Proseminar zu Lie-Gruppen Michael Kunzinger

WS 2017/18

30. With X_1, \ldots, X_k as in problem 29, let f^1, \ldots, f^{n-k} be solutions of

$$X^{1}(f) = 0, \dots, X^{k}(f) = 0$$
 (*)

on an open subset V of U with $\operatorname{rk}(f) = n - k$. Again let Ω be the distribution spanned by X_1, \ldots, X_k . Show that:

- (a) Locally around any $x_0 \in V$ there exist functions y^1, \ldots, y^k such that $\varphi := (y^1, \ldots, y^k, f^1, \ldots, f^{n-k})$ is a chart around x_0 .
- (b) This chart is flat for Ω .
- (c) The general solution of (*) is of the form $g = h(f^1, \ldots, f^{n-k})$ for an arbitrary smooth function h locally around x_0 . (Hint: g solves (*) if and only if $T_x g$ vanishes on $\Omega(x) = \operatorname{span}(\partial_{y^1}, \ldots, \partial_{y^k})$).
- 31. Let Ω be a distribution on M. TFAE:
 - (i) Ω is involutive.
 - (ii) If a smooth 1-form ω annihilates Ω (i.e., if $\omega(X) = 0$ for every local vector field $X \in \Omega$), then so does $d\omega$ (i.e., $d\omega(X,Y) = 0$ for all $X, Y \in \Omega$).

(Hint: use (10.2) from the lecture course.)

32. Let $H := \mathbb{R}^2 \times \{0\} \subseteq \mathbb{R}^3$. Then H is a 2-dimensional submanifold of \mathbb{R}^3 that is a Lie subgroup of $(\mathbb{R}^3, +)$. Show that the charts $\varphi_y : (x, y, 0) \mapsto x$ $(y \in \mathbb{R})$ form an atlas on H for a new differentiable structure in which H is a 1-dimensional Lie subgroup of $(\mathbb{R}^3, +)$.