Proseminar zu Lie-Gruppen Michael Kunzinger

WS2017/18

- 21. Let ρ be the following equivalence relation on \mathbb{R}^2 : $x \sim_{\rho} y :\Leftrightarrow |x| = |y|$. Show that \mathbb{R}^2/ρ cannot be endowed with a quotient manifold structure of \mathbb{R}^2 . Nevertheless, if one replaces \mathbb{R}^2 by $\mathbb{R}^2 \setminus \{0\}$, then such a structure exists.
- 22. The vector field $X := e^{x_2} \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2}$ defines a one-dimensional distribution Ω on \mathbb{R}^2 . Find a chart around (0,0) that is flat for Ω .
- 23. Let X_1, \ldots, X_k be smooth vector fields on a manifold M such that $[X_i, X_j] = 0$ for all i, j. Then the distribution Ω spanned by X_1, \ldots, X_k is integrable by the Frobenius theorem. Show that for any $p \in M$ and $\varepsilon > 0$ sufficiently small the set

$$M' := \{ \mathrm{F}l_{t^1}^{X_1} \circ \ldots \circ \mathrm{F}l_{t^k}^{X_k}(p) \mid (t^1, \ldots, t^k) \in (-\varepsilon, \varepsilon)^k \}$$

can be equipped with a manifold structure that makes it an integral manifold of Ω containing p. (*Hint:* Examine the proof of the Frobenius theorem.)

- 24. Let $M := \{(x, y, z) \in \mathbb{R}^3 \mid x, y, z > 0\}, X := x \frac{\partial}{\partial x} 2y \frac{\partial}{\partial y}, Y := y \frac{\partial}{\partial y} z \frac{\partial}{\partial z}.$
 - (i) Show that X, Y span an involutive distribution Ω on M.
 - (ii) Determine the integral manifolds of Ω .
- 25. Let $c: I \to M$ be a maximal integral curve of a vector field $X \in \mathfrak{X}(M)$ and suppose that $c'(t) \neq 0$ for all $t \in I$. Equip C := c(I) with its natural manifold structure as described in 17.18. Show that C is diffeomorphic either to \mathbb{R} or to S^1 .