THE PROBABILITY THAT A CHARACTER VALUE IS ZERO FOR THE SYMMETRIC GROUP

ALEXANDER R. MILLER

School of Mathematics, University of Minnesota, 206 Church St SE, Minneapolis, MN 55455 E-mail address: mill1966@math.umn.edu

INTRODUCTION

Let χ be chosen at random from the irreducible characters of the symmetric group S_n and let g be chosen at random from the group itself. What is the probability that $\chi(g) = 0$? In this short note we give a remarkable asymptotic answer of one. Throughout the paper "at random" means uniformly at random.

Theorem 1. If χ is chosen at random from the irreducible characters of S_n and g is chosen at random from S_n , then $\chi(g) = 0$ with probability $P(S_n) \to 1$ as $n \to \infty$.

It will follow that the same must be true for the alternating group A_n .

Theorem 2. If χ is chosen at random from the irreducible characters of A_n and g is chosen at random from A_n , then $\chi(g) = 0$ with probability $P(A_n) \to 1$ as $n \to \infty$.

We prove these results in Section 1 and make some remarks in Section 2.

1. PROOFS

Theorem 1 is a direct consequence of the Murnaghan–Nakayama rule and two classical results about random partitions and random permutations. We give a second proof without the Murnaghan–Nakayama rule in Section 2.

Recall that a partition of *n* is a sequence of positive integers $\lambda = (\lambda_1, \lambda_2, ..., \lambda_\ell)$ such that $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_\ell$ and $\lambda_1 + \lambda_2 + ... + \lambda_\ell = n$. The Young diagram of λ is the left-justified array with λ_1 boxes in first row, λ_2 boxes in the second row, and so on; see Figure 1(a). The total number of partitions of *n* is denoted by p_n .

FIGURE 1. The (a) diagram, (b) border, and (c) conjugate of (4, 3, 1, 1).

A permutation $g \in S_n$ factors into disjoint cycles, and the cycle lengths determine g up to conjugation. Write K_{λ} for the conjugacy class of g where λ is the

²⁰¹⁰ Mathematics Subject Classification. 20C30.

partition of *n* whose parts are the cycle lengths for *g*. In particular, the number of conjugacy classes (resp. irreducible characters) of S_n is equal to p_n . Write χ^{λ} for the irreducible S_n -character associated to the partition λ of *n* in the usual way [5].

The character values $\chi^{\lambda}(g)$ can be computed using border strips. The border of a partition λ is the set of boxes in the Young diagram that have no southeast neighbor, as shown in Figure 1(b), and a border strip of λ is a connected subset of border boxes whose complementary set of boxes $\lambda \setminus \beta$ is a valid Young diagram. The height ht(β) of a border strip is one less than the number of rows that it occupies. If $g \in S_n$ has a k-cycle x then g = xy for some disjoint $y \in S_{n-k}$ and the Murnaghan–Nakayama rule [5, Thm. 2.4.7] says that

$$\chi^{\lambda}(g) = \sum_{\beta} (-1)^{\operatorname{ht}(\beta)} \chi^{\lambda \setminus \beta}(y)$$

where β runs over all border strips of λ with exactly k boxes. If λ has no border strip of size k then $\chi^{\lambda}(g) = 0$. In particular $\chi^{\lambda}(g) = 0$ if $k \ge \ell(\lambda) + \lambda_1$.

We use the Murnaghan–Nakayama rule in tandem with two other old results to show that $P(S_n)$ tends to one. We use the classical result of Erdős and Lehner [1] which tells us that, if f(n) is any function which tends to infinity with n, then for all but at most $o(p_n)$ (as $n \to \infty$) partitions λ of n the number of parts $\ell(\lambda)$ and the largest part λ_1 satisfy

$$c\sqrt{n}(\log n - f(n)) \le \lambda_1, \ell(\lambda) \le c\sqrt{n}(\log n + f(n)) \tag{1}$$

where *c* is some explicit positive constant. We also use the following result of Goncharov [3] about the number of cycles *m* of an element in S_n :

Prob.
$$\left\{ \alpha < \frac{m - \log n}{\sqrt{2 \log n}} < \beta \right\} \to \pi^{-\frac{1}{2}} \int_{\alpha}^{\beta} e^{-t^2} dt, \qquad n \to \infty.$$

First proof of Theorem 1. Let B(n) be the set of partitions λ of n that satisfy (1) when $f(n) = \log n$, so that $|B(n)|/p_n$ tends to one as n tends to infinity.

Goncharov's result tells us that all but at most o(n!) permutations in S_n have $\log n + o(\log n)$ cycles, so all but at most o(n!) have a cycle of size at least $n/(2 \log n)$.

Let C(n) be the set of elements in S_n that have a cycle of size at least $n/(2 \log n)$. Partitions in B(n) have border strips of size at most $4c\sqrt{n} \log n$, which is smaller than $n/(2 \log n)$ for *n* sufficiently large, so by the Murnaghan–Nakayama rule

$$P(S_n) \ge \frac{|B(n)||C(n)|}{p_n n!}$$

for *n* sufficiently large, and the right side tends to 1 by the previous paragraphs. \Box

Recall the usual construction of the irreducible characters of A_n by restricting down from S_n . Let λ be a partition of n and let λ' be the conjugate partition, so that the Young diagram for λ' is the transpose of the diagram for λ ; see Figure 1(c). We say that λ is self-conjugate if $\lambda = \lambda'$. Then the following hold [5, Thm. 2.5.7]:

- (i) If $\lambda \neq \lambda'$ then the restrictions of χ^{λ} and $\chi^{\lambda'}$ to A_n are equal and irreducible.
- (ii) If $\lambda = \lambda'$ then the restriction of χ^{λ} to A_n is a sum of two distinct irreducible characters.
- (iii) Each irreducible character of A_n arises in this way from a unique pair λ , λ' .

Proof of Theorem 2. First note that at most $o(p_n)$ partitions of n are self-conjugate; a well-known result [5, p. 67] says that the number of self-conjugate partitions of n equals the number of partitions of n into distinct odd parts, and there are at most $o(p_n)$ of the latter because there are at most $o(p_n)$ partitions of n in total that have fewer than \sqrt{n} parts by Erdős–Lehner with $f(n) = \log \log n$ in (1) for example.

Write $Irr(S_n)$ as the disjoint union $X_1 \cup X_2$ where X_1 is the set irreducible characters associated to self-conjugate partitions of n and let $Irr(A_n) = Y_1 \cup Y_2$ be the corresponding partition of $Irr(A_n)$ according to (i)–(iii) above, so that the maps $Y_1 \rightarrow X_1$ and $X_2 \rightarrow Y_2$ given by induction and restriction are double covers. Then $|X_1|/|Irr(S_n)|$ and $|Y_1|/|Irr(A_n)| \rightarrow 0$ as $n \rightarrow \infty$.

For $X \subseteq Irr(G)$ and $S \subseteq G$ write P(X, S) for the proportion of pairs (χ, g) in $X \times S$ that satisfy $\chi(g) = 0$. Theorem 1 says $P(Irr(S_n), S_n) \to 1$ (as $n \to \infty$), so by the previous paragraph $P(X_2, S_n) \to 1$, and since A_n covers half of S_n it follows that $P(X_2, A_n) \to 1$. Since $P(X_2, A_n) = P(Y_2, A_n)$ by (i) and (iii) we thus have that $P(Y_2, A_n) \to 1$. Hence $P(Irr(A_n), A_n) \to 1$ by the previous paragraph. \Box

2. REMARKS

2.1. Empirical evidence suggests that many other groups have a high proportion of character values equal to zero as well, and one might conjecture that the following question has a positive answer, perhaps even for a wider class of groups. For a finite group *G* write P(G) for the probability that $\chi(g) = 0$ when χ is chosen at random from the irreducible characters and *g* is chosen at random from the group.

Question 1. Let P_{ϵ} be the proportion of finite simple groups G of size less than n which satisfy $P(G) > 1 - \epsilon$. Then is it true that for every $\epsilon > 0$ one has that $P_{\epsilon} \rightarrow 1$ as $n \rightarrow \infty$?

It would be interesting to show that $P(G) > \epsilon$ with probability $\rightarrow 1$ as $n \rightarrow \infty$ even for small ϵ . The following estimate for P(G) is a direct consequence of Gallagher's estimate [2, p. 127] for the number of zeros in a given column of a character table. We give a proof of Proposition 3 for the reader's convenience, then we use the proposition to prove Theorem 1 without appealing to Murnaghan–Nakayama.

Proposition 3. Let Ω be a set of classes of a finite group G. Then

$$P(G) \ge Q(G, \Omega) - R(G, \Omega), \tag{2}$$

where $Q(G, \Omega)$ is the proportion of G covered by Ω , and $R(G, \Omega)$ is the proportion of classes which belong to Ω . Moreover, the right-hand side of (2) is largest when Ω is the set of larger than average classes.

Proof. The character values $\chi(g)$ for *G* are sums of roots of unity lying in a cyclotomic extension E/\mathbb{Q} whose Galois group \mathscr{G} is abelian and commutes with complex conjugation, so if the algebraic integer $|\chi(g)|^2$ is positive then it is *totally positive* in the sense that $\sigma(|\chi(g)|^2)$ is positive for every embedding $\sigma : E \hookrightarrow \mathbb{C}$. Let Av : $E \to \mathbb{C}$ denote the average of the embeddings $\sigma \in \mathscr{G}$. If $\chi(g)$ is not zero then the product $\prod \sigma(|\chi(g)|^2)$ over all $\sigma \in \mathscr{G}$ is at least one because it is a nonzero rational algebraic integer. Hence by the theorem of arithmetic and geometric means $\operatorname{Av}(|\chi(g)|^2) \ge 1$ for $\chi(g) \neq 0$. (See for example [2, p. 127], [4, p. 40], [6, p. 37].)

For $g \in G$, the usual column orthogonality relation [4, p. 21] tells us that $\sum |\chi(g)|^2 = |C_G(g)|$ where the sum is over all $\chi \in Irr(G)$ and $C_G(g)$ is the centralizer of g. Hence

$$\sum_{\chi} \operatorname{Av}\left(|\chi(g)|^2\right) = |C_G(g)|.$$

The number of terms on the left side is the total number of conjugacy classes |Cl(G)|, and $Av(|\chi(g)|^2)$ is at least one if $\chi(g)$ is not zero, so at least $|Cl(G)| - |C_G(g)|$ irreducible characters vanish at g, and thus at every conjugate of g. This is Gallagher's result [2, p. 127], and it implies that

$$P(G) \ge \frac{1}{|\operatorname{Cl}(G)| |G|} \sum_{K \in \Omega} \left(|\operatorname{Cl}(G)| - |C_G(g)| \right) |K|$$

where $g \in K$. Rewriting $|C_G(g)|$ as |G|/|K| gives

$$P(G) \ge \sum_{K \in \Omega} |K|/|G| - |\Omega|/|\operatorname{Cl}(G)|.$$

Remark 1. Averaging in the proof of Proposition 3 is superfluous when the character values for *G* are rational integers, which happens if and only if each $g \in G$ is conjugate to g^m for all *m* relatively prime to |G| (see [4, p. 31]), as in the case when *G* is S_n . We now use Proposition 3 with $G = S_n$ to prove Theorem 1 directly from the above results of Erdős–Lehner and Goncharov:

Second proof of Theorem 1. Let Ω_n be the set of S_n -classes K_{λ} such that the largest part of λ is greater than $2c\sqrt{n}\log n$, so that Erdős–Lehner with $f(n) = \log n$ in (1) tells us that $R(S_n, \Omega_n) \to 0$ as $n \to \infty$.

To see that $Q(S_n, \Omega_n) \to 1$ as $n \to \infty$ recall from the first proof of Theorem 1 that Goncharov's result implies that all but at most o(n!) elements of S_n have a cycle of size at least $n/(2 \log n)$. Hence for *n* sufficiently large, all but at most o(n!) elements of S_n have a cycle greater than $2c \sqrt{n} \log n$ as *n* tends to infinity.

Remark 2. Proposition 3 used $\operatorname{Av}(|\chi(g)|^2) \ge 1$ for nonzero $\chi(g)$. A result of [7] Siegel tells us that in fact $\operatorname{Av}(|\chi(g)|^2) \ge 3/2$ if $|\chi(g)| \ne 0, 1$; see [6, p. 37] and cf. [4, p. 46]. The stronger inequality gives a slightly better estimate for P(G).

2.2. We also ask about choosing $\chi(g)$ at random from the character table of S_n .

Question 2. Let χ be chosen at random from the irreducible characters of S_n and let K be chosen at random from the conjugacy classes of S_n . What can be said about the probability that $\chi(g_K) = 0$ as $n \to \infty$? (Here $g_K \in K$ is arbitrary.)

One might conjecture that the probability converges to 1/e, or perhaps even 1/3. It would also be interesting then to investigate similar asymptotic questions about the nonzero entries. For example, we ask the following.

Question 3. Does the ratio of positive to negative entries of the character table of S_n tend to one as n tends to infinity?

Acknowledgements. I thank the referee for helpful comments and for suggesting that I include the Murnaghan–Nakayama rule.

CHARACTER ZEROS

References

- 1. P. Erdős and J. Lehner, The distribution of the number of summands in the partitions of a positive integer. *Duke Math. J.* 8 (1941) 335–345.
- 2. P. X. Gallagher, Group characters and commutators. Math. Z. 79 (1962) 122-126.
- 3. V. L. Goncharov, Sur la distribution des cycles dans les permutations. C. R. (Doklady) Acad. Sci. URSS (N.S.) 35 (1942) 267–269.
- 4. I. M. Isaacs, Character Theory of Finite Groups. Dover, New York, 1994.
- 5. G. James and A. Kerber, *The Representation Theory of the Symmetric Group*. Encyclopedia of Mathematics and its Applications, Vol. 16, Addison–Wesley, Reading, MA, 1981.
- 6. J.-P. Serre, Lectures on $N_X(p)$. A. K. Peters/CRC Press, 2012.
- 7. C. L. Siegel, The trace of totally positive and real algebraic integers. Ann. of Math. 46 (1945) 302–312.