DENSE PROPORTIONS OF ZEROS IN CHARACTER VALUES

ALEXANDER R. MILLER

Abstract. Proportions of zeros in character tables of finite groups are dense in [0, 1].

For any finite group G, denote by \check{G} a complete set of class representatives,

 $P_I(G)$ the proportion of pairs (χ, g) in $Irr(G) \times G$ with $\chi(g) = 0$,

 $P_{II}(G)$ the proportion of pairs (χ, g) in $Irr(G) \times \check{G}$ with $\chi(g) = 0$,

so $P_{II}(G)$ is the proportion of zeros in the character table of G. Fixing a choice P of P_I or P_{II} , Burnside's result on the existence of zeros for nonlinear irreducible characters [1] gives P(G) > 0 if and only if G is nonabelian.

The purpose of this note is to show:

Theorem 1. The set of proportions $\{P(G) : |G| < \infty\}$ is dense in [0, 1].

For any two sequences $a_n \in [0, 1]$ and $\varepsilon_n \in (0, \infty)$, and any prime p, there is an ascending chain of p-groups $G_1 < G_2 < \ldots$ with $|a_n - P(G_n)| < \varepsilon_n$ for each n.

In particular, for each $L \in [0, 1]$, there is a chain of p-groups G_n with $P(G_n) \to L$.

Lemma 1. For any finite nonabelian group G, we have $P(G^n) \to 1$ as $n \to \infty$.

Proof. For any two finite groups X and Y, we have

$$P(X \times Y) = P(X) + (1 - P(X))P(Y),$$
(1)

since for any $\chi \times \psi \in Irr(X \times Y)$ we have $(\chi \times \psi)(x, y) = 0$ if and only if $\chi(x) = 0$ or both $\chi(x) \neq 0$ and $\psi(y) = 0$. So for any finite group *G*, the sequence $P(G^n)$ satisfies

$$P(G^{n+1}) = P(G^n) + (1 - P(G^n))P(G),$$

making $P(G^n)$ monotonic, bounded, and thus convergent with limit L satisfying L = L + (1 - L)P(G), from which the result follows by Burnside.

Proof of Theorem 1. Fix a chain $H_1 < H_2 < \ldots$ with H_n extraspecial of order p^{2n+1} for each n, so H_n has $p^{2n} + p - 1$ irreducible characters, of which p - 1 are nonlinear, and each nonlinear one vanishes off the center of order p, giving

$$P_I(H_n) = \frac{(p-1)(p^{2n+1}-p)}{(p^{2n}+p-1)p^{2n+1}} \to 0$$
⁽²⁾

and

$$P_{II}(H_n) = \frac{(p-1)(p^{2n}-1)}{(p^{2n}+p-1)^2} \to 0.$$
(3)

A. R. MILLER

Let $a \in (0, 1)$, $\varepsilon > 0$, and $G = H_{s_1} \times H_{s_2} \times \ldots \times H_{s_k}$ with $k \ge 1$. It suffices to show that $|a - P(G')| < \varepsilon$ for some G' > G which is also a product of H_i 's.

Put $H = H_s^k$ for some $s > \max_i s_i$ such that $P(H_s) < a/k$. Then H > G and by (1),

$$P(H) \le k P(H_s) < a.$$

Writing x = P(H), let *l* be such that

$$P(H_l) < \min\left\{\frac{\varepsilon}{1-x}, \frac{a-x}{1-x}\right\}.$$

Then the sequence $P(H_l^n)$ starts below (a - x)/(1 - x) and tends monotonically to 1 with steps of size $< \varepsilon/(1 - x)$ by Lemma 1 and the fact that

$$0 < P(H_l^{n+1}) - P(H_l^n) = (1 - P(H_l^n))P(H_l) < \frac{\varepsilon}{1 - x}$$

So for some m,

$$\frac{a-x}{1-x} - \frac{\varepsilon}{1-x} < P(H_l^m) < \frac{a-x}{1-x},$$

or equivalently, $a - \varepsilon < P(H \times H_l^m) < a$.

There is also an interesting consequence of Lemma 1 for Young subgroups

$$S_{\lambda} = S_{\lambda_1} \times S_{\lambda_2} \times \ldots \times S_{\lambda_n} \leq S_n$$

with λ drawn uniformly at random from the partitions of *n*:

Theorem 2. The expected value of $P(S_{\lambda})$ tends to 1 as $n \to \infty$.

Proof. Fix an integer k > 2, and let $m_k(\lambda)$ denote the multiplicity of k in any given partition λ . Using (1), we have

$$P(S_{\lambda}) \ge P(S_{k}^{m_{k}(\lambda)}) \ge P(S_{k}^{m})$$
 whenever $m_{k}(\lambda) \ge m$,

so for any integer $m \ge 0$, the expected value of $P(S_{\lambda})$ is at least

$$\operatorname{Prob}(m_k(\lambda) \ge m) P(S_k^m).$$

By [2, Thm. 2.1], $\lim_{n\to\infty} \operatorname{Prob}(m_k(\lambda) \ge m) = 1$ for any m, and by Lemma 1, $P(S_k^m) \to 1$ as $m \to \infty$, hence the expected value of $P(S_\lambda)$ tends to 1 as $n \to \infty$. \Box

References

- [1] W. Burnside, On an arithmetical theorem connected with roots of unity, and its application to groupcharacteristics. *Proc. London. Math. Soc.* 1 (1904) 112-116.
- B. Fristedt, The structure of random partitions of large integers. Trans. Amer. Math. Soc. 337 (1993) 703-735.

Fakultät für Mathematik, Universität Wien, Vienna, Austria *E-mail address*: alexander.r.miller@univie.ac.at

2