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Abstract. A certain one-parameter family of measures is colistructed on the space
of closed totally disconnected subsets of the half-line without isolated points. It is
shown that these meas~~~~ quasi:-invariantwi~hrespect,t() the group of smooth
diffeomorphisms of the half-line, and the Radon-Nikodym derivatives are explicitly

computed. " I ,J." ""~ I' , " ,"f\' I ",..," .cr", , c~,; , ,, , ..,.'" ", C'>\A"".' ;",.\~,~ce.c, ..
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"'Inthe past few years probability-theoreticmethods havegradually becomen'lore
important in thetheory: of infinit~diIi1ensional groups:md their representatians (see
[9I, [12], [15],. [20}, [22]). Itwasren'larked in [16] that all the known cbnstructions
of representati6risofthe groupof diffeomotphisms of the circle md of1oop' groups
are closely connected with diffusion of fr~tional order. In particular; this opens
the possibility ofusing the well-developed! theory of ordinary Brownian motion
(soo[7], [5}, [21~)in thetheory of representations of infinite-dimensional groups.
In the same paper many quasi-invaitiantif8.ctioris\were constructedJ for ,the grau})
of diffeomorphisms of the circle and for loop gröups on diverse measure spaces,
including examples of quasi-invariant measures on the space of Cantor subsets of

the circle.
The question of the existence of such measures has been familiar in the theory

of representations since ab out 1970 (see' [4]; ...[1]): it is interesting that the very
measures that turned out to be quasi-inVariAnt bad lang beenwell known, and bad
been extensively studied in probability theory, although the question of their quasi-
invariance and of their use in representation theory bad not been raised. We are
concerned with the following standard construction ([5], [13], [19]), which goes back
to the book [7] of Levy. Let us consider a random process with continuoussample
paths, and associate with each sampIe path its set of zeros. Thus, we get a map
of the space of sampIe paths (which is endowed with a measure by definition) onto
the space of closed subsets of an interval, and this map gives us a measure on
the space of closed subsets of the interval. In the case when the random process
is a fractional diffusion (see, für example, [14} concerning fractional diffusion)
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~ ~;"~n\1UJ L)~1ct;'r' 1('tlJ'ü':)tlla 10 quo'~8:J.d, 1: 1;.;Formulationorthetheorem;.;.r ~;4~j j;:;J"J u':T!)r1R
~ i. 'e' i i f ;-, c:.':i ,",

1.0. The space Cant(~). We denote by ~ the positive half-line 'U ~'O,(By
a Cantor subset of ~ we mean a closed subset of ~ of measurezero without
isolated points and containing the point O. The space of all Cantor subsets of ~
will be denoted by Cant(~).

We want to define on Cant(~) a one-parameter f~ly of probability meas-
ures Ha. Thefirst question arising is: in what language can a measure on Cant(~)
be described? As is weIl known, the complement of a closed subsetoflR is a finite
orcountable family of intervals. We giye a description of th~ measures Ha il};terms,
of the distribution of the end-pointsof the comple~e~tary intervals. '"

Let a > o. All Dur measures Ha will have the follQwing property: For any a the
probabilityis .1 that an element X E Cant{Ii+) does not:cpntain a. Thus, with
probability 1 there.'e~ts,a coJUplementary interval (~;rv),.;.tQ:X thatcontains a.

Suppose now that A is a finite subset of ~, let

al < a2 < ...< an

(Ul,Vl)'."',(U"V,) (1.1)
that covers all the points aj j we assume for definiteness that

UI < VI < U2 < V2 <

To specify a measure on Cant(~} it suffices to describe thejoint distribution
of the points Uj, Vj tor all possible finite subsets A C ~.

First of all we note that the points aj can be distributed in various ways over the
intervals (Uk, Vk). To take this into account we choose from the (n-l}st elementary
set {I,.. ., n -I} an arbitrary subset I consisting of the elements

i1 < i2 < ...< is
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(both the set {I, ..., n -I} itself and the empty set are allowed as I). We consider
next the polyhedron

Q(A I i!,... ,is)

I 

I).

I) = Q(al,...,an I

in JR2(s+l) given by the inequalities

0< Ul < al,
ai. < Vk < Uk+l < ai.+l 'v' k = 1,2, ..., s, ,

an < Vs+l.

With almost every point X E Cant(~) there is associated a point in one of the
2n-l polyhedra Q(A I I), namely, the end-points ofthe intervals (1.1) are associated
with X. Thus, to define the probability measures "'0 on Cant(JR.+) it suffices to
write out their projections on all possible sets

R(A) := U Q(A,i'
i Ic{l,2,...,n-l}

1.1. Drawing lots ror Cantor sets. Let 0 < a < 1. We define the probability
measure XQ on Cant(~).

For a > 0 the end-points of the complementary interval (u, v) of X E Cant(~)
covering a are distributed according to the 'generalized arcsine law'

Bin 7ra du dv
(1.2)1 ( )1+ ' U < a < v.

u -Q v -U Q

I) corresponding to the measure KQ on Cant(~

7r

The measure on Q(A
form

) 

haB the

dUj dvjsin 1I"Q

11"

8+1 8+1

n -(1.3)(..., - V ' I) 1 Q (V )I+Q .3=1 .., 1-' "'.1

(where Vo is understood to be 0). This equality determines XQ on Cant(~).
Here, of course, there arise questions ab out whether this definition is unambig-

uous. In §2 we shall give another descriptionof x(k' less convenient to work with hut
more transparent in certain respects. For the present we only make same remarks.

Remark. The formula (1.2) für the distribution of the end-points of a random inter-
val (or of 'ajump short' and 'ajump over') is actuallyvery natural (see Dynkin's
paper [2] and Feller's discussion of it in §XIV.3 of [11]).

Remark. The meaning of the formula (1.3) is as foliows. Let the points al < a2 <
...be given, and let (Ul, VI) be the complementary interval containing aI. Its end-
points are distributed according to the law (1.2). The interval (UI,VI) may cover
same of the points a2, ag,. ..; let a, be the first of the points not covered. Assume
that (U2, V2) is the interval covering a,. Then the numbers

U = U2 -VI, V = V2 -VI

are also distributed according to the law (1.2). In other words, after the interval
(UI,VI) is 'drawn', the 'drawing' ofthe interval containing a, is carried out like the
drawing of the interval (Ul, VI), except that we regard VI as the initial point of the
half-line instead of O. For a thoroughtreatment of the case a = 1/2 see §§47, 48 in
Levy's book [7], and also [5].
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1.2. The group DiffO(~). Wedenoteby Diffo(~) thegroupofdiffeomorphismsp
of the half-line u ~ 0 satisfying the conditions

(1) the second derivative ofp is continuous,
(2) the limit

tim p'(u)
u-++oo

exists (denote it by p' ( 00 » and is finite and non-zero,

(3)

--I

100 I p"(U)

u ". 0 p'() I "

(in other words,the function lnpf(u) h88 bounded variation).

Remark. The conditions (2) and (3) mean that the diffeomorphism p does not
differ greatly from a linear function (tu + ß at infinity, so the two conditions can be
regarded 88 a kind of requirement that p be differentiable at the point u = 00. We
note also that ifp"(u) h88 constant sign für sufficiently large u, then the condition
(3) follows from (2). Indeed,

(OO ~ du = lnp'(oo) -lnp'(C).
Jc p'(u)

Cant(~) -+ Cant(~

determined by the diffeomorphism p constitutes a measure Ha on Cant(~) that is
quasi-invariant, and the Radon-Nikodym derivative of this transformation is given
by the formula

l+a
pt(Uj)(Vj -ud)

p(Vj) -p(Uj)-
(1.4)

where the product is Quer an intervals complementary to the set X 6 Cant(~
This product conuerges absolutely, and

foT almost all X E Cant(~

1.4. Representations and the problem of constructing the enveloping
semigroup. For any Q E (0,1) and any s E JR we define a unitary representation
Pa,s ofthe groupDiffo(~)i on L2(Cant(~), Ha) by the formula

Pq,s(P)j(X) = f(P... A)~Q(PJX}1/2+is
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Nothing is known at present about the properties of these representations. In
connection with the representations PQ,B I trunk it is a very interesting problem to
find the enveloping semigroup of the group Diffo(~) in the sense of Olshanskir
(see [18J, [17J). In Dur case the problem can be reformulated as folIows.

We consider the space

z = Cant(~) x Cant(~) x ~.

With each element P E DitrO (~) we associate the map

(}~Q): Cant(~) -+ Z
defined by the formula

Let hp be the image of the measure XQ under the map 81Q). We have obtained
a family hp of probability measures 01;} Z 1ndexed by the diffeomorphisms p in

DiffO (~ ). It Is required to describe the closure Diffo (~) 01 the family hp i~
the space of probability measures on Z with respect to weak convergence (see [9]).

According to [9], Diffo (~) is equipped with a natural operation of multiplicatio~
that extends the usual multiplication in DiffO (~ ). '

,1.5. The local time. For almost every (with respect to xQ) X E Cant(~) we
now define a canonical measure Ax on the set X, called the local tIme on X. We
can also assume that Ax is a singular measure on ~ with support X.

Let b > a ~ O. Then the measure AX of the closed interval [a, b] is defined to be

-!.--lim cQ-l .E', (1.5)1 -a E-+O
, f c

where E' is the SUfi ofthe lengths oftheco~plementary iritervals (aj,Pj> C la"b]
such that ßj -aj < c..' '

The same quantity Ax ([a, b]) is equal tö

! lim cQ .E", (1.6)
a E-+O

where E" isthe number of complementary intervals (aj, ßj) C [a, b] such that
ßj -aj > c.

Of course, we must show that the limits hefe exist, and that they coincide (see

§2.5 below).
Let a be fixed, and let X E Cant(~) and p E DitrO (~). Then on the set p .X

we have two measures: first, the local time Ap.X of the set p .X, and second, the
image P .Ax of the local time Ax under the map p. It follows from the foJ;mulae
(1.5) and (1.6) that Ap.x is absolutely continuous with respect to p' AX, and the
density is equal to

' ( )-a pU. '

Remark. For a = 1/2 this local time is the usuallocal ti~e of Levy.

Remark. It seems likely that the measures Ka are equivalent to the measures arising
in the consideration of the zero level sets für diffusions of fractional order (see the
introduction to the paper).
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2.1. Poisson measures. Let L be aspace with a continuous a-finite measure >.,
let n be the space of all unordered countable subsets of L, and let A c L be a
measurable subset of finite measure. Denote by n(A, n) the set oE all points ~ E n
such that ~ n A consists of n points. We define a probability measure a on n by
the following rule:

(1) a(n(A,n)) = ~e-~(A)jn.
(2) if Al, ..., Ak are disjoint sets of finite measure, then the events n(Aj, nj) are

independent, that is,

k k

n {}(Aj,nj) = lIu(n(Aj,nj))
j=l j=l

It is weIl known ([6], [1]) that tros definition is unambiguous (as follows from the
Kolmogorov theorem on projective limits). The measure obtained in this wayon
{} is called a Poisson meas'Ure.

Remark. For any measurable subset B C A of infinite nieasure the set of all '" E n
,

with l.I.) nE infinite haB full measure in {}. H B C A h~ finite measure, then l.I.) n B
is finite with prob ability 1.

2.2. Random discrete measures. Denote by M(~) the set of all positive
discrete measures on ~. Any such measure can be represented as a sum

u

h = Lujc5t;,

where <>t denotes the unit measure on ~ concentrated at a point t E ~.
We fix an a such that 0 < a < 1, an,d construct a prob ability measure /La

on the space M(~) according to the following rule. We consider the quadrant
L = R+ x ~ with coordinates (t, u), and the measure ). ~n L having density

1
Ua+l

with respect to Lebesgue measure dt du on L. Let n be the set of countable subsets
of L equipped with the Poisson measure 0' constructed in the preceding subsection.
With each point h = E u;tSt; E .1v(~) we associate the countable subset (I.J E n
consisting of the points of the form (t;,u;). Thus, we have obtained a bijection
n -t .1v((~), and to the measure 0' on n there corresponds a measure J1.a on

.1v((~

Remark. For very sm all intervals (t, t + ßt) and (u, u + ßu) it is easy to show that
the mean number of terms in the sum h =: EujiStj such that

t < tj < t + ßt, u < Uj < U + Au

is approximately equal to
t:ltt:lu
uo+l

(this property is usually taken as the definition of the measure JLo)
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2.3. Remarks about the measures Pa. The remark at the end of subsection
2.1 haß the following two consequences (A) and (B).

(A) For given V2 > VI > 0 the /l,a-probability is 1 that the expression h = E 'UjtStj
contains infinitely many terms such that VI < 'Uj < V2. In particular, E 'Uj = 00
with probability 1.

(B) For given S2 > 81 > 0 the /l,a-probabilityis 1 thatthe expression h = E 'UjtStj
contains infinitely many terms such that SI < tj < S2. In particular, the
/l,a-probability is 1 that the points tj are denseon the half-line t ~ o.

The following three statements are also very simple and are weIl known.

(C) For~ven 82 > SI > 0 the quantity i' , ;;,

~,
~

j:B} <ti <B2
'Uj

is finite with probability 1; its mean value is infinite.
(D) Let 82 > 81 > O. We consider the quantity

~ ~
.L,;, !

j:Ui <E, 81 <ti <82

~e(h)' ~ Uj.

Then für almost all h
1 .~e(h)1 IJm - 1 =.82 ,.,81, i (J.?c"~"' .. 't-a e-++O c -Q '., "-

.,(E) Let 82 > 81 > 0, andlet Ne be the number of terms in the ~ h = EujtSt;
such that Uj > c and 81 < tj < 82. Then for almost all h

1. Q1\T
-11m E: .I ve = 82 -SI
a e-++O

2.4. Measures on the space of monotone functjons. Let h E M(~).
consider the function

We

CPh(S) = 18 E
j:O~tj ~8

h=Uj.

By the property (C) in subsection 1.3, t~e probability is 1 that this integral
is finite für all s, It is also obvious that <Ph(S) is monotonically increasing, and
<P/!.(O) '7 0 for almost all h. It is clear that the measure h can be uniquely recovered
from the function <Ph.

We remark further that <Ph is a jump function, that is,

für any point of continuity a of the function CPh, where the summation is over all
the points tj of discontinuity of cP with tj < a.

Let J(IR+) be the space of all monotonically increasing jump functions 1 on the
half-line t ;;?: 0 such that 1(0) = O. The map h Ho CPh carries M(~) into J(!I4);
let Va be the image of the measure JLa under this map.
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Th, m'~ure v. on J(nt.) gi,~o.. of th, 'lAhl',~dom pro=,~ (- fu,

,,=pl,,[7])
Th, 'lAtom,nt, IA)-IE) in rnh""ioo 23 ~',~ily '~",do~,to th, l~gU'g,

ofmonoto..t\m,tio~ F",in't~" (B) m'~th.t th,poio," o'di,rootinoity of

öt\m'tionjEJ(R,)lfu'%.Jm~tö!lfuo,tioo'f)~'d,nreoiR,""ER W'ron.d"the'~dmn"""hlo

1]a(f) = f(a)., f E J(~)

(with probability 1 the point ais not a pointofdiscontinuity off, andhence f(a)
is weIl defined). Let Ta(U) be the distrib~~ion function of 77a. With the exception
of the case a = 1/2 there is no nice analytic'expression für the function Ta(U). The
properties of the 'special functions' Ta(U)-}iave been extensively studied (see, für
example, [3], and [8], §§5.7-5.10). The characteristic function of the distribution
Ta(U) is given by the formula ...)!: -:

ln} x ~ o.,

Here the branch of the function (x/i)Q in the tipper half-plane is chosen so that

(x/i)Qisrealforx=ir,r>O. 1[' [
,; r

2.5. Measures on the space ofCanto~ s.ets. L~t f E J(~). We consider
the graph Graph(f) of I , und~rstood in the following sense. By definition, the set
Graph(f)contains a11 tliepoints:bfthe form (ttJ(t», where t is a point ofcontinuity
of f, along with all the points ofthe form f :

(tj,f{tj -0)), (tj.,f(tj + 0)),

where the tj are the points of discontinuity of f.
With eabh furtction f E J(~) we associate the projection Qf ofGraph(f) on

the vertical semiaxis. It is easy to see that QJ is closed and does not have isolated
points, and it is also easy to see that Qf haB;, Lebesgue measure zero (since f is a

jump function).
Thus, f ,H- Qf is a map J(~) -+ Cant(~). We note further that Qf is

; ; ; T '" ,

e,quipped with a canonical measure, na.:rnely, the image ofLebesgue me~ure on ~
" ..'"

under the niap f: ~ -+ ~. This measure is the lQcal ti~e X oftne' set Q f; the
definitions (1.5) and (1.6) of the lotal time are refornlulatiohs ofthe expressions
(D)-(E) in subsection 2.3.

Obviously, a function f E J(IR+) is uniquely det~rmiried by the set Qf and
by the local time X on Q f. Indeed, let u be a. point of the vertical axis, and let

'" cl(u) := X([O, u]). Then '" : '

u = f(l(u)).

On the other hand, as we have just seen, the local time on, Q J is uniquely
determined by QJ itself,for almost all f. Therefore, themap f H-QJ is an injective
(np to a set ofmeasure Q. in J(~)) map J(~) ~ Cant(~). We denote by Xcr
the measure on Cant(JR+) that is the image ofva under the map f ~ Q/.



865 Yu. A. Neretin

(a) The first factor obviously tends to

..,{",
,; ..pICO) J

(b) The second factor. We take its logarithm:

Iln n ~/(Vj-12
p'(Uj) "L j" I~

I&"
; "-' p'("')j " IpU(",)I j ~

/p"("')I"L -&.,+ -&.,
; "-' p'("') '.+, p'("')

Let us consider the set

The set Y(A) decre~es ~ the set) .A.;fhcte~es In size, and the intersecti6n of
the sets Y(A) is a Cantor set of me~ure O. Therefore, since the function Ip"/p'l is
integrable and the Lebesgue integraIis absolutely continuous, the expression

-I

r Ip"(W)

}Y(A) p'(W)

tends to 0 as A increases in size;Thus, the second factor in (3.1) tends to 1
(c) The third factor. Again we pass to logarithms:

I ' 'iU' V

Ip(Uj) -p(Vj)-l ~E.

We next choose ~j-l E (Vj-l,Uj) such that

(3.3)

= P'(~j-l)p(Uj) -P(Vj-l)
Uj -;- Vj-l

Then the expression (3.3) can be rewritten in the form

~~L1Uj I~
Vj-l p (W)

dUJ:

Iln(

and this expression tends to 0 as A increases in size für the same reasons as (3.2).
(d) The fourth factor. Here new factors are adjoined to the product as A is

augmented, hut the factors that were present before remain unchanged. We show
that the product stars uniformly bounded as A increases in size:

n p'(Uj)(Vj -Uj) .

p(Vj)-p(Uj)
~ Ernp'(uj} -ln ~~*l

~ Ellnp'(uj} -lnp'((j}l,

where ~j E (Uj,Vj).
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) 

thatAccordingly, we have constructed a family of measures Ha on Cant(~.
depends on the parameter Q E (0,1).

It remains to bring the picture described into correspondence with subsection 1.1.
Let f E J (~ .For a > 0 let t be the moment of time such that

f(t -0) ~ a ~ f(t + 0)

" .
..,The problem is to compute the joint distribution of f(t -'- 0) arid f(t + 0) für a

given value of a. The solution was obtained by Dynkin in [2], and this solution is
given by the formula (1.2). Since the random process (J(IR+), lIQ) has the strong
Markov property, the!ormula (1.3) is ~ conse~uence of (1.2) (see, für example, [10],
§4.1) , i~\.

§ 3. Proof of the theorem ,
I;' j j) .i

Let the set A = {al,"" an} be the same as in subsections 1.0 and 1.1, and let
p(A) be the set {p(al);"" ,p(an)}. The map Cant(lR+) 4 Cant(~) given by the
diffeo~9rp~is!~p ~nduces a map 9f t~e iPoly~~dra :;.", "..,. "." ; ,,! ,c,

.
Q(A I n~ Q(P(A) I ,I)

given by the formula
Uj Ho p(Uj), Vj ,-,+-p(Vj).

Furthermore, the Radon-Nikodym derivative is giveTh by the formula

[ 8n+1 ,,\,dp(uj) dp(vj).,.", ! l,

j=1 (P(Uj) ;7\ p(Vj_U)l-a(p(Vj)- p(Uj»)ltli

1+0l-a ( v.-u. J J

p(Vj) -p(Uj)

d ,; r"""'; j8+1 dUj Vj c';" "";

[n) l+a
.(Uj -Vj-1)1-a(Vj -Uj

)=1 : '.

8+1 [ ( Uj -Vj-1= n p'(Uj)p~(V?) p(Uj) -"'P(Vj-l)
j=l

We rewrite this expression in the form

P'(Vs+1)

p'(vo)
s+1:

xli
;=1

l+cx
p'(Uj)(Vj- Uj)

p(Vj) -p(Uj)
(3.1)

where Vo = O.
We now begin to augmept the finite set A in such a way that a countable dense

subset of the half-line is obtained in the limit. We consider how the four factors in
the product (3.1) behave.
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(a} The first factor obviously tends to

EJ~
'~~ p'(O)",

(b) The second factor. We take its logarithm:

Iln n p'(Vj-l1
p'(Uj}

Let us consider the set

Y(A) :;: [vo" Ul}U[Vl,U2} U
U[VS+l'OO).

The set Y (A) decreases as the set-\ '!)::Ifucteases in si~e,ahd the intersecti6h oE
~he sets Y(A) is a Cantor set.ofmeas.u~e O. Therefore,.since the function !p"/p'/ is

mtegrable and the Lebesgue mtegralIs absolutely contmuous, the expreSSIon

Ir Ip"(UJ)

}Y(A) p'(UJ)

tends to 0 as A increases in si~e~Thus, the second factor in (3.1) tends to 1.
(c) The third factor. Again we pass to logarithms:

Iln n P'(Vj-l)(Uj -Vj..lJ I "') p(Uj) -p(Vj) 'ir ~ E

We next choose ~j-l E (Vj-l,Uj) such that

= P'(~j-lp(Uj) -P(Vj-l)

Uj ! Vj-l ,.

Then the expression {3.3} can be rewritten in the form

dtAJ ~ E1Uj 1~ ldtAJ:
Vj-l p'(W)

Iln(

and this expression tends to 0 ~ A incre~es in size forthe same re~ons ~ (3.2).
( d) The fourth factor. Here new factors are adjoined to the product ~ A is

augmented, hut the factors that were present before remain unchanged. We show
that the product stays uniformly bounded ~ A incre~es in size:n ~)(v~) .

p(Vj) -p(Uj)
~ EI,np'(Uj} -In ~~

~ Ellnp'(uj} -lnp'(f.j}l,

where ~j E (Uj,Vj)
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This quantity is bounded above by the variation of the function In pi (CA) ), that is,
by the integral 100 Ip" (W)I0 ""iM dtJJ (3 .4)

We emphasize that this upper bound is independent of the choice of the sequence
of sets A and of the point X E Cant(~). Thus, we have shown that the family of
functions (3.1)converges pointwise to the desired expression (1.4) as A increases in
size.

Moreover, the functions (3.1) remain uniformly bounded (the moduli of the log-
arithms of the second and third factors are bounded above by the same integral
(3.4». We can now use the Lebesgue domina ted convergence theorem. As a result
we get that the family of functions (3.1) converges on Cant(~) to (1.4) in the Ll-
sense with respect to the measure Ha, and this concludes the proof of the theorem.
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