DENSE PROPORTIONS OF ZEROS IN CHARACTER VALUES

ALEXANDER R. MILLER

Abstract. Proportions of zeros in character tables of finite groups are dense in $[0,1]$.

For any finite group G, denote by \check{G} a complete set of class representatives,
$P_{I}(G)$ the proportion of pairs (χ, g) in $\operatorname{Irr}(G) \times G$ with $\chi(g)=0$, $P_{I I}(G)$ the proportion of pairs (χ, g) in $\operatorname{Irr}(G) \times \check{G}$ with $\chi(g)=0$,
so $P_{I I}(G)$ is the proportion of zeros in the character table of G. Fixing a choice P of P_{I} or $P_{I I}$, Burnside's result on the existence of zeros for nonlinear irreducible characters [1] gives $P(G)>0$ if and only if G is nonabelian.

The purpose of this note is to show:
Theorem 1. The set of proportions $\{P(G):|G|<\infty\}$ is dense in $[0,1]$.
For any two sequences $a_{n} \in[0,1]$ and $\varepsilon_{n} \in(0, \infty)$, and any prime p, there is an ascending chain of p-groups $G_{1}<G_{2}<\ldots$ with $\left|a_{n}-P\left(G_{n}\right)\right|<\varepsilon_{n}$ for each n.
In particular, for each $L \in[0,1]$, there is a chain of p-groups G_{n} with $P\left(G_{n}\right) \rightarrow L$.
Lemma 1. For any finite nonabelian group G, we have $P\left(G^{n}\right) \rightarrow 1$ as $n \rightarrow \infty$.
Proof. For any two finite groups X and Y, we have

$$
\begin{equation*}
P(X \times Y)=P(X)+(1-P(X)) P(Y) \tag{1}
\end{equation*}
$$

since for any $\chi \times \psi \in \operatorname{Irr}(X \times Y)$ we have $(\chi \times \psi)(x, y)=0$ if and only if $\chi(x)=0$ or both $\chi(x) \neq 0$ and $\psi(y)=0$. So for any finite group G, the sequence $P\left(G^{n}\right)$ satisfies

$$
P\left(G^{n+1}\right)=P\left(G^{n}\right)+\left(1-P\left(G^{n}\right)\right) P(G),
$$

making $P\left(G^{n}\right)$ monotonic, bounded, and thus convergent with limit L satisfying $L=L+(1-L) P(G)$, from which the result follows by Burnside.
Proof of Theorem 1. Fix a chain $H_{1}<H_{2}<\ldots$ with H_{n} extraspecial of order $p^{2 n+1}$ for each n, so H_{n} has $p^{2 n}+p-1$ irreducible characters, of which $p-1$ are nonlinear, and each nonlinear one vanishes off the center of order p, giving

$$
\begin{equation*}
P_{I}\left(H_{n}\right)=\frac{(p-1)\left(p^{2 n+1}-p\right)}{\left(p^{2 n}+p-1\right) p^{2 n+1}} \rightarrow 0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{I I}\left(H_{n}\right)=\frac{(p-1)\left(p^{2 n}-1\right)}{\left(p^{2 n}+p-1\right)^{2}} \rightarrow 0 \tag{3}
\end{equation*}
$$

Let $a \in(0,1), \varepsilon>0$, and $G=H_{s_{1}} \times H_{s_{2}} \times \ldots \times H_{s_{k}}$ with $k \geq 1$. It suffices to show that $\left|a-P\left(G^{\prime}\right)\right|<\varepsilon$ for some $G^{\prime}>G$ which is also a product of H_{i} 's.

Put $H=H_{s}^{k}$ for some $s>\max _{i} s_{i}$ such that $P\left(H_{s}\right)<a / k$. Then $H>G$ and by (1),

$$
P(H) \leq k P\left(H_{s}\right)<a .
$$

Writing $x=P(H)$, let l be such that

$$
P\left(H_{l}\right)<\min \left\{\frac{\varepsilon}{1-x}, \frac{a-x}{1-x}\right\} .
$$

Then the sequence $P\left(H_{l}^{n}\right)$ starts below $(a-x) /(1-x)$ and tends monotonically to 1 with steps of size $<\varepsilon /(1-x)$ by Lemma 1 and the fact that

$$
0<P\left(H_{l}^{n+1}\right)-P\left(H_{l}^{n}\right)=\left(1-P\left(H_{l}^{n}\right)\right) P\left(H_{l}\right)<\frac{\varepsilon}{1-x} .
$$

So for some m,

$$
\frac{a-x}{1-x}-\frac{\varepsilon}{1-x}<P\left(H_{l}^{m}\right)<\frac{a-x}{1-x},
$$

or equivalently, $a-\varepsilon<P\left(H \times H_{l}^{m}\right)<a$.
There is also an interesting consequence of Lemma 1 for Young subgroups

$$
S_{\lambda}=S_{\lambda_{1}} \times S_{\lambda_{2}} \times \ldots \times S_{\lambda_{n}} \leq S_{n}
$$

with λ drawn uniformly at random from the partitions of n :
Theorem 2. The expected value of $P\left(S_{\lambda}\right)$ tends to 1 as $n \rightarrow \infty$.
Proof. Fix an integer $k>2$, and let $m_{k}(\lambda)$ denote the multiplicity of k in any given partition λ. Using (1), we have

$$
P\left(S_{\lambda}\right) \geq P\left(S_{k}^{m_{k}(\lambda)}\right) \geq P\left(S_{k}^{m}\right) \quad \text { whenever } \quad m_{k}(\lambda) \geq m,
$$

so for any integer $m \geq 0$, the expected value of $P\left(S_{\lambda}\right)$ is at least

$$
\operatorname{Prob}\left(m_{k}(\lambda) \geq m\right) P\left(S_{k}^{m}\right) .
$$

By [2, Thm. 2.1], $\lim _{n \rightarrow \infty} \operatorname{Prob}\left(m_{k}(\lambda) \geq m\right)=1$ for any m, and by Lemma 1, $P\left(S_{k}^{m}\right) \rightarrow 1$ as $m \rightarrow \infty$, hence the expected value of $P\left(S_{\lambda}\right)$ tends to 1 as $n \rightarrow \infty$.

References

[1] W. Burnside, On an arithmetical theorem connected with roots of unity, and its application to groupcharacteristics. Proc. London. Math. Soc. 1 (1904) 112-116.
[2] B. Fristedt, The structure of random partitions of large integers. Trans. Amer. Math. Soc. 337 (1993) 703-735.

Fakultät für Mathematik, Universität Wien, Vienna, Austria
E-mail address: alexander.r.miller@univie.ac.at

