Proseminar Lie Groups

Michael Kunzinger

WS2017/18

- 1. By a matrix group we mean a closed subgroup of the general linear group $GL(n, \mathbb{R})$. Verify that the following sets are matrix groups in this sense:
 - (a) $SL(n, \mathbb{R}) := \{A \in GL(n, \mathbb{R}) \mid \det(A) = 1\}.$
 - (b) The space $UT(n, \mathbb{R})$ of regular upper triangular matrices.
 - (c) The affine group $\operatorname{Aff}(n, \mathbb{R}) := \left\{ \begin{pmatrix} A & t \\ 0 & 1 \end{pmatrix} \mid A \in GL(n, \mathbb{R}), \ t \in \mathbb{R}^n \right\}$ (as a subgroup of $GL(n+1, \mathbb{R})$).
 - (d) The orthogonal group: $O(n) := \{A \in GL(n, \mathbb{R}) \mid AA^t = I\}.$
 - (e) The Lorentz group $\{A \in GL(n, \mathbb{R}) \mid A^t DA = D\}$, where $D = \text{diag}(-1, 1, \dots, 1)$.
- 2. Prepare a short presentation about equivalent descriptions of submanifolds of \mathbb{R}^n and of their tangent spaces.
- 3. Consider the determinant function as a map det : $GL(n, \mathbb{R}) \to \mathbb{R}$ and show that for $A \in GL(n, \mathbb{R})$ and $B \in M(n, \mathbb{R})$ we have:

$$D \det(A)(B) = \det(A)\operatorname{tr}(A^{-1}B)$$

(where tr denotes the trace). *Hint:* Calculate $\frac{d}{dt}\Big|_0 \det(A + tB)$.

4. Conclude from the above that $SL(n, \mathbb{R})$ is a submanifold of $GL(n, \mathbb{R})$ and calculate its tangent space at I.