @' A---Aak, B = BLA---A B! where of, B¢ € QY (M)
since general «, 8 are locally given as sums of such forms. We first show that

i@ A nak) = ST (=1) el (w)at Aai A A Ak, (4.3.7)
where the hat indicates that the term is omitted. This means that, for all v;

(@ A AP (vr, . o) =Y (1) et () el Aai A AR (va, . vg). (4.3.8)

-

=1
To see this, note first that by 4.3.13 the left hand side is the determinant of the
matrix A = (a;;) with a;; = a’(v;). For the same reason, al Aa’A- - -AaF(va, ..., vk)

is the determinant of the sub-matrix of A that is obtained by deleting the i-th row
and first column. Thus (4.3.8) is simply the expansion of det A along its first column.

Using (4.3.7) we obtain
iv(a A B) :n(al AaPABIA- A B

Z Dl (0)al A Aot A AP ABY A A B

k+l1
+Z 1161 o ANAFABYA A BE A B

i=k+1

= (iva) A ﬂ + (71)ka A (Zvﬂ)

(ii) is clear by antisymmetry.

(iil) follows from point-wise multilinearity.

(iv) ixdf = df (X) = X(f) = Lx f-

(v) We prove this by induction. For k = 0, this is just (iv), so suppose that (v)
holds for a € Q¥(M). Any (k + 1)-form can be written locally as a sum of terms
of the form df A a for o a k-form, so these are the only forms we need to consider.

By (4.3.6),
Lx(df Nha)=df NLxa+ Lxdf A a,

and for the right hand side of the claimed identity we employ (i) and 4.3.22 (i) to
obtain
ixd(df Na)+dix(df Na) = —ix(df Nda)+d(ixdf Na—df Nixa)
= —ixdf Nda+df Nixda+dixdf Na+ixdf Nda+df ANdixa

@ g A (ixda + dixa) + dLx f Aa ™™ df A Lya+dLxf Aa

4333 0f A Lyxa + Lydf Ao

88



(vi) Using the previous results and 4.3.22 we have
Lixa=irxda+difxo= fixda + d(fixa)
= fixda+df Nixa+ fdixa = fLxa+df Nixa.
O

Concerning the naturality of the inner product with respect to diffeomorphisms we
have:

4.3.36 Proposition. Let F : M — N be a diffeomorphism, w € QF(N) and
X € X(N). Then ip-x(F*w) = F*(ixw).

QF(N) —E 5 k(M)

J{ix JjF*X

QF-1(N) £ k1)
Consequently, for Y € X(M) and w € Q¥(M), ip,y (Fiw) = Fy(iyvw).

Proof. Since F, = (F~1)*, it suffices to prove the first claim. Let vy,...,vx_1 €
T, M and set ¢ := F(p), then

ipex (F*w)(p)(v1,. .., v5-1) = Frw|p(F* X (p),v1, ..., Vk—1)
= Frwly(T,F~ o X(q), 01, ve1) "B wly(Xg, TP (v), -, Ty F (v-1))

= ’L'XoJ‘q(TpFO)l), ce ,TpF(’Uk_l)) = (F*ixw)|p(v1, cee ,Uk_l).
O
The fact that Lx is a tensor derivation and the relation between d and Lx are

given in the following result:

4.3.37 Theorem. Let o € Q' (M), X, X;,Y € X(M), and w € Q¥(M). Then:

(Z) (wa)(Xl,...,Xk) = Lx(w(Xl,...,Xk)) — Zlew(Xl,...,LxXl',...,Xk).
(ii)

k
dw(Xo, X1,..., X)) = > (=1)'Lx,(w(Xo, ..., Xi, ..., X))
=0

K2

+ D (D) MWLy, (X)) Xoy- o Xy, Xy, X

0<i<j<k

Proof. (i) is precisely (DO4) from 4.2.5 for the differential operator Lx.

(ii) We use induction. For k =0 (i.e., w € QY(M) = C>(M)), the claim reduces to
dw(Xo) = Lx,w, which is true by 2.3.11. So suppose the statement is true for k — 1
and let w € QF(M). Then by 4.3.35 (v) we have

dw(X,Xl,...,Xk) = (ixdw)(Xl,...,Xk)
= (wa)(Xl,. . ,Xk) — (d(ixw))(Xl, e 7Xk)
D L @Xi e X)) = Y WX, I X, Xp) — (d(ixw)) (X, X)

i=1
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Applying the induction assumption to ixw € Qk_l(M ) and using skew-symmetry
we obtain

k

(d(ixw)) (X1, Xi) = 3 (1) Ly, (w(X, X1,..., Xy, ..., Xp)
i=1
- Z (71)Z+jw(LX,(X])7X7X1775(:5’&\]754)(]?)
1<i<j<k
Inserting this into the above yields the claim. O

4.3.38 Definition. A differential form w € QF(M) is called closed if dw = 0 and
exact if there exists some o € Q¥~1(M) such that w = dav.

Before we can analyze the relation between these notions we need an auxilliary
result on the exterior derivative in R™:

4.3.39 Lemma. Let U C R" open and let w € Q¥(U). Then for any v € U and
Vo, ...,V € R™ we have

do(@)(vo, - v) = (<1 Dw(a) - vilvo, - T )

Proof. Note that, since w : U — L*¥(R™,R), we have Dw : U — L(R", L*(R™, R)),
so Dw(z) - v; € LF(R™,R). Also, immediately from the definition we see that the d
defined here is a map QF(U) — Q**1(U). Hence we are left with verifying (i)—(iv)
from 4.3.22. Of these, R-linearity, as well as (ii) and (iv) are clear, and since A is
bilinear, we have D(a A 8) = a A DB+ Da A 8, which implies (i) (by inserting and
changing the summation index in the second sum). Finally, that d o d = 0 follows
exactly as in the proof of (iii) in 4.3.22. O

We now can prove the following fundamental result:
4.3.40 Theorem.

(i) Every exact form is closed.

(i) (Poincaré Lemma) Locally, also the converse of (i) is true: If w is closed then
for each p € M there is a neighborhood U of p such that w|y € Q¥(U) is ezact.

Proof. (i) is clear from dod = 0.

(ii) Using a local chart and the naturality properties of d (4.3.26 (ii) and 4.3.22 (iv))
it follows that it suffices to consider the case where w € Q¥(U) and U is an open ball
around 0 in R™. Our strategy is to construct an R-linear map H : Q*(U) — QF~1(U)
such that do H + H od = idgk (). This will give the result because dw = 0 then
implies that d(Hw) = w.

Let vy,...,vx € R™ and set

1
Huw(z)(vy,...,05-1) = / t* Y (tr) (z, vy, . .. vp—y) dt,
0
which is well-defined since tz € U for all ¢t € [0,1] and all « € U, and obviously lies
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in Q¥=1(U). Using 4.3.39, we calculate:

(—1)"™MD(Hw)(z) - vi(ve,. .., 05, ..., 01)

|
'M”

@
I
—

d(Hw)(x)(v1, ..., vE)

Il
'M?V

@
Il
—

1
(—1)t+t / tkilw(tm)(vi, Viyenoy Ogyon., V) dt
0

+
-

@
Il
-

1
(—1)+t / tka(ta:) cvi(z, 1,0, Uy, vg) dE
0
Moreover,
1
H(dw)(x)(v1,...,05) = / thdw(tx)(z,v1, ..., v)dt
0

1
4.3.39 / t*Dw(tz) - x(vy,..., vr) dt
0

k 1
+ 2(71)1'/0 t* Dw(tz) - vi(z,v1,...,0;, ... vp) dt
=1

Altogether, we arrive at

[d(Hw)(z) + H(dw)(z)](v1, ..., vE)

1 1
= / ktkilw(t:c)(vl,...,vk)dtJr/ t*Duw(tz) - z(vy,. .., vx) dt
0 0

= /0 %[tkw(tx)(vl, conup)]dt = w(x) (v, ..., k).

The Poincaré lemma is the starting point for de Rham cohomology. We do not have
time to go into any details, and instead only define (for later use) the most basic
notions.

4.3.41 Definition. For any k € Ny, consider the following vector spaces:
ZF(M) := ker(d : QF(M) — QFF1(M)) = {closed k—forms onM}
BY(M) :=Tm(d : Q"1 (M) — QF(M)) = {exact k—forms onM}

It is understood that QF(M) := {0} for k < 0 or k > n. The k-th de Rham
cohomology group is the quotient vector space

Hip(M) := Z"(M)/B"(M).
The Poincaré Lemma 4.3.40 states that any point has a neighborhood U for which
H},(U)=0. If Hj,(M) = 0 then for any closed 1-form w € Q'(M) there exists

some f € C*°(M) with w = df. For more information on de Rham cohomology we
refer to [5].

4.4 Integration, Stokes’ Theorem

Our aim in this section is to develop a theory of integrating differential forms on
manifolds. Based on this we will prove Stokes’ theorem, which provides a far-
reaching generalization of the classical integration theorems of analysis (Gauss,
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Stokes, Green). As a fundamental tool we will need the transformation rule for
integrals:

4.4.1 Theorem. Let U,V CR"™ be open, ® : U — V a diffeomorphism, f € C(V),
suppf compact. Then:

/ F(®()|det D) " = / fw)dmy (4.4.1)
U \%4

Our strategy for defining | 3w for w e QF(V), (27 denoting the space of compactly
supported n-forms, V' a chart neighborhood) will be to set

/w::/ wy(z)d .
M (V)

To make this a well-defined expression it should be independent of the chosen chart.
The transformation behavior of w,, according to 4.3.27 (iii), however, differs from
(4.4.1) (no absolute value of det D(¢ o1 ~1)). We therefore consider manifolds with
distinguished atlasses:

4.4.2 Definition. A manifold M 1is called orientable if it possesses an oriented
atlas A = {(¢a,Va) | @ € A} such that det D(vg o ¢ 1)(z) > 0 Vo € 9o (Va N
Vs) Yo VB. As in the case of smooth manifolds, also for oriented manifolds one
can define corresponding C*®-structures (allowing only oriented atlasses). Charts
i an oriented atlas are called positively oriented. A manifold M together with an
oriented atlas is called oriented.

4.4.3 Remark.

(i) Not every manifold is orientable. The most famous example of a non-orientable
manifold is the Md&bius strip.

(ii) One can show that the following are equivalent:

e M is orientable.

o Jw e (M) with w(p) # 0 ¥p € M. Such an w is called volume form
on M (cf. 4.3.11).

e The C*(M)-module Q™ (M) is one-dimensional (every volume form pro-
vides a basis).

In the special case M = R" we proceed as follows: For w = a(z!,...,2")alA---Aa™
with compact support K C U, U open in R", let wa = [ a(z)d"z. To extend
this definition to general manifolds we first consider the case w € Q%(M) such that
supp(w) C U, where (¢, U) is a chart of M. Then put

/(sO)w - /Lp*(wh]) - A(U) we (z)d"x

4.4.4 Lemma. Let M be an oriented manifold, w € QI (M), (¢, U), (¥, V) posi-
tively oriented charts and supp(w) C UNV. Then f(w w = f(w) w. Thus we may
simply write [w for this common value.
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Proof. Let p,w = wg,al A ANa™ Yuw = w¢a1 A---Aa”™ Then

/ vz / = / wy(y)d"y =
(¥) P(V) Y(UNV)

R pow () det D(p o v Y)(y) d"y =

=|det D(pop—1)(y)|

= / ww(x)d"xz/ ww(x)d”x:/ w.
p(UNV) e(U) ()

pUNv

4.4.5 Definition. Let M be an oriented manifold and A = {(Va, V) | @ € A} an
oriented atlas. Let {xq | @ € A} be a partition of unity subordinate to {V,, | a € A}.
Let w € QY (M) and wq = Xq-w (hence supp(wy) is compact and contained in V).

Then let
fo= X [

4.4.6 Proposition.

(i) The sum in 4.4.5 contains only finitely many non-vanishing terms.

(i) Definition 4.4.5 is independent of the chosen oriented atlas (in the given ori-
ented C*°-structure) and partition of unity.

Proof. (i) Since {suppxa. | @ € A} is locally finite, only finitely many suppy, in-
tersect the compact set supp(w) (every p € supp(w) has a neighborhood intersecting
only finitely many suppxa, finitely many such neighborhoods cover supp(w)).

(i) Let A" = {(pp,Up) | B € B} be another oriented atlas in the same oriented
Co°-structure, {ug | B € B} a partition of unity subordinate to {Ug | 8 € B}. Then

/ 2 o= 12/ZMBXaW—Z/MﬂXaW— —Z/Wgw

acA acA” BeB BEB

a

In the integral theorems of vector analysis, typical domains of integration are n-
dimensional domains with boundary, where the boundary itself forms an (n — 1)-
dimensional domain of integration. Such domains are currently not covered by our
notion of manifold:

4.4.7 Example. Let M = {(z,y,2) € R® | 2 = 2% + y?, 2 < 29,20 > 0}.

M is not a manifold since points like p; (see the figure below) do not have open
neighborhoods in M that are homeomorphic to RZ. On the other hand it is quite
obvious that M has charts which are homeomorphic to relatively open subsets of
a suitable half-space. Points like py form the boundary (but not in the topological
sense!) of M, which itself is a 1-dimensional manifold (without boundary).

We now want to make precise these observations in the following definition.
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L¢P vp)
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X1

Y(p2)

4.4.8 Definition. Let the half-space H" = {(z!,...,2") € R" | 2} < 0} be
equipped with the trace topology of R™ (i.e., V.C H™ is open < 3U C R™ open s.t.
UNH"=V). Let V. .C H" be open. Then f :V — R™ is called smooth on V if
there exists an open subset U OV of R™ and a smooth extension f of f to U. For
any p € V we then set Df(p) := Df(p).

We have to check that Df(p) is independent of
f+ This is clear if V' C (H™)°. Thus let p =
(0,22,...,2") and f, f be two extensions of f to
an open neighborhood U of p in R™. Set g :=
f — f. We have to show that Dg(p) = 0. To this
end, pick a sequence of points p,, € (H™)® with
Pm — p. Then Dg(p,) = 0 for all m, so also
Dg(p) = limy, 00 Dg(pm) = 0.

4.4.9 Definition. A manifold with boundary is a set M together with an atlas
A = {(Ya,Va) | @ € A} of bijective maps o : Voo = Yo (Vo) C H™ (relatively)
open, such that J,c 4 Vo = M and for all o, B with Vo, N Vs # 0 we have ¥g ot
Ya(Va N V) — Ya(Vo N Vp) is smooth in the sense of 4.4.8. As in the case of
manifolds without boundary we require M with its natural topology (induced by the
charts) to be Hausdorff and second countable.

4.4.10 Lemma. Let M be a manifold with boundary. A point p € M is called
boundary point of M if there exists a chart (¢ = (z',...,2"), V) with x'(p) = 0.
If p is a boundary point, denoted by p € OM then for any chart (¢ = (y',...,y"),U)
around p we have y'(p) = 0.

Proof. Suppose to the contrary that there would exist a chart ¢ = (y!,...,y")
with y*(p) < 0.

Choose a neighborhood U’ of ¢(p) which is open in R™ and contained in o(UNV') C
H™. Since det(D( o o= 1))((p)) # 0, by 1.1.1, 9 o ¢~ ! is a diffeomorphism onto
a neighborhood of 1 o ¢~(¢(p)) = 1 (p) which is open in R"™. This neighborhood
must therefore be contained in H", contradicting ¢! (p) = x!(p) = 0. |

All constructions we already know for manifolds without boundary like tangent
space, tensors, differential forms, orientability, etc. work out completely analogously
for manifolds with boundary. The next result shows that OM itself is a manifold
(without boundary).
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4.4.11 Proposition. Let M be an n-dimensional manifold with boundary. Then
OM is an (n — 1)-dimensional manifold (without boundary). If M is oriented then
the orientation of M induces an orientation of OM .

Proof. Let A= {(¢a,V,) | @ € A} be an atlasof M. Set A’ := {a € A | V,NOM #
0}, A" == {(Yaly, ronr» Vo NOM) | a € A'}. We show that A’ is an atlas for M.

Set V,, := Vo NOM, 1y := Yaly, - Then Vo @ Vo — 1;@(‘7@) is bijective and by
4.4.10 it follows that e (Vi) = ta(Va) N {z' = 0}. Clearly, Uacar Vo = OM.
Now let o, B € A’ such that V, N Vg # (0. Since 9o (Vy, N'Vg) C H™ is open,
Va(Va N V3) = 1o (Vo N V3) N {z! = 0} is open in {z' = 0} = R"~'. Moreover,
Yg oyt is smooth on 9, (V, N V3) as a restriction of the smooth map 1z o 97 1.
Suppose now that 4, in addition, is oriented, i.e., that det D (35 o ¢, 1) > 0 for all
a, B with Vo, NV # 0. Let ¢, = (x},...,27), g = (x}%,xg) Then for every
(Oa xi, s ,:L’Z) € ’L/NJQ(VQ N Vﬁ)a wﬁ o ¢;1(0a$ia e ,:L’Z) = (0712)5 o 1/;&1(1{1))
—_———

Therefore,

d(Wpoy )
Oxl 0

1 ! *
Dwsou 0w = |
* (0.27,)
Ol o=t - .
~ det Dy ouz )0, = BTN e Dy )0 (4

0,27,)
Now 5 0 951 (0,2,) = 0 and ¢j o ;' (2!, 2),) < 0 for z1 < 0 (since ¢ 0 ;"
1 —1
H™ — H™). Therefore, % > 0and # 0 (by (x)), hence > 0. Again by (*) it
follows that det D(¢5 095") > 0, so A’ is oriented. O

As the final ingredient for Stokes’ theorem we consider the restriction of differential

forms defined on M to OM: Let i : OM < M be the natural inclusion. We first

note that i is smooth since for any chart ¢ = (2*,...,2") of M we have:

oM — s M
| |
V) —L— p(V)

where j : (22,...,2") — (0,22,...,2™). This is obviously smooth.
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The restriction of any w € QF(M) is defined as i*w € Q¥(OM). As in (4.3.2), the
local representation of w with respect to 1 can be written as

w= E Wiy i dx™ A Ndx'.
1<ii <<t <n
Then ¥,w is given by

E Wiy iy o M A Ak = E w;ﬁmika“ N Natk,
1<i1<--<ig<n 1<ii << <n

The local representation of i*w with respect to 1[) therefore is

W) = @) Ew) = (o g w= (W gy w = ()W) =
= W) EY ST Wl e @it A A ).
1<ip<--<ig<n ’

Observing now that

) N | | 0 k=1
7 (a®) ()] LG Dj(2) (v) = ok (i(v)) = { vp=ak(v) k#1

=j by linearity

we finally arrive at

V. (i*w) = Z wl o ojalt A Ak (4.4.2)

11... 0%
1<ip < <ig<n

*

4.4.12 Theorem. (Stokes’ theorem) Let M be an oriented manifold with boundary,
weQYM), andi: OM < M. Then:

/ i*w:/ dw
oM M

Proof. Denote by K the compact support of w. We consider the following two
cases:

1.) There exists a chart (¢ = (2!,...,2"),V) with K C V. Since w € Q" (M),
the local representation of w with respect to 1 reads

w= Zwkdxl A AdaP TP A deR T A A da (4.4.3)
k=1
where w; € C*(V) for all j. Hence

- ow
_ _1\k-1 k 1 L. n
dw = (,;_1( 1) Ik )da: A ANdx (4.4.4)

with g‘;”; = Dy(wr o~ (2(.)). We now distinguish the following sub-cases:

la) VNOM = 0. Then i*w = 0 (cf., e.g., (4.4.2)), hence [, i*w = 0 and we have
to show that also

n

4.4),4.3.21(ii dw?
/ duw 4~é~4/ o (dew) VLR )/ S T gt da =0,
M W(V) (V) k2 O
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We now choose a parallelepiped @ € H™ of the
form Q = {(z,...,2" | a* < 2F <b* (1 <k <
n)} such that ¢ (K) lies in the interior of @. Then

=

NS

X1 )
T if we extend the (compactly supported) w; by 0
¢ to all of H", we obtain (applying the fundamental
Q theorem of calculus):
n ’I'L
Aw? Aw?
/ > (=t Zdl...dx”: ’H/ —Edzt . da"
(V) s ox ox
- n
= S0 [t )
k=1 -0
fw;f(acl, con xRk R ™)) dat L dae T e L dan
=0
= 0

1b) Now suppose that V N OM # (). Then

/ Fw 444 / s (I"w)
oM P(VNOM)

(4.4.8),(4.4.2) / WO(0,2%,. .. 2™ da? . dz" (4.4.5)
P(VNOM)

=L p)nie1=0y

H"L
w(%/ Agai P n
gain we extend the w; by 0 to all of H" and
@ x; choose a parallelepiped @ C H™, this time of the
\ W(K) form Q = [a',0] x [a?,b%] x -- - x [a™, b"] such that
P(K) € Q°U {a! = 0}. Then as in the previous
Q case we obtain:
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3

/ dw = )i 1/ 8wkd R
M axk

= / (wf’(07x2,...,w")—w}p(al,xz,...w”))dﬁ...dgc”
[a2,b2]x - x[a™,b"] (=QN{z'=0})

JrZ(fl)’“1 / (w;f(xl, L
k=2

—w,'f(a:l, L )da:l oo daF T AR da”

= / w%(O,xz,...,z”)d:rQ...dx”
Y(K)N{x!=0}

(4.4.5) / "
= 7w
oM

2.) The general case: Let {(¢q,Vs) | @ € A} be an oriented atlas, {x, | @ € A}
a subordinate partition of unity. Then the w, := X, - w satisfy the assumptions of
case 1.). Also, >, dxa =d(>°, Xa) =d(1) =0. Thus w =)  w, and

Zdwa = Zd(xa ‘w) = Z(an)W + Zxadw = dw.

From this we finally obtain

/M o= %:/M e - za:/BM P = /8M z*(Zwa) - /6M e

[e3

4.4.13 Examples.

(i) Applying 4.4.12 to the w from 4.3.23 (i), we obtain Green’s theorem in the

plane:
oQ 0P
Pdx + Qd :/ — — — )dzd
/aM 4 M ( Jor Oy ) 4

(ii) From 4.3.23 (ii) and 4.4.12 we derive Gauss’ divergence theorem (in R?):

/(8—P+@+a—)dxdydz_ Pdy A dz + Qdz A de + Rdz A dy
oz "oy T .
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Chapter 5

Symplectic Manifolds

As an application of the machinery of global analysis developed so far, in this final
chapter we glimpse at a branch of differential geometry that has diverse applica-
tions, spanning from classical mechanics to differential topology and Fourier integral
operators, to mention only a few. We closely follow [5, Ch. 22].

5.1 Symplectic linear algebra

In this section we develop the algebraic underpinnings of symplectic geometry, which
basically amounts to the study of certain 2-forms. Throughout, V' will be a finite
dimensional vector space and we freely use the notations introduced in Chapter 4.

5.1.1 Definition. A 2-form w € A?V* is called nondegenerate if the associated
linear map @ :'V.— V*, &(v) = w(v, .) is invertible. A nondegenerate 2-form
is called a symplectic tensor. A wvector space equipped with a symplectic tensor is
called a symplectic vector space.

A 2-form w is nondegenerate if and only if v — w(v, .), V — V* is injective, i.e., if
and only if w(v,w) = 0 for all w implies that v = 0.

5.1.2 Example. Let dim(V) = 2n and choose a basis (v, w1, ..., v, w,) of V.
Let (o', B1,...,a™ B") be the corresponding dual basis of V* and consider the
2-form

n
w :=Zai/\ﬁi. (5.1.1)
i=1
Then w is a symplectic tensor on V: Indeed, we have
w(v, vj) = w(w;, w;) =0, w(vi, wj) = —w(wj, v;) = §y;. (5.1.2)

Thus if v = a'v; + b'w; € V and if w(v, w) = 0 for all w then 0 = w(v,w;) = a’ and
0 =w(v,v;) = —b' for all 4, so v = 0.

5.1.3 Definition. Let (V,w) be a symplectic vector space and let S CV be a linear
subspace. Then the symplectic complement of S is the subspace

St={veV | ww) =0VweS}
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5.1.4 Lemma. Let (V,w) be a symplectic vector space. Then for any linear sub-
space S we have dim S + dim S+ = dim V.

Proof. Define FF: V — S*, F(v) :== w — w(v,w). Let « € S* and let & € V* be
any linear extension of « to all of V. Since w : V — V* is an isomorphism, there
exists some v € V such that ©(v) = @, hence F(v) = «, showing that F is surjective.
Since S+ = ker F, the dimension of S+ is dim V' — dim $* = dim V' — dim S. O

Note that, contrary to the case of scalar products, SN S+ # {0} in general. Indeed,
if dim S = 1, then by skew-symmetry of w, S C S*.

The following result, whose proof may be viewed as a symplectic analogue of the
Gram-Schmidt algorithm, demonstrates that any symplectic tensor has a basis rep-
resentation of the form (5.1.1).

5.1.5 Proposition. Let w be a symplectic tensor on an m-dimensional vector
space. Then m is even, m = 2n and there exists a basis for V with respect to which
w is of the form (5.1.1).

Proof. As seen in 5.1.2, we have to construct a basis (vi,w1,..., vy, wy) of V
satisfying (5.1.2), which we do by induction over m. For m = 0, there is nothing
to do, so suppose that m > 1 and we already have the result for all dimensions less
than m. Take vy # 0 in V, then since w is nondegenerate there exists some w; € V
with w(vi,wy) # 0. Scaling w; if necessary, we may assume that w(vi,w;) = 1.
Since w is skew-symmetric, v; is not proportional to wi, hence {v1,w;} is linearly
independent, implying that dimV > 2. Now set S := span(vy,w;). Then as in
5.1.2 it follows that if v = av; + fw; € SN S+, then a = B =0, so SN S+ = {0}.
Moreover, for any v € V' we have

v — w(v,w)vy +w(v,v)w; € ST,

soV = S+ S+, Tt follows that S+ is symplectic itself: if v € St and w(v,w) = 0 for
all w € S+ then in fact w(v,w) = 0 for all w € V, hence v = 0. Therefore we can
apply the induction hypothesis to S+, obtaining that it must be even-dimensional
and have a basis (ve,ws,...,v,,w,) that satisfies (5.1.2) for 2 < i,5 < n. Hence
(v1,w1,...,Vn,wy) is the required basis for V. O

A basis of a symplectic vector space satisfying (5.1.2) is called a symplectic basis.

5.2 Symplectic structures on manifolds

We now want to implement symplectic constructions on a smooth manifold M. We
call a smooth 2-form w € Q*(M) nondegenerate if w, is nondegenerate in A>Ty M
for each p € M. A symplectic form on M is a closed nondegenerate 2-form. A
manifold M together with a symplectic form w is called a symplectic manifold, or
a manifold with a symplectic structure.

By 5.1.5, a symplectic manifold is necessarily even-dimensional. A diffeomorphism
F : (My,w1) = (Ms,ws) between symplectic manifolds is called a symplectomor-
phism if F*ws = wy. Symplectic geometry may be described as the study of prop-
erties of symplectic manifolds that are invariant under symplectomorphisms.

5.2.1 Example. Denote the standard coordinates on M = R?" by (z!,... 2",y
..,y™). Then the 2-form

w= Zdﬂ A dy' (5.2.1)

i=1
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is symplectic: Clearly, dw = 0, and in any point it equals the standard symplectic
form from 5.1.2. It is therefore called the standard symplectic form on R?",

An (immersed or regular) submanifold S C M of a symplectic manifold is called a
(immersed or regular) symplectic submanifold if (7,5, (w|,)1,s5xT,s) is symplectic
for each p € S.

The paradigmatic example of a symplectic manifold is the cotangent bundle T M
of any manifold M. Its symplectic structure is built up as follows. We begin by
defining a natural 1-form 7 on T* M, the so-called tautological 1-form. To this end,
we write any element ¢ of T*M as (¢, ¢), i.e., ¢ € T M, so for the bundle projection
m:T*M — M we have 7(q,) = q. At g we have a linear pullback map under
T(q1¢)ﬁ : T(q1¢) (T*M) — TqMZ

(Tlqpym)" : Ty M = T, o) (T* M)
a+— o T(M,)W.

Using this map, we define a 1-form on the manifold T*M (not M!) by

Tiqwp) = (T(g) )" 0. (5.2.2)

Untangling the definitions, this means that, for any v € T} T*M) we have

q,w)(

T(g.0) (V) = @(T(g,p)7 (V). (5.2.3)

5.2.2 Theorem. The tautological 1-form T is a smooth 1-form on T*M, i.e.,
7€ QYT*M), and w = —dr € Q*>(T*M) is a symplectic form on the cotangent
bundle T*M .

Proof. Let v : U — R™ be a chart with coordinates (z',...,z"), let (eq,...,e,) be
the standard basis of R™ and (a!,...,a™) the corresponding dual basis on (R?)*. A
standard chart for 7*M then is TP4 : T*U — R™ x R™. Any element (q, ) of T*U
can be written as Y, &da'|, for some g € U. Then writing ¢(q) = (!, ...,2"),

by (4.1.1) we have
0 = i _ 1 n
le(zgzdx |q) - ('T seeey L aflv"')fn)‘
1=1

as the local expression of (g, ) in terms of the chart TP1. In these coordinates on
T*U, any vector v € T(4, ,)(T*M) can be written as

- 0 - 0
sz;vi% —&—z:wla—gz

(¢:¢) =1
and since the bundle projection 7 locally takes the form 7 (x,{) = x it follows that

(5.2.4)

(g,¢)

(5.2.5)

~ 0
Tigpym(v) =D v ozt
=1

q

It is important to keep in mind the different roles that the coordinate functions
are playing in (5.2.4), where they are the first n coordinates in T*M (i.e., the first
n components of TP, hence live on T*U) as compared to (5.2.5), where they are
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the coordinates in M (i.e., the components of 1, hence live on U). This is a slight
abuse of notation, but is standard usage in the field, so we also comply.

Consequently,
Tl (V) = (Ll pym(@)) = (D §'da'le) (Yo vi 5| )
i o =t ! (5.2.6)
= Zvlfl = Zfldl'q(q’ga) (U)

i=1 i=1
In other words, in terms of the local coordinates (x!,...,2" &,...,&,) of T*M,
T = &dx’, hence in particular it is smooth.
From this, we get that w := —dr € Q?(T*M), and clearly w is closed (see 4.3.40

(i)). From (5.2.6) we obtain the following local expression:

n
w=Y dr' NdE;,
i=1
which is precisely the standard symplectic form (5.1.1) in these coordinates, so w is
symplectic. o

5.3 The Darboux theorem

Our aim in this section is to prove an analogue of 5.1.5 for symplectic forms on
manifolds. We will see that given a symplectic manifold (M,w), around any point
there exist local coordinates with respect to which w is of the form (5.2.1). This is
a distinguishing feature of symplectic geometry, and makes it very different from,
e.g., Riemannian geometry, where such a distinguished local form for the metric is
in general unattainable (curvature being an obstruction against it).

Before we can prove the result we require some technical preparations that are ba-
sically analogues of 4.3.31 for time-dependent vector fields (and covariant tensors).

5.3.1 Proposition. Let X : I x M — T M be a smooth time-dependent vector field
and let U : W — M be its time-dependent flow (as given in 3.2.1). Then for any
covariant tensor field w € T2(M) and any (t1,to,p) € W we have:

d

dt

(U o w)p = V7, 4, (L, w). (5.3.1)
t=t1

Proof. We first treat the case t; = to. Then ¥, 4, = idps and (5.3.1) reduces to

4
dt

(7 4w)p = Lx, w. (5.3.2)

t=tg
To show this we proceed similarly to Section 4.2 and first consider the scalar case
w=f€C>®(M). Then

d . )
% (‘Ijt,tof)p = &

t=to

f(\I/(t,to,p)) = X(t()v \Ij(tﬂat()ap))f = (LXtO f)(p)

t=to

since t — WU(t, tg,p) is an integral curve of X. As the next special case we con-
sider w = df for some f € C>*°(M). Note now that in any local coordinate sys-
tem, the function Wy, f(z) = f(¥(t,to,2)) is a smooth function of the variables
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(t,zt, ..., 2"), so differentiat_ion with respect to t commutes with differentiation
with respect to any of the z*. It follows that the exterior derivative d commutes
with 2, which together with 4.3.26 (ii) gives
d 0] 0
WAy = 5| A, Dy =d(

t=to t=to

0 )
t=to P
4.3.33
=d(Lx, f)p =" (Lx,,df)p
Thus we have shown (5.3.2) for smooth functions and 1-forms. To extend it to
arbitrary covariant tensors, let w = a ® 8 and suppose the result is true for a and

B. Then since (by 4.2.4) the Lie derivative is a differential operator,

(LXt,O (a®B))p = (LXtO @) ® By +ap @ (LXtO B)p
On the other hand, by the product rule in local coordinates, for the left-hand side
of (5.3.2) we get

d " _
at (q/t,to (a® ﬁ))p = (

t=to

d . d

(1,8 )-

t=to

Combining these results shows the claim for a ® 3, and since locally any covariant
tensor is of the form w = w;,  ;, dz" ® -+ ® dz'*, (5.3.2) follows.

Turning now to the case of arbitrary ¢;, recall from 3.2.1 that U, = Wy, o Wy, 40
whenever the right hand side exists. Moreover, since ¥y, ;, does not depend on
t and the pullback of tensor fields is fiber-linear by (4.3.3), pullback under ¥, 4,
commutes with the t-derivative, so we obtain

d d d
dt —t ttoW dt it ti,to © F W t1,to dt

\Il;tlw)
t=t;
(532) _,
= \Ilthto(Lthw)'
O

Generalizing the notion of a time-dependent vector field, we say that a smooth map
w:lxM— T/M (where I C M is an open interval) is a time-dependent tensor
field if w(t,p) € TP (T,M) for each (t,p) € I x M. In other words, for each fixed
t, w i p = w(t,p) € TO(M). As a final preparatory result we need to know how
to differentiate time-dependent tensor fields with respect to time-dependent vector
fields:

5.3.2 Proposition. Let X : I x M — TM be a time-dependent vector field with
time-dependent flow 0 : W — M andw : I x M — T,SM s a time-dependent tensor
field. Then for any (t1,to,p) we have:

d

X X d
dt (\I]t,towt)P = (‘I’tl,to (Lthwtl + -

dt

wO)p. (5.3.3)

t=t1 t=t1

Proof. For small € > 0 we have a smooth map F': (t; —¢,t1+¢) X (t1 —¢&,t1+¢) —
(T, M),
F(u,v) := (V] , wy)p (433)

u,to

(Tp\Iju,to )* (wv |\I’u,t0 (p) )

This defines a smooth map into the finite-dimensional vector space T} (T, M), so we
may apply the chain rule, in conjunction with 5.3.1:

d oF or

— F(t,t) = —(t1,t — (1,1
d,_,. (t,1) 8u(1’ 1)+5‘v(1’ 1)
* a *
= (\Iltl,to (Lth wtl))p + % (TP\I/tl,to) (w'U|‘I’t1,tO(p))'

'U=t1
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As in the previous proof, since W, ;, is independent of v, we may switch the v-
derivative in the last term to the inside, finishing the proof. O

We are now prepared to give a modern proof of the Darboux theorem, due to A.
Weinstein:

5.3.3 Theorem. (Darbouz) Let (M,w) be a 2n-dimensional symplectic manifold.
Then for any p € M there exist local coordinates (x,... x" y',...,y") around p
in terms of which w has the local representation

w= Z da’ A dy'. (5.3.4)
i=1

Such coordinates are called Darboux coordinates (or also symplectic or canonical
coordinates).

Proof. For the course of this proof, let wy denote the given symplectic form on
M and fix any pg € M. We are looking for a coordinate chart (Up, ) around pg
such that ¢*w; = wp, where wy = >, da’ A dy’ is the standard symplectic form
on R?". Since this is a local problem, we may without loss of generality assume
that M = U C R?" is an open ball. Due to 5.1.5 we can apply a linear coordinate
transformation so as to arrange that wolp, = wi|p,-

Set n := w1 —wp. Then 5 is closed, so by the Poincaré Lemma 4.3.40 there exists
a smooth 1-form on U such that da = —n. Moreover, subtracting a constant-
coefficient (hence closed) 1-form if necessary, we may assume that «,, = 0. For
t € R we consider the following closed 2-form w; on U:

wy = wp +tn = (1 —t)wo + tws.

Let I D [0, 1] be a bounded open interval. For each ¢, w¢|p, = wolp, s nondegenerate.
Considering the bilinear form w as a matrix, this means that detw # 0 on the
compact set I x {po} and by continuity of det it follows that there exists an open
neighborhood U; C U of py such that w; is nondegenerate on U for all t € I.
This means that for each ¢ € I and each p € Uy the map w; : T,U; — T;‘Ul7
(X)) :=ixws = we(X, .) is a linear isomorphism. Therefore we may define a time-
dependent vector field X : I x Uy — TU; by setting X; := ctzt_la, ie., ix,w = a.
Calculating &; ' amounts to inverting the matrix corresponding to @, hence X is
smooth.

Since ap, = 0 we also have X;|,, = 0 for all ¢t € I. Let ¥ : W — U; denote the
time-dependent flow of X (see 3.2.1). Then ¥(¢,0,po) = po for all ¢t € I, whereby
I x {0} x {po} € W. Since W is open in I x I x Uy and [0,1] x {0} x {po} is
compact, there exists a neighborhood Uy of py such that [0,1] x {0} x Uy C W. We
may therefore apply 5.3.2, to obtain (via Cartan’s magic formula 4.3.35 (v)) for any

t; € [0, 1]:
* * d
dt t=t, (Wrow) =i, 0 <thlwtl + dt t=t, Wt>

- ‘I’Zkl,o(ith dwtl +d(in,1 wtl) + 77)
—

=0

d

Consequently, W} jw; = U§ qwo = wo for all t € [0, 1], so in particular V7 jw1 = wo.
By 3.2.1 (iii), ¥y 9 is a diffeomorphism onto its image, hence it can serve as a local
chart. Finally, ¥ ¢(po) = po, i.e., this chart is indeed centered at p. O
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5.4 Hamiltonian vector fields

Non-degeneracy of the symplectic form provides a means to implement a duality
between the exterior derivative of a function and a corresponding vector field, which
turns out to be very useful in applications. Let (M,w) be a symplectic manifold
and let f € C>°(M). The Hamiltonian vector field Xy € X(M) is defined by

Xy =@~ (df),

where @ : TM — T*M is the vector bundle isomorphism induced by w (cf. the
proof of the Darboux theorem to see that Xy is indeed smooth). Equivalently,

ix,w = df, (5.4.1)
ie., for any Y € X(M) we have w(X;,Y) =df (Y) =Y (f).

5.4.1 Example. Let us calculate Xy explicitly for w in Darboux coordinates (in
particular: for the standard symplectic form on R?"). We make the ansatz

53 )

1=

for smooth functions a’, b’ to be determined. By 4.3.35 we have

n n
iXpwW =iy (qi o b1 20) (Zda:] A dy]> = Z(aldy’ —b'dz"),

ozt

j=1 j=1
while
_N~(Of O
daf = ; (axid:c + g )
By (5.4.1) we conclude that a’ = aayfi and b' = — 9L e,
" 0f 0 of 0
Xr= -— — ———]. 4.2
d Z (ay’ Oxz*  Ox* 8y1) (5-4.2)

i=1
Some important properties of Hamiltonian vector fields are given in the following

result:

5.4.2 Proposition. Let (M,w) be a symplectic manifold and let f € C>(M).
Then

(1) f is constant along each integral curve of Xy.

(i1) At each regular point p of f (df|, #0), Xy is tangent to the level set of f.

Proof. By skew-symmetry of w we have

Xy(f) = df(Xy) = ix,w(Xy) = w(Xy, Xy) = 0.
This gives (i). Moreover, if L = f~1(q) is a level set of f containing p, then by
3.3.25 we have T),L = ker(df|,), so again by the above equation X;(p) € T,L. O

We call X € X(M) a symplectic vector field if w is invariant under the flow of X,
ie., if (Flf)*w = w for all t. By 4.3.31, X is symplectic if and only if Lxw = 0.
X is called (globally) Hamiltonian if there exists some f € C>°(M) with X = X;.
It is called locally Hamiltonian if every point has a neighborhood on which X is
Hamiltonian.
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5.4.3 Proposition. Let (M,w) be a symplectic manifold and let X € X(M).
TFAE:

(i) X is symplectic.

(i) X is locally Hamiltonian.
Moreover, TFAE:

(iii) Every locally Hamiltonian vector field is globally Hamiltonian.
(iv) Hip(M) =0.
Proof. Cartan’s magic formula 4.3.35 (v) gives
Lxw=d(ixw) +ix(dw) = d(ixw) (5.4.3)

as w is closed. Hence X is symplectic if and only if ixw is closed.

(i)=(ii) By the Poincaré lemma 4.3.40, any point p has a neighborhood U on wich

. . . . 5.4.1) . . .
ixw is exact, i.e., ixw = df (541) ix,;w on U for some f € C>*(U). Since w is

nondegenerate, this implies X = X; on U.

(ii)=(i): Let X = X on some open set U. Then ixw = ix,w = df, which is clearly
closed.

(iii)=(iv) Let n € Q'(M) be closed and define X € X(M) by X := & !(n). Then
by (5.4.3) we get Lxw = dixw = dn = 0, so X is symplectic and thereby locally
Hamiltonian. (iii) then says that X = X for some global f € C*°(M). Thus

3 5.4.1
n=w(Xy, ) =ix,w = df,

showing that 7 is exact.

(iv)=(iii): By (ii)=(i), if X is locally Hamiltonian then it is symplectic, hence by
(5.4.3) we get that ixw is closed. Thus by assumption there is some f € C*(M)
with ixw = df. This means that X = X, so X is globally Hamiltonian. O

A symplectic manifold (M,w), together with a function H € C*(M) is called a
Hamiltonian system. The function H is called the Hamiltonian of this system.
The terminology comes from classical mechanics, where the Hamiltonian is used to
describe the total energy of a system. The flow of the corresponding Hamiltonian
vector field Xy is called its Hamiltonian flow. The integral curves of X are called
the trajectories (or orbits) of the system. In Darboux coordinates, a trajectory has
to satisfy (writing a dot for the t-derivative) (&(t),y(t)) = Xu(x(t),y(t)), which by
(5.4.2) translates into:

0H

R ICONTO0)
0H

§'(t) = ~ 51 20 y(1)

(t) =

(5.4.4)

This ODE system is called Hamilton’s equations.
5.4.4 Example. To give some connection to classical mechanics, where these
constructions originate, let us look at the n-body problem. Consider n point

particles with masses my, located at points qx(t) € R? at time ¢, with qx(t) =
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(qi(t),q2(t),q;(t)). The evolution of the entire system is then encoded in the fol-
lowing curve in R3":

q(t) = (a1 (1), G (), 7 (), -, gn (1), gi(t), 4 (1))

We do not allow collisions, so we only look at curves in the open set Q := R3"\ {q €
R3" | g = ¢ for some k # [}. Our assumption is that the particles move under the
influence of forces that depend exclusively on the position of all particles. We write
the force acting on the k-th particle as Fy(q) = (Fi(q), FZ(q), F2(g)). Then by
Newton’s second law, the coordinates of our particles satisfy the following 3n x 3n
system of ODEs:

midi(t) = Fy (a(t))
midi(t) = Fi (a(t)
miGe(t) = F(a(t))  (k=1,...,n)

To rewrite this system more concisely, write ¢(t) = (¢'(¢),...,¢*"(t)), F(q) =
(F1(q), ..., F3,(q), and M = (M,;) := diag(mq,my,m1,..., My, My, Mmy). Then
we obtain for the equations of motion:

M;;¢ (t) = Fi(q(t)) (1<i<3n). (5.4.5)

We may view the F; as the components of a smooth 1-form F on @, and we also
make the assumption that F' is conservative, i.e., it comes from a potential: there
exists some V' € C*(Q) with F' = —dV. Since masses are positive, the matrix M is
positive definite, hence it induces a scalar product (., .) on R?*" via (v, w) + v*- M -
w. This scalar product then induces the standard isomorphism between any 7,0 =
R3" and T;Q, namely v +— (v, .), providing a vector bundle isomorphism M: TQ —
T*Q (note that both bundles are actually trivial). Denote the coordinates on T'Q
by (¢*,v") and the ones on T*Q by (q¢*,p;). Then we can write v*- M -w = M;;jviw’,
and for M we get .
(¢, pi) = M(q",v") = (¢", Mijv7).

If ¢(t) is the velocity vector of the system, then the corresponding 1-form p(t) =
J\/Z(q(t)) in coordinates reads

pi(t) = Mi;@ (t). (5.4.6)

From the physics point of view, p(t) contains the momenta of the particles. Com-
bining (5.4.5) and (5.4.6) we see that

oV
aq’

My§ = Fi(q(t) = (q(t)),

so a curve ¢(t) in @Q satisfies the Newtonian equations of motion (a second order
system of ODEs) if and only if the corresponding curve (t) := (q(¢),p(t)) in T*Q
is a solution to the first order system of ODEs

i) = M, 1)
5.4.7
50 = -2 o), 40

where M% are the coefficients of the inverse matrix of M. Now define the total
energy H € C*(T*Q) of the system by

H(p,q) :=V(q) + K(p),
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where V is the potential energy from above and K is the total kinetic energy,
K(p) = $M%Yp;p;. In terms of the Darboux coordinates (¢*,p;) on T*Q, (5.4.7)
is precisely the system of Hamilton’s equations (5.4.4) for this Hamiltonian. From
5.4.2 we know that H is constant along the trajectories (i.e., the solutions to (5.4.7)),
which means that the total energy is conserved along the solutions of the equations

of motion.

5.5 Poisson brackets

5.5.1 Definition. Let (M,w) be a symplectic manifold and let f,g € C*(M).
Then the Poisson bracket {f,g} € C>*(M) of f and g is given by

{f.9) = w(X;. X,) "2V df(X,) = X, (). (5.5.1)

The last equality (together with 2.3.11) provides a geometric interpretation of the
Poisson bracket: {f,g} measures the rate of change of f along the flow of the
Hamiltonian vector field corresponding to g. Using (5.4.2) we obtain the following
local expression for the Poisson bracket in Darboux coordinates:

~~(0g 0f 0y Of
{f.9} = ; (83;1' 5o ayi) (5.5.2)

The fundamental algebraic properties of { ., .} are collected in the following result:

5.5.2 Proposition. Let (M,w) be a symplectic manifold and let f,g,h € C=(M).
Then

(i) {.,.} is R-bilinear.

(i) {f,9} = —{g, f} (anti-symmetry).
(iii) {{f. g}, b} +{{g,h}, f} + {{h, f}. g} = 0 (Jacobi-identity).
(i) Xipgy = —[Xp: Xo]-

Proof. (i) and (ii) follow directly from {f,g} = w(Xy, X;) and the fact that
w € Q%(M), because f +— X5 =& 1(df) is linear in f.

(iv) Since w is nondegenerate, it suffices to show that
w(Xfg1,Y) +w([Xy, Xgl,Y) =0 (5.5.3)

for each Y € X(M). Due to (5.4.1) and (5.5.2) we have

w(Xyrgy,Y) =d({f,91)(Y) =Y{f, 9} =YX, f. (5.5.4)
Furthermore, X, is symplectic by 5.4.3, so

0= (Lx,w)(Xs,Y)
4.3.37 i (5.5.5)
= Xy (W(X7,Y)) —w([Xg, X, V) = w(Xf, [Xg, YY)

Here,

Xg(w(Xy,Y)) = Xg(df (V) = XgY f
W(Xfa [XgaY]) = df([ngy]) = [ngy](f) =X, Yf-YX,f

(5.5.4)
= Xng - w(X{f,g}, Y)

108



Inserting this into (5.5.5) gives (5.5.3).
(iii)

{f’ {gv h}} (5 > X{g h}f @
CEV X, {f.0) + Xnl .0} = —({F.h}.g) + {{F. 93 1)

[Xg»Xh]f = _Xthf + Xthf

a

Points (i)—(iii) of the previous result state that (C*°(M),{., .}) is a Lie algebra (cf.
2.2.18) on any symplectic manifold.

5.5.3 Definition. Let (M,w, H) be a Hamiltonian system. A function f € C*(M)
that is constant along every integral curve of Xy is called a conserved quantity of
the system. A wector field X € X(M) is called an infinitesimal symmetry of the
system if both w and H are invariant under the flow of X.

5.5.4 Proposition. Let (M,w, H) be a Hamiltonian system.

(i) f €C™(M) is a conserved quantity if and only if {f, H} = 0.

(ii) X € X(M) is an infinitesimal symmetry if and only if it is symplectic and
X(H)=0.

(iii) Let X be an infinitesimal symmetry and v a trajectory of the system. Then
for any s € R, Flf o is a trajectory as well (on its domain).

Proof. (i) By 4.3.31, f is a conserved quantity if and only if

(5.5.1)

0=Xu(f) {f. H}.

(ii) By definition (and 4.3.32), X is an infinitesimal symmetry if and only if Lxw = 0
and X (H) = 0. Here, the first condition says that X is symplectic.

(iii) Setting ¢(t) := FI (y(t)), we have to show that ¢(t) = Xz (c(t)) on the domain
of ¢. Now

é(t) = (Tyo FIT) (3(8) = (T, FIO) (X e (v(1)))
= (T, (o FIO)(Xa (FIT) " (c(1)))) = ((FIT)* Xpr)(e(t)).
Hence if we can show that (F12)* Xy = Xp, the result will follow. By 2.3.18 this
amounts to showing that [X, Xg| = 0. Tt suffices to establish this on any open set,

so since X is symplectic by (ii) we may assume (using 5.4.3) that X = X for some
smooth function f. Then

(5.5.1)

(. 1Y 2V _x 1) Yo,

so indeed 5o
(X, Xy = [Xp, Xp] =" —X(5,my = 0.

a

We conclude this chapter with a central theorem of mathematical physics, which
establishes a deep connection between conserved quantities and infinitesimal sym-
metries.
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5.5.5 Theorem. (Noether’s theorem) Let (M,w, H) be a Hamiltonian system.

(1) If f is a conserved quantity, then Xy is an infinitesimal symmetry.

(ii) Conversely, if Hin(M) = 0, then each infinitesimal symmetry X is the Hamil-
tonian vector field X = Xy of a conserved quantity f € C>°(M). This f is
unique up to addition of a function that is constant on each connected com-
ponent of M.

Proof. (i) By 5.5.4 (i), {f,H} =0, s0 XyH = {H, f} = 0. Moreover, 5.4.3 shows
that X is symplectic, so 5.5.4 (ii) gives the claim.

(ii) By definition, X is symplectic, hence by 5.4.3 it is globally Hamiltonian, say
X = Xy. Also,
{H,f} =XyH=X(H)=0

since X is an infinitesimal symmetry, and so f is a conserved quantity by 5.5.4 (i).
To show uniqueness, suppose that also X, = X for some g € C*°(M). Then

(5.4.1) . .
dlg—f) = ) I(X,—xp)w = tow = 0,

so g — f has to be constant on each connected component of M. O
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