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INTRODUCTION

Let � be chosen at random from the irreducible characters of the symmetric group Sn

and let g be chosen at random from the group itself. What is the probability that

�.g/ D 0? In this short note we give a remarkable asymptotic answer of one.

Throughout the paper “at random” means uniformly at random.

Theorem 1. If � is chosen at random from the irreducible characters of Sn and g is

chosen at random from Sn, then �.g/ D 0 with probability P.Sn/ ! 1 as n ! 1.

It will follow that the same must be true for the alternating group An.

Theorem 2. If � is chosen at random from the irreducible characters of An and g is

chosen at random from An, then �.g/ D 0 with probability P.An/ ! 1 as n ! 1.

We prove these results in Section 1 and make some remarks in Section 2.

1. PROOFS

Theorem 1 is a direct consequence of the Murnaghan–Nakayama rule and two clas-

sical results about random partitions and random permutations. We give a second

proof without the Murnaghan–Nakayama rule in Section 2.

Recall that a partition of n is a sequence of positive integers � D .�1; �2; : : : ; �`/

such that �1 � �2 � : : : � �` and �1 C �2 C : : : C �` D n. The Young diagram

of � is the left-justified array with �1 boxes in first row, �2 boxes in the second row,

and so on; see Figure 1(a). The total number of partitions of n is denoted by pn.

(a) (b) (c)

FIGURE 1. The (a) diagram, (b) border, and (c) conjugate of .4; 3; 1; 1/.

A permutation g 2 Sn factors into disjoint cycles, and the cycle lengths deter-

mine g up to conjugation. Write K� for the conjugacy class of g where � is the
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partition of n whose parts are the cycle lengths for g. In particular, the number of

conjugacy classes (resp. irreducible characters) of Sn is equal to pn. Write �� for

the irreducible Sn-character associated to the partition � of n in the usual way [5].

The character values ��.g/ can be computed using border strips. The border of a

partition � is the set of boxes in the Young diagram that have no southeast neighbor,

as shown in Figure 1(b), and a border strip of � is a connected subset of border boxes

whose complementary set of boxes �nˇ is a valid Young diagram. The height ht.ˇ/

of a border strip is one less than the number of rows that it occupies. If g 2 Sn has a

k-cycle x then g D xy for some disjoint y 2 Sn�k and the Murnaghan–Nakayama

rule [5, Thm. 2.4.7] says that

��.g/ D
X

ˇ
.�1/ht.ˇ/��nˇ .y/

where ˇ runs over all border strips of � with exactly k boxes. If � has no border

strip of size k then ��.g/ D 0. In particular ��.g/ D 0 if k � `.�/ C �1.

We use the Murnaghan–Nakayama rule in tandem with two other old results to

show that P.Sn/ tends to one. We use the classical result of Erdős and Lehner [1]

which tells us that, if f .n/ is any function which tends to infinity with n, then for

all but at most o.pn/ (as n ! 1) partitions � of n the number of parts `.�/ and the

largest part �1 satisfy

c
p

n.logn � f .n// � �1; `.�/ � c
p

n.logn C f .n// (1)

where c is some explicit positive constant. We also use the following result of

Goncharov [3] about the number of cycles m of an element in Sn:

Prob:

(

˛ <
m � logn
p

2 logn
< ˇ

)

! �� 1

2

Z ˇ

˛

e�t2

dt; n ! 1:

First proof of Theorem 1. Let B.n/ be the set of partitions � of n that satisfy (1)

when f .n/ D logn, so that jB.n/j=pn tends to one as n tends to infinity.

Goncharov’s result tells us that all but at most o.nŠ/ permutations in Sn have

lognCo.logn/ cycles, so all but at most o.nŠ/ have a cycle of size at least n=.2 logn/.

Let C.n/ be the set of elements in Sn that have a cycle of size at least n=.2 logn/.

Partitions in B.n/ have border strips of size at most 4c
p

n logn, which is smaller

than n=.2 log n/ for n sufficiently large, so by the Murnaghan–Nakayama rule

P.Sn/ � jB.n/jjC.n/j
pnnŠ

for n sufficiently large, and the right side tends to 1 by the previous paragraphs. �

Recall the usual construction of the irreducible characters of An by restricting

down from Sn. Let � be a partition of n and let �0 be the conjugate partition, so that

the Young diagram for �0 is the transpose of the diagram for �; see Figure 1(c). We

say that � is self-conjugate if � D �0. Then the following hold [5, Thm. 2.5.7]:

(i) If � ¤ �0 then the restrictions of �� and ��0

to An are equal and irreducible.

(ii) If � D �0 then the restriction of �� to An is a sum of two distinct irreducible

characters.

(iii) Each irreducible character of An arises in this way from a unique pair �; �0.
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Proof of Theorem 2. First note that at most o.pn/ partitions of n are self-conjugate;

a well-known result [5, p. 67] says that the number of self-conjugate partitions of

n equals the number of partitions of n into distinct odd parts, and there are at most

o.pn/ of the latter because there are at most o.pn/ partitions of n in total that have

fewer than
p

n parts by Erdős–Lehner with f .n/ D log logn in (1) for example.

Write Irr.Sn/ as the disjoint union X1 [ X2 where X1 is the set irreducible char-

acters associated to self-conjugate partitions of n and let Irr.An/ D Y1 [ Y2 be

the corresponding partition of Irr.An/ according to (i)–(iii) above, so that the maps

Y1 ! X1 and X2 ! Y2 given by induction and restriction are double covers. Then

jX1j=jIrr.Sn/j and jY1j=jIrr.An/j ! 0 as n ! 1.

For X � Irr.G/ and S � G write P.X; S/ for the proportion of pairs .�; g/ in

X � S that satisfy �.g/ D 0. Theorem 1 says P.Irr.Sn/; Sn/ ! 1 (as n ! 1), so

by the previous paragraph P.X2; Sn/ ! 1, and since An covers half of Sn it follows

that P.X2; An/ ! 1. Since P.X2; An/ D P.Y2; An/ by (i) and (iii) we thus have

that P.Y2; An/ ! 1. Hence P.Irr.An/; An/ ! 1 by the previous paragraph. �

2. REMARKS

2.1. Empirical evidence suggests that many other groups have a high proportion of

character values equal to zero as well, and one might conjecture that the following

question has a positive answer, perhaps even for a wider class of groups. For a finite

group G write P.G/ for the probability that �.g/ D 0 when � is chosen at random

from the irreducible characters and g is chosen at random from the group.

Question 1. Let P� be the proportion of finite simple groups G of size less than

n which satisfy P.G/ > 1 � �. Then is it true that for every � > 0 one has that

P� ! 1 as n ! 1?

It would be interesting to show that P.G/ > � with probability ! 1 as n ! 1
even for small �. The following estimate for P.G/ is a direct consequence of Gal-

lagher’s estimate [2, p. 127] for the number of zeros in a given column of a character

table. We give a proof of Proposition 3 for the reader’s convenience, then we use

the proposition to prove Theorem 1 without appealing to Murnaghan–Nakayama.

Proposition 3. Let � be a set of classes of a finite group G. Then

P.G/ � Q.G; �/ � R.G; �/; (2)

where Q.G; �/ is the proportion of G covered by �, and R.G; �/ is the proportion

of classes which belong to �. Moreover, the right-hand side of (2) is largest when

� is the set of larger than average classes.

Proof. The character values �.g/ for G are sums of roots of unity lying in a cyclo-

tomic extension E=Q whose Galois group G is abelian and commutes with complex

conjugation, so if the algebraic integer j�.g/j2 is positive then it is totally posi-

tive in the sense that �.j�.g/j2/ is positive for every embedding � W E ,! C. Let

Av W E ! C denote the average of the embeddings � 2 G . If �.g/ is not zero then

the product
Q

�.j�.g/j2/ over all � 2 G is at least one because it is a nonzero ra-

tional algebraic integer. Hence by the theorem of arithmetic and geometric means

Av.j�.g/j2/ � 1 for �.g/ ¤ 0. (See for example [2, p. 127], [4, p. 40], [6, p. 37].)
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For g 2 G, the usual column orthogonality relation [4, p. 21] tells us that
P

j�.g/j2 D jCG.g/j where the sum is over all � 2 Irr.G/ and CG.g/ is the

centralizer of g. Hence
X

�
Av

�

j�.g/j2
�

D jCG.g/j:

The number of terms on the left side is the total number of conjugacy classes jCl.G/j,
and Av.j�.g/j2/ is at least one if �.g/ is not zero, so at least jCl.G/j�jCG.g/j irre-
ducible characters vanish at g, and thus at every conjugate of g. This is Gallagher’s

result [2, p. 127], and it implies that

P.G/ � 1

jCl.G/j jGj
X

K2�

.jCl.G/j � jCG.g/j/ jKj

where g 2 K. Rewriting jCG.g/j as jGj=jKj gives

P.G/ �
X

K2�
jKj=jGj � j�j=jCl.G/j: �

Remark 1. Averaging in the proof of Proposition 3 is superfluous when the char-

acter values for G are rational integers, which happens if and only if each g 2 G is

conjugate to gm for all m relatively prime to jGj (see [4, p. 31]), as in the case when
G is Sn. We now use Proposition 3 with G D Sn to prove Theorem 1 directly from

the above results of Erdős–Lehner and Goncharov:

Second proof of Theorem 1. Let �n be the set of Sn-classes K� such that the largest

part of � is greater than 2c
p

n logn, so that Erdős–Lehner with f .n/ D logn in (1)

tells us that R.Sn; �n/ ! 0 as n ! 1.

To see that Q.Sn; �n/ ! 1 as n ! 1 recall from the first proof of Theorem 1

that Goncharov’s result implies that all but at most o.nŠ/ elements of Sn have a

cycle of size at least n=.2 logn/. Hence for n sufficiently large, all but at most o.nŠ/

elements of Sn have a cycle greater than 2c
p

n logn as n tends to infinity. �

Remark 2. Proposition 3 used Av.j�.g/j2/ � 1 for nonzero �.g/. A result of [7]

Siegel tells us that in fact Av.j�.g/j2/ � 3=2 if j�.g/j ¤ 0; 1; see [6, p. 37] and

cf. [4, p. 46]. The stronger inequality gives a slightly better estimate for P.G/.

2.2. We also ask about choosing �.g/ at random from the character table of Sn.

Question 2. Let � be chosen at random from the irreducible characters of Sn and

let K be chosen at random from the conjugacy classes of Sn. What can be said

about the probability that �.gK/ D 0 as n ! 1? (Here gK 2 K is arbitrary.)

One might conjecture that the probability converges to 1=e, or perhaps even 1=3.

It would also be interesting then to investigate similar asymptotic questions about

the nonzero entries. For example, we ask the following.

Question 3. Does the ratio of positive to negative entries of the character table of

Sn tend to one as n tends to infinity?
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