Proseminar zu Lie-Gruppen Michael Kunzinger

WS2017/18

- 17. Determine the Lie algebra \mathfrak{g} of the Lie group G from problem 11 and show that $\exp^G : \mathfrak{g} \to G$ is a diffeomorphism.
- 18. Let G be a linear Lie group (i.e., a Lie group that is a subgroup of $GL(n, \mathbb{R})$).
 - (a) Show that, for any $A \in G$, $Ad(A) = B \mapsto ABA^{-1}$.
 - (b) Verify that $\frac{d}{dt}|_0 \operatorname{Ad}(e^{tX})(Y) = \operatorname{ad}(X)(Y)$ and conclude from this that $\operatorname{ad}(X)(Y) = [X, Y]$.
- 19. Let M be the set of symmetric 2×2 matrices with two different eigenvalues.
 - (a) Show that M is an open submanifold of the set of all symmetric matrices.
 - (b) Call two elements A, B of M equivalent if there exists some invertible matrix T such that B = TAT⁻¹. Denoting by ρ this equivalence relation, show that M/ρ can be given the structure of a two-dimensional quotient manifold of M.
- 20. Let ρ be an equivalence relation on a manifold M such that $M' = M/\rho$ is a quotient manifold of M. Let $f: M \to M_1$ be an invariant of ρ and denote by $\tilde{f}: M' \to M_1$ the corresponding projection.
 - (a) Show that if f is an immersion or submersion, then so is \tilde{f} .
 - (b) In the situation of problem 19, determine the projections of the determinant and the trace map.