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ABSTRACT. If � and � are two non-empty Young diagrams with the same number of

squares, and � and � are obtained by dividing each square into d 2 congruent squares,

then the corresponding character value ��.�/ is divisible by dŠ.

1. Introduction

For any partition � D 1m12m2 : : : nmn of an integer n, let �� be the corresponding

irreducible character of the symmetric group Sn, let ��.�/ be the value at any � 2 Sn

of cycle type �, and, fixing once and for all a positive integer d , define partitions

d:� D d m1.2d/m2 : : : .nd/mn ; � D d dm1.2d/dm2 : : : .nd/dmn ;

so d:� is obtained by scaling the parts of �, and � is obtained by subdividing the squares

of the Young diagram of �. The purpose of this paper is to prove:

Theorem 1. For any two partitions � and � of a positive integer,

(1.1) ��.�/ � 0 .mod dŠ/:

More generally, for any partition � of a positive integer n, and any partition � of dn,

(1.2) ��.d:�/ � 0 .mod dŠ/:

For any two partitions � and � of a positive integer not divisible by d ,

(1.3) ��.d 2:�/ D 0:

Explicit results like these are rare. Previous results include J. McKay’s characteriza-

tion of partitions � of n satisfying ��.1n/ � 0 .mod 2/ [10], I. G. Macdonald’s gen-

eralization for ��.1n/ � 0 .mod p/ [8], the corollary of Murnaghan–Nakayama that

��.�/ D 0 under certain conditions involving hook lengths [9], and the relation be-

tween ordinary and modular vanishing given by the fact that Frobenius’ formula for

��.�/ [4] implies, for any prime p, that ��.�/ � ��.�/ .mod p/ whenever � can be

obtained from � by breaking some part into p equal parts.

There are also general results of Burnside, J. G. Thompson, and P. X. Gallagher,

with Burnside proving that zeros exist for nonlinear irreducible characters of a finite

group [1], J. G. Thompson modifying Burnside’s argument with a result of C. L. Siegel

[15] to show that each irreducible character is zero or root of unity on more than a

third of the group [7], and P. X. Gallagher proving similarly that more than a third of

the irreducible characters are zero or root of unity on a larger than average class [5].

For large symmetric groups Sn it was shown a few years ago [11], using estimates of

Erdős–Lehner [3] and Goncharoff [6], that �.�/ D 0 for all but an o.1/ proportion

of pairs �; � 2 Irr.Sn/ � Sn, and conjectured [12] that, for any prime p, ��.�/ � 0

.mod p/ for all but an o.1/ proportion of pairs of partitions �; � of n. Theorem 1 with

d � p implies ��.�/ � 0 .mod p/ for all pairs of partitions �; � of n.
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We prove (1.1) and (1.2) by showing that in the Murnaghan–Nakayama formula for

computing ��.d:�/ as a weighted sum over certain rim hook tableaux, the relevant rim

hook tableaux admit an action of Sd that is both free and weight-preserving. This is

done by first translating from rim hook tableaux to some new objects we call cascades,

which are a matrix analogue of Comét’s classical one-line binary notation for partitions,

and which can be viewed as collections of lattice paths with weight defined in terms

of crossings. As a benefit of independent interest, we obtain a lattice-path version of

Murnaghan–Nakayama in Proposition 1. Then in Theorem 2 we establish an explicit

weight-preserving free action of Sd on cascades. As a corollary we obtain (1.1) and

(1.2), while (1.3) will come from Proposition 1.

2. Preliminaries

By partition of an integer n � 0 we mean an integer sequence � D .�1; �2; : : : ; �l/

satisfying �1 � �2 � : : : � �l � 1 and �1C�2C: : :C�l D n. We say � has size n with

l parts, writing j�j D n and `.�/ D l . The alternative shorthand � D 1m12m2 : : : nmn

means � is the partition with m1 1’s, m2 2’s, and so on, e.g. .4; 2; 1; 1/ D 122141.

We identify � with its shape or Young diagram, i.e. the left-justified array with �1

squares in the first row, �2 squares in the second row, and so on, e.g. the partition

.8; 6; 4; 3/ is identified with the following shape:

By rim hook � of � we mean the union of a non-empty sequence of squares in � such

that each square is directly to the left or directly below the previous square and � n � is

a Young diagram, e.g. the following is a rim hook of size 7 in .8; 6; 4; 3/:

By rim hook tableau T we mean a labeling of the squares of a non-empty Young

diagram � with integers 1; 2; : : : ; m such that the squares with label � i form a Young

diagram Ti and, for 1 � i � m, the squares labeled i form a (non-empty) rim hook of

size ˛i in Ti . We say T has shape � and content ˛ D .˛1; ˛2; : : : ; ˛m/, we write

T D Tab.T1; T2; : : : ; TmC1/;

so T1 D � and TmC1 D ;, and we define the weight of T by

(2.1) wt.T / D

m
Y

iD1

.�1/#frows of T occupied by ig�1:
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An example rim hook tableau of shape .8; 6; 4; 3/ and content .4; 4; 6; 3; 2; 2/ is

6 5 3 3 2 1 1 1

6 5 3 2 2 1

4 4 3 2

4 3 3

which has weight .�1/2�1C3�1C4�1C2�1C2�1C2�1.

Denoting by T .�; ˛/ the set of all rim hook tableaux of shape � and content ˛ D

.˛1; ˛2; : : : ; ˛m/, the mapping T 7! .T1; T2; : : : ; TmC1/ takes T .�; ˛/ bijectively onto

the set of all partition sequences � D �1; �2; : : : ; �mC1 D ; in which each succeeding

�i is obtained from the previous partition �i�1 by removing a rim hook of size ˛i�1, so

in this way rim hook tableaux serve as shorthand for the various ways of going from �

to ; by successively removing rim hooks of prescribed size.

The Murnaghan–Nakayama formula [13, 14] gives, for any two partitions � and � of

a positive integer, and any sequence ˛ that can be rearranged to �,

(2.2) ��.�/ D
X

T 2T .�;˛/

wt.T /:

3. Cascades

By the word of a partition � we mean the binary sequence w.�/ obtained from �

by writing 0 under each column, 1 alongside each row, and reading clockwise, e.g. the

word of .4; 2/ is 001001:
1

10 0

0 0

By the shape of a binary sequence ˇ D .ˇ1; ˇ2; : : : ; ˇk/ we mean the partition

sh.ˇ/ D 1m12m2 : : :

where mi is the number of 1’s in ˇ with exactly i 0’s to the left, e.g. both 001001 and

10010010 have shape .4; 2/. The word of a non-empty partition � is the unique binary

sequence of shape � that starts with 0 and ends with 1; the word of the empty partition

is the empty sequence.

The standard fact that we require goes back to Comét in the 1950’s (cf. [2]) and can

be stated as follows:

Lemma 1. For any finite binary sequence ˇ and integer k, the mapping ˇ0 7! sh.ˇ0/

takes B, the set of ˇ0 obtainable from ˇ by swapping a 0 with a right-lying 1 exactly

k positions away, bijectively onto the set of shapes obtainable from sh.ˇ/ by remov-

ing a rim hook of size k, and moreover, the number of rows occupied by the rim hook

sh.ˇ/ n sh.ˇ0/ equals the number of 1’s lying weakly between the swapped 0-1 pair. �

For example, if � is the partition .8; 6; 4; 3/ and � is the rim hook of � shown in ÷2,

and if ˇ D 11000101001001, so that sh.ˇ/ D �, then the shape � n � corresponds to

ˇ0 D 11010101000001.
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3.1. Our main tool is the following:

Definition 1. A cascade is a binary matrix C with rows Ci D .Ci1; Ci2; : : : ; Cil/,

1 � i � m, such that

1) C11 D 0 and C1l D 1,

2) for each row Ci with 1 � i � m � 1, there is a unique pair ai < bi such that

Ciai
D 0; Cibi

D 1; CiC1 D .Ci�.1/; Ci�.2/; : : : ; Ci�.l// for � D �C;i D .ai bi/;

3) Cm D .1; 1; : : : ; 1; 0; 0; : : : ; 0/.

The shape of C is the shape of C1.

The content of C is the sequence

.b1 � a1; b2 � a2; : : : ; bm�1 � am�1/:

A crossing in C is a pair .i; j / such that

1 � i � m � 1; Cij D 1; and ai < j < bi :

The weight of C is defined by

wt.C / D .�1/cr.C /; where cr.C / D #fcrossings in C g:

The permutation associated to C is

�C D

�

1 2 : : : k

�C .i1/ �C .i2/ : : : �C .ik/

�

;

where i1 < i2 < : : : < ik are the positions of the 1’s in the first row of C , and

�C D �C;m�1�C;m�2 : : : �C;1:

We denote by C.�; ˛/ the set of cascades of shape � and content ˛.

Lemma 2. The mapping

(3.1) ‚ W C 7! Tab.sh.C1/; sh.C2/; : : : ; sh.C#rows.C ///

takes the set of cascades bijectively onto the set of rim hook tableaux, and it preserves

shape, content, and weight.

Proof. This follows from Comét’s observation in Lemma 1, the standard facts in ÷2

about rim hook tableaux, and the fact that there is a unique binary sequence ˇ of a given

non-empty shape such that ˇ starts with 0 and ends with 1. In particular,

(3.2) ‚�1 W T 7! Mat.w�.T1/; w�.T2/; w�.T3/; : : : ; w�.TmC1//;

where � D sh.T1/, m is the largest label in T , w�.Ti/ is the sequence obtained from

w.Ti/ by appending to the start `.�/ � `.Ti/ many 1’s and to the end �1 � Ti1 many 0’s,

and where Mat.r1; r2; : : : ; rk/ with ri D .ri1; ri2; : : :/ means the matrix .rij /. �
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Example. Consider the following cascade C :

(3.3)

0

B

B

B

B

B

B

B

B

@

0 0 0 1 0 1 0 0 1 0 0 1

0 0 0 1 0 1 0 1 1 0 0 0

0 0 0 1 1 1 0 1 0 0 0 0

0 1 0 1 1 1 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 0

1 1 0 1 1 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

A

The shape is .8; 6; 4; 3/, the content is .4; 4; 6; 3; 2; 2/, the weight is .�1/1C2C3C1C1C1.

The row shapes sh.Ck/ are:

The corresponding rim hook tableau Tab.sh.C1/; sh.C2/; : : : ; sh.C7// is:

6 5 3 3 2 1 1 1

6 5 3 2 2 1

4 4 3 2

4 3 3

The associated permutation �C is the transposition .2 4/ in S4.

3.2. We define a path in a cascade C D .C1; C2; : : : ; Cm/ to be a sequence of column

positions p D .p1; p2; : : : ; pm/, one position pi for each row Ci , such that

C1p1
D 1 and piC1 D �C;i.pi/ for 1 � i � m � 1:

We say p starts at p1 and ends at pm. There is exactly one path for each 1 in the first

row of C , and we agree to always number the paths p1; p2; p3; : : : according to relative

start position, so that p1
1 < p2

1 < p3
1 < : : : . With this convention,

(3.4) �C .i/ D pi
m; i D 1; 2; : : : :

By a crossing of paths p; p0 in C we mean a pair .i; j / with 1 � i � m � 1 such that

pi D j; pi < p0
i ; and p0

iC1 < piC1:

Lemma 3. For a cascade C with paths p1; p2; : : : ; pk ,

(3.5) fcrossings in C g D
P[

1�i<j �k

˚

crossings of pi and pj
	

:

Proof. By comparing definitions. �
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3.3. It is often convenient to visualize a cascade by constructing an associated graph.

Definition 2. The diagram or graph of a cascade is obtained by replacing each 1 by a

node, each 0 by an empty space “ � ”, and then connecting any two nodes x; y that occupy

adjacent rows and either share a single column or occupy the two columns where the

two rows differ.

Example. The diagram of the cascade in (3.3) is:

The paths of the cascade are

p1 D .4; 4; 4; 4; 1; 1; 1/; p2 D .6; 6; 6; 6; 6; 4; 4/;

p3 D .9; 9; 5; 5; 5; 5; 3/; p4 D .12; 8; 8; 2; 2; 2; 2/:

There are 9 crossings in total, e.g. p3 and p4 cross 3 times. And the permutation

�C D

�

1 2 3 4

1 4 3 2

�

can be read off from the diagram by numbering the nodes in the top row, from left to

right, 1; 2; : : : , doing the same in the bottom row, and then chasing through the diagram

from top to bottom:

1 2 3 4

1 2 3 4

3.4. Denote by sgn.�/ the sign of a permutation � , so that

sgn.�/ D .�1/�.�/; �.�/ D #fpairs i < j with �.j / < �.i/g:

Lemma 4. For any cascade C , we have

(3.6) wt.C / D sgn.�C /:
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Proof. Consider the paths p1; p2; : : : ; pk in C D .C1; C2; : : : ; Cm/, numbered so �C .i/ D

pi
m, and let cr.pi ; pj / be the number of crossings of pi and pj , so by (3.5),

(3.7) cr.C / D
X

1�i<j �k

cr.pi ; pj /:

Fix a pair i < j , so pi starts left of pj . If �C .j / < �C .i/, then pi ends to the right

of pj , so pi and pj must have an odd number of crossings; if �C .i/ < �C .j /, then pi

ends to the left of pj , so pi and pj must have an even number of crossings. Hence

(3.8) �.�C / �
X

1�i<j �k

cr.pi ; pj / .mod 2/:

By (3.7) and (3.8), we have cr.C / � �.�C / .mod 2/, so wt.C / D sgn.�C /. �

As a corollary, we have the following useful reformulation of Murnaghan–Nakayama:

Proposition 1. For any two partitions � and � of a positive integer, and any sequence

˛ that can be rearranged to �, we have

(3.9) ��.�/ D
X

C 2C.�;˛/

wt.C /; wt.C / D .�1/cr.C / D sgn.�C /;

where C.�; ˛/ is the set of cascades of shape � and content ˛.

Proof. By Lemmas 2 and 4. �

4. Proof of Theorem 1

An action on cascades. The main object of this section is to prove the following:

Theorem 2. Let � be a partition of a positive integer n, so � is a partition of d 2n, and

let ˛ D .˛1; ˛2; : : : ; ˛m/ be a sequence of positive d -divisible integers summing to d 2n.

Define a pairing �:C on Sd � C.�; ˛/ by

(4.1) .�; C / 7! Cˆ.�/�1;

where ˆ.�/ is the block-diagonal matrix

ˆ.�/ D

0

B

B

@

�.�/

�.�/
: : :

�.�/

1

C

C

A

with �1 C `.�/ copies of the d -by-d permutation matrix �.�/ D .ıi�.j // on the diago-

nal.

(i) The pairing �:C is an action of Sd on C.�; ˛/,

(ii) the action is free,

(iii) the action is weight-preserving, i.e. wt.�:C / D wt.C / for all � and C .
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Proof. Assume C.�; ˛/ ¤ ;. Let l D �1 C `.�/ and L D dn C d`.�/.

The word of � starts with 0, ends with 1, and consists of �1 0’s and `.�/ 1’s, so the

sequence w.�/ has length l . The word of � is obtained by replacing in w.�/ each 0 by

d consecutive 0’s and each 1 by d consecutive 1’s, so w.�/ starts with d 0’s, ends with

d 1’s, has length L, and writing w.�/ D .w1; w2; : : : ; wL/,

(4.2) w1Cdk D w2Cdk D : : : D wdCdk; 0 � k � L=d � 1:

In particular, each C 2 C.�; ˛/ has L columns, so the matrix multiplication on the

right-hand side of (4.1) makes sense, and multiplying C on the right by ˆ.�/�1 per-

mutes the first d columns of C , the next d columns of C , and so on: denoting by

Coli.C / the i -th column of C , we have

(4.3) ColiCdk.C / D Col�.i/Cdk.�:C /

for 1 � i � d and 0 � k � L=d � 1.

(i). Fix C 2 C.�; ˛/ and � 2 Sd . Let C 0 D �:C . By (4.2) and (4.3),

(4.4) C 0
1 D C1:

The last row of C is Cm D .1; : : : ; 1; 0; : : : ; 0/, with d`.�/ 1’s, so by (4.3),

(4.5) C 0
m D Cm:

By (4.4), (4.5), and C being a cascade, C 0 satisfies the first and third cascade conditions.

Let C 0
i and C 0

iC1 be two consecutive rows in C 0. Since C is a cascade, the rows Ci

and CiC1 differ in exactly two positions, ai and bi with ai < bi , and

Ci;ai
D 0; Ci;bi

D 1; CiC1;ai
D 1; CiC1;bi

D 0:

Since the difference ˛i D bi � ai is positive and divisible by d ,

(4.6) ai D ri C dsi and bi D ri C dti

for some non-negative integers ri ; si ; ti with 1 � ri � d and si < ti . Setting

(4.7) a0
i D �.ri/ C dsi and b0

i D �.ri/ C dti ;

and using (4.3), we have that C 0
i and C 0

iC1 differ in exactly positions a0
i and b0

i , and

C 0
i;a0

i

D 0; C 0
i;b0

i

D 1; C 0
iC1;a0

i

D 1; C 0
iC1;b0

i

D 0:

Since si < ti , we also have that a0
i < b0

i . So C 0 satisfies the second condition of a

cascade. Hence C 0 is a cascade.

By (4.4), the shape of the cascade C 0 is �. The content of C 0 is .b0
1 �a0

1; b0
2 �a0

2; : : :/,

which by (4.6) and (4.7) equals ˛. So C 0 2 C.�; ˛/. This concludes the proof of (i).
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(ii). Let zi.C / be the number of 0’s in the i -th column of a cascade C 2 C.�; ˛/. Let

(4.8) z.C / D .z1.C /; z2.C /; : : : ; zd .C //:

By the cascade conditions, and the positivity and d -divisibility of the ˛i ’s, we have

(4.9) zi.C / ¤ zj .C / for 1 � i < j � d:

By (4.3),

(4.10) z.�:C / D .z��1.1/.C /; z��1.2/.C /; : : : ; z��1.d/.C //:

From (4.9) and (4.10), for each C 2 C.�; ˛/, we have

(4.11) �:C D C if and only if � D 1:

This concludes the proof of (ii).

(iii). Fix a cascade C 2 C.�; ˛/ and a permutation � 2 Sd , so �:C 2 C.�; ˛/ by (i).

Let p1; p2; : : : ; pd`.�/ be the paths in C , so p1
1 < p2

1 < : : : and

(4.12) �C .i/ D pi
m;

and let q1; q2; : : : ; qd`.�/ be the paths in �:C , so q1
1 < q2

1 < : : : and

(4.13) ��:C .i/ D qi
m:

Let  be the permutation in SL given by

(4.14) .i C dk/ D �.i/ C dk; 1 � i � d; 0 � k � L=d � 1:

By (4.3), the sequences

(4.15) �:pi D ..pi
1/; .pi

2/; : : : ; .pi
m//; 1 � i � d`.�/;

are the paths of �:C , in some order. Let ! be the permutation in Sd`.�/ given by

(4.16) !.i C dk/ D �.i/ C dk; 1 � i � d; 0 � k � `.�/ � 1:

Then by (4.2), for each i ,

(4.17) q!.i/ D �:pi :

Since Cm D .1; : : : ; 1; 0; : : : ; 0/ with d`.�/ 1’s, we also have .pi
m/ D !.pi

m/, so

(4.18) q!.i/
m D !.pi

m/:

By (4.12), (4.13), and (4.18), the permutation ��:C takes !.i/ to !.�C .i// for each i ,

i.e.

(4.19) ��:C D !�C !�1:

So ��:C and �C have the same sign. By Lemma 4, we conclude that

(4.20) wt.�:C / D wt.C /

for all � 2 Sd and C 2 C.�; ˛/. This concludes the proof of (iii) and Theorem 2. �

It is worth remarking that Theorem 2 and Lemma 2 together give a weight-preserving

free action on rim hook tableaux:
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Corollary 1. For any partition � of a positive integer n, and any sequence ˛ of positive

d -divisible integers summing to d 2n, there is a well-defined action of Sd on T .�; ˛/

given by �:T D ‚.�:‚�1.T //, and this action is both free and weight-preserving. �

Example. With d D 3 and � D .3; 2/, the following shows an Sd -orbit of a cascade C

and corresponding rim hook tableau T of shape � and content .3; 3; 6; 6; 3; 3; 6; 9; 3/.

� diagram of �:C �:T

1

10 10 10 9 9 8 5 5 1

9 9 9 9 8 8 5 2 1

9 7 7 6 4 3 2 2 1

9 7 6 6 4 3

9 7 4 4 4 3

7 7 4 3 3 3

.1 2/

10 10 10 9 8 8 5 2 1

9 9 9 9 8 5 5 2 1

9 7 7 7 4 3 3 2 1

9 7 6 6 4 3

9 7 6 4 4 3

9 7 4 4 3 3

.1 3/

10 9 9 9 9 5 5 5 2

10 9 8 8 8 3 3 2 2

10 9 7 7 7 3 1 1 1

9 9 7 6 6 3

9 7 7 6 4 3

4 4 4 4 4 3

.2 3/

10 10 9 9 9 9 5 5 5

10 9 9 8 8 8 2 2 1

9 9 7 6 6 3 2 1 1

9 7 7 6 4 3

7 7 4 4 4 3

7 4 4 3 3 3

.1 2 3/

10 9 9 9 9 9 5 5 5

10 9 8 8 8 3 2 2 2

10 9 7 7 6 3 1 1 1

9 9 7 6 6 3

7 7 7 4 4 3

4 4 4 4 3 3

.1 3 2/

10 10 9 9 8 5 5 2 2

10 9 9 8 8 5 3 2 1

9 9 7 7 7 3 3 1 1

9 7 7 6 4 3

9 7 6 6 4 3

9 4 4 4 4 3
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Proof of Theorem 1. For (1.2), let � be a partition of a positive integer n, and let � be

a partition of dn. By Proposition 1, we have

��.d:�/ D
X

C 2C.�;d:�/

wt.C /;

and by Theorem 2 there exists a weight-preserving free action of Sd on C.�; d:�/. So

��.d:�/ is divisible by dŠ. This completes the proof of (1.2).

(1.1) is a special case of (1.2): let � and � be partitions of a positive integer n, write

� D 1m12m2 : : : nmn , and define � D 1dm12dm2 : : : ndmn , so that � is a partition of dn

with d:� D �, and hence by (1.2), ��.�/ is divisible by dŠ.

For (1.3), let � and � be partitions of an integer n not divisible by d . Suppose that

there exists a cascade C 2 C.�; d 2:�/, let D be the matrix with columns

Col1.C /; ColdC1.C /; Col2dC1.C /; : : : ;

occurring in that order, and let C 0 be the matrix obtained from D by deleting re-

dundant rows. Then C 0 2 C.�; d:�0/ for some partition �0, hence n D d j�0j. So

C.�; d 2:�/ D ;, hence by Proposition 1, ��.d 2:�/ equals 0. �
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