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EIGENSPACE ARRANGEMENTS OF REFLECTION GROUPS

ALEXANDER R. MILLER

Abstract. The lattice of intersections of reflecting hyperplanes of a complex

reflection group W may be considered as the poset of 1-eigenspaces of the
elements of W . In this paper we replace 1 with an arbitrary eigenvalue and
study the topology and homology representation of the resulting poset. After

posing the main question of whether this poset is shellable, we show that all
its upper intervals are geometric lattices, and then answer the question in
the affirmative for the infinite family G(m, p, n) of complex reflection groups,
and the first 31 of the 34 exceptional groups, by constructing CL-shellings.

In addition, we completely determine when these eigenspaces of W form a
K(π, 1) (resp. free) arrangement.

For the symmetric group, we also extend the combinatorial model avail-
able for its intersection lattice to all other eigenvalues by introducing balanced

partition posets, presented as particular upper order ideals of Dowling lattices,
study the representation afforded by the top (co)homology group, and give a
simple map to the posets of pointed d-divisible partitions.

1. Main question and results

Let V denote an n-dimensional C-vector space. A reflection in V is any non-
identity element r in GL(V ) of finite order that fixes some hyperplane Hr, and
a finite subgroup W of GL(V ) is called a reflection group if it is generated by
reflections.

Example. The action of the symmetric group Sn on [n] := {1, 2, . . . , n} gives rise
to a faithful action on Cn via σ(ei) = eσ(i), where e1, e2, . . . , en denote the standard
basis vectors. Since the transpositions act as reflections and generate the group,
this representation realizes Sn as a reflection group in GL(Cn). We shall refer to
it as the defining representation.

For an element g ∈ W and root of unity ζ, let V (g, ζ) denote the ζ-eigenspace
of g in V . Define E(W, ζ) to be the W -poset (partially ordered set) of all such
ζ-eigenspaces {V (g, ζ)}g∈W ordered by reverse inclusion, with W -action given by
h·V (g, ζ) = V (hgh−1, ζ). The eigenvalue ζ = 1 gives the lattice LW of intersections
of reflecting hyperplanes for W ; see [29, Lemma 4.4]. The minimal elements of
E(W, ζ) (i.e., the inclusion-maximal ζ-eigenspaces forW ) are the focus of Springer’s
theory of regular elements [35], and each has dimension equal to the number a(d) of
degrees d1, d2, . . . , dn of W that are divisible by d, the order of ζ; see Proposition 3.7
below. When W is crystallographic, the poset E(W, ζ) itself appears in Broué,
Malle, and Michel’s Φ-Sylow theory [8].
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Example. The degrees of S4 are 1, 2, 3, 4, and those of the dihedral group I2(4)
(whose cardinality is 8) are 2, 4. Hence the following table.

d 1 2 3 4 ≥ 5

a(d) for S4 4 2 1 1 0
a(d) for I2(4) 2 2 0 1 0

When a(d) = 0, the poset E(W, ζ) has only one element, the 0-dimensional sub-
space. For all other listed cases, we have drawn the Hasse diagram of E(W, ζ)
in Figures 1–5 and labeled each eigenspace by linear equations that define it.
Maximal eigenspaces are numbered for easy reference. For example, the maximal
eigenspace E4 labeled 4© in Figure 3 is the ζ-eigenspace for the 3-cycle permutation
g = (1, 4, 3). Note that the d = 1, 2 cases for I2(4) coincide, since the scalar matrix
−1 is an element of I2(4); see Corollary 3.8 below.
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Figure 1. The poset E(S4, 1) = LS4
of 1-eigenspaces for S4 ⊂ GL(C4).
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Figure 2. The poset E(S4,−1) of (−1)-eigenspaces for S4 ⊂ GL(C4).
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Figure 3. The poset E(S4, ζ3) of ζ-eigenspaces for ζ any primi-
tive 3rd root of unity and S4 ⊂ GL(C4).
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Figure 4. The poset E(S4, ζ) of ζ-eigenspaces for ζ any primitive
4th root of unity and S4 ⊂ GL(C4).
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Figure 5. The poset E(W, ζ) of ζ-eigenspaces for the dihedral
group I2(4) of order 8, and ζ of order d = 1, 2, 4.

This paper concerns the following problem of Lehrer and Taylor [25, Problem 7].

Problem (Lehrer–Taylor). Study connections between the structure and represen-
tations of W and the topology of the posets E(W, ζ).

In the case of E(Sn, 1), Stanley [38] used the work of Hanlon [17] to obtain
an explicit expression for the top homology representation, which combined with
Klyachko’s work to establish a connection with the Lie representation Lien; see [21,
19]. Lehrer and Solomon [22] extended Stanley’s result and conjectured an analogue
for all other finite Coxeter groups. Hanlon’s work [18] on Dowling lattices gives
an alternate extension and provides the top homology character of E(W, 1) for
W = G(m, 1, n), the complex reflection group of n × n monomial matrices whose
nonzero entries are mth roots of unity. N. Bergeron [1] gave a type B analogue
of the above-mentioned Lie correspondence that was later generalized to Dowling
lattices by Gottlieb and Wachs [16]. In addition to the above, analogous results
have been obtained for various subposets of E(Sn, 1); see [45]. However, the author
is unaware of any analogous results for ζ 6= 1, even for Sn.
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Question A. Is the following true for every ζ and every reflection group W?
(Weak version) E(W, ζ) is homotopy Cohen–Macaulay.

(Strong version) Ê(W, ζ) is CL-shellable.

The fact that CL-shellability implies homotopy CM-ness is well known; see §2.

Our first main result answers affirmatively the strong version of Question A
for all irreducible complex reflection groups except types E6, E7, E8 (which, in the
Shephard–Todd classification, are G35, G36, G37). Since the question reduces (see §3
below) to the case where W acts irreducibly, only these three Weyl groups remain.

Theorem 1.1. Let W = G(m, p, n) or one of the first 31 exceptional groups

G4, G5, . . . , G34, and let ζ be a primitive dth root of unity. Then Ê(W, ζ) is CL-

shellable. In particular, the order complex ∆(E(W, ζ)) is a pure bouquet of spheres.

Our second main result is central to the first.

Theorem 1.2. Let W be a reflection group and let ζ be a primitive dth root of
unity. Then

(1) E(W, ζ) = {E ∩X : X ∈ LW and E ∈ E(W, ζ) maximal}.

In particular, each upper interval [x, 1̂] in E(W, ζ) is a geometric lattice.

We will see in Section 3 below that Theorem 1.2 also has interesting consequences
of its own, namely, that E(W, ζ) depends only on d (see Theorem 7.1 for a much
sharper result) and is built from copies (conjugates) of the intersection lattice LW (d)

of Lehrer and Springer’s reflection subquotient W (d) (see Proposition 3.9).

Remark. The arrangement of ζ-eigenspaces is not always so well behaved for non-
reflection groups G ⊂ GL(Cn). For example, take G to be Z/3Z × S4 acting
faithfully on C4 by (i, σ)(ej) = ζieσ(j) for some primitive cube root of unity ζ. Then

the set of all 1-eigenspaces for G is just the union of the 1-, ζ-, and ζ2-eigenspaces
for the defining representation of S4 that we wrote down in Figure 1 and Figure 3
above. The end result is the Hasse diagram of E(G, 1) in Figure 6, which shows
that for this non-reflection group G ⊂ GL(C4), the poset of 1-eigenspaces E(G, 1)
is not Cohen–Macaulay, and its upper intervals are not all geometric lattices.

Figure 6. The poset of 1-eigenspaces for the group G in Remark
that falsifies the conclusion of both Theorem 1.1 and Theorem 1.2
for a non-reflection group.
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We also characterize when an eigenspace arrangement of a reflection group comes
from an arrangement of hyperplanes (Lemma 10.3 below). As a side benefit, this
will answer the natural K(π, 1) and freeness questions for eigenspaces, that is, we
determine exactly when the complement of the proper ζ-eigenspaces of a reflection
group W is K(π, 1), and exactly when the ζ-eigenspaces of codimension 1 form
a free (hyperplane) arrangement. For brevity, define A(W,d) to be the set of all
proper ζ-eigenspaces of the reflection groupW that are maximal under inclusion, for
a fixed but arbitrary choice of primitive dth root of unity ζ, so that the complement
of the proper ζ-eigenspaces of W is

(2) M(W,d) = Cn \
⋃

X∈A(W,d)X.

The two questions were resolved affirmatively for the highly nontrivial case of the
reflection arrangement A(W, 1) by Bessis and Terao, respectively, and in contrast
to Question A, the non-classical case A(W,d) 6= A(W, 1) is surprisingly simple.

Theorem 1.3. Let W ⊂ GL(Cn) be a complex reflection group and let d > 0.
Then the following are equivalent:

(i) One has a(d) = n or a(d) = n− 1. That is, A(W,d) contains a hyperplane.
(ii) The arrangement A(W,d) is a free hyperplane arrangement.
(iii) The complement M(W,d) is a K(π, 1) space.

Furthermore, A(W,d) = A(W, 1) if and only if a(d) = n.

The reader should be warned that no new examples of free or K(π, 1) arrange-
ments occur in Theorem 1.3. Nevertheless, the result is essentially all one could
hope for, and gives a nice extension of the classical picture to arbitrary eigenvalues.
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2. Preliminaries

Recall that a G-poset is a poset P with a G-action that preserves order, i.e., x < y
implies gx < gy for all g ∈ G and x, y ∈ P . It is bounded if it has a unique mini-
mal element (called the bottom element and denoted by 0̂) and a unique maximal

element (called the top element and denoted by 1̂). Write P ∪{0̂} for the poset ob-

tained from P by adjoining a new element 0̂, regardless of whether P has a bottom
element. Similarly, P ∪ {1̂} is obtained by adjoining a new element 1̂. Appending

both yields P̂ := P ∪ {0̂, 1̂}.
The order complex of a poset P is the (abstract) simplicial complex ∆(P ) con-

sisting of all totally ordered sets x1 < x2 < . . . < xi in P . Because it has a cone
point (and is therefore contractible) if P has a top or bottom element, one often

considers the proper part P := P \ {0̂, 1̂} of the poset, which is just P if neither a
top nor bottom element is present.

Recall that a (finite) simplicial complex ∆ is k-connected if its homotopy groups
πj(∆) are trivial for 0 ≤ j ≤ k. Define the link of a face F ∈ ∆ to be the subcomplex

lk∆(F ) = {G ∈ ∆ : G ∪ F ∈ ∆, G ∩ F = ∅},

and say ∆ is homotopy Cohen–Macaulay (abbreviated to HCM) if for each face
F ∈ ∆ the link lk∆(F ) is (dim lk∆(F ) − 1)-connected. For k a field or Z, the
simplicial complex is said to be Cohen–Macaulay over k (abbreviated to CM/k, or

just CM when k = Z) if for each face F ∈ ∆ the homology groups H̃i(lk∆(F );k)
vanish for i < dim lk∆(F ). The property of being Cohen–Macaulay is invariant
under homeomorphisms and implies that the complex is homologically a bou-
quet of (dim∆)-spheres, whereas the stronger property of being homotopy Cohen–
Macaulay is not invariant under homeomorphisms but implies that the complex is
homotopically a bouquet of (dim∆)-spheres; see [27] and [32, p. 117], respectively,
or surveys [4, 45].

Though there are many techniques for establishing Cohen–Macaulayness, we
shall be concerned with (pure) CL-shellability. A simplicial complex ∆ which is
pure d-dimensional (i.e., each maximal face under inclusion has dimension d) is
said to be shellable if its maximal faces (called facets) can be ordered F1, F2, . . . , Fℓ

so that for each k the subcomplex generated by the first k facets intersects the
(k+1)st facet in a pure (d−1)-dimensional subcomplex. A poset P is called shellable
(resp. HCM, CM ) if its order complex ∆(P ) is shellable (resp. HCM, CM). Finally,
a CL-shellable1 poset is a bounded poset that admits a recursive atom ordering, as
defined in Section 4. The following implications for poset shellability are strict:

CL-shellable ⇒ shellable ⇒ HCM ⇒ CM ⇒ CM/k ⇒ CM/Q,

for any field k of positive characteristic. Note that a poset P is shellable (resp. HCM,

CM) if and only if P , or just P \ {1̂}, is shellable (resp. HCM, CM).

3. General reductions

Shephard and Todd classified all irreducible reflection groups in [34]. There are
34 exceptional groups in their classification, labeled G4, G5, . . . , G37, and 3 infinite
families, explained below:

• W (An) ⊂ GL(Cn).

1This recursive formulation of CL-shellability is due to Björner and Wachs [5].
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• G(m, p, n) with m > 1, p a divisor of m, and (m, p, n) 6= (2, 2, 2).
• Cm := G(m, 1, 1).

W (An) denotes the representation of Sn+1 one obtains from the defining represen-
tation of §1 after modding out by the fixed space C(e1 + e2 + . . .+ en+1). For µm

the set of mth roots of unity (and p a divisor or m), the group G(m, p, n) consists
of all n × n monomial matrices with nonzero entries in µm whose product lies in
µm/p. General reflection groups decompose into irreducible ones as follows.

Proposition 3.1 (Theorem 1.27 in [25]). Let W ⊂ GL(V ) be a reflection group. Let
V1, . . . , Vk denote the nontrivial irreducible submodules of V , so that the restriction
Wi of W to Vi is irreducible. Then W ∼= W1 × · · · ×Wk and one has an orthogonal
sum decomposition V = V W ⊕ V1 ⊕ . . .⊕ Vk with respect to a chosen W -invariant
positive definite Hermitian form.

Corollary 3.2. Maintain the notation of Proposition 3.1 and let ζ be a root of
unity. Then

(3) E(W, ζ) ∼= E(W1, ζ)× · · · × E(Wk, ζ).

In particular, the family of posets E(W, ζ) obtained by letting W vary over the
three infinite families above is the same as that obtained by letting W vary over
the single infinite family G(m, p, n). Another consequence is that Question A and
Theorem 1.2 reduce to irreducible reflection groups.

Corollary 3.3. Maintain the notation of Corollary 3.2. Then the following hold.

(i) E(W, ζ) is HCM (resp. CM) if and only if each E(Wi, ζ) is HCM (resp. CM).

(ii) Ê(W, ζ) is CL-shellable if and only if each ̂E(Wi, ζ) is CL-shellable.

Proof. Note that each E(Wi, ζ) has a top element 1̂i. Then (i) follows from (3) and
a homeomorphism of Quillen (see [32, Ex. 8.1] and [46, Thm. 5.1(b)]), while (ii)
follows from (3) and [6, Thm. 10.16]. �

Because of the important role that maximal eigenspaces play in what follows,
we make the following convention before proceeding.

Convention 3.4. A maximal ζ-eigenspace for W is one that is not properly con-
tained in any other. Because such a space is minimal with respect to the poset
order of E(W, ζ) given by reverse inclusion, in order to avoid confusion we shall
always take minimal and maximal to be with respect to inclusion when dealing
with subspaces. For example, “E ∈ E(W, ζ) maximal” thus means that E is not
properly contained in any V (g, ζ).

A reflection group W ⊂ GL(V ) acts on the algebra of polynomial functions
S = S(V ∗) via gf(v) = f(g−1v), and Shephard and Todd showed that the subal-
gebra SW of W -fixed polynomials is again polynomial, generated by n := dimV
algebraically independent homogeneous polynomials f1, f2, . . . , fn, called basic in-
variants, the degrees of which are uniquely determined by the group W and denoted
by d1 ≤ d2 ≤ . . . ≤ dn. We shall always assume an indexing such that deg(fi) = di.
For d > 0, write a(d) for the number of di divisible by d as in §1; see Springer [35].

Proposition 3.5 (Springer). Let W be a reflection group, let ζ be a primitive
dth root of unity, and let f1, f2, . . . , fn be a set of basic invariants for W . Set
Hi := {v ∈ V : fi(v) = 0}. Then one has

⋃
g∈W V (g, ζ) =

⋂
d ∤ di

Hi.
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As a consequence, the collection of maximal ζ-eigenspaces of W depends only
on (the group and) the multiset of degrees di that are divisible by d, which we shall
denote by A(d) := {di : d | di}, so that a(d) = |A(d)|; see Theorem 7.1 below for
a sharper result.

Corollary 3.6. Let W be a reflection group. Let ζ and ζ ′ be roots of unity of
orders d and d′ such that A(d) = A(d′). Then the set of maximal ζ-eigenspaces of
W coincides with the set of maximal ζ ′-eigenspaces of W .

Proposition 3.7 (Springer). Let W be a reflection group, let ζ be a primitive dth

root of unity, and let E,E′ ∈ E(W, ζ) be maximal eigenspaces. Then

(i) dimE = a(d), and
(ii) gE = E′ for some g ∈ W .

Corollary 3.8. Let W be a reflection group and let ζ be a primitive dth root of
unity. Then the following are equivalent.

(i) E(W, ζ) = LW .
(ii) Cn ∈ E(W, ζ).
(iii) a(d) = n.

Proof. Clearly (i)⇒(ii)⇔(iii). Assume Cn ∈ E(W, ζ) so that ζ ∈ W , and hence
ζ−1W = W . Writing V (g, ζ) = V (ζ−1g, 1) for each g ∈ W , it follows that
E(W, ζ) = LW . �

Theorem 3.9 (Lehrer–Springer [23, 24]). Let W be a reflection group, let ζ be a
primitive dth root of unity, and let E ∈ E(W, ζ) be maximal with normalizer

NW (E) = {g ∈ W : gE ⊆ E}

and centralizer

ZW (E) = {g ∈ W : gv = v for all v ∈ E}.

Then N := NW (E)/ZW (E) acts as a reflection group on E, and the following hold:

(i) If f1, f2, . . . , fn form a set of basic invariants for W , then the restrictions fi|E
of those whose degree di is divisible by d form a set of basic invariants for N .

(ii) The reflecting hyperplanes of N on E are the intersections of E with the
reflecting hyperplanes of W that do not contain E.

(iii) If W is irreducible, then N acts irreducibly on E.
(iv) W (d) := N is uniquely determined by W and d, up to conjugation by W .

Proposition 3.10. Let W be a reflection group and let ζ be a root of unity. Then
one has an inclusion

(4) E(W, ζ) ⊆ {E ∩X : X ∈ LW , E ∈ E(W, ζ) maximal}

and the following are equivalent:

(i) Equality in (4).
(ii) There exists E ∈ E(W, ζ) maximal such that for all X ∈ LW one has

E ∩X ∈ E(W, ζ).
(iii) For every E ∈ E(W, ζ) maximal and X ∈ LW one has E ∩X ∈ E(W, ζ).

(iv) There exists E ∈ E(W, ζ) maximal such that [E, 1̂] = LNW (E)/ZW (E).

(v) For every E ∈ E(W, ζ) maximal, one has [E, 1̂] = LNW (E)/ZW (E).
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Proof. For the inclusion (4), let Y ∈ E(W, ζ) and choose a maximal ζ-eigenspace
E such that Y ⊆ E. Write E = V (g, ζ) and Y = V (h, ζ) for some g, h ∈ W .
Then v ∈ Y if and only if hv = ζv = gv, i.e., if and only if v ∈ E ∩ V (g−1h, 1).
Hence Y = E ∩ X for some X ∈ LW . As for the equivalences, clearly (i) is
equivalent to (iii), which is equivalent to (v) by Theorem 3.9(ii), and the remaining
two equivalences (ii)⇔(iii) and (iv)⇔(v) follow from Proposition 3.7(ii). �

4. G(m, p, n) case of Theorem 1.2

Recall that µm denotes the collection of all mth roots of unity, and that G(m, p, n)
denotes the group of all n×n monomial matrices with nonzero entries in µm whose
product lies in µm/p. Note that G(1, 1, n) is the defining representation of Sn

given in §1, and that G(1, 1, n) ⊆ G(m, p, n) ⊆ G(m, 1, n). When m > p the set of
reflecting hyperplanes for G(m, p, n) coincides with that for G(m, 1, n) and is given
by the union of the following two sets:

{zi = ξzj : 1 ≤ i < j ≤ n, ξ ∈ µm}(5)

{zi = 0 : 1 ≤ i ≤ n}.(6)

When m = p the set of reflecting hyperplanes for G(p, p, n) is just given by (5).
For roots of unity δ1, δ2, . . . , δℓ ∈ µm and an ℓ-set {σ1, σ2, . . . , σℓ} ⊆ [n], identify

the 2-line array

σ =

(
σ1 σ2 . . . σℓ

δ1σ2 δ2σ3 . . . δℓσ1

)

with the linear map that fixes each ei with i ∈ [n] \ {σ1, . . . , σℓ} and that sends eσi

to δieσi+1
for i ∈ [ℓ− 1], while eσℓ

7→ δℓeσ1
. Because multiple arrays may represent

the same map, in the next section we will require that σ1 < σ2, σ3, . . . , σℓ, but we
postpone the restriction until then. Call such an element σ a (colored) cycle, and
define

• ℓ(σ) := ℓ (the length of σ),
• Supp(σ) := {σ1, . . . , σℓ} (the support of σ), and
• Col(σ) := {δ1, . . . , δℓ} (the multiset of colors of σ).

With two cycles σ, σ′ said to be disjoint if Supp(σ) ∩ Supp(σ′) = ∅, note that
any element of G(m, 1, n) can be decomposed into a product σ(1)σ(2) · · ·σ(q) of
disjoint cycles, and that such a product is an element of G(m, p, n) if and only if∏

i

∏
δ∈Col(σ(i)) δ is an element of µm/p. The following lemma is a straightforward

calculation.

Lemma 4.1. Let σ ∈ G(m, 1, n) be a cycle and write σ =

(
σ1 σ2 . . . σℓ

δ1σ2 δ2σ3 . . . δℓσ1

)
.

Let ζ 6= 1 be a root of unity. Then

dimV (σ, ζ) =

{
1 if ζℓ =

∏
δi;

0 otherwise.

Moreover, in the former case V (σ, ζ) is the solution set of the following equations:

zσ1
= ζδ−1

1 zσ2
= ζ2(δ1δ2)

−1zσ3
= . . . = ζℓ−1(δ1δ2 · · · δℓ−1)

−1zσℓ
(7)

zi = 0 for i ∈ [n] \ {σ1, σ2, . . . , σℓ}.(8)

The crux of Theorem 1.2 is Proposition 4.3 below, for which we will need the
following.
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Lemma 4.2. Let W = G(m, p, n), let g ∈ W , and let ζ be a primitive dth root of
unity. Suppose that d | m and that a(d) < n. Then there exists an i ∈ [n] such that
for all z ∈ V (g, ζ) one has zi = 0.

Proof. It suffices to assume that V (g, ζ) is maximal. Since ζ ∈ µm, we have that
W contains

h :=

(
1
ζ1

)(
2
ζ2

)
· · ·

(
a(d)
ζa(d)

)(
n

ζ−a(d)n

)
,

which must have dimV (h, ζ) = a(d) by Proposition 3.7(i), and therefore zn = 0
for each z ∈ V (h, ζ). Since W acts transitively on its maximal ζ-eigenspaces by
Proposition 3.7(ii), the result follows. �

In the next proposition we define another group W ′ within the G(m, p, n) family,
that contains W . In particular, LW ⊂ LW ′ . We do so to obtain a stronger version
of Theorem 1.2 (Theorem 4.4 below) which will be used in Sections 8 and 9.

Proposition 4.3. Let W = G(m, p, n), let ζ be a primitive dth root of unity, and
let m ∨ d denote the least common multiple of m and d. Set

W ′ :=

{
W if a(d) = n;

G(m ∨ d, 1, n) if a(d) < n.

Then V (g, ζ) ∩X ∈ E(W, ζ) for every g ∈ W and X ∈ LW ′ .

Proof. If a(d) = n, then one has E(W, ζ) = E(W, 1) = LW , and the result follows.
Assume that a(d) < n. It suffices to show that V (g, ζ) ∩H ∈ E(W, ζ) for every

g ∈ W and every reflecting hyperplane H of W ′, since a general element of LW ′ is
an intersection of reflecting hyperplanes. Let g ∈ W and let r ∈ W ′ be a reflection
with fixed space H. We show that V (g, ζ)∩H is a ζ-eigenspace of W by exhibiting
an h ∈ W such that V (h, ζ) = V (g, ζ) ∩H.

Set h = g if V (g, ζ) ⊆ H. Assume otherwise so that V (g, ζ) 6⊆ H. Write
g = σ(1)σ(2) · · ·σ(q) as a maximal product of nonempty disjoint cycles so that
[n] = ∪iSupp(σ

(i)) and V (g, ζ) = ⊕iV (σ(i), ζ), and define Σ := {σ(1), . . . , σ(q)}.
Since H is of the form zj = 0 or zj = ξzk, we see from Lemma 4.1 that it contains

all but exactly one or exactly two of the eigenspaces V (σ(i), ζ).

Case 1. There exists exactly one cycle σ ∈ Σ such that V (σ, ζ) 6⊆ H.
Subcase 1a. ℓ(σ) ≥ 2.

Write σ =

(
σ1 σ2 . . . σℓ−1 σℓ

δ1σ2 δ2σ3 . . . δℓ−1σℓ δℓσ1

)
and let h be the element of W

that one obtains from g by replacing σ with the product of the cycles

σ′ :=

(
σ1 σ2 . . . σℓ−2 σℓ−1

δ1σ2 δ2σ3 . . . δℓ−2σℓ−1 δℓ−1δℓσ1

)
and σ′′ :=

(
σℓ

σℓ

)
.

Then V (h, ζ) = V (g, ζ) ∩ H if and only if V (σ′, ζ) = V (σ′′, ζ) = {0}. Clearly
V (σ′′, ζ) = {0}, since d > 1. Suppose that V (σ′, ζ) 6= {0}. Since V (σ, ζ) 6= {0}
also, Lemma 4.1 tells us that ζℓ = δ1δ2 · · · δℓ = ζℓ−1. However, ζ 6= 1.

For example, if W = G(2, 2, 8) and ζ = e2πi/6, then for

g =

(
1 2 3
2 −3 1

)(
5 6 7
−6 −7 −5

)(
4 8
8 4

)

H = {z ∈ C8 : z5 = ζ2z6},
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one has h =

(
1 2 3
2 −3 1

)[(
5 6
−6 −(−5)

)(
7
7

)](
4 8
8 4

)
.

Subcase 1b. ℓ(σ) = 1.

Then σ =

(
τ0
ζτ0

)
for some τ0 ∈ [n], implying that ζ ∈ µm, and so d | m and

a(d) < n. Applying Lemmas 4.1 and 4.2, it follows that V (τ, ζ) = {0} for some
τ ∈ Σ. Note that necessarily τ 6= σ, as their ζ-eigenspaces disagree. Write

τ =

(
τ1 τ2 . . . τℓ
ǫ1τ2 ǫ2τ3 . . . ǫℓτ1

)

and obtain h from g by replacing the two cycles σ, τ with the single cycle

σ′ =

(
τ0 τ1 τ2 . . . τℓ
ζτ1 ǫ1τ2 ǫ2τ3 . . . ǫℓτ0

)
.

Applying Lemma 4.1 shows that V (σ′, ζ) = {0}; indeed, one has ζℓ 6=
∏ℓ

i=1 ǫi, and

so ζℓ+1 6= ζ
∏ℓ

i=1 ǫi. It follows that V (h, ζ) = V (g, ζ)∩H. That h is in W is clear.

For example, ifW = G(6, 6, 4) and ζ = e2πi/3, then for g =

(
2
ζ2

)(
3
ζ3

)(
4
ζ4

)(
1
1

)

and H = {z ∈ C4 : z3 = 0}, one has h =

(
2
ζ2

)(
4
ζ4

)(
3 1
ζ1 3

)
.

Case 2. There exist exactly two cycles σ, τ ∈ Σ such that V (σ, ζ), V (τ, ζ) 6⊆ H.
Then for some ξ ∈ µm∨d and a suitable indexing, we have

σ =

(
σ1 σ2 . . . σs

δ1σ2 δ2σ3 . . . δsσ1

)
, τ =

(
τ1 τ2 . . . τt
ǫ1τ2 ǫ2τ3 . . . ǫtτ1

)
, r =

(
σ1 τ1

ξ−1τ1 ξσ1

)

Since H is given by zσ1
= ξzτ1 , Lemma 4.1 implies that (V (σ, ζ)⊕ V (τ, ζ)) ∩ H

consists of the points z ∈ Cn that satisfy zi = 0 for i 6∈ Supp(σ) ∪ Supp(τ) and

zσ1
= ζδ−1

1 zσ2
= . . . = ζs−1(δ1 · · · δs−1)

−1zσs

= ξzτ1 = ξζǫ−1
1 zτ2 = . . . = ξζt−1(ǫ1 · · · ǫt−1)

−1zτt .
(9)

Let k be such that the coefficient ǫ of zτk in (9) is an element of µm. (For existence,
note that the cosets µm, ζµm, . . . , ζt−1

µm cover the group µdµm, since ζ generates
µd and ζt ∈ µm, then observe that ξ permutes these cosets, since µm∨d = µmµd

from basic algebra.) Then

(10) (V (σ, ζ)⊕ V (τ, ζ)) ∩H = (V (σ, ζ)⊕ V (τ, ζ)) ∩H ′

for H ′ the reflecting hyperplane of r′ =

(
σ1 τk

ǫ−1τk ǫσ1

)
.

We claim that h := gr′ satisfies V (h, ζ) = V (g, ζ) ∩H, or in other words, that
V (στr′) = V (στ) ∩H. To see this, employ (10) to rewrite the equality as

(11) V (στr′, ζ) = (V (σ, ζ)⊕ V (τ, ζ)) ∩H ′.

Now observe that, on one hand, V (στ, ζ)∩H ′ is clearly contained in V (στr′, ζ) and
has dimension 1 by hypothesis. On the other hand, στr′ is necessarily a cycle, and
therefore has ζ-eigenspace of dimension at most 1 by Lemma 4.1.
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For example, if W = G(6, 3, 8) and ζ = e2πi/9, then for ω := e2πi/6 and

g =

(
1 2 3
ω2 3 ω1

)(
4 5 6
−5 ω46 ω4

)(
7 8
ω8 ω7

)

ξ = e2πi/18

r =

(
1 4

ξ−14 ξ1

)
,

one has r′ =

(
1 6

ω26 ω−21

)
, h =

(
1 4 5 6 2 3
−4 −5 ω46 ω52 3 ω1

)(
7 8
ω8 ω7

)
. �

Proof of Theorem 1.2 for G(m,p,n). Note that LW ⊆ LW ′ in Proposition 4.3,
since W is a subgroup of W ′, then invoke Proposition 3.10. �

Another consequence of Proposition 4.3 is the following stronger result, which will
play an important role in Sections 8 and 9 below.

Theorem 4.4. Let W = G(m, p, n), let ζ be a primitive dth root of unity, and let
W ′ be as in Proposition 4.3. Then

(i) E(W, ζ) ⊆ LW ′ , and
(ii) V (g, ζ) ∩X ∈ E(W, ζ) for every g ∈ W and X ∈ LW ′ .

In other words, E(W, ζ) is an upper order ideal of LW ′ .

Proof. Observe that W ′ contains the scalar matrix ζ, and that

V (g, ζ) = V (ζ−1g, 1) ∈ LW ′

whenever g ∈ W . The first claim follows, and the second is Proposition 4.3. �

5. Maximal eigenspaces of G(m, p, n)

In this section we associate a certain word, denoted by word(E), to each maximal
eigenspace E ∈ E(W, ζ) for W = G(m, p, n) and ζ 6= 1. In the next section we
show that lexicographically ordering these words gives a recursive atom ordering

for Ê(W, ζ). In addition to a(d), the following number plays an important role in
our discussion.

ℓ(d)
def
= min{s ∈ Z≥1 : ζs ∈ µm}(12)

=
d

gcd(m, d)
.(13)

The crux of our construction is that each maximal eigenspace E ∈ E(W, ζ) deter-
mines a unique set of a(d) many ℓ(d)-cycles in G(m, 1, n) whose product has ζ-
eigenspace E. It is from this set that we construct word(E) in Corollary 5.4 below.
We establish the correspondence by first showing that any product g ∈ G(m, 1, n)
of dimV (g, ζ) many nontrivial ℓ(d)-cycles is uniquely determined by its eigenspace
V (g, ζ), and then showing that each maximal E ∈ E(W, ζ) may be realized as the
ζ-eigenspace of such a product.

Recall from Section 4 the identification of a 2-line array of the form

(14) σ =

(
σ1 σ2 . . . σℓ

δ1σ2 δ2σ3 . . . δℓσ1

)

and a particular element of G(m, 1, n), and note that the element determines the 2-
line array up to cyclically permuting columns. Thus, by requiring that the smallest
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σi come first, the array is uniquely determined. We adopt this convention for the
remainder of the section, i.e., that σ1 < σ2, σ3, . . . , σℓ.

Lemma 5.1. Let ζ be a primitive dth root of unity for d > 1, and set ℓ := ℓ(d).
Suppose that σ, τ ∈ G(m, 1, n) are two ℓ-cycles such that V (σ, ζ) = V (τ, ζ) 6= {0}.
Then σ = τ .

Proof. We show that the map σ 7→ V (σ, ζ) is a bijection when restricted to the
ℓ-cycles σ such that V (σ, ζ) 6= 0 by constructing its inverse. Fix such a cycle σ
and label its entries as in (14) so that its image V (σ, ζ) is defined by equations (7)
and (8) of Lemma 4.1. Working backwards, first note that V (σ, ζ) is a line, and
therefore uniquely determines (7) and (8). Next observe that µm∨d is the disjoint
union of the cosets µm, ζµm, . . . , ζℓµm, so that for each i there is a unique scalar
ζj(δ1δ2 · · · δj)

−1 appearing in (7) that is contained in the coset ζiµm, from which
one recovers δ1δ2 · · · δi−1 and σi. The cycle σ is obtained by letting i range from 1
to ℓ while taking successive quotients so as to isolate each δi. �

The general case follows:

Proposition 5.2. Let ζ and ℓ be as in Lemma 5.1. Suppose that

S := {σ(1), σ(2), . . . , σ(q)} and T := {τ (1), τ (2), . . . , τ (q)}

are two sets of pairwise disjoint ℓ-cycles in G(m, 1, n) that satisfy

(1) dimV (σ(i), ζ) = dimV (τ (i), ζ) = 1 for all i ∈ [q], and
(2)

⊕
i V (σ(i), ζ) =

⊕
i V (τ (i), ζ).

Then S = T .

Proof. Consider the image of
⊕

i V (σ(i), ζ) under the orthogonal projection of Cn

onto
⊕

t∈Supp(τ (1)) Cet and employ Lemma 4.1 to show that V (τ (1), ζ) is equal to

V (σ(k), ζ) for some k, then apply Lemma 5.1. The result follows by induction. �

We now come to the crux of this section.

Proposition 5.3. Let ζ and ℓ be as in Lemma 5.1, and set W = G(m, p, n).
Let E ∈ E(W, ζ) be maximal under inclusion. Then there exists a set of pairwise
disjoint ℓ-cycles {σ(1), . . . , σ(a(d))} ⊂ G(m, 1, n) such that

E = V (σ(1), ζ)⊕ . . .⊕ V (σ(a(d)), ζ).

Proof. Choose g ∈ W such that E = V (g, ζ), and write g = τ (1)τ (2) · · · τ (q) as a
product of disjoint cycles, indexed so that

dimV (τ (i), ζ) =

{
1 if 1 ≤ i ≤ a(d);

0 otherwise.

Lemma 4.1 tells us that ℓ(τ (i)) ≥ ℓ for each i ∈ [a(d)], and so n ≥ a(d)ℓ. If
n = a(d)ℓ, the claim follows. Assume otherwise so that n > a(d)ℓ, and set

h =

a(d)−1∏

i=0

(
iℓ+ 1 iℓ+ 2 . . . iℓ+ ℓ

ζℓ(iℓ+ 2) iℓ+ 3 . . . iℓ+ 1

)
.

Let π′ be the element of G(m, 1, n) mapping en to ζ−a(d)ℓen while fixing all other
ei. Clearly hπ′ ∈ G(m, p, n) and

V (hπ′, ζ) = V (π(0), ζ)⊕ V (π(1), ζ)⊕ . . .⊕ V (π(a(d)−1), ζ)⊕ V (π′, ζ)
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for

π(i) :=

(
iℓ+ 1 iℓ+ 2 . . . iℓ+ ℓ

ζℓ(iℓ+ 2) iℓ+ 3 . . . iℓ+ 1

)
.

Since Lemma 4.1 implies dimV (π(i), ζ) = 1 for 0 ≤ i ≤ a(d) − 1, it follows that
V (hπ′, ζ) is a maximal eigenspace in E(W, ζ). Hence the result, as W acts transi-
tively on its maximal ζ-eigenspaces by Proposition 3.7(ii). �

We can now label each maximal eigenspace of G(m, p, n) by the cycles that it
determines. In the next section we shall use this labeling of the maximal eigenspaces

to construct a CL-shelling of Ê(W, ζ).

Corollary 5.4. Let ζ and ℓ be as in Lemma 5.1, and set W = G(m, p, n). Let
E ∈ E(W, ζ) be a maximal eigenspace under inclusion. Then there exists a unique
sequence

word(E) := (s1, s2, . . . , sn−a(d)ℓ ; σ(1), . . . , σ(a(d)))

of integers si and disjoint ℓ-cycles σ(i) ∈ G(m, 1, n) with the following properties:

(i) E =
⊕

i V (σ(i), ζ).

(ii) {s1, s2, . . . , sn−a(d)ℓ} = [n] \
⋃a(d)

i=1 Supp(σ(i)).
(iii) s1 < s2 < . . . < sn−a(d)ℓ.

(iv) min Supp(σ(i)) < min Supp(σ(j)) whenever i < j.

Definition 5.5. Linearly order µm as follows: set δ := e2πi/m and define δj < δk

whenever 0 ≤ j < k < m. Suppose that σ and τ are two distinct cycles of the same
length in G(m, 1, n), and let k index the first column in which they differ:

σ =

(
σ1 σ2 . . . σk . . . σℓ

δ1σ2 δ2σ3 . . . δkσk+1 . . . δℓσ1

)

τ =

(
τ1 τ2 . . . τk . . . τℓ
ǫ1τ2 ǫ2τ3 . . . ǫkτk+1 . . . ǫℓτ1

)
.

Define σ <lex τ if the kth column of σ is lexicographically less than that of τ in the
sense that one of the following holds.

(a) σk < τk.
(b) σk = τk and σk+1 < τk+1.
(c) σk = τk, σk+1 = τk+1, and δk < ǫk.

Definition 5.6. Let W = G(m, p, n) and let ζ be a primitive dth root of unity for
d > 1. For two words

word(E) = (s1, . . . , sn−a(d)ℓ ; σ(1), . . . , σ(a(d)))

word(E′) = (t1, . . . , tn−a(d)ℓ ; τ (1), . . . , τ (a(d)))

of distinct maximal eigenspaces E,E′ ∈ E(W, ζ), define word(E) <lex word(E′) if
in the first position in which they differ, the term of word(E) is strictly less than
the corresponding term of word(E′).

Example 5.7. Ordering the three maximal (−1)-eigenspaces Ei of S4 by their
words word(Ei), we have E1 <lex E2 <lex E3 for Ei the eigenspace labeled by i©
in Figure 2; see Table 1. (Note that n = a(d)ℓ in this case.)
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i Ei = {z ∈ C satisfying . . .} word(Ei)

1 z1 = −z2, z3 = −z4

((
1 2
2 1

)
,

(
3 4
4 3

))

2 z1 = −z2, z3 = −z4

((
1 3
3 1

)
,

(
2 4
4 2

))

3 z1 = −z2, z3 = −z4

((
1 4
4 1

)
,

(
2 3
3 2

))

Table 1. The maximal (−1)-eigenspaces Ei of S4 in Figure 2,
indexed with respect to lexicographic order on their words.

The maximal spaces in Figures 1–5 are similarly indexed. In the poset E(S4, ζ) of
Figure 3, for example, the eigenspaces

E3 = {z ∈ C : z2 = 0, z1 = ζz3 = ζ2z4}

E5 = {z ∈ C : z3 = 0, z1 = ζz2 = ζ2z4}

have words

word(E3) =

(
2,

(
1 3 4
3 4 1

))

word(E5) =

(
3,

(
1 2 4
2 4 1

))

such that word(E3) <lex word(E5).

6. G(m, p, n) case of Theorem 1.1

For P a finite graded poset, denote its rank function by r(x) : P → Z (with minimal
elements having rank 0), and its rank by r(P ) := max{r(x) : x ∈ P}. Recall that
a poset is bounded if it contains both a bottom element 0̂ and a top element 1̂, and
that an atom in a poset with a 0̂ is any element that covers 0̂.

Definition 6.1 (Björner–Wachs [5]). A bounded poset P is said to admit a recur-
sive atom ordering if its rank r(P ) is 1, or if r(P ) > 1 and there is an ordering of
the atoms a1, . . . , at that satisfies the following.

(i) Each interval [aj , 1̂] admits a recursive atom ordering in which its atoms that

are contained in [ai, 1̂] for some i < j come first.

(ii) If i < j and ai, aj < x, then there exists a k < j and an atom x̃ of [aj , 1̂] for
which ak < x̃ ≤ x.

A well-known result of Björner and Wachs [5] states that any ordering of the
atoms in a totally semimodular poset is a recursive atom ordering. In particular,
any ordering of the atoms in a semimodular lattice is a recursive atom ordering,
from which the next useful lemma follows immediately.

Lemma 6.2 (Lemma 3 in [33]). If P is a bounded poset in which [a, 1̂] is a semi-
modular lattice for every atom a ∈ P , then an atom ordering a1, . . . , at is a recursive
atom ordering if and only if it satisfies condition (ii) of Definition 6.1.
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Our goal is to give, when W = G(m, p, n) and ζ is a root of unity, a recursive

atom ordering for P = Ê(W, ζ), whose atoms are the maximal ζ-eigenspaces of W
under inclusion. By Lemma 6.2, this amounts to producing a candidate ordering
and verifying condition (ii) of Definition 6.1. The case d = 1 is trivial in the sense
that there is only one atom. For d > 1 we order the atoms by their words:

Theorem 6.3. Let W = G(m, p, n) and let ζ be a primitive dth root of unity for

d > 1. Then the lexicographic ordering of atoms E of Ê(W, ζ) by their words
word(E) is a recursive atom ordering.

Proof. By Theorem 1.2 and Lemma 6.2, we need only verify that the atom ordering
satisfies condition (ii) of Definition 6.1. The result follows immediately if there is
only one atom, so assume otherwise and note that a(d) < n by Corollary 3.8.

Suppose that A,B ∈ E(W, ζ) are two atoms with word(A) <lex word(B). Write

word(A) = (a1, . . . , an−a(d)ℓ ; σ(1), . . . , σ(a(d)))

word(B) = (b1, . . . , bn−a(d)ℓ ; τ (1), . . . , τ (a(d))).

Since any element that lies above both A and B in E(W, ζ) must be a subspace of
A ∩B, it suffices to exhibit a maximal eigenspace C ∈ E(W, ζ) that satisfies

(i) word(C) <lex word(B), and
(ii) A ∩B ⊆ B ∩H ⊆ C for some hyperplane H ∈ LW ′ ,

where W ′ is as in Proposition 4.3.
Choose (possibly empty) cycles σ(0), τ (0) ∈ G(m, 1, n) such that

g := σ(0)σ(1) · · ·σ(a(d))

h := τ (0)τ (1) · · · τ (a(d))

are products of disjoint cycles with g, h ∈ W . Then A = V (g, ζ) and B = V (h, ζ),
since A =

⊕
i≥1 V (σ(i), ζ) and B =

⊕
i≥1 V (τ (i), ζ) are maximal.

Case 1. ai 6= bi for some i.
Let i be the smallest such index. Then ai < bi and ai ∈ Supp(τ (j)) for some

j ≥ 1. Set C := rB = V (rhr−1, ζ) for

r =

(
ai bi
bi ai

)
.

Since one obtains word(C) by interchanging ai and bi in word(B), it follows that
word(C) <lex word(B). Applying r to both sides of B ∩ Hr ⊆ B shows that
B ∩Hr ⊆ C. Lastly, A ∩ B ⊆ B ∩Hr follows from the fact that zai

= 0 on A and
zbi = 0 on B.

For example, if W = G(4, 2, 8) and ζ = e2πi/6, then for ω := e2πi/4 and

word(A) =

(
4, 7,

(
1 3 2
ω3 −2 ω1

)
,

(
5 6 8
−6 −8 5

))

word(B) =

(
4, 8,

(
1 6 5
−6 5 −1

)
,

(
2 7 3
7 3 2

))
,
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one has r =

(
7 8
8 7

)
and

word(C) =

(
4, 7,

(
1 6 5
−6 5 −1

)
,

(
2 8 3
8 3 2

))
.

Case 2. ai = bi for all i.
Let j ≥ 1 be the smallest integer for which σ(j) 6= τ (j). Set σ := σ(j) and

τ := τ (j), and let k index the first column in which σ and τ differ:

σ =

(
σ1 σ2 . . . σk . . . σℓ

δ1σ2 δ2σ3 . . . δkσk+1 . . . δℓσ1

)

τ =

(
τ1 τ2 . . . τk . . . τℓ
ǫ1τ2 ǫ2τ3 . . . ǫkτk+1 . . . ǫℓτ1

)
.

Note that σi = τi for i ≤ k, and δi = ǫi for i < k.
By Lemma 4.1, each z ∈ A ∩B satisfies the two equations

zσ1
= ζkδ−1

1 · · · δ−1
k zσk+1

zτ1 = ζkǫ−1
1 · · · ǫ−1

k zτk+1
.

Since σ1 = τ1 and δi = ǫi for i < k, it follows that

(15) zσk+1
= δkǫ

−1
k zτk+1

for all z ∈ A ∩B.

Case 2a. σk+1 < τk+1.
Equation (15) says that A ∩B ⊆ Hr for the reflection

r =

(
σk+1 τk+1

ǫkδ
−1
k τk+1 δkǫ

−1
k σk+1

)
.

Set C := rB = V (rhr−1, ζ) so that, as in Case 1, one has A ∩ B ⊆ B ∩Hr ⊆ C.
Then word(C) <lex word(B), since σk+1 occurs to the right of τk+1 in word(B).
(More precisely, either σk+1 = τk+1+i for some i ≥ 1, or σk+1 is in the support of
τ (l) for some l > j.)

For example, if W = G(4, 2, 9) and ζ = e2πi/16, then for ω := e2πi/4 and

word(A) =

(
4,

(
1 3 2 7
ω3 −2 −7 1

)
,

(
5 9 6 8
9 ω6 8 5

))

word(B) =

(
4,

(
1 3 9 8
ω3 ω−19 8 ω1

)
,

(
2 6 5 7

ω−16 5 −7 2

))
,

one has k = 2, r =

(
2 9
ω9 ω−12

)
, and

word(C) =

(
4,

(
1 3 2 8
ω3 −2 ω8 ω1

)
,

(
5 7 9 6
−7 ω9 −6 5

))
.

Case 2b. σk+1 = τk+1.
Then δk < ǫk. It follows from (15) that zτk+1

= 0, and hence zi = 0 whenever
i ∈ Supp(τ), for each z ∈ A ∩B. In particular, A ∩B ⊆ B ∩Hr = B ∩Hs for

r =

(
τk

δkǫ
−1
k τk

)
and s =

(
τℓ

δ−1
k ǫkτℓ

)
.
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Set h′ := hrs ∈ W and C := V (h′, ζ). First note that C is maximal, since B is
maximal and the cycle τrs in h′ has dimV (τrs, ζ) = 1 by Lemma 4.1. It is also
clear that B∩Hr = C ∩Hr, and hence A∩B ⊆ B∩Hr ⊆ C. It remains to see that
C 6= B, from which it follows that word(C) <lex word(B). To this end, observe
that k < ℓ, since since δi = ǫi for i < k and δ1 · · · δℓ = ζℓ = ǫ1 · · · ǫℓ, while δk < ǫk.
It follows that τrs 6= τ , and therefore C 6= B by Proposition 5.2.

For example, if W = G(4, 2, 8) and ζ = e2πi/6, then for ω := e2πi/4 and

word(A) =

(
4, 7,

(
1 3 2
ω3 −2 ω1

)
,

(
5 6 8
−6 −8 5

))

word(B) =

(
4, 7,

(
1 3 2
−3 2 −1

)
,

(
5 8 6
8 6 5

))
,

one has k = 1, r =

(
1

ω−11

)
, s =

(
2
ω2

)
, and

word(C) =

(
4, 7,

(
1 3 2
ω3 2 ω−11

)
,

(
5 8 6
8 6 5

))
. �

7. Exceptional cases of Theorems 1.1 and 1.2

Here we establish CL-shellability for exceptional reflection groups, excluding for
types E6, E7, E8. This will conclude our proof of Theorem 1.1. We also finish
proving Theorem 1.2 by establishing (1) for all exceptional reflection groups, with
no exclusions. Central to all of this is Theorem 7.1 below, which pins down the
different posets E(W, ζ) by characterizing when two eigenvalues give the same poset.
Recall that for a reflection group W and positive integer d we write A(d) for the
multiset of degrees that are divisible by d, so that in particular a(d) = |A(d)| is the
dimension of any maximal ζ-eigenspace of the group.

Theorem 7.1. Let W be a reflection group, and let ζ and ζ ′ be roots of unity of
orders d and d′, respectively. Then E(W, ζ) = E(W, ζ ′) if and only if A(d) = A(d′).

We are most interested in the case when E(W, ζ) has rank at least two and is not
LW , so that a(d) 6= 0, 1, n, where n is the rank of W . This is when CL-shellability
and (1) are nontrivial. Table 2 lists all instances of an exceptional reflection group
and positive integer d such that a(d) 6= 0, 1, n, so for each d we are interested in
E(W, ζ) for each primitive dth root of unity ζ. The d’s are grouped according to
A(d), so Theorem 7.1 asserts that E(W, ζ) = E(W, ζ ′) if and only if d, d′ appear
together in Table 2. In other words, Theorem 7.1 reduces the nontrivial exceptional
cases of Question A and (1) to just 23 different posets E(W, ζ), one for each set of
d’s in Table 2.

Before proving Theorem 7.1, we use general methods to establish CL-shellability
and (1) when d is a regular number satisfying a(d) = 2. These are Corollaries 7.6
and 7.4 below, and with the help of one of them we then prove Theorem 7.1. Table 2
shows that 14 of its 23 cases satisfy the hypotheses of Corollaries 7.6 and 7.4. For the
other 9 cases (Table 3 below) we first outline our basic computer verification of (1)
for all of the cases, with no exclusions, then we outline our basic computer search to
find a recursive atom ordering (and thus a CL-shelling) for 5 of the 9 cases. We end
by listing the 4 open cases of the strong and weak versions of Question A involving
types E6, E7, E8 and various roots of unity, which we write down in Table 4 below.
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W a(d) d

G25 2 2,6 G32 2 4,12 G36 2* 4
G28 2 3,6 G33 2* 4 3 3,6

2 4 3 3,6 G37 2 5,10
G30 2 3,6 G34 2* 4,12 2 8

2 4 G35 2 4 2 12
2 5,10 2 6 4 3,6

G31 2 3,6,12 3 3 4 4
2 8 4 2

Table 2. All instances of an exceptional reflection group W of
rank n and positive integer d such that a(d) 6= 0, 1, n. Nonregular
cases are indicated by ∗, and values d, d′ appear together if and
only if A(d) = A(d′); see Theorem 7.1. See also Table 10 below.

We need some facts from Springer’s theory of regular elements [35], where an
element g of a (finite) reflection group W ⊂ GL(V ) is called ζ-regular if it has a
ζ-eigenvector v that is not contained in any reflecting hyperplane for W . When
such an element g exists, the eigenvalue ζ is called a regular eigenvalue, and the
order d of ζ is a regular number. For such a number d, Springer [35] showed that
an element h ∈ W is ζ-regular if and only if dimV (h, ζ) = a(d), and by a result of
Springer and Lehrer [24], these regular numbers d of W are easy to compute:

Theorem 7.2 (Lehrer–Springer). For any complex reflection group, a positive in-
teger d is a regular number if and only if it divides as many degrees as it does
codegrees.

Lemma 7.3. Let W be a reflection group and let ζ be a primitive dth root of unity.
Suppose that d is regular and that E = V (g, ζ) is a maximal ζ-eigenspace of W
under inclusion. Then for any reflection r ∈ W one has E ∩Hr = V (gr, ζ), where
Hr := ker(1− r) denotes the reflecting hyperplane of r.

Proof. Suppose that the trivial inclusion E ∩ Hr ⊆ V (gr, ζ) is proper. Then by
considering dimension, V (gr, ζ) is necessarily maximal. It follows from a standard
argument using Proposition 3.7(ii) and a theorem of Steinberg [39, Thm. 1.5] that
gr is therefore conjugate to g. In particular, det(gr) = det(g). But det(r) 6= 1. �

Applying Proposition 3.10(ii) to the case when dimE = 2 gives the following.

Corollary 7.4. Maintain the notation and assumptions of Lemma 7.3, and suppose
in addition that a(d) = 2. Then E(W, ζ) satisfies (1).

Another consequence of Lemma 7.3 is that E(W, ζ) is connected.

Corollary 7.5. Maintain the notation and assumptions of Lemma 7.3, and suppose
in addition that a(d) ≥ 2. Then (the Hasse diagram of) the poset E(W, ζ) \ {1̂} is

connected (as a graph). Equivalently, ∆(E(W, ζ) \ {1̂}) is connected.

Proof. Consider two maximal eigenspaces E,E′ ∈ E(W, ζ) and choose an element
g ∈ W such that E′ = gE (possible by Proposition 3.7(ii)). Write g as a product
of reflections rkrk−1 · · · r1 and define Ei = riri−1 · · · r1E for each i so that

E = E0, E1, E2, . . . , Ek = E′
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is a sequence of maximal eigenspaces. Since the intersection of a neighboring pair
Ei, Ei+1 is Hri+1

∩ Ei, an element of E(W, ζ) by Lemma 7.3, we conclude that E
is connected to E′ in the Hasse diagram of E(W, ζ), and hence the result. �

Corollary 7.6. Maintain the notation and assumptions of Lemma 7.3, and suppose

in addition that a(d) = 2. Then Ê(W, ζ) is CL-shellable.

Proof of Theorem 7.1. By Proposition 3.1, we may assume that W is irreducible.
Assume that A(d) 6= A(d′). It is well known [35, Proof of Thm. 3.4(i)] that for

any S ⊂ [n], each irreducible component of
⋂

i∈S Hi has dimension n − |S|, where
recall from Proposition 3.5 that Hi is the hypersurface defined by the invariant
polynomial fi of a set of basic invariants f1, f2, . . . , fn whose respective degrees are
d1, d2, . . . , dn. In particular,

(16)
⋂

d ∤ di
Hi 6= (

⋂
d ∤ di

Hi) ∩ (
⋂

d′ ∤ di
Hi),

for indeed, n − |A(d)| is not equal to n − |A(d) ∪ A(d′)|. It follows from (16) that⋂
d ∤ di

Hi 6=
⋂

d′ ∤ di
Hi, and so E(W, ζ) 6= E(W, ζ ′) by Proposition 3.5.

Assume that A(d) = A(d′) so that a(d) = a(d′), and consider the following cases.
Case 1. Either W = G(m, p, n) or a(d) ∈ {0, 1, n}. Theorem 1.2 is certainly true
when a(d) ∈ {0, 1, n}, and was established in §4 for G(m, p, n). We thus have

E(W, ζ) = {E ∩X : X ∈ LW and E ∈ E(W, ζ) maximal},(17)

E(W, ζ ′) = {E ∩X : X ∈ LW and E ∈ E(W, ζ ′) maximal}.(18)

Now observe that the right sides of (17) and (18) agree by Corollary 3.6.
Case 2. W exceptional, a(d) = 2, and d regular. In this case (17) and (18) follow
from Corollary 7.4, and so again E(W, ζ) = E(W, ζ ′) by Corollary 3.6.
Case 3. W exceptional, and either 3 ≤ a(d) ≤ n − 1 or d is not regular. It clearly
suffices to assume that d is the smallest (positive) value for which A(d) = A(d′), so
that ζ and ζ−1 are the only primitive dth roots of unity by Table 2. If d = d′, then
the equality E(W, ζ) = E(W, ζ ′) follows from the fact that V (g, ζ) = V (g−1, ζ−1).
If d < d′, the classification shows that there exists a prime p such that µd′ = µpµd

and a(p) = n. Choose ζp of order p and ζd of order d such that ζ ′ = ζpζd and note
that ζp ∈ W by Proposition 3.8(ii). Since V (g, ζpζd) = V (ζ−1

p g, ζd), it follows that
E(W, ζ ′) = E(W, ζd), while E(W, ζd) = E(W, ζ) from the previous case d = d′. �

W ζ

G35 −1
G33, G35, G36, G37 e2πi/3

G33, G34, G36, G37 e2πi/4

Table 3. Cases in Table 2 when a(d) ≥ 3 or d is not a regular number.

In 14 of the 23 cases from Table 2, d is a regular number satisfying a(d) = 2, so for
these we have CL-shellability and (1) by Corollaries 7.6 and 7.4. The remaining 9
cases of Question A (both versions) and of Theorem 1.2 are listed in Table 3.

For the 9 remaining cases of Theorem 1.2 listed in Table 3 we used computer
algebra software Magma to verify (1) in each case by first choosing2 an element

2For example, g may be taken to be any Coxeter element raised to the power dn/d in each of

the regular cases except W = G37, ζ = e2πi/4 when d ∤ dn.



EIGENSPACE ARRANGEMENTS 21

g ∈ W whose eigenspace E := V (g, ζ) is maximal (i.e., of dimension a(d) by
Proposition 3.7(i)), then constructing and checking that the set {E∩X : X ∈ LW }
is contained in the set

{V (gr1 · · · rk, ζ) : ri is a reflection of W and 0 ≤ k ≤ a(d)},

from which the desired equality (1) follows by Proposition 3.10(ii).
Regarding the 9 remaining cases of Question A, we first constructed the upper

interval [E, 1̂] (with g and E as above), then from the transitivity of W on its
maximal ζ-eigenspaces, we constructed all such maximal intervals of E(W, ζ) by

taking the W/NW (E)-orbit of [E, 1̂]. When g is regular, we used the additional
fact that the normalizer NW (E) is the centralizer ZW (g) := {h ∈ W : hg = gh} of
g in W . From the collection of these upper intervals, in the three nonregular cases
(G33, G34, G36 with ζ = e2πi/4 so that a(d) = 2) we easily verified that E(W, ζ)

is connected, so that Ê(W, ζ) is CL-shellable. For the single remaining case of
Theorem 1.1 (when W = G33 and ζ = e2πi/3) we chose at random one hundred
orderings E = E0, E1, . . . , E40 of the maximal eigenspaces (atoms) of E(W, ζ) with
the property that

dist(E,E1) ≤ dist(E,E2) ≤ dist(E,E3) ≤ . . . ≤ dist(E,E40),

where dist(E,Ei) denotes the graph-theoretic distance from E to Ei in the restric-
tion of E(W, ζ) to its bottom two ranks, i.e., to those eigenspaces of dimension
either a(d) or a(d) − 1. We found that each of these orderings was, in fact, a re-
cursive atom ordering. Lastly, we remark that we also found (an unenlightening)
recursive atom ordering for E(G35,−1).

W ζ

G35 (type E6) e2πi/3

G36 (type E7) e2πi/3

G37 (type E8) e2πi/3 e2πi/4

Table 4. Open cases of the strong and weak versions of Question A.

The remaining 4 open cases of the strong and weak versions of Question A are
listed in Table 4. For more evidence, we used Magma to show that E(W, ζ) is
Cohen–Macaulay when W = G35 and ζ = e2πi/3, and we are hopeful that similar
computations can be carried out for the remaining groups.

8. Consequences for the topology of eigenspace arrangements

Recall that the order complex of a finite poset P is the (abstract) simplicial complex
∆(P ) consisting of all totally ordered sets x1 < x2 < . . . < xi in P . We adopt the

convention of writing H̃i(P ) for its ith reduced homology group H̃i(∆(P ),C), and

H̃i(x, y) for H̃i(∆((x, y)),C), where (x, y) denotes the open interval formed by
x, y ∈ P . If P is a G-poset, then ∆(P ) inherits an action of G from P , and thus

each H̃i(P ) may be regarded as a G-module (i.e., a C[G]-module) by functoriality.
One may alternatively consider the module afforded by the ith reduced cohomology

group H̃i(P ) = H̃i(∆(P ),C), but this representation is just dual to H̃i(P ).
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Remark 8.1. We adopt the following conventions for the rank and order complex
of an empty open interval I = (x, y) and the empty poset P \ {1̂} when |P | = 1.

If y covers x, we set r(I) = r(P \ {1̂}) = −1 and take ∆(x, y) and ∆(P \ {1̂}) to
be the (−1)-dimensional complex {∅} containing only the empty face; if x = y, we
set r(I) = −2 and regard ∆(x, x) as a (−2)-dimensional degenerate empty complex

∅ with no faces at all. Then H̃i({∅}) is C when i = −1, and 0 otherwise, while we

let the reduced homology of ∅ vanish in all dimensions and define H̃−2(∅) := C.

For our purposes, call a finite collection A of proper complex linear subspaces
of Cn an arrangement. Associate with A its intersection lattice L(A), obtained
by ordering all intersections of subspaces in A by reverse inclusion. Note that the
top element 1̂ of L(A) is the (nonempty) intersection over A, and that the bottom

element 0̂ is Cn, the intersection over the empty set. The following celebrated
result of Goresky and MacPherson [15] says that the cohomology of the complement
MA := Cn \

⋃
X∈A X is determined by the combinatorial data of the arrangement.

Theorem 8.2 (Goresky–MacPherson). Let A be a complex arrangement. Then

H̃i(MA) =
⊕

x∈L(A)\{0̂}

H̃2 codimx−i−2(0̂, x) for all i.

Call an arrangement A a G-arrangement if G ⊂ GL(Cn) is such that gX ∈ A
for every X ∈ A and g ∈ G. For such an arrangement both the cohomology of
MA and the homology of L(A) inherit a G-module structure, and Sundaram and
Welker [41] established the following equivariant formulation of Theorem 8.2.

Theorem 8.3 (Sundaram–Welker). For a (finite, complex, linear) G-arrangement
A, one has a G-module isomorphism

(19) H̃i(MA) ∼=
⊕

x

IndGGx
H̃2 codimx−i−2(0̂, x) for all i,

where x runs over a collection of representatives for the G-orbits on L(A) \ {0̂},
and Gx denotes the stabilizer {g ∈ G : gx = x} for x ∈ L(A).

A consequence of Theorem 1.1, Theorem 4.4, and Theorem 8.3 is that for
W = G(m, p, n), one has that the complement M(W,d) of the proper ζ-eigenspaces
of W has torsion-free integral cohomology, and moreover, the top nonvanishing co-
homology module of M(W,d) is equivariantly isomorphic to the top homology
module of the proper part of the poset of ζ-eigenspaces:

Proposition 8.4. Let W be an irreducible non-exceptional reflection group of rank
n. That is, W is either W (An) or G(m, p, n) with m > 1 and (m, p, n) 6= (2, 2, 2).
Let ζ be a primitive dth root of unity and let A be the arrangement of all proper
ζ-eigenspaces of W , so that MA = M(W,d). Then L(A) = E(W, ζ) ∪ {Cn} and
M(W,d) has torsion-free integral cohomology. Moreover, the following hold:

(i) If a(d) = n, so that Cn ∈ E(W, ζ), then as W -modules

H̃2n−a(d)(M(W,d)) ∼= H̃a(d)−2(E(W, ζ)).

(ii) If a(d) 6= n, so that Cn 6∈ E(W, ζ), then as W -modules

H̃2n−a(d)−1(M(W,d)) ∼= H̃a(d)−1(E(W, ζ)).
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Proof. The first claim, that L(A) = E(W, ζ) ∪ {Cn}, follows from the fact that
E(W, ζ) is an upper order ideal of an intersection lattice LW ′ ; see Theorem 4.4.
Theorem 1.1 implies that all of the homology summands in Theorem 8.2 are free
abelian, since shellability is inherited by open intervals. Hence the second claim.
For (ii), suppose that a(d) 6= n, so that the intersection lattice L(A) is obtained
from E(W, ζ) by adjoining the new element Cn. Because the top element of L(A)

has dimension 0 by irreducibility, it follows that the rank of an interval (0̂, x) is equal

to a(d) − dimx − 1 whenever x 6= 0̂. Taking i to be 2n − a(d) − 1, the homology

summands H̃2codimx−i−2(0̂, x) in (19) become H̃a(d)−2 dim x−1(0̂, x). Since the open
intervals are shellable, such a summand vanishes if a(d) − 2 dimx− 1 is not equal

to the dimension a(d) − dimx − 1 of ∆(0̂, x), and so the only surviving summand

of (19) corresponds to the top element x = 1̂ of dimension 0. (i) is similar. �

The first case of Proposition 8.4 is well known, since E(W, 1) = LW is a geo-

metric lattice. The homology module of ∆(LW ) for W = W (An) has received
considerable attention; see Section 1. In this case Stanley [38] used work of Han-
lon [18] to express the top homology module, and thus the top cohomology module
of M(W (An), 1), as an induced linear representation. Lehrer and Solomon [22]
extended Stanley’s results to all cohomology groups of M(W (An), 1), and conjec-
tured an extension to all (complexified) finite Coxeter groups. In the next section
we will extend Stanley’s result to arbitrary eigenvalues ζ. We have not explored
the possibility of extending Lehrer and Solomon’s result.

9. Combinatorics of E(W, ζ) in type An−1

Recall that E(Sn, 1) is the well-understood intersection lattice for the braid ar-
rangement. As such, it may be considered as the lattice of all set partitions of
{1, 2, . . . , n} ordered by refinement. This simple combinatorial model extends to
the intersection lattice for G(r, 1, n) through a construction of Dowling [12], which
in turn provides a model for E(W, ζ) via Theorem 4.4 when W = G(m, p, n) and
E(W, ζ) 6= LW . Theorem 4.4 also tells us that the model inherited by E(W, ζ) is
again particularly simple when the minimal elements have a simple description as
elements of LW ′ , where W ′ = G(m∨d, 1, n) and d is the order of ζ. In this section
we set W = Sn and d > 1. Not only is the resulting combinatorial description
for E(Sn, ζ) interesting in its own right, but it naturally distinguishes the poset
of d-divisible partitions and leads to a precise description of the homotopy type of
E(Sn, ζ) \ {1̂} in terms of integer partitions. Throughout, d > 1 and ζ denotes a
primitive dth root of unity.

9.1. Balanced Partitions. The purpose of this subsection is to give a combinato-
rial description of E(Sn, ζ). As outlined above, we do so by viewing E(Sn, ζ) as an
upper order ideal of LW for W = G(d, 1, n), regarded as a Dowling lattice. Though
Dowling’s original notation [12] is convenient for general groups, the lattice LW

is constructed as a Dowling lattice from the cyclic group Z/dZ and lends itself to
description in terms of integrally weighted set partitions, a notation that we shall
use throughout.

Recall that a set partition of {0, 1, . . . , n} is a collection π = {B0, B1, . . . , Bℓ} of

nonempty disjoint sets with
⋃ℓ

i=0 Bi = {0, 1, . . . , n}. We call ℓ the length of π and
write ℓ(π) := ℓ. Henceforth, we shall assume that the blocks are indexed so that B0

is the zero block, i.e., that 0 ∈ B0. We also adopt the convention of writing such a
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partition as B0/B1/ . . . /Bℓ, omitting commas and set braces for individual blocks
when working with explicit sets of integers.

From a partition B0/B1/ . . . /Bℓ of {0, 1, . . . , n} and a positive integer m, one
obtains an m-weighted partition by assigning a weight wi ∈ Z/mZ to each element
i ∈ B1 ∪B2 ∪ · · · ∪Bℓ, while elements of B0 remain unweighted. Indicating weights
with superscripts, we have 015/2034/40 and 023/1252/44 as examples of weighted
partitions for n = 5, with 023 being the zero block of the latter. We shall also
find it useful to depict each weight by an equal number of bars, in which case we
superfluously underline the zero block in order to emphasize that its elements bear
no weights; see Figure 7 and 8.

For B a nonzero block of a weighted partition, let Bw denote the block obtained
from B by adding w to the weight of each of its elements (modulo d), and let Berase

denote the block obtained by removing all weights. For example, if B = 133044 and
d = 5, then B3 = 113342 and Berase = 134.

Since d > 1, the arrangement of reflecting hyperplanes of G(d, 1, n) is given by

An,d := {zi = 0 : 1 ≤ i ≤ n} ∪ {zi = ζwzj : 1 ≤ i < j ≤ n, w ∈ Z/dZ}.

The intersection lattice L(An,d) is Sn-equivariantly isomorphic (in fact, G(d, 1, n)-
isomorphic) to the (particular) Dowling lattice Πn,d defined as follows:

Definition 9.1. Πn,d is the poset of all (d-)weighted partitions π = B0/ . . . /Bℓ of
{0, . . . , n} with partial order defined by setting π1 ≤ π2 if for each block B of π1

there exists a block of π2 that either contains Berase or contains Bw for some w; see
Figure 7. It is the Dowling lattice constructed from the cyclic group Z/dZ; see [12].

We consider Πn,d as an Sn-poset by defining σ(B0/ . . . /Bℓ) := σB0/ . . . /σBℓ,

and the above-mentioned equivariant isomorphism Πn,d
∼
−→ L(An,d) is given by

(20) B0/ . . . /Bℓ 7→ V (B0)⊕ . . .⊕ V (Bℓ),

where V (B0) := 0, and for any nonzero block B = {bw1
1 , bw2

2 , . . . , bwk

k } we set

V (B) := {z ∈ Cn : ζw1zb1 = ζw2zb2 = . . . = ζwkzbk and zi = 0 for i 6∈ B}.

01|234|56

0123456

0156|234 01|23456

01|2345601234|56 01|23456

Figure 7. [x, 1̂] in Π6,3 for x = 01|203240|5061 = 01|234|56 corre-
sponding to {z ∈ Cn : z1 = 0, z2 = ζ2z3 = z4, z5 = ζz6}.

Definition 9.2. Let d > 1. Call a partition π of Πn,d balanced if for each block B
of π, all weights w ∈ Z/dZ appear in B with equal multiplicity. The Sn-subposet
of Πn,d of all balanced partitions is denoted by Πd

n.
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0|13|24

01234

0|12|34 0|14|23

0|1234 0|1234

0|1234

013|24 024|13 014|23 023|14034|12012|34

Figure 8. Π2
4 with each weight replaced by an equal number of bars.

Recall that an upper order ideal of a poset P is a subposet I with the property
that y ∈ I whenever x ≤ y for some x ∈ I. The minimal elements of I are called
generators. With this terminology, the next observation follows directly from the
definitions of Πn,d and Πd

n.

Proposition 9.3. Πd
n is the upper order ideal of Πn,d that is generated by the

Sn-orbit of the element π = B0/B1/ . . . /Ba(d), where a(d) =
⌊
n
d

⌋
and

B0 = {0} ∪ { a(d) · d+ 1 , a(d) · d+ 2 , . . . , n }

while

B1 = {10, 21, . . . , dd−1}

B2 = {(d+ 1)0, (d+ 2)1, . . . , (2d)d−1}

...

Ba(d) = {((a(d)− 1) · d+ 1)0, . . . , (a(d) · d)d−1}.

Remark 9.4. Note that r(Πd
n) = a(d) and ℓ(x) = r([x, 1̂]) for x ∈ Πd

n. Also observe

that Πd
n has a bottom element 0̂ if and only if n = d = 2 or d > n. In the latter

case, the top and bottom elements coincide, i.e., Πd
n is the trivial poset consisting

of the element 01 · · ·n.

Theorem 9.5. Let d > 1. Then E(Sn, ζ) ∼= Πd
n as Sn-posets.

Proof. Because Πd
n and E(Sn, ζ) are upper order ideals of Πn,d and L(An,d), re-

spectively, it suffices to show that the minimal elements of Πd
n correspond to those

of E(Sn, ζ) under the isomorphism Πn,d → L(An,d) given in (20). In fact, since
the isomorphism is equivariant, by transitivity it suffices to see that the distin-
guished minimal element of Πd

n in Proposition 9.3 corresponds to some maximal
ζ-eigenspace of Sn. But this is clear, for the distinguished element corresponds to
the ζ-eigenspace of

(1, 2, . . . , d) (d+1, d+2, . . . , 2d) · · · ( (a(d)−1)d+1 , (a(d)−1)d+2 , . . . , a(d)d ),

which is maximal under inclusion by considering dimension. �

A general feature of Dowling lattices is that their upper intervals [x, 1̂] are again
Dowling lattices; see [12, Thm. 2]. For x ∈ Πn,d one can see this by writing

x = B0/B1/ . . . /Bℓ and then constructing a poset isomorphism [x, 1̂] → Πℓ(x),d by
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mapping any block of the form Bw1
i1

∪ · · · ∪ B
wj

ij
with wi ∈ Z/dZ to {iw1

1 , . . . , i
wj

j }
and mapping any zero block of the form B0 ∪ Berase

i1
∪ · · · ∪ Berase

ij
to zero block

{0, i1, . . . , ij}.

Lemma 9.6. [x, 1̂] ∼= Πℓ(x),d for each x ∈ Πd
n.

9.2. The topology of balanced partitions. Recall that E(Sn, ζ) \ {1̂} being
shellable implies that its order complex is homotopy equivalent to a bouquet of
spheres. The aim of this subsection is to calculate the exact number of such spheres.
Central to our analysis is the following consequence of the Hopf trace formula.

Theorem 9.7 (Sundaram [40]). For P a Cohen–Macaulay G-poset with top ele-

ment 1̂, one has an isomorphism of virtual G-modules

H̃r(P )−1(P \ {1̂}) ∼=

r(P )⊕

i=0

(−1)r(P )+i
⊕

xG∈P/G

IndGGx
H̃i−2(x, 1̂).

We shall also need the following consequence of Dowling’s well-known description
of the Möbius function for any Dowling lattice [12] and Lemma 9.6.

Lemma 9.8. Let x ∈ Πd
n. Then dim H̃ℓ(x)−2(x, 1̂) =

∏ℓ(x)−1
i=0 (1 + id).

Regard an integer partition λ of n ≥ 0 as a multiset of positive integers λ1, . . . , λℓ

with
∑

λi = n, and write |λ| = n or λ ⊢ n. The integer ℓ(λ) := ℓ is the length of λ.
We shall also regard the partition λ as a sequence λ = (λm1

1 , . . . , λ
mp
p ) of distinct

positive integers 0 < λ1 < λ2 < . . . < λp with positive weights mi satisfying∑p
i=1 miλi = n. The integer p(λ) := p is the number of distinct parts of λ. In what

follows, the convention being used will be made clear by the presence or absence of
weights mi.

A pointed partition Λ = (λ0, λ) of n ≥ 0 is a nonnegative integer 0 ≤ λ0 ≤ n
together with a partition λ of n− λ0. Such a partition naturally arises in Dowling
lattices as the type of a partition x = B0/B1/ . . . /Bℓ, defined to be

type(x)
def
= (|B0 \ {0}|, {|B1|, . . . , |Bℓ|}).

Corollary 9.9. ∆(Πd
n \ {1̂}) is homotopy equivalent to a bouquet of

(21)
∑

0≤|λ|≤a(d)

(−1)a(d)+ℓ(λ)

dℓ(λ)(n− d|λ|)!

n!∏p
j=1 λj !mjd mj !

ℓ(λ)−1∏

i=0

(1 + id)

many (a(d)− 1)-spheres.

Proof. Start by noting that two partitions x, y ∈ Πd
n are in the same Sn-orbit if

and only if type(x) = type(y), and observe that for type(x) = (λ0, λ) one has

(22) |StabSn
(x)| = dℓ(λ)λ0!

p∏

i=1

mi!(λi/d)!
mid.

Taking dimensions in Theorem 9.7 and employing (22) and Lemma 9.8 gives the
result. �

We list some initial values of (21) in Table 5.
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n\d 2 3 4 5 6 7 8 9

2 0
3 2 1
4 1 7 5
5 21 19 29 23
6 24 91 89 143 119
7 510 841 209 503 839 719
8 918 3529 5251 1343 3359 5759 5039
9 22246 32367 50275 3023 10079 25919 45359 40319

Table 5. dim H̃a(d)−1(Π
d
n \ {1̂}) for n ≤ 9 and a(d) 6= 0.

Remark 9.10. One may identify the stabilizer StabSn
(x) of x = B0/B1/ . . . /Bℓ as

a (suitably defined) product of nested wreath products

Sλ0
×Sm1

[Cd][Sλ1/d]× . . .×Smp
[Cd][Sλp/d],

from which one can show that

H̃ℓ−2(x, 1̂) ∼=StabSn (x) Res
Sλ0

×Sℓ[Cd][Sn]

StabSn (x) 1⊗ H̃ℓ−2(Πℓ,d)[1]

for a suitable embedding StabSn
(x) ⊆ Sλ0

× Sℓ[Cd][Sn]. Here, H̃ℓ−2(Πℓ,d)[1]

denotes the Sℓ[Cd][Sn]-module 1⊗ ℓd ⊗ H̃ℓ−2(Πℓ,d) given by

(σ1, . . . , σℓd ; σ)(v1 ⊗ · · · ⊗ vn ⊗ w) = v1 ⊗ · · · ⊗ vn ⊗ σw

for σi ∈ Sn and σ ∈ Sℓ[Cd], and Πℓ,d is viewed as a Sℓ[Cd]-poset. Employing

Theorem 9.7, one then obtains a (virtual) expression for H̃a(d)−1(Π
d
n \ {1̂}) as an

Sn-module in terms of the Sℓ[Cd]-modules H̃ℓ−2(Πℓ,d) studied by Hanlon [18] and
Gottlieb–Wachs [16].

Problem 9.11. Describe the Sn-irreducible decomposition of H̃a(d)−1(Π
d
n \ {1̂})

explicitly in general.

Tables 6–9 give the decomposition of H̃a(d)−1(Π
d
n \ {1̂}) into irreducible sub-

modules for n = 4, 5, 6, 7. Each entry lists the multiplicity with which the Specht

module Sλ occurs in H̃a(d)−1(Π
d
|λ| \ {1̂}).

d\λ

2 1
3 1 1 1
4 1 1

Table 6. Decomposition of the S4-module H̃a(d)−1(Π
d
4 \ {1̂}).
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d\λ

2 1 1 1 1 1
3 1 1 1 1
4 1 1 1 2 1
5 1 2 1 1

Table 7. Decomposition of the S5-module H̃a(d)−1(Π
d
5 \ {1̂}).

d\λ

2 1 1 1
3 1 2 2 1 2 1 1
4 1 2 1 2 1 1 1
5 1 1 2 1 4 2 1 1 1 1
6 2 2 1 2 2 2 1 1

Table 8. Decomposition of the S6-module H̃a(d)−1(Π
d
6 \ {1̂}).

d\λ

2 1 2 2 2 2 5 3 2 3 2
3 1 2 1 5 4 3 3 7 4 3 3 2 1
4 1 2 1 1 2 1 1 1
5 1 2 2 1 4 2 3 2 3 1 1 1
6 1 2 2 3 6 4 3 4 5 3 3 2 1
7 2 3 2 5 2 3 3 5 3 2 2 1

Table 9. Decomposition of the S7-module H̃a(d)−1(Π
d
7 \ {1̂}).

9.3. The d-divisible partition poset. Throughout this section we shall assume
that d > 1. For n+1 divisible by d, recall that a set partition of {1, 2, . . . , n+1} is
called d-divisible if all blocks have size divisible by d, and let P d

n+1 denote the Sn+1-
poset of all such partitions ordered by refinement. The d-divisible partition lattice
P d
n+1∪{0̂} has been extensively studied, starting with Sylvester [42] computing the

Möbius function for d = 2. Stanley [37] generalized Sylvester’s result to arbitrary
d and conjectured that the restriction of the top (reduced) homology module of

P d
n+1 \ {1̂} to Sn is the Specht module of skew ribbon shape (d − 1, d, d, . . . , d);

see Figure 9. (One instead obtains the regular representation of Sn if d = 1;
see [38].) Calderbank–Hanlon–Robinson [9] established Stanley’s conjecture via
character calculations, and Wachs [44] later exhibited an explicit basis for the top
homology group via an EL-shelling. Ehrenborg and Jung [13] extended this phe-

nomenon to more general posets of pointed partitions Π•
~c , showing that each Π•

~c \{1̂}
is either contractible or has top homology the Sn-Specht module of skew ribbon
shape associated with the composition ~c = (c1, c2, . . . , ck).
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Figure 9. Skew ribbon shape (2, 3, 3).

In this section we present an intermediate family of posets Π
(d)
n , between the fam-

ily of d-divisible partition posets P d
n+1 and the family of pointed partition posets

Π•
~c , that arises naturally in the context of eigenspace arrangements for Sn. Fur-

thermore, we conjecture that the top homology of Π
(d)
n \ {1̂} is isomorphic to a

submodule of the top homology of Πd
n \ {1̂}.

For a pointed partition Λ = (λ0, λ) of n, let ΠΛ ⊆ Πn,1 denote the upper order
ideal generated by the elements of type Λ and regard it as an Sn-poset through
the usual action of Sn on [n]. For the particular choice

Λ = (n− d · a(d) , {d, d, . . . , d}),

write Π
(d)
n for ΠΛ and call it the pointed d-divisible partition poset. It is Sn-

isomorphic to Ehrenborg and Jung’s poset Π•
(d,d,...,d,n−d·a(d)) via the map that re-

moves all weights and then replaces each zero block B0 with the distinguished block
Z := B0 \ {0}; see [13] for details. For n+ 1 divisible by d, the map

(23) 0 7→ n+ 1 and B 7→ Berase for each nonzero block B

extends to an Sn-isomorphism Π
(d)
n → P d

n+1 when P d
n+1 is considered as an Sn-

poset by restricting its natural Sn+1-action to S{1,...,n}. As a consequence of this
discussion and the main results of [13] we have the following.

Theorem 9.12 (Calderbank–Hanlon–Robinson, Ehrenborg–Jung, Wachs).

H̃a(d)−1(Π
(d)
n \ {1̂}) is isomorphic to the Sn-Specht module of skew ribbon shape

associated with (n− d · a(d), d, d, . . . , d) when d ∤ n, and 0 otherwise.

Remark 9.13. We have stated Theorem 9.12 in a way that requires the observa-
tion that the skew shapes associated to (n − d · a(d), d, d, . . . , d) and its reverse
(d, d, . . . , d, n− d · a(d)) are related by 180◦ rotation, and hence their Specht mod-
ules are Sn-isomorphic; see [36, Exercise 7.56].

0|1|2|3

0|1|23
01|2|3

02|1|3 0|13|2
0|12|3

03|1|2

01|23

023|1
012|3

013|2
0|123

013|2

03|12

0123

1|2|3|4

1|23|4
14|2|3

1|24|3 13|2|4
12|3|4

1|2|34

14|23

1|234
124|3

13|24
123|4

134|2

12|34

1234

Figure 10. The posets Πn,1 and Πn+1 when n = 3.
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Note that the Sn-ribbon representation of Theorem 9.12 arises from a subar-
rangement of the reflection arrangement of Sn+1:

Π(d)
n ⊆ Πn,1

∼=Sn
Πn+1

∼=Sn
E(Sn+1, 1) with Sn = S{1,...,n},

where the isomorphism Πn,1
∼=Sn

Πn+1 is obtained by extending (23); see Fig. 10.
We conjecture that these Sn-ribbon representations also appear in E(Sn, ζd), with-
out the (a priori) mysterious shift of index. To make the assertion more precise, we
introduce the new operation B 7→ Bzero of zeroing : given a block B, define Bzero

to be the block obtained from B by replacing each weight w with 0. An immediate
observation is the following; see Figure 11.

Proposition 9.14. The map Z : Πd
n → Π

(d)
n ⊆ Πn,1 given by zeroing each block

Z : B0/B1/ . . . /Bℓ 7→ B0/B
zero
1 / . . . /Bzero

ℓ

is a rank-preserving surjective Sn-poset map.

0|13|24

01234

0|12|34 0|14|23

0|1234 0|1234

0|1234

013|24 024|13 014|23 023|14034|12012|34

0|13|24

01234

0|12|34 0|14|23

0|1234
013|24 024|13 014|23 023|14034|12012|34

Figure 11. The zeroing map Π2
4 → Π

(2)
4 .

Conjecture 9.15. Let Z∗ : H̃a(d)−1(Π
d
n \ {1̂}) → H̃a(d)−1(Π

(d)
n \ {1̂}) be the homo-

morphism induced by the poset map of Proposition 9.14. Then Z∗ is surjective.

Note that by Theorem 9.12 the conjecture is trivially true when d | n. The
conjecture also clearly holds when r(Πd

n) = 1, i.e., when a(d) = 1. In fact, the
entire top homology module is straightforward in this case:

Proposition 9.16. Suppose a(d) = 1. Let Cd be the cyclic group generated by the
d-cycle (1, 2, . . . , d) and let Sn−d = S{d+1,d+2,...,n}. Then

H̃a(d)−1(Π
d
n \ {1̂}) ∼=Sn

(
IndSn

Cd×Sn−d
1

)
− 1.
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Proof. Sn acts transitively on the elements of Πd
n\{1̂} in this case, and Cd×Sn−d is

the stabilizer of the distinguished element of Proposition 9.3. Hence the result. �

10. Proof of Theorem 1.3

Here we characterize when eigenspace arrangements are actually hyperplane ar-
rangements (Lemma 10.3 below). Then as a consequence of the characterization,
Theorem 1.3 follows from results of Bessis and Terao.

The motivating case d = 1 of Theorem 1.3 has a long history, starting with Fadell
and Neuwirth [14] showing that M(Sn, 1) is K(π, 1). Deligne [11] later proved
Brieskorn’s conjecture that M(W, 1) is K(π, 1) for all (complexified) real reflection
groups, then Orlik–Solomon [30] showed thatM(W, 1) isK(π, 1) for every Shephard
group W (see [31, §6.6]) by showing that M(W, 1)/W is the same as M(W ′, 1)/W ′

for some associated real reflection group W ′ and invoking Deligne’s result, while
Nakamura [28] established the result for the family G(m, p, n), leaving only six
exceptional cases. Bessis [2] resolved the question in the remaining cases, while
also recovering many of the previous results with his approach. In particular, he
obtained a new proof of Deligne’s result for real reflection groups.

Theorem 10.1 (Bessis). For any reflection group W , the reflection complement
M(W, 1) is K(π, 1), i.e., its universal cover is contractible.

The most one could hope for in general is that M(W,d) is K(π, 1) whenever a(d)
is n or n − 1, since any complex arrangement A whose complement is K(π, 1)
must contain a hyperplane; see [7, Cor. 3.2] for a much stronger result. Since
Proposition 3.7(i) tells us that A(W,d) is in fact a hyperplane arrangement when
a(d) is n or n − 1, one may also hope it is free in the sense of Terao [43], who
established freeness for reflection arrangements A(W, 1).

Theorem 10.2 (Terao). For any reflection group W , the reflection arrangement
A(W, 1) is free.

Recall that a collection of hyperplanesA in a vector space V is a free arrangement
if the S-module of derivations δ : S → S that satisfy δ(αH) ∈ αHS for every
hyperplane H = ker(αH) in A is free, where S = S(V ∗) as in §3. In particular, the
null arrangement NV of V , which contains no subspaces at all, is a free arrangement.
Less obvious is that any finite collection of lines through the origin in C2 is free,
which follows from Saito’s criterion. (It is also straightforward [31, Examples 4.20
and 5.4] to see that they are K(π, 1), by which we mean that their complements
have the property.) Lastly, recall that the product

A1 ×A2 := {H1 ⊕ V2 : H1 ∈ A1} ∪ {V1 ⊕H2 : H2 ∈ A2}

of two arrangements is free if and only if both A1 and A2 are free; see [31].
We first characterize when A(W,d) is a hyperplane arrangement.

Lemma 10.3. Let W be a complex reflection group and let d > 0.

(i) If a(d) = n, then A(W,d) = A(W, 1) by Corollary 3.8.
(ii) If a(d) = n− 1 and W is irreducible, then one of the following holds:

a. W has rank 2, so that A(W,d) is a set of lines through the origin in C2.
b. W = G25, d = 2 (or 6), and A(W,d) = A(W ′, 1) for W ′ = G(3, 3, 3).
c. W = W (A3), d = 2, and A(W,d) is defined by z1z2z3.
d. W = G(m, p, n), d | m and d ∤ nm

p , and A(W,d) is defined by z1z2 · · · zn.
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Proof. (i) is clear. Consulting the classification [34], one finds that the pairs
(W,d) listed in (ii) are the only cases such that a(d) = n − 1. Case (iia) is
clear. For (iic) and (iid), set fi := ei(z

m
1 , zm2 , . . . , zmn ) for 1 ≤ i ≤ n − 1 and set

fn := en(z
m/p
1 , z

m/p
2 , . . . , z

m/p
n ), where here ei denotes the ith elementary symmet-

ric polynomial in n variables. These form a set of basic invariants for G(m, p, n),
the degrees of which are m, 2m, . . . , (n − 1)m,nm/p, and only the last invariant
polynomial fn = (z1z2 · · · zn)

m/p has degree dn = nm/p not divisible by d. Apply-
ing Proposition 3.5 thus gives (iic) and (iid). Similarly, for G25 we may choose [26,
Eq. 9] coordinates and basic invariants f1, f2, f3 (of degrees 6,9,12) such that f2
is the polynomial (z31 − z32)(z

3
1 − z33)(z

3
2 − z33) that (by (5)) defines A(W ′, 1), then

apply Proposition 3.5. �

Now Theorem 1.3 follows from the results of Bessis and Terao.

Proof of Theorem 1.3. As noted above, if A(W,d) is K(π, 1) (resp. free), then
either a(d) = n or a(d) = n − 1. When a(d) = n, the converse follows from
Theorem 10.1 (resp. Theorem 10.2), so it remains to see that the converse also holds
when a(d) = n− 1. In this case, decompose W and V := Cn as in Proposition 3.1
so that W ∼= W1×· · ·×Wk. Then A(W,d) = A(Wi, d)×NV ⊥

i
for some index i, and

thus A(W,d) is K(π, 1) (resp. free) if and only if A(Wi, d) is K(π, 1) (resp. free).
Now employ Lemma 10.3(ii). �

Remark 10.4. V. Reiner pointed out that one may alternatively consider the ques-
tion of realK(π, 1) complements. That is, for which (uncomplexified) real reflection
groups W ⊂ GL(Rn) is the real complement

MR(W, 2)
def
= Rn \

⋃
g∈W V (g,−1)

a K(π, 1) space? Because such a complement is K(π, 1) only if the arrangement
has codimension 2, one reduces the question to Weyl groups W (A4), W (A5), and
W (E6) via the classification. Though we have not explored these cases, we note
that a similar question was answered in [10], where Davis, Januszkiewicz, and
Scott established a conjecture of Khovanov [20] asserting that the real complement
of any W -invariant codimension-2 subarrangement of LW is K(π, 1) when W is a
real reflection group. Björner first suggested looking at real K(π, 1) complements,
and Khovanov was motivated by (and answered positively) Björner’s question [3,
§13.7] which asked whether the complement of the 3-equal arrangement

A = {x ∈ Rn : xi = xj = xk for some triple i < j < k}

is a K(π, 1) space.
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