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Preface

These lecture notes are based on the lecture course “Differentialgeometrie 2” taught by
M.K. in the fall semesters of 2008 and 2012. The material has been slightly reorganised to
serve as a script for the course “Riemannian geometry” by R.S. in the fall term 2016. It
can be considered as a continuation of the lecture notes “Differential Geometry 1” of M.K.
[10] and we will extensively refer to these notes.

Basically this is a standard introductory course on Riemannian geometry which is strongly
influenced by the textbook “Semi-Riemannian Geometry (With Applications to Relativ-
ity)” by Barrett O’Neill [15]. The necessary prerequisites are a good knowledge of basic
differential geometry and analysis on manifolds as is traditionally taught in a 3–4 hours
course.
We are greatful to our students for pointing out the inevitable lapses in earlier versions of
these notes. Special thanks go to Argam Ohanyan who revised the earlier LATEX-file and
coded many of the figures.

M.K. & R.S.
April 2021

Since R.S. last held this course, I prepared lecture notes of the course “Analysis on Mani-
folds”, see [12]. These notes contain (the manifold part of) [10], so results from [10] (as well
as from [11]) can also be found there and references have for the most part been updated
to these notes. Apart from this, only a few typos were corrected.

M.K.
November 2022
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Chapter 1

Semi-Riemannian Manifolds

In classical/elementary differential geometry of hypersurfaces in Rn and, in particular, of
surfaces in R3 one finds that all intrinsic properties of the surface ultimately depend on
the scalar product induced on the tangent spaces by the standard scalar product of the
ambient Euclidean space. Our first goal is to generalise the respective notions of length,
angle, curvature and the like to the setting of abstract manifolds. We will, however, allow
for nondegenerate bilinear forms which are not necessarily positive definite to include
central applications, in particular, general relativity. We will start with an account on
such bilinear forms.

1.1 Scalar products

Contrary to basic linear algebra where one typically focusses on positive definite scalar
products semi-Riemannian geometry uses the more general concept of nondegenerate bi-
linear forms. In this subsection we develop the necessary algebraic foundations.

1.1.1 Definition (Bilinear forms). Let V be a finite dimensional vector space. A
bilinear form on V is an R-bilinear mapping b : V × V → R. It is called symmetric if

b(v, w) = b(w, v) for all v, w ∈ V . (1.1.1)

A symmetric bilinear form is called

(i) Positive (negative) definite, if b(v, v) > 0 (< 0) for all 0 ̸= v ∈ V ,

(ii) Positive (negative) semidefinite, if b(v, v) ≥ 0 (≤ 0) for all v ∈ V ,

(iii) nondegenerate, if b(v, w) = 0 for all w ∈ V implies v = 0.

Finally we call b (semi)definite if one of the alternatives in (i) (resp. (ii)) hold true. Oth-
erwise we call b indefinite.

1



2 Chapter 1. Semi-Riemannian Manifolds

In case b is definite it is semidefinite and nondegenerate and conversely if b is semidefinite
and nondegenerate it is already definite. Indeed in the positive case suppose there is
0 ̸= v ∈ V with b(v, v) = 0. Then for arbitrary w ∈ V we find that

b(v + w, v + w) = b(v, v)︸ ︷︷ ︸
0

+2b(v, w) + b(w,w) ≥ 0 (1.1.2)

b(v − w, v − w) = b(v, v)︸ ︷︷ ︸
0

−2b(v, w) + b(w,w) ≥ 0, (1.1.3)

since b is positive semidefinite and so 2|b(v, w)| ≤ b(w,w). But replacing w by λw with λ
some positive number we obtain

2 |b(v, w)| ≤ λ b(w,w) (1.1.4)

and since we may choose λ arbitrarily small we have b(v, w) = 0 for all w which by
nondegeneracy implies v = 0, a contradiction.

If b is a symmetric bilinear form on V and ifW is a subspace of V then clearly the restriction
b|W (defined as b|W×W ) of b to W is again a symmetric bilinear form. Obviously if b is
(semi)definite then so is b|W .

1.1.2 Definition (Index). We define the index r of a symmetric bilinear form b on V
by

r := max {dimW | W subspace of V with b|W negative definite}. (1.1.5)

By definition we have 0 ≤ r ≤ dimV and r = 0 iff b is positive semidefinite.

Given a symmetric bilinear form b we call the function

q : V → R, q(v) = b(v, v) (1.1.6)

the quadratic form associated with b. Frequently it is more convenient to work with q than
with b. Recall that by polarisation b(v, w) = 1/2(q(v +w)− q(v)− q(w)) we can recover b
from q and so all the information of b is also encoded in q.

Let B = {e1, . . . , en} be a basis of V , then

(bij) := (b(ei, ej))
n
i,j=1 (1.1.7)

is called the matrix of b with respect to B. It is clearly symmetric and entirely determines
b since b(

∑
vi ei,

∑
wj ej) =

∑
bijviwj. Moreover nondegeneracy of b is characterised by

its matrix (w.r.t. any basis):

1.1.3 Lemma. A symmetric bilinear form is nondegenerate iff its matrix w.r.t. one (and
hence any) basis is invertible.
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Proof. Let B = {e1, . . . , en} be a basis of V . Given v ∈ V we have b(v, w) = 0 for all w
iff 0 = b(v, ei) = b(

∑
j vjej, ei) =

∑
j bijvj for all 1 ≤ i ≤ n. So b is degenerate iff there are

(v1, . . . , vn) ̸= (0, . . . , 0) with
∑

j bijvj = 0 for all i. But this means that the kernel of (bij)
is non trivial and (bij) is singular. 2

We now introduce a terminology slightly at odds with linear algebra standards but which
reflects our interest in non positive definite symmetric bilinear forms.

1.1.4 Definition (Scalar product, inner product). A scalar product g on a vector
space V is a nondegenerate symmetric bilinear form. An inner product is a positive definite
scalar product.

1.1.5 Example (Scalar products & inner products).

(i) The example of an inner product is the standard scalar product of Euclidean space
Rn: v · w =

∑
i viwi.

(ii) The most simple example of a vector space with indefinite scalar product is two-
dimensional Minkowski space R2

1 with underlying vector space R2 and scalar product

g = η : R2 × R2 → R, g(v, w) = −v1w1 + v2w2. (1.1.8)

Obviously g is bilinear and symmetric. To see that it is nondegenerate suppose that
g(v, w) = 0 for all w ∈ R2. Setting w = (1, 0) and w = (0, 1) gives v1 = 0 and v2 = 0,
respectively and so v = 0. Hence η is a scalar product but it is not an inner product
since it is indefinite:

g
(
(1, 0), (1, 0)

)
= −1 < 0, but g

(
(0, 1), (0, 1)

)
= 1 > 0. (1.1.9)

The corresponding quadratic form is q(v) = −v21 + v22.

In the following V will always be a (finite dimensional, real) vector space with a scalar
product g in the sense of 1.1.4. A vector 0 ̸= v ∈ V with q(v) = 0 will be called a null
vector. Such vectors exists iff g is indefinite. Note that the zero vector 0 is not a null
vector.

1.1.6 Example. We consider the lines q = c and q = −c (c > 0) in two-dimensional
Minkowski space of Example 1.1.5(ii). They are either hyperbolas or straight lines in case
c = 0, see Figure 1.1.

A pair of vectors u,w ∈ V is called orthogonal, u ⊥ w, if g(u,w) = 0. Analogously we call
subspaces U , W of V orthogonal, if g(u,w) = 0 for all u ∈ U and all w ∈ W .
Warning: In case of indefinite scalar products vectors that are orthogonal need not to be
at right angles to one another as the following example shows.
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Figure 1.1: Contours of q in 2-dimensional Minkowski space

1.1.7 Example (Null vectors). The following pairs of vectors v, v′ are orthogonal in
two-dimensional Minkowski space, see Figure 1.2: w = (1, 0) and w′ = (0, 1), u = (1, a)
and u′ = (a, 1) for some a > 0, z = (1, 1) = z′.

The example of the null vectors z, z′ above hints at the fact that null vectors are precisely
those vectors that are orthogonal to themselves.
If W is a subspace of V let

W⊥ := {v ∈ V : v ⊥ w for all w ∈ W}. (1.1.10)

Clearly W⊥ is a subspace of V , which we call W perp.
Warning: We cannot callW⊥ the orthogonal complement ofW since in generalW+W⊥ ̸=
V , e.g. if W = span(z) in Example 1.1.7 we even have W⊥ = W . However W⊥ has two
familiar properties.

1.1.8 Lemma (Basic properties of W⊥). Let W be a subspace of V . Then we have

(i) dimW + dimW⊥ = dimV , (ii) (W⊥)⊥ = W .

Proof.

(i) Let {e1, . . . , ek} be a basis of W which we extend to a basis {e1, . . . , ek, ek+1, . . . , en}
of V . Then we have

v ∈ W⊥ ⇔ g(v, ei) = 0 for 1 ≤ i ≤ k ⇔
n∑

j=1

gijvj = 0 for 1 ≤ i ≤ k. (1.1.11)
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z=z'

w'

u

Figure 1.2: Pairs of orthogonal vectors in 2-dimensional Minkowski space

Now by Lemma 1.1.3 (gij) is invertible and hence the rows in the above linear system
of equations are linearly independent and its space of solutions has dimension n− k.
So dimW⊥ = n− k.

(ii) Let w ∈ W , then w ⊥ W⊥ and w ∈ (W⊥)⊥, which implies W ⊆ (W⊥)⊥. Moreover,
by (i) we have dimW = dim(W⊥)⊥ = k and so W = (W⊥)⊥. 2

A symmetric bilinear form g on V is nondegenerate, iff V ⊥ = {0}. A subspace W of V is
called nondegenerate if g|W is nondegenerate. If g is an inner product, then any subspace
W is again an inner product space, hence nondegenerate. If g is indefinite, however, there
always exists degenerate subspaces, e.g. W = span(w) for any null vector w. Hence a
subspace W of a vector space with scalar product in general is not a vector space with
scalar product. Indeed W could be degenerate. We now give a simple characterisation of
nondegeneracy for subspaces.

1.1.9 Lemma (Nondegenerate subspaces). A subspace W of a vector space V with
scalar product is nondegenerate iff

V = W ⊕W⊥. (1.1.12)

Proof. By linear algebra we know that

dim(W +W⊥) + dim(W ∩W⊥) = dimW + dimW⊥ = dimV. (1.1.13)
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So equation (1.1.12) holds iff

dim(W ∩W⊥) = 0 ⇔ {0} = W ∩W⊥ = {w ∈ W : w ⊥ W}

which is equivalent to the nondegeneracy of W . 2

As a simple consequence we obtain by using 1.1.8(ii), i.e., (W⊥)⊥ = W .

1.1.10 Corollary (Nondegeneracy of W & W⊥). W is nondegenerate iff W⊥ is
nondegenerate.

Our next objective is to deal with orthonormal bases in a vector space with scalar product.
To begin with we define unit vectors. However, due to the fact that q may take negative
values we have to be a little careful.

1.1.11 Definition (Norm). We define the norm of a vector v ∈ V by

|v| := |g(v, v)|
1
2 . (1.1.14)

A vector v ∈ V is called a unit vector if |v| = 1, i.e., if g(v, v) = ±1. A family of pairwise
orthogonal unit vectors is called orthonormal.

Observe that an orthonormal system of n = dimV elements automatically is a basis. The
existence of orthonormal bases (ONB) is guaranteed by the following statement.

1.1.12 Lemma (Existence of orthonormal bases). Every vector space V ̸= {0} with
scalar product possesses an orthonormal basis.

Proof. There exists v ̸= 0 with g(v, v) ̸= 0, since otherwise by polarisation we would have
g(v, w) = 0 for all pairs of vectors v, w, which implies that g is degenerate. Now v/|v| is
a unit vector and it suffices to show that any orthonormal system {e1, . . . , ek} with k < n
can be extended by one vector.
So let W = span{e1, . . . , ek}. Then by Lemma 1.1.3 W is nondegenerate and so is W⊥

by corollary 1.1.10. Hence by the argument given above W⊥ contains a unit vector ek+1

which extends {e1, . . . , ek}. 2

The matrix of g w.r.t. any ONB is diagonal, more precisely

g(ei, ej) = δijεj, where εj := g(ej, ej) = ±1. (1.1.15)

In the following we will always order any ONB {ei, . . . , en} in such a way that in the so-
called signature (ε1, . . . , εn) the negative signs come first. Next we give the representation
of a vector w.r.t an ONB. Once again we have to be careful about the signs.
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1.1.13 Lemma (Representation of vectors via ONB). Let {e1, . . . , en} be an ONB
for V . Then any v ∈ V can be uniquely written as

v =
n∑

i=1

εi g(v, ei) ei. (1.1.16)

Proof. We have that

⟨v −
∑
i

εig(v, ei)ei, ej⟩ = ⟨v, ej⟩ −
∑
i

εi ⟨v, ei⟩ ⟨ei, ej⟩︸ ︷︷ ︸
εiδij

= 0 (1.1.17)

for all j and so by nondegeneracy v =
∑

i εig(v, ei)ei. Uniqueness now simply follows since
{e1, . . . , en} is a basis. 2

If a subspace W is nondegenerate we have by Lemma 1.1.9 that V = W ⊕W⊥. Let now
π be the orthogonal projection of V onto W . Since any ONB {e1, . . . , ek} of W can be
extended to an ONB of V (cf. the proof of 1.1.12) we have for any v ∈ V

π(v) =
k∑

j=1

εj g(v, ej) ej. (1.1.18)

Next we give a more vivid description of the index r of g (see Definition 1.1.2), which we
will also call the index of V and denote it by indV

1.1.14 Proposition (Index and signature). Let {e1, . . . , en} be any ONB of V . Then
the index of V equals the number of negative signs in the signature (ε1, . . . , εn).

Proof. Let exactly the firstm of the εi be negative. In case g is definite we havem = r = 0
or m = r = n = dimV and we are done.
So suppose 0 < m < n. Obviously g is negative definite on S = span{e1, . . . , em} and so
m ≤ r.
To show the converse let W be a subspace with g|W negative definite and define

π : W → S, π(w) := −
m∑
i=1

g(w, ei)ei. (1.1.19)

Then π is obviously linear and we will show below that it is injective. Then clearly
dimW ≤ dimS and since W was arbitrary r ≤ dimS = m.
Finally π is injective since if π(w) = 0 then by Lemma 1.1.13 w =

∑n
i=m+1 g(w, ei)ei. Since

w ∈ W we also have 0 ≥ g(w,w) =
∑n

i=m+1 g(w, ei)
2, which implies g(w, ej) = 0 for all

j > m. But then w = 0. 2

The index of a nondegenerate subspace can now easily be related to the index of V .
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1.1.15 Corollary (Index & nondegerate subspaces). Let W be a nondegenerate
subspace of V . Then

indV = indW + indW⊥. (1.1.20)

Proof. Let {e1, . . . , ek} be an ONB of W and {ek+1, . . . , en} be an ONB of W⊥ such
that {e1, . . . , en} is an ONB of V , cf. the proof of 1.1.12. Now the assertion follows from
Proposition 1.1.14. 2

To end this section we will introduce linear isometries. Let (V1, g1) and (V2, g2) be vector
spaces with scalar product.

1.1.16 Definition (Linear isometry). A linear map T : V1 → V2 is said to preserve
the scalar product if

g2(Tv, Tw) = g1(v, w). (1.1.21)

A linear isometry is a linear bijective map that preserves the scalar product.

In case there is no danger of missunderstanding we will write equation (1.1.21) also as

⟨Tv, Tw⟩ = ⟨v, w⟩. (1.1.22)

If equation (1.1.21) holds true then T automatically preserves the associated quadratic
forms, i.e., q2(Tv) = q1(v) for all v ∈ V . The converse assertions clearly holds by polarisa-
tion.
A map that preserves the scalar product is automatically injective since Tv = 0 by virtue
of (1.1.21) implies g1(v, w) = 0 for all w and so v = 0 by nondegeneracy. Hence a linear
mapping is an isometry iff dimV1 = dimV2 and equation (1.1.21) holds. Moreover we have
the following characterisation.

1.1.17 Proposition (Linear isometries). Let (V1, g1) and (V2, g2) be vector spaces
with scalar product. Then the following are equivalent:

(i) dimV1 = dimV2 and indV1 = indV2,

(ii) There exists a linear isometry T : V1 → V2.

Proof. (i)⇒(ii): Choose ONBs {e1, . . . , en} of V1 and {e′1, . . . , e′n} of V2. By Proposi-
tion 1.1.14 we may assume that ⟨ei, ei⟩ = ⟨e′i, e′i⟩ for all i. Now we define a linear map T
via Tei = e′i. Then clearly ⟨Tei, T ej⟩ = ⟨ei, ej⟩ for all i, j and T is an isometry.
(ii)⇒(i): If T is an isometry then dimV1 = dimV2 and T maps any ONB of V1 to an ONB
of V2. But then equation (1.1.21) and Proposition 1.1.14 imply that indV1 = indV2. 2
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1.2 Semi-Riemannian metrics

In this section we start our program to transfer the setting of elementary differential geom-
etry to abstract manifolds. The key element is to equip each tangent space with a scalar
product that varies smoothly on the manifold. We start out with the central definition.

1.2.1 Definition (Metric). A semi-Riemannian metric tensor (or metric, for short)
on a smooth manifold 1 M is a smooth, symmetric and nondegenerate (0, 2)-tensor field g
on M of constant index.

In other words g smoothly assigns to each point p ∈M a symmetric nondegenerate bilinear
form g(p) ≡ gp : TpM × TpM → R such that the index rp of gp is the same for all p. We
call this common value rp the index r of the metric g. We clearly have 0 ≤ r ≤ n = dimM .
In case r = 0 all gp are inner products on TpM and we call g a Riemannian metric, cf. [10,
3.1.14]. In case r = 1 and n ≥ 2 we call g a Lorentzian metric.

1.2.2 Definition. A semi-Riemannian manifold (SRMF) is a pair (M, g), where g is
a metric on M . In case g is Riemannian or Lorentzian we call (M, g) a Riemannian
manifold (RMF) or Lorentzian manifold (LMF), respectively.

We will often sloppily call just M a (S)RMF or LMF and write ⟨ , ⟩ instead of g and use
the following conventions

• gp(v, w) = ⟨v, w⟩ ∈ R for vectors v, w ∈ TpM and p ∈M , and

• g(X, Y ) = ⟨X, Y ⟩ ∈ C∞(M) for vector fields X, Y ∈ X(M).

If (V, φ) is a chart of M with coordinates φ = (x1, . . . , xn) and natural basis vector fields
∂i ≡ ∂

∂xi we write

gij = ⟨∂i, ∂j⟩ (1 ≤ i, j ≤ n) (1.2.1)

for the local components of g on V . Denoting the dual basis covector fields of ∂i by dx
i we

have

g|V = gij dx
i ⊗ dxj, (1.2.2)

where we have used the summation convention (see [12, p. 64]) which will be in effect from
now on.

Since gp is nondegenerate for all p the matrix (gij(p)) is invertible by Lemma 1.1.3 and
we write (gij(p)) for its inverse. By the inversion formula for matrices the gij are smooth
functions on V and by symmetry of g we have gij = gji for all i and j.

1In accordance with [10, 12] we assume all smooth manifolds to be second countable and Hausdorff.
For background material on topological properties of manifolds see [12, Section 1.3].
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1.2.3 Example (Metrics).

(i) We consider M = Rn. Clearly TpM ∼= Rn for all points p and the standard scalar
product induces a Riemannian metric on Rn which we denote by

⟨vp, wp⟩ = v · w =
∑
i

viwi. (1.2.3)

We will always consider Rn equipped with this Riemannian metric.

(ii) Let 0 ≤ r ≤ n. Then

⟨vp, wp⟩ = −
r∑

i=1

viwi +
n∑

j=r+1

vj wj (1.2.4)

defines a metric on Rn of index r. In accordance with 1.1.5(ii), we will denote Rn

with this metric tensor by Rn
r . Clearly Rn

0 is Rn in the sense of (i). For n ≥ 2 the
space Rn

1 is called n-dimensional Minkowski space. In case n = 4 this is the simplest
spacetime in the sense of Einstein’s general relativity. In fact, it is the flat spacetime
of special relativity.

Setting εi = −1 for 1 ≤ i ≤ r and εi = 1 for r+1 ≤ i ≤ n the metric of Rn
r takes the

form

g = εi dx
i ⊗ dxi = εi e

i ⊗ ei. (1.2.5)

As is clear from section 1.1 a nonvanishing index allows for the existence of null vectors.
Here we further pursue this line of ideas.

1.2.4 Definition (Causal character). Let M be a SRMF, p ∈M . We call v ∈ TpM

(i) spacelike if ⟨v, v⟩ > 0 or if v = 0,

(ii) null if ⟨v, v⟩ = 0 and v ̸= 0,

(iii) timelike if ⟨v, v⟩ < 0.

The above notions define the so-called causal character of v. The set of null vectors in
TpM is called the null cone at p respectively light cone at p in the Lorentzian case. In this
case we also refer to null vectors as lightlike and call a vector causal if it is either timelike
or lightlike.

1.2.5 Example. Let v be a vector in 2-dimensional Minkowski space R2
1. Then v is null

iff v21 = v22, i.e., iff v1 = ±v2, see also figure 1.3.
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x

<v,v> = 0

timelike  <v,v> < 0

<v,v> > 0

spacelike

<v,v> > 0

spacelike

t

timelike  <v,v> < 0

light cone <v,v> = 0

Figure 1.3: The lightcone in 2-dimensional Minkowski space

The above terminology is of course motivated by physics and relativity in particular. Set-
ting the speed of light c = 1 then a flash of light emitted at the origin of Minkowski space
travels along the light cone. Two points are timelike separated if a signal with speed v < 1
can reach one point from the other and they are spacelike separated if any such signal
needs superluminal speed to reach the other point.

Let q be the quadratic form associated with g, i.e., q(v) = ⟨v, v⟩ for all v ∈ TpM . Then
by polarisation q determines the metric but it is not a tensor field since for X ∈ X(M)
and f ∈ C∞(M) we clearly have q(fX) = f 2q(X), cf. [12, 4.1.19]. It is nevertheless fre-
quently used in ‘classical terminology’ where it is called the line element and denoted by
ds2. Locally one writes

q = ds2 = gij dx
i dxj, (1.2.6)

where juxtaposition of differentials means multiplication in each tangent space, that is

q(X) = gij dx
i(X) dxj(X) = gijX

iXj (1.2.7)

for a vector field locally given by X = X i∂i. Finally we write for the norm of a tangent
vector

∥v∥ := |q(v)|1/2 = |⟨v, v⟩|1/2. (1.2.8)

1.2.6 Remark. The origin of the somewhat strange notation ds2 is the following heuristic
consideration: Consider two ‘neighbouring points’ p and p′ with coordinates (x1, . . . , xn)
and (x1 + △x1, . . . , xn + △xn). Then the ‘tangent vector’ △p =

∑
△xi∂i at p points

approximately to p′ and so the ‘distance’ △s from p to p′ should approximately be given
by

△s2 = ∥△p∥2 = ⟨△p,△p⟩ =
∑
i,j

gij(p)△xi△xj. (1.2.9)
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Let N be a submanifold of a RMF M with embedding j : N ↪→ M . Then the pull back
j∗g of the metric g to the submanifold N is given by, see [12, 4.3.24]

(j∗g)(p)(v, w) = g(j(p))(Tpjv, Tpjw) = g(p)(v, w), (1.2.10)

where in the final equality we have identified Tpj(TpN) with TpN , see [12, 3.3.11].
Hence j∗g(p) is just the restriction of gp to the subspace TpN of TpM . Since g is Riemannian
this restriction is positive definite and so j∗g turns N into a RMF.
However, if M is only a SRMF then the (0, 2)-tensor field j∗g on N need not be a metric.
Indeed (cf. section 1.1) j∗g is a metric and hence (N, j∗g) a SRMF iff every TpN is nonde-
generate in TpM and the index of TpN is the same for all p ∈ N . Of course this index can
be different from the index of g.
These considerations lead to the following definition.

1.2.7 Definition (Semi-Riemannian submanifold). A submanifold N of a SRMF
M is called a semi-Riemannian submanifold (SRSMF) if j∗g is a metric on N .

If N is Riemannian or Lorentzian these terms replace semi-Riemannian in the above def-
inition. However, note that while every SRSMF of a RMF is again Riemannian, a LMF
can have Lorentzian as well as Riemannian submanifolds.

Finally we turn to isometries, i.e., diffeomorphisms that preserve the metric.

1.2.8 Definition (Isometry). Let (M, gM) and (N, gN) be SRMF and ϕ : M → N be
a diffeomorphism. We call ϕ an isometry if ϕ∗gN = gM .

Recall that the defining property of an isometry by [12, 4.3.24] in some more detail reads

⟨Tpϕ(v), Tpϕ(w)⟩ = gN(ϕ(p))
(
Tpϕ(v), Tpϕ(w)

)
= gM(p)(v, w) = ⟨v, w⟩ (1.2.11)

for all v, w ∈ TpM and all p ∈ M . Since ϕ is a diffeomorphism, every tangent map
Tpϕ : TpM → Tϕ(p)N is a linear isometry, cf. 1.1.16. Also note that ϕ∗gN = gM is equivalent
to ϕ∗qN = qM since g is always uniquely determined by q. If there is an isometry between
the SRMFs M and N we call them isometric.

1.2.9 Remark (On isometries).

(i) Clearly idM is an isometry. Moreover the inverse of an isometry is an isometry again
and if ϕ1 and ϕ2 are isometries so is ϕ1 ◦ϕ2. Hence the isometries ofM form a group,
called the isometry group of M .

(ii) Given two vector spaces V and W with scalar product and a linear isometry ϕ : V →
W , if we consider V and W as SRMF, then ϕ is also an isometry of SRMF.

(iii) If V is a vector space with scalar product and dimV = n, indV = r then V as a
SRMF is isometric to Rn

r . Just choose an ONB {e1, . . . , en} of V . Then the coordinate
mapping V ∋ v =

∑
viei 7→ (v1, . . . , vn) ∈ Rn is a linear isometry and (ii) proves the

claim.
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1.3 The Levi-Civita Connection

The aim of this chapter is to define on SRMFs a ‘directional derivative’ of a vector field (or
more generally a tensor field) in the direction of another vector field . This will be done by
generalising the covariant derivative on hypersurfaces of Rn, see [10, Section 3.2] to general
SRMFs. Recall that for a hypersurface M in Rn and two vector fields X, Y ∈ X(M) the
directional derivative DXY of Y in direction of X is given by ([10, (3.2.3), (3.2.4)])

DXY (p) = (DXpY )(p) = (Xp(Y
1), . . . , Xp(Y

n)), (1.3.1)

where Y i (1 ≤ i ≤ n) are the components of Y . Although X and Y are supposed to
be tangential to M the directional derivative DXY need not be tangential. To obtain an
intrinsic notion one defines on an oriented hypersurface the covariant derivative ∇XY of Y
in direction of X by the tangential projection of the directional derivative, i.e., [10, 3.2.2]

∇XY = (DXY )tan = DXY − ⟨DXY, ν⟩ ν, (1.3.2)

where ν is the Gauss map ([10, 3.1.3]) i.e., the unit normal vector field ofM such that for all
p in the hypersurface det(νp, e

1, . . . , en−1) > 0 for all positively oriented bases {e1, . . . , en−1}
of TpM .
This construction clearly uses the structure of the ambient Euclidean space, which in case
of a general SRMF is no longer available. Hence we will rather follow a different route and
define the covariant derivative as an operation that maps a pair of vector fields to another
vector field and has a list of characterising properties. Of course these properties are
nothing else but the corresponding properties of the covariant derivative on hypersurfaces,
that is we turn the analog of [10, 3.2.4] into a definition.

1.3.1 Definition (Connection). A (linear) connection on a C∞-manifold M is a map

∇ : X(M)× X(M) → X(M), (X, Y ) 7→ ∇XY (1.3.3)

such that the following properties hold

(∇1) ∇XY is C∞(M)-linear in X
(i.e., ∇X1+fX2Y = ∇X1Y + f∇X2Y ∀f ∈ C∞(M), X1, X2 ∈ X(M)),

(∇2) ∇XY is R-linear in Y
(i.e., ∇X(Y1 + aY2) = ∇XY1 + a∇XY2 ∀a ∈ R, Y1, Y2 ∈ X(M)),

(∇3) ∇XY satisfies the Leibniz rule in Y
(i.e., ∇X(fY ) = X(f)Y + f∇XY for all f ∈ C∞(M)).

We call ∇XY the covariant derivative of Y in direction X w.r.t. the connection ∇.
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1.3.2 Remark (Properties of ∇).

(i) Property (∇1) implies that for fixed Y the map X 7→ ∇XY is a tensor field. This fact
needs some explanation. First recall that by [12, 4.1.19] tensor fields are precisely
C∞(M)-multilinear maps that take one forms and vector fields to smooth functions,
more precisely T r

s (M) ∼= Lr+s
C∞(M)(Ω

1(M)× · · · ×X(M), C∞(M)). Now for Y ∈ X(M)

fixed, A = X 7→ ∇XY is a C∞(M)-multininear map A : X(M) → X(M) which
naturally is identified with the mapping

Ā : Ω1(M)× X(M) → C∞(M), Ā(ω,X) = ω(A(X)) (1.3.4)

which is C∞(M)-multilinear by (∇1), hence a (1, 1) tensor field.

Hence we can speak of (∇XY )(p) for any p in M and moreover given v ∈ TpM we
can define ∇vY := (∇XY )(p), where X is any vector field with Xp = v.

(ii) On the other hand the mapping Y → ∇XY for fixed X is not a tensor field since
(∇2) merely demands R-linearity.

In the following our aim is to show that on any SRMF there is exactly one connection
which is compatible with the metric. However, we need a supplementary statement, which
is of substantial interest of its own. In any vector space V with scalar product g we have
an identification of vectors in V with covectors in V ∗ via

V ∋ v 7→ v♭ ∈ V ∗ where v♭(w) := ⟨v, w⟩ (w ∈ V ). (1.3.5)

Indeed this mapping is injective by nondegeneracy of g and hence an isomorphism. We will
now show that this construction extends to SRMFs providing an identification of vector
fields and one forms.

1.3.3 Theorem (Musical isomorphism). Let M be a SRMF. For any X ∈ X(M)
define X♭ ∈ Ω1(M) via

X♭(Y ) := ⟨X, Y ⟩ ∀Y ∈ X(M). (1.3.6)

Then the mapping X 7→ X♭ is a C∞(M)-linear isomorphism from X(M) to Ω1(M).

Proof. First X♭ : X(M) → C∞(M) is obviously C∞(M)-linear, hence in Ω1(M), cf.
[12, 4.1.19]. Also the mapping ϕ : X 7→ X♭ is C∞(M)-linear and we show that it is an
isomorphism.

ϕ is injective: Let ϕ(X) = 0, i.e., ⟨X, Y ⟩ = 0 for all Y ∈ X(M), implying ⟨Xp, Yp⟩ = 0 for
all Y ∈ X(M) and all p ∈M . Now let v ∈ TpM and choose a vector field Y ∈ X(M) with
Yp = v. But then by nondegeneracy of g(p) we obtain

⟨Xp, v⟩ = 0 ⇒ Xp = 0, (1.3.7)

and since p was arbitrary we infer X=0.

ϕ is surjective: Let ω ∈ Ω1(M). We will construct X ∈ X(M) such that ϕ(X) = ω. We
do so in three steps.
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(1) The local case: Let (φ = (x1, . . . , xn), U) be a chart and ω|U = ωidx
i. We set

XU := gijωi
∂

∂xj ∈ X(U). Since (gij) is the inverse matrix of (gij) we have

⟨X|U ,
∂

∂xk
⟩ = gij ωi ⟨

∂

∂xj
,
∂

∂xk
⟩ = ωi g

ij gjk = ωi δ
i
k = ωk = ω|U(

∂

∂xk
), (1.3.8)

and by C∞(M)-linearity we obtain (XU)
♭ = ω|U .

(2) Chart transition works: We show that for any chart (ψ = (y1, . . . , yn), V ) with
U ∩ V ̸= ∅ we have XU |U∩V = XV |U∩V . More precisely with ω|V = ω̄jdy

j and
g|V = ḡijdy

i ⊗ dyj we show that gijωi
∂

∂xj = ḡijω̄i
∂

∂yj
.

To begin with recall that dxj = ∂xj

∂yi
dyi ([12, 4.3.27(i)]) and so

ω|U∩V = ωjdx
j = ωj

∂xj

∂yi
dyi = ω̄idy

i, implying ω̄i = ωm
∂xm

∂yi
.

Moreover, by [12, 2.1.15] we have ∂
∂yi

= ∂xk

∂yi
∂

∂xk , which gives

ḡij = g
( ∂

∂yi
,
∂

∂yj

)
= g
(∂xk
∂yi

∂

∂xk
,
∂xl

∂yj
∂

∂xl

)
=
∂xk

∂yi
∂xl

∂yj
g
( ∂

∂xk
,
∂

∂xl

)
=
∂xk

∂yi
∂xl

∂yj
gkl,

and so by setting A = (aki) = (∂x
k

∂yi
) we obtain

(ḡij) = At(gij)A hence (ḡij) = A−1(gij)(A−1)t and so ḡij =
∂yi

∂xk
gkl

∂yj

∂xl
.

Finally we obtain

ḡij ω̄i
∂

∂yj
=
∂yi

∂xk
gkl

∂yj

∂xl
ωm

∂xm

∂yi
∂xn

∂yj
∂

∂xn
= gkl δmk ωm δ

n
l

∂

∂xn
= gmn ωm

∂

∂xn
.

(3) Globalisation: By (2) X(p) := XU(p) (where U is any chart neighbourhood of p)
defines a vector field on M . Now choose a cover U = {Ui| i ∈ I} of M by chart
neighbourhoods and a subordinate partition of unity (χi)i such that supp(χi) ⊆ Ui,
cf. [12, 1.3.14]. For any Y ∈ X(M) we then have

⟨X, Y ⟩ = ⟨X,
∑
i

χiY ⟩ =
∑
i

⟨X,χiY ⟩ =
∑
i

⟨XUi
, χiY ⟩

=
∑
i

ω|Ui
(χiY ) =

∑
i

ω(χiY ) = ω(
∑
i

χiY ) = ω(Y ), (1.3.9)

and we are done. 2
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Hence in semi-Riemannian geometry we can always identify vectors and vector fields with
covectors and one forms, respectively: X and ϕ(X) = X♭ contain the same information and
are called metrically equivalent. One also writes ω♯ = ϕ−1(ω) and this notation is the source
of the name ‘musical isomorphism’. Especially in the physics literature this isomorphism
is often encoded in the notation. If X = X i∂i is a (local) vector field then one denotes
the metrically equivalent one form by X♭ = Xidx

i and we clearly have Xi = gijX
j and

X i = gijXj. One also calls these operations the raising and lowering of indices. The
musical isomorphism naturally extends to higher order tensors as we shall see in section
3.2, below.

The next result is crucial for all the following. It is sometimes called the fundamental
Lemma of semi-Riemannian geometry.

1.3.4 Theorem (Levi Civita connection). Let (M, g) be a SRMF. Then there exists
one and only one connection ∇ onM such that (besides the defining properties (∇1)−(∇3)
of 1.3.1) we have for all X, Y, Z ∈ X(M)

(∇4) [X, Y ] = ∇XY −∇YX (torsion free condition)

(∇5) Z⟨X, Y ⟩ = ⟨∇ZX, Y ⟩+ ⟨X,∇ZY ⟩ (metric property).

The map ∇ is called the Levi-Civita connection of (M, g) and it is uniquely determined by
the so-called Koszul-formula

2⟨∇XY, Z⟩ =X⟨Y, Z⟩+ Y ⟨Z,X⟩ − Z⟨X, Y ⟩ (1.3.10)

− ⟨X, [Y, Z]⟩+ ⟨Y, [Z,X]⟩+ ⟨Z, [X, Y ]⟩.

Proof. Uniqueness: If ∇ is a connection with the additional properties (∇4), (∇5)
then the Koszul-formula (1.3.10) holds: Indeed denoting the right hand side of (1.3.10) by
F (X, Y, Z) we find

F (X, Y, Z) =⟨∇XY, Z⟩+������⟨Y,∇XZ⟩+
XXXXXX⟨∇YZ,X⟩+������XXXXXX⟨Z,∇YX⟩ −������⟨∇ZX, Y ⟩ −XXXXXX⟨X,∇ZY ⟩

−XXXXXX⟨X,∇YZ⟩+
XXXXXX⟨X,∇ZY ⟩+������⟨Y,∇ZX⟩ −������⟨Y,∇XZ⟩+ ⟨Z,∇XY ⟩ −������XXXXXX⟨Z,∇YX⟩

=2⟨∇XY, Z⟩.

Now by injectivity of ϕ in Theorem 1.3.3, ∇XY is uniquely determined.

Existence: For fixed X, Y the mapping Z 7→ F (X, Y, Z) is C∞(M)-linear as follows by a
straightforward calculation using [12, 2.2.17(iv)]. Hence Z 7→ F (X, Y, Z) ∈ Ω1(M) and by
1.3.3 there is a (uniquely defined) vector field which we call ∇XY such that 2⟨∇XY, Z⟩ =
F (X, Y, Z) for all Z ∈ X(M). Now ∇XY by definition obeys the Koszul-formula and it
remains to show that the properties (∇1)–(∇5) hold.

(∇1) ∇X1+X2Y = ∇X1Y+∇X2Y follows from the fact that F (X1+X2, Y, Z) = F (X1, Y, Z)+
F (X2, Y, Z). Now let f ∈ C∞(M) then we have by [12, 2.2.17(iv)]

2⟨∇fXY − f∇XY, Z⟩ = F (fX, Y, Z)− fF (X, Y, Z) = . . . = 0, (1.3.11)

where we have left the straightforward calculation to the reader. Hence by another
appeal to Theorem 1.3.3 we have ∇fXY = f∇XY .



1.3. THE LEVI-CIVITA CONNECTION 17

(∇2) follows since obviously Y 7→ F (X, Y, Z) is R-linear.

(∇3) Again by [12, 2.2.17(iv)] we find

2⟨∇XfY , Z⟩ = F (X, fY, Z)

= X(f)⟨Y, Z⟩ −�������
Z(f)⟨X, Y ⟩+�������

Z(f)⟨X, Y ⟩+X(f)⟨Z, Y ⟩+ fF (X, Y, Z)

= 2 ⟨X(f)Y + f∇XY, Z⟩, (1.3.12)

and the claim again follows by 1.3.3.

(∇4) We calculate

2⟨∇XY −∇YX,Z⟩ = F (X, Y, Z)− F (Y,X,Z)

= . . . = ⟨Z, [X, Y ]⟩ − ⟨Z, [Y,X]⟩ = 2⟨[X, Y ], Z⟩ (1.3.13)

and another appeal to 1.3.3 gives the statement.

(∇5) We calculate

2
(
⟨∇ZX, Y ⟩+ ⟨X,∇ZY ⟩

)
= F (Z,X, Y ) + F (Z, Y,X) = . . . = 2Z

(
⟨X, Y ⟩

)
. 2

1.3.5 Remark. In the case of M being an oriented hypersurface of Rn the covariant
derivative is given by (1.3.2). By [10, 3.2.4, 3.2.5] ∇ satisfies (∇1)–(∇5) and hence is the
Levi-Civita connection of M (with the induced metric).

Next we make sure that ∇ is local in both slots, a result of utter importance.

1.3.6 Lemma (Localisation of ∇). Let U ⊆ M be open and let X, Y,X1, X2, Y1, Y2 ∈
X(M). Then we have

(i) If X1|U = X2|U then
(
∇X1Y

)∣∣
U
=
(
∇X2Y

)∣∣
U
, and

(ii) If Y1|U = Y2|U then
(
∇XY1

)∣∣
U
=
(
∇XY2

)∣∣
U
.

Proof.

(i) By remark 1.3.2(i): X 7→ ∇XY is a tensor field hence we even have that X1|p = X2|p
at any point p ∈M implies (∇X1Y )|p = (∇X2Y )|p.

(ii) It suffices to show that Y |U = 0 implies (∇XY )|U = 0. So let p ∈ U and χ ∈ C∞(M)
with supp(χ) ⊆ U and χ ≡ 1 on a neighbourhood of p. By (∇3) we then have

0 = (∇X χY︸︷︷︸
=0

)|p = X(χ)|p︸ ︷︷ ︸
=0

Yp + χ(p)︸︷︷︸
=1

(∇XY )|p and so (∇XY )|U = 0. (1.3.14)

2
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1.3.7 Remark. Lemma 1.3.6 allows us to restrict ∇ to X(U)× X(U): Let X, Y ∈ X(U)
and V ⊆ V̄ ⊆ U (cf. [12, 1.3.12]) and extend X, Y by vector fields X̃, Ỹ ∈ X(M) such
that X̃|V = X|V and Ỹ |V = Y |V . (This can be easily done using a partition of unity
subordinate to the cover U,M \ V̄ , cf. [12, 1.3.14].) Now we may set (∇XY )|V := (∇X̃ Ỹ )|V
since by 1.3.6 this definition is independent of the choice of the extensions X̃, Ỹ . Moreover
we may write U as the union of such V ’s and so ∇XY is a well-defined element of X(U).

In particular, this allows us to insert the local basis vector fields ∂i into ∇, which will be
extensively used in the following.

1.3.8 Definition (Christoffel symbols). Let (φ = (x1, . . . , xn), U) be a chart of the
SRMF M . The Christoffel symbols (of the second kind) with respect to φ are the C∞-
functions Γi

jk : U → R defined by

∇∂i∂j =: Γk
ij∂k (1 ≤ i, j ≤ n). (1.3.15)

Since [∂i, ∂j] = 0, property (∇4) immediately gives the symmetry of the Christoffel symbols
in the lower pair of indices, i.e., Γk

ij = Γk
ji. Observe that Γ is not a tensor and so the

Christoffel symbols do not exhibit the usual transformation behaviour of a tensor field
under the change of charts. The next statement, in particular, shows how to calculate the
Christoffel symbols from the metric.

1.3.9 Proposition (Christoffel symbols explicitly). Let (φ = (x1, . . . , xn), U) be a
chart of the SRMF (M, g) and let Z = Zi∂i ∈ X(U). Then we have

(i) Γk
ij =: gkmΓmij =

1

2
gkm

(
∂gjm
∂xi

+
∂gim
∂xj

− ∂gij
∂xm

)
,

(ii) ∇∂i(Z
j∂j) =

(
∂Zk

∂xi
+ Γk

ijZ
j

)
∂k.

The C∞(U)-functions Γkij are sometimes called the Christoffel symbols of the first kind.

Proof.

(i) Set X = ∂i, Y = ∂j and Z = ∂m in the Koszul formula (1.3.10). Since all Lie-brackets
vanish we obtain

2⟨∇∂i∂j, ∂m⟩ = ∂igjm + ∂jgim − ∂mgij, (1.3.16)

which upon multiplying with gkm gives the result.

(ii) follows immediately from (∇3) and 1.3.6. 2
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1.3.10 Lemma (The connection of flat space). For X, Y ∈ X(Rn
r ) with Y =

(Y 1, . . . , Y n) = Y i∂i let

∇XY = X(Y i)∂i. (1.3.17)

Then ∇ is the Levi-Civita connection on Rn
r and in natural coordinates (i.e., using id as a

global chart) we have

(i) gij = δijεj (with εj = −1 for 1 ≤ j ≤ r and εj = +1 for r < j ≤ n),

(ii) Γi
jk = 0 for all 1 ≤ i, j, k ≤ n.

Proof. Recall that in the terminology of [10, Sec. 3.2] we have ∇XY = DXY = p 7→
DY (p)Xp which coincides with (1.3.17). The validity of (∇1)–(∇5) has been checked in
[10, 3.2.4,5] and hence ∇ is the Levi-Civita connection. Moreover we have

(i) gij = ⟨∂i, ∂j⟩ = ⟨ei, ej⟩ = εiδij, and

(ii) Γi
jk = 0 by (i) and 1.3.9(i). 2

Next we consider vector fields with vanishing covariant derivatives.

1.3.11 Definition (Parallel vector field). A vector field X on a SRMF M is called
parallel if ∇YX = 0 for all Y ∈ X(M).

1.3.12 Example. The coordinate vector fields in Rn
r are parallel: Let Y = Y j∂j then

by 1.3.10(ii) ∇Y ∂i = Y j∇∂j∂i = 0. More generally on Rn
r the constant vector fields are

precisely the parallel ones, since

∇YX = 0 ∀Y ⇔ DX(p)Y (p) = 0 ∀Y ∀p ⇔ DX = 0 ⇔ X = const. (1.3.18)

In light of this example the notion of a parallel vector field generalises the notion of a
constant vector field. We now present an explicit example.

1.3.13 Example (Cylindrical coordinates on R3). Let (r, φ, z) be cylindrical coor-
dinates on R3, i.e., (x, y, z) = (r cosφ, r sinφ, z), see figure 1.4. This clearly is a chart on
R3 \ {x ≥ 0, y = 0}. Its inverse (r, φ, z) 7→ (r cosφ, r sinφ, z) is a parametrisation, hence
we have (cf. [12, below 2.1.11] or directly [12, 2.1.15])
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∂r = cosφ∂x + sinφ∂y,

∂φ = rX with X = − sinφ∂x + cosφ∂y,

∂z = ∂z.

Setting y1 = r, y2 = φ, y3 = z we obtain

g11 = ⟨∂r, ∂r⟩ = 1,

g22 = ⟨∂φ, ∂φ⟩ = r2(cos2 φ+ sin2 φ) = r2,

g33 = ⟨∂z, ∂z⟩ = 1,

gij = 0 for all i ̸= j.
x

y

z

φ
r

(r, φ, z)

r̂

φ̂

ẑ

Figure 1.4: Cylindrical coordinates

So we have

(gij) =

1 0 0
0 r2 0
0 0 1

 , (gij) =

1 0 0
0 1

r2
0

0 0 1

 (1.3.19)

and hence

g = gijdy
i ⊗ dyj = dr ⊗ dr + r2dφ⊗ dφ+ dz ⊗ dz =: dr2 + r2dφ2 + dz2.

By (1.3.19) {∂r, ∂φ, ∂z} is orthogonal and hence (r, φ, z) is an orthogonal coordinate system.
For the Christoffel symbols we find (by 1.3.9(i))

Γ1
22 =

1

2
g1lΓl22 =

1

2
g11Γ122 =

1

2
1 (g12,2︸︷︷︸

=0

+ g21,2︸︷︷︸
=0

−g22,1) =
−1

2
2r = −r,

Γ2
12 = Γ2

21 =
1

2
g2lΓl21 =

1

2
g22Γ221 =

1

2

1

r2
(g22,1 + g12,2︸︷︷︸

=0

− g21,2︸︷︷︸
=0

) =
1

2r2
2r =

1

r
,

and all other Γi
jk = 0. Hence we have ∇∂i∂j = 0 for all i, j with the exception of

∇∂φ∂φ = −r∂r , and ∇∂φ∂r = ∇∂r∂φ =
1

r
∂φ = X .

By figure 1.4 we see that ∂r and ∂φ are parallel if one moves in the z-direction. We hence
expect that ∇∂z∂φ = 0 = ∇∂z∂r which also results from our calculations. Moreover ∂z is
parallel since it is a coordinate vector field in the natural basis of R3, cf. 1.3.12.

Our next aim is to extend the covariant derivative to tensor fields of general rank. We
will start with a slight detour introducing the notion of a tensor derivation and its basic
properties and then use this machinery to extend the covariant derivative to the space
T r
s (M) of tensor fields of rank (r, s).
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Interlude: Tensor derivations

In this brief interlude we introduce some basic operations on tensor fields which will be
essential in the following. We recall (for more information on tensor fields see e.g. [12,
Sec. 4.1]) that a tensor field A ∈ T r

s (M) = Γ(M,T r
s (M)) is a (smooth) section of the

(r, s)-tensor bundle T r
s (M) of M . That is to say that for any point p ∈ M , the value of

the tensor field A(p) is a multilinear map

A(p) : TpM
∗ × · · · × TpM

∗︸ ︷︷ ︸
r times

×TpM × · · · × TpM︸ ︷︷ ︸
s times

→ R. (1.3.20)

Locally in a chart (ψ = (x1, . . . , xn), V ) we have

A|V = Ai1...ir
j1...js

∂i1 ⊗ · · · ⊗ ∂ir ⊗ dxj1 ⊗ · · · ⊗ dxjs , (1.3.21)

where the coefficient functions are given for q ∈ V by

Ai1...ir
j1...js

(q) = A(q)(dxi1 |q, . . . , dxir |q, ∂j1|q, . . . , ∂js|q). (1.3.22)

The space T r
s (M) of sections can be identified with the space

Lr+s
C∞(M)(Ω

1(M)× · · · × Ω1(M)︸ ︷︷ ︸
r-times

×X(M)× · · · × X(M)︸ ︷︷ ︸
s-times

, C∞(M)) (1.3.23)

of C∞(M)-multilinear maps from one-forms and vector fields to smooth functions. Recall
also the special cases T 0

0 (M) = C∞(M), T 1
0 (M) = X(M), and T 0

1 (M) = Ω1(M).

Additionally we will also frequently deal with the following situation, which generalises the
one of 1.3.2(i): If A : X(M)s → X(M) is a C∞(M)-multilinear mapping then we define

Ā : Ω1(M)× X(M)s → C∞(M)

Ā(ω,X1, . . . , Xs) := ω(A(X1, . . . , Xs)). (1.3.24)

Clearly Ā is C∞(M)-multilinear and hence a (1, s)-tensor field and we will frequently and
tacitly identify Ā and A.

We start by introducing a basic operation on tensor fields that shrinks their rank from
(r, s) to (r − 1, s− 1). The general definition is based on the following special case.

1.3.14 Lemma ((1, 1)-contraction). There is a unique C∞(M)-linear map C : T 1
1 (M) →

C∞(M) called the (1, 1)-contraction such that2

C(X ⊗ ω) = ω(X) for all X ∈ X(M) and ω ∈ Ω1(M). (1.3.25)

2This operation is closely related to the Kronecker Delta tensor δ from [12, 4.1.20]. Indeed, modulo
a flip of the arguments, C is precisely the C∞(M)-linear map on T 1

1 (M) = X(M) ⊗C∞(M) Ω
1(M) that

corresponds to δ by the universal property of the tensor product.
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Proof. Since C is to be C∞(M)-linear it is a pointwise operation, cf. [12, 4.1.19] and we
start by giving a local definition. For the natural basis fields of a chart (φ = (x1, . . . , xn), V )
we necessarily have C(∂j ⊗ dxi) = dxi(∂j) = δij and so for T 1

1 (M) ∋ A =
∑
Ai

j∂i ⊗ dxj we
are forced to define

C(A) =
∑
i

Ai
i =

∑
i

A(dxi, ∂i). (1.3.26)

It remains to show that the definition is independent of the chosen chart. Let (ψ =
(y1, . . . , yn), V ) be another chart, then we have using [12, 2.1.15, 4.3.27(i)] as well as the
summation convention

A

(
dym,

∂

∂ym

)
= A

(
∂ym

∂xi
dxi,

∂xj

∂ym
∂

∂xj

)
=
∂ym

∂xi
∂xj

∂ym︸ ︷︷ ︸
δji

A

(
dxi,

∂

∂xj

)
= A

(
dxi,

∂

∂xi

)
.

2

To define the contraction for general rank tensors let A ∈ T r
s (M), fix 1 ≤ i ≤ r, 1 ≤ j ≤ s

and let ω1, . . . , ωr−1 ∈ Ω1(M) and X1, . . . , Xs−1 ∈ X(M). Then the map

Ω(M)× X(M) ∋ (ω,X) 7→ A(ω1, . . . , ω
i
, . . . , ωr−1, X1, . . . , X

j
, . . . , Xs−1) (1.3.27)

is a (1, 1)-tensor. We now apply the (1, 1)-contraction C of 1.3.14 to (1.3.27) to obtain a
C∞(M)-function denoted by

(Ci
jA)(ω

1, . . . , ωr−1, X1, . . . , Xs−1). (1.3.28)

Obviously Ci
jA is C∞(M)-linear in all its slots, hence it is a tensor field in T r−1

s−1 (M), which
we call the (i, j)-contraction of A. We illustrate this concept by the following examples.

1.3.15 Examples (Contraction).

(i) Let A ∈ T 2
3 (M) then C1

3A ∈ T 1
2 (M) is given by

C1
3A(ω,X, Y ) = C

(
A(. , ω,X, Y, .)

)
, (1.3.29)

which locally takes the form

(C1
3A)

k
ij = (C1

3(A)(dx
k, ∂i, ∂j) = C

(
A(. , dxk, ∂i, ∂j, .)

)
= A(dxm, dxk, ∂i, ∂j, ∂m) = Amk

ijm,

where of course we again have applied the summation convention.

(ii) More generally the components of Ck
l A of A ∈ T r

s (M) in local coordinates take the

form Ai1...
k
m...ir

j1...m
l
...js
.
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Now we may define the notion of a tensor derivation announced above as map on tensor
fields that satisfies a product rule and commutes with contractions.

1.3.16 Definition (Tensor derivation). A tensor derivation D on a smooth manifold
M is a family of R-linear maps

D = Dr
s : T r

s (M) → T r
s (M) (r, s ≥ 0) (1.3.30)

such that for any pair A, B of tensor fields we have

(i) D(A⊗B) = DA⊗B + A⊗DB

(ii) D(CA) = C(DA)) for any contraction C.

The product rule in the special case f ∈ C∞(M) = T 0
0 (M) and A ∈ T r

s (M) takes the form

D(f ⊗ A) = D(fA) = (Df)A+ fDA. (1.3.31)

Moreover for r = 0 = s the tensor derivation D0
0 is a derivation on C∞(M) (cf. [12, 2.2.14])

and so by [12, 2.2.15] there exists a unique vector field X ∈ X(M) such that

Df = X(f) for all f ∈ C∞(M). (1.3.32)

Despite the fact that tensor derivations are not C∞(M)-linear and hence not defined point-
wise3 (cf. [12, 4.1.19]) they are local operators in the following sense.

1.3.17 Proposition (Tensor derivations are local). Let D be a tensor derivation on
M and let U ⊆ M be open. Then there exists a unique tensor derivation DU on U , called
the restriction of D to U statisfying

DU(A|U) = (DA)|U (1.3.33)

for all tensor fields A on M .4

Proof. Let B ∈ T r
s (U) and p ∈ U . Choose a cut-off function χ ∈ C∞

0 (U) with χ ≡ 1 in a
neighbourhood of p. Then χB ∈ T r

s (M) and we define

(DUB)(p) := D(χB)(p). (1.3.34)

We have to check that this definition is valid and leads to the asserted properties.

3Recall from analysis that taking a derivative of a function is not a pointwise operation: It depends on
the values of the function in a neighbourhood.

4This shows that what is called a tensor derivation here corresponds to the notion of a differential
operator on the full tensor algebra T (M) in [12, 4.2.2]. We use the above terminology to conform with
[15].
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(1) The definition is independent of χ: choose another cut-off function χ̃ at p and set
f = χ− χ̃. Then choosing a function φ ∈ C∞

0 (U) with φ ≡ 1 on supp(f) we obtain

D(fB)(p) = D(fφB)(p) = D(f)|p(φB)(p) + f(p)︸︷︷︸
=0

D(φB)(p) = 0, (1.3.35)

since we have with a vector field X as in (1.3.32) that Df(p) = X(f)(p) = 0 by the
fact that f ≡ 0 near the point p.

(2) DUB ∈ T r
s (U) since for all V ⊆ U open we have DUB|V = D(χB)|V by definition if

χ ≡ 1 on V . Now observe that χB ∈ T r
s (M).

(3) Clearly DU is a tensor derivation on U since D is a tensor derivation on M .

(4) DU has the restriction property (1.3.33) since if B ∈ T r
s (M) we find for all p ∈

U that DU(B|U)(p) = D(χB|U)(p) = D(χB)(p) and D(χB)(p) = D(B)(p) since
D((1− χ)B)(p) = 0 by the same argument as used in (1.3.35).

(5) Finally DU is uniquely determined: Let D̃U be another tensor derivation that satisfies
(1.3.33), then for B ∈ T r

s (U) we again have D̃U((1− χ)B)(p) = 0 and so by (4)

D̃U(B)(p) = D̃U(χB)(p) = D(χB)(p) = DU(B)(p)

for all p ∈ U . 2

We next state and prove a product rule for tensor derivations.

1.3.18 Proposition (Product rule). Let D be a tensor derivation on M . Then we have
for A ∈ T r

s (M), ω1, . . . , ωr ∈ Ω(M), and X1, . . . , Xs ∈ X(M)

D
(
A(ω1, . . . , ωr, X1, . . . , Xs)

)
=(DA)(ω1, . . . , ωr, X1, . . . , Xs)

+
r∑

i=1

A(ω1, . . . ,Dωi, . . . , ωr, X1, . . . , Xs) (1.3.36)

+
s∑

j=1

A(ω1, . . . , ωr, X1, . . . ,DXj, . . . , Xs).

Proof. 5 We only show the case r = 1 = s since the general case follows in complete
analogy. We have A(ω,X) = C̄(A ⊗ ω ⊗ X) where C̄ is a composition of two contrac-
tions. Indeed in local coordinates A ⊗ ω ⊗ X has components Ai

jωkX
l and A(ω,X) =

A(ωidx
i, Xj∂j) = ωiX

jA(dxi, ∂j) = Ai
jωiX

j and the claim follows from 1.3.15(ii).

5cf. also [12, 4.2.5]
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By 1.3.16(i)–(ii) we hence have

D
(
A(ω,X)

)
= D

(
C̄(A⊗ ω ⊗X)

)
= C̄D(A⊗ ω ⊗X)

= C̄(DA⊗ ω ⊗X) + C̄(A⊗Dω ⊗X) + C̄(A⊗ ω ⊗DX) (1.3.37)

= DA(ω,X) + A(Dω,X) + A(ω,DX).

2

The product rule (1.3.36) can obviously be solved for the term involving DA, resulting in
a formula for the tensor derivation of a general tensor field A in terms of D only acting on
functions, vector fields, and one-forms. Moreover for a one form ω we have by (1.3.36)

(Dω)(X) = D(ω(X))− ω(DX) (1.3.38)

and so the action of a tensor derivation is determined by its action on functions and vector
fields alone, a fact which we state as follows.

1.3.19 Corollary (Tensor derivations are determined by D0
0 & D1

0). If two tensor
derivations D1 and D2 agree on functions (C∞(M)) and on vector fields (X(M)) then they
agree on all tensor fields, i.e., D1 = D2.

More importantly a tensor derivation can be constructed from its action on just functions
and vector fields in the following sense.

1.3.20 Theorem (Constructing tensor derivations). Given a vector field V ∈ X(M)
and an R-linear mapping δ : X(M) → X(M) obeying the product rule

δ(fX) = V (f)X + fδ(X) for all f ∈ C∞(M), X ∈ X(M), (1.3.39)

then there exists a unique tensor derivation D on M such that D0
0 = V : C∞(M) → C∞(M)

and D1
0 = δ : X(M) → X(M).

Proof. Uniqueness is a consequence of 1.3.19 and we are left with constructing D using
the product rule.
To begin with, by (1.3.38) we necessarily have for any one-form ω

(Dω)(X) ≡ (D0
1ω)(X) = V (ω(X))− ω(δ(X)), (1.3.40)

which obviously is R-linear. Moreover, Dω is C∞(M)-linear hence a one-form since

Dω(fX) = V (ω(fX))− ω(δ(fX)) = V (fω(X))− ω(V (f)X)− ω(fδ(X))

= fV (ω(X)) +������
V (f)ω(X)−������

V (f)ω(X)− fω(δ(X)) (1.3.41)

= f
(
V (ω(X)))− ω(δ(X))

)
= fDω(X).
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Similarly for higher ranks r + s ≥ 2 we have to define Dr
s by the product rule (1.3.36):

Again it is easy to see that Dr
s is R-linear and that Dr

sA is C∞(M)-multilinear hence in
T r
s (M).

We now have to verify (i), (ii) of Definition 1.3.16. We only show D(A⊗B) = DA⊗B +
B ⊗DA in case A,B ∈ T 1

1 (M), the general case being completely analogous:(
D(A⊗B)

)
(ω1, ω2, X1, X2) =V

(
A(ω1, X1) ·B(ω2, X2)

)
−
(
A(Dω1, X1)B(ω2, X2) + A(ω1, X1)B(Dω2, X2)

)
−
(
A(ω1,DX1)B(ω2, X2) + A(ω1, X1)B(ω2,DX2)

)
=
(
V
(
A(ω1, X1)

)
− A(Dω1, X1)− A(ω1,DX1)

)
B(ω2, X2)

+ A(ω1, X1)
(
V
(
B(ω2, X2)

)
−B(Dω2, X2)−B(ω2,DX2)

)
=
(
DA⊗B + A⊗DB

)
(ω1, ω2, X1, X2).

Finally, we show thatD commutes with contractions. We start by considering C : T 1
1 (M) →

C∞(M). Let A = ω ⊗X ∈ T 1
1 (M), then we have by (1.3.40)

D(C(X ⊗ ω)) = D(ω(X)) = V (ω(X)) = ω(δ(X)) +D(ω)(X), (1.3.42)

which agrees with

C(D(X ⊗ ω)) = C(DX ⊗ ω +X ⊗Dω) = ω(DX) + (Dω)(X). (1.3.43)

Obviously the same holds true for (finite) sums of terms of the form ωi ⊗Xi. Since D is
local (Proposition 1.3.17) and C is even pointwise it suffices to prove the statement in local
coordinates. But there each (1, 1)-tensor is a sum as mentioned above.
The extension to the general case is now straightforward. We only explicitly check it for
A ∈ T 1

2 (M):(
D0

1(C1
2A)
)
(X) = D0

0

(
(C1

2A)(X)
)
− (C1

2A)(D1
0X) = D0

0

(
C(A(. , X, .))

)
− C

(
A(. ,DX, .)

)
= C

(
D1

1

(
A(. , X, .)

)
− A(. ,DX, .)

)
= C

(
(ω, Y ) 7→ D

(
A(ω,X, Y )

)
− A(Dω,X, Y )− A(ω,X,DY )− A(ω,DX, Y )

)
= C

(
(ω, Y ) 7→ (DA)(ω,X, Y )

)
=
(
C1
2(DA)

)
(X).

2

As a first important example of a tensor derivation we discuss the Lie derivative.6

1.3.21 Example (Lie derivative on T r
s ). Let X ∈ X(M). Then we define the tensor

derivative LX , called the Lie derivative with respect to X by setting

LX(f) = X(f) for all f ∈ C∞(M), and

LX(Y ) = [X, Y ] for all vector fields Y ∈ X(M).

6For an equivalent approach confer also [12, 4.2.4].
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Indeed this definition generalises the Lie derivative or Lie bracket of vector fields to general
tensors in T r

s (M) since by Theorem 1.3.20 we only have to check that δ(Y ) = LX(Y ) =
[X, Y ] satisfies the product rule (1.3.39). But this follows immediately form the corre-
sponding property of the Lie bracket, see [12, 2.2.17(iv)].

Finally we return to the Levi-Civita covariant derivative on a SRMF (M, g), cf. 1.3.4. We
want to extend it from vector fields to arbitrary tensor fields using Theorem 1.3.20. A brief
glance at the assumptions of the latter theorem reveals that the defining properties (∇2)
and (∇3) are all we need. So the following definition is valid.

1.3.22 Definition (Covariant derivative for tensors). Let M be a SRMF and X ∈
X(M). The (Levi-Civita) covariant derivative ∇X is the uniquely determined tensor deriva-
tion on M such that

(i) ∇Xf = X(f) for all f ∈ C∞(M), and

(ii) ∇XY is the Levi-Civita covariant derivative of Y w.r.t. X as given by 1.3.4.

The covariant derivative w.r.t. a vector field X is a generalisation of the directional deriva-
tive. Similar to the case of multi-dimensional calculus in Rn we may collect all such
directional derivatives into one differential. To do so we need to take one more technical
step.

1.3.23 Lemma. Let A ∈ T r
s (M), then the mapping

X(M) ∋ X 7→ ∇XA ∈ T r
s (M)

is C∞(M)-linear.

Proof. We have to show that for X1, X2 ∈ X(M) and f ∈ C∞(M) we have

∇X1+fX2A = ∇X1A+ f∇X2A for all A ∈ T r
s (M). (1.3.44)

However, by 1.3.20 we only have to show this for A ∈ T 0
0 (M) = C∞(M) and A ∈ T 1

0 (M) =
X(M). But for A ∈ C∞(M) equation (1.3.44) holds by definition and for A ∈ X(M) this
is just property (∇1). 2

1.3.24 Definition (Covariant differential). For A ∈ T r
s (M) we define the covariant

differential ∇A ∈ T r
s+1(M) of A as

∇A(ω1, . . . , ωr, X1, . . . , Xs, X) := (∇XA)(ω
1, . . . , ωr, X1, . . . , Xs) (1.3.45)

for all ω1, . . . , ωr ∈ Ω1(M) and X1, . . . , Xs ∈ X(M).
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1.3.25 Remark (On the covariant differential).

(i) In case r = 0 = s the covariant differential is just the exterior derivative since for
f ∈ C∞(M) and X ∈ X(M) we have

(∇f)(X) = ∇Xf = X(f) = df(X). (1.3.46)

(ii) ∇A is a ‘collection’ of all the covariant derivatives ∇XA into one object. The fact
that the covariant rank is raised by one, i.e., that ∇A ∈ T r

s+1(M) for A ∈ T r
s (M) is

the source of the name covariant derivative/differential.

(iii) In complete analogy with vector fields (cf. Definition 1.3.11) we call A ∈ T r
s (M)

parallel if ∇XA = 0 for all X ∈ X(M), which we can now simply write as ∇A = 0.

(iv) The metric condition (∇5) just says that g itself is parallel since by the product rule
1.3.18 we have for all X, Y , Z ∈ X(M)

(∇Zg)(X, Y ) = ∇Z(g(X, Y ))− g(∇ZX, Y )− g(X,∇ZY ) = 0 (1.3.47)

where the last equality is due to (∇5).

(v) If in a local chart the tensor field A ∈ T r
s (M) has components Ai1...ir

j1...js
the components

of its covariant differential ∇A ∈ T r
s+1(M) are denoted by Ai1...ir

j1...js;k
and take the form

Ai1...ir
j1...js;k

=
∂Ai1...ir

j1...js

∂xk
+

r∑
l=1

Γil
kmA

i1...m...ir
j1.........js

−
s∑

l=1

Γm
kjl
Ai1.........ir

j1...m...js
. (1.3.48)

(To verify this, use that, by definition, Ai1...ir
j1...js;k

= (∇∂kA)(dx
i1 , . . . , ∂js) and apply

(1.3.15), (1.3.36) and (1.3.38) to D = ∇∂k .)

Our next topic is the notion of a covariant derivative of vector fields which are not defined
on all of M but just, say, on (the image of) a curve. Of course then we can only expect to
be able to define a derivative of the vector field in the direction of the curve. Intuitively
such a notion corresponds to the rate of change of the vector field as we go along the curve.
We begin by making precise the notion of such vector fields but do not restrict ourselves
to the case of curves.

1.3.26 Definition (Vector field along a mapping). Let N,M be smooth manifolds
and let f ∈ C∞(N,M). A vector field along f is a smooth mapping

Z : N → TM such that π ◦ Z = f, (1.3.49)

where π : TM → M is the vector bundle projection. We denote the C∞(N)-module of all
vector fields along f by X(f).
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The definition hence says that Z(p) ∈ Tf(p)M for all points p ∈ N . In the special case of
N = I ⊆ R a real interval and f = c : I →M a C∞-curve we call X(c) the space of vector
fields along the curve c. In particular, in this case t 7→ ċ(t) ≡ c′(t) is an element of X(c).
More precisely we have (cf. [12, below (2.3.1)]) c′(t) = Ttc(1) = Ttc(

∂
∂t
|t) ∈ Tc(t)M . Also

recall for later use that for any f ∈ C∞(M) we have c′(t)(f) = Ttc(
d
dt
|t)(f) = d

dt
|t(f ◦ c)

and consequently in coordinates φ = (x1, . . . , xn) the local expression of the velocity vector
takes the form c′(t) = c′(t)(xi)∂i|c(t) = d

dt
|t(xi ◦ c)∂i|c(t). (For more details see e.g. [15, 1.17

and below].)
In case M is a SRMF we may use the Levi-Civita covariant derivative to define the deriva-
tive Z ′ of Z ∈ X(c) along the curve c.

1.3.27 Proposition (Induced covariant derivative). Let c : I → M be a smooth
curve into the SRMF M . Then there exists a unique mapping X(c) → X(c)

Z 7→ Z ′ ≡ ∇Z
dt

(1.3.50)

called the induced covariant derivative such that

(i) (Z1 + λZ2)
′ = Z ′

1 + λZ ′
2 (λ ∈ R),

(ii) (hZ)′ =
dh

dt
Z + hZ ′ (h ∈ C∞(I,R)),

(iii) (X ◦ c)′(t) = ∇c′(t)X (t ∈ I, X ∈ X(M)).

In addition we have

(iv) d
dt
⟨Z1, Z2⟩ = ⟨Z ′

1, Z2⟩+ ⟨Z1, Z
′
2⟩.

Observe that in 1.3.27(iii) we have X ◦ c ∈ X(c) and since by 1.3.2(i) we have ∇c′(t)X ∈
Tc(t)M also the right hand side makes sense.

Proof. (Local) uniqueness: Let Z 7→ Z ′ be a mapping as above that satisfies (i)–(iii) and

let (φ = (x1, . . . , xn), U) be a chart and let c : I → U be a smooth curve. For Z ∈ X(c) we
then have

Z(t) =
∑
i

Z(t)(xi)∂i|c(t) =:
∑
i

Zi(t)∂i|c(t) ≡ Zi(t)∂i|c(t). (1.3.51)

By (i)–(iii) we then obtain

Z ′(t) =
dZi

dt
∂i|c(t) + Zi(t)(∂i ◦ c)′ =

dZi

dt
∂i|c(t) + Zi(t)∇c′(t)∂i. (1.3.52)

So Z ′ is completely determined by the Levi-Civita connection ∇ and hence unique.
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Existence: For any J ⊆ I such that c(J) is contained in a chart domain U we define the
mapping Z 7→ Z ′ by equation (1.3.52). Then properties (i)–(iii) hold. Indeed (i) is obvious.
Property (ii) follows from the following straight forward calculation

(hZ)′(t) =
d(hZi)

dt
∂i|c(t) + h(t)Zi(t)∇c′(t)∂i = h(t)Z ′(t) +

dh

dt
Zi(t)∂i|c(t).

Finally to prove (iii) let X ∈ X(M), X|U = X i∂i. Then (as explained prior to the
proposition) d

dt
(X i ◦ c) = c′(t)(X i) and so by (∇3)

∇c′(t)X = ∇c′(t)(X
i∂i) = c′(t)(X i)∂i|c(t) +X i(c(t))∇c′(t)∂i

=
d(X i ◦ c)

dt
∂i|c(t) +X i ◦ c(t)∇c′(t)∂i = (X ◦ c)′(t). (1.3.53)

Now suppose J1, J2 are two subintervals of I with corresponding maps Fi : Z 7→ Z ′. Then
on J1 ∩ J2 both Fi satisfy properties (i)–(iii) hence coincide by the uniqueness argument
from above and we obtain a well-defined map on the whole of I.

Finally we obtain (iv) since we have using the chart (φ,U)

⟨Z ′
1, Z2⟩+ ⟨Z1, Z

′
2⟩ =

dZi
1

dt
Zj

2⟨∂i, ∂j⟩+ Zi
1Z

j
2⟨∇c′∂i, ∂j⟩+ Zi

1

dZj
2

dt
⟨∂i, ∂j⟩+ Zi

1Z
j
2⟨∂i,∇c′∂j⟩,

and on the other hand

d

dt
⟨Z1, Z2⟩ =

d

dt

(
Zi

1Z
j
2⟨∂i, ∂j⟩

)
=
dZi

1

dt
Zj

2⟨∂i, ∂j⟩+ Zi
1

dZj
2

dt
⟨∂i, ∂j⟩+ Zi

1Z
j
2

d

dt
⟨∂i, ∂j⟩.

The result now follows from from differentiating ⟨∂i, ∂j⟩ (actually ⟨∂i, ∂j⟩ ◦ c):

d

dt
⟨∂i, ∂j⟩ = c′(t)⟨∂i, ∂j⟩ = ⟨∇c′∂i, ∂j⟩+ ⟨∂i,∇c′∂j⟩,

where we have used (∇5). 2

We now write Z ′ in terms of the Christoffel symbols. In a chart (φ = (x1, . . . xn), V ) we
have

∇c′(t)∂i = ∇ d(xj◦c)
dt

∂j
∂i =

d(xj ◦ c)
dt

∇∂j∂i =
d(xj ◦ c)

dt
Γk

ij∂k (1.3.54)

and hence by 1.3.27(ii),(iii) (see (1.3.52))

Z ′(t) =

(
dZk

dt
(t) + Γk

ij(c(t))
d(xj ◦ c)

dt
(t)Zi(t)

)
∂k|c(t). (1.3.55)

In the special case that Z = c′ we call Z ′ = c′′ the acceleration of c. Also we call a vector
field Z ∈ X(c) parallel if Z ′ = 0. The above formula (1.3.55) shows that this condition
actually is expressed by a system of linear ODEs of first order implying the following result.
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1.3.28 Proposition (Parallel vector fields). Let c : I → M be a smooth curve into
a SRMF M . Let a ∈ I and z ∈ Tc(a)M . Then there exists an unique parallel vector field
Z ∈ X(c) with Z(a) = z.

Proof. As noted above locally Z obeys (1.3.55), which is a system of linear first order
ODEs. Given an initial condition such an equation possesses a unique solution defined on
the whole interval where the coefficient functions are given. Hence the claim follows from
covering c(I) by chart neighbourhoods. 2

This result gives rise to the following notion.

1.3.29 Definition (Parallel transport). Let c : I → M be a smooth curve into a
SRMF M . Let a, b ∈ I and write c(a) = p and c(b) = q. For z ∈ TpM let Zz be as in
1.3.28 with Zz(a) = z. Then we call the mapping

P = P b
a(c) : TpM ∋ z 7→ Zz(b) ∈ TqM (1.3.56)

the parallel transport (or parallel translation) along c from p to q.

Finally we have the following crucial property of parallel translation.

1.3.30 Proposition. Parallel transport is a linear isometry.

Proof. Let z, y ∈ TpM with parallel vector fields Zz, Zy. Since then also Zz + Zy and
λZz (for λ ∈ R) are parallel we have P (z + y) = Zz(b) + Zy(b) = P (z) + P (y) and
P (λz) = λZz(b) = λP (z) so that P is linear.
Let P (z) = 0, then by uniqueness Zz = 0 hence also z = 0. So P is injective, hence
bijective.
Finally ⟨Zz, Zy⟩ is constant along c since

d

dt
⟨Zz, Zy⟩ = ⟨Z ′

z, Zy⟩+ ⟨Zz, Z
′
y⟩ = 0 (1.3.57)

and so

⟨P (z), P (y)⟩ = ⟨Zz(b), Zy(b)⟩ = ⟨Zz(a), Zy(a)⟩ = ⟨z, y⟩. (1.3.58)

2



Chapter 2

Geodesics

In Euclidean space the shortest path between two arbitrary points is uniquely given by
the straight line connecting these two points. That is, straight lines have two decisive
properties: they are parallel, i.e., their velocity vector is parallely transported and they
globally minimise length. Already in spherical geometry matters become more involved.
The curves which possess a parallel velocity vector are the great circles, e.g. the meridians.
Intuitively they are the ‘straightest possible’ lines on the sphere in the sense that their
curvature equals the curvature of the sphere and so is the smallest possible. Also they
minimise length, but only locally. Indeed a great circle starting in a point p is initially
minimising but stops to be minimising after it passes through the antipodal point −p.
Also between antipodal points (e.g. the north and the south pole) there are infinitely many
great circles which all have the same length.

In this section we study geodesics on SRMFs, that is curves with parallel velocity vector
and their basic properties. We introduce the exponential map, a main tool of SR geometry,
which maps straight lines through the origin in the tangent space TpM to so-called radial
geodesics of the manifold through p. It is in turn used to define normal neighbourhoods
of a point, which have the property that any other point can be reached by a unique
radial geodesic. Also the exponential map allows us to introduce normal coordinates, that
is charts which are well adapted to the geometry of the manifold. We prove the Gauss
lemma, which states that the exponential map is a radial isometry, i.e., it preserves angles
with radial directions. We introduce the length functional and then turn to the Riemannian
case. We define the Riemannian distance d between two points as the infimum of the length
of all curves connecting these two points; it defines a metric in the topological sense on M .
Now the Gauss lemma can be seen to say that small distance spheres centered at a point
are perpendicular to radial geodesics and that radial geodesics minimise length. We prove
the Hopf-Rinow theorem which says that the Riemannian distance function encodes the
topological and also the metric structure of the manifold. As a consequence, in a complete
Riemannian manifold every pair of points can be joined by a minimising geodesic. We
finally highlight the differences to the Lorentzian case which indeed is much more involved.

32
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2.1 Geodesics and the exponential map

In this subsection we generalise the notion of a straight line in Euclidean space. As in [10,
Sec. 3.3] we define a geodesic to be a curve c such that its tangent vector c′ is parallel along
c. Equivalently we have for the acceleration c′′ = 0. Locally this condition translates into
a system of nonlinear ODEs of second order. More precisely we have:

2.1.1 Proposition (Geodesic equation). Let (φ = (x1, . . . , xn), U) be a chart of the
SRMF M and let c : I → U be a smooth curve. Then c is a geodesic iff the local coordinate
expressions xk ◦ c of c obey the geodesic equation,

d2(xk ◦ c)
dt2

+ Γk
ij ◦ c

d(xi ◦ c)
dt

d(xj ◦ c)
dt

= 0 (1 ≤ k ≤ n). (2.1.1)

Proof. The curve c is a geodesic iff (c′)′ = 0. We have c′(t) = d(xk◦c)
dt

∂k|c(t) and inserting
d(xk◦c)

dt
for Zk in (1.3.55) we obtain (2.1.1). 2

It is most common to abbreviate the local expressions xk ◦ c of c by ck. Using this notation
the geodesic equation (2.1.1) takes the form

d2ck

dt2
+ Γk

ij

dci

dt

dcj

dt
= 0 or even shorter c̈k + Γk

ij ċ
iċj = 0 (1 ≤ k ≤ n). (2.1.2)

Obviously the geodesic equation is a system of nonlinear ODEs of second order and so
by basic ODE-theory we obtain the following result on local existence and uniqueness of
geodesics.

2.1.2 Lemma (Existence of geodesics). Let p ∈ (M, g) and let v ∈ TpM . Then there
exists an open interval I around 0 and a unique geodesic c : I → M with c(0) = p and
c′(0) = v.

We call c as in 2.1.2 (irrespective of the interval I) the geodesic starting at p with initial
velocity v.

2.1.3 Examples (Geodesics of flat space). The geodesic equations in Rn
r are trivial,

i.e., they take the form d2ck

dt2
= 0 since all Christoffel symbols Γk

ij vanish. Hence the geodesics
are the straight lines c(t) = p+ tv.

2.1.4 Examples (Geodesic on the cylinder). Let M ⊆ R3 be the cylinder of radius
1 and ψ the chart (cosφ, sinφ, z) 7→ (φ, z) (φ ∈ (0, 2π)). The natural basis of TpM with
(p = (cosφ, sinφ, z)) w.r.t. ψ is then given by (cf. the discussion after [12, 2.1.11])

∂φ =

− sinφ
cosφ
0

 , ∂z =

0
0
1

 . (2.1.3)
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Also we have g11 = ⟨∂φ, ∂φ⟩ = 1, g12 = g21 = ⟨∂φ, ∂z⟩ = 0, g22 = ⟨∂z, ∂z⟩ = 1 and so

(gij) =

(
1 0
0 1

)
and (gij) =

(
1 0
0 1

)
, (2.1.4)

which immediately implies that Γi
jk = 0 for all i, j, k. Hence the geodesic equations for

a curve c(t) = (cosφ(t), sinφ(t), z(t)) using the notation c1(t) = x1 ◦ c(t) = φ(t), c2(t) =
x2 ◦ c(t) = z(t) take the form

φ̈(t) = 0, z̈(t) = 0, (2.1.5)

which are readily solved to obtain φ(t) = a1t+ a0, z(t) = b1t+ b0. So we find

c(t) =
(
cos(a1t+ a0), sin(a1t+ a0), b1t+ b0

)
(2.1.6)

revealing that the geodesics of the cylinder are helices with initial point and speed given
by the ai, bi, see figure 2.1, left. This also includes the extreme cases of circles of latitude
z = c (b1 = 0, b0 = c) and generators (a1 = 0). Another way to see that these are the

Figure 2.1: Geodesics on the cylinder

geodesics of the cylinder is by ‘unwrapping’ the cylinder to the plane, see Figure 2.1, right.
This of course amounts to applying the chart ψ, which in this case is an isometry since
gij = δij. Now the geodesics of R2 are straight lines which via ψ−1 are wrapped as helices
onto the cylinder.

We now return to the general study of geodesics. Being solutions of a nonlinear ODE,
geodesics will in general not be defined for all values of their parameter. However, ODE
theory provides us with unique maximal(ly extended) solutions. To begin with we have:

2.1.5 Lemma (Uniqueness of geodesics). Let c1, c2 : I → M geodesics. If there is
a ∈ I such that c1(a) = c2(a) and ċ1(a) = ċ2(a) then we already have c1 = c2.
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Proof. Suppose under the hypothesis of the lemma there is t0 ∈ I such that c1(t0) ̸= c2(t0).
Without loss of generality we may assume t0 > a and set b = inf{t ∈ I : t > a and c1(t) ̸=
c2(t)}. We now argue that c1(b) = c2(b) and ċ1(b) = ċ2(b). Indeed if b = a this follows by
assumption. Also in case b > a we have that c1 = c2 on (a, b) and the claim follows by
continuity.
Now since also t 7→ ci(b + t) are geodesics (i = 1, 2) Lemma 2.1.2 implies that c1 and c2
agree on a neighbourhood of b, which contradicts the definition of b. 2

2.1.6 Proposition (Maximal geodesics). Let v ∈ TpM . Then there exists a unique
geodesic cv : I →M such that

(i) cv(0) = p and c′v(0) = v

(ii) the domain of cv is maximal, that is if c : J →M , 0 ∈ J is any geodesic with c(0) = p
and c′(0) = v then J ⊆ I and cv|J = c.

Proof. Let G := {c : Ic → M a geodesic: 0 ∈ Ic, c(0) = p, c′(0) = v}, then by 2.1.2
G ̸= ∅ and by 2.1.5 we have for any pair c1, c2 ∈ G that c1|Ic1∩Ic2 = c2|Ic1∩Ic2 . So the
geodesics in G define a unique geodesic satisfying the assertions of the statement. 2

2.1.7 Definition (Completeness). We call a geodesic cv as in 2.1.6 maximal. If in
a SRMF M all maximal geodesics are defined on the whole of R we call M geodesically
complete.

2.1.8 Examples (Complete manifolds).

(i) Rn
r is geodesically complete, as is the cylinder of 2.1.4.

(ii) Rn
r \{0} is not geodesically complete since all geodesics of the form t 7→ tv are defined

either on R+ or R− only.

We next turn to the study of the causal character of geodesics. We begin with the following
definition.

2.1.9 Definition (Causal character of curves). A curve c into a SRMF M is called
spacelike, timelike or null if for all t its velocity vector c′(t) is spacelike, timelike or null,
respectively. We call c causal if it is timelike or null. These properties of c are commonly
referred to as its causal character.

In general a curve need not to have a causal character, i.e., its velocity vector could change
its causal character along the curve. However, geodesics do have a causal character: Indeed
if c is a geodesic then by definition c′ is parallel along c. But parallel transport by 1.3.28 is
an isometry so that ⟨c′(t), c′(t)⟩ = ⟨c′(t0), c′(t0)⟩ for all t. This fact can also be seen directly
by the following simple calculation

d

dt
⟨c′(t), c′(t)⟩ = 2⟨c′′(t), c′(t)⟩ = 0. (2.1.7)
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Moreover we also clearly have that the speed of a geodesic is constant, i.e., ∥c′(t)∥ = ∥c′(t0)∥
for all t. The following technical result is significant.

2.1.10 Lemma (Geodesic parametrisation). Let c : I → M be a nonconstant
geodesic. A reparametrisation c ◦ h : J → M of c is a geodesic iff h is of the form
h(t) = at+ b with a, b ∈ R.

Proof. To begin with note that (c◦h)′(t) = c′(h(t))h′(t) since (c◦h)′(t) = Tt(c◦h)( d
dt
|t) =

Th(t)c(Tth(
d
dt
|t)) = Th(t)c(h

′(t) d
dt
|h(t))) = h′(t)Th(t)c(

d
dt
|h(t)) = h′(t)c′(h(t)).

Now, if Z ∈ X(c) then Z ◦h ∈ X(c◦h) and from (1.3.55) we have (Z ◦h)′(t) = Z ′(h(t))h′(t).
Applying this to Z = c′, we obtain with 1.3.27(ii)

(c ◦ h)′′(t) =
(
c′(h(t))h′(t)

)′
= h′′(t)c′(h(t)) + h′(t)2 c′′(h(t))︸ ︷︷ ︸

=0

. (2.1.8)

Now since c is nonconstant we have c′(t) ̸= 0 and we obtain

c ◦ h is a geodesic ⇔ (c ◦ h)′′ = 0 ⇔ h′′ = 0 ⇔ h(t) = at+ b. 2

This result shows that the parametrisation of a geodesic has a geometric meaning. More
generally a curve that has a reparametrisation as a geodesic is called a pregeodesic.

Next we turn to a deeper analysis of the geodesic equation as a system of second order
ODEs. The first result is concerned with the dependence of a geodesic on its initial speed
and is basically a consequence of smooth dependence of solutions of ODEs on the data.

2.1.11 Lemma (Dependence on the initial speed). Let v ∈ TpM , then there exists
a neighbourhood N of v in TM and an interval I around 0 such that the mapping

N × I ∋ (w, s) 7→ cw(s) ∈M (2.1.9)

is smooth.

Proof. cw is the solution of the second order ODE (2.1.1), which depends smoothly on s
as well as on cw(0) =: p and c′w(0) = w. This follows from ODE theory e.g. by rewriting
(2.1.1) as a first order system as in [12, 2.3.2]. 2

Our next aim is to make the rewriting of the geodesic equations as a first order system
explicit. To this end let (ψ = (x1, . . . xn), V ) be a chart. Then Tψ : TV → ψ(V ) × Rn,
Tψ = (x1, . . . , xn, y1, . . . , yn) is a chart of TM . Now c : I → V is a geodesic iff t 7→
(c1(t), . . . , cn(t), y1(t), . . . , yn(t)) solves the following first order system

dck

dt
= yk(t)

dyk

dt
= −Γk

ij(c(t)) y
i(t) yj(t) (1 ≤ k ≤ n). (2.1.10)
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Locally (2.1.10) is an ODE on TM since its right hand side is a vector field on TV , i.e., an
element of X(TV ). The geodesics hence correspond to the flow lines of such a vector field.
More precisely we have:

2.1.12 Theorem (Geodesic flow). There exists a uniquely defined vector field G ∈
X(TM), the so-called geodesic field or geodesic spray with the following property: The pro-
jection π : TM → M establishes a one-to-one correspondence between (maximal) integral
curves of G and (maximal) geodesics of M .

Proof. Given v ∈ TM the mapping s 7→ c′v(s) is a smooth curve in TM . Let Gv := G(v)
be the initial speed of this curve, i.e., Gv :=

d
ds
|0(c′v(s)) ∈ Tv(TM) (since c′v(0) = v). Then

by 2.1.11 G ∈ X(TM). We now prove the following two statements:

(i) If c is a geodesic of M then c′ is an integral curve of G.
Indeed let α(s) := c′(s) and for any fixed t set w := c′(t) and β(s) := c′w(s). By 2.1.5
we have c(t + s) = cw(s) (since cw(0) = c(t) and c′w(0) = w = c′(t)). Differentiation
w.r.t. s yields α(s+ t) = c′w(s) = β(s). So we have in T (TM) that α′(t+ s) = β′(s).
In particular, α′(t) = β′(0) = Gw = Gα(t) and hence α is an integral curve of G.

(ii) If α is an integral curve of G then π ◦ α is a geodesic of M .
Let α : I → TM and t ∈ I. Since α(t) ∈ TM we have by (i) that the map s 7→ c′α(t)(s)

an integral curve of G. For s = 0 both integral curves c′α(t)(s) and s 7→ α(s+ t) attain

the value α(t). Hence by [12, 2.3.3] they coincide on their entire domain. So we
obtain for all s that

α(s+ t) = c′α(t)(s) ⇒ π(α(s+ t)) = cα(t)(s) ⇒ π ◦ α is a geodesic of M.

Finally we have π ◦ c′ = c and (π ◦ α)′(t) = d
ds
|0π(α(t+ s)) = d

ds
|0cα(t)(s) = c′α(t)(0) = α(t)

and so the maps c 7→ c′ and α 7→ π ◦ α are inverse to each other. Also G is unique since
its integral curves are prescribed. 2

The flow of the vector field G in the above Theorem is called the geodesic flow of M .
Next we will introduce the exponential map, which is one of the essential tools of semi-
Riemannian geometry.

2.1.13 Definition (Exponential map). Let p be a point in the SRMF M and set
Dp := {v ∈ TpM : cv is defined at least on [0, 1]}. The exponential map of M at p is
defined as

expp : Dp →M, expp(v) := cv(1). (2.1.11)

Observe that Dp is the maximal domain of expp. In case M is geodesically complete we
have Dp = TpM for all p.
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M

p

TpM

expp
0

v

w

u

expp(v)

expp(w)

expp(u)

Ũ

U

Figure 2.2: expp maps straight lines through 0 ∈ TpM to geodesics through p.

Let now v ∈ TpM and fix t ∈ R. The geodesic s 7→ cv(ts) (cf. 2.1.10) has initial speed
tc′v(0) = tv and so we have

ctv(s) = cv(ts) (2.1.12)

for all t, s for which one and hence both sides of (2.1.12) are defined. This implies for the
exponential map that

expp(tv) = ctv(1) = cv(t), (2.1.13)

which has the following immediate geometric interpretation: the exponential map expp

maps straight lines t 7→ tv through the origin in TpM to geodesics cv(t) through p in M ,
see Figure 2.2. This is actually done in a diffeomorphic way.

2.1.14 Theorem (Exponential map). Let p be a point in a SRMF M . Then there
exist neighbourhoods Ũ of 0 in TpM and U of p in M such that the exponential map
expp : Ũ → U is a diffeomorphism.

Proof. The plan of the proof is to first show that expp is smooth on a suitable neighbour-
hood of 0 ∈ TpM and then to apply the inverse function theorem.
To begin with we recall that by 2.1.11 the mapping (w, s) 7→ cw(s) is smooth on N × I,
where N is an open neighbourhood of 0p in TM and I is an interval around 0 which we
assume w.l.o.g. to be I = (−a, a). Now set Np := { v

a′
: v ∈ N ∩ TpM}, where a′ is a fixed

number with a′ > 1/a. By (2.1.12) the map (w, s) 7→ cw(s) is then defined on Np × J
where J ⊇ [0, 1]. Indeed for w = v/a′ ∈ Np we have cw(s) = cv/a′(s) = cv(s/a

′) with
s/a′ ∈ I = (−a, a) and so s ∈ a′I ⊇ [0, 1]. So in total expp : Np →M is smooth.
We next show that T0(expp) : T0(TpM) → TpM is a linear isomorphism. To this end let
v ∈ T0(TpM), which we may identify with TpM (cf. [12, 2.1.10]). Set ρ(t) = tv. Then
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v = ρ′(0) = T0ρ(
d
dt
|0) and so

T0(expp)(v) = T0(expp)(ρ
′(0)) = T0(expp ◦ρ)(

d

dt
|0) = T0(cv)(

d

dt
|0) = c′v(0) = v. (2.1.14)

Hence T0 expp = idTpM and the claim now follows from the inverse function theorem, see
e.g. [12, 1.1.1]. 2

A subset S of a vector space is called star shaped (around 0) if v ∈ S and t ∈ [0, 1] implies
that tv ∈ S.

S
v

tv

Figure 2.3: A star-shaped subset of a vector space.

If U and Ũ are as in 2.1.14 and Ũ is star shaped then we call U a normal neighbourhood of
p. Using 2.1.14, we see that normal neighbourhoods exist around each point by restricting
expp to a small star-shaped open neighborhood of 0 ∈ TpM . In this case U is star shaped
in the following sense.

2.1.15 Proposition (Radial geodesics). Let U be a normal neighbourhood of p. Then
for each q ∈ U there exists a unique geodesic σ : [0, 1] → U from p to q, called the radial
geodesic from p to q. Moreover we have σ′(0) = exp−1

p (q) ∈ Ũ .

Proof. By assumption Ũ ⊆ TpM is star shaped and expp : Ũ → U is a diffeomorphism.

Let q ∈ U and set v := exp−1
p (q) ∈ Ũ . Since Ũ is star shaped we have that ρ(t) = tv ∈ Ũ

for t ∈ [0, 1]. Hence σ = expp ◦ρ, which by (2.1.13) is a geodesic and connects p with q, is
contained in U . Moreover we have by (2.1.14)

σ′(0) = T0(expp)(ρ
′(0)) = T0 expp(v) = v = exp−1

p (q). (2.1.15)

Let now τ : [0, 1] → U be an arbitrary geodesic in U connecting p with q. Set w := τ ′(0).
Then the geodesics τ and t 7→ expp(tw) both have the same velocity vector at p hence
coincide by 2.1.5.
We show that w ∈ Ũ . Suppose to the contrary that w ̸∈ Ũ and set t̃ := sup{t ∈ [0, 1] :
tw ∈ Ũ}. Then t̃w ∈ ∂Ũ . Now τ([0, 1]) ⊆ U is compact and so is (expp |Ũ)−1(τ([0, 1]))
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0
tv

TpM

Ũ

p

expp

q

expp(tv)

U

Figure 2.4: A radial geodesic.

in Ũ , so it has a positive distance to ∂Ũ and hence to t̃w. Now by the definition of the
supremum there is t0 < t̃ arbitrarily close to t̃ such that Ũ ∋ t0w ̸∈ (expp |Ũ)−1(τ([0, 1])).
But then expp(t0w) ̸∈ τ([0, 1]), which contradicts the fact that τ = t 7→ expp(tw). Thus

we must have w ∈ Ũ , as claimed.1.
Finally we have expp(w) = τ(1) = q = expp(v) and by injectivity of the exponential map
v = w. But this implies that σ = τ . 2

Before going on, let us introduce some notions on curves. If I = [a, b] is a closed interval
we call a continuous curve α : I → M piecewise smooth if there is a finite partition
a = t0 < t1 < · · · < tk = b of the interval [a, b] such that all the restrictions α|[ti,ti+1] are
smooth. Thus at each of the so-called break points2 ti the curve may well have two distinct
velocity vectors α′(t−i ) and α

′(t+i ), representing the left- resp. right-sided derivative at ti.
If I is an arbitrary interval we call α : I → M piecewise smooth if for all a < b in I
the restriction α|[a,b] is piecewise smooth (in the previous sense). In particular, the break
points have no cluster point in I.

By a broken geodesic we mean a piecewise smooth curve whose smooth parts are geodesics.
In Rn

r these are just the polygons. We now can prove the following criterion for connect-
edness.

2.1.16 Lemma (Connectedness via broken geodesics). A SRMF is connected iff
every pair of points may be joined by a broken geodesic.

Proof. The condition is obviously sufficient. Let now M be connected and choose p ∈M .
Set C := {q ∈ M : q can be connected to p by a broken geodesic}. Let now q ∈ M and

1Observe that this argument even shows that the entire segment {tw|t ∈ [0, 1]} lies in Ũ . Just replace
w by some w̃ = sw for s ∈ [0, 1]. This fact will be used in 2.2.7, below.

2We follow the widespread custom to call both the ti as well as the α(ti) breakpoints.
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U be a normal neighbourhood of q. If q ∈ C then by 2.1.15 U ⊆ C hence C is open. Also
if q ̸∈ C then U ⊆M \ C and so C is also closed. Hence C =M . 2

Normal neighbourhoods are particularly useful in constructing special coordinate systems,
called Riemannian normal coordinates (RNC), which are of great importance for explicit
calculations. Let p ∈ M with U = expp(Ũ) a normal neighbourhood of p and let B =
{e1, . . . , en} be an orthonormal basis of TpM . The Riemannian normal coordinate system
(φ = (x1, . . . , xn), U) around p defined by B assigns to any point q ∈ U the coordinates of
exp−1

p (q) ∈ Ũ ⊆ TpM w.r.t. B, i.e.,

exp−1
p (q) = xi(q)ei. (2.1.16)

If B′ = {f 1, . . . , fn} is the dual basis of B then we have

xi ◦ expp = f i on Ũ . (2.1.17)

Indeed set q = expp(w) in (2.1.16), then w = xi(expp(w))ei.
The most important properties of RNCs around p are that in these coordinates the metric
at p is precisely the flat metric and also at p all Christoffel symbols vanish. It is essential
to point out that these properties only hold at the point in which the coordinates are
centered and in general fail already arbitrarily near to p. However, tensor fields are defined
pointwise and so in many situations it is very beneficial to check certain tensorial identities
in (the center point of) RNCs. More precisely we have:

2.1.17 Proposition (Normal coordinates). Let x1, . . . , xn be RNC around p. Then
we have for all i, j, k

(i) gij(p) = δijεj, and

(ii) Γi
jk(p) = 0.

Proof. We first note that by the defintion of φ, ∂i|p = ei (see [12, p. 25]). Thus gij =
⟨∂i, ∂j⟩ = ⟨ei, ej⟩ = δijεj, giving (i).
Next, let v ∈ Ũ ⊆ TpM , v = aiei. By (2.1.13), (2.1.17) we have

xi(cv(t)) = xi(expp(tv)) = f i(tv) = tai (2.1.18)

Therefore the geodesic equation for cv reduces to Γk
ij(cv(t))a

iaj = 0 for all k. Inserting
t = 0 we have Γk

ij(p)a
jai = 0 for all a = (a1, . . . an) ∈ Rn. So for fixed k the quadratic

form a 7→ Γk
ij(p)a

iaj vanishes and by polarisation we find (a, b) 7→ Γk
ij(p)a

ibj = 0 and so
Γk

ij(p) = 0, hence (ii) holds. 2

2.1.18 Examples (Exponential map of Rn
r ). Let v ∈ Tp(Rn

r ), then the geodesic cv
starting at p is just t 7→ p + tv. Hence we have expp : v 7→ cv(1) = p + v. This is a global
diffeomorphism and even an isometry.
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Our next goal is to prove an essential result that goes by the name of Gauss lemma and
states that the exponential map is a ‘radial isometry’. This means that the orthogonality
to radial directions is preserved. We first need some preparations.

2.1.19 Definition (Two-parameter mappings). Let D ⊆ R2 be open and such that
vertical and horizontal straight lines intersect D in intervals. A two-parameter mapping
on D is a smooth map f : D →M .

Figure 2.5: Sets D that (fail to) have the property of 2.1.19

For examples of sets that obey, respectively lack, the above property see Figure 2.5. Two-
parameter maps are also often called singular surfaces since there is no condition on the
rank of f .
Denoting the coordinates in R2 by (t, s), a two-parameter map f defines two families
of smooth curves, the t-parameter curves s = s0 : t 7→ f(t, s0) and the s-parameter
curves t = t0 : s 7→ f(t0, s). By definition all such curves are defined on intervals. The
corresponding partial derivatives

ft(t, s) := T(t,s)f(∂t) and fs(t, s) := T(t,s)f(∂s) (2.1.19)

are then vector fields along f in the sense of Definition 1.3.26. Observe that ft(t0, s0) is
the velocity of the t-parameter curve s = s0 at t0 and analogously for fs(t0, s0).
If the image of f is contained in a chart ((x1, . . . , xn), V ) ofM then we denote the coordinate
functions xi ◦ f of f by f i (1 ≤ i ≤ n). We then have f i = xi ◦ f : D → R and by [12,
2.1.14]

ft =
∂f i

∂t
∂i and fs =

∂f i

∂s
∂i. (2.1.20)

Now letM be a SRMF and Z ∈ X(f). Then t 7→ Z(t, s0) and s 7→ Z(t0, s) are vector fields
along the t- and s-parameter curves t 7→ f(t, s0) and s 7→ f(t0, s), respectively. We denote
the corresponding induced covariant derivatives by

Zt =
∇Z
∂t

= ∇∂tZ and Zs =
∇Z
∂s

= ∇∂sZ, (2.1.21)

respectively. By (1.3.55) we have

∇∂tZ(t, s) = Zt(t, s) =

(
∂Zk

∂t
(t, s) + Γk

ij(f(t, s))Z
i(t, s)

∂f j

∂t
(t, s)

)
∂k (2.1.22)

and analogously for Zs. In particular, for Z = ft we call Zt = ftt the acceleration of the
t-parameter curve and analogously for fss. We now note the following essential fact.
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2.1.20 Lemma (Mixed second derivatives of 2-parameter maps commute). Let
M be a SRMF and f : D → M be a 2-parameter map. Then we have ∇∂t(fs) = ∇∂s(ft)
or, for short, fts = fst.

Proof. By (2.1.22) we have

fts =

(
∂2fk

∂t ∂s
+ Γk

ij ◦ f
∂f i

∂t

∂f j

∂s

)
∂k, (2.1.23)

which by the symmetry of the Christoffel symbols is symmetric in s and t. 2

As a final preparation we consider x ∈ TpM . Since TpM is a finite dimensional vector
space we may identify Tx(TpM) with TpM itself, cf. [12, 2.1.10]. Hence, if vx ∈ Tx(TpM)
we will view vx also as an element of TpM . We call vx radial if is a multiple of x.

x

vx

V

Figure 2.6: vx is a radial vector at x ∈ V .

Now we finally may state and prove the following result.

2.1.21 Theorem (Gauss lemma). Let M be a SRMF and let p ∈ M , 0 ̸= x ∈ Dp ⊆
TpM . Then for any vx, wx ∈ Tx(TpM) with vx radial we have

⟨(Tx expp)(vx), (Tx expp)(wx)⟩ = ⟨vx, wx⟩. (2.1.24)

Proof. Since vx is radial and (2.1.24) is linear in vx we may suppose w.l.o.g. that vx = x
and to simplify notations we choose to denote this vector by v. Also we write w instead of
wx. Let now

f(t, s) := expp(t(v + sw)). (2.1.25)

The mapping (t, s) 7→ t(v + sw) is continuous and maps [0, 1] × {0} into the set Dp, the
domain of expp in TpM . By 2.2.3 below, Dp is open and so there are ε, δ > 0 such that f
is defined on the rectangle D := {(t, s) : −δ < t < 1 + δ, −ε < s < ε} (see figure 2.7) and
so f is a 2-parameter mapping.
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0

−δv − ε(δw)

−δv

−δv + ε(δw)

(1 + δ)v

(1 + δ)(v + εw)

(1 + δ)(v − εw)

Figure 2.7: The shape of h(D) with h(t, s) = t(v + sw).

We now have ft(1, 0) = Tv expp(v) and fs(1, 0) = Tv expp(w) and so we have to show that
⟨ft(1, 0), fs(1, 0)⟩ = ⟨v, w⟩.
The curves t 7→ f(t, s) are geodesics with initial speed v + sw. Hence ftt = 0 and so
⟨ft, ft⟩ = const = ⟨v + sw, v + sw⟩, since ft(0, s) = T0 expp(v + sw) = v + sw by (2.1.14).
Moreover by 2.1.20 fst = fts and so we have

∂

∂t
⟨fs, ft⟩ = ⟨fst, ft⟩+ ⟨fs, ftt︸︷︷︸

=0

⟩ = ⟨fts, ft⟩

=
1

2

∂

∂s
⟨ft, ft⟩ =

1

2

∂

∂s
⟨v + sw, v + sw⟩ = ⟨v, w⟩+ s⟨w,w⟩ (2.1.26)

which implies ( ∂
∂t

⟨fs, ft⟩
)
(t, 0) = ⟨v, w⟩ for all t. (2.1.27)

Now f(0, s) = expp(0) = p for all s and so fs(0, 0) = 0, which gives ⟨fs, ft⟩(0, 0) = 0.
Now integrating (2.1.27) yields ⟨fs, ft⟩(t, 0) = t⟨v, w⟩. Finally setting t = 1 we obtain
⟨ft(1, 0), fs(1, 0)⟩ = ⟨v, w⟩. 2
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2.2 Geodesic convexity

Geodesically convex neighbourhoods, which sometimes are also called totally normal (or
convex normal), are normal neighbourhoods of all of their points. In this section we are
going to prove existence of such sets around each point in a SRMF. The arguments will
rest on global properties of the exponential map. To formulate these we need to introduce
product manifolds as a preparation (see [12, Sec. 3.1]). We skip the obvious proof of the
following lemma.

2.2.1 Definition & Lemma (Product manifold). Let Mm and Nn be smooth mani-
folds of dimension m and n respectively. Let (p, q) ∈M ×N and let (φ = (x1, . . . , xm), U)
and (ψ = (y1, . . . , yn), V ) be charts of M around p and of N around q, respectively. Then
we call (φ× ψ,U × V ) a product chart of M ×N around (p, q). The family of all product
charts defines a C∞-structure on M × N and we call the resulting smooth manifold the
product manifold of M with N . The dimension of M ×N is m+ n.

2.2.2 Remark (Properties of product manifolds). Let Mm and Nn be C∞-
manifolds.

(i) The natural manifold topology of M ×N is precisely the product topology of M and
N since the φ× ψ are homeomorphisms by definition.

(ii) The projections pr1 :M×N →M , pr1(p, q) = p and pr2 :M×N → N , pr2(p, q) = q
are smooth since φ◦pr1◦(φ×ψ)−1 = pr1 : φ(U)×ψ(V ) → φ(U) and similarly for pr2.
From this local representation we even have that pr1, pr2 are surjective submersions.
By [12, Cor. 3.3.23] it follows that for (p, q) ∈M ×N the sets M × {q} = pr−1

2 ({q})
and {p} ×N = pr−1

1 ({p}) are closed submanifolds of M ×N of dimension m and n,
respectively. Moreover the bijection pr1|M×{q} : M × {q} → M is a diffeomorphism
by [12, Thm. 3.3.5] and analogously for pr2|{p}×N .

(iii) A mapping f : P → M × N from a smooth manifold P into the product is smooth
iff pr1 ◦ f and pr2 ◦ f are smooth ([12, 3.1.1]).

(iv) By (ii) we may identify T(p,q)(M × {q}) with TpM and likewise for T(p,q)({p} × N)
and TqN . Using this identification, by [12, 3.1.2] we have

T(p,q)(M ×N) = TpM ⊕ TqN ∼= TpM × TqN. (2.2.1)

(v) If (M, gM) and (N, gN) are SRMFs then M ×N is again a SRMF with metric

g : = pr∗1(gM) + pr∗2(gN), i.e., cf. [12, 4.3.24], (2.2.2)

g(p,q)(v, w) = gM(p)
(
T(p,q)pr1(v), T(p,q)pr1(w)

)
+ gN(q)

(
T(p,q)pr2(v), T(p,q)pr2(w)

)
.
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Indeed g is obviously symmetric and it is nondegenerate: Suppose that g(v, w) = 0
for all w ∈ T(p,q)(M ×N). Then choosing w ∈ T(p,q)(M × {q}) ∼= TpM we obtain by
T(p,q)pr2(w) = 0 that

gM(p)
(
T(p,q)pr1(v), T(p,q)pr1(w)︸ ︷︷ ︸

(∗)

)
= 0. (2.2.3)

Now since T(p,q)pr1 is surjective the term (∗) attains all values in TpM , hence by
nondegeneracy of gM , T(p,q)pr1(v) = 0 and analogously T(p,q)pr2(v) = 0. Since v =
vM + vN where vM ∈ TpM and vN ∈ TqN we finally obtain v = 0.

The SRMF (M ×N, g) is called the semi-Riemannian product of M with N .

Now we are in a position to collect together the maps expp : TpM ⊇ Dp → M (p ∈ M) to
a single mapping. To begin with we assume M to be complete, i.e., we assume that expp

is defined on all of TpM for all p ∈ M . Let π : TM → M the projection and define the
mapping

E : TM →M ×M, E(v) = (π(v), expπ(v) v), (2.2.4)

that is for v ∈ TpM ⊆ TM we have E(v) = (p, expp(v)). In case M is not complete the
maximal domain of E is given by

D := {v ∈ TM : cv exists at least on [0, 1]}. (2.2.5)

Now for each p we have that the maximal domain Dp of expp is Dp = D ∩ TpM . Observe
that D also is the maximal domain of

exp := pr2 ◦ E : vp 7→ expp(vp) = cvp(1). (2.2.6)

We now have the following result, which we have already used in the proof of the Gauss
lemma 2.1.21.

2.2.3 Proposition (The domain of exp). The domain D of E is open in TM and the
domain Dp of expp is open and star shaped around 0 in TpM .

Proof. Let G ∈ X(TM) be the geodesic spray as in 2.1.12. Then as proven there the flow
lines of G are the derivatives of geodesics, i.e., FlGt (v) = c′v(t). The maximal domain D̃ of
FlG is open in R× TM by [12, 2.3.3(iii)].
Clearly D̃ also is the maximal domain of π◦FlG : (t, v) 7→ cv(t). Now let Φ : TM → R×TM ,
Φ(v) = (1, v). Then Φ is smooth and we have D = {v ∈ TM : cv exists at least on [0, 1]} =
{v ∈ TM : ∀t ∈ [0, 1] : (t, v) ∈ D̃} =3 {v ∈ TM : (1, v) ∈ D̃} = Φ−1(D̃), hence D is open
in TM . Consequently also Dp = D ∩ TpM is open in TpM .
Finally, let v ∈ Dp. Then cv is defined on [0, 1] and by (2.1.12) we have ctv(s) = cv(ts)
(s ∈ [0, 1]). So also tv ∈ Dp for all t ∈ [0, 1], implying that Dp is star shaped. 2

We now introduce sets that generalise the notion of convex subsets of Euclidean space.

3By [12, 2.3.3(iii)], if (t0, v) ∈ D̃ for any t0 > 0 then automatically also all (t, v) with t ∈ [0, t0] lie in D̃.
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2.2.4 Definition (Convex sets). An open subset C ⊆M of a SRMF is called (geodesi-
cally) convex if C is a normal neighbourhood of all of its points.

By 2.1.15 for any pair p, q of points in a convex set C there hence exists a unique geodesic
called cpq : [0, 1] → M which connects p to q and stays entirely in C. Observe that there
also might be other geodesics in M that connect p and q. They, however, have to leave C,
as is depicted in the case of the sphere in Figure 2.8.

p q

C

Figure 2.8: The unique geodesic connecting p and q within the convex set C is the shorter
great circle arc between p and q.

To study further properties of the mapping E we need some more preparations.

2.2.5 Definition (Diagonal, null section). LetM be a smooth manifold. The diagonal
△M ⊆ M ×M is defined by △M := {(p, p) : p ∈ M}. The zero section TM0 of TM is
defined as TM0 := {0p : p ∈M}.

Observe that in a chart (φ,U) around p we have that the map f : U×U ∋ (p, p′) 7→ φ(p)−
φ(p′) is a submersion and we locally have that △M = f−1(0) and so △M is a submanifold
of M ×M , cf. [12, 3.3.22]. Moreover the mapping p 7→ (p, p) is a diffeomorphism from
M to △M . Finally by [12, 2.2.7, 2.2.8] the zero section is precisely the base of the vector
bundle TM →M and so it is also diffeomorphic to M . We now have:

2.2.6 Theorem (Properties of E). The mapping E is a diffeomorphism from a
neighbourhood of the zero section TM0 of TM to a neighbourhood of the diagonal △M ⊆
M ×M .

Proof. We first show that every x ∈ TM0 possesses a neighbourhood where E is a
diffeomorphism. To begin with observe that we have E(x) = (π(x), expp(0)) = (p, p). We
aim at applying the inverse function theorem (see e.g. [12, 1.1.1]) and so we have to show
that TxE : Tx(TM) → TE(x)(M ×M) is bijective. But since dimTM = dim(M ×M) =
2 dimM it suffices to establishes injectivity at every point x ∈ TM0. So let x = 0p ∈ TM0

and suppose TxE(v) = 0 for v ∈ Tx(TM). We have to show that v = 0.
Denoting by π : TM →M the bundle projection and by pr1 :M ×M →M the projection
onto the first factor we have π = pr1 ◦ E. So Txπ(v) = TE(x)pr1(TxE(v)) = 0, hence
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M ∼= TM0

TM

U

E = (π, exp)

M

M

△M

V

Figure 2.9: The E-map.

v ∈ Tx(TpM) since ker(Txπ) = Tx(TpM) (cf. [12, 3.3.26]). Now E|TpM = expp (identifying
{p} ×M with M) and so by (2.1.14)

0 = TxE(v) = Tx(E|TpM)(v) = T0p expp(v) = v (2.2.7)

as claimed.

In a second step we show that E is a diffeomorphism on a suitable domain. Let x = 0p ∈
TM0 and let h be a Riemannian metric on M (cf. Theorem 2.4.4 below). Now set, for U
in a basis U of neighbourhoods of p

WU,ε := {w ∈ TM | π(w) ∈ U, ∥w∥h < ε}.

Then {WU,ε | U ∈ U , ε > 0} is a neighbourhood basis of x in TM . Indeed, since this
is a local claim we may suppose that TM = V × Rn, x = (p, 0). Let U0 be a compact
neighbourhood of p in V and denote by ∥ . ∥e the Euclidean norm on Rn. Define α, β as
the minimum resp. maximum of hq(w,w) over all q ∈ U0 and all w with ∥w∥e = 1. Then

α∥w∥e ≤ ∥w∥hq ≤ β∥w∥e

for all q ∈ U0 and all w ∈ Rn. If W is any neighbourhood of x = (p, 0) then there exists a
neighbourhood U ⊆ U0 of p and an ε > 0 such that the open set

{(q, w) | q ∈ U, ∥w∥e < ε}

is contained in W . But then so is WU,α·ε.
Now cover TM0 by such neighbourhoods WUi,εi such that E|WUi,εi

is a diffeomorphism for
all i. Then W =

⋃
iWUi,εi is a neighbourhood as claimed. Indeed E is a local diffeomor-

phism on W and we only have to show that it is also injective. To this end let w1, w2 ∈ W ,
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wi ∈ WUi,εi (i = 1, 2) with E(w1) = E(w2). Then π(w1) = π(w2) =: p ∈ U1 ∩ U2 and
supposing w.l.o.g. that ε1 ≤ ε2 we have w1, w2 ∈ WU2,ε2 . But then w1 = w2 by the fact
that E|WU2,ε2

is a diffeomorphism. 2

Now we are ready to state and prove the main result of this section.

2.2.7 Theorem (Existence of convex sets). Every point p in a SRMF M possesses a
basis of neighbourhoods consisting of convex sets.

Proof. Let V be a normal neighbourhood of p with Riemannian normal coordinates
ψ = (x1, . . . , xn) and define on V the function N(q) =

∑
i(x

i(q))2. Then the sets V (δ) :=
{q ∈ V : N(q) < δ} are diffeomorphic via ψ to the open balls B√

δ(0) in Rn, hence they
form a basis of neighbourhoods of p in M .
By 2.2.6 choosing δ′ > 0 small enough the map E is a diffeomorphism of an open neigh-
bourhood W ′ of 0p ∈ TM onto V (δ′)× V (δ′). Choose another neighborhood W ′′ ⊆ W ′ of
0p in TM with [0, 1] ·W ′′ ⊆ W ′′ (e.g. by setting W ′′ = Tφ−1(φ(U)×B(0)) with φ a chart
of M and B(0) a suitable Euclidean ball). Since E(W ′) = V (δ′)× V (δ′), we have (setting,
as in (2.2.6), exp := pr2 ◦ E)

exp([0, 1] ·W ′′) ⊆ exp(W ′′) ⊆ exp(W ′) = V (δ′) ⊆ V.

Now pick δ ∈ (0, δ′) such that V (δ) × V (δ) ⊆ E(W ′′) and set W := E−1(V (δ) × V (δ)).
Then E : W → V (δ)× V (δ) is a diffeomorphism, V (δ) ⊆ V (δ′) ⊆ V , and

exp([0, 1] ·W ) ⊆ exp([0, 1] ·W ′′) ⊆ V. (2.2.8)

Let now B ∈ T 0
2 (V ) be the symmetric tensor field with

Bij(q) = δij −
∑
l

Γl
ij(q)x

l(q). (2.2.9)

B by 2.1.17 is positive definite at p and hence by continuity we may (by shrinking V ) assume
it to be positive definite on all of V . We now claim that V (δ) is a normal neighbourhood
of each of its points.

Let q ∈ V (δ) and set Wq = W ∩TqM , then by construction E|Wq is a diffeomorphism onto
{q} × V (δ) and so is expq |Wq onto V (δ).
It remains to show that Wq is star shaped. For q ̸= q̃ ∈ V (δ) we set v := E−1(q, q̃) =
exp−1

q (q̃) ∈ Wq. Then σ : [0, 1] →M , σ(t) = cv(t) is a geodesic joining q with q̃. Moreover,
by (2.2.8), σ(t) = expq(tv) ∈ V for all t ∈ [0, 1]. If we can show that σ lies in V (δ) then
the proof of 2.1.15 (see the footnote there) shows that tv ∈ Wq for all t ∈ [0, 1] and we are
done since any v ∈ Wq is of the form E−1(q, q̃).
Hence we assume by contradiction that σ leaves V (δ). Then there is a t ∈ (0, 1) with
N(σ(t)) ≥ δ, see Figure 2.10.
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ψ(V )

ψ({N(q′) < δ})

. . .
ψ(q)

ψ (q̃)
ψ ◦ σ(t0)

ψ ◦ σ

Figure 2.10: Situation of the proof of 2.2.7.

Since N(q), N(q̃) < δ there is t0 ∈ (0, 1) such that t 7→ (N ◦ σ)(t) attains a maximum in
t0. Then for σi = xi ◦ σ we find by the geodesic equation

d2(N ◦ σ)
dt2

= 2
∑
i

(
(
dσi

dt
)2 + σid

2(σi)

dt2
)
= 2

∑
j,k

(
δjk −

∑
i

Γi
jkσ

i
)dσj

dt

dσk

dt
(2.2.10)

and so

d2(N ◦ σ)
dt2

(t0) = 2B(σ′(t0), σ
′(t0)) > 0, (2.2.11)

since σ′ ̸= 0. But this contradicts the fact that N ◦ σ(t0) is maximal. 2

Convex neighbourhoods are of great technical significance as we can see e.g. in the following
statement.

2.2.8 Corollary (Extendability of geodesics). Let c : [0, b) →M be a geodesic. Then
c is continuously extendible (as a curve) to [0, b] iff it is extendible to [0, b] as a geodesic.

Proof. The ‘only if’ part of the assertion is clear. Let now c̃ : [0, b] →M be a continuous
extension of c. By 2.2.7, c̃(b) has a convex neighbourhood C. Let now a ∈ [0, b) be such
that c̃([a, b]) ⊆ C. Then C is also a normal neighbourhood of c(a) and c|[a,b) is a radial
geodesic by 2.1.15 and can hence be extended until it reaches ∂C or to [a,∞). But since
c̃(b) ∈ C (and hence ̸∈ ∂C) c can be extended as a geodesic beyond b. 2

Let now C be a convex set in a SRMF M and let p, q ∈ C. We denote by σpq the
unique geodesic in C such that σpq(0) = p and σpq(1) = q, cf. 2.1.15. Then we write
−→pq := σ′

pq(0) = exp−1
p (q) ∈ TpM for the displacement vector of p and q. We then have

2.2.9 Lemma (Displacement vector). Let C ⊆M be convex. Then the mapping

Φ : C × C → TM, (p, q) 7→ −→pq (2.2.12)

is smooth and a diffeomorphism onto its image Φ(C × C) in TM .
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Proof. Let (p0, q0) ∈ C × C, then Tq0 expp0 is invertible. Also, setting (in a local chart)
F ((p, q), v) := expp(v) − q, Φ(p, q) is the unique solution to the equation F ((p, q), v) = 0.
For any (p0, q0) ∈ C×C, the rank of ∂v|Φ(p0,q0)F = DΦ(p0,q0) expp0 is maximal (= dim(M)),
so Φ is smooth by the implicit function theorem (see e.g. [12, 1.1.2]).
Moreover, E(Φ(p, q)) = (p, q) and E is invertible at Φ(p, q) for all (p, q) ∈ C × C since

TΦ(p,q)E =

(
id 0
∗ TΦ(p,q) expp

)
is nonsingular. Hence locally Φ = E−1 and so Φ is a local

diffeomorphism and, in particular, Φ(C × C) is open.
Finally, Φ is injective and hence it is a diffeomorphism with inverse E|Φ(C×C). 2

In Euclidean space the intersection of convex sets is convex. This statement fails to hold
on SRMFs already in simple situations as the following counterexample shows.

2.2.10 Examples (Convex sets on S1). Let p ∈ M = S1. Then the exponential map
is a diffeomorphism from (−π, π) ⊆ TpS

1 to S1 \ {p̄}, where p̄ is the antipodal point of p,
see Figure 2.11. The sets C = S1 \ {p} and C ′ = S1 \ {p̄} are convex but their intersection
C ∩ C ′ is not even connected hence, in particular, not convex, see Figure 2.12.

p
|

p̄ |

TpM)(

−π π0 v

expp(v)

Figure 2.11: The exponential map of S1.

C = S1 \ {p} C = S1 \ {p} C ∩ C ′

Figure 2.12: Illustration of the sets C, C ′

and C ∩ C ′ from Example 2.2.10.

However, we have the following result in a special case.

2.2.11 Lemma (Intersection of convex sets). Let C1, C2 ⊆M be convex and suppose
C1 and C2 are contained in a convex set D ⊆M . Then the intersection C1 ∩C2 is convex.

Proof. Let p ∈ C1 ∩ C2. We show that C1 ∩ C2 is a normal neighbourhood of p. To
begin with, expp : D̃ → D is a diffeomorphism. Set C̃i := exp−1

p (Ci) (i = 1, 2), then

expp : C̃1 ∩ C̃2 → C1 ∩C2 is a diffeomorphism. Hence it only remains to show that C̃1 ∩ C̃2

is star shaped.

Indeed let v ∈ C̃1 ∩ C̃2 then q := expp(v) ∈ C1 ∩ C2 and so σpq(t) = expp(tv) is
the unique geodesic in D that joins p and q. By convexity of the Ci we have that
σpq(t) = expp(tv) ∈ C1 ∩ C2 for all t ∈ [0, 1] and so tv ∈ C̃1 ∩ C̃2 and we are done.

2
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The above lemma allows us to prove the existence of a convex refinement of any open cover
of a SRMF M . To be more precise we call a covering C of M by open and convex sets a
convex covering if all nontrivial intersections C ∩C ′ of sets in C are convex. Then one can
show that for any given open covering O of M there exists a convex covering C such that
any set of C is contained in some element of O, see [15, Lemma 5.10].
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2.3 Arc length and Riemannian distance

In this section we define the arc length of (piecewise smooth) curves. On Riemannian
manifolds this in turn allows us to define a notion of distance between two points p and q
as the infimum of the arc length of all curves connecting p and q. We will show that this
Riemannian distance function encodes the topology of the manifold.

2.3.1 Definition (Arc length). Let α : [a, b] → M be a piecewise smooth curve into a
SRMF M . We define the arc length (or length, for short) of α by

L(α) :=

∫ b

a

∥α′(s)∥ ds. (2.3.1)

We recall that ∥α′(s)∥ = |⟨α′(s), α′(s)⟩|1/2 and in coordinates ∥α′(s)∥ = |gij(α(s)) d(xi◦α)
ds

(s)
d(xj◦α)

ds
(s)|1/2.

On Riemannian manifolds the arc length behaves much as in the Euclidean setting, cf.
[10, Ch. 1]. However in the semi-Riemannian case with an indefinite metric there are new
effects. For example, null curves always have vanishing arc length.
A reparametrisation of a piecewise smooth curve α is a piecewise smooth function h :
[c, d] → [a, b] such that h(c) = a and h(d) = b (orientation preserving) or h(c) = b and
h(d) = a (orientation reversing). If h′(t) does not change sign then h is monotonous and
precisely as in [10, 1.1.2, 1.1.3] we have.

2.3.2 Lemma (Parametrisations). Let α : I →M be a piecewise smooth curve. Then
we have:

(i) The arc length 2.3.1 of α is invariant under monotonous reparametrisations.

(ii) If ∥α′(t)∥ > 0 for all t then α possesses a strictly monotonous reparametrisation h
such that for β := α ◦ h we have ∥β′(s)∥ = 1 for all s. Such a parametrisation is
called parametrisation by arc length.

Let now p ∈M and let U be a normal neighbourhood of p. The function

r : U → R+, r(q) := ∥ exp−1
p (q)∥ (2.3.2)

is called the radius function of M at p. In Riemannian normal coordinates we have (for k
the index of g)

r(q) = | −
k∑

i=1

(xi)2(q) +
n∑

j=k+1

(xj)2(q)|1/2. (2.3.3)

Hence r is smooth except at its zeroes, hence off p as well as off the local null cone at p.
In a normal neighbourhood the radius is given exactly by the length of radial geodesics as
we prove next.
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2.3.3 Lemma (Radius in normal neighbourhoods). Let r be the radius in a normal
neighbourhood U of a point p in a SRMF M . If σ is the radial geodesic from p to some
q ∈ U then we have

L(σ) = r(q). (2.3.4)

Proof. Let v = σ′(0) then by 2.1.15 v = exp−1
p (q). Now since σ is a geodesic, ∥σ′∥ is

constant and we have

L(σ) =

∫ 1

0

∥σ′(s)∥ ds =
∫ 1

0

∥v∥ ds = ∥v∥ = ∥ exp−1
p (q)∥ = r(q). (2.3.5)

2

From now on until the end of this chapter we will exclusively deal with Riemannian man-
ifolds. Indeed it is only in the Riemannian case that the topology of the manifold is
completely encoded in the metric.

2.3.4 Proposition (Radial geodesics are locally minimal). Let M be a Riemannian
manifold and let U be a normal neighbourhood of a point p ∈M . If q ∈ U , then the radial
geodesic σ : [0, 1] → M from p to q is the unique shortest piecewise smooth curve in U
from p to q, where uniqueness holds up to monotonous reparametrisations.

Proof. Let c : [0, 1] → U be a piecewise smooth curve from p to q and set s(t) = r(c(t)),
with r the radius function from (2.3.2). Since expp is a diffeomorphism we may for t ̸= 0
uniquely write c in the form

c(t) = expp(s(t)v(t)) =: f(s(t), t), (2.3.6)

where v is a curve in TpM with ∥v(t)∥ = 1 for all t. (This amounts to using polar
coordinates in TpM .) Here f(s, t) = expp(sv(t)) is a two-parameter map on a suitable
domain and the function s : (0, 1] → R+ is piecewise smooth. (Indeed we may suppose
w.l.o.g. that s(t) ̸= 0, i.e., c(t) ̸= p for all t ∈ (0, 1] since otherwise we may define t0 to be
the last parameter value when c(t0) = p and replace c by c|[t0,1].)
Now except for possibly finitely many values of t we have (cf. (2.1.19) and below)

dc(t)

dt
=
∂f

∂s

(
s(t), t

)
s′(t) +

∂f

∂t

(
s(t), t

)
. (2.3.7)

From f(s, t) = expp(sv(t)) we have

∂f

∂s
= (Tsv(t) expp)(v(t)) and

∂f

∂t
= (Tsv(t) expp)(sv

′(t)) (2.3.8)

and by the Gauss lemma 2.1.21 we find (since v(t) is radial)

⟨∂f
∂s
,
∂f

∂t
⟩(s, t) = s⟨v(t), v′(t)⟩ = s

1

2

∂

∂t
∥v(t)∥2︸ ︷︷ ︸

=1

= 0 (2.3.9)
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and so ∂f
∂s

⊥ ∂f
∂t
. Similarly we obtain via the Gauss lemma that ∥∂f

∂s
∥2 = ⟨v(t), v(t)⟩ = 1,

which using (2.3.7) implies ∥dc
dt
∥2 = |s′(t)|2 + ∥∂f

∂t
∥2 ≥ s′(t)2. This now gives for all ε > 0

that ∫ 1

ε

∥c′(t)∥ dt ≥
∫ 1

ε

|s′(t)| dt ≥
∫ 1

ε

s′(t) dt = s(1)− s(ε) (2.3.10)

and hence in the limit ε → 0 we find L(c) ≥ s(1) = r(q) = L(σ), where the final equality
is due to 2.3.3.

Let now L(c) = L(σ), then in the estimate (2.3.10) we have to have equality everywhere,
which enforces ∂f

∂t
(s(t), t) = 0 for all t. But since Tsv(t) expp is bijective this implies v′ ≡ 0

and hence v has to be constant.

Moreover we need to have |s′(t)| = s′(t) > 0 and hence c(t) = expp(s(t)v) is a monotonous
reparametrisation of σ(t): Indeed by 2.1.15 we have σ(t) = expp(t exp

−1
p (q)) and moreover

exp−1
p (q) = exp−1

p (c(1)) = s(1)v and so σ(t) = expp(ts(1)v).

Now with h(t) := s(t)
s(1)

we have σ(h(t)) = expp(
s(t)
s(1)

s(1)v) = expp(s(t)v) = c(t). 2

In Rn the distance between two points d(p, q) = ∥p − q∥ is at the same time the length
of the shortest curve between these two points, i.e., the straight line segment from p to q.
But this ceases to be true even in the simple case of R2 \{(0, 0)}. Here there is no shortest
path between the two points p = (−1, 0) and q = (1, 0). However, the infimum of the arc
length of all paths connecting theses two points clearly equals the Euclidean distance 2
between p and q, cf. Figure 2.13.

p = (−1, 0) q = (1, 0)

...

R2 \ {(0, 0)}d(p, q) = 2

Figure 2.13: There is no shortest path between p and q in R2 \ {(0, 0)}.

This idea works also on general Riemannian manifolds and we start with the following
definition.
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2.3.5 Definition (Riemannian distance). Let M be a Riemannian manifold and let
p, q ∈M . We define the set of ‘permissible’ paths connecting p and q by

Ω(p, q) := {α : α is a piecewise smooth curve from p to q}. (2.3.11)

The Riemannian distance d(p, q) between p and q is then defined to be

d(p, q) := inf
α∈Ω(p,q)

L(α). (2.3.12)

Furthermore we define just as in Rn the ε-neighbourhood of a point p in a RMF M for all
ε > 0 by

Uε(p) := {q ∈M : d(p, q) < ε}. (2.3.13)

Now in ε-neighbourhoods the usual Euclidean behaviour of geodesics holds true, more
precisely we have:

2.3.6 Proposition (ε-neighbourhoods). Let M be a RMF and let p ∈ M . Then for ε
sufficiently small we have:

(i) Uε(p) is a normal neighbourhood,

(ii) The radial geodesic σ from p to any q ∈ Uε(p) is the unique shortest piecewise smooth
curve in M connecting p with q. In particular, we have L(σ) = r(q) = d(p, q).

Note the fact that the radial geodesic in 2.3.6(ii) is globally the shortest curve from p to q
and moreover that it is smooth.

Proof. Let U be a normal neighbourhood of p and denote by Ũ the corresponding neigh-
bourhood of 0 ∈ TpM . Then for ε sufficiently small Ũ contains the star shaped open
set Ñ = Ñε(0) := {v ∈ TpM : ∥v∥ < ε}. Therefore N := expp(Ñ) is also a normal
neighbourhood.

By 2.3.4 for any q ∈ N the radial geodesic σ from p to q is the unique shortest piecewise
smooth curve in N from p to q. Moreover, by 2.3.3 we have L(σ) = r(q). Since σ′(0) =
exp−1

p (q) ∈ Ñ we have r(q) = ∥ exp−1
p (q)∥ < ε.

To finish the proof is suffices to show the following assertion:

Any piecewise C∞-curve α in M starting in p and leaving N satisfies L(α) ≥ ε. (2.3.14)

Indeed then σ is the unique shortest piecewise smooth curve in M connecting p and q.
But this implies that r(q) = L(σ) = d(p, q) and we have shown (ii), as well as d(p, q) < ε.
Moreover for q ̸∈ N by (2.3.14) we have d(p, q) ≥ ε. So in total N = Uε(p) implying (i).
So it only remains to prove (2.3.14).

To begin with let 0 < a < ε. We then have Ña(0) ⊆ Ñ and hence expp(Ña(0)) ⊆ N . Now

since α leaves N it also has to leave expp(Ña(0)). Let t0 = sup{t : α(t) ∈ expp(Ña(0))}.
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Then α|[0,t0] is a curve connecting p with a point q ∈ ∂ expp(Ña(0)) which stays entirely in

the slightly bigger normal neighbourhood expp(Ña+δ(0)) of p, where δ is chosen such that
a+ δ < ε. Now by 2.3.3 and 2.3.4 we have L(α) ≥ L(α|[0,t0]) ≥ r(q) = a. Finally for a→ ε
we obtain L(α) ≥ ε. 2

2.3.7 Remark (Normal ε-neighbourhoods). Observe that the above proof also shows
that any normal neighbourhood around p contains an ε-neighbourhood Uε(p) which itself
is normal. Moreover, Uε(p) = N = expp(Ñε(0)) is open.

2.3.8 Example (Cylinder). Let M be the cylinder of 2.1.4 and denote by L any
vertical line in M . Hence if p ∈M \ L then M \ L is a normal neighbourhood of p and so
M \ L is convex. By 2.1.15 the radial geodesic σ (cf. Figure 2.14) is the unique shortest
piecewise smooth curve from p to q in M \ L. However, the curve τ is obviously a shorter
curve from p to q in M . But τ leaves M \ L.

L

p

qσ

τ

Figure 2.14: Convex neighbourhood on the cylinder.

If p in M is arbitrary then the largest normal ε-neighbourhood of p is Uπ(p). This fact is
most vividly seen from the (isometric hence equivalent) picture of the unwound cylinder,
see Figure 2.15. If q ∈ Uπ(p) then the radial geodesic σ form p to q is the unique shortest
curve from p to q in all of M . If r is a point in M \ Uπ(p) there is still a shortest curve
from p to r in M . If, however, r lies on the line L through the antipodal point p′ of p then
this curve is non-unique.

2.3.9 Theorem (Riemannian distance). Let M be a connected RMF. Then the Rie-
mannian distance function d : M ×M → R is a metric (in the topological sense) on M .
Furthermore the topology induced by d on M coincides with the manifold topology of M .
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p

q

Uπ(p)

r r

2π

Figure 2.15: The largest normal ε-neighbourhood on the cylinder.

Proof. First of all note that d is finite: let p, q ∈ M , then by connectedness there exists
a piecewise C∞-curve α connecting p and q (cf. 2.1.16) and so d(p, q) ≤ L(α) <∞.
Now we show that d actually is a metric on M .

Positive definiteness: Clearly d(p, q) ≥ 0 for all p, q. Now assume d(p, q) = 0. We have to
show that p = q. Suppose to the contrary that p ̸= q. Then by the Hausdorff property
ofM there exists a normal neighbourhood U of p not containing q. But then by 2.3.7
U contains a normal ε-neighbourhood Uε(p) and so by (2.3.14) d(p, q) ≥ ε > 0.

Symmetry: d(p, q) = d(q, p) since L(α) = L(t 7→ α(−t)).

Triangle inequality: Let p, q, r ∈ M . For ε > 0 let α ∈ Ω(p, q), β ∈ Ω(q, r) such that
L(α) < d(p, q) + ε and L(β) < d(q, r) + ε. Now define γ = α ∪ β. Then γ connects p
with r and we have

d(p, r) ≤ L(γ) = L(α) + L(β) < d(p, q) + d(q, r) + 2ε (2.3.15)

and since ε was arbitrary we conclude d(p, r) ≤ d(p, q) + d(q, r).

Finally by 2.2.7 the normal neighbourhoods provide a basis of neighbourhoods of p and
by 2.3.7 every normal neighbourhood contains some Uε(p). Conversely by 2.3.7 every suf-
ficiently small ε-neighbourhood of p is open and so d generates the manifold topology of
M . 2

We remark that there is also a proof which does not suppose the Riemannian metric to be
smooth and the statement of the theorem remains true also for Riemannian metrics that
are merely continuous.
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2.3.10 Remark (Minimising curves). By the definition of the Riemannian distance
function a piecewise smooth curve σ from p to q is a curve of minimal distance between
these points if L(σ) = d(p, q). In this case we call σ a minimising curve. In general there
can be several such curves between a given pair of points; just consider the meridians
running from the north pole to the south pole of the sphere.

Observe that every segment of a minimising curve form p to q is itself minimising (between
its respective end points). Otherwise there would be a shorter curve between p and q, see
Figure 2.16.

σ

p q

σnew

L(σnew) < L(σ)

Figure 2.16: A minimizing curve minimizes the distance between any of its points.

We finally complete our picture concerning the relation between geodesics and minimising
curves. By 2.1.15 radial geodesics are the unique minimising curves which connect the
center of a normal neighbourhood U to any point q ∈ U and stay within U . Moreover
by making U smaller, more precisely by considering a normal ε-neighbourhood, radial
geodesics become globally minimising curves, cf. 2.3.6. On the other hand geodesics that
become too long, e.g. after leaving a normal neighbourhood of its starting point need no
longer be minimising; just again think of the sphere. However, if a curve is minimising it
has to be a geodesic and hence it is even smooth and not merely piecewise smooth, as the
following statement says.

2.3.11 Corollary (Minimising curves are geodesics). Let p and q be points in a RMF
M . Let α be a minimising curve from p to q, then α is (up to monotonous reparametrisa-
tions) a geodesic from p to q.

Proof. Let α : [0, 1] → M a minimising piecewise smooth curve between α(0) = p and
α(1) = q. We may now find a finite partition I =

⋃k
i=1 Ii such that each segment αi := α|Ii

is contained in a convex set. We may also suppose w.l.o.g. that every αi is non constant
since otherwise we can omit the interval Ii. By 2.3.10 every αi is minimising and hence
by 2.3.4 a monotonous reparametrisation of a geodesic. Hence by patching together these
reparametrisations we obtain a possibly broken geodesic σ with break points at the end
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points of the Ii. We have L(σ) = L(α) = d(p, q). So the corollary follows from the following
statement, which shows that there are actually no break points.

If a geodesic segment c1 ending at r and a geodesic segment c2 starting at r combine

to give a minimising curve segment c, then c is an (unbroken) geodesic. (2.3.16)

Observe that the intuitive idea behind this statement is that rounding off a corner of γ
near r would make γ shorter, see Figure 2.17.

r

γ

Figure 2.17: A curve with corners cannot be minimizing.

To formally prove (2.3.16) we once again choose a convex neighborhood U around r. Then
the end part of c1 and the starting part of c2 combine to a minimising curve c̄ in U . Since
U is normal for each of its points and in particular for some r′ ̸= r on c̄ it follows by 2.1.15
that c̄ is a radial geodesic. So c̄ and hence c has no break point at r. 2
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2.4 The Hopf-Rinow theorem

In this section we state and prove the main result on complete Riemannian manifolds which
links the geodesics of the manifold to its structure as a metric space. The technical core
of this result is contained in the following lemma.

2.4.1 Lemma (Globally defined expp). Let M be a connected RMF and let p ∈ M
such that the exponential map expp at p is defined on all of TpM (i.e., Dp = TpM). Then
for each q ∈M there is a minimising geodesic from p to q.

Proof. Let Uε(p) be a normal ε-neighborhood of p, cf. 2.3.7. If q ∈ Uε(p) then the claim
follows from 2.3.6(ii). So let q ̸∈ Uε(p) and denote by r the radius function at p, see (2.3.2).
Now for δ > 0 sufficiently small (i.e., δ < ε) the ‘sphere’ Sδ := {m ∈ M : r(m) = δ} =
expp({v ∈ TpM : ∥v∥ = δ}) lies within Uε(p). Since Sδ is compact the continuous function
Sδ ∋ s 7→ d(s, q) attains its minimum in some point m ∈ Sδ. We now show that

d(p,m) + d(m, q) = d(p, q). (2.4.1)

Clearly we have ≥ in (2.4.1) by the triangle inequality. Conversely let α : [0, b] → M be
any curve from p to q and let a ∈ (0, b) be any value of the parameter such that α(a) ∈ Sδ.
(Clearly α initially lies inside Sδ and then has to leave it, see Figure 2.18).

p

Sδ

Uε(p)

q

α(a) α

Figure 2.18: Any curve α from p to q has to meet Sδ.

Write α1 = α|[0,a] and α2 = α|[a,b]. Then by 2.3.6(ii) and the definition of m we have

L(α) = L(α1) + L(α2) ≥ δ + L(α2) ≥ δ + d(α(a), q) ≥ δ + d(m, q). (2.4.2)

Again appealing to 2.3.6(ii) this implies

d(p, q) ≥ δ + d(m, q) = d(p,m) + d(m, q) (2.4.3)

and we have proven (2.4.1).

Recalling that by assumption Dp = TpM let now c : [0,∞) → M be the unit speed
geodesic whose initial piece is the radial geodesic from p to m. We show that c is the
asserted minimising geodesic from p to q. To begin with set d := d(p, q) and

T := {t ∈ [0, d] : t+ d(c(t), q) = d}. (2.4.4)
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It suffices to show that d ∈ T since in this case we have d(c(d), q) = 0 hence c(d) = q.
Moreover we then have L(c|[0,d]) = d = d(p, q) and so c is minimising.

Now to show that d ∈ T we first observe that c|[0,t] is minimising for any t ∈ T . Clearly we
have t = L(c|[0,t]) ≥ d(p, c(t)). Conversely, by definition of T it holds that d ≤ d(p, c(t)) +
d(c(t), q) = d(p, c(t)) + d − t and so t = L(c|[0,t]) ≤ d(p, c(t)). Hence in total we have
L(c|[0,t]) = d(p, c(t)).
Now let t̃ be such that c(t̃) = m. Then by (2.4.1) we have

d = d(p, q) = d(c(0), c(t̃)) + d(c(t̃), q) = t̃+ d(c(t̃), q)

and so t̃ ∈ T .
Hence T is non-empty, closed and contained in [0, d], hence compact. Writing t0 :=
maxT ≤ d it remains to show that t0 = d.

We assume to the contrary that t0 < d. Then let Uε′(c(t0)) be a normal ε-neighbourhood
of c(t0) that does not contain q, see Figure 2.19.

•
p

m

c

c(t0)

• m′ = σ(δ′)

q

Figure 2.19: Situation of the proof in 2.4.1 under the assumption that t0 < d.

The same argument as in the beginning of the proof shows that there exists a radial unit
speed geodesic σ : [0, δ′] → Uε′(c(t0)) that joins c(t0) with some pointm′ ∈ Sδ′ with d(m

′, q)
minimal on Sδ′ . As in (2.4.1) we obtain

d(c(t0),m
′) + d(m′, q) = d(c(t0), q). (2.4.5)

Now observing that d(c(t0),m
′) = L(σ|[0,δ′]) = δ′ we obtain from the fact that t0 ∈ T and

(2.4.5)

d = t0 + d(c(t0), q) = t0 + δ′ + d(m′, q). (2.4.6)

Also d = d(p, q) ≤ d(p,m′) + d(m′, q) and so d − d(m′, q) = t0 + δ′ ≤ d(p,m′). But this
implies that the concatenation c̃ of c|[0,t0] and σ is a curve joining p with m′ that satisfies

d(p,m′) ≤ L(c̃) = t0 + δ′ ≤ d(p,m′).
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Hence c̃ is minimising and so by 2.3.11 an (unbroken) geodesic, which implies that c̃ = c.
This immediately gives m′ = σ(δ′) = c(t0 + δ′) and further by (2.4.6) we obtain

d− t0 = δ′ + d(m′, q) = δ′ + d(c(t0 + δ′), q).

But this means that t0 + δ′ ∈ T , which contradicts the fact that t0 = maxT . 2

We may now head on to the main result of this section.

2.4.2 Theorem (Hopf-Rinow). Let (M, g) be a connected RMF, then the following
conditions are equivalent:

(MC) The metric space (M,d) is complete (i.e., every Cauchy sequence converges).

(GC’) There is p ∈M such that M is geodesically complete at p, i.e., expp is defined on all
of TpM .

(GC) (M, g) is geodesically complete.

(HB) M possesses the Heine-Borel property, i.e., every closed and bounded subset of M is
compact.

The Hopf-Rinow theorem hence, in particular, guarantees that for connected Riemannian
manifolds geodesic completeness coincides with completeness as a metric space. Therefore
the term complete Riemannian manifold is unambiguous in the connected case and we will
use it from now on. The theorem together with the previous Lemma 2.4.1 has the following
immediate and major consequence.

2.4.3 Corollary (Geodesic connectedness). In a connected complete Riemannian
manifold any pair of points can be joined by a minimising geodesic.

The converse of this result is obviously wrong; just consider the open unit disc in R2. From
the point of view of semi-Riemannian geometry the striking fact of the corollary is that in
a complete RMF two arbitrary points can be connected by a geodesic at all. This property,
called geodesic connectedness fails to hold in complete geodesically connected Lorentzian
manifolds. The great benefit of the corollary, of course, is that it allows us to use geodesic
constructions globally.
We now proceed to the proof of the Hopf-Rinow theorem.

Proof of 2.4.2.
(MC)⇒(GC): Let c : [0, b) → M be a unit speed geodesic. We have to show that c can
be extended beyond b as a geodesic. By 2.2.8 it suffices to show that c can be extended
continuously (as a curve) to b. To this end let (tn)n be a sequence in [0, b) with tn → b.
Then d(c(tn), c(tm)) ≤ |tn − tm| and so (c(tn))n is a Cauchy sequence in M , which by
(MC) is convergent to a point called c(b). If (t′n)n is another such sequence then since
d(c(tn), c(t

′
n)) ≤ |tn − t′n| we find that (c(t′n))n also converges to c(b). Hence we have c

extended continuously to [0, b].
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(GC)⇒(GC’) is clear.

(GC’)⇒(HB): Let A ⊆ M be closed and bounded. For any q ∈ A, by 2.4.1 there is a
minimising geodesic σq : [0, 1] →M from p to q. As in (2.3.5) we have ∥σ′

q(0)∥ = L(σq) =
d(p, q).
Now since A is bounded there is R > 0 such that d(p, q) ≤ R for all q ∈ A. So σ′

q(0) ∈
BR(0) = {v ∈ TpM : ∥v∥ ≤ R}, which clearly is compact. But then A ⊆ expp(BR(0))
hence is contained in a compact set and thus is compact itself.

(HB)⇒(MC)4: The point set of every Cauchy sequence is bounded, hence its closure is
compact by (HB). So the sequence possesses a convergent subsequence and being Cauchy
it is convergent itself. 2

Next we prove that any smooth manifold M (which, recall our convention, is assumed to
be Hausdorff and second countable) can be equipped with a Riemannian metric g. Indeed
g can simply be constructed by gluing the Euclidean metrics in the charts of an atlas as is
done in the proof below.
In fact much more is true. The Theorem of Nomizu and Ozeki (see e.g. [8, 62.12]) guaran-
tees that on every smooth manifold there exists a complete Riemannian metric.

2.4.4 Theorem (Existence of Riemannian metrics). Let M be a smooth manifold,
then there exists a Riemanninan metric g on M .

Proof. Cover M by charts ((x1α, . . . , x
n
α), Uα) and let (χα)α be a partition of unity subor-

dinate to this cover with supp(χα) ⊆ Uα, cf. [12, 1.3.14]. Then on Uα set

gα :=
∑
i

dxiα ⊗ dxiα and finally define g :=
∑
α

χαgα on M. (2.4.7)

Since a linear combination of positive definite scalar products with positive coefficients
again is positive definite, g indeed is a Riemannian metric on M . 2

This result has the following immediate topological consequence.

2.4.5 Corollary (Metrisability). Every smooth manifold is metrisable.

Proof. In case M is connected this is immediate from 2.4.4 and 2.3.9. In the general case

we have M =
◦
∪Mi with all (countably many) Mi connected. On each Mi we have a metric

di for which we may assume w.l.o.g. di < 1 (otherwise replace di by
di

1+di
). Then

d(x, y) :=

{
di(x, y) if x, y ∈Mi

1 else
(2.4.8)

clearly is a metric on M . 2

4Observe that this part of the proof is purely topological.



2.4. THE HOPF-RINOW THEOREM 65

The construction used in the proof can also be employed to draw the following conclusion
from general topology.

2.4.6 Corollary. Every compact Riemannian manifold is complete.

Proof. We first construct a metric on M from the distance functions in each of the
(countably many) connected components as in (2.4.8). Then we just use the fact that any
compact metric space is complete. In fact this follows from the proof of (HB)⇒(MC) in
2.4.2 by noting that the Heine-Borel property (HB) holds trivially in any compact metric
space. 2

To finish this section we remark that the Lorentzian situation is much more complicated.
Somewhat more precisely we have:

2.4.7 Remark (Lorentzian analogs). On Lorentzian manifolds the above results are
wrong in general! In some more detail we have the following.

(i) Not every smooth manifold M can be endowed with a Lorentzian metric. Observe
that the above proof fails since linear combinations of nondegenerate scalar products
need not be nondegenerate. In fact, there exist topological obstructions to the exis-
tence of Lorentzian metrics: M can be equipped with a Lorentzian metric iff there
exists a nowhere vanishing vector field hence iff M is non compact or compact with
Euler characteristic 0.

(ii) The Lorentzian analog to 2.3.4 is the following: Let U be a normal neighborhood of
p. If there is a timelike curve from p to some point q ∈ U then the radial geodesic
from p to q is the longest curve from p to q.

(iii) There is no Lorentzian analog of the Hopf Rinow theorem 2.4.2. If a Lorentzian
manifold is connected and geodesically complete it need not even be geodesically
connected. For a counterexample see e.g. [15, p. 150].



Chapter 3

Curvature

In elementray differential geometry, that is in the geometry of 2-dimensional surfaces in
R3, a notion of curvature is defined, which is based on the idea of how the surface bends
in the surrounding Euclidean space. More precisely (cf. [10, Sec. 3.1]) in this approach one
defines the Weingarten map as the derivative of the unit normal vector and the principal
curvatures as its eigenvalues. It was Gauss who showed in his ‘theorema egregium’ that
the product of the principal curvatures, i.e., the Gauss curvature is a quantity intrinsic to
the surface (cf. [10, Thm. 3.1.18]). This led Riemann to generalise the Gaussian curvature
to manifolds with a positive definite metric, i.e., to the invention of Riemannian geometry.
The semi-Riemannian case requires no significant changes and will be presented in this
chapter.

More precisely we define the Riemannian curvature tensor in Section 3.1 as a measure for
the non-commutativity of second order covariant derivatives. After deriving its symmetries
and local representation we discuss the geometric meaning of the Riemann tensor: On the
one hand it measures the failure of a vector parallely transported along a closed curve to
return to its initial value, on the other hand it is an obstruction to local flatness of the
manifold.
In Section 3.2 we introduce the generalisation of the classical differential operators of mul-
tivariable calculus to SRMFs. Along the way we discuss the operations of type changing,
i.e., the extension of the musical isomorphism to tensor fields of general rank and of metric
contraction.
Finally in section 3.3 we introduce the Ricci and scalar curvature and write down the
Einstein equations, that is the field equations of general relativity—Einstein’s theory of
space, time and gravity—which link the curvature of the Lorentzian spacetime manifold
to its energy content.

66
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3.1 The curvature tensor

To motivate the definition of the curvature tensor on a SRMF we consider the parallel
transport of a vector along a curve. If we parallel transport a vector along a closed curve
in the plane then upon returning to the starting point we end up with the same vector as
we have started with. This, however, is not the case in the sphere.

If we parallel transport a vector say along
a geodesic triangle on the sphere we do
not end up with the vector we have
started with, see Figure 3.1.

Now since parallel transport is defined
via the covariant derivative, see page 30,
the difference between the starting vec-
tor and the final vector can be expressed
in terms of the non-commutativity of co-
variant derivatives. This leads to the fol-
lowing formal definition. We will, how-
ever, return to the intuitive idea behind
it at the end of this section.

Figure 3.1: Parallel transport of a vector
along a geodesic triangle on the sphere.

3.1.1 Definition & Lemma (Riemannian curvature tensor). Let (M, g) be a SRMF
with Levi-Civita connection ∇. Then the mapping R : X(M)3 → X(M) given by

RXYZ := ∇[X,Y ]Z − [∇X ,∇Y ]Z (3.1.1)

is a (1, 3) tensor field called the Riemannian curvature tensor of M .

Proof. By (1.3.24) we only have to show that R is C∞(M)-multilinear. So let f ∈ C∞(M).
We then have by [12, 2.2.17(iv)] that [X, fY ] = X(f)Y + f [X, Y ] and so

RX,fYZ = ∇[X,fY ]Z −∇X∇fYZ +∇fY∇XZ

= X(f)∇YZ + f∇[X,Y ]Z −∇X(f∇YZ) + f∇Y∇XZ (3.1.2)

= X(f)∇YZ −X(f)∇YZ + fRXYZ = fRXYZ.

Since by definition RXYZ = −RY XZ we also find that RfXYZ = fRXYZ. Finally by an
analogous calculation one finds that RXY fZ = fRX,YZ. 2

We will follow the widespread convention to also write R(X, Y )Z for RXYZ. Moreover we
will also call R the Riemann tensor or curvature tensor for short. Since R is a tensor field
one may insert individual tangent vectors into its slots. In particular for x, y ∈ TpM the
mapping

Rxy : TpM → TpM, z 7→ Rxyz (3.1.3)
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is called the curvature operator. We next study the symmetry properties of the curvature
tensor.

3.1.2 Proposition (Symmetries of the Riemann tensor). Let x, y, z, v, w ∈ TpM
then for the curvature operator we have the following identities

(i) Rxy = −Ryx (skew-symmetry)

(ii) ⟨Rxyv, w⟩ = −⟨Rxyw, v⟩ (skew-adjointness)

(iii) Rxyz +Ryzx+Rzxy = 0 (first Bianchi identity)

(iv) ⟨Rxyv, w⟩ = ⟨Rvwx, y⟩ (symmetry by pairs)

Proof. Since ∇X and [ , ] are local operations (see 1.3.6 and [12, 2.2.17(v)], respectively)
it suffices to work on any neighbourhood of p. Moreover all identities are tensorial and we
may extend x, y, . . . in any convenient way to vector fields X, Y, . . . on that neighbourhood.
In the present case it is beneficial to do so in such a way that all Lie-brackets vanish, which
is achieved by taking the vector fields to have constant components w.r.t. a coordinate
basis (Recall that [∂i, ∂j] = 0, cf. [12, 2.2.17(vi)]) We then have

RXYZ = ∇Y∇XZ −∇X∇YZ (3.1.4)

and we go on proving the individual items of the proposition.

(i) follows directly from (3.1.4). (Observe that (i) also is easy to see from the definition
and we have already used it in the proof of 3.1.1.)

(ii) It suffices to show that ⟨Rxyv, v⟩ = 0 since the assertion then follows by replacing v
by v + w. Indeed, we then have 0 = ⟨Rxy(v + w), v + w⟩ = ⟨Rxyv, w⟩+ ⟨Rxyw, v⟩.
Now to prove the above statement we write using 1.3.4(∇5)

⟨RXY V, V ⟩ = ⟨∇Y∇XV , V ⟩ − ⟨∇X∇Y V , V ⟩
= Y ⟨∇XV, V ⟩ −(((((((⟨∇XV,∇Y V ⟩ −X⟨∇Y V, V ⟩+(((((((⟨∇Y V,∇XV ⟩ (3.1.5)

=
1

2
Y X⟨V, V ⟩ − 1

2
XY ⟨V, V ⟩ = −1

2
[X, Y ]︸ ︷︷ ︸

=0

(⟨V, V ⟩) = 0.

(iii) follows from the following more general reasoning. Let F : X(M)3 → X(M) be an
R-multilinear map and define the mapping S(F ) : X(M)3 → X(M) as the sum of the
cyclic permutations of F , i.e.,

S(F )(X, Y, Z) = F (X, Y, Z) + F (Y, Z,X) + F (Z,X, Y ). (3.1.6)

Then a cyclic permutation of X, Y, Z obviously leaves S(F )(X, Y, Z) unchanged.
Consequently we find using 1.3.4(∇4)

S(R)XYZ = S∇Y∇XZ − S∇X∇YZ (3.1.7)

= S∇X∇ZY − S∇X∇YZ = −S∇X [Y, Z] = 0.
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(iv) is a combinatorial exercise. By (iii) ⟨S(R)Y VX,W ⟩ = 0. Now summing over the four
cyclic permutations of Y, V,X,W and writing out S(R) one obtains 12 terms, 8 of
which cancel in pairs by (i) and (ii) leaving

2⟨RXY V,W ⟩+ 2⟨RWVX, Y ⟩ = 0, (3.1.8)

which by another appeal to (i) gives the asserted identity.

2

Next we derive a local formula for the Riemann tensor.

3.1.3 Lemma (Coordinate expression for R). Let (x1, . . . , xn) be local coordinates.
Then we have R∂k∂l∂j = Ri

jkl∂i, where

Ri
jkl =

∂

∂xl
Γi

kj −
∂

∂xk
Γi

lj + Γi
lmΓ

m
kj − Γi

kmΓ
m
lj. (3.1.9)

Proof. Since [∂i, ∂j] = 0 for all i, j we have by (3.1.4) that

R∂k∂l∂j = ∇∂l∇∂k∂j −∇∂k∇∂l∂j. (3.1.10)

Now by 1.3.8 we have

∇∂l(∇∂k∂j) = ∇∂l(Γ
m
kj∂m) =

∂

∂xl
Γm

kj∂m + Γm
kjΓ

r
lm∂r =

( ∂

∂xl
Γi

kj + Γi
lmΓ

m
kj

)
∂i. (3.1.11)

Now exchanging k and l and subtracting the respective terms gives the assertion. 2

In the remainder of this section we want to give two interpretations of the Riemann tensor
to aid also an intuitive understanding of this pretty complicated geometric object.

(1) We show that the Riemann tensor is an obstruction to the manifold being locally flat,
i.e., the manifold being covered by charts in which the metric is flat, see Theorem
3.1.7, below.

(2) We make precise the idea which we already discussed prior to Definition 3.1.1. We
will establish that the curvature tensor is a measure for the failure of a vector to
return to its starting value when parallely transported along a closed curve.

To arrive at (1) we need some preparations. Our proof of the result alluded to above
depends on the construction of an especially simple coordinate system. Recall that the
natural basis vector fields ∂i in any coordinate system commute, i.e., [∂i, ∂j] = 0 for all
i, j (once again see e.g. [12, 2.2.17(vi)]). We now establish the converse of this result: any
n-tuple of commuting and linearly independent local vector fields is the natural basis for
some chart. We begin with the following characterisation of commuting flows resp. vector
fields, which is of clear independent interest. For the basic notions we refer to [12, 2.2.16].
The following result is proved in [12, 2.3.18]:
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3.1.4 Lemma (Commuting flows). Let M be a smooth manifold and let X, Y ∈ X(M).
Then the following conditions are equivalent:

(i) [X, Y ] = 0,

(ii) (FlXt )
∗Y = Y , wherever the l.h.s. is defined,

(iii) The flows of X and Y commute.

Here, we say that the flows of two vector fields X, Y ∈ X(M) commute if for any p ∈M we
have: whenever I and J are open intervals containing 0 such that one of the expressions
FlXt ◦FlYs or FlYs ◦FlXt is defined for all (s, t) ∈ I × J , then both are defined and are equal.

3.1.5 Lemma (Coordinates adapted to given vector fields). Let V be an open subset
of a smooth manifold M . Given vector fields X1, . . . , Xn ∈ X(M) such that [Xi, Xj] = 0
for all i, j and {X1(p), . . . , Xn(p)} is a basis of TpM for all p ∈ V then around each p there
is a chart (φ = (x1, . . . , xn), U) with U ⊆ V and

Xi

∣∣
U
=

∂

∂xi
for all i = 1, . . . , n. (3.1.12)

Proof. Fix some p ∈ V and set F : t = (t1, . . . , tn) 7→ (FlX1

t1 ◦ · · · ◦ FlXn
tn )(p). Then

F is smooth on an open (cubic) neighbourhood W of 0 ∈ Rn and we may assume that
F (W ) ⊆ V .
Since [Xi, Xj] = 0, by 3.1.4 the flows of the Xi commute and we have

∂

∂ti
F (t) =

∂

∂ti
FlXi

ti
◦ FlX1

t1 ◦ · · · ◦ FlXn
tn (p) = Xi(F (t)). (3.1.13)

Since the Xi(F (t)) are a basis it follows that F is a local diffeomorphism, hence w.l.o.g.
F : W → U ⊆ V is a diffeomorphism.
Now define φ = F−1 : U → W . Then we have for q = φ−1(t) using (3.1.13)

∂

∂xi

∣∣∣
q
=
(
Tqφ

)−1
(ei) = TtF (ei) =

∂

∂ti
F (t) = Xi(q). (3.1.14)

2

Next we establish an explicit expression for the commutator of the induced covariant
derivative in terms of the curvature tensor, which obviously is of independent interest.

3.1.6 Proposition (Interchanging 2nd order derivatives.). Let f : D → M be a
two-parameter map into a SRMF M and let Z ∈ X(f). Then we have(

∇
dv

∇
du

− ∇
du

∇
dv

)
Z = Zuv − Zvu = R(fu, fv)Z. (3.1.15)
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Proof. We work in a chart and write Z = Zk∂k. Then by (1.3.55) we have Zu = Zk
u∂k

with Zk
u = ∂Zk/∂u+ Γk

lmZ
l∂fm/∂u and so

Zuv =

(
∂2Zk

∂v∂u
+
∂Γk

lm

∂v
Z l ∂f

m

∂u
+Γk

lm

∂Z l

∂v

∂fm

∂u
+ Γk

lm Z
l ∂

2fm

∂v∂u

+Γk
ij

∂Zi

∂u

∂f j

∂v
+ Γk

ij Γ
i
lm Z

l ∂f
m

∂u

∂f j

∂v

)
∂k (3.1.16)

and analogously for Zvu. Upon inserting the symmetric terms cancel and we obtain

Zuv−Zvu (3.1.17)

=

(
Z l
(∂Γk

lm

∂v

∂fm

∂u
− ∂Γk

lm

∂u

∂fm

∂v

)
+ Γk

ijΓ
i
lm Z

l
(∂fm

∂u

∂f j

∂v
− ∂fm

∂v

∂f j

∂u

))
∂k

On the other hand we have

R(fu, fv)Z = R
(∂f i

∂u
∂i,

∂f j

∂v
∂j

)(
Z l∂l

)
= Z l ∂f

i

∂u

∂f j

∂v
R(∂i, ∂j)∂l = Z l ∂f

i

∂u

∂f j

∂v
Rk

lij∂k

=

(
Z l ∂f

i

∂u

∂f j

∂v

(∂Γk
il

∂xj
−
∂Γk

jl

∂xi
+ Γk

jmΓ
m
il − Γk

imΓ
m
jl

))
∂k (3.1.18)

= Z l
(∂f i

∂u

∂Γk
il

∂xj
∂f j

∂v︸ ︷︷ ︸
∂Γk

il
∂v

−∂f
j

∂v

∂Γk
jl

∂xi
∂f i

∂u︸ ︷︷ ︸
∂Γk

jl
∂u

)
∂k + Z l

(
Γk

jmΓ
m
il

∂f i

∂u
∂fj

∂v

−Γk
imΓ

m
jl

∂f i

∂u
∂fj

∂v

)
∂k

= Z l
(∂Γk

ml

∂v

∂fm

∂u
− ∂Γk

ml

∂u

∂fm

∂v

)
∂k + Γk

jmΓ
m
ilZ

l
(∂f i

∂u

∂f j

∂v
− ∂f i

∂v

∂f j

∂u

)
∂k,

where for the last equality we have replaced the summation indices i and j by m in the
first two terms. Now the r.h.s. of (3.1.18) equals the r.h.s. of (3.1.17) upon exchanging the
summation indices i and m in the last term and we are done. 2

With this we can now prove the following characterisation for the vanishing of the curvature
tensor.

3.1.7 Theorem (Locally flat SRMF). For any SRMF M the following are equivalent:

(i) M is locally flat, that is, for all points p ∈M there is a chart (U,φ) around p where
the metric is flat, i.e., (φ∗g)ij = εjδij on φ(U).

(ii) The Riemann tensor vanishes.
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Proof. (i)⇒(ii) follows simply from 3.1.3 and the fact that in the chart φ the Christoffel
symbols all vanish.

(ii)⇒(i): The statement is local, so we may assume thatM = Rn and p = 0. Let e1, . . . , en
be an ONB at 0 and choose the ei as coordinate axes for coordinates x1, . . . , xn on Rn.
Then we have ∂i = ei for 1 ≤ i ≤ n.
Now for each i we first parallel transport ei along the x1-axis (t 7→ (t, 0, . . . , 0)) and then
from each point t0 on the x1-axis along the x2-axis (t 7→ (t0, t, 0, . . . , 0)) and so on for the
x3, x4,. . . -axes.
In this way we obtain vector fields E1, . . . , En ∈ X(Rn) which are smooth since parallel
transport is governed by an ODE whose solutions by ODE-theory depend smoothly on the
initial data. Moreover, since parallel transport preserves scalar products (cf. 1.3.28) the Ei

form an ONB at every q ∈ Rn.
Now for 1 ≤ k ≤ n setMk := Rk×{0} ⊆ Rn. By construction for all 1 ≤ j ≤ n we have that
Ej|Mk

is a vector field along the mapping fk : (t1, . . . , tk) 7→
∑k

i=1 tiei = (t1, . . . , tk, 0, . . . , 0)
and we may consider ∇

∂ti
(Ej|Mk

) for all 1 ≤ i ≤ k, see page 42 but now for all k parameters.
Let now j ∈ {1, . . . , n}.
We claim that ∇

dti
(Ej|Mk

) = 0 for all 1 ≤ i ≤ k.

We proceed by induction. For k = 1 the equality follows by definition of parallel transport.
k 7→ k + 1: Let ∇

dti
(Ej|Mk

) = 0 for all 1 ≤ i ≤ k. By construction we also have
∇

dtk+1
(Ej|Mk+1

) = 0. Now by 3.1.6 and our assumption that R = 0 we have

∇
dtk+1

∇
dti

Ej(t1, . . . , tk+1, 0, . . . , 0) =
∇
dti

∇
dtk+1

Ej(t1, . . . , tk+1, 0, . . . , 0) = 0. (3.1.19)

So 0 = ∇
dti
Ej(t1, . . . , tk, 0, . . . , 0) is parallely transported along the straight line tk+1 7→

(t1, . . . , tk, tk+1, 0, . . . , 0) hence vanishes on all of Mk+1.

Next we claim that E1, . . . , En ∈ X(Rn) are parallel.

It suffices to show that ∇∂iEj = 0 for all i, j. For fixed (x1, . . . , xn) ∈ Rn let ci : t 7→
(x1, . . . , xi−1, t, xi+1, . . . , xn). Then we have by 1.3.27(iii)

∇∂iEj(x
1, . . . , xn) = ∇c′i(x

i)Ej =
∇
dti

(Ej ◦ c)|ti=xi = 0, (3.1.20)

where for the last equality we have used the previous claim in the case k = n.

Finally from the latter claim we have [Ei, Ej] = ∇Ei
Ej − ∇Ej

Ei = 0 for all i, j. So by
3.1.5 there are coordinates ((y1, . . . , yn), V ) locally around p such that Ej|V = ∂yj for all
1 ≤ j ≤ n. But in these coordinates we have

gij = g(∂yi , ∂yj) = g(Ei, Ej) = εiδij. (3.1.21)

2

Finally we come to item (2) of our list on page 69, which we make precise in the following
remark. Here we closely follow [7, II.22 (p. 65)].
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3.1.8 Remark (Riemann tensor and parallel transport along closed curves).
Let M be a SRMF, p ∈ M , Z ∈ TpM and c be a curve in M with c(0) = p. Further
let (x1, . . . , xn) be coordinates around p and write as usual ci(t) for the coordinates of c
w.r.t. this chart. Let now Z(t) = Zi(t)∂i|c(t) be the vector field obtained from parallely
transporting Z = Z(0) along c. By (1.3.55) we then have

dZi(t)

dt
+ Γi

kl(c(t))
dck

dt
Z l(t) = 0. (3.1.22)

Let more generally f : I ×J →M be a smooth two-parameter map with I and J intervals
around 0. We denote by xi(u, v) = xi ◦ f(u, v) the local coordinates of f . For some fixed
pair (u, v) ∈ I × J we define the ‘corner points’ (see Figure 3.2) P = f(0, 0), Q = f(u, 0),
R = f(u, v) and S = f(0, v). Now we transport Z = ZP ∈ TPM parallel along f first to Q
then to R and S and then back to P . We will denote the values of this vector field Z on
f at the ‘corner points’ by ZQ, ZR, ZS and finally Z̄P = Z(u, v). In general the resulting
vector Z̄P will not equal the staring value ZP but depend smoothly on u and v. Indeed
the solutions of the ODE (3.1.22) depend smoothly on the data Q, R and S as well as the
right hand side, which all depend smoothly on (u, v).

P Q

RS

Z

Z(u, v) f(., 0)

f(u, .)

f(u− ., v)

f(0, v − .)

Figure 3.2: The setup.

Now we expand the components of these vectors w.r.t. the coordinates xi in a Taylor series,
which gives

Zi
Q = Zi

P +
(∂Zi

∂u

)
P
u+

1

2

(∂2Zi

∂u2

)
P
u2 +O(u3), (3.1.23)

Zi
R = Zi

Q +
(∂Zi

∂v

)
Q
v +

1

2

(∂2Zi

∂v2

)
Q
v2 +O(v3), (3.1.24)

Zi
S = Zi

R −
(∂Zi

∂u

)
R
u+

1

2

(∂2Zi

∂u2

)
R
u2 +O(u3), (3.1.25)

Z̄i
P = Zi

S −
(∂Zi

∂v

)
S
v +

1

2

(∂2Zi

∂v2

)
S
v2 +O(v3). (3.1.26)

Inserting (3.1.23) into (3.1.24), (3.1.24) into (3.1.25), and (3.1.25) into (3.1.26) we obtain
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for the difference between the starting and the final vector

∆Zi
P := Z̄i

P − Zi
P =

((∂Zi

∂u

)
P
−
(∂Zi

∂u

)
R

)
u +

((∂Zi

∂v

)
Q
−
(∂Zi

∂v

)
S

)
v (3.1.27)

+

((∂2Zi

∂u2

)
P
+
(∂2Zi

∂u2

)
R

)
u2

2
+

((∂2Zi

∂v2

)
Q
+
(∂2Zi

∂v2

)
S

)
v2

2
+ . . .

Now we assume that the xi are Riemannian normal coordinates at P , which by 2.1.17(ii)
leads to the vanishing of the first term in the Taylor expansion of the Christoffel symbols
and we obtain

Γi
jk(x) =

∑
m

( ∂

∂xm
Γi

jk

)
P
xm +O(x2). (3.1.28)

The next (laborious) step consists in calculating the coefficients (∂Zi/∂u)P , (∂
2Zi/∂u2)P

etc. from the ODE (3.1.22). We obtain

(i)
∂Zi

∂u

∣∣∣∣
P

= 0

Indeed we have by parallel transport (cf. (3.1.22)) along the curve u 7→ x(u, 0) that
∂uZ

i(u, 0) = −Γi
kl(x(u, 0)) ∂ux

k(u, 0)Z l(u, 0) and so ∂uZ
i(0, 0) = −Γi

kl(P ) · . . . = 0,
since we have assumed xi to be Riemannian normal coordinates around P .

(ii)
∂Zi

∂v

∣∣∣∣
Q

= −
( ∂

∂xm
Γi

jk

∂xm

∂u

∂xj

∂v
Zk
)
P
u+ . . .

Parallel transport along v 7→ x(u, v) from Q to R gives (∂vZ
i)Q = −(Γi

jk ∂vx
j Zk)Q.

Now by Taylor expansion at P (cf. (3.1.28)) we obtain Γi
jk(Q) = ∂mΓ

i
jk(P )x

m + . . .
and also xm(Q) = 0 + ∂ux

m(P )u + ∂vx
m(P ) 0 + . . . , since Q = (u, 0). Similarly

∂vx
j(Q) = ∂vx

j(P ) + u · . . . + 0 · . . . + . . . , and Zk(Q) = Zk(P ) + ∂uZ
k(P )u +

∂vZ
k(P ) 0 + . . . . Collecting terms together we finally arrive at the asserted result.

(iii)
∂Zi

∂u

∣∣∣∣
R

= −
( ∂

∂xm
Γi

jk

∂xm

∂u

∂xj

∂u
Zk
)
P
u−

( ∂

∂xm
Γi

jk

∂xm

∂v

∂xj

∂u
Zk
)
P
v + . . .

Now we use parallel transport from R to S along s 7→ x(u− s, v), s ∈ [0, u] to obtain
∂sZ

i(R) = −
(
Γi

jk(x(u−s, v)) ∂s(xj(u−s, v))Zk
)
R
. Next note that ∂s(Z

i(u−s, v)) =
−∂uZ(u − s, v) and ∂s(x

j(u − s, v)) = −∂uxj(u − s, v) and so we have ∂uZ
i(R) =

−
(
Γi

jk(x(u− ., v)) ∂ux
j(u− ., v)Zk

)
R
= −(Γi

jk ∂ux
j Zk)R. Again Taylor expansion at

P gives Γi
jk(R) = ∂mΓ

i
jk(P )x

m(R) + . . . = ∂mΓ
i
jk(P )(∂ux

m(P )u+ ∂vx
m(P ) v+ . . . ),

and ∂ux
j(R) = ∂ux

j(P ) + u · . . . + v · . . .. Moreover by (3.1.23), (3.1.24) Zk(R) =
Zk(P )+ ∂uZ

k(P )u+ ∂vZ
k(Q) v+ . . .. Again collecting together the respective terms

we obtain the asserted formula.
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(iv)
∂Zi

∂v

∣∣∣∣
S

= −
( ∂

∂xm
Γi

jk

∂xm

∂v

∂xj

∂v
Zk
)
P
v + . . .

We parallel transport Z along t 7→ x(0, v − t) from S to P to obtain ∂t
(
Zi(0, v −

t)
)
= −

(
Γi

jk(x(0, v − t)) ∂t(x
j(0, v − t))Zk

)
S
which by analogous reasoning as in

(iii) gives ∂vZ
i(S) = −(Γi

jk ∂v x
j Zk)S, where by Taylor expansion in P , Γi

jk(S) =
∂mΓ

i
jk(P )x

m(S) + . . . = ∂mΓ
i
jk(P ) (∂ux

m · 0 + ∂vx
m · v)P + . . . as well as ∂vx

j(S) =

∂vx
j(P ) + u · . . .+ v · . . .+ . . . and using (3.1.23)–(3.1.25) Zk(S) = Zk(P ) + . . . Once

more collecting the terms gives the result.

(v)
∂2Zi

∂u2

∣∣∣∣
P

= −
(∂Γi

jk

∂xm
∂xm

∂u

∂xj

∂u
Zk
)
P

We again use parallel transport from P toQ which by (3.1.22) gives ∂uZ
i = −Γi

jk∂ux
jZk

and hence ∂2Zi/∂u2 = −∂mΓi
jk∂ux

m∂ux
jZk − Γi

jk∂
2xj/∂u2 Zk − Γi

jk∂ux
j∂uZ

k which
gives the claim without the need to use any expansion.

(vi)
∂2Zi

∂u2

∣∣∣∣
R

= −
(∂Γi

jk

∂xm
∂xm

∂u

∂xj

∂u
Zk
)
P

Here we use (3.1.22) along the curve s 7→ x(u − s, v) to obtain ∂s(Z
i(u − s, v)) =

−Γi
jk(x(u− s, v))∂s(x

j(u− s, v))Zk(x(u− s, v)) and so ∂uZ
i(u− s, v) = −Γi

jk(x(u−
s, v))∂ux

j(u−s, v)Zk(x(u−s, v)). But this gives ∂2Zi/∂u2(u−s, v) = −∂mΓi
jk(x(u−

s, v))∂ux
m(u − s, v)Zk(x(u − s, v)) − Γi

jk(x(u − s, v))∂2xj/∂u2(u − s, v)Zk(x(u −
s, v))−Γi

jk(x(u−s, v))∂uxj(u−s, v)∂s(Zk(x(u−s, v))). Finally expansion at P gives

(∂2Zi/∂u2)R = −(∂mΓ
i
jk∂ux

m∂ux
jZk)P−(Γi

jk∂
2xj/∂u2Zk)P−(Γi

jk∂ux
jΓk

ml∂ux
mZ l)p+

. . . = −(∂mΓ
i
jk∂ux

m∂ux
jZk)P .

(vii)
∂2Zi

∂v2

∣∣∣∣
Q

= −
(∂Γi

jk

∂xm
∂xm

∂v

∂xj

∂v
Zk
)
P

From ∂vZ
i = −Γi

jk∂vx
jZk we obtain that ∂2Zi/∂v2 = −∂mΓi

jk∂vx
m∂vx

jZk − Γi
jk

∂2xj/∂v2Zk −Γi
jk∂vx

j∂vZ
k and so as in (vi) we find (∂2Zi/∂v2)Q = −(∂mΓ

i
jk∂vx

m∂vx
j

Zk)P + . . ..

(viii)
∂2Zi

∂v2

∣∣∣∣
S

= −
(∂Γi

jk

∂xm
∂xm

∂v

∂xj

∂v
Zk
)
P

As in (iv) and (vi) the minus signs coming from the inner derivatives compensate to
give ∂2Zi/∂v2 = ∂mΓ

i
jk∂vx

m∂vx
jZk−Γi

jk∂
2xj/∂v2Zk−Γi

jk∂vx
j∂vZ

k and so again as

in (vi) (∂2Zi/∂v2)S = −(∂mΓ
i
jk∂vx

m∂vx
jZk)P + . . ..

Now we may plug (i)–(viii) into (3.1.27) to arrive at

∆Zi
P =

((∂Γi
jk

∂xm
− ∂Γi

mk

∂xj

) ∂xj

∂u

∂xm

∂v
Zk

)
P

uv + . . . (3.1.29)
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Furthermore, by 3.1.3 and 2.1.17(ii) we obtain

Ri
kmj |P =

(
∂Γi

mk

∂xj
−
∂Γi

jk

∂xm
+ Γi

jrΓ
r
mk − Γi

msΓ
s
jk

)
P

= −

(
∂Γi

jk

∂xm
− ∂Γi

mk

∂xj

)
P

(3.1.30)

and so we finally obtain

∆Zi
P = −

(
Ri

kmj

∂xj

∂u

∂xm

∂v
Zk
)
P
uv + · · · = −Ri

(∂x
∂v
,
∂x

∂u

)
(Z) |P uv + . . . . (3.1.31)

From this result we may now immediately draw the following conclusions:

(1) If R = 0, by 3.1.7 M is locally isometric to Rn
r and since parallel transport then is

trivial we obtain ∆Zi
P = 0.

(2) In the general case ∆Zi
P is of second order in (u, v) and depends on the curvature

tensor R at P . Hence we may view R as an obstruction to the vanishing of ∆Zi
P . In

particular, (3.1.31) gives the following alternative characterisation of the Riemann
tensor

Ri
(∂x
∂v
,
∂x

∂u

)
(Z) |P = − lim

u,v→0

1

uv
∆Zi

P . (3.1.32)

3.2 Some differential operators

The aim of this section is to introduce on a SRMF the generalisations of the classical
differential operators of gradient, divergence and Laplacian. To deal with these in an
appropriate way we need some preparations, namely we need to introduce the operations
of type-changing of higher order tensor fields and metric contraction.

The former operation is nothing but the generalisation of the musical isomorphism of 1.3.3
of vector fields and one-forms to higher order tensors. To achieve this goal we proceed as
follows: Given a tensor field A ∈ T r

s (M) on a SRMF (M, g) we define for any 1 ≤ a ≤ r,
1 ≤ b ≤ s the tensor field ↓ab A ∈ T r−1

s+1 (M) via

(↓ab A)(ω1, . . . , ωr−1, X1 . . . , Xs+1)

:= A(ω1, . . . , X♭
b

slot a

, . . . , ωr−1, X1 . . . , Xb−1, Xb+1, . . . , Xs+1), (3.2.1)

where X♭
b is the metric equivalent one-form of the vector field Xb, cf. 1.3.3. So on the r.h.s.

we extract the bth vector field and insert its metrically equivalent one-form in the ath slot
among the one-forms. It is instructive to consider an example.

3.2.1 Example (Index lowering). Let A be a (2, 2)-tensor field on M , then B :=↓12 A
is the (1, 3)-tensor field given by

B(ω,X, Y, Z) = A(Y ♭, ω,X, Z). (3.2.2)
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Now let (x1, . . . , xn) be local coordinates onM . Then first observe that ∂♭k = gkmdx
m since

∂♭k(V
m∂m) = ⟨∂k, V m∂m⟩ = gkmV

m. And so we have

Bi
jkl = B(dxi, ∂j, ∂k, ∂l) = A(gkmdx

m, dxi, ∂j, ∂l) = gkmA
mi
jl . (3.2.3)

We now see that the operation ↓12 changes the first upper index of A into the second lower
index of B.

The operator ↓ab : T r
s (M) → T r−1

s+1 (M) is classically also called the lowering1 of the re-
spective indices. It is obviously C∞-linear and moreover it is an isomorphism with inverse
↑ab : T r′

s′ (M) → T r′+1
s′−1 (M) given by

(↑ab A)(ω1, . . . , ωr′+1, X1, . . . , Xs′−1)

:= A(ω1, . . . , ωa−1, ωa+1, . . . ωr′+1, X1, . . . , (ω
a)♯

slot b

, . . . , Xs′−1), (3.2.4)

where now (ωc)♯ is the vector field metrically equivalent to the one-form ωc. This operation
extracts the the ath one-form and inserts its metrically equivalent vector field in the bth
slot among the vector fields and is classically called the raising of the respective index.
Generally we call all tensors which are derived from a given tensor by raising or lowering
an index metrically equivalent.
We again look at an example where we also demonstrate that the lowering and raising of
indices are inverse operations.

3.2.2 Example (Index lowering & raising). First observe that in local coordinates we
have (dxi)♯ = gij∂j since ⟨gij∂j, V k∂k⟩ = δikV

k = V i = dxi(V k∂k). Now for a (1, 3)-tensor
field B we have

(↑12 B)ijkl = (↑12 B)(dxi, dxj, ∂k, ∂l) = B(dxj, ∂k, g
im∂m, ∂l) = gimBj

kml. (3.2.5)

So as expected ↑12 turns the second lower index into the first upper index using the inverse
metric. Now to check that it is the inverse of ↓12 we write using equations (3.2.3) and (3.2.5)

(↑12↓12 A)
ij
kl = gim(↓12 A)

j
kml = gim gmnA

nj
kl = δinA

nj
kl = Aij

kl. (3.2.6)

We give another example to emphasise how natural type changing actually is; in fact it
often occurs in calculations without even being noticed.

3.2.3 Example (Type changing). As in (1.3.24) we consider a (1, s)-tensor field Ā
given as a C∞-multilinear map A : X(M)s → X(M). Then we have (using Ā as in (1.3.24))

(↓11 Ā)(V,X1, . . . , Xs) = Ā(V ♭, X1, . . . , Xs)

= V ♭
(
A(X1, . . . , Xs)

)
= ⟨V,A(X1, . . . , Xs)⟩. (3.2.7)

1This terminology reflects that classical differential geometry was exclusively written in coordinates.
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Finally we point at one peculiar issue in dealing with the coordinate expression for the
Riemann tensor which arises due to historic reasons. Actually the coordinate version of
differential geometry was developed long before the invariant approach and in harmonising
these two the following issue requires some care.

3.2.4 Remark (Coordinate expression of the Riemann tensor). We have written
the coordinate expression of the curvature tensor in 3.1.3 (according to the classical pattern)
as

R∂k∂l(∂j) = Ri
jkl∂i, hence the order of arguments is RXYZ = R(Z,X, Y ). (3.2.8)

Indeed using the convention of (1.3.24) we obtain

Ri
jkl = R̄(dxi, ∂j, ∂k, ∂l) = dxi

(
R(∂j, ∂k, ∂l)

)
. (3.2.9)

The components of the (0, 4)-tensor ↓11 R are then given by

Rijkl = (↓11 R̄)(∂i, ∂j, ∂k, ∂l) = ⟨∂i, R(∂j, ∂k, ∂l)⟩
= ⟨∂i, R∂k∂l(∂j)⟩ = ⟨∂i, Rm

jkl∂m⟩ = gimR
m
jkl, (3.2.10)

where we have used (3.2.7).

Next we turn to the operation of metric contraction. On smooth manifolds we introduced
the contraction Ci

j : T r
s (M) → T r−1

s−1 (M) on page 22. There the ith contravariant index or
slot is contracted with the jth covariant one, i.e., in coordinates

(Ci
jA)

i1...ir−1

j1...js−1
= Ai1...

i
m...ir

j1...m
j
...js
.

On a SRMF we may use the metric to also contract two covariant or two contravariant slots
by first raising respectively lowering the respective index, that is we combine the metric
type changing with the contraction. More precisely let 1 ≤ a < b ≤ s, then for arbitrary r
we define Cab : T r

s (M) → T r
s−2(M) locally by

(CabA)i1......irj1...js−2
:= glmAi1............ir

j1...l
a
...m

b
...js−2

. (3.2.11)

Analogously we define for 1 ≤ a < b ≤ r and for s arbitrary Cab : T r
s (M) → T r−2

s (M)
locally by

(CabA)
i1......ir−2

j1......js
:= glmA

i1...
a
l ...

b
m...ir−2

j1............js
. (3.2.12)

We now have the following compatibility result.

3.2.5 Lemma (Metric contraction and ∇). On a SRMF (M, g) the covariant deriva-
tive as well as the covariant differential commute with type changing and metric contrac-
tion.
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Proof. For the case of the covariant derivative and type changing it suffices to consider
the case ↓a1 since the assertion then follows by permutation for ↓ab and by the following
argument for ↑ab : Let B =↓ab A, then we have

↑ab ∇VB =↑ab ∇V (↓ab A) =↑ab↓ab ∇VA = ∇VA = ∇V ↑ab B. (3.2.13)

Now to consider ↓a1 A, first note that ↓a1 A = Ca
1 (g ⊗ A). Indeed in coordinates we have

(cf. (3.2.3)) Ca
1 (g⊗A)

i1...ir−1

mj1...js
= gmlA

i1...l...ir
j1......js

. By Definition 1.3.22, ∇V is a tensor derivation
which by Definition 1.3.16(ii) commutes with contractions and moreover satisfies the metric
property (∇5) (cf. 1.3.25(iv)), so we obtain

∇V (↓a1 A) = ∇V

(
Ca
1 (g ⊗ A)

)
= Ca

1∇V (g ⊗ A) = Ca
1 (g ⊗∇VA) =↓a1 ∇VA. (3.2.14)

By equations (3.2.11) resp. (3.2.12) metric contraction is just the composition of type
changing and contraction, so ∇V also commutes with this operation.

The analogous assertions for the covariant differential ∇ follow easily from those of ∇V .
We demonstrate this for type changing just in a special case which, however, makes clear
how to proceed in the general case. Let A ∈ T 2

1 (M), then ∇A ∈ T 2
2 (M), ↓11 ∇A ∈ T 1

3 (M)
and we have

(↓11 ∇A)(ω,X, Y, Z) = ∇A(X♭, ω, Y, Z) = ∇ZA(X
♭, ω, Y ) = (↓11 ∇ZA)(ω,X, Y )

=
(
∇Z(↓11 A)

)
(ω,X, Y ) =

(
∇(↓11 A)

)
(ω,X, Y, Z). (3.2.15)

Finally one easily verifies that that ∇ commutes with contractions, so the last claim follows
as above. 2

Now we are finally in a position to introduce the above mentioned differential operators
on SRMFs.

3.2.6 Definition (Gradient). For a function f ∈ C∞(M) we define its gradient grad(f)
(or gradf , for short) as the vector field metrically equivalent to df ∈ Ω1(M), i.e.,

⟨grad(f), X⟩ = df(X) = X(f) for all X ∈ X(M). (3.2.16)

We clearly see that while the differential df of a function is defined on any smooth manifold
one needs a metric to define the gradient. In local coordinates we have df = ∂ifdx

i and so

gradf = gij
∂f

∂xi
∂

∂xj
= ↑11 df = (df)♯, (3.2.17)

since ⟨gij∂if∂j, V k∂k⟩ = ∂ifV
kδik = ∂ifV

i = ∂ifdx
i(V k∂k).

As a simple example we note that on flat space Rn
r we have gradf =

∑
i εi∂if∂i, which on

Rn reduces to the well known formula gradf =
∑

i ∂if∂i.
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3.2.7 Definition (Divergence). For a tensor field A we call a divergence of A every
contraction of the new covariant slot of ∇A with any of its original contravariant slots.

We discuss some special cases. For a vector field V ∈ X(M) the only possibility is divV =
C(∇V ) (cf. 1.3.14), which in coordinates reads using 1.3.9(ii)

divV = C(∇V ) = dxi(∇∂iV ) = dxi
((∂V m

∂xi
+ Γm

ikV
k
)
∂m

)
=
∑
i

(∂V i

∂xi
+ Γi

ikV
k
)
.

(3.2.18)

In the special case of flat space Rn
r we obtain the well-know formula from analysis divV =∑

i ∂iV
i.

3.2.8 Definition (Hessian). The Hesse tensor Hf , or Hessian for short, of a function
f ∈ C∞(M) is defined as the second covariant differential of f , i.e.,

Hf = ∇(∇f). (3.2.19)

3.2.9 Lemma (Hessian explicitly). The Hessian Hf of f ∈ C∞(M) is a symmetric
(0, 2)-tensor field and we have

Hf (X, Y ) = XY f − (∇XY )f = ⟨∇X(gradf), Y ⟩. (3.2.20)

Proof. Since ∇f = df we have by 1.3.18

Hf (X, Y ) = ∇(df)(X, Y ) =
(
∇Y (df)

)
(X)

= Y
(
df(X)

)
− df(∇YX) = Y (Xf)− (∇YX)(f). (3.2.21)

Symmetry now follows from the torsion free condition (∇4), i.e., by XY −Y X = [X, Y ] =
∇XY −∇YX. Finally we have by the metric condition (∇5)

⟨∇X(gradf), Y ⟩ = X⟨gradf, Y ⟩ − ⟨gradf,∇XY ⟩ = XY f −∇XY (f) = Hf (X, Y ).

2

In local coordinates we hence have for the Hessian

Hf
ij = Hf (∂i, ∂j) = ∂i∂jf − (∇∂i∂j)f = ∂i∂jf − Γk

ij∂kf. (3.2.22)

3.2.10 Definition (Laplace). The Laplace-Beltrami operator on a SRMF (M, g) is the
mapping

△ : C∞(M) → C∞(M), △f = div(gradf). (3.2.23)
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More explicitly we have

△f = div(gradf) = C
(
∇(gradf)

)
= C

(
∇(↑11 df)

)
= C

(
↑11 ∇(df)

)
= (C ↑11)Hf = C12(Hf ), (3.2.24)

and we see that the Laplace-Beltrami operator is the metric contraction of the Hessian. In
local coordinates we hence obtain

△f = gijHf
ij = gij(∂i∂jf − Γk

ij∂kf), (3.2.25)

which on flat Rn
r gives △f =

∑
εi∂

2f/∂x2i . Obviously this gives the Laplace operator on
Rn and the wave operator on Minkowski space Rn

1 . This is the reason why on Riemannian
and Lorentzian manifolds △ often is called the Laplace and the wave operator, respectively.
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3.3 The Einstein equations

In this section we introduce the famous Einstein equations, i.e., the fundamental equations
of General Relativity (GR), Albert Einstein’s eminent theory of space, time and gravitation,
which is the currently best available physical description of our universe at large. In
2016 and only briefly after its centennial GR has seen a spectacular success by the direct
observation of gravitational waves emitted from a binary black hole merger. For this
discovery Rainer Weiss, Barry C. Barish and Kip S. Thorne have been awarded with the
2017 Nobel Prize in Physics. Most recently Sir Roger Penrose was awarded with (half of)
the 2020 Nobel Prize in Physics “for the discovery that black hole formation is a robust
prediction of the general theory of relativity”.

The Einstein equations are the so called field equations of GR and link the geometry and,
in particular, the curvature of the spacetime manifold to its energy-matter content. Here
we collect the mathematical prerequisites for their formulation.
We start by introducing the Ricci tensor and the curvature scalar, two ‘curvature quanti-
ties’ derived from the Riemann tensor via contraction.

3.3.1 Definition (Ricci tensor). Let (M, g) be a SRMF with Riemann tensor R. The
Ricci tensor Ric is defined as the contraction C1

3R ∈ T 0
2 (M).

The Ricci tensor’s local coordinates are denoteby by Rij and take the form (cf. page 22)

Rij = Rm
ijm. (3.3.1)

Moreover Ric is symmetric by pair symmetry of the Riemann tensor 3.1.2(iv) since using
Riemannian normal coordinates centered at a point p we have there (cf. 2.1.17(i))

Ric(X, Y ) = (C1
3R)(X, Y ) = R(dxi, X, Y, ∂i)

(3.2.9)
= dxi

(
R(X, Y, ∂i)

)
= εi⟨RY ∂iX, ∂i⟩ = εi⟨RX∂iY, ∂i⟩ = Ric(Y,X). (3.3.2)

Also we note the trace formula Ric(X, Y ) = trace(V 7→ RXV Y ). A SRMF with Ric = 0
is called Ricci flat. Clearly any flat manifold, i.e., with R = 0 is also Ricci flat but the
converse is not true as we shall discuss below and which is essential for GR.
We proceed introducing the curvature scalar or scalar curvature of a SRMF.

3.3.2 Definition (Scalar curvature). The scalar curvature S of the SRMF (M, g) is
defined as the contraction of the Ricci tensor, S = C(Ric) ∈ C∞(M).

Observe that since Ric ∈ T 0
2 (M) the contraction C unambiguously stands for C12, cf.

(3.2.11). In local coordinates we have

S = gijRij = gijRm
ijm. (3.3.3)
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For our further considerations we rely on the following property of the curvature tensor.

3.3.3 Proposition (Second Bianchi identity). For x, y, z ∈ TpM we have

(∇zR)(x, y) + (∇xR)(y, z) + (∇yR)(z, x) = 0. (3.3.4)

Proof. As in the proof of 3.1.2 we may extend x, y, z arbitrarily to vector fields X, Y, Z on
a neighbourhood U of p. In this case we choose these extensions in such a way that their
coefficients are constant w.r.t. some normal coordinates at p. Then again all Lie brackets
vanish on U and moreover by 2.1.17(ii) all Christoffel symbols vanish at p and hence also
all covariant derivatives of X, Y, Z w.r.t. each other vanish at p.
Using the notation used in the proof of 3.1.2(iii) we have to show that S∇ZR(X, Y ) = 0.
Now by the product rule 1.3.18 we have for arbitrary V at p(
(∇ZR)(X, Y )

)
(V ) = ∇Z

(
R(X, Y )V

)
−R(∇ZX︸ ︷︷ ︸

=0

, Y )V −R(X,∇ZY︸ ︷︷ ︸
=0

)V −R(X, Y )(∇ZV )

and so again at p

(∇ZR)(X, Y ) = [∇Z , R(X, Y )] = [∇Z , [∇Y ,∇X ]] (3.3.5)

where we have used (3.1.4). Since the Jacobi identity (cf. [12, 2.2.17(iii)]) holds also for
∇X , the sum over all cyclic permutations of (∇ZR)(X, Y ) vanishes as claimed. 2

3.3.4 Corollary (Divergence of Ricci). We have dS = 2div(Ric).

Proof. By 3.1.3 and 1.3.25(v) we have in coordinates

(∇R)(∂j, ∂k, ∂l, ∂r) = (∇∂rR)∂k∂l(∂j) = Ri
jkl;r∂i, (3.3.6)

which upon using 3.3.3 gives Ri
jkl;r +Ri

jlr;k +Ri
jrk;l = 0. Now interchanging r and k in the

final term (which by 3.1.2(i) causes a sign change) and contracting i with r gives

0 = Rr
jkl;r +Rr

jlr;k −Rr
jkr;l = Rr

jkl;r +Rjl;k −Rjk;l (3.3.7)

where we used 3.2.5, which further leads to

gjkRr
jkl;r + gjkRjl;k − S;l = 0. (3.3.8)

Next we note that Rmjkl = Rjmlk. Indeed by 3.1.2(i),(ii) we find using (3.2.10)

Rjmlk = grjR
r
mlk = ⟨∂j, ∂r⟩Rr

mlk = ⟨∂j, Rr
mlk∂r⟩ = ⟨R∂l∂k(∂m), ∂j⟩

= −⟨R∂k∂l(∂m), ∂j⟩ = ⟨R∂k∂l(∂j), ∂m⟩ = Rmjkl.
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Moreover we have Rr
jkl = grmRmjkl and so (again using 3.2.5)

gjkRr
jkl;r = gjkgrmRmjkl;r = gjkgrmRjmlk;r = grmRk

mlk;r = grmRml;r = Rr
l;r. (3.3.9)

So by (3.3.8) we find

Rr
l;r +Rk

l;k = 2Rr
l;r = S;l. (3.3.10)

Finally since Ric is symmetric (cf. (3.3.2)) we have C13(∇Ric) = C23(∇Ric) = div(Ric),
which in coordinates reads grsRsl;r = Rr

l;r. So (3.3.10) gives 2div(Ric) = ∇S = dS. 2

We now very briefly discuss the basic principles of General Relativity. Naturally any
discussion in the setting of this course has to be superficial and we refer e.g. to [16, Ch. 4]
for a more appropriate account.
The stage of GR is spacetime which is the set of all events (t, x), labelled by a one-
dimensional time coordinate and a three-dimensional space coordinate. Spacetime can be
a model of e.g. the surroundings of a star, our solar system, or our universe as a whole.
Mathematically spacetime is described by a 4-dimensional Lorentzian manifold (M, g),
where the Lorentzian signature is chosen as to implement the causality structure already
present in special relativity.
Now contrary to classical Newtonian physics gravity is not described as a force field on this
manifold M but rather as the curvature of spacetime. This groundbreaking idea, which
Einstein famously called his happiest thought, relies on taking the principle of equivalence
to be the basic building block of the theory. Indeed, due to Galileo’s principle of equiva-
lence, all bodies fall the same in a gravitational field, so gravity can be thought of as being
a ‘property’ of spacetime!
One can also argue why this ’property’ has to be related to curvature. Generalising the
Newtonian idea that bodies which move freely, i.e., without any force acting upon them
move along straight paths, freely falling test bodies in GR should move along geodesics
of spacetime. Now considering test bodies falling freely in a gravitational field of a point
mass in the Newtonian picture one sees that they undergo a relative acceleration, due to
so-called tidal forces. Translated into the spacetime perspective this means that geodesics
focus—and the quantity that focusses geodesics clearly is curvature.
Consequently the curvature of spacetime has to be related to physical forces, or better to all
the the mass and energy it contains. (Mass is equivalent to energy by the famous equation
E = mc2.) Already in classical mechanics and electrodynamics the matter variables (forces,
strain, stress, etc.) are described by a single object, the so-called energy momentum tensor
T , which is a symmetric (0, 2)-tensor field. Moreover T is divergence free and this property
implements energy conservation, another basic principle in all of physics.
So specifically Einstein in 1915 was looking for the correct equation that relates T to the
curvature of spacetime. In a time where Riemannian resp. Lorentzian geometry had by far
not been developed to its present state he first tried several variants of the Ricci curvature
in his attempt to describe the perihelion precession of the planet mercury. However, the
Ricci tensor is not divergence free and so he finally introduced the following quantity.
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3.3.5 Definition (Einstein tensor). Let (M, g) be a Lorentzian manifold. We define
the Einstein tensor as

G := Ric−1

2
S g. (3.3.11)

The essential properties of G are now:

3.3.6 Lemma (Properties of G). The Einstein tensor of a spacetime has the following
properties:

(i) G is a symmetric and divergence free (0, 2)-tensor field.

(ii) Ric = G− 1

2
C(G)g.

Proof. (i) Symmetry of G follows immediately from symmetry of Ric and g. To calculate
the divergence div(Sg) = C13(∇(Sg)) we write

∇(Sg)(X, Y, Z) = ∇Z(Sg)(X, Y ) = ∇Z(Sg(X, Y ))− Sg(∇ZX, Y )− Sg(X,∇ZY )

= (∇ZS) g(X, Y ) + S∇Z(g(X, Y ))− Sg(∇ZX, Y )− Sg(X,∇ZY ).
(3.3.12)

Moreover by (∇5) we have 0 = (∇Zg)(X, Y ) = ∇Z(g(X, Y )) − g(∇ZX, Y ) − g(X,∇ZY )
and so

∇(Sg)(X, Y, Z) = (∇ZS) g(X, Y ) = dS(Z) g(X, Y ) = g ⊗ dS(X, Y, Z). (3.3.13)

Now for convenience proceeding in coordinates we find (∇(Sg))ijk = gij(dS)k = gij∂kS and
hence

div(Sg)j = C13(∇(Sg))j = gkigij
∂S

∂xk
=
∂S

∂xj
= (dS)j. (3.3.14)

So we finally arrive at div(Sg) = dS and so by 3.3.4

div(G) = div(Ric−1

2
Sg) =

1

2
(dS − dS) = 0. (3.3.15)

(ii) We have C(g) = gijgij = δii = dimM = 4, hence by definitions 3.3.2 and 3.3.5
C(G) = C(Ric)− 1/2SC(g) = S − 2S = −S and finally

Ric = G+
1

2
Sg = G− 1

2
C(G)g. (3.3.16)

2

The significance of the previous results lie in the fact that (i) says that in light of the above
discussion G is a formally qualified candidate for the curvature quantity to be equated with
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T , while (ii) guarantees that it is also a sensible one, since it encodes the same information
as Ric. So we finally arrive at:

The Einstein equations. If (M, g) is a spacetime with energy momentum tensor T then

G =
8πN

c4
T. (3.3.17)

Here N = 6.67 · 10−11m3/(kg · s2) is Newton’s gravitational constant and c = 2.99 · 108m/s
is the speed of light in vacuum. Usually one sets N/c4 = 1 which amounts to using so-
called geometric units. In the very important special case of vacuum, i.e., in the absence
of matter, the equations reduce to

Ric = 0, (3.3.18)

since by 3.3.5 and 3.3.6(ii) Ric vanishes iff G vanishes. So vacuum solutions to Einstein’s
equations are Ricci flat but far from (locally) flat, i.e., R = 0, as is exemplified e.g. by
the notorious Schwarzschild metric which is the (unique) spherically symmetric solution of
(3.3.18) and provides the simplest model of a black hole.

Now in a sense General Relativity is the study of solutions of the Einstein equations.
From the coordinate formulae one sees that they form a highly complicated system of
(by symmetries of G) 10 coupled nonlinear (quasilinear, to be precise) partial differential
equations for g. Although there are literally thousands of known exact solutions to (3.3.17)
accompanied by a wealth of deep results in Lorentzian geometry and also recently the global
existence theory of Einstein’s equations has made great advances, it is still fair to say that
one is far from reaching a comprehensive understanding of their full content. So General
Relativity is a very active field of research today, combining many fascinating aspects of
(Lorentzian) geometry and analysis.
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