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The restrictions of functions holomorphic in a domain

to curves lying on its boundary,

and discrete SL2(R)SL2(R)SL2(R)-spectra

Yu. A. Neretin

Abstract. We consider the operator of restriction of functions holomorphic in a
ball or a polydisc to curves lying on the Shilov boundary. It turns out that any
function with polynomial growth near the boundary has such a restriction if the
position of the curve satisfies a certain condition: if the domain is a ball, then the
curve must be transversal to the standard contact distribution on the sphere, and if
the domain is a polydisc, then the curve must be monotonic increasing with respect
to all coordinates in the standard coordinatization of the torus. We use assertions of
this kind to obtain a simple description of discrete inclusions in spectra (of minimal
invariant subspaces) for several problems of SL2(R)-harmonic analysis.

Introduction

There are many theorems on the restriction of discontinuous functions to sub-
manifolds. The best-known are numerous theorems on the existence of boundary
limits of holomorphic functions ([2], [12]; [27], IX.3, IX.8, [29], [30], [33], [34]) and
the trace theorem in Sobolev spaces (where the operator of restriction of functions
to submanifolds of sufficiently large dimension is well defined; since the functions
are discontinuous, they have no values at individual points: see [7], [10], § 2, [27],
IX.9). We should also note the Stein–Fefferman theorem [5], § 4 on restrictions
of Fourier transforms of functions f ∈ Lp(Rn) and the Salem–Zygmund theorem
on the capacity of the divergence sets of the Fourier series of functions in Sobolev
spaces. The last theorem can be interpreted as a statement on the restriction of
Sobolev functions to closed totally disconnected subsets (see [4], [31], [3], V.12, [22],
§ 2.9).

In this paper we consider the following situation: let Bn be a ball in Cn (actually,
we consider the case when n = 2; the same arguments are valid in the general case).
We consider the standard (contact) distribution of codimension 1 on the boundary
S2n−1 of the ball Bn. Let us recall its definition. The tangent space to the sphere
S2n−1 at the point a consists of the vectors ξ that satisfy the condition Re〈a, ξ〉 = 0.
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We consider the subspace of this tangent space that consists of the vectors satisfying
the condition 〈a, ξ〉 = 0, that is, the so-called complex tangent space. Let γ be a
curve on S2n−1 transversal to this distribution. According to the Nagel–Rudin
theorem (see [20], [30], Chapter 11.2), any bounded holomorphic function in Bn
has a non-tangent limit almost everywhere on γ. We show (§ 2) that any function
holomorphic in Bn and with polynomial growth near the boundary has a limit on
γ in the sense of distributions.

In a similar way (§ 1), we consider the polydisc Un: |z1| < 1, |z2| < 1, . . . ,
|zn| < 1, and a curve γ: z1 = eih1(t), . . . , zn = eihn(t) in the skeleton of the
polydisc Un. Assume that h′j(t) > 0 for all j. Then any function F holomorphic
in the polydisc and with polynomial growth near the boundary has a limit on γ in
the sense of distributions.

The following heuristic Nagel–Rudin argument is valid in both cases, although
it does not prove the theorem. Assume that the curve is analytic. We continue
the map t 7→ γ(t) to a holomorphic map of the strip Π: | Im(t)| < ε. Then the
exact meaning of the conditions of the theorem is that, in a neighbourhood of any
point γ(t0), t0 ∈ R, γ(Π) intersects the interior of the domain. We can apply the
one-dimensional theorem on the existence of a boundary limit to γ(Π). On the
other hand, our statements are similar to the theorem of the existence of a limit on
skeletons in tubular domains (see [27], IX.3, IX.8, [33], [34]), and are based on the
same analytical effects. It seems plausible that both kinds of statements are special
cases of a more general one.

It was shown in [22] (see also [21], [23]) that theorems on the restriction of
discontinuous functions provide a simple explanation for the presence of discrete
spectra in many problems of non-commutative harmonic analysis. Moreover, these
theorems enable one to produce (in discrete spectra) rather “exotic” unitary rep-
resentations for certain series of semisimple groups (see [22], [23]), that is, they
provide an approach to the problems now usually considered as purely algebraic
and requiring sophisticated algebraic techniques. In connection with this, there
arises a series of problems on the restriction of functions holomorphic in Cartan
domains to various submanifolds in the Shilov boundary (see [22]).

This paper is a sequel to [21]–[23]; its purpose is to find additional means
of producing discrete spectra. We consider the simplest non-compact group
SL2(R) and show that even in this case our methods enable us to obtain new
results.

In § 3 we “reformulate” the statements of § 1 in terms of analysis on a one-sheet
hyperboloid. In § 5 we discuss several problems on tensor products of unitary repre-
sentations of SL2(R) and show how to use theorems on the restriction of functions
to a curve to produce a discrete spectrum in these problems. The methods used
in this section are rather general and enable us to produce discrete Harish-
Chandra series in various spectra. But even for SL2(R), our constructions appear
to be new.

The author is grateful to G. I. Ol’shanskii, V. F. Molchanov, A. G. Sergeev,
V. V. Lebedev and B. Ørsted for discussions on the substance of this paper.
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§ 1. The bidisc

1.1. Functions with polynomial growth. Consider the bidisc U2: |z1| < 1,
|z2| < 1 in C2. A function

F (z1, z2) =
∑

k>0, l>0

cklz
k
1z
l
2

holomorphic in the bidisc is called a function with polynomial growth if there is an
N such that the function

F (z1, z2)(1− |z1|)N (1− |z2|)N

is bounded in U2. This is equivalent to the following condition on ckl: there are M
and A such that

|ckl| 6 A(k + l)M . (1.1)

Remark. The Hardy spaces Hp(U2) (see [29], § 3.4) consist of functions with poly-
nomial growth.

1.2. Existence of the restriction operator. Consider a closed C∞-smooth
curve

γ : z1 = eih1(t), z2 = eih2(t), t ∈ [0, T ],

in the skeleton T2: |z1| = 1, |z2| = 1 of U2. Assume that

h′1(t) > 0, h′2(t) > 0

for all t.
We claim that under these conditions the restriction of the function F (z1, z2) =∑
cklz

k
1z
l
2 with polynomial growth to γ is defined (assertion (i) of Theorem 1) and

coincides with the radial limit (assertion (ii)).

Theorem 1. (i) For any function F (z1, z2) =
∑
k,l cklz

k
1z
l
2 with polynomial growth

in U2 the series
F |γ =

∑
k,l

ckl exp
(
ikh1(t) + ilh2(t)

)
(1.2)

converges in the sense of distributions.
(ii) The family of functions F (λeih1(t), λeih2(t)) converges in the sense of distri-

butions as λ→ 1− 0, and its limit coincides with (1.2).

Proof. Let ϕ be an infinitely smooth test function. We have to prove that the series

∑
k,l

ckl

∫ T

0

ϕ(t) exp
(
ikh1(t) + ilh2(t)

)
dt (1.3)

is absolutely convergent. We estimate the summand

Ik,l =

∫ T

0

ϕ(t) exp
(
ikh1(t) + ilh2(t)

)
dt (1.4)
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in the usual way. Integrating by parts, we obtain

−Ik,l =

∫ (
ϕ(t)

ikh′1(t) + ilh′2(t)

)′
exp
(
ikh1(t) + ilh2(t)

)
dt

=

∫
ϕ′(t)

ikh′1(t) + ilh′2(t)
exp
(
ikh1(t) + ilh2(t)

)
dt

+

∫
ϕ(t)

(
−ikh′′1(t)− ilh′′2(t)

)(
ikh′1(t) + ilh′2(t)

)2 exp
(
ikh1(t) + ilh2(t)

)
dt.

(1.5)

Let

θ = min
t

(
h′1(t), h

′
2(t)
)
, C = max

t

(
h′′1(t), h′′2 (t)

)
.

Then

|Ik,l| 6
1

k + l

(
1

θ

∫
|ϕ′(t)| dt +

C

θ2

∫ ∣∣ϕ(t)
∣∣ dt).

On the other hand, both summands in (1.5) can be written as (1.4) with another
function ϕ. Repeating this calculation, we obtain the estimate

|Ik,l| <
1

(k + l)N

(
N∑
j=0

A
(N)
j

∫
|ϕ(j)(t)| dt

)
(1.6)

for any N , and now formula (1.1) obviously implies that (1.3) converges.
(ii) We have to justify the passage to the limit in

∑
k,l

cklλ
kλl
∫ T

0

ϕ(t) exp
(
ikh1(t) + ilh2(t)

)
dt

as λ → 1 − 0. This is easy, since (1.6) implies that this series is majorized by a
convergent series.

1.3. A view from the boundary. We assume for simplicity that our curve γ is
defined by the formula ϕ2 = h(ϕ1). Let ∆ε be the set h(ϕ1)− ε < ϕ2 < h(ϕ2) + ε
on the torus T2: z1 = eiϕ1 , z2 = eiϕ2 . Let χε be the function on the torus that is
equal to 1 on ∆ε and vanishes outside ∆ε.

Let

F (z1, z2) =
∑

k>0, l>0

cklz
k
1z
l
2

be an element of the Hardy space H2(U2), that is, the boundary value of F on
T2 is an element of L2(T2). Let us recall that this is equivalent to the following
condition (see [29], § 3.4): ∑

k,l

|ckl|2 <∞.
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Theorem 2. For any F ∈ H2(T2) the restriction of F to γ (that is, expres-
sion (1.2)) coincides with the limit

lim
ε→0

1

2ε
χε(ϕ1, ϕ2)F (eiϕ1 , eiϕ2)

in the sense of distributions on the torus. More precisely, the following relation is
valid for any C∞-smooth function g(ϕ1, ϕ2) on T2:

lim
ε→0

1

2ε

∫∫
T2

χε(ϕ1, ϕ2)F (eiϕ1 , eiϕ2)g(ϕ1, ϕ2) dϕ1 dϕ2

=
∑
k,l

ckl

∫ 2π

0

g(t, h(t)) exp
(
ikt+ ilh(t)

)
dt.

Proof. We write g(ϕ1, ϕ2) as follows:

g(ϕ1, ϕ2) = g(ϕ1, h(ϕ1)) +
[
g(ϕ1, ϕ2)− g(ϕ1, h(ϕ1))

]
.

We denote the bracketed term by r(ϕ1, ϕ2). The function r vanishes on ϕ2 = h(ϕ1).
By the Cauchy–Schwarz–Bunyakovskii inequality, the summand

1

2ε

∫∫
T2

F (eiϕ1 , eiϕ2)χε(ϕ1, ϕ2)r(ϕ1, ϕ2) dϕ1 dϕ2 (1.7)

is majorized by(∫∫
T2

|F (eiϕ1 , eiϕ2)|2 dϕ1 dϕ2

)1/2(∫∫
∆ε

1

(2ε)2
|r(ϕ1, ϕ2)|2 dϕ1 dϕ2

)1/2

.

The second factor tends to zero as ε→ 0, whence, (1.7) tends to zero. It remains
to investigate the behaviour of the integral

1

2ε

∫∫
T2

F (eiϕ1 , eiϕ2)χε(ϕ1, ϕ2)g(ϕ1, h(ϕ1)) dϕ1 dϕ2

as ε→ 0.
Since the series

F (eiϕ1 , eiϕ2) =
∑
k,l

ckl exp(ikϕ1 + ilϕ2)

converges in L2(T2), we can rewrite the integral under investigation as follows:

∑
k,l

ckl

(
1

2ε

∫∫
T2

g(ϕ1, h(ϕ1))χε(ϕ1, ϕ2) exp(ikϕ1 + ilϕ2) dϕ1 dϕ2

)
.
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The change of variables t = ϕ1, s = ϕ2 − h(ϕ1) in the integrals reduces the
series to the form

∑
k,l

ckl

(
1

2ε

∫ 2π

0

dt

∫ ε

−ε
g(t, h(t)) exp

(
ikt+ il(s+ h(t))

)
ds

)

=
∑
k,l

ckl

(∫ 2π

0

g(t, h(t)) exp
(
ikt+ ilh(t)

)
dt

)[
1

2ε

∫ ε

−ε
eils ds

]
. (1.8)

We observe that the factors in square brackets are uniformly bounded and tend
to 1 for any fixed l as ε → 0. This enables us to use the theorem on majorized
convergence, which completes the proof.

Let us formulate a similar theorem for an arbitrary function F with polynomial
growth. It is obvious that for any such function the series

F (eiϕ1 , eiϕ2) =
∑
k,l

ckle
ikϕ1eilϕ2

converges in the sense of distributions on T2.
Consider a function θ(x) on R vanishing outside a small neighbourhood of zero

and such that jθ(jx)→ δ(x) in measure as j →∞.

Theorem 3. For any function F with polynomial growth in U2 the restriction of
F to γ coincides with the limit

lim
j→∞

jF (eiϕ1 , eiϕ2)θ
(
j(ϕ2 − h(ϕ1))

)
in the sense of distributions on the torus. More precisely, for any function g(ϕ1, ϕ2)
that is C∞-smooth on T2 the limit

lim
j→∞

j

∫∫
T2

F (eiϕ1 , eiϕ2)g(ϕ1, ϕ2)θ
(
j(ϕ2 − h(ϕ1))

)
dϕ1 dϕ2

coincides with ∑
k,l

ckl

∫ 2π

0

g(t, h(t)) exp
(
ikt+ ilh(t)

)
dt.

Proof. We write g(ϕ1, ϕ2) as follows:

g(ϕ1, ϕ2) = g(ϕ1, h(ϕ1)) +
M−1∑
m=1

sinm
(
ϕ2 − h(ϕ1)

2

)
pm(ϕ1)

+ sinM
(
ϕ2 − h(ϕ1)

2

)
r(ϕ1, ϕ2),

where pm and r are smooth functions and M will be chosen later.
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We have to investigate the behaviour of the integrals

I0 = j

∫∫
T2

F (eiϕ1 , eiϕ2)θ
(
j(ϕ2 − h(ϕ1))

)
g(ϕ1, h(ϕ1)) dϕ1 dϕ2,

Im = j

∫∫
T2

F (eiϕ1 , eiϕ2)θ
(
j(ϕ2 − h(ϕ1))

)
sinm

(
ϕ2 − h(ϕ1)

2

)
pm(ϕ1) dϕ1 dϕ2,

IM = j

∫∫
T2

F (eiϕ1 , eiϕ2)θ
(
j(ϕ2 − h(ϕ1))

)
sinM

(
ϕ2 − h(ϕ1)

2

)
r(ϕ1, ϕ2) dϕ1 dϕ2

as j →∞. We apply to I0 the calculations of the preceding theorem, replacing the
bracketed factor in (1.8) by

j

∫
θ(js)eils ds =

∫
θ(s)eisl/j ds.

These quantities do not exceed 1 and tend to 1 as j →∞.
A similar calculation for Im with 1 6 m 6M yields

∑
k,l

ckl

[∫ 2π

0

pm(t) exp
(
ikt+ ilh(t)

)
dt

](
j

∫ 2π

0

sinm
(
s

2

)
θ(js)eils ds

)
.

The factors in square brackets do not depend on j and tend to zero as k, l →∞
more rapidly than any power of (k+ l)a. The factors in parentheses tend to zero for
a fixed l, and these quantities are uniformly bounded. Hence, Im → 0 as j →∞.

Consider IM . We represent the distribution F (eiϕ1 , eiϕ2) as a finite sum:

F (eiϕ1 , eiϕ2) =
∑(

∂

∂ϕ1

)α(
∂

∂ϕ2

)β
Gα,β(ϕ1, ϕ2),

where the Gα,β are functions continuous on T2 (the pair (α, β) ranges over a finite
set). Then integration by parts in IM yields a sum of expressions of the form∫∫

Gα,β(ϕ1, ϕ2)κα,β,σ,τ (ϕ1, ϕ2)j
1+σ+τ θ(σ+τ)

(
j(ϕ2 − h(ϕ1))

)
×
[(

∂

∂ϕ1

)α−τ−µ(
∂

∂ϕ2

)β−σ(
sinM

(
ϕ2 − h(ϕ1)

2

)
r(ϕ1, ϕ2)

)]
dϕ1 dϕ2,

where the κα,β,σ,τ are smooth functions. The quantities Gα,β , κα,β,σ,τ , and θ(σ+τ)

are majorized by constants, and the term in square brackets is majorized on the
support of the function θ

(
j(ϕ2 − h(ϕ1))

)
by the quantity

C

(
1

j

)M−(α−σ)−(β−τ)

.

If M is sufficiently large (namely, if M is greater than α + β for all pairs (α, β)),
this estimate implies that the integral tends to zero.
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§ 2. The ball

2.1. Functions with polynomial growth. Let B2 be the ball |z1|2 + |z2|2 6 1
in C2. Its boundary is the sphere S3 defined by the equation |z1|2 + |z2|2 = 1.

A function F (z1, z2) =
∑
k,l cklz

k
1z
l
2 holomorphic in B2 is called a function with

polynomial growth if there are N and A such that

F (z1, z2) 6
A

(1− |z1|2 − |z2|2)N
.

Let H(B2) be the space of functions with polynomial growth. In terms of Taylor
coefficients the condition f ∈ H(B2) is equivalent to the condition

ckl

√
k!l!

(k + l)!
= o(k + l)p (2.1)

for some p. This can be rewritten as follows:

ckl

√
k!l!

(k + l)!
= o
(
(k + 1)(l + 1)

)q
(2.2)

for some q. The same condition can be written as

ckl

(
kk/2ll/2

(k + l)(k+l)/2

)
= o
(
(k + 1)(l + 1)

)s
(2.3)

for some s.

Lemma. Each of the conditions (2.1)–(2.3) on F is equivalent to the condition
F ∈ H(B2).

Proof. Let F be the space of all functions holomorphic in the ball and satisfying
any of conditions (2.1)–(2.3). It is obvious that F is closed relative to the operators
∂
∂z1

, ∂
∂z2

, and

J1f(z1, z2) =

∫ z1

0

f(u, z2) du, J2f(z1, z2) =

∫ z2

0

f(z1, u) du.

Let F ∈ H(B2). Then the function F̃ = Ja1 J
b
2F is continuous in the closed ball

for sufficiently large a and b. Let F̃ =
∑
k,l aklz

k
1z
l
2. It is obvious that F̃ belongs to

the Hardy space H2(B2) (see [30]), which is equivalent to the following condition
(see [30], § 1.4.9): ∑

k,l

|akl|2
k!l!

(k + l + 1)!
<∞.

This implies that F̃ ∈ F , whence, F ∈ F .
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Conversely, let F (z1, z2) =
∑
k,l cklz

k
1z
l
2 ∈ F . Then the Cauchy–Schwarz–

Bunyakovskii inequality implies that

|F (z1, z2)|2 6
(∑

j

∣∣∣∣ ∑
k+l=j

cklz
k
1 z
l
2

∣∣∣∣ )2

6
∑
j

( ∑
k+l=j

|ckl|2
k!l!

(k + l)!

)( ∑
k+l=j

(k + l)!

k!l!
|z1|2k|z2|2l

)

=
∑
j

( ∑
k+l=j

|ckl|2
k!l!

(k + l)!

)(
|z1|2 + |z2|2

)j
6
∑
j

( ∑
k+l=j

(k + l + 1)p
)(
|z1|2 + |z2|2

)j
=
∑
j

(j + 1)p+1
(
|z1|2 + |z2|2

)j
6
∑
j

(j + p+ 1)(j + p) . . . (j + 1)
(
|z1|2 + |z2|2

)j
=
(
1− |z1|2 − |z2|2

)−(p+1)
.

2.2. The contact distribution on the sphere. Consider the boundary ∂B2 of
B2, that is, S3: |z1|2 + |z2|2 = 1. Let (a, b) ∈ S3. Then the real tangent space T(a,b)

to S3 at (a, b) is defined by the equation

Re(aξ̄ + bη̄) = 0, (ξ, η) ∈ C2.

We consider the subspace L(a,b) of codimension 1 in T(a,b) that consists of the
vectors (ξ, η) satisfying the equation

aξ̄ + bη̄ = 0.

Thus, we obtain a two-dimensional distribution on the three-dimensional sphere
(see [30], § 5.4.2). Let us recall that this distribution is not integrable. It is obvious
that it is invariant relative to the group U(2) of unitary transformations of C2.

Consider the action of U(2) on the set of tangent vectors (ξ, η) to S3 (at all points
(a, b) ∈ S3). It is easy to see that U(2)-orbits are distinguished by the following
two invariants:

(i) the length of the vector l =
(
|ξ|2 + |η|2

)1/2
;

(ii) the scalar product of (ξ, η) with the unit normal to L(a,b):

q = Im(aξ̄ + bη̄),

where |q| 6 l.
We shall need the following auxiliary statement.
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Lemma. Any vector (ξ, η) ∈ T(a,b) such that (ξ, η) /∈ L(a,b) can be transformed
by an element of U(2) into a vector (ξ′, η′) ∈ T(a′,b′) that satisfies the following
condition: the numbers Im(ξ′/a′) and Im(η′/b′) are finite, different from zero,
and both positive or both negative.

Proof. It is sufficient to verify that all values of q and l are achieved on vectors
satisfying the desired condition.

We fix real a and b. Consider ξ = iat1, η = ibt2, where t1, t2 > 0. Then

l =
√
a2t21 + b2t22, q = a2t1 + b2t2.

If t1 and t2 are positive, then q/l can range from a to b, and the statement becomes
obvious.

2.3. Boundary values.

Theorem 4. Let γ: z1 = α(t)eih1(t), z2 = β(t)eih2(t) be a closed C∞-smooth curve
in ∂B2 = S3 transversal to L(a,b) at every point. Then the following assertions are
valid for any function

F =
∑
k,l

cklz
k
1z
l
2 ∈ H(B2)

with polynomial growth:
(i) the restriction of F to γ is defined, that is, the series∑

k,l

ckl
(
α(t)eih1(t)

)k(
β(t)eih2(t)

)l
(2.4)

converges in the sense of distributions;
(ii) the (radial) limit

lim
λ→1−0

F
(
λα(t)eih1(t), λβ(t)eih2(t)

)
exists in the sense of distributions and coincides with the sum of the series (2.4).

Proof. Let ϕ(t) be a smooth function. We have to prove that the series∑
k,l

cklIk,l,

where

Ik,l =

∫ 1

0

ϕ(t)
(
α(t)eih1(t)

)k(
β(t)eih2(t)

)l
dt

is absolutely convergent. We can assume without loss of generality that ϕ(t) has a
small support. In this case the lemma in § 2.2 allows us to assume that h′1 > 0 and
h′2 > 0. Integration by parts in Ik,l yields

Ik,l = −
∫ 1

0

 ϕ(t)

ikh′1(t) + ilh′2(t) + kα
′(t)
α(t) + l β

′(t)
β(t)

′

× eikh1(t)eilh2(t)αk(t)βl(t) dt.
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Applying the Cauchy–Schwarz–Bunyakovskii inequality, we obtain the estimate

|Ik,l| < C(k + l)−1

(∫ 1

0

|α2k(t)β2l(t)| dt
)1/2

.

Integrating by parts once again, we obtain the following estimates for the Ik,l:

|Ik,l| < Cp(k + l)−p
(∫ 1

0

|α2k(t)β2l(t)| dt
)1/2

for any p. To estimate (2.4), we use the Cauchy–Schwarz–Bunyakovskii inequality:∣∣∣∣∑
k,l

cklIk,l

∣∣∣∣2 6 C2
p

∑
j

( ∑
k+l=j

|ckl|2
k!l!

(k + l)!
(k + l)−2p

)

×
( ∑
k+l=j

(k + l)!

k!l!

∫ 1

0

|α(t)|2k|β(t)|2l dt
)
.

The second factor is equal to 1, whence, our expression is equal to

C2
p

∑
k,l

|ckl|2
k!l!

(k + l)!
(k + l)−2p.

This series converges for sufficiently large p, which completes the proof of (ii).
Assertion (ii) can be proved by the arguments used in the proof of Theorem 1.

§ 3. The space L2L2L2 on the one-sheet hyperboloid

In this section we describe Molchanov’s decomposition for L2 on the one-sheet
hyperboloid and discuss its function-theoretic properties.

3.1. The hyperboloid. Consider the group SO0(2, 1), which consists of the real
matrices

g =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


satisfying the condition

gt

 1
1
−1

 g =

 1
1
−1

 , det g = +1, a33 > 0.

Let us recall that SO0(2, 1) is isomorphic to the group PSL2(R). We consider the
one-sheet hyperboloid X defined by the following equation in R3:

x2
1 + x2

2 − x2
3 = 1.

It is obvious that X is SO0(2, 1)-invariant (moreover, X = SO0(2, 1)/SO0(1, 1)).
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There is precisely one SO0(2, 1)-invariant measure on X (up to a constant fac-
tor). We consider the representation of SO0(2, 1) ' PSL2(R) in L2 relative to this
measure. The decomposition of L2 into irreducible representations is well known
(it was actually obtained in [25]); it can be expanded as a double direct integral in
the even basic series of unitary representations of PSL2(R) plus a single direct sum
of all representations of PSL2(R) in discrete series (for the series representations of
SL2(R) see, for example, [17], [25], [26], [28], and § 5 below).

Consider the decomposition

L2(X) = Lc ⊕Ld, (3.1)

where Lc is the integral over the basic series and Ld is the direct sum of the rep-
resentations in discrete series. The description of this representation was discussed
by Molchanov in [17]–[19] (see also [8], [9]). We propose below a convenient explicit
description of this decomposition. We also show that Theorems 1 and 2 imply
amusing and strange consequences concerning the function-theoretic properties of
functions from Lc and Ld.
3.2. The torus. There are two families of rectilinear generators on the one-sheet
hyperboloid. Each of these families is parametrized by the points of a circle. Thus
we obtain an embedding of the hyperboloid in a torus (namely, we associate with
every point of the hyperboloid the pair of generators that pass through it, and thus
with a point of the torus T2).

We consider coordinates z1 and z2 orϕ1 andϕ2 on the two-dimensional torus T2:

z1 = eiϕ1 , z2 = eiϕ2 ; ϕ1, ϕ2 ∈ [0, 2π]; |z1| = |z2| = 1.

Let σ be the Lebesgue measure dϕ1dϕ2 on T2. In the new coordinates the group
SO0(2, 1) ' PSL2(R) becomes the following transformation group of the torus:

(z1, z2) 7→
(
az1 + b

b̄z1 + ā
,
az2 + b

b̄z2 + ā

)
,

where z 7→ az+b
b̄z+ā

is the usual Möbius transformation of the circle |z| = 1 (let us recall

that |a|2−|b|2 = 1). The line ∆: ϕ1 = ϕ2 (the diagonal) is PSL2(R)-invariant. The
image of X under the map into the torus is the complement of ∆. The invariant
measure on the hyperboloid becomes the measure µ on T2 defined by the formula

sin−2

(
ϕ1 − ϕ2

2

)
dϕ1dϕ2.

The natural isometry

J : L2(T, µ) ' L2(X)→ L2(T, σ)

is defined by the formula

Jf(z1, z2) = (z1 − z2)
−1f(z1, z2).
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The isometric property of J follows from the equality

|z1 − z2| = 2

∣∣∣∣ sin(ϕ1 − ϕ2

2

)∣∣∣∣.
The isometry J transforms the action of PSL2(R) in L2(X) into an action in
L2(T, σ) defined by the formula

f(z1, z2) 7→ f

(
az1 + b

b̄z1 + ā
,
az2 + b

b̄z2 + ā

)
(b̄z1 + ā)−1(b̄z2 + ā)−1. (3.2)

3.3. The decomposition of L2(T, σ)L2(T, σ)L2(T, σ). It is obvious that the following four sub-
spaces are invariant under operator (3.2): Λ++, Λ+−, Λ−+, Λ−−. These subspaces
consist of the functions ∑

k>0, l>0

cklz
k
1z
l
2,

∑
k>0, l<0

cklz
k
1z
l
2,∑

k<0, l>0

cklz
k
1z
l
2,

∑
k<0, l<0

cklz
k
1z
l
2,

respectively. It is obvious that

L2(T, σ) = Λ++ ⊕ Λ+− ⊕ Λ−+ ⊕ Λ−−.

Λ++ coincides with the Hardy space H2(U2); the difference between the other
three spaces and H2(U2) is immaterial.

Using the notation of formula (3.1), we can write

Lc ' Λ+− ⊕ Λ−+, Ld = Λ++ ⊕ Λ−−, (3.3)

where Λ++ is the direct sum of the representations of PSL2(R) with highest weight,
and Λ−− is the direct sum of the representations of PSL2(R) with lowest weight.

Remark. The decomposition Λ++ ⊕Λ+− ⊕ Λ−+ ⊕Λ−− is defined not only for L2:
it can be defined for the space of all distributions on the torus.

3.4. The restriction to curves. Consider a smooth curve γ: ϕ1 = h1(t), ϕ2 =
h2(t) on the torus such that h′1(t) and h′2(t) are everywhere different from 0, that is,
γ is not tangent to parallels or meridians of the torus. In terms of the hyperboloid
this means that γ is not tangent to rectilinear generators. We say that γ is positive
monotonic if h′1(t) and h′2(t) are both positive or both negative. Otherwise, it is said
to be negative monotonic. If γ(s) =

(
γ1(s), γ2(s), γ3(s)

)
⊂ R3 is the corresponding

curve on the hyperboloid and

‖γ′(s)‖2 := γ′1(s)
2 + γ′2(s)

2 − γ′3(s)2,

then the positive monotonicity means that ‖γ′(s)‖2 < 0 and the negative mono-
tonicity means that ‖γ′(s)‖2 > 0.

Theorem 2 and decomposition (3.3) imply the following proposition.
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Proposition 5. The restriction of any f ∈ Lc (in the sense of Theorem 2) to any
negative monotonic curve is defined, and so is the restriction of any f ∈ Ld to any
positive monotonic curve.

A similar statement is valid for the space of distributions on the hyperboloid.

Remark. The diagonal ∆ is positive monotonic and PSL2(R)-invariant. Hence,
the restriction of f ∈ Ld to ∆ is a PSL2(R)-intertwining operator. Moreover, the
restrictions of the derivatives of f of any order to ∆ are defined (the derivatives of
functions with polynomial growth are functions with polynomial growth). Let Sα

be the subspace of functions f ∈ Ld = Λ++ ⊕Λ−− such that the restrictions of all
their partial derivatives of order 6 α to ∆ are equal to zero. Then we obtain the
following filtration in Ld:

Ld ⊃ S0 ⊃ S1 ⊃ · · · ,
which is invariant under PSL2(R). The group PSL2(R) acts in the factors Sj/Sj−1

in a natural way. The corresponding representation is the sum of the representation
with the highest weight and the complex-conjugate of the representation with the
lowest weight.

The last remark and Proposition 5 are obvious consequences of assertions in § 1.
There arise the following two questions concerning analogues of these statements in
more sophisticated cases. First, can we explain the discrete spectra in [23] and [14]
by analogues of Theorem 2? Second, are there analogues of Proposition 5 for more
general hyperboloids, pseudo-Riemannian symmetric spaces, and indefinite Stiefel
manifolds (see [19], [6], [32], [13])?

§ 4. The restriction to a curve in a tensor product of Sobolev spaces

4.1. Sobolev spaces on a circle. Any distribution f on the circle S1 can be
represented as the sum of the following series:

f =
∞∑

k=−∞
cke

ikϕ, (4.1)

where cn = o(np) for a sufficiently large p.
Let λ ∈ R. The Sobolev space Wλ = Wλ(S1) is the space of distributions on

the circle whose Fourier coefficients ck (see (4.1)) satisfy the condition

‖f‖2λ =
∑
n

(n2 + 1)λ|ck|2 <∞.

4.2. The restriction to a curve. Consider the tensor product Wα ⊗W β . It is
natural to interpret this space as the space of distributions

F =
∑
k,l

ckle
ikϕ1eikϕ2 (4.2)

on T2: z1 = eiϕ1 , z2 = eiϕ2 , ϕ1, ϕ2 ∈ [0, 2π], that satisfy the condition

‖F‖2 =
∑
k,l

|ckl|2(k2 + 1)α(l2 + 1)β <∞. (4.3)

The same formula defines a norm in Wα ⊗Wβ.
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Proposition 6. Let α + β > 1/2. Let γ be any curve on the torus transversal
to the parallels and meridians. Then the operator of restriction of functions F ∈
C∞(T2) to γ can be extended to a bounded operator from Wα ⊗Wβ into the space
of distributions on γ.

Proof. Note that our statement is local. The space Wα ⊗Wβ is invariant under
the changes of variables

ϕ̃1 = q1(ϕ1), ϕ̃2 = q2(ϕ2),

where q1 and q2 are smooth diffeomorphisms of the circle. Hence, we can assume
without loss of generality that γ is defined by the equation ϕ1 = ϕ2. Now we can
write down an explicit expression for the operator of restriction to γ in terms of
Fourier coefficients. Namely, we associate with the function (4.2) the series

∑
n

( ∑
k+l=n

ckl

)
einθ. (4.4)

By the Cauchy–Schwarz–Bunyakovskii inequality,

∣∣∣∣ ∑
k+l=n

ckl

∣∣∣∣2 6 ( ∑
k+l=n

|ckl|2(k2 + 1)α(l2 + 1)β
)

×
[∑
k

1

(k2 + 1)α
(
(n− k)2 + 1

)β ].
The series in the parentheses converges by virtue of (4.3), and the series in square
brackets converges for α+β > 1/2. We have to prove that the sum of the series (4.4)
is a distribution, and to do this, it is sufficient to verify that the factor in square
brackets has polynomial growth with respect to n. Consider the expression

rk =
1

(k2 + 1)α
(
(n− k)2 + 1

)β .
It is clear that the maximum of rk over −n 6 k 6 2n is majorized by a power of n.
If k lies outside this interval, then

rk <
1

|n− k|2(α+β)
for k > 2n,

rk <
1

|k|2(α+β)
for k < −n.

Now the assertion is obvious.
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§ 5. Discrete spectra in tensor products
of unitary representations of SL∼2 (R)SL∼2 (R)SL∼2 (R)

Our purpose in this section is to obtain an explicit construction of irreducible
subrepresentations (possibly all of them) in certain tensor products of unitary rep-
resentations of SL∼2 (R), using the theorems on the restriction to curves.

5.1. Representations with the highest weight. We interpret SL2(R) as the
group of matrices

g =

(
a b
b̄ ā

)
, |a|2 − |b|2 = 1.

This group acts on the disc |z| < 1 by the Möbius transformations

z 7→ az + b

b̄z + ā
.

Let SL∼2 (R) be the universal cover of SL2(R) (see [26]). For any s > 0 we define
a representation Ts of SL∼2 (R) in the space of holomorphic functions on the circle
by the formula

Ts(g)f(z) = f

(
az + b

b̄z + ā

)
(b̄z + ā)−s.

Remark. The parameter s in this formula is real. Therefore, (b̄z + ā)−s is a many-
valued function. If s is not an integer, we obtain a representation of the universal
cover SL∼2 (R) of the group SL2(R) rather than of the group itself.

The Ts are called representations with the highest weight (see [26]). These rep-
resentations are unitary in the Hilbert space Hs of holomorphic functions defined
by the reproducing kernel (see, for example, [22], § 1)

Ks(z, u) = (1− zū)−s.

The norm in Hs can be written as follows:∥∥∥∥∑ ckz
k

∥∥∥∥2

=
∑ k!

s(s+ 1) . . . (s+ k − 1)
|ck|2. (5.1)

In the case when s > 1 there is a convenient integral representation for the scalar
product in Hs:

〈f, g〉 =
∫
|z|<1

f(z)g(z)(1− |z|2)s−2 dz dz̄.

H1 coincides with the Hardy space H2.

Remark. Formula (5.1) implies that the boundary values of f ∈ Hs lie in the
Sobolev space W−(s−1)/2.

The representation T s of SL∼2 (R) with the lowest weight (−s) is realized in the
same space Hs by the operators

T s(g)f(z) = f

(
āz + b̄

bz + a

)
(bz + a)−s.
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5.2. The representation Ts ⊗ TσTs ⊗ TσTs ⊗ Tσ. Consider the space Hs ⊗Hσ. It is natural to
regard it as the Hilbert space of holomorphic functions in the bidisc U2 defined by
the reproducing kernel

Ks,σ(z1, z2;u1, u2) = Ks(z1, ū1)Kσ(z2, ū2) = (1− z1ū1)
−s(1− z2ū2)

−σ.

The condition F =
∑
cklz

k
1z
l
2 ∈ Hs ⊗Hσ is equivalent to the inequality∑

k,l

|ckl|2(k + 1)−(s−1)(l + 1)−(σ−1) <∞. (5.2)

This implies, in particular, that the space of functions with polynomial growth
in the bidisc coincides with ⋃

s>0, σ>0

Hs ⊗Hσ.

The representation Ts ⊗ Tσ is realized in the space Hs ⊗Hσ by the operators

f(z1, z2) 7→ f

(
az1 + b

b̄z1 + ā
,
az2 + b

b̄z2 + ā

)
(b̄z1 + ā)−s(b̄z2 + ā)−σ.

Consider the operator of restriction of holomorphic functions f ∈ Hs ⊗ Hσ to
the diagonal ∆: ϕ1 = ϕ2 of the torus T2. Consider the subspace Q0 of the space
Hs⊗Hσ consisting of functions whose restriction to ∆ is zero. Note that the deriva-
tives of a function with polynomial growth are functions with polynomial growth,
and so we can apply Theorem 1 to them. For any non-negative integer α we consider
the subspace Qα in Hs ⊗ Hσ that consists of functions whose derivatives of
order 6 α vanish on ∆. Thus we obtain an SL∼2 (R)-invariant filtration

Hs ⊗Hσ = Q−1 ⊃ Q0 ⊃ Q1 ⊃ · · ·

in Hs⊗Hσ. It can be easily verified that the representation of SL∼2 (R) in Qj−1/Qj
is irreducible and equivalent to Ts+σ+2j . Let Rj be the orthogonal complement of
Qj in Qj−1. We obtain the following decomposition of Hs ⊗Hσ into a direct sum
of minimal invariant subspaces:

Hs ⊗Hσ =
∞⊕
j=0

Rj .

Remark. The phrase “the restriction to ∆ is equal to zero” is somewhat unnatural
in our case. It would be simpler to say that the holomorphic function f is equal to
zero on the diagonal z1 = z2 of the bidisc (this is an argument from [11]). But see
the examples below.

5.3. The representation Ts ⊗ TσTs ⊗ T σTs ⊗ Tσ. This representation is realized in Hs⊗Hσ by
the unitary operators

f(z1, z2) 7→ f

(
az1 + b

b̄z1 + ā
,
āz2 + b̄

bz2 + a

)
(b̄z1 + ā)−s(bz2 + a)−σ.
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This time it is natural to consider the operator of restriction to the curve ∆̃:
z1 = eit, z2 = e−it. This curve, however, does not satisfy the conditions of
Theorem 1, which changes the whole situation radically.

According to the remark in Section 5.1, the boundary values of functions f ∈
Hs ⊗Hσ belong to the Sobolev space W (1−s)/2(S1)⊗W (1−σ)/2(S1).

By virtue of Proposition 6, the operator of restriction to ∆̃ is well defined in
Hs ⊗ Hσ if s + σ < 1. Thus we obtain a space of functions on ∆̃ (namely, the
restrictions of functions f ∈ Hs ⊗ Hσ) and an action of SL∼2 (R) in this function
space. It is easy to verify that one of the series representations of SL∼2 (R) (see [26])

is realized in the functions on ∆̃.
We can obtain nothing more with the help of ∆̃. It is well known, however, that

there is a discrete spectrum in Ts⊗Tσ if |s−σ| > 1, and our next task is to produce
it.

5.4. The dual model of T sT sT s. Consider the Sobolev space W (s−1)/2 (see § 4). Let
L be the subspace consisting of functions that can be continued holomorphically

inside the disc |z| < 1. Let
◦
Hs be the quotient space W (s−1)/2/L. The group

SL∼2 (R) acts in W (s−1)/2 by the operators

◦
T s(g)Φ(z) = Φ

(
az + b

b̄z + ā

)
(b̄z + ā)s−1

(where |z| = 1). It is obvious that the subspace L is invariant under
◦
T s, whence

we obtain a representation of SL∼2 (R) in the quotient space
◦
Hs. We denote this

representation by the same symbol
◦
T s.

The scalar product in
◦
Hs is defined by the formula

〈Φ1,Φ2〉 = lim
ε→0

∫
|z|=1

∫
|u|=1

Φ1(z)Φ2(u) dz dū(
1− (1− ε)zū

)s
(if Φ1 or Φ2 is holomorphic in the disc, then 〈Φ1,Φ2〉 = 0). We write the norm
defined by this scalar product as follows:∥∥∥∥∑

k>0

akz
−k +

∑
k>0

ckz
k

∥∥∥∥2

=
∑
k>0

(s+ 1)(s+ 2) . . . (s+ k)

k!
|ak|2.

Consider the bilinear form Hs ×
◦
Hs → C defined by the formula

{f,Φ} =

∫
|z|=1

f(z)Φ(z) dz.

It is obvious that {
Ts(g)f,

◦
T s(g)Φ

}
= {f,Φ},

whence the representations Ts and
◦
T s are mutually dual, that is,

◦
T s ' T s.
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5.5. The remaining discrete spectrum in Ts ⊗ TσTs ⊗ TσTs ⊗ Tσ. Let σ > s + 1. Consider

the representation Ts ⊗ Tσ in Hs ⊗
◦
Hσ. The space Hs ⊗

◦
Hσ is a quotient space of

Hs⊗W (σ−1)/2, and Hs⊗W (σ−1)/2 ⊂W−(s−1)/2⊗W (σ−1)/2. We can now consider
the operator of restriction to ∆ (see Proposition 6).

Let k be a positive integer such that s+ k < σ 6 s+ k+ 1. Let Qα be the space

of all functions f ∈ Hs ⊗
◦
Hσ the restrictions of whose partial derivatives of order

6 α to ∆ are equal to zero. Let us recall that differentiation maps Wλ into Wλ−1,
whence Proposition 6 enables us to consider spaces Qα with α 6 k. We obtain a

finite SL∼2 (R)-invariant filtration in Hs ⊗
◦
Hσ:

Hs ⊗
◦
Hσ = Q−1 ⊃ Q0 ⊃ Q1 ⊃ · · · ⊃ Qk.

It is easy to verify that the irreducible representation Tσ−s−2j is realized in the
quotient space Qj−1/Qj.

5.6. An unsuccessful method of producing the discrete spectrum in

T s ⊗ TσT s ⊗ TσT s ⊗ Tσ. Consider the representation
◦
T s ⊗

◦
Tσ in

◦
Hs ⊗

◦
Hσ (it is very close to

Ts ⊗ Tσ). Proposition 6 enables us to consider the operator of restriction to the

diagonal in
◦
Hs⊗

◦
Hσ, but this yields only finitely many subrepresentations, whereas

the set of all such representations is countable (see § 5.2).

5.7. The tensor product of T sT sT s and a representation from the basic
series. We fix τ ∈ R. Consider the representation Pτ of SL2(R) in L2 on the
circle |z| = 1 defined by the formula

Pτ (g)f(z) = f

(
az + b

b̄z + ā

)
|b̄z + ā| 12 +iτ

(these representations are called representations from the even basic series).

Consider the tensor product
◦
T s ⊗ Pτ . It is natural to realize it in the space

◦
Hs ⊗ L2, which is a quotient space of W (s−1)/2 ⊗ L2. We can apply Proposition 6
to the latter space and consider the operator of restriction to ∆.

This construction provides finitely many irreducible subrepresentations in T s ⊗
Pτ , although the discrete spectrum is countable.

5.8. Historical remarks. The problem of calculating the spectrum of the ten-
sor product of two unitary representations of SL2(R) was, in principle, solved in
the classical paper of Pukanszky [26] (this problem was later discussed in [16],
[28]). If we consider SL∼2 (R), then certain additional phenomena appear which
are connected with representations that are not weakly contained in the regular
representation. The presence of a discrete summand in the situation described in
§ 5.3 (the tensor product of a representation with a small highest weight and a
representation with a small lowest weight) was announced in [21].

5.9. Generalizations. Various generalizations of the situation described in § 5.3
were discussed in [22], §§ 2–4, 7. Among similar problems not considered in [22],
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let us mention the problem (see [1], [15]) of restricting the harmonic representation
(the Friedrichs–Segal–Berezin–Shale–Weyl representation) of Sp

(
2k(p + q),R

)
to

Sp(2k,R)×O(p, q). It would be interesting to understand whether it is possible to
find the spectrum from the papers cited in the case of the restriction to an orbit in
the boundary of a Cartan domain of type III. It would be interesting to find out
whether the “small” continuous spectra (see [24]) are connected with the operator
of restriction to a non-compact orbit.

The construction described in §§ 5.5 and 5.7 works in the following situation.
Let G be a semisimple Lie group. Let P and T be two unitary representations
of G realized in Hilbert spaces of distributions on a flag manifold M . All that is
needed to apply our technique is that one of these representations should act in a
Hilbert space of “sufficiently smooth” functions onM . The question of the degree of
smoothness of functions in spaces of unitary representations has not been studied.
Our technique always works if one of the representations has a “sufficiently large”
highest weight. We can show that in this case our construction yields a discrete
spectrum that consists of discrete Harish-Chandra series.
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