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A SEMIGROUP OF OPERATORS IN THE BOSON FOCK SPACE

Yu. A. Neretin UDC 519.46

A boson Fock space with n degrees of freedom is a space of holomorphic functions on n
n-dimensional Hilberts space with the scalar product:

Gy 8> =\ @ & @) exp (—(z, 2)) dactz.

We are interested in operators of the form

575 = §§exp {5 ey )2 )} 1) exp (= ) du da. (0.1)

_t
u
The main problem considered in this article is the problem of the boundedness of
these operators.

Unitary operators of the form (0.1) appeared in [1], in such a form Berezin has written
down the automorphisms of the canonical commutation relations. In numerous papers of the
years 70-80 (we mention only [2-5]) the fundamental role of the automorphisms of canonical
sommutation and anticommutation relations in the representation theory for infinite dimen-
sional groups has been clarified (this role is the same as for the operators of variables
sxchange and multiplication by a function in the representation theory of Lie groups). After
it had been discovered that a representation of an infinite dimensiqnal group is, in fact,
the visible part of a representation of an essentially bigger and invisible with the un-
aided eve semigroup (see [6]1), and, actually, even not a semigroup, but a category, at first
a problem of semigroup with the Weil representation has arisen. 01'shanskii indicated that
this semigroup is semigroup BO of all operators of the form (0.1), and then a problem has
arisen concerning the algebraic nature of this semigroup, as well as the problem of the
boundedness of the operators. It turns out (01'shanskii), that for n < = the boundedness of

K
the operators (0.1) is equivalent to the pair of conditions: 1)“Lw ﬁ)“<;1; 2 NKN<1, INI<!

(here, as everywhere in this paper, under the norm of a matrix we understand the Euclidean
norm). In the joint paper by Ol'shanskii, Nazarov, and the author [9] it has been clarified
that the considered semigroup is isomorphic to some semigroup of linear relations.

In Sec. 1 of this paper we introduce an accurate definition of operators of the form
(0.1), in Sac. 2 we discuss a realization of the semigroup BO as a semigroup of linear rela-
tions, and a semigroup of generalized fraction-linear Krein transformations of an infinite
dimensional matrix ball. In Secs. 3 and 4 we formulate and prove theorems on the boundedness
of the operators. In Sec. 5 we consider a somewhat more general class of operators.

For applications of the semigroup BO to the representation theory of the Virasoro alge-
bra, and to the conformal quantum field theory (cf. [7; 10]), see the Fermion analog of this
paper (cf., [81).

The author is grateful to G. I. Ol'shanskii and M. L. Nazarov for cooperation, and also
to E. B. Tsekanovskii for useful remarks.
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l. Operators B[S]

1.1. Boson Fock Space. Let V be a complex Hilbert space of dimensionn = 0, 1,2, cvi, =
pith the scalar product (-, ). We are interested mainly in the case n = w. We shall assume
Fimply a noninvariant point of view and Suppose that V is the coordinate space C" or 2.. Wa

thall consider the space F(V) of holomorphic functions on V with the scalar product
¢ 8> =1 @ 7@ exp (—, 2) dod.

f n < » then this formula should be understood literally [1], for n = = the simplest is tao
onsider the inductive limit lim F (C") for n » » take its completion and obtain F(%,).
—

It is known [1] that any bounded operator in F(V) is an integral operator in the direct
eaning of this term. Indeed, let A be a bounded operator. Let us consider the function

K (u, #) = <exp (¢, v); 4 exp (z, u)d, (1.1)
vhere e(z,Vv) 4pg e(z,u) 4pe considered as functions of z. Then

A @) = § K (w, 5)7 () exp (—(v, v) dv . (1.2)

The kernel K(u, v) is a function which is holomorphic in the variable u and antiholo-
rphic in the variable v. Taking into account that the norm of the function exp (z, v)

1 - "
el ,ls.exp(fr(v,v)>, and also (1.1), we obtain that the kernel K(u, v) satisfies the estima-
tjon

K (u,7)| <]l 4] eXp(zi(u, u) + (o, ::)). (1.3)

1.2. Operators B[S]. Operator B[S] in the boson Fock space F(V) is called an operator
wijth a kernel of the form

- 1, (K L\/z)
KKZ””:=9XP{7T<HO(L"u){#)}' (1l.4)
. ¢ L
wigere z, u are matrix rows, t denotes the matrix transposition, and the matrix 5W=<2,jJ
sgtisfies the conditions: ’
0°. s = st; .
1°, ISt \

2°. UKl < 1, MK < 1;
3°. K and M are Hilbert —Schmidt operators.

Proposition 1.1 (G. I. Ol'shanskii). If operator A with a kernel of the form (1.4) is
bojpnded, then the conditions 0°-3° are satisfied. )

Proof. 1° follows from (1.3).

2°. A-1==exp{€;zK2#. This function lies in F(V) if and only if K| < 1, where kK is

a Hilbert-—Schmidt operator. To obtain an analogical statement for M A*:1 should be cof-
sidlered.

. 2

Counterexample. Let A be a diagonal matrix with eigenvalues A,, Azse.., Where £|A1| <
—A

® T\d ZIAi]2 = w, LetS:( A 1 )

I—A A Then the operator B[S] is unbounded.

In the sequel we shall see that the necessary conditions of the boundedness 1°-3° ?re
velly close to the sufficient conditions, namely, if we assume that S| < 1 or if we rep~??fi
in ondition 3° the Hilbert —Schmidt property by the nuclearity, then the operator B[S] Wi
be ppounded. In the meantime we should define operators B[S] more accurately,

1.3. Domain of Definition of the Operators B[S]. Let T be a Hilbert —Schmidt operater
V with

T=TTI< 1. .5

We phall define Qectors bIT] = b, [T] = exp (1/2 (zT2")) in the space F(V), the condition [TJ < 1
guarantees that b [T] = F (V).
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Proposition 1.2. Let K(z, @) be a kernel of the form (1.4), let Lﬁ‘éﬁ satisfy the con-
ditions 0°-3°, and T conditions (1.5). Then e

& (2 a) b 17) exp (= (u, ) duda — aet o1 — MT)Y )0, [K + LT (1 — yrya o,
where the integral converges and the RHS of the equality is contained in F(V).

Proof. For the proof we need only the condition h K + LT (1 — M LM<t 1t follows
from the next lemma.

LEMMA 1.1 (Krein and Shmul'vyan). Let X=(§“ X“)- - ' oo ) ’ X, with
i1 22
TXN<1, (1 Xpll<1. Let T be a matrix of dimension n x n, . . 1 — X, 7)1

X, 0.
a) If || Tjl<1,then v < 1.
b) If || 7{l< 1, then v < 1,
c) If ISI<1, |T||<1, then v < 1.

This is a well-known result (see [11-13]), and a little bit later we shall understand
that it has a clear geometrical sense.

Further, we shall introduce the vectors b[T|a] =exp {—;—sz‘—;-ocz‘}, where T satisfies all

these conditions and a = V. It is easy to see that b[T|ale< F (V). The set Fo(V) of all
finite linear combinations of the vector b[T[a] is dense in F(V).

Proposition 1.3. Let (ft A[{l)’ T, @ be the same as before. Then

L/ \ f 1 \ .
¢ ILex ——ulut o4 ’l X _— ) 1 =
IH“J‘J OXP g ulu ”‘f“]'( (u, w))du diz

M]\a . : :
=b[K + LT (1 —MT)* L' |[L(1 — T M) o),

where c is some constant. The integral is absolutely convergent an}j the RHS of this relation
lies in F(V).

SSoxp'ﬂ%A@ﬁ)fg

The proposition can be proved by a direct computation.

The explicit form of the RHS is not needed further, we are interested only in the follow-

ing.
COROLLARY. The set Fy (V) is invariant with respect ot B[S].
Hence all the operators B(S) have a joint dense invariant domain of definition.
1.4. Product of the Operators B[S]. THEOREM 1.1. Let
K L P Q
S1=<L‘ M_)’ S*=(0' 11)
| Then
B [8,] B [S,] = det (1 — MP)2) B.[S; + Sal;
|where
_ t
SI*S’=(K'+LP(1—M}:) 1L L(i-TPM)() )‘ (1.6)
' —mMpy R+ Q' (1 — MPy1MQ

Proof. The formula can be verified by a direct computation. For the proof we need
only the fact that the matrix S, *8, satisfies the conditions 0°-3°, The verification of
condition 3° is obvious, condition 2° follows immediately from the Krein—Shmul'yan lemma
(b), and to obtain 1° we have to apply the Krein-—Shmul'yan lemma to the matrices

KL
' 0 1
2 - ) - 9
Xz Xoas L‘ M ’ Q¢ R
1 0

The algebraic structure behind formula (1.6) has been explained in [9]; we shall con-
sider it in the following section.
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1.5. Adjoint Operator. Let 5::< We shall put S*:=(

Proposition 1.4. Let fi, fa & Fo(V). Then {BIS1f,, fo> = <f» BIS*]1f,).

The proof needs only a direct verification. (Although it would not be cauticusly encugh
to claim that B[S*] = B[S*].)

1.6. Convergence. Proposition 1.5. Let us consider a sequence of bounded aperators
B{S;]. In order that B[S;] converge weakly to B[S] it necessary. and sufficient that the two
conditions hold

1) B[S;] is uniformly bounded.
2) S; » S weakly.

Moreover, if 1) and 2) are satisfied then operator B[S] is bounded.

Proof. We shall show, for instance, the necessity. We shall consider the set R of all
vectors from F(V) of the form fa (2) = exp (az'), e = V. If B[Si] weakly converges in B[S] then
{ur BIS1f> = K, (u, 7) converges for arbitrary u and v to {fur BIS,))fo> = K (u, 7). Hence, the

\
sequence of kernels converges pointwise, that means, also the sequence (uﬁ')S,-(;_.fl. should con-
verge pointwise, and this means the weak convergence of the operators §j.

We notice that usually condition 2) can be easily verified, and, at the contrary, 1) is
very difficult to verify.

2. Weil Representation

2.1. Shale—Berezin Symplectic Group. By Sp, we shall denote the group of all block

@ . i
2n x 2n-matrices (n=0, 1,..., ) of the form ¥ =(ﬁ ;) , satisfying the conditicns:

1) Y preserves the symplectic form (
2) ¥ is a Hilbert —Schmidt operator.

Remark. If n < « then Sp, is isomorphic to the group Sp (2n, R). To see this, we shall
notice that the group Sp, preserves the n-dimensional subspace consisting of vectors of the
form (¢ a).

THEOREM 2.1 (Berezin [1]; see also [14]). The formula

Fo-t @t ]
o1 — @1y

p(¥) =det (1 — Y ¥*/2) B [

defines a projective unitary representation of the group Spn in F(V) (the Weil rapresenta-
tion).

For ot

Remark. Matrix ( o oy

noticed by G. I. Ol'shanskii, this matrix is unitary.

)satisfies the conditions 0°-3°. Moreover, as it has heen

2.2. Symplectic Subgroup. Let us consider two copies V4 and V_ of the space V, where
one of them consists of sequences of the form (v}, v},...), and the other of sequences of
the form (vi, v3,...). We shall introduce in V4 ® V_ a skew-symmetric form {-, -} with the

. (1 0 ) -
matrix (_2 (i)) and a Hermitian form A(:, :) with the matrix (0 _1), Let Wy e W. be a second

copy of the space Vi e V_,

Lty
2(S) in (V,® V.)® (W, ® W.). This subspace consists of all vectors of the form (vy, v_,
W4, w_) satisfying the condition
v, K L\ [v_
()= ()

The resulting subspace, generally speaking, is not a graph of an operator V, & Vo =W, W
We shall consider £(S) as a linear relation. We recall that linear relatiom can heJ“‘“—‘ltl'
plied, namely, if R,, R,, R; are linear spaces, and L, C R, @ R,, Ly C Ry @ R, are linear
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relations, then, by definition, their product LL, = Lg C R, ® R,, consists of all pairs
(ry 73} &= 1 @ Ry, for which there exists an 7 & Ry such that (r,. r) & Ly, (rpy 1) & L,.  Linear
relations can be naturally considered as graphs of not everywhere defined and multivalued
linear cperators.

Linear relation & = 2(S) satisfies the conditions: 0. g preserves the form {-, -},

.8, L and, moreover, % is maximal among spaces satisfying this condition,
then {py, q1} = {p,, q,} (this is a consequence of condition 0°).

£ "stretches" the form A(:, -), i.e., if (p, @)= I, then A (p, ) <A (g, q) (a conse-
quence of condition 2°),

2*, 1f 0, 0) = 1, then A (p, p) Sellpl, if 0, 9) =1, then A (g, g) =ellqiP, where € does
not depend on p, q (this strengthening of condition 17 follows from 2°).

Remark. We shall introduce in V,®OV_.® W, d W_ the forms

17,

{(v,, wy), (vy, w,)}) = {v1, vy} — {w;, w,},
A’ ((vh wl)v (v21 ws)) = _A (vlv vz) + A (wh wz)v

where 1, =V, QV_,wis W, ® W.. Then condition 0% means that % is a Lagrangian subspace

| with respact to the form {-, +}', and condition 1* means that the form A' is positive defi-
nite on L.

: ‘L'Dn‘-"ersely, one can show that an arbitrary linear relation % satisfying the conditions
07-27 has the form £ = 2(S), where S satisfies the conditions 0°-2°.

Proposition 2.1. 1(S8,)1(S,) = L (S, +S,), where the multiplication * is defined by formula
(1.6).

The proposition can be verified by a computation.

We have not used yet condition 3°. Tt determines in the semigroup of all linear rela-

tions satisfying conditions 0°-2° a subsemigroup which we shall call a symplectic semigroup
rsp.

Then Theorem 1.1 can be reformulated in the following way.

' THEOREM 2.2. Let !&TSp. Let S = S(2) be the corresponding matrix. Then % - B[S(%)]
is a projective representation of semigroup I'Sp.

This representation generates the Weil representation of the Shale-Berezin group,
and thus it can be also called the Weil representation.

2.2. Infinite Dimensional Cartan Domain %. By & =%, we shall denote the set of com-
plete symmetric Hilbert —Schmidt matrices of dimension » X n (n < ) with the norm <1. If

n o<« then %, is one of realizations %, of Hermitian symmetric space Sp (2r,R) ~ U (n).

Let PF (V) be a projective Fock space. We shall consider the mapping x: &, —PF (V),
given by the formula % (T) = b [T).

Semnigroup I'Sp, acting in the Fock space, maps vectors of the form b[T] into vectors of

the same form (Proposition 1.1). Thus, we obtain the action of the semigroup TI'Sp on .
It is pivey by the formula

K L
p(Lt M)T=K+LT(1—MT)‘1L’.

(the Erein —Shmul'yan lemma from 1.3 asserts that the mappings u(S) map domain % into it-
self). ’ :

Mapping p(S) is invertible if and only if the matrix S is unitary. The group of all in-

vertible mappings of the form u(S) is the Shale—Berezin group, and in the finite dimensional
case It is simply Sp (2n, R).

further we shall mention that with each T &% there is connected a subspace A(T) in

v, 1 It consists of all vectors of the form (v4, Tvy). By the symmetricity of matrix T
the subspace A(T) is Lagrangian with respect to the form {:, <}. By the condition ITI < 1
Form A+, .) is positive definite on A(T).

Proposition 2.2. X (p (S) T) - 1 (S) A (7).

Proof, This is based on a simple verification.

l 139




Hence, in such terms, statement a) of the Krein—Shmul'yan lemma becomas ohvicus.

3. Boundedness Theorems

3.1. Formulation of the Theorems. Let S satisfy the conditions 0°-3° from 1.2.

THEOREM 3.1. I < 1 then B[S] is bounded.
THEOREM 3.2. and M are nuclear operators then 5% is bounded.

3.2. Reduction to the Self-Adjoint Case. LEMMA 3.l1. a) If S satisfigs the assumptions
of Theorem 3.1, then S* satisfies the assumption of Theorem 3.1.

b) If S,, S, satisfy the assumption of Theorem 3.1, then S, %S, satisfies the assumption |
of Theorem 3.1.

LEMMA 3.2. a) If S satisfies the assumption of Theorem 3.2, then S* satisfies the
assumption of Theorem 3.2.

b) If S,, S, satisfy the assumption of Theorem 3.2, then S, %S, satisfies the assump-
tion of Theorem 3.2.

Proof. All the statements are obvious, except 3.1b), which can be verified with the
help of the Krein—Shmul'yan lemma in the spirit of the proof of Theorem 1,7,

Now we shall recall that to prove the boundedness of an operator A it is sufficient to
verify the boundedness of the self-adjoint operator A®*A. Hence, by the Lemmas 3.1 and 3.2
we can confine ourselves to the case § = S%,

3.3. Eigenvectors. Proposition 3.1. Let S = S* and for some T =% hold B[S]b[T] =
Ab[{T]). Then {B[TI# = A.

Proof. We are to prove that the norm of the operator is assumed on vectar b[T]. It
is easy to verify that the Shale—Berezin group Sp is acting transitively on the domain .
and therefore without loss of generality we can assume that T = 0. Thus b[T] = b[0O] = 1.

0 L
But then matrix S has the form(Lt 0),and consequently, operator B{S] is simply the operator
of variable exchange B[S]f(z) = B(Lz).

Now we notice that F(V) decomposes into a direct sum of Hilbert spaces ‘¥, where ']
is the set of all homogeneous functions of degree k. Operator B[S] is acting in every &V
as the k-symmetric poser of L. \But I L]l <1, therefore IB(S)I = 1, and thus the norm of B[5]
is assumed on the vacuum vector b[0].

COROLLARY (to Proposition 3.1 and 1.2). Let the assumptions of the thearem be satisfied

and S=(§, 15) Then

| BISI|| = det (1 — MT)).

3.4. Fixed Points. Proposition 3.2. ‘The following conditions are equivalent:

1) b[T] is an eigenvector of the operator B[S];
2) T is a fixed point of the mapping u(S);
3) the subspace T is invariant with respect to the linear relation p(T).

This proposition is a tautology. Of course, we shall use the implication 2 1. The
implication 2 = 3 (in a sitaution similar to ours) has been mentioned by Krein [15] (Krein's {
theorem on an invariant subspace) and consequently it has been often used. An extensive i
bibliography on this subject has been cited in [16] (see also {18], close to Secs. 4.1 and !
4.2 of this paper).

3.5. Finite-Dimensional Case. Here we shall consider the case when n = dimV < =, .

o K L ]
Proposition 3.3. Let S = S* then || BISH < det (1 — | M |y, where | M | — | Ai#*}] l
Proof. First of all everything can be reduced to the case when ISI < I. To cope with =

this case it is enough to consider the sequence S5n =(1-1/n)S and apply Proposition 1.5. 3
|
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Let é%n be the closure of #

{n in the space of matrices.
ping p(S) of the domain Z, should Possess a fixed point,

Shmul'yan lemma the mapping u(S) transforms 7, into the interion of %,, and therefore the
fixed point lies inside %

n- By Proposition 3.2 the operator B[S] has an eigenvector of the
form b[T], and hence,

by Proposition 3.1 we have [B[S]| = det ((1 - MT)-1/2) " 14 remains to
prove the following lemma.

LEMMA 3.3.
| Pll<<1. Then

By the Brouwer theorem the map-
Since |IS| < 1 then by the Krein-—

Let X and P be square matrices |X|| < 1, where ¥ is positive definite,. Let

| det (1 — PX)| > det (1 — X).

tained a new proof of
B(S] in the finite-dim
rmula for the norm of
31.6. Proof of Theorem 3.2.
set of functions depending only on

the theorem of G. T, Ol'shanskii on the
ensional case (the original proof of
the operator B[S], see [9]).

¥ Pp the projection from F(V) onto the
seeesZp. It is easy to see that

We shall denote b
the variables zZ;

0 1,
0 0 | der
BB [FBim
0 0

where by 1, we denote the unit matrix of the rank n,
naturally identified with F (C™).

The image of the Projection Pn can be
Let us write S ag a block ma

We shall consider operator B[S,], where Sp=m,% 8= Ty
trix of dimension (n + =) x (n + =), and let

Ky Ky |Ly Ly, Ky 0 Ln 0
K Kn Ly Ly

0 00 o

== — S =
S L]t.l L;I My My | then ™ thl 0|My 0
L, LYy [ My My, 0 00 o

Now we prove the theorem. Let § = g%

satisfy the assumptions of the theorem. Then:
1) S, » s weakly;

2 B IS < det (1, — [ Ky 2 det (1 — | K s,

Hence, the assumptions of Proposition 1.5 are satisfied, and, therefore, B[S] is bounded.

4. Geometry of Domain ¥ »_and Proof of Theorem 3.1

4.1. The Geometry of Finite Dimensional Domains %n. Let n < o,
the domain @

We shall introduce in
» @ Riemann metric invariant with respect to the group Sp (2r, R):

ds' = tr (1 — 2%2)2dz% (1 — zz%)147.

Then the distance between points Z, Z,=% can be calculated according to the formula

1 14}/
P (Z120) =7 ) In?
3

Pore=
1_,—%{/! k -
where X,, X,,... is called "compound distance," i.e., the collection of eigenvalues of the
matrix

U — Z2)Mt — ZZ,)1 — 222, (1 — Z3z,).

The family of numbers A1s Azs... is also invariant with respect to Sp (2n, R)

We shall introduce also an auxiliary Riemann metric

(ds®)g = tr dZ*dZ
and the corresponding distance

PZE (21, Zy) = tr (Z, — Zz)*(zx — Z,).
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Proposition 4.1. P (u (S)Z,, p (8)Z,) < p (2, Z,). .

{

Proof. Thanks to the continuity, without loss of
and that p(S) is injective. Any such S (see [20
where U & Sp (2n,R), and L = L*. Since U preserve
we can assume that the fixed poi
Now it remains to verify that u(

generality we can assume that S| < 1 !
1) can be represented in the Form g = UL, !
s the metric, without lass of generality
nt of mapping p(S) is the point 0, and thus, p{3)Z = LZLL,
S) does not increase the Riemann metric ds?.

. 4:2. Geometry of the Domain %w. We shall introduce on ¥« a compound distance,
p [it is easy to see that series (4.1) is convergent if Z,,Z, = %]
Metric pp determines on %

metric
sand alsoc a metrie PE-
« the usual topology in the space of Hilbert—Schmidt aperators,

Domain &« is complete with respect to the metric p.

Proof. We shall consider a ball B. consisting of points Z & %, satisfying the condi-
tion p (0,Z) < C. One can show that on this ball the metrics p and PE are equivalent, 1

- i.e.,
Pe (21, Z,) < 02y, Z,) < kpg (24, Z3) for some k depending only on C.

P ) The simplest thing to do
is to verify the case of domains %n. for Riemann metrics ds? and (ds?)y, and then to take the

limit for n » ». But the space of all Hilbert—Schmidt operators is complete with respect
to the metric pg, and the ball B. is closed in the topology given by the metric pE [since
the function p(Z,, Z,) is continuous in the metric PE] .-

Proposition 4.3. p (u(S)Z, p(S)Z,) <e(Z,Z,) for any Z,, Z, = %., .
Proof. By Proposition 4.1 holds
P(nxSem)Z, p(n,sSsn)zZ)<p(Z, Z)
[element 7, is introduced by equality (3.1)]. Further we take the limit for n -+ w«.

4.3. Proof of Theorem 3.2. By Sec. 3.4 it is sufficient to show that the mapping u(s)
for Sl < 1 has a fixed point in' ¥.. For this end it is enough to verify that the mapping
u(S) is contractive in metric p.

Proposition 4.2.

a "
We shall represent S in the form § = S, * T, where | S;|| < 1, and T, = (I e : o )
LEMMA., 0 (r (Te)Z,, p (Te)Zy) < (1 — e)p (2, Z,).

Proof. This inequality can be directly checked in the finite-dimensicnal case on the
level of the Riemann metric ds?. Next we have to take the limit for n -+ =.

Now u(s) = ur(Sl)u(Te). The mapping u(S,) does not increase distances and the mapping
u(Te) is contractive. Theorém 3.1 has been proved.

5. Generalizations and Remarks ‘

5.1. Nonhomogeneous Operators. The Shale —Berezin groups have an important and fre-
quently used extension. It consists of all affine transformations of the Hilbert space, 5uCF1 i
that their linear part is contained in the Shale—Berezin group. We shall consider an analogi-= .
cal extension for semigroup T Sp.

For this end we shall introduce the operators
ral K L | X { (K L\/[(" NI P N
B[S|v']f(z) = B{L{ M ) ’]féz) = ‘\S exp {T (all)( t M,” () + 2+ ap }exp( {1ty 1)) f (e} e it

® L \Z )

where A, pe= V.

To define precisely operators B[S|vt] we have to repeat all words said in Sec. 1. We
omit them and present only the formula for the multiplications of operators

K L |\ P Qa7 _ [K L) (P Q\| A+ L(t — PM)™ (n + Py)
B[L' M u’]B[o‘ R u‘] B (L' u)* o' R) ]

%+ Q' (1 — MPy1(Afnt 4 p)
THEOREM 5.1. If S| < 1 then the operator B[S|vt] is bounded.

. mig|vt
To prove this theorem we notice at first that in the case 1S < 1 the operator B[S|V ]
can be represented in the form

K L|A 0 1—ela 1 KL)lO] [o t—e] 07
B[L' M'p,']=B[1—s oeo] *B[(—i——ey(ﬂ mo]*Blize o r,ﬁ]

‘ { ot ent 1y R
By Theorem 3.1 the middle factor in the RHS is bounded for a suff1c1er_|L13, small £ 2 =
In such a way, the problem reduces to the boundedness of operators of the form =

= T e L S e e R
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i.e.

‘J” 0 1—¢
| 1—¢ 0

As before, without loss of generality,
» We can assume that A = .

A’l
|
i
these operators can be considered self—adjoint,

Given by them mappings in F(V) can be rewritten in the form

0

R O (5.1)

Now we notice that the space F(V) can be decomposed into a tensor pProduct F (CY)en (where

n = dimV) with distinguished vectors £(z) = 1 (cf [211)
L) » and .
into a tensor product of the operators1 " operator (5.1) QECOMPoseS

tlAn|=H|tAi::<m, n=0,1,..., co.

(5.2)
The eigenfunctions of the operator A; are the functions
) =(—en + by exp (L),
“here m = 0, 1, 2,.... The corresponding eigenvalues are
Om=(1—¢e)"exp (.,i 5.-7..;)
gsnce, IA; Il = o4, that is, the product (5.2) converges, and thus the boundedness of the oper-
or

A has been shown. In this way also Theorem 5.1 has been pkoved.

3.2. Affine Symplectic Semigroup. We have already seen that the operators B[S] corre-

fpond to linear symplectic relations. Exactly the same, also operators B{S|vt] form a repre-
Sbntation of affine symplectic relations (for details see [7]).

“hto

ey

-
¢

1.

~d

5.3. Symplectic Category. Operators of the type B[S] acting from one Fock space F(V,)
another F(V,) are not less important than operators acting from space F(V) into itself
determine a representation of certain category of linear relations (see [7

5.5. Paper [9] intersects with [22]
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COMPUTATIONAL COMFLEXITY OF IMMANENTS AND REPRESENTATIONS OF
THE FULL LINEAR GROUP

A. I. Barvinok uDpc 512.5+519.6

1. Statement of the Problem. Let 4 =]ayl=Mat(C,n) be a matrix of dimension n x n over f
the field of complex numbers C. and ¥ be a character of the complex irreducible IEptESEntﬂtiﬂﬂ:ﬂ‘
of the symmetric group Sp. The expression =

dy (A} = E %) n 8, oli)

C=" de=]

is called the immanent of the matrix A corresponding to x. The question of the computational

complexity of immanents was put by Strassen (see [1]). In this paper, an upper bound on the
complexity is given of computing an immanent, which in the case if ¥ is an alternating char-
acter, x(o) = sgno, or a unit character, Yo % (0) = 1, coincides according to logarithmic order
with the known bounds, respectively, for the determinant and permanent and is better in com-
parison with the ones known for some representations corresponding to intermediate Young diﬂt .
grams. The author does not know any such nontrivial upper bounds on complexity for Young dia‘:_

grams of general form. In the paper, use of the theory of representations of the full Iiﬂﬁifi_
group GL (see [2Z, pp. 319-347]) is essential.

2. HNotation. Let V be an n-dimensional vector space over € with scalar product <, > -
and an orthonormal basis e,,...,ey. In the space ¥V® let us, in the standard manner, 1ntrﬂiuf:
duce the scalar product (denote also <, >}, the actions of 5,, permuting factors, and of thE:-;.
full linear group GL(V) [the n-th tensor power a®" of the natural representation w of GL{F} e
in V]. Let us denote by iy the symmetrization of v by a representation of S, with a char k
acter ¥. For the dimension dimw,, an explicit effective formula [2Z, p. 326] is known.
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